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Abstract: We present a simple model to calculate the spatial
dependence of the interaction strength between two plasmonic ob-
jects. Our approach is based on a multiple dipole approximation and
utilizes the current distributions at the resonances in single objects.
To obtain the interaction strength, we compute the potential energy
of discrete weighted dipoles associated with the current distributions
of the plasmonic modes in the scattered fields of their mutual
partners. We investigate in detail coupled stacked plasmonic wires,
stereometamaterials and plasmon-induced transparency materials.
Our calculation scheme includes retardation and can be carried out
in seconds on a standard PC.
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1. Introduction

The interaction of plasmonic objects has currently generated substantial scientific in-
terest. Very often, elements such as nanospheres, nanodiscs, cut-wires, etc., have been
investigated [1–4]. Recently, the field of metamaterials has exploited also more complex
shapes of plasmonic objects, such as split-ring resonators [5, 6], cut-wire pairs [7, 8],
stacked split-ring systems [9–11], combinations of cut-wire pairs and single nanowires
[12,13], nanodots and nanorings [14], as well as plasmonic oligomers [15–17].
Interaction between the individual plasmonic nanoobjects plays the key role for the
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understanding of the optical properties of the collective system. This is especially true
for the new field of plasmonic metamaterials, where not only electric dipole interaction
plays the main role, but also magnetic interaction as well as higher order electric mul-
tipoles can have substantial influence. One prominent example for such a system are
stereometamaterials [10], which can exhibit strong chiral optical properties [18]. Dipole-
quadrupole coupling is also the key mechanism for generation of ultranarrow resonances
in the optical spectrum of plasmonic objects, which arise from Fano interference [19].
Such plasmonic analogs of electromagnetically induced transparency have led to novel
sensors with extremely high figures of merit [20]. Common to all of these examples
is the importance of coupling between the plasmonic elements. Simple systems, such
as dimers consisting of nanospheres, can be treated analytically. Dimers made from
plasmonic nanoshells are also well behaved and have been described using the plasmon
hybridization picture [21, 22]. Often, the interaction is observable through a resonance
shift or resonance splitting in the optical spectra.
When it comes to more complex systems, the interaction between the individual con-

stituents is yet not easily understood. The optical response of coupled structures can
nowadays be computed with numerical methods which solve the full Maxwell equations
(such as FDTD, Fourier Modal Methods, MMP and Finite Integral Methods), but the
obtained spectra need careful interpretation. In order to gain some insight into the dis-
tance dependence of the coupling strength, it is possible to analyze the resonance shift
or mode-splitting in the spectrum [23]. However the splitting needs to be large enough
to be recognizable (i.e., the splitting of the resonances needs to be larger than its full
width at half maximum) and for each spatial configuration the whole spectrum has to
be computed. For complex structures, large calculation volumes, or a systematic search
in parameter space of relative spatial arrangements, the use of full Maxwell solvers is not
convenient or not feasible because of the required computational effort. Such knowledge
about distance-dependent coupling strength might, however, be the key for the design
of novel plasmonic devices. One example is sensors, where the coupling determines the
lineshape and, hence, the sensitivity of the sensor. Appropriate fabrication parameters
and tolerances need to be known, and, therefore, the proper know-how of the coupling is
of crucial importance. A different path to understand the interaction between plasmonic
objects is to model the interplay of the (two) objects analytically. Up to now, mostly
electrostatic models [24] or point-dipole models [25] have been applied to explain the
spatial dependence of the interplay between nano-objects. Electrostatic models break
down when the distances between the objects exceed a quarter of the effective wave-
length, whereas point-dipole models fails to model the nearfields of extended structures
correctly and therefore break down at small distances.
We present a simple model that uses independently calculated currents inside each

structure at each resonance and then computes the spatial dependence of interaction
strength. The required resonance positions of each structure and the corresponding
current distributions can easily and efficiently be calculated with available Maxwell
solvers. Note that the absolute coupling strength cannot be computed with this method
and the total amplitude is fitted to the reference.

1.1. Modes in plasmonic systems

Each plasmonic object exhibits resonances. Their energies and lifetimes are determined
by the geometric shape, material, and dielectric environment [26]. For thin metallic
wires, simple models can describe the current distribution for different modes. We as-
sume the currents in metallic nano-wires to flow on a line on the wire axis, forming
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Fig. 1. Schematic current distributions in a plasmonic wire for the first three
eigenmodes (from top to bottom).

standing waves for the different modes (Fig. 1, left side). In a first approximation, the
currents have nodes exactly at the geometric end of the wire, which is not strictly
true [27,28].
Furthermore, we discretize the currents along the wire axis into point currents with

a sinusoidal amplitude modulation Ai of a standing wave (Fig.1, right side) [29]. The
point current flowing forth and back constitutes an oscillating electric point dipole �p
with the radiation pattern expressed in Eq. (1):

�EDD(�r,�p) =
1

4πε0

{
ω2

c2r
�̂r×�p×�̂r+

(
1
r3 − iω

cr2

)[
3�̂r(�̂r ·�p)−�p

]}
eiωr/c . (1)

Summing up the electric fields of all discrete dipoles of the object (Eq. (2)) gives us a
good approximation for the scattered field of the nanoparticle at the resonance:

�Escat,1(�r) =
N

∑
i=1

Ai�EDD(�ri −�r,�pi) . (2)

In the static case, the work of a current in an external field is given by U =−�E ·�j. For
the time-harmonic case the cycle-averaged potential energy U for a point-current dipole
�p2 in an external field �E can be written as in Eq. (3)

U =− π
ω

Re
{
�E(�r2) ·�p∗2

}
. (3)

For two extended objects, we also discretize the current distribution in the second object
into a set of oscillating dipole moments �p2, j and then calculate the scalar product of

the scattered field of object one, �Escat,1, with the discretized currents of object two
(Eq. (4)):

U =− π
ω

Re

{
N

∑
j=1

�Escat,1(�r j) ·�p∗2, j
}

. (4)

The calculated potential energy U is then proportional to the coupling strength of the
system at one specific frequency ω. Due to the efficient calculation of U , the number of
dipoles can easily be increased until convergence is reached.
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1.2. Relative phase between two coupled particle plasmons

One particle plasmon, driven by an external time-harmonic field will oscillate with
a specific phase delay such that the charges and currents of the plasmon exhibit an
extremum of potential energy in the incident light field.
In the presence of two particle plasmons in an arrangment such that only one is

excited by the external field, the second one can only be excited by the scattered field
of the first one. In this configuration, the phase delay of particle plasmon two will be
such that it exhibits an extremum of its potential energy in the scattered field of particle
plasmon one. In our model we calculate via simple algebra for which phase difference ϕ
of �Escat,1 and �p2 the complex scalar ∑N

j=1
�Escat,1(�r j) ·�p∗2, j becomes real. Changing the

relative phase by ϕ, Eq. (4) yields an extremal interaction energy U .
In the following, we are going to present two cases, namely two perpendicularly

stacked cut wires and a dipole-quadrupole-coupled complex stacked plasmonic structure.
The condition is not fulfilled in the third system which we discuss below, namely a
stereometamaterial consisting of two stacked and twisted split-ring resonators. The
reason is that in this case both objects are driven by the external light field. However
due to the short distances and the field enhancement near the structures, the interaction
is dominated by near field coupling, and the external field can be neglected in first order.

2. Structures

In order to examine the validity of our model, we examined our coupling model with
three different geometries. Our first system is a stacked and perpendicularly oriented
cut-wire pair. Our second system is a more complex system which consists of three
plasmonic wires, which constitute a quadrupole-dipole coupled system, and our third
system is a stereometamaterial consisting of two stacked split-ring resonators. The sys-
tems include different levels of coupling, namely electric coupling in the near- as well
as in the far-field, coupling of fundamental modes to higher-order multipoles, as well as
electric and magnetic coupling.

2.1. Perpendicular cut wire pair

The first and simplest system that we are going to examine are two stacked gold cut-
wires of equal size and geometry (length 400 nm, width and height 40 nm) in vacuum
(n = 1). One wire is aligned along the x axis and the other is aligned along the y-axis
and hence perpendicular to the first one (see Fig. 2a).
They are arranged in such a way that they have one common x-y coordinate at

their respective ends. We vary the z-distance from 50 nm center to center distance
up to 400 nm between both objects and analyze their mutual coupling. First we have
calculated the response of this system with a commercial finite-integration time domain
(FITD) algorithm software [30] and extracted the spectral splitting from the resulting
spectra (see Fig. 2b). The spectral splitting is plotted as squares in Fig. 3a. At a center-
to-center distance of dz = 300 nm the splitting becomes smaller than half the linewidth
of the resonance and hence could not be extracted anymore from the spectrum.
Assuming an incident field polarized parallel to the first wire, the second one cannot

be excited directly from the incident field at the resonant frequency and, therefore, can
only be excited by the scattered light of wire 1. We discretized the fundamental plasmon
mode in the wire [26] into N dipoles as described above and calculated the interaction
energy at the resonance at ν = 200 THz using our model. The coupling results for
N = 1,3,5,9 and 15 discrete dipoles with their amplitude set to the appropriate value
which we obtained from the respective fundamental plasmon mode are plotted in Fig.
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Fig. 2. a) Geometry of the system and the discretized currents. b) Contour of
transmittance spectra (Finite-integral time domain simulation [30]).
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Fig. 3. a) Coupling strength in dependance of z-distance. b) Relative phase φ as
function of z distance.

3a as solid line. Already for a discretization level of N = 9 dipoles (blue curve) the
agreement of our model with the full Maxwell simulations is excellent. Figure 3b shows
the phase shift between the modes in the top and bottom wires, which is more or less
flat at φ ≈ 0 degrees for these wire separations.
We are going to inspect now the situation upon larger distances, where retardation

between the two wires is no longer negligible. Hence, we vary the distance from 0 to
3000 nm, i.e., more than two resonance wavelengths of the nanowire system.
Figure 4a depicts the model calculation for these large distances, which show a de-

creasing coupling. The values are hard to extract from the FITD simulations, as the
splitting is no longer visible due to the width of the individual resonances. The phase
evolves after the initial curved behavior into a linear shape, as expected from pure
retardation.

2.2. Dipole-quadrupole structure

The second configuration is a coupled system of three plasmonic wires (see Fig. 5b)
embedded in a dielectric environment (n= 1.55). Two of them are in the lower plane and
have a length of 315 nm. They are laterally separated by a distance (center to center) of
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Fig. 4. a) Coupling strength for long distances: the extraction of the mode splitting
from FITD-simulations was is only possible up to 300 nm. b) Linear scaling of
the relative phase between the currents for long distances shows the effect of
retardation.

300 nm. Above them is a single gold nanowire of length 355 nm which is perpendicular
to the bottom wires. All three wires have a width of 80 nm and height of 40 nm, the
stacking distance in z-direction is 70 nm. The system resembles a plasmonic analog of
electromagnetically induced transparency (EIT) [12]. The single top nanowire represents
a plasmonic dipole, and the two wires below constitute a plasmonic quadrupole. Upon
excitation with light at its resonance at λvac = 1.66 μm that is polarized in the x-direction
(the direction of the long axis of the top nanowire), the dipole is excited. By near-
field coupling, the dark quadrupolar mode of the lower wires (which is not excited by
the incoming light) is excited. A peculiarity of this EIT system is the fact that the
excitation of the quadrupole takes only place if the dipole is laterally shifted away
from the symmetry axis of the quadrupole by a shift s (see Fig. 5a). The experimental
transmittance spectra from reference [12] for different lateral shifts s are shown in Fig.
5c. In order to extract the coupling strength between the dipole and the quadrupole
in dependence on this parameter s, a fit of the experimental spectra to a classical EIT
model [31] was carried out and plotted as squares in Fig. 6a. In order to understand
the coupling strength behavior upon lateral shift s, we discretized the currents in the
three wires in a similar fashion as above. Again, sinusoidal modes in each single wire
have been assumed. The solid line in Fig. 6a shows the resulting coupling strength for
different numbers of discretized dipoles. The coupling strength behaves more or less
linearly with lateral shift for small values of s, and saturates when the position of the
dipole bar approaches the edges of the quadrupole bars underneath. A single dipole
per wire can already describe the initial linear behavior. We determine that a number
of N = 30 (green curve) gives a quite good agreement between our simple model and
the experiment for larger lateral shifts as well, and convergence has been achieved. The
extremal condition described above in section 1.2 leads to the phase relation between
the upper and lower dipole and quadrupole as plotted in Fig. 6b. The phase is more
or less flat at φ ≈ 0 degrees for the stacking distance of 70 nm, regardless of the shift
parameter s.
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Fig. 5. a) Schematic view of the plasmonic EIT structure . b) Schematic picture
of the discretized currents in the structure. The cones illustrate the 27 discrete
dipoles for the calculation (9 in each wire). c) Contour plot of experimental ab-
sorbance data of the coupled dipole-quadrupole structure.

2.3. Coupled split ring resonators

The third system that we discuss here is a stereometamaterial which consists of two
stacked split ring resonators of lateral size 230 nm, width 230 nm, and height 50 nm
in vacuum (see [10]). The center to center vertical distance is kept constant at 100 nm.
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parison with experimental results. b) Relative phase φ as function of shifting
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We change the coupling between the two systems by varying the twist angle θ from 0
to 180 degrees.

y

z

x

θ

Fig. 7. Stacked twisted split ring resonators: the cones depict the discretization
of the current in each split ring resonator into N = 15 discrete dipoles each.

Linearly polarized light which impinges from the bottom onto that sample along the
gap of the lower split-ring can excite a fundamental plasmon mode between the ends
of the wire [26]. The fundamental resonance occurs at a wavelength of λvac = 1.5 μm.
Hence, a particle plasmon along the total wire with a more or less sinusoidal current
distribution is excited (see Fig. 7). We treat the split ring resonator element as a wire
which was bent twice [26]. We assume that the second split ring in our model is only
excited by coupling to the first one. The total coupling strength is composed of dipolar
and higher-order multipolar electrical modes as well as dipolar magnetic modes [18].
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The spectral splitting has been extracted from the numerical extinction spectra of [10]
and is plotted as squares in Fig. 8a. Our model calculation is shown for N = 9 up
to N = 100. It is clear that for such a complex system, a single straight dipole cannot
account for the coupling behavior upon twisting at all. We find that N = 50 gives already
satisfactory agreement between the FITD simulation (which actually agrees quite well
with experimental observations, see Liu et al. [10]) and our model. Towards N = 100, our
model converges well. For a more complex structure we need more elementary dipoles to
account for the associated modes. Our model reproduces the characteristic features of
the system with a modest splitting at θ = 0◦, a minimum at a critical angle of θc ≈ 60◦,
and a stronger splitting at θ = 180◦.

Using our model of extremal energies, we also retrieved the phase between the os-
cillators. Different from our previous two cases, the phase behavior is not flat. The
retrieved phase between the top and bottom oscillators varies in our model between
π/5 at θ = 0◦ twist angle to slightly above π for θ = 180◦ twist angle. The latter result
can be easily understood, as the twist angle of 180◦ results in a π phase shift between
the two excitations and because the distance gives only a very small retardation. This
small retardation might be responsible for the small deviation of the phase to a value of
π. One should mention that the interplay of external excitation and internal coupling in
such a stereometamaterial is very intricate and far from being understood in a simple
model system.
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Fig. 8. a) Coupling strength in dependence of the twisting angle θ . b) Relative
phaseshift as function of θ .

3. Summary/outlook

In this paper, we demonstrated how a very simple and efficient multiple dipole ap-
proximation model can account for the coupling behavior of quite complex plasmonic
nanostructures. We took the modes of simple constituents of our complex nanostruc-
tures and weighted up to N = 100 discrete dipoles with the strength of the current.
Summing then over all simple interactions between mutual dipoles and calculating the
interaction energy, we were able to derive the total splitting energy of our complex
systems within a computing time of less than a minute on a standard PC. We obtained
very good overall agreement with much more complex FITD simulations and were even
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able to calculate coupling strengths for distances where extraction from FITD data was
no longer possible due to the small energy splitting. We were also able to determine the
phase behavior between the individual oscillators. Retardation was taken into account
in all cases. Our model with our quite simple assumptions should be able to predict the
behavior of even more complex nanostructures in the near-field as well in as in the far
field with very small effort. Our method can therefore facilitate parameter studies for
the design of novel nanoplasmonic devices which are based on coupled structures, such
as novel polarizers [32], plasmonic sensors [20] or 3D plasmon rulers [33] in the future.
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