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Abstract. We study cold atomic gases with a contact interaction and confined into

one-dimension. Crossing the confinement induced resonance the correlation between

the bosons increases, and introduces an effective range for the interaction potential.

Using the mapping onto the sine-Gordon model and a Hubbard model in the strongly

interacting regime allows us to derive the phase diagram in the presence of an optical

lattice. We find the appearance of a phase transition from a Luttinger liquid with

algebraic correlations into a crystalline phase with a particle on every second lattice

site.
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Cold atomic gases confined into one-dimension exhibit remarkable properties as

the interplay between interactions and reduced dimensions strongly enhances quantum

fluctuations. The most prominent example is the appearance of a Tonks-Girardeau gas

for bosonic particles [2, 1], and the possibility to pin the bosons into a Mott insulating

phase for arbitrary weak optical lattices [3, 4]. Most remarkably, it has recently been

proposed [5] and experimentally observed [6], that it is possible to access a regime,

where the bosonic many body system exhibits even stronger correlations. This opens

the question, whether it is possible to enhance the correlations to a point, where the

bosonic systems forms a crystalline ground state. In this letter, we demonstrate that

indeed in the presence of an optical lattice a solid phase appears.

The transverse confinement for cold atomic gases is experimentally efficiently

achieved using optical lattices [2, 7] or atomic chips [8]. Within this one-dimensional

regime with the kinetic energy of the particles much lower than the transverse trapping

frequency, the interaction between the particles is described by the one-dimensional

scattering length a1D [9]. Remarkably, the system can undergo a confinement induced

resonance, where the scattering length crosses zero. For a1D < 0, the properties of the

system have been studied in terms of the exactly solvable Lieb-Liniger model [10, 11],

while at a1D = 0 the system is denoted as Tonks-Girardeau gas. Crossing the confinement

induced resonance with a1D > 0 the mathematical model describing the system admits

a two-particle bound state. Then, the physical state smoothly connected to the Tonks-

Girardeau gas corresponds to an highly excited state of the mathematical model; a

regime denoted as Super-Tonks-Girardeau gas [12].

In this letter, we analyze the phase diagram within this regime and demonstrate

the appearance of a solid phase in the presence of an optical lattice with a bosonic

particle on every second lattice site. A simplified picture of this transition is that the

particles behave as hard spheres with a range∼ a1D [12]. Then, it is natural to expect the

appearance of a solid phase for a density comparable to the range of the interaction. The

rigorous derivation of the phase diagram follows in two steps: First, we analyze whether

an arbitrary weak optical lattice allows to pin the solid structure. Using the mapping to

the sine-Gordon model, we find, that a finite strength of the optical lattice is required.

Therefore, we focus on deep optical lattices in a second step, and provide the derivation

of a Hubbard model using the duality mapping between bosons and fermions [13, 14].

The combination of the two methods allows us to identify an accessible region, where

a solid phase can be expected, see Fig. 1. It is important to note, that throughout our

calculations we restrict the analysis to a setup with very strong transverse confinement,

such that the system behaves one-dimensional with the scattering described by a1D.

We start with the many-body theory describing bosonic particles confined into one-

dimension. Introducing the bosonic field operators ψ†(x) and ψ(x), the Hamiltonian

takes the form

HB =

∫ ∞
∞

dx ψ†(x)

[
− ~2

2m
∆ + V (x)

]
ψ(x) (1)
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Figure 1. (a) Phase diagram: The solid phase appears at intermediate strength of

the optical lattice for a1Dn & 0.2. The blue (dashed) line derives from the transition

within the Hubbard model, while the green (dotted) line denotes the estimation of the

transition line from the sine-Gordon model. (b) Illustration for the two degenerate

ground states with an atom on every second lattice site. (c) Luttinger parameter

derived from the exact Bethe ansatz equation. The dashed line denotes the asymptotic

behavior K = (1− na1D)2.

+
1

2

∫ ∞
∞
dxdy UB(x− y)ψ†(x)ψ†(y)ψ(y)ψ(x).

Here, V (x) = V0 cos2(xk) accounts for the optical lattice along the tubes. The

interaction potential between the bosons confined into the lowest state of the

transverse trapping potential reduces to UB(x) = gBδ(x) with the coupling strength

gB = −2~2/(ma1D) [9]. Here, the one-dimensional scattering length a1D =

−a2⊥/as (1− Cas/a⊥) is related to the three-dimensional s-wave scatterling length as
and the transverse confining length a⊥ with C ≈ 1.46 [9]. The system exhibits a

confinement induced resonance at as = a⊥/C, where the coupling strength diverges and

eventually changes its character from repulsive to attractive.

A physical interpretation of the confinement induced resonances is provided by

the following property: The 1D scattering length a1D describes the distance, where the

scattering wave function for two particle crosses zero. While for a1D < 0, the zero

appears in the unphysical region |x| < 0, the scattering wave function exhibits a node

for a1D > 0. This behavior is achieved by an attractive interaction potential UB(x) giving

rise to a bound state. Then, the scattering wave function is orthogonal to the bound

state and consequently exhibits a node. However, it is important to note, that the

sudden appearance of a bound state is an artifact of the mathematical model Eq. (1),

which is valid in low energy sector with the relevant momenta q satisfying the condition

qa⊥ � 1. In the physical system a bound state is always present and its position across
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the confinement induced resonance has been studied in detail [15]. As a consequence,

the atomic system is for all values of a1D a highly excited metastable state, and losses

via three-body recombination reduce the life time of the atomic gas. This indicates

that the transition from the regime with repulsive interaction into the Super-Tonks-

Girardeau gas is described by a smooth cross-over. Indeed, the Super-Tonks-Girardeau

gas exhibits a positive compressibility giving rise a linear sound mode accounting for

the low energy excitations of this excited state; the compressiblity has recently been

determined via Bethe ansatz solutions [16, 17], and quantum Monte Carlos simulations

[5], and is in agreement with DMRG calculations [18] and experimental observation [6].

The influence of the states with negative energy is well accounted for by a finite life-time

of the system via three-body recombination; these rates have recently been determined

for Super-Tonks-Girardeau gas [19].

In the following, we first focus on the limit of a very weak optical lattice V0 � Er.

The strongly interacting bosonic system exhibits also in the Super-Tonks Girardeau

a regime with positive compressibility [16, 17]. Then, the low energy properties

are well described within the hydrodynamics description [20] with the bosonic field

operator ψ(x) ∼
√
n+ ∂xθ/π expressed in terms of the long-wavelength density and

phase fields θ(x) and φ(x). The fields satisfy the standard commutation relation

[∂xθ(x), φ(y)] = iπδ(x − y). The effective Hamiltonian in absence of an optical lattice

reduces to

H0 =
~vs
π

∫ ∞
∞

dx

[
K

2
(∂xφ)2 +

1

2K
(∂xθ)

2

]
. (2)

The dimensionless Luttinger parameter in the strongly interacting regime γB ≡
gBm/n~2 � 1 reduces to K = (1 − na1D)2 [10]. This expression remains valid in

the strongly repulsive situation with as < 0, as well as in the attractive case as > 0

for |na1D| � 1 [16, 17]. In the latter case, the dimensionless parameter K < 1 reduces

below the non-interacting Fermi limit (K = 1). Usually this regime can only be reached

for bosonic particles through an interaction potential with a finite range. Here, such a

finite range is achieved from the potential UB(x) by the presence of a bound state and

the associated node in the two-particle scattering wave function. The behavior of the

Luttinger parameter K for larger 1D scattering lengths can be derived from the exact

Bethe Ansatz equation [17] and approaches 1/2 for nas →∞, see Fig. 1.

Within this hydrodynamic description the weak optical lattice is a relevant

perturbation at commensurate fillings. Here, we are interested in densities n = 1/(sa)

with a = π/k the lattice spacing and s ∈ N an integer. Then the Hamiltonian accounting

for the optical lattice V0 cos(kx) takes the form [20, 4]

Hlattice = u

∫
dx cos (2sθ) (3)

with u = KV0/Er(ã/2a)2 and ã a short distance cut-off (the cut-off is in the range of the

interparticle distance ã ≈ 1/n). The low energy description of the interacting bosonic

system Heff = H0 + Hlattice reduces to the quantum sine-Gordon model. This model

is exactly solvable and exhibits a quantum phase transition from a gapless phase with
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algebraic decay in the superfluid correlation function 〈ψ†(x)ψ(0)〉 ∼ x−1/2K̃ as well as

in the solid correlation 〈n(x)n(0)〉 ∼ cos(2πnx)/x2K̃ , to a gapped and incompressible

insulator with long range order 〈n(x)n(0)〉 − n2 ∼ cos(2πnx). Below the critical value

K < Ks = 2/s2, the transition appears for arbitrary strength of the lattice potential,

while for a fixed value of u, the transition appears at the universal value K̃ = 2/s2.

Here, K̃ denotes the renormalized Luttinger parameter due to the optical lattice; for

weak optical lattices it is related to the microscopic value K via the Kosterlitz-Thouless

renormalization group flow (see [21] for a review). For a bosonic density equal to the

lattice spacing, i.e., n = k/π with s = 1, the phase transition takes place from the

superfluid to the Mott insulating phase and has been previously discussed [4].

In the regime with a positive 1D scattering length a1D > 0, it is now possible to

access values K < 1. This opens the question, whether it is possible to reach the second

instability with s = 2 and particle density n = k/2π, i.e., on average there is one bosonic

particle distributed over two lattice sites. Then, the phase transition takes place from

a Luttinger liquid with algebraic correlations to a crystalline phase. In addition to an

excitation gap and the incompressibility, the crystalline phase is characterized by a long

range order with a bosonic particle localized in every second lattice site. The ground

state breaks the discrete translation invariance of the system and is two-fold degenerate.

This property distinguishes the solid phase from the Mott insulator at integer fillings.

The criticial value of the Luttinger parameter, where an arbitrary weak optical

lattice allows to pin the bosonic crystalline structure reduces to K2 = 1/2. As

discussed above, this regime can not be accessed. However, the optical lattice

increases the correlations between the bosonic particles. Using the Kosterlitz-Thouless

renormalization group flow to lowest order in u for the transition line, i.e., K = (1+u)/2,

we can expect the phase transition into the solid phase for a finite strength of the optical

lattice, see Fig. 1. For values of the optical lattice V0 ∼ Er, the effective low energy

theory Eq. (2) is no longer valid, and different approach is required for analyzing the

appearance of the solid phase.

In the regime of strong optical lattice V0 > Er, the suitable approach is to map

the system to a Hubbard model. In the strongly correlated regime with γB � 1 the

conventional derivation of the Hubbard model fails. However, in the following we use

the well known Fermi-Bose duality in one dimension [13, 14, 18]: this transformation

maps the strongly interacting bosonic system onto a weakly interacting Fermi gas. This

transformation remains valid in the presence of an optical lattice, and allows us to derive

a Hubbard model for the system.

The duality transformation of the strongly interacting bosons onto weakly

interacting fermions has been pioneered in the past [13, 14]. On the two particle level, it

requires that the scattering wave function ψB(x) between two bosons with the interaction

potential UB, is described by the a fermionic scattering wave function ψF(x) with a

novel interaction potential UF via ψB(x) = sgn(x)ψF(x) (here, x denotes the relative
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coordinate). This property is uniquely determined by the pseudo-potential

〈ψ|UF|φ〉 = lim
ε→0+

gF

4
[ψ′(ε) + ψ′(−ε)]∗[φ′(ε) + φ′(−ε)] (4)

with gF = 2~2a1D/m the coupling strength and ψ′ = ∂xψ (φ′ = ∂xφ) the derivatives

of the wave function. It is important to note that the role of the 1D scattering length

a1D is reversed in fermionic pseudo-potential UF as compared to the bosonic one UB.

As a consequence, this mapping allows us to transform a strongly interacting bosonic

model onto a weakly interacting Fermi system. Note, that the limε→0+ is required in

order to avoid a ultraviolet divergence when applying the interaction potential on the

Greens function. This behavior is in analogy to the well known regulariztion of the

pseudo-potential for 3D s-wave scattering.

Figure 2. Tunneling amplitude 4J (red) and the Wannier function overlap χ (blue)

for different strengths of the optical lattice. The inset shows the renormalization of

the nearest-neighbor interaction Veff for large 1D scattering lengths accounting for

the influence of higher bands and the proper treatment of pseudo-potential UF the at

V0 = 4Er.

Extending this two-particle analysis to the many-body system, therefore maps the

bosonic Hamiltonian in Eq.(1) onto a fermionic model

HF =

∫ ∞
∞

dx ψ†F(x)

[
− ~2

2m
∆ + V (x)

]
ψF(x) (5)

+
1

2

∫ ∞
∞
dxdy UF(x− y)ψ†F(x)ψ†F(y)ψF(y)ψF(x)

with the fermionic field operators ψ†F and ψF(x). The parameter γF characterizing

the strength of the interaction in the fermionic model is given by the ratio between

the kinetic energy Ekin = ~2n2/m and the interaction energy Eint = n3gF, i.e. γF =
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Eint/Ekin = 2na1D = −1/γB. The ground state wave function |gF〉 of the fermionic

problem is related to the ground state of the bosonic problem |gB〉,

〈x1, . . . , xN |gB〉 = A(x1, . . . , xN)〈x1, . . . , xN |gF〉 (6)

with the total asymmetric factor A(x1, . . . , xN). For bosons with a1D = 0, this mapping

reduces to the well known relationship between impenetrable bosons and fermions in

1D [1].

In the interesting regime with strong interactions between the bosons |γB| =

|1/γF| � 1, the fermionic system is weakly interacting and the conventional approach

to derive the Hubbard model is valid [22]. For V0 > Er, we obtain the Hubbard model

for spinless fermions

HHM = −J
∑
〈ij〉

c†icj +
V

2

∑
〈ij〉

c†ic
†
jcjci, (7)

with the fermionic creation (anihilation) operator c† (ci). In addition, the hopping

amplitude J accounts for the single particle band structure εk = −2J cos ka, while the

fermionic pseudo-potential UF gives rise to a dominant nearest-neighbor interaction

V =
2

π2
Er
a1D

a
χ

(
V0
Er

)
. (8)

Here, χ is determined by the overlap between the Wannier functions w(x) on neighboring

lattice sites,

χ

(
V

Er

)
= a3

∫
dx |∂xw(x)w(x−a)− w(x)∂xw(x−a)|2 .

The hopping amplitude J as well as the dimensionless overlap χ can be efficiently

determined numerically for different strengths of the optical lattice, see Fig. 2. Note,

that additional interaction terms are strongly suppressed due to the fast decay of the

wannier functions.

At half filling with one particle on every second lattice site, the Hubbard model

Eq. (7) exhibits a quantum phase transition from a phase with algebraic correlations

between the fermions for J � V to a charge density wave with an excitation gap for

V � J . The latter phase corresponds to the interesting crystalline phase. The critical

point for the phase transition is determined by the special point at J = V/2, where

the system becomes SU(2) invariant and maps to the spin-1/2 Heisenberg model. It

is this enhanced symmetry, which fixes the transition point to J = V/2 even in the

one-dimensional situation.

From the behavior of V and J for different strengths of the optical lattice, we can

now derive the complete phase diagram, see Fig. 1: for very deep optical lattices the

nearest neighbor interaction is strongly suppressed compared to the hopping term, see

Fig. 2, and consequently, the ground state is determined by a Luttinger liquid phase

with algebraic correlations. Reducing the strength of the optical lattice, the nearest-

neighbor interaction increases and a phase transition into the solid phase takes place

for sufficiently strong interaction a1Dn & 0.2. For even weaker optical lattices, the
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mapping to the Hubbard model breaks down, and the effective theory is given by the

sine-Gordon model. The sine-Gordon model requires a finite strength of the optical

lattice for the appearance of the solid phase. Therefore, a second phase transition

takes place for decreasing optical lattice, and the system enters again the Luttinger

liquid phase, i.e., the system exhibits a remarkable reentrant feature. Consequently,

we predict the existence of a solid phase for cold atomic gases at strong interactions

a1Dn & 0.2 and intermediate strengths of the optical lattices V ≈ 3Er.

Finally, we have to verify the validity of the Hubbard model in the interesting regime

with na1D & 0.2. The derivation of the Hubbard model involves two approximations: (i)

first, we restrict the analysis onto the lowest Bloch band, i.e., we introduce a high energy

cut-off Λ & a determined by the lattice spacing. (ii) Second, the interaction potential UF

is treated without the proper regularization. The influence of these two-approximation

has recently been studied in detail for the derivation of the Hubbard model in a three-

dimenionsal optical lattice [23]. Here, the situation is equivalent and the main results

can be directly carried over. It follows, that the Hubbard model is correct for weak

interactions a1D � a, while in the interesting parameter range a1Dn ∼ 0.2 corrections

from higher bands and the proper treatment of the interaction potential appear. The

main influence is a renormalization of the nearest neighbor interaction strength, which

takes the from Veff = V/(1 + ηV/Er) [24]. Here, η = −Er/2J derives from the duality

mapping between the Bosons and Fermions: in the limit a1D/a→∞ the system has to

reproduce the scattering of non-interacting bosons. Therefore, we find that the influence

of higher bands and the proper treatment of the interaction potential increases the

strength of the nearest-neighbor interaction, see Fig. 2. Therefore, we expect that the

solid phase appears even for weaker interactions than shown in Fig. 1.

Finally, it is important to note, that the behavior of losses by crossing the

confinement induces resonance are not yet well understood. While the Super-Tonks

Girardeau gas is exactly solvable by Bethe ansatz equation and consequently stable, one

can expect that for increasing 1D scattering length, additional terms to the Hamiltonian,

e.g., corrections from higher transverse states and additional non-universal three-body

interactions, break the integrability of the model and provide a decay rate and eventually

an instability of the Super-Tonks-Girardeau gas towards the formation of bound states;

such a behavior was observed within the variational Monte Carlo simulations [5]. This

implies a finite lifetime for the realization of the experiments and suggests that the

search for the solid phase should be performed for intermediate interaction strengths

na1D ∼ 0.4. In addition, it is important to point out, that in the presence of an optical

lattice with V & 3, three-body losses are suppressed as the probability to find three

particles in a single well of the lattice is strongly suppressed. Furthermore, the opening of

a Band structure quenches many decay channels as discussed in the context of repulsively

bound pairs [25]. Consequently, one can expect that for increasing interactions the losses

are increased, but in turn can again be suppressed by ramping up the optical lattice.

The experimental setup required for the observation of the solid phase can be

achieved by the combination of strong transverse confining by an optical lattice with
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a Feshbach resonance to tune the strength of the s-wave scattering length. Such a

setup has recently been realized for the observation of correlations beyond the Tonks-

Girardeau regime [6]. An additional weak optical lattice along the tubes then opens

the path to the experimental search of the solid phase. However, the experimental

realization avoiding losses is most conveniently achieved using a double well lattice as

experimentally realized [26]. Then, the system can be prepared in a conventional Mott

insulating phase for a1D < 0 with a single particle per lattice site. For a strong opitcal

lattice, it is possible to cross the confinement induced resonance without losses. Then,

in a second step the lattice is lowered and each site split into a double well. Eventually,

one ends up with an optical lattice with 1/2 of lattice spacing of the starting lattice and

the required particle density with one particle shared on two lattice sites. Using such

an adiabatic ramping scheme circumvents regions in the phase diagram, where strong

losses are expected. It is important to note, that the solid phase is incompressible with

an excitation gap. In analogy to the Mott insulating phase [22], the solid phase will

extend over a large fraction of the parabolic trap, with the particle density pinned to a

commensurate value.
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