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Zusammenfassung

In dieser Arbeit werden die linearen optischen Eigenschaften von aperiodischen me-

tallischen photonischen Kristallen untersucht. Alle Strukturen bestehen aus einem

Metallgitter, das sich auf einem Wellenleiter befindet. Das einfallende Licht kann

plasmonische Moden im Metall sowie photonische Moden im darunter liegenden

Wellenleiter anregen. Diese Resonanzen sind aneinander gekoppelt.

Im ersten Teil dieser Arbeit werden die Proben untersucht, die ein eindimensiona-

les Metallgitter besitzen. Die Anordnung dieser Metalldrähte auf der dielektrischen

Wellenleiterschicht ist ungeordnet, quasikristallin oder fraktal. Für die Unordnungs-

proben zeigt die experimentell bestimmte Kopplungskonstante reduzierte Werte bei

größerer Unordnung. Zusätzlich werden die berechneten Kopplungskonstanten mit

den experimentell bestimmten Urbach-Energien verglichen. Es zeigt sich, dass der

Zusammenhang zwischen diesen beiden Parametern vom Unordnungsmodell sowie

von der mittleren Gitterperiode abhängt. Die optischen Eigenschaften der Proben

mit der quasikristallinen und der fraktalen Anordnung der Metalldrähte werden in

Bezug auf ihre lange, kurze und mittlere Drahtabstände analysiert.

Der nächste Teil dieser Arbeit beschäftigt sich mit den zweidimensionalen Metall-

gittern. Die Metallpartikel sind quasikristallin angeordnet. Die Partikel sind el-

liptisch und in Bezug auf die x -Achse der Probe rotiert. Es zeigt sich, dass die

optischen Eigenschaften solcher Strukturen von der Exzentrizität der Metallpartikel

sowie vom Rotationswinkel zwischen der kleinen Hauptachse und der x -Achse der

Probe abhängen. Anschließend wird ein theoretisches Modell entwickelt, um die

optischen Eigenschaften solcher Strukturen zu beschreiben. Mit diesem theoreti-

schen Verfahren ist es möglich, die Spektren für senkrechten Lichteinfall sowie für

winkelabhängigen Lichteinfall zu berechnen. Dieses Modell wird dazu benutzt, um

die erhöhte Absorption von plasmonischen Solarzellen vorherzusagen.
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Abstract

In this thesis the linear optical properties of aperiodic metallic photonic crystals are

studied. All structures consist of a metal grating on top of a waveguide material.

The incident light can excite plasmonic modes in the metal as well as photonic

modes in the waveguide underneath. These resonances are coupled to each other.

In the first part of the thesis, the samples with a one-dimensional metal grating

are studied. The structural arrangement of the metal wires on top of the dielectric

waveguide layer is disordered, quasicrystalline, or fractal. For the disorder samples,

the experimentally obtained coupling constant shows reduced values for larger dis-

order amounts. Additionally, the calculated coupling constants are compared to

the experimentally obtained Urbach energies. It is found that the relation between

these two parameters is dependent on the disorder model as well as on the average

grating period. The optical properties of the samples with the quasicrystalline and

fractal metal wire arrangement are analyzed with respect to their long, short, and

average wire distances.

The next part of the thesis deals with two-dimensional metal gratings. The metal

disks are arranged in a quasicrystalline fashion with the disks being elliptically

shaped and rotated with respect to the sample x axis. It is found that the optical

properties of such structures are dependent on the eccentricity of the metal disks

as well as on the rotation angle between the short main axis and the sample x

axis. Afterwards, a theoretical model is developed in order to describe the optical

properties of such structures. With the theoretical approach it is possible to calculate

the normal incidence spectra as well as the oblique light incidence spectra. This

model is used to predict the absorption enhancement of plasmonic solar cells.
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Chapter 1

Introduction

It has been known for centuries that glasses containing small metal particles appear

in bright colors. The Lycurgus Cup is an example for such a colored glass. This cup

is green when light is reflected by the cup and changes its color to red for transmitted

light [1]. These optical properties were achieved by adding a small amount of gold

and silver colloids to the glass during the production process [2]. Already in 1857,

the optical properties of such small metal particles were studied by Faraday [3].

However, it was not before 1908 that a detailed theory was developed to describe

the optical properties of small spherical metal particles [4].

In the second half of the 19th century, first investigations on one-dimensional pho-

tonic crystals were performed [5–7] observing a one-dimensional photonic stop-band.

However, the idea of Yablonovitch that three-dimensional photonic crystals can be

used to suppress the spontaneous emission in semiconductors [8] as well as the idea of

John that a reasonable disorder amount within a three-dimensional photonic crystal

is able to strongly localize photons [9] were the breakthroughs in this area of research

in 1987. Two years later, Yablonovitch introduced the name photonic crystal [10],

which is commonly used thereafter.

A huge number of applications has been proposed in the subsequent years. Among

these suggestions is the use of photonic crystals as waveguides to guide light around

sharp corners [11], as beam splitters [12], or as photonic crystal fibers [13, 14].

Photonic crystals can also be used for sensing [15–19] as well as for enhancing the

efficiency of LEDs [20–22] and solar cells [23–25].

Most of the photonic crystal designs are based on a refractive index variation of

dielectric materials. However, metallic photonic crystals, where one of the materials

is a metal, have also been studied [26–30]. Among these designs are metallic pho-

tonic crystals possessing a one-dimensional (1D) or a two-dimensional (2D) metallic
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grating on top of a waveguide material [31–33]. The nonlinear properties have also

been investigated [34–38]. Metallic photonic crystals have also been used for several

applications, just as photonic crystal slab lenses [39], optical switches [40], or sensors

[41–43].

After the discovery of quasicrystals in 1982 by Shechtman and his first publication

in 1984 [44], Levine and Steinhardt found that Shechtman’s diffraction patterns

and their computed ones assuming an icosahedral quasicrystal match very well [45]

identifying for the first time the occurrence of a quasicrystal. These computed

diffraction patterns are based on the findings of Mackay [46], who was the first

person to find the diffraction pattern of a model consisting of circles on the vertices

of a Penrose tiling [47, 48]. In the subsequent years, quasicrystals gained the interest

of numerous researchers. A lot of different quasicrystals have been discovered since

then [49–52] and many applications have been presented like a non-sticking frying

pan due to a quasicrystalline coating [53], the use of quasicrystals as catalysts [53,

54], or as solar light absorbers [53, 55, 56]. For the discovery of quasicrystals,

Shechtman won the Nobel Prize in Chemistry 2011 [57].

Not only quasicrystalline metallic alloys have been investigated, but also other qua-

sicrystals like colloidal [58–60] or phononic quasicrystals [61, 62]. Quasicrystalline

structures have also been studied theoretically [63–66]. Another area of research

are photonic quasicrystals. Such photonic quasicrystals have been studied in one-

dimensional [67], two-dimensional [68–70], and three-dimensional [71–73] structural

arrangements.

All these photonic quasicrystals have in common that no metals are involved. How-

ever, also metallic photonic quasicrystals have been investigated. Whereas the qua-

sicrystalline arrangement of nanoholes in a metallic film has been studied by several

groups [74–76], the optical properties of the inverse structures have not been exam-

ined so far. The above mentioned metallic photonic crystal designs with a metallic

grating on top of a waveguide material are all based on a periodic grating struc-

ture. Also disordered metallic photonic crystals have been studied in our group for

1D structural arrangements [77–79] as well as for 2D structural arrangements [80].

However, quasiperiodic structures have not been investigated up to now.

Since quasicrystalline structures are much more isotropic than periodic ones [81], it

is interesting to study the optical properties of such structures. In this thesis, such

quasiperiodic structures are measured and analyzed for 1D as well as 2D structural

arrangements. A theoretical model for normal as well as for oblique light incidence is

developed in order to be able to model the optical properties of such 2D structures.
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This model is based on the 1D model for disordered structures introduced by D. Nau

[78]. The model is experimentally confirmed by several measurements. Addition-

ally, this model is used to predict the enhanced absorption of such quasicrystalline

structures on solar cells. In this thesis, the optical properties of 1D disordered and

1D fractal structures are investigated as well.

The outline of this thesis is as follows: In Chapter 2, the optical properties of metallic

photonic crystals are introduced. First, the focus is on metal particles and then on

waveguide modes. Afterwards, the optical properties of the combined structure are

presented. In the next parts, the concept of disordered structures as well as of

fractal structures is presented. Different construction methods for 1D as well as for

2D quasicrystals are introduced in the following part. The last part in Chapter 2

presents the simulation model for 1D disordered structures.

Chapter 3 explains the fabrication method of the samples by electron-beam lithog-

raphy as well as the experimental setup and the measurement procedure.

Chapter 4 focuses on the 1D plasmonic structures. In the first part, the spectra of the

disordered structures are shown and the coupling strengths between the plasmonic

mode and the waveguide mode for normal light incidence are determined. The

spectra for oblique light incidence are shown next and the different behavior of the

individual disorder samples is analyzed. Afterwards, the optical properties of the

1D quasicrystalline structures as well as of the fractal structures are presented.

The optical properties of the 2D plasmonic structures are presented in Chapter 5.

This chapter focuses on the normal incidence spectra of different samples first. Then,

a theoretical model for 2D structures and normal light incidence based on the 1D

disorder model of D. Nau [78] is developed. The calculated spectra are compared

for all samples to the measured ones verifying the model. Afterwards, the spectra

measured for oblique light incidence are presented. The theoretical model for normal

light incidence is then expanded for oblique light incidence and the calculated spectra

are compared to the measured ones. The last part in this chapter presents a possible

application and predicts the absorption enhancement of a plasmonic solar cell with

a quasicrystalline gold disk arrangement compared to one with a periodic gold disk

arrangement. As waveguide layer serves the silicon layer of the solar cell.

The last chapter summarizes the results and a short outlook on future research

projects is presented.
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Chapter 2

Theoretical background

2.1 Metallic photonic crystals

Photonic crystals usually consist of a periodic arrangement of different refractive

indices with a periodicity in the order of the wavelength of the incident light [82].

The modulation of the refractive index can be changed in one, two, or three direc-

tions which corresponds to one-dimensional (1D), two-dimensional (2D), or three-

dimensional (3D) photonic crystals [83].

Examples for natural photonic crystals are butterfly wings [84], peacock feathers

[85], or opals [86, 87], where different materials are placed in such a manner that

these beautiful colors arise. This is due to the photonic band gap, which means

that specific wavelengths are reflected leading to the different colors [83]. Photonic

crystals exhibiting band structures for photons are the electromagnetic analog to

natural crystals with band structures for electrons [83]. Since the photons in such

structures show a similar behavior as electrons in normal crystals, these materials

are called photonic crystals [10].

Materials with such photonic band structures are interesting for plenty of appli-

cations. Yablonovitch had the idea that the photonic band gap can suppress the

spontaneous emission of semiconductors [8]. John recommended the introduction

of a moderate amount of disorder into a three-dimensional periodic lattice in order

to obtain a strong localization of photons [9]. Other applications are the use of

photonic crystals for fast all-optical switches on a silicon chip [88], for waveguide

couplers [89], and for splitters [12].

Most photonic crystals consist of different dielectric materials. However, it is also

possible to replace at least one of the components by a metal. Therefore, these

structures are more specifically called metallic photonic crystals [79]. By using such
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metallic photonic crystals, large stop bands can be obtained [26]. As an example,

these structures can be utilized as metallic photonic crystal filters [90, 91].

The structures studied here consist of metallic wires or dots on top of a dielectric

waveguide corresponding to 1D or 2D metallic photonic crystals. The properties of

the metallic nanostructures, the waveguide modes, as well as the complete system

are presented in the following subsections.

2.1.1 Metallic nanostructures

Metals possess electrons in the conduction band. These electrons can be considered

to move freely in the metal [92]. With this assumption, most of the electronic and

optical properties of metals can be described. Therefore, it is crucial to have a

look at the Drude-Lorentz-Sommerfeld model [93]. This simple model describes the

behavior of the free electron gas when an external electromagnetic field E = E0 e
−iωt

with amplitude E0 and frequency ω is incident on the metal. It assumes that n

conduction band electrons of the metal show the same response to the external

force as one electron multiplied by the number of electrons [93]. The motion of the

conduction band electrons can be described by a damped harmonic oscillator model

leading to the following equation of motion

r̈+ Γṙ = − e

me

E0 e
−iωt (2.1)

with e as the elementary charge, me as the electron mass, and Γ as the damping

constant. In Eq. (2.1) the restoring force is assumed to be zero [94] meaning that

the electrons are not influenced by the ionic lattice. By using the ansatz r = r0 e
−iωt,

Eq. (2.1) can be solved. Together with the polarization

P = −enr = ε0χDSE, (2.2)

the free-electron Drude-Sommerfeld susceptibility

χDS = −
ω2
p

ω2 + Γ2
+ i

Γω2
p

ω(ω2 + Γ2)
(2.3)

as well as the dielectric function

ε = 1 + χDS = 1−
ω2
p

ω2 + Γ2
+ i

Γω2
p

ω(ω2 + Γ2)
(2.4)

can be obtained. The Drude plasma frequency ωp is defined by

ωp =

√
e2n

ε0me

(2.5)
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Figure 2.1: The real part (solid lines) and the imaginary part (dashed lines) of the

dielectric function of gold. The black curves show the measured data of Ref. [95]. The

red curves are modeled by using the Drude-Lorentz-Sommerfeld model with ~ωp = 8.6 eV

and ~Γ = 0.08 eV.

with ε0 being the vacuum permittivity.

Up to now only the conduction band electrons have been considered. However, the

interband transitions of electrons in deeper levels play a crucial role [93]. Therefore,

the dielectric function given in Eq. (2.4) has to be expanded by an additional term,

the interband susceptibility χIB, leading to

ε = 1 + χDS + χIB. (2.6)

Especially for gold these interband transitions are important. This can be seen when

the measured dielectric function is compared to the Drude modeled values. The real

and imaginary parts of the dielectric function of gold ε1 and ε2 measured by Johnson

and Christy [95] are shown as black solid and black dashed curves in Fig. 2.1. The

red curves in this figure are modeled by using Eq. (2.4) with the Drude plasma

frequency ~ωp = 8.6 eV and the damping constant ~Γ = 0.08 eV. Especially for the

imaginary part the agreement between the measured and the modeled curves is quite
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good up to an energy of about 2 eV. The deviations are much higher for energies

above 2 eV. The increased values of the experimentally obtained dielectric function

are due to the above mentioned interband transitions. However, the measured values

of Johnson and Christy [95] are used in the following parts of this thesis. A deeper

insight into the theory of interband transitions is given in Ref. [93].

The metal structures in this thesis are either gold wires or gold disks with lengths

in two or three dimensions being much smaller than the wavelength of the incident

light. Due to this spatial confinement, so-called particle plasmons [96] (also called

localized surface plasmons [97]) can be excited. These particle plasmons can be

directly excited by light incident on the metal particle. The atomic cores are assumed

to stay at fixed positions, whereas the conduction band electrons are forced by

the external light field to oscillate collectively around the positions of the atomic

cores [93]. Since the particle size is much smaller than the incident wavelength, the

electrons are assumed to respond immediately to the incoming electromagnetic field

[98]. This means that retardation is neglected, which is known as the quasi-static

approximation [98]. Whereas the scattering and absorption efficiencies of spherical

particles can be described by the Mie theory [4], this exact theory is not applicable

for differently shaped particles. Therefore, the quasi-static approximation has to

be used for ellipsoidal particles. As already mentioned above, the conduction band

electrons follow the electric field of the incident light. This means that the electrons

are collectively displaced with respect to the positive background at a specific time

leading to a charge separation. Therefore, a small particle can be approximated by

an electric dipole with dipole moment [94]

p = εmαE0, (2.7)

where εm is the permittivity of the medium surrounding the particle, α is the po-

larizability tensor, and E0 is the incoming static electric field. When we assume an

ellipsoidal particle with semiaxes r1, r2, and r3 consisting of a material with permit-

tivity εp = ε′p+ i ε
′′
p , the polarizability αj along one of the principal axes in direction

ej is defined to be [94]

αj =
4π

3
r1r2r3

εp − εm
εm(1− Lj) + Ljεp

(2.8)

with j = 1, 2, or 3. This polarizability tensor only possesses the main axis elements

αj. The form factors Lj are dependent on the geometry of the particle and are given

by

Lj =
r1r2r3

2

∫ ∞

0

1

(r2j + q)f(q)
dq (2.9)
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with f(q) =
√

(q + r21)(q + r22)(q + r23). This means that Lj with L1+L2+L3 = 1 is

always a value between zero and one. For spherical particles, all three form factors

are equal to 1
3
. Reducing one of the main axis diameters results in a larger form factor

while the other two form factors become smaller [80]. The extinction, scattering,

and absorption of light by a particle are characterized by the extinction, scattering,

and absorption cross sections Cext, j, Csc, j, and Ca, j for an incident electric field

vector along one of the principal axes. These values can be calculated via [94]

Cext, j = k Im(αj), (2.10)

Csc, j =
k4

6π
|αj|2, (2.11)

Ca, j ≈ Cext, j = k Im(αj) (2.12)

with k being the propagation constant of the incoming light. Note that Ca, j and

Cext, j are approximately the same due to the negligibly small scattering cross section

of small particles [94]. By inserting Eq. (2.8) into Eq. (2.10), the following equation

is obtained:

Cext, j = k
4π

3
r1r2r3

εmε
′′
p

[εm + Lj(ε′p − εm)]2 + [Ljε′′p]
2
. (2.13)

In order to calculate Cext, j, the frequency dependent dielectric functions of the

particle and the surrounding material have to be used.

The resonance frequency of the particle plasmon is then given by the frequency

when Eq. (2.13) is maximum meaning that [εm + Lj(ε
′
p − εm)]

2 + [Ljε
′′
p]

2 has to be

minimum. By assuming the imaginary part of the particle’s dielectric function ε′′p

to be either small or almost constant in the vicinity of the resonance, the condition

ε′p = −εm 1−Lj

Lj
has to be fulfilled [93]. If εm was changed to higher values, the

resonance frequency of the particle plasmon would appear at a value corresponding

to a lower ε′p. This would lead to a shift to lower resonance frequencies (see real

part of the dielectric function of gold in Fig. 2.1) for all three particle plasmons.

If the form factor changed to higher values, the particle plasmon should shift to

higher resonance frequencies. At the same time, the resonance frequency of at least

one of the other particle plasmons should shift to lower values due to the condition

L1 + L2 + L3 = 1. The assumption that ε′′p is either small or almost constant in

the vicinity of the resonance is not necessarily true. This assumption is only used

to get a feeling for the behavior of the resonance frequencies when one parameter is

changed.

Since the particles in this thesis are surrounded by different materials above and

below, the dielectric function εm can be averaged by [93, 99]

εm ≈ 1

2
(εair + εsub). (2.14)
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εair and εsub in this equation denote the dielectric functions of air and substrate

material, respectively.
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Figure 2.2: Simulated extinction spectra of a gold nanowire array on top of quartz

for normally incident light with a polarization perpendicular to the wires (black) as well

as parallel to the wires (red). The gold wires of 20 nm height and 100 nm width are

periodically arranged with a periodicity of 300 nm.

A special case of structures in this thesis is given by a gold wire array. These wires

possess a spatial confinement in only two dimensions, which is in our case the height

and the width. The extinction spectra of a gold nanowire array on top of a quartz

substrate, which are calculated by using a scattering matrix (S-matrix) formalism,

are shown in Fig. 2.2. Each wire has a width of 100 nm and a height of 20 nm, the

period of the grating is 300 nm. The special feature can be seen by looking at the

two different spectra. When the polarization of the normally incident light has a

polarization perpendicular to the wires (black line), a particle plasmon resonance

can be excited. Thus, a broad peak is visible in the spectrum. The resonance energy

of this particle plasmon is determined by the cross section of the wire, namely the

width and the height. When the normally incident light is polarized along the wires,

no particle plasmon can be excited. Therefore, only a flat line can be obtained in
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the spectrum (red line). This is due to the length of the wire, which is too long for

a particle plasmon to be excited. Only a surface plasmon along the wire could be

excited with the help of a grating coupler along this direction or a prism. However,

this is not treated within this work.

In another part of this thesis, the optical properties of gold disks are investigated.

These disks are elliptically shaped cylinders. However, they can be approximated

by an ellipsoid. According to the quasi-static approximation presented above, the

excited particle plasmons along the three principal axes possess three different res-

onance energies. Due to the much smaller height compared to the other main axis

diameters, the particle plasmon for a polarization parallel to the height is located

outside the measured energy range.

2.1.2 Waveguide modes

waveguidewge

substratesube

coverce

twg

0

x

z
y

Figure 2.3: Schematic view of a waveguide slab of the thickness twg and the dielectric

constant εwg sandwiched between a cover layer with εc and a substrate with εsub.

A waveguide is a dielectric material with a higher index of refraction than the

surrounding medium [100], which in the samples studied here is a system of three

layers with the waveguide layer of thickness twg in the center (Fig. 2.3). The

dielectric constants of the cover, the waveguide, and the substrate are given by εc,

εwg, and εsub. Waves can propagate in such a waveguide when twg is greater than

a specific minimum thickness tmin [101]. It can be considered that a wave inside

the waveguide follows a path from the top surface in x-z direction to the bottom

surface, where it is reflected by total internal reflection, and then going back to the

top surface, where it is again totally reflected [102] (see Fig. 2.3). For such waves,

either the electric field vector E or the magnetic field vector H is perpendicular to

the direction of propagation βp , which is called transverse electric (TE) or transverse



12 Theoretical background

magnetic (TM) polarization, respectively. This means that for TE polarization, the

E vector has only a component in y direction (E = Eyey), whereas the H vector has

components in x as well as in z direction (H = Hxex + Hzez). However, for TM

polarization the H vector exhibits a y component and the E vector one in x and one

in z direction (H = Hyey, E = Exex + Ezez). The waves in the waveguide layer

are assumed to be planar, whereas the fields outside are evanescent. Therefore, the

field amplitudes can be described by [80, 103, 104]

Ey, c = ATE e
pz ei(βp x−ωt) for z < 0, (2.15)

Ey, wg = (BTE e
ikzz + CTE e

−ikzz) ei(βp x−ωt) for 0 ≤ z ≤ twg, (2.16)

Ey, sub = DTE e
−qz ei(βp x−ωt) for z > twg (2.17)

for TE polarization and by

Hy, c = ATM epz ei(βp x−ωt) for z < 0, (2.18)

Hy, wg = (BTM eikzz + CTM e−ikzz) ei(βp x−ωt) for 0 ≤ z ≤ twg, (2.19)

Hy, sub = DTM e−qz ei(βp x−ωt) for z > twg (2.20)

for TM polarization. The corresponding Hx and Hz components for TE polariza-

tion as well as Ex and Ez components for TM polarization can be obtained by using

Maxwell’s equations. In the equations above, p, q, and kz correspond to the prop-

agation constants in z direction in the different materials. βp is the propagation

constant of the waveguide mode in x-y direction, ω the angular frequency of the

light, and t the time. The field amplitudes given in Eqs. (2.15) − (2.17) and Eqs.

(2.18) − (2.20) have to fulfill the wave equation [80] leading to

p2 − β2
p = −k20εc, (2.21)

−k2z − β2
p = −k20εwg, (2.22)

q2 − β2
p = −k20εsub (2.23)

with k0 = ω/c as the free space wavevector and c the speed of light. At the surfaces

of the different layers, the field components Ey and Hx for TE polarization as well

as Hy and Ex for TM polarization have to be equal in the different materials. In

order to obtain a non-trivial solution for the components An, Bn, Cn, and Dn (n

= TE or TM), the system of four linear equations for each polarization has to be

solved leading to the dispersion relations given by [80, 100, 104]

twg

√
k20εwg − β2

p =arctan

(√
k20(εwg − εc)

k20εwg − β2
p

− 1

)
+

arctan

(√
k20(εwg − εsub)

k20εwg − β2
p

− 1

)
+mπ (2.24)
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for TE polarization and

twg

√
k20εwg − β2

p =arctan

(
εwg

εc

√
k20(εwg − εc)

k20εwg − β2
p

− 1

)
+

arctan

(
εwg

εsub

√
k20(εwg − εsub)

k20εwg − β2
p

− 1

)
+mπ (2.25)

for TM polarization and themth waveguide mode. The cover layer and the substrate

usually do not consist of the same material. This means that waves in such an

asymmetric system cannot be guided below a specific cutoff energy, which is given

by [80]

ETE, cut =
~c

twg
√
εwg − εsub

(
arctan

(√
εsub − εc
εwg − εsub

)
+mπ

)
(2.26)

for TE polarization and

ETM, cut =
~c

twg
√
εwg − εsub

(
arctan

(
εwg

εc

√
εsub − εc
εwg − εsub

)
+mπ

)
(2.27)

for TM polarization.

The dispersion curves of Eqs. (2.24) and (2.25) for guided waves in a waveguide layer

with a dielectric constant εwg = 3.1684 and a thickness twg = 180 nm are shown as

black solid (TE) and red dashed (TM) curves in Fig. 2.4 (a). As a reference, also

the light lines of the cover (εc = 1) and the substrate (εsub = 2.1904) are plotted

as black dotted and black dash-dotted lines. Due to the fact that the waveguide

dispersion curves are always below the light lines of the surrounding media, the

guided modes cannot be excited by light impinging from the top or the bottom [80,

101]. Therefore, an additional momentum in the direction of propagation is needed.

For the samples in this thesis a grating on top of the waveguide layer is introduced,

where the momentum is defined by the reciprocal lattice vector g with g = 2π
d

and

d as the grating period. The incoming light is diffracted at the grating and coupled

into the waveguide layer. The waves inside the waveguide are no longer guided waves

since the grating also allows that the waves are coupled to the photon continua of

the surrounding media [105]. Therefore, these waves are called quasiguided modes

[105]. Due to the periodic arrangement of the grating, the dispersion curves of the

guided modes can be folded into the first Brillouin zone with boundaries at ±π/d.
The dispersion curves of the TE and TM quasiguided modes for a grating with

period d = 500 nm are shown in Fig. 2.4 (b). One can see that dispersion curves

for the quasiguided modes are always above the substrate light line meaning that

quasiguided waveguide modes can be excited.
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Figure 2.4: Waveguide dispersion for (a) a guided wave and (b) a quasiguided wave with

a grating period d = 500 nm. The dielectric constants of the cover, the waveguide, and

the substrate are εc = 1, εwg = 3.1684, and εsub = 2.1904, respectively.

The wave vector of the incident light can also possess a component kxy parallel to

the sample surface leading to the overall propagation constant

βp = kxy + g. (2.28)

kxy = k0 sin(ϑ) is dependent on the angle of incidence ϑ and on the absolute value

of the incident wavevector k0. For normal incidence kxy is equal to zero meaning

that the propagation constant in this case is only dependent on g. In Fig. 2.4 (b),

the case for normal incidence is given by a vertical line with kxy = 0. A straight

line with the angle ϑ to the energy axis at kxy = 0 would give the kxy values

for the corresponding incidence angle ϑ. The excited waveguide mode resonances

correspond to the energies when this straight line crosses the dispersion curves.

However, this is an empty lattice approximation. Deviations of the dispersion curves

in the center of the Brillouin zone and the Brillouin zone edge are present. This is

explained in detail in section 2.1.4.

For a 1D photonic crystal, the grating is only modulated in one direction and,
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therefore, integer numbers of g have to be added to kxy. However, for a 2D photonic

crystal, meaning a modulation in two directions, one needs to consider the vector

addition given in Eq. (2.28) [80].
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Figure 2.5: Simulated normal incidence spectra of TE polarized quasiguided modes with

the grating period varied between 350 nm (top) and 550 nm (bottom) in steps of 25 nm.

The spectra are shifted upward for clarity.

The line shape in an absorbance spectrum of such quasiguided modes is that of a

Fano resonance and is given by [106]

α(E) = A

(
q + E−E0

γ/2

)2
1 +

(
E−E0

γ/2

)2 (2.29)

with A as the amplitude, E0 as the resonance energy, and γ as the natural line width

of the resonance. This is due to the interaction between the discrete quasiguided

modes and the directly transmitted wave, which is a continuum [31]. The ratio q

describes the probability that a discrete state transfers into a continuum. For a 1D

photonic crystal and normal incidence, only the symmetric waveguide mode can be

excited [107] leading to one sharp Fano resonance in the extinction spectrum. This

is shown in Fig. 2.5 for grating periods varying between 350 nm (Fig. 2.5 at the

top) and 550 nm (Fig. 2.5 at the bottom). The TE polarized modes in these S-

matrix calculated spectra were guided in a 180 nm thick layer of Indium-Tin-Oxide
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(ITO) on top of a quartz substrate. One can see that the waveguide mode is shifted

to lower energies for larger grating periods. This can be understood by the fact

that the Brillouin zone edge is dependent on the grating period as mentioned above.

Thus, the dispersion curves are folded differently into the first Brillouin zone for each

grating period. Since the Brillouin zone edge is inversely proportional to the grating

period, the dispersion curves at the center of the Brillouin zone (corresponding to

normal incidence) possess a lower energy for a larger grating period.
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Figure 2.6: Simulated spectra of TE polarized quasiguided modes with the angle of

incidence varied between 0◦ (top) and 20◦ (bottom) in steps of 2◦. The grating period was

450 nm. The spectra are shifted upward for clarity.

However, for an oblique angle of incidence, two resonances are visible in the spectrum

corresponding to the propagation constants given in Eq. (2.28) (see Fig. 2.6). The

additional peak is due to the antisymmetric waveguide mode that cannot be excited

for normal light incidence. The distance between the two peaks is increased for a

larger angle of incidence; one resonance is shifted to lower energies, whereas the

other resonance is shifted to higher energies (see Fig. 2.6). This can be understood

by looking at the dispersion curves in the first Brillouin zone (see Fig. 2.4 (b)). As

already explained above, the waveguide mode resonances correspond to the energies

when a straight line with angle ϑ to the axis with kxy = 0 crosses the dispersion
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curves. The dispersion curve is crossed by the straight line twice around the normal

incidence energy. For larger angles ϑ, this straight line has a more gentle slope. Thus,

the lower energy crossing point is shifted to lower energy values, whereas the higher

energy crossing point is shifted to higher energy values leading to an increased energy

difference between the two peaks. All spectra in Fig. 2.6 are S-matrix calculations

and are shown for a 180 nm thick ITO waveguide layer on top of a quartz substrate

and a grating period of 450 nm. For incidence angles close to normal incidence, only

one of the peaks is approaching the energy of the peak at normal incidence. However,

the other resonance approximates a value E −∆E, where ∆E is the photonic band

gap (not shown). This behavior is due to the interaction between the two waveguide

modes close to the center of the first Brillouin zone [104]. A more detailed analysis

of the band structure is given in section 2.1.4.

2.1.3 Coupled system

The previous sections covered particle plasmons as well as waveguide modes. How-

ever, both kinds of resonances were discussed in absence of the respective other one.

In this section, a system is considered, where both resonances are present.

The energy of the particle plasmon is only dependent on the cross section of the

metal particle as well as on the dielectric functions of the metal and the surrounding

medium, whereas the waveguide mode is dependent on the grating period. This

means that a variation of the grating period only shifts the resonance energy of the

waveguide mode while that of the particle plasmon stays constant. For simplicity,

everything is discussed for 1D metallic photonic crystals. The special feature in

this case is that the particle plasmon can only be excited when the polarization

of the incident light is perpendicular to the metallic nanowire, which is called TM

polarization. However, for TE polarization only the waveguide mode can be excited.

When both resonances are in the same energy range, an interaction between the

particle plasmon and the waveguide mode occurs leading to a new quasi-particle, the

so-called waveguide-plasmon-polariton [31]. This means that the normal incidence

spectrum always shows two peaks with a finite energy difference between the peaks.

For small grating periods, the energy of the waveguide mode is higher than that of

the particle plasmon. In the spectrum, the broad particle plasmon peak and the

sharp waveguide mode are visible (see upper spectra in Fig. 2.7). By increasing the

grating period, the energy of the waveguide mode is decreased as already explained

for TE polarization. In the region, where both resonances are coupled, two broader

peaks are visible; the two branches of the waveguide-plasmon-polariton. By further
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Figure 2.7: Simulated normal incidence spectra of a metallic photonic crystal slab in

TM polarization with the grating period of the gold wires varied between 350 nm (top)

and 550 nm (bottom) in steps of 25 nm. The spectra are shifted upward for clarity.

increasing the grating period, the two resonances become decoupled again. The

sharp waveguide mode is now at the lower energy side of the particle plasmon. The

spectra for different grating periods are visible in Fig. 2.7 showing the just described

behavior. As above for the TE polarized spectra, the waveguide layer consists of a

180 nm thick ITO layer on top of a quartz substrate. The grating is placed on top

of the waveguide layer and consists of gold wires with a thickness of 20 nm and a

width of 100 nm. Again, all spectra are S-matrix simulations.

The line shape of such coupled resonances can be described by a coupled oscillator

model given by [108]

α(E) = APl

4Γ2
PlE

2
[
E2 − E2

wg − (qwg/qPl)E
2
c

]2[
(E2 − E2

Pl)(E
2 − E2

wg)− E4
c

]2
+ 4Γ2

PlE
2(E2 − E2

wg)
2
. (2.30)

APl in this equation is the amplitude of the plasmon resonance and E2
c is the cou-

pling strength between the two oscillators in the energy range E. The spectral half

widths, the energies of the individual resonances, and the oscillator strengths of the

uncoupled systems are given by Γj, Ej, and qj with j = wg or Pl.

Plotting the resonance energies of the two peaks from the spectra in Fig. 2.7 versus



Metallic photonic crystals 19

350 400 450 500 550

1.5

1.6

1.7

1.8

1.9

2.0

2.1

2.2

2.3
E

ne
rg

y 
in

 e
V

Period in nm

 Extinction maxima
 Calculated eigenvalues
 Particle plasmon
 Waveguide mode

Figure 2.8: Anti-crossing behavior of the extinction maxima (black squares) of Fig. 2.7

as well as the fitted eigenvalues of the Hamiltonian (red solid curves) for EPl = 1.82 eV,

V2 = 0.075 eV, and V1 = 0.02 eV. The uncoupled particle plasmon energies (black dotted

curve) as well as the uncoupled TM waveguide mode energies (black dashed curve) are

plotted as well.

the corresponding grating period visualizes the above described anti-crossing behav-

ior. This is shown as black squares in Fig. 2.8. In this plot it is obvious that the

resonance energies from the two polariton branches (black squares) deviate from the

energies of the waveguide mode (dashed curve) and the particle plasmon (dotted

curve). The deviation of the polariton branches from the energies of the uncoupled

resonances is especially large in the region around 450 nm grating period, where

the energy of the particle plasmon peak and the energy of the waveguide mode are

approximately the same. The polariton curves do not cross each other, but the tran-

sitions from the waveguide mode to the particle plasmon (upper black squares) and

from the particle plasmon to the waveguide mode (lower black squares) are visible.

The minimum distance between the two polariton branches is the so-called polariton

splitting ∆E [109], which is dependent on the coupling constant V2 between the two

modes.
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Even though only one waveguide mode can be excited for normal incidence due to

symmetry reasons, theoretically two waveguide mode resonances exist. These two

waveguide modes are coupled together by the halfwidth of the photonic band gap

V1, and each of the waveguide modes is coupled to the particle plasmon via V2. In

order to describe the anti-crossing behavior, the following Hamiltonian has to be

used:

H =

Ewg(d) V1 V2

V1 Ewg(d) V2

V2 V2 EPl

 (2.31)

with Ewg(d) as the energy of the waveguide mode dependent on the grating period

d and EPl as the energy of the particle plasmon resonance. Equation (2.31) is based

on Eq. (4.10) of Ref. [104]. However, instead of the waveguide mode energies for

different incidence angles, the bare waveguide mode energies for different grating

periods and normal incidence are used here. By rearranging this Hamiltonian, an

effective energy matrix Eeff can be obtained given by

Eeff =

Ewg(d) + V1 0
√
2V2

0 Ewg(d)− V1 0
√
2V2 0 EPl

 . (2.32)

It is obvious that the second row is decoupled from the other part of the matrix.

Therefore, the second row as well as the second column can be left out leading to

the 2× 2 energy matrix given by

Eeff =

(
Ewg(d) + V1

√
2V2√

2V2 EPl

)
. (2.33)

By calculating the eigenenergies of this energy matrix, the above mentioned anti-

crossing behavior can be obtained. These eigenenergies are plotted for a particle

plasmon energy EPl = 1.82 eV, a coupling constant V2 = 0.075 eV, and a photonic

band gap halfwidth V1 = 0.02 eV as red solid curves in Fig. 2.8. It can be seen

that the extinction maxima (black squares) and the eigenenergies (red solid curves)

agree very well.

With this approach, a specific coupling constant can be assigned to the anti-crossing

behavior of such structures. By varying the coupling constant, the anti-crossing be-

havior as well as the polariton splitting is changed. For a particle plasmon resonance

with EPl = 1.82 eV, a halfwidth of the photonic band gap V1 = 0.02 eV, and TM

polarized waveguide modes in a 180 nm thick ITO layer on quartz, the polariton

branches for coupling energies of V2 = 75 meV, V2 = 50 meV, and V2 = 25 meV



Metallic photonic crystals 21

350 400 450 500 550
1.4

1.6

1.8

2.0

2.2

2.4
E

ne
rg

y 
in

 e
V

Period in nm

 V2 = 75 meV
 V2 = 50 meV
 V2 = 25 meV

Figure 2.9: Anti-crossing behavior for different coupling constants V2. The particle

plasmon energy was kept constant to a value of EPl = 1.82 eV. The halfwidth of the

photonic band gap was V1 = 0.02 eV.

are shown as black solid, red dashed, and green dotted curves in Fig. 2.9, respec-

tively. It can be clearly seen that a larger polariton splitting belongs to a higher

coupling constant. Those two parameters are connected via ∆E =
√
V 2
1 + 8V 2

2 . The

variation of the coupling constant is especially important in the case of disordered

structures as it has been shown in Ref. [101]. Section 4.1.2 of this thesis is making

use of this property.

The spectra in Fig. 2.7 were all calculated for normal incidence. For oblique light

incidence, however, three resonances instead of two are visible as shown in Fig.

2.10. These three resonances arise due to the excitation of the particle plasmon

as well as two waveguide modes. As already explained for TE polarization, the

second waveguide mode corresponds to the antisymmetric waveguide mode that

cannot be excited for normal incidence. Both waveguide modes are coupled to the

particle plasmon forming a waveguide-plasmon-polariton. By increasing the angle

of incidence, the energy difference between the two waveguide modes also increases.

The lower energy waveguide mode shifts to lower energies, whereas the higher energy
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Figure 2.10: Spectra of a metallic photonic crystal slab in TM polarization with the

angle of incidence varied between 0◦ (top) and 20◦ (bottom) in steps of 2◦. The grating

period of the gold wires was 450 nm. The spectra are shifted upward for clarity.

waveguide mode shifts to higher energies. This can be obtained in Fig. 2.10 as

two dips moving apart from each other. For higher incidence angles especially the

waveguide mode on the lower energy side of the particle plasmon is visible as a sharp

peak like in the spectra with TE polarization. However, the symmetry of the line

shape for the lower energy waveguide mode of the 20◦ spectrum in TM polarization

(see bottom curve in Fig. 2.10) is reversed when compared to the corresponding

resonance in TE polarization (see bottom curve in Fig. 2.6). This indicates a

remaining influence of the particle plasmon on the TM quasiguided mode.

While the outer two peaks are shifting to lower and higher energies, the resonance

energy of the central peak stays approximately constant at a value of about 1.85 eV.

The spectral width of the peak in the center increases for larger angles of incidence,

whereas the spectral widths of the other two peaks decrease. Again, all S-matrix

calculations were performed for an ITO waveguide layer of 180 nm thickness and a

grating period of 450 nm.

2.1.4 Band structure

The band structure of a 1D metallic photonic crystal is obtained by plotting the

energy position E of the extinction maxima versus the x component of the incident
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Figure 2.11: Band structure of a 1D metallic photonic crystal in (a) TE polarization and

(b) TM polarization. The peak maxima of the extinction spectra calculated with S-matrix

(black squares) are compared to the eigenenergies of a Hamiltonian (red solid line) as well

as to the empty lattice approximation (green dashed line).

k vector kx. kx and the angle of incidence ϑ are connected via kx = E
~c sin(ϑ) with

~ as the reduced Planck constant and c as the speed of light. The peak maxima of

Figs. 2.6 and 2.10 are shown as black squares in Fig. 2.11 (a) and (b), respectively.

A first step to approximate the energy positions of the extinction peak maxima is

the use of the above mentioned empty lattice approximation. Due to the periodic

arrangement of the metal wires, the TE and TM waveguide dispersion relations (Eqs.

(2.24) and (2.25)) can be folded into the first Brillouin zone. The energy positions

of the folded dispersion curves at a specific kx value are the energy positions of the

quasiguided modes in a first approximation. These folded TE and TM waveguide

dispersion relations are plotted in Fig. 2.11 (a) and (b) as green dashed curves,

respectively. The energy positions for larger kx values are described quite well with

this approach. However, close to the center of the first Brillouin zone one can

recognize deviations from the empty lattice approximation. In TE polarization, a

splitting, which is called a band gap, can be seen for the black squares in Fig. 2.11
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(a) around kx = 0. Such a band gap is not visible in the empty lattice approximation

(green dashed curves). At the edge of the first Brillouin zone such deviations can

also be obtained (not shown). The splitting is due to an interaction between the

symmetric and the antisymmetric quasiguided mode, which can be described by the

following Hamiltonian:

H =

(
Ewg(kx +

2π
d
) V1

V1 Ewg(kx − 2π
d
)

)
. (2.34)

Ewg(k) in this equation are the energies of the bare waveguide modes with momenta

kx ± 2π
d

and V1 is the halfwidth of the photonic band gap [104]. The waveguide

mode energies can be approximated by Ewg(kx± 2π
d
) ≈ E0± c̃kx with E0 as the bare

waveguide mode energy and c̃ as the group velocity at kx ≈ ±2π
d

[31]. Equation

(2.34) is true for TE quasiguided modes as well as for TM quasiguided modes when

no particle plasmon can be excited. Due to the fact that the dispersion relations

of the TE and the TM waveguide modes are different, also the energy regions of

the band gaps are different. Therefore, usually no full band gap, i.e., a band gap

independent of the incident polarization [31], exists.

By calculating the eigenvalues of Eq. (2.34), the energy positions including the in-

teraction between the two quasiguided modes can be obtained. This is shown as red

solid curves in Fig. 2.11 (a) for V1 = 0.02 eV and TE polarization. The agreement

between the energy positions of the peak maxima in the S-matrix calculated extinc-

tion spectra (black squares) and the eigenvalues of the Hamiltonian is quite good.

However, the eigenvalues of the Hamiltonian are slightly smaller than the energy

positions of the peak maxima. This is due to the fact that the peak maxima of Fano

resonances are slightly shifted when compared to the energies of the corresponding

excited quasiguided modes.

In TM polarization also a particle plasmon with energy EPl can be excited. There-

fore, also the interaction between the quasiguided modes and the particle plasmon

has to be considered. This interaction is expressed by the coupling constant V2. The

Hamiltonian describing such a system is given by [31, 104]

H =

Ewg(kx +
2π
d
) V1 V2

V1 Ewg(kx − 2π
d
) V2

V2 V2 EPl

 . (2.35)

Again, the waveguide mode energies can be approximated by the linear function

Ewg(kx± 2π
d
) ≈ E0±c̃kx. By using this approximation, Eq. (2.35) can be rearranged,
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just like Eq. (2.31), leading to an effective energy matrix [31, 104]

Eeff =

E0 + V1 c̃kx
√
2V2

c̃kx E0 − V1 0
√
2V2 0 EPl

 . (2.36)

The eigenenergies of Eq. (2.36) describe now the behavior in the center of the first

Brillouin zone. This is plotted as red solid curves in Fig. 2.11 (b) for EPl = 1.82 eV,

V2 = 0.075 eV, and V1 = 0.02 eV. It can be seen that the behavior of the resonances

in the center of the first Brillouin zone is well described by the eigenenergies of Eq.

(2.36).

When more resonances are present in the specific energy range, all of these modes

interact with each other. This leads to the following Hamiltonian [101]:

H =


E1 V1, 2 V1, 3 V1, 4 · · ·
V2, 1 E2 V2, 3 V2, 4 · · ·
V3, 1 V3, 2 E3 V3, 4 · · ·
...

...
. . . . . . . . .

 , (2.37)

where Ei are the resonance energies and Vi, j = Vj, i are the coupling constants

between the ith and the jth resonance. Equation (2.37) is important for 2D metallic

photonic crystals, where several waveguide modes as well as a particle plasmon

resonance can be excited. Furthermore, this equation can be used for aperiodic

structures, where also several waveguide modes can be excited.

2.2 Disordered structures

The study of samples with specific types and degrees of disorder is very interesting.

In this thesis two different types of disorder are studied: frozen-phonon disorder

and long-range disorder. In frozen-phonon disordered samples the coordinates of

the wires fluctuate around the location of a periodic grating. The analog of this is

an electronic crystal at different temperatures, where at 0 K all atoms are placed at a

specific periodic position. However, a temperature in this crystal being larger than 0

K leads to fluctuations of the atoms around the equilibrium positions [92], which are

called phonons [110]. Increasing the temperature leads to bigger deviations from the

initial positions. This behavior is studied in the frozen-phonon disordered samples

(or uncorrelated disordered samples), where different degrees of disorder correspond

to different temperatures. The nth coordinate of the wires is given by [77]

xn = x0 + nd0 +∆xn (2.38)
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with x0 as the location of the first wire, d0 as the period of the periodic grating, and

∆xn as the deviation of the nth wire from the location of the periodic wire position.

The degree of disorder is given by [77]

D[%] =
FWHM

d0
100, (2.39)

where FWHM is the full width at half maximum of the distribution function.

The displacements of the nanowires around the periodic wire positions in this the-

sis are either uniformly distributed (uniform distribution) or normally distributed

(Gaussian distribution). The uniform distribution is characterized by having the

same probability p for the wire to be placed around the initial wire position. This

is described by the function

p(x) =

 1
FWHM

for −FWHM
2

6 x− x0 6 FWHM
2

0 else.
(2.40)

In contrast, the probability of a wire with Gaussian distribution to be found at the

initial wire position is highest and decreases exponentially for larger displacements.

However, also wire positions with deviations of more than FWHM/2 are possible.

The probability of a Gaussian distribution is given by

p(x) =
1

σ
√
2π

exp

{
−(x− x0)

2

2σ2

}
(2.41)

with the standard deviation σ defined by

σ =
FWHM√

8 ln(2)
. (2.42)

The other disorder type studied in this thesis, the long-range disorder, corresponds to

amorphous materials [111]. It is also called correlated disorder since the deviations of

the wire positions of the nth wire is dependent on all n−1 previous wires. Therefore,

the nth coordinate of the wires is in this case given by [77]

xn = x0 + nd0 +
n∑

k=1

∆xk. (2.43)

As for frozen-phonon disorder, the degree of disorder for long-range disorder can be

obtained by Eq. (2.39). The distribution functions used for long-range disorder are

the same as for frozen-phonon disorder, namely a uniform distribution (Eq. (2.40))

as well as a Gaussian distribution (Eq. (2.41)).



Fractal structures 27

2.3 Fractal structures

Another type of structures studied in this thesis are 1D fractal structures. These

structures are self-similar meaning that a similar structural arrangement can be

found in different magnification levels [112]. This can be seen by looking at the

Cantor sequence. Here, the basic element is

LSL

with L being a long distance between two wires and S a short distance. When we

assume the distance of two neighboring wires to be either L0 as a long distance or

S0 as a short distance and the first basic element to be L0S0L0, then the second

basic element consists of L1 = L0S0L0 and S1 = S0S0S0 leading to

L0S0L0︸ ︷︷ ︸
L1

S0S0S0︸ ︷︷ ︸
S1

L0S0L0︸ ︷︷ ︸
L1

.

This procedure can be continued to the N th basic element LN−1 SN−1 LN−1 with

LN−1 = LN−2 SN−2 LN−2 and SN−1 = SN−2 SN−2 SN−2. It can be seen that one

basic element consists of several smaller basic elements.

A Cantor sequence can be generated by using an initiator and a generator [113].

The initiator for the Cantor set is a line with the length Li and the generator is

the shape applied to the initiator, namely the division into the sequence LSL. This

generator is applied N times to the corresponding initiator. The whole construction

rule can be written as follows. The generator consists of G parts numbered from 0

to G− 1, where a subset C ⊂ {0, 1, ..., G− 1} is exchanged. The whole procedure is

repeated N times leading to a structure that can be written as (G,C, N) [114]. A

Cantor set can be written as (3, {1}, N) when the generator consists of the sequence

LSL. This means that subset number 1 of the G = 3 elements with length L is

replaced by a block of length S. The fractal dimensionality DF of such a Cantor set

is given by [115]

DF =
ln
(
G+1
2

)
ln (G)

. (2.44)

Two different kinds of Cantor-like sets are used in this thesis, namely the (3, {1}, 5)
set and the (6, {1, 4}, 3) set. Whereas the LSL sequence is applied 5 times for the

first Cantor set, the sequence LSLLSL for the latter one is repeated 3 times. The

latter Cantor set is also called Cantor-6 sequence in this thesis.
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2.4 Quasicrystals

In 1982, Shechtman discovered a material with 10-fold symmetry in the diffraction

pattern after he has rapidly chilled the molten mixture of aluminum and manganese

[116]. The first paper about this discovery was then published in 1984 [44]. In 2011,

he won the Nobel Prize in chemistry for the discovery of quasicrystals [57].

Quasicrystals are neither periodic nor random. Quasicrystals show long-range orien-

tational order as well as long-range quasiperiodic translational order [117]. However,

no periodic translational order can be observed. Although they do not show any

lattice periodicity, such structures exhibit a Fourier transform with essentially dis-

crete Fourier peaks [118] which is due to the long-range order. In this thesis 1D as

well as 2D quasicrystals are considered. Therefore, the following sections cover the

different methods in order to construct 1D as well as 2D quasicrystals.

2.4.1 1D quasicrystals

The Fibonacci sequence is an example of a 1D quasicrystal. There are several

methods in order to obtain this sequence. The first method explained here is making

use of deflation rules. The starting point is a block L, and in the following steps

each L is replaced by LS and each S by L [119]. This leads to the following steps:

L

L S

L S L

L S L L S

...

Repeating these steps a large number of times leads to the whole Fibonacci sequence.

As above for the fractal structures, the L is used for a long distance between two

wires and the S for a short distance between two wires. In the real Fibonacci

sequence the definition

L = τS (2.45)

is used with τ as the golden ratio [117]

τ =
1 +

√
5

2
. (2.46)

However, in this thesis the ratio between the long distance L and the short distance

S is not the golden ratio, but an arbitrary number higher than 1. Therefore, the

sequences used here are only Fibonacci-like sequences.
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Figure 2.12: The vertices within the shaded area are projected on ξ. When the angle α

between the x axis and the ξ axis is irrational, a 1D quasiperiodic string is obtained.

Another possibility to obtain the Fibonacci sequence is the projection method [120,

121], also called the cut-and-project method [122]. In this method a subset of a

periodic grid in a higher dimension is used and the vertices are projected onto a plane

in a lower dimension [122]. This is displayed in Fig. 2.12 for the Fibonacci chain.

A square periodic grid in 2 dimensions parallel to the x and the y direction is used

with a periodicity of a, since two different lengths are wanted in the Fibonacci chain.

The line ξ is called the physical space and is rotated by an angle α with respect to

the x axis of the periodic grid. The line η orthogonal to ξ is called the perpendicular

space. By translating the unit square along the physical space ξ, a strip is formed

(see shaded area in Fig. 2.12). All vertices within this strip are projected onto ξ.

Whereas the vertices on the solid line belong to the strip, the vertices on the dashed

line are not part of the strip. When cotα is an irrational number, then the obtained

sequence is quasiperiodic [123], which is for the Fibonacci sequence cotα = τ . The

sequence on ξ is then the Fibonacci chain, which is visualized by the green (long,

L) as well as the red (short, S) segments. The long (short) segments are due to the

projection of two neighboring vertices connected along the x axis (y axis) leading

to L = a cosα (S = a sinα).
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Quasicrystals can be approximated by the so-called approximants [123]. In order to

construct such approximants, the angle α̃ between the x axis of the periodic grid

and the direction of the projection strip is not equal to the angle α. The expression

cot α̃ is given by a rational number approximating τ [123]. This produces a periodic

sequence of the above mentioned distances L and S. The closer α̃ approximates α,

the larger the unit cell is and the closer this sequence is to the real quasiperiodic

one.

In order to obtain the Fibonacci-like sequences mentioned above, a rectangular peri-

odic grid with period a in x direction and period b in y direction is used in the higher

dimensional space. The angle αnew between ξ and the x axis of the periodic grid is

then given by tanαnew = b
aτ
. Here, a as well as b are the crucial parameters for the

lengths S and L. The short and long distances in the Fibonacci-like sequence are

now given by S = b sinαnew and L = a cosαnew. This construction method assures

that the short and long segments are placed exactly in the order of the Fibonacci

sequence. However, the ratio between the segments L and S in this sequence is not

equal to τ .

A similar method to the projection method is the cut formalism. The difference

between these two methods is that the projection method projects all vertices in the

shaded area (see Fig. 2.12) onto ξ, whereas the cut formalism uses line segments

perpendicular to ξ that are placed on every vertex of the higher dimensional periodic

grid (see Fig. 2.13). The length h of a line segment is obtained by projecting the unit

square in the perpendicular space η. These line segments represent atomic surfaces

in the periodic lattice [123]. Due to the finite length of the line segments, only some

intersect the physical space. At each of the intersections an atom is placed. For

an irrational slope of the physical space, a quasiperiodic sequence is obtained. The

slope for the Fibonacci sequence is given by α = arctan
(
1
τ

)
.

The cut formalism is also a good method to obtain the Fourier transform of the

quasiperiodic chain [123]. The periodic grid including the atomic surfaces on every

vertex has to be Fourier-transformed. The periodic grid in real space is also a

periodic grid in reciprocal space, whereas the atomic surfaces, i.e. a rectangular

function, correspond to sinc functions in reciprocal space (see Fig. 2.14). The sinc

function is given by

sinc

(
kηh

2π

)
=

sin
(

kηh

2

)
kηh

2

. (2.47)

The intensity of the sinc function at the intersections is equal to the intensity of

the Fourier-transformed quasiperiodic lattice in physical space. Due to the fact that

the sinc function has values not equal to zero even for large distances from the
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Figure 2.13: The line segments intersecting the physical space ξ cut the physical space

into small segments of lengths L and S. When the angle α between the x axis and the ξ

axis is irrational, a 1D quasiperiodic string is obtained.

center, all vertices of the periodic grid have a contribution to the Fourier transform.

This leads to a Fourier transform with a dense set of Fourier peaks [124]. However,

the Fourier peaks are more or less pronounced. Therefore, one can see essentially

discrete Fourier peaks.

2.4.2 2D quasicrystals

The corresponding quasicrystal to the Fibonacci chain in 2D is the Penrose tiling. It

is also possible to use matching rules in order to obtain this lattice [125]. Therefore,

two different rhombi are used; a skinny rhombus with interior angles of 36◦ and 144◦

and a fat rhombus with interior angles of 72◦ and 108◦. The matching rules are

making use of decorated tiles (see red rhombi in Fig. 2.15), where only two tiles

are allowed to share one side when both the number and the direction of the arrows

correspond to each other. In that way it is possible to obtain the whole Penrose
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Figure 2.14: Fourier transform of the periodic grid and the atomic surfaces. The intensity

of the sinc function at the intersections leads to the Fourier transform of the quasiperiodic

lattice in physical space.

tiling (see Fig. 2.15).

Another possibility to obtain the Penrose tiling is using the pentagrid method [125–

127]. Each one of the five grids consists of a periodic arrangement of parallel lines.

The individual grids are rotated by an angle of 72◦ with respect to the previous grid.

The parallel lines in each grid are perpendicular to one of the five directions of a

star vector with [119]

en =

(
cos
(
2πn
5

)
sin
(
2πn
5

) ) (2.48)

and n as an integer value between 0 and 4. The length of en also determines the

distance between two parallel lines of the nth grid. The five star vectors are the pro-

jections of the five basis vectors from a five-dimensional periodic hypercubic lattice

into the two-dimensional physical space [128]. Therefore, a vector with the dimen-

sion 5x1 can be used to describe the position of each vertex. The five components
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Figure 2.15: Penrose tiling obtained by using decorated fat and skinny rhombi. A fat

and a skinny rhombus are shown in red with the different arrows used for the matching

rules.

in this vector correspond to one of the five star vectors since all vertices in the

five-dimensional space are described by the five basis vectors.

Each line of the grids is numbered from −∞ to +∞ and the nth grid is shifted by

the value γn in direction en. In order to obtain the Penrose tiling given in Fig. 2.15,

the condition
∑4

n=0 γn = 0 has to be fulfilled [119, 125]. In a regular grid there

should be only two grid lines intersecting with each other [125].

Such a pentagrid is shown in Fig. 2.16, where the different grids are colored dif-

ferently. The corresponding star vectors are also shown. The area between two

lines of one grid belongs to the line with the lower number. To the areas between

the grid lines of all grids (see brown shaded area in Fig. 2.16) five numbers are
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Figure 2.16: The five grids of the pentagrid method are displayed in different colors.

Two lines of the nth grid are separated by the vector en. The corresponding five star

vectors, a fat and a skinny rhombus, as well as the vector to one specific vertex are shown

at the bottom.
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assigned; each number belonging to one grid. As an example, the shaded area has

the numbers 1, 0, -1, -1, and 1. In order to obtain the coordinate of one vertex, a

vector addition has to be performed by using the directions en of the star vectors

and multiplying these with the specific number from the corresponding area. This

vector addition for the shaded area is also shown in Fig. 2.16. The gray shaded

areas in Fig. 2.16 correspond to the vertices of a fat and a thin rhombus, which can

be seen at the bottom of this figure. By taking all areas into account, the Penrose

tiling is obtained.

As already mentioned above, the five star vectors en are the projections of the basic

vectors from a five-dimensional hyperspace into physical space. However, these basic

vectors can also be projected into the perpendicular space. This perpendicular space

is three-dimensional and can be divided into a two-dimensional as well as a one-

dimensional space. By projecting the basic vectors of the five-dimensional space

into the two-dimensional part of the perpendicular space, another five star vectors

are obtained. This time, the rotation between two neighboring star vectors is 144◦

instead of the 72◦ in physical space [128]. This can be expressed by the five directions

e⊥n =

(
cos
(
4πn
5

)
sin
(
4πn
5

) ) (2.49)

with n as the corresponding integer value between 0 and 4. The basic vectors kn in

the five-dimensional hyperspace with

k0 =


1

0

0

0

0

 , k1 =


0

1

0

0

0

 , k2 =


0

0

1

0

0

 , k3 =


0

0

0

1

0

 , k4 =


0

0

0

0

1


are projected into physical space as well as into perpendicular space and form the

star vectors in Eqs. (2.48) and (2.49). The projection pn of the basic vectors kn is

given by

pn = M · kn =

 en

e⊥n

x5n

 (2.50)

with M being the projection matrix. Since two different projection vectors are

orthogonal to each other, each coordinate x5n has to be equal to 1/
√
2. This leads



36 Theoretical background

to the projection matrix

M =


1 cos

(
2π
5

)
cos
(
4π
5

)
cos
(
6π
5

)
cos
(
8π
5

)
0 sin

(
2π
5

)
sin
(
4π
5

)
sin
(
6π
5

)
sin
(
8π
5

)
1 cos

(
4π
5

)
cos
(
8π
5

)
cos
(
2π
5

)
cos
(
6π
5

)
0 sin

(
4π
5

)
sin
(
8π
5

)
sin
(
2π
5

)
sin
(
6π
5

)
1/
√
2 1/

√
2 1/

√
2 1/

√
2 1/

√
2

 (2.51)

=


1 1/(2τ) −τ/2 −τ/2 1/(2τ)

0 τ
√
3− τ/2

√
3− τ/2 −

√
3− τ/2 −τ

√
3− τ/2

1 −τ/2 1/(2τ) 1/(2τ) −τ/2
0

√
3− τ/2 −τ

√
3− τ/2 τ

√
3− τ/2 −

√
3− τ/2

1/
√
2 1/

√
2 1/

√
2 1/

√
2 1/

√
2

 ,

which is also given in Ref. [129]. In order to obtain the whole Penrose tiling, a

subset of the vertices in the five-dimensional hyperspace is projected into physical

space. This subset is obtained by projecting all vertices into perpendicular space.

Only those vertices whose projections in perpendicular space lie within a specific

acceptance domain are allowed to be projected into physical space [129].

By approximating the golden mean τ in perpendicular space, i.e. the last three rows

of M, by a rational number, the 2D approximant structures are obtained. The fact

that τ is not approximated in physical space, i.e. the first two rows of M, keeps the

size and the shape of the fat and skinny rhombi constant [129].

2.5 Theoretical model for 1D structures

A theoretical model for disordered 1D metallic photonic crystals has been introduced

by D. Nau [78, 101]. This model is described in the following and then expanded

for 2D metallic photonic crystals for normal and oblique light incidence in sections

5.3 and 5.6, respectively.

In a 1D metallic photonic crystal, gold nanowires are placed on top of a waveguide

layer with the modulation in x direction of the sample (see Fig. 2.17). The location

of the nanowires can be described by setting a Dirac delta function at each wire

coordinate xn

f(x) =
∑
n

δ(x− xn). (2.52)

For disordered structures, xn is given by Eqs. (2.38) or (2.43). This function is
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Figure 2.17: Structure design of a 1D metallic photonic crystal on top of a waveguide

layer.

Fourier-transformed leading to

F (kx) =
∑
n

∫ ∞

−∞
δ(x− xn) exp(−ikxx) dx =

∑
n

exp(−ikxxn). (2.53)

The main steps of the simulation model are illustrated in Fig. 2.18. The Fourier

transform of the spatial arrangement calculated with Eq. (2.53) is used for the

relevant propagation constants (see Fig. 2.18 (a)). The propagation constants kj of

the Fourier peaks with amplitudes Aj are transferred to the corresponding energies

Ej by using the TE and TM waveguide dispersion relations (Eqs. (2.24) and (2.25)),

which is indicated for three Fourier peaks in Fig. 2.18 (b). By using the Fano formula

given in Eq. (2.29), the TE extinction spectrum in the specific energy range can be

calculated (Fig. 2.18 (c)). Since several resonances might be present in a spectrum,

Eq. (2.29) has to be slightly modified by using the sum over all Fano resonances

[78, 101]

α(E) =
∑
j

Aj

(
q +

Ej−E0

γ/2

)2
1 +

(
Ej−E0

γ/2

)2 . (2.54)

Equation (2.54) describes the TE polarized spectra quite well (see Ref. [78]). How-

ever, in TM polarization also the particle plasmon is present in the spectra. As

already explained above, the waveguide mode and the particle plasmon are coupled

to each other when they are in the same energy range. Therefore, the dispersion re-

lation for the waveguide-plasmon-polariton (eigenenergies of Eq. (2.33)) is different

when compared to the uncoupled TM waveguide dispersion relation (Eq. (2.25)).

This means that the energies of the waveguide-plasmon-polariton are shifted in
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Figure 2.18: (a) Fourier transform of the desired structure for the relevant propagation

constants. (b) The TE (blue) and TM (red) dispersion relations connect the propagations

constants to the corresponding energies. (c) Extinction spectrum in TE polarization with

peak amplitudes of the waveguide modes given by the corresponding Fourier peak ampli-

tudes. (d) Extinction spectrum in TM polarization with peak amplitudes of the waveguide

modes given by the corresponding Fourier peak amplitudes.

comparison to the plain waveguide mode energies. The extinction spectra in TM

polarization can be obtained by using Eq. (2.30). However, for several quasiguided

modes, the sum over all coupled oscillators has to be used leading to

α(E) =
∑
j

Aj,P l

4Γ2
PlE

2
[
E2 − E2

j,wg − (qwg/qPl)E
2
c

]2[
(E2 − E2

Pl)(E
2 − E2

j,wg)− E4
c

]2
+ 4Γ2

PlE
2(E2 − E2

j,wg)
2
. (2.55)

The calculated spectrum of such a coupled system is shown in Fig. 2.18 (d).

The model described here is used for 1D quasiperiodic and disordered metallic pho-

tonic crystals. However, it has to be expanded for 2D metallic photonic crystals.

This is done in sections 5.3 and 5.6 for normal and oblique light incidence as already

mentioned above.
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Chapter 3

Experimental considerations

3.1 Sample fabrication

The samples in this thesis consist of a Silicon dioxide SiO2 substrate and a waveguide

layer on top. The waveguide layer is either a 180 nm thick layer of Hafnium dioxide

(HfO2) or a 180 nm thick layer of Indium-Tin-Oxide (ITO). In order to pattern

the sample, two layers of Polymethylmethacrylate (PMMA) are spin coated on the

waveguide layer (Fig. 3.1 (b)) after the sample was cleaned in an ultrasonic bath of

acetone (Fig. 3.1 (a)). The molecular weight of the lower PMMA layer is usually 200

K with a concentration of 3.5% in chlorobenzene, whereas the molecular weight of the

upper PMMA layer is 950 K with a concentration of 1.5%. The lower PMMA layer is

more sensitive to electrons than the upper one leading to an undercut of the exposed

areas. The photoresist is then exposed by using electron-beam lithography in order

to structure the sample with the desired geometry (Fig. 3.1 (c)). The samples with

an ITO layer are directly exposed after the spin coating of the photoresist since the

ITO layer is conductive. Therefore, it minimizes charging effects. However, the HfO2

layer is not conductive. In order to minimize charging effects for this material, a thin

layer of Chromium (Cr) has to be evaporated on top of the PMMA layers. After

exposure, the sample is developed in a mixture with one part of methyl isobutyl

ketone (MIBK) and three parts of propanol (Fig. 3.1 (d)), where the exposed areas

of the PMMA are removed. The undercut is clearly visible in Fig. 3.1 (d). Before

developing the HfO2 samples, the Cr layer has to be etched away by using a chrome

etch solution. The next step in the sample fabrication is the use of an oxygen plasma

in order to remove small fractions of PMMA remaining on the structured areas (Fig.

3.1 (e)). Then, the desired thickness of gold is evaporated (Fig. 3.1 (f)), and, finally,

a lift-off process is used to remove the PMMA mask (Fig. 3.1 (g)). The solution
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Figure 3.1: Schematic overview of the sample fabrication process. (a) Cleaning of the

sample, (b) spin coating of the double layer photoresist, (c) electron-beam exposure, (d)

developing the sample, (e) plasma ashing, (f) evaporation of gold, (g) finished structure.

for the lift-off process is the commercially available N-Methyl-2-pyrrolidone (NMP).

After lift-off, the desired pattern is left on the waveguide layer (Fig. 3.1 (h)). The

structured areas usually have a size of about 100 µm × 100 µm.

3.2 Experimental setup

The fabricated samples are measured in a white light transmission setup. The

schematic view of the setup is shown in Fig. 3.2. As white light source serves a

halogen lamp that is collimated by lens L1. In order to produce a point source, lenses

L2 and L3 with pinhole P1 in the focal point are used. The polarizer is mounted on

a rotation stage so that the linearly polarized light behind the polarizer is variable

in its x -y direction. The objective L4 (Zeiss, A-Plan, 10× magnification, numerical

aperture = 0.25) focuses the light on the sample that is mounted on a rotation stage

in order to be able to vary the angle of incidence on the sample. In order to assure

a focal point diameter of approximately 100 µm, pinhole P2 with a diameter of 600

µm is inserted in front of the objective. The beam behind the sample is recollimated
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Figure 3.2: Experimental white light transmission setup.

by lens L5 and, finally, focused by lens L6 on the spectrometer. In order to reduce

the aperture angle of the light from the sample to 0.2◦, pinhole P3 with a diameter

of 100 µm is used [130]. Lens L6 can be replaced by a cylindrical lens so that the

whole CCD-chip (CCD: charge-coupled device) from the camera attached to the

spectrometer can be read out with the wavelength information in the columns of

the chip and the different angles of incidence in the rows of the chip. This cylindrical

lens was used for the measurements in section 4.1.3, where the band structure of

the different metallic photonic crystals can be observed.

In the spectrometer a grating with 150 lines/mm is used in order to split up the

incident light into the different spectral components. The CCD camera of the spec-

trometer is cooled by liquid nitrogen and it is read out by a LabView program for

measuring the extinction spectra. First, the background Ib is measured, which is

subtracted from the reference spectrum Ir (spectrum through the substrate and the

waveguide layer) as well as from the spectrum through the structure If . The mea-

sured extinction spectrum is defined by the negative logarithm of the transmission

T and is calculated by

Ext = − ln(T ) = − ln

(
If − Ib
Ir − Ib

)
. (3.1)





43

Chapter 4

1D plasmonic structures

4.1 Disordered structures

D. Nau studied in his PhD thesis [101] the optical properties of disordered metallic

photonic crystals. Two different disorder types (frozen-phonon and long-range dis-

order) were analyzed, each of them for two different distribution functions (Uniform

and Gaussian distribution). Additionally, the behavior of the coupling strength V2

in dependence on the disorder amount for each disorder type and each distribution

function was calculated (see Fig. 4.1, taken from [101]). However, this behavior was

not experimentally confirmed. Therefore, several samples were fabricated in order

to confirm the predicted behavior.
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Figure 4.1: Normalized calculated coupling strength V Dis
2 as a function of disorder for

different disorder types. Taken from [101].
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4.1.1 Sample designs

400 nm

425 nm

450 nm

475 nm

0% 20% 40% 60% 80%
Period

Degree of disorder

Figure 4.2: Arrangement of the different arrays on a sample with disorder. The average

grating period was varied between 400 nm and 475 nm and the disorder amount was

changed between 0% and 80%.

Four different samples were fabricated by using electron-beam-lithography, whose

fabrication method is described in section 3.1. These four samples are attributed to

different disorder types and different distribution functions, namely uniform frozen-

phonon disorder, uniform long-range disorder, Gaussian frozen-phonon disorder, and

Gaussian long-range disorder. The different disorder types and distributions are

described in section 2.2. Each one of the samples consists of 20 different 100µm×
100µm-large arrays, which is shown in Fig. 4.2. The period of the perfectly ordered

grating structure d0 is changed between 400 nm and 475 nm in steps of 25 nm,

whereas the degree of disorder is increased from 0% to 80% in steps of 20%. The

gold wires have a width of 100 nm and a height of 20 nm. They are placed on top

of an Indium-Tin-Oxide (ITO) layer with a thickness of 180 nm.

4.1.2 Normal incidence extinction spectra

The extinction spectra of the above mentioned structures were measured for normal

light incidence. Figure 4.3 shows these spectra for uniform frozen-phonon disorder

with an average grating period of (a) 400 nm, (b) 425 nm, (c) 450 nm, and (d) 475

nm. The TM polarized spectra are shown as black curves and the TE polarized

spectra as red curves in each panel. The spectra with different degrees of disorder

are shifted upward with the spectra of 0% disorder at the top and those of 80%

disorder at the bottom. In TE polarization (red curves), only the waveguide mode

can be excited. One can see that the energy of the waveguide mode changes to

lower energies for an increasing grating period (see spectra with 0% disorder in Fig.
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Figure 4.3: Extinction spectra of samples with uniform frozen-phonon disorder for nor-

mal light incidence in TM (black lines) and TE (red lines) polarization. The average

grating period d0 is (a) 400 nm, (b) 425 nm, (c) 450 nm, and (d) 475 nm. The disorder

amount in each panel is changed between 0% (top) and 80% (bottom). The different

spectra are shifted upward for clarity in each panel.

4.3 (a) − (d)), which is expected from theory (see section 2.1.2). The amplitude of

the resonance peak is decreased for larger uniform frozen-phonon disorder, which is

visible for all average grating periods. For a disorder amount of 80%, the quasiguided

mode is almost vanished. Due to the fact that no additional Fourier components arise

around k = 2π
d0

for this disorder type, the optical properties are only characterized

by a reduction in amplitude but not with a broadening of the peak [101]. In TM

polarization, the particle plasmon can be additionally excited leading to a more (see

Fig. 4.3 (c) or (d)) or less (see Fig. 4.3 (a)) coupled system between waveguide

mode and particle plasmon. In all perfectly ordered structures the upper and lower

polariton branches are visible [31]. By increasing the grating period from 400 nm

to 475 nm, only the energy of the waveguide mode is shifted. This means that

the energy difference between the two maxima is changed as expected, which can

be observed in Fig. 4.3 (compare to Fig. 2.7). It can be seen in Fig. 4.3 that

the contrast of the two peaks in the spectra and the dip in-between is reduced
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for an increased disorder amount. This can be obtained for all average grating

periods. This corresponds to the reduced peak amplitude as observable in the TE

polarized spectra. Again, no additional peaks are visible corresponding to Fourier

components only at k = 2π
d0
. For a disorder amount of 80%, almost only one broad

peak is recognizable. Additionally, a broadening of the lower energy peak can be

observed in Fig. 4.3 (a) and (b). These findings agree with the optical properties of

such structures studied in Ref. [101]. Furthermore, an increase in extinction of the

minimum between the two resonances is found, which is either due to the reduced

amplitude (Fig. 4.3 (c) and (d)) or to the broadened particle plasmon resonance

(Fig. 4.3 (a) and (b)). Depending on d0, the amplitude reduction affects either one

of the peaks (higher energy peak in Fig. 4.3 (a)) or the dip in-between (Fig. 4.3 (d)).

However, the general behavior that the amplitude of the waveguide mode reduces

for an increasing uniform frozen-phonon disorder and that no additional peaks arise

is independent of the individual grating period.
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Figure 4.4: Extinction spectra of samples with Gaussian frozen-phonon disorder for

normal light incidence in TM (black lines) and TE (red lines) polarization. The average

grating period d0 is (a) 400 nm, (b) 425 nm, (c) 450 nm, and (d) 475 nm. The disorder

amount in each panel is changed between 0% (top) and 80% (bottom). The different

spectra are shifted upward for clarity in each panel.
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In comparison, a sample with Gaussian frozen-phonon disorder was measured (Fig.

4.4). Again, the average grating period was changed between 400 nm and 475 nm

(see Fig. 4.4 (a) − (d)) and the disorder amount was varied between 0% and 80%.

Basically, a similar behavior is observed. In TE polarization, only the waveguide

mode can be excited and its resonance energy shifts to lower values for larger grating

periods. As it can be also seen for uniform frozen-phonon disorder, the resonance

amplitude reduces until it disappears for about 80% disorder. However, the peak

height decreases faster when compared to uniform frozen-phonon disorder. One can

recognize that the waveguide mode for 60% disorder is almost vanished for Gaussian

frozen-phonon disorder (Fig. 4.4), whereas this resonance is still clearly visible for

uniform frozen-phonon disorder (Fig. 4.3). Once again, only one waveguide mode

corresponding to a Fourier component with k = 2π
d0

can be excited in this energy

range. In TM polarization, both the particle plasmon and the waveguide mode

can be excited. As it is already described for uniform frozen-phonon disorder, the

energy difference between the two resonances is changed for different grating peri-

ods. Increasing the Gaussian frozen-phonon disorder amount decreases the contrast

between the peaks and the dip, but this decrease is again faster when compared

to uniform frozen-phonon disorder. This can be obtained for a disorder amount

of 60%, where the waveguide mode is nearly vanished for Gaussian frozen-phonon

disorder (see Fig. 4.4) in comparison to a clearly visible waveguide mode for uni-

form frozen-phonon disorder. As above, the spectral width of the particle plasmon

is slightly increased. Also here, the extinction in the dip between the two polariton

branches is increased for larger disorder amounts. Therefore, the principle behav-

ior is similar for these two distributions. However, the amplitude decrease is faster

for the Gaussian frozen-phonon disorder. This is reasonable since the deviations

from the perfectly ordered grating positions can be larger than the half width at

half maximum (HWHM) for the Gaussian distribution, whereas the largest possible

deviation for the uniform distribution is exactly given by HWHM.

Additionally, the optical properties of samples with uniform long-range disorder

(Fig. 4.5) and Gaussian long-range disorder (Fig. 4.6) were measured. Again, the

average grating period was changed between 400 nm and 475 nm (panels (a) −
(d) in each figure) and the disorder amount was increased from 0% to 80%. Note

that the TE polarized spectra of all four sample types are multiplied by a factor

of 2. However, comparing these spectra to those with frozen-phonon disorder (Fig.

4.3 and Fig. 4.4) reveals obvious differences. Even though the amplitude of the

waveguide modes in TE polarization (red curves) decreases for increasing disorder

amounts as it was observed for frozen-phonon disorder, a huge broadening of the
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Figure 4.5: Extinction spectra of samples with uniform long-range disorder for normal

light incidence in TM (black lines) and TE (red lines) polarization. The average grating

period d0 is (a) 400 nm, (b) 425 nm, (c) 450 nm, and (d) 475 nm. The disorder amount

in each panel is changed between 0% (top) and 80% (bottom). The different spectra are

shifted upward for clarity in each panel.

spectral width can be obtained. Moreover, various peaks can be recognized. This

broadening is due to the fact that several Fourier components arise in the vicinity of

k = 2π
d0

for the long-range disorder. So, in principle, the broadened peak consists of

several waveguide mode resonances at slightly different energy positions. Due to the

dense occurrence of these resonances, they appear like one broad peak. Whereas the

waveguide mode resonances in the spectra with frozen-phonon disorder are visible

to a disorder amount of at least 60%, they are almost completely vanished at this

degree of disorder for long-range disorder, even for the uniform distribution. For

Gaussian long-range disorder the decrease is even stronger as it has been observed

for the frozen-phonon disorder. However, for long-range disorder this behavior is

more difficult to recognize. In TM polarization, both polariton branches are visible

for the perfectly ordered samples. For increasing long-range disorder, several other

waveguide mode peaks in addition to a broadening of the original two polariton

peaks can be observed. The extinction in the region between the polariton peaks
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Figure 4.6: Extinction spectra of samples with Gaussian long-range disorder for normal

light incidence in TM (black lines) and TE (red lines) polarization. The average grating

period d0 is (a) 400 nm, (b) 425 nm, (c) 450 nm, and (d) 475 nm. The disorder amount

in each panel is changed between 0% (top) and 80% (bottom). The different spectra are

shifted upward for clarity in each panel.

is increased due to the appearance of the additional waveguide mode resonances.

Therefore, this energy gap is filled up with additional modes quite easily. By looking

at the spectra with d0 = 475 nm and 60% disorder, one can recognize a quite rough

lineshape for uniform long-range disorder (Fig. 4.5) in the spectral range around

1.7 eV due to the additional waveguide modes. In comparison to this curve, the

spectrum for the same periodicity and degree of disorder with uniform frozen-phonon

disorder (Fig. 4.3) shows a very smooth lineshape. In addition to that, the minimum

between the two main peaks is shifted to higher energies for the uniform long-range

disorder. For Gaussian long-range disorder, this minimum is not visible anymore.

Only the shoulder on the higher energy side indicates the previous separation of the

two polariton branches. This means that the broadening for this distribution is even

stronger than for the uniform distribution, which is consistent to the behavior of the

Gaussian frozen-phonon disorder compared to that of the uniform frozen-phonon

disorder. These findings, namely the broadening of the resonance peaks and the
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Table 4.1: Coupling strength V2 for uniform frozen-phonon disorder compared to

Gaussian frozen-phonon disorder for different disorder amounts D.

D = 0% D = 20% D = 40% D = 60% D = 80%

Uniform 54.5 meV 48.8 meV 36.2 meV 23.2 meV 9.8 meV

Gaussian 54.5 meV 46.8 meV 29.4 meV 12.0 meV 4.5 meV

additionally excited waveguide modes for the long-range disorder in comparison to

the behavior of the frozen-phonon disordered samples, are in agreement with the

observations in Ref. [101].

In order to analyze the behavior of the coupling strength with increasing frozen-

phonon disorder, the energy positions of the peak maxima are plotted versus the

corresponding grating periods (filled squares in Fig. 4.7). This anti-crossing be-

havior is shown for uniform frozen-phonon disorder on the left side of Fig. 4.7 and

for Gaussian frozen-phonon disorder on the right side. The degree of disorder in-

creases from 0% in the top panels to 80% in the bottom panels in steps of 20%. The

plots for both distribution functions have in common that the peaks in the region of

the polariton splitting converge for larger disorder amounts indicating a decrease of

the coupling strength between the particle plasmon and the waveguide modes. By

comparing the uniform distribution to the Gaussian distribution, one can see that

the peak positions for the Gaussian distribution are closer to each other meaning a

lower coupling strength. This can be observed especially for 40% and 60% disorder.

As explained in section 2.1.3, such an anti-crossing behavior can be described by

a Hamiltonian, which is given in Eq. (2.33). The eigenvalues of the corresponding

Hamiltonian are plotted as red curves in Fig. 4.7. The coupling strength V2 was

a fitting parameter, whereas EPl and Ewg(d) are the energies of the undisturbed

particle plasmon and the undisturbed waveguide modes for the grating period d,

respectively. The half width of the photonic band gap is given by V1 = 10meV. The

fitted values for the coupling strength are given in the corresponding labels in Fig.

4.7 as well as in Table 4.1. These values decrease for increasing disorder amounts

as expected from the above described behavior. This is reasonable since an increas-

ing disorder amount results in a smaller overlap between the electric fields of the

waveguide mode and the particle plasmons as described in Ref. [101]. Additionally,

the values for Gaussian frozen-phonon disorder are slightly smaller than those for

uniform frozen-phonon disorder. This was also expected as the peak distance around

the polariton splitting was smaller for Gaussian frozen-phonon disorder. This can

be understood by looking at the two distribution functions. For a uniform distri-

bution the maximum deviation from the perfectly ordered grating positions is given
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Figure 4.7: Anti-crossing behavior for samples with uniform frozen-phonon disorder

(left) and Gaussian frozen-phonon disorder (right). The disorder amount increases from

0% (top) to 80% (bottom).
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by HWHM, whereas larger deviations are possible for a Gaussian distribution as

already mentioned above.
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Figure 4.8: Calculated (black lines) and experimental (red lines) coupling strength V2

versus degree of disorder for uniform frozen-phonon disorder (left) and Gaussian frozen-

phonon disorder (right).

The fitted values for the coupling strength are plotted in Fig. 4.8 versus the dis-

order amount as red curves for uniform frozen-phonon disorder (left) and Gaussian

frozen-phonon disorder (right). These values are compared to the calculated ones of

Ref. [101] shown as black curves in Fig. 4.8. The principle behavior between theo-

retical and experimental curves is quite good, especially for Gaussian frozen-phonon

disorder. The experimental values for the coupling strength for uniform frozen-

phonon disorder are slightly smaller than the theoretical values (see left panel of

Fig. 4.8). However, by comparing the fitted values of the coupling strength of the

uniform frozen-phonon disorder to the calculated ones for both distributions, one

can recognize a smaller deviation to the curve with uniform frozen-phonon disorder.

This is especially true for higher disorder amounts. These deviations can be due

to imperfections of the fabricated structure. It is possible that the positions of the

gold wires deviate slightly from the desired positions leading to an increase of the

disorder amount and thus a decrease of the coupling strength. Another possibility

can be due to problems finding the exact energy position of the peak maximum,
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especially for the broader peaks. Furthermore, the deviations can arise due to the

simple model for the coupling strength calculation [101]. However, the behavior of

the coupling strength is described quite well with the theoretical model.

The behavior of the coupling strength for the experimental data with increasing

disorder is shown here for frozen-phonon disorder. However, the coupling strength

for long-range disorder cannot be obtained experimentally due to the large amount of

additional waveguide modes arising for these samples. Therefore, a different method

has to be found in order to compare the experimentally obtained values of V2 to the

theoretically predicted ones. It is well-known that the absorption tail of disordered

structures shows an exponential behavior [131–134]. This is the Urbach rule, where

the absorption α in the specific region is defined by [132–134]

α = α0 exp

(
E − E0

EU

)
(4.1)

with α0 and E0 as two constants being almost independent of the disorder amount

and EU as the Urbach energy. For semiconductors and insulators it is known that

an increase of the disorder amount results in a more gentle slope of the absorption

tail when ln(α) is plotted versus the energy E [133]. In other words, a higher

disorder amount possesses a lower value of the slope m = 1/EU . By looking at the

behavior of the coupling strength (see Fig. 4.1 and Fig. 4.8), one can also recognize

a decrease for larger disorder amounts. Therefore, there might be a relation between

the Urbach slope and the coupling strength.
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Figure 4.9: (a) The natural logarithm of the extinction (ln(Ext)) is plotted versus the

photon energy of the whole measured spectral range. (b) The same plot as in (a), but

with the spectral range restricted to the region around the resonance at higher energies.

A line is fitted to the resonance slope in order to obtain the Urbach energy.
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Table 4.2: Fitted Urbach energies EU of the samples with uniform as well as with

Gaussian frozen-phonon disorder for different disorder amounts D and different grat-

ing periods d0.

D = 0% D = 20% D = 40% D = 60% D = 80%

Uniform

400 nm 7.9 meV 9.5 meV 14 meV 21 meV 140 meV

425 nm 6 meV 6.5 meV 9.1 meV 17.8 meV 350 meV

450 nm 13.5 meV 16 meV 19 meV 44 meV 400 meV

475 nm 54 meV 81 meV 220 meV 500 meV −

Gaussian

400 nm 8.1 meV 13 meV 23 meV 53 meV −
425 nm 5.4 meV 8 meV 18 meV 55 meV −
450 nm 13.5 meV 18 meV 40 meV 120 meV −
475 nm 54 meV 73 meV 250 meV 1500 meV −

Since the extinction spectra can be treated as absorption spectra (see chapter 7.2

in Ref. [35]), the natural logarithm of the extinction is plotted versus the photon

energy for our disorder samples. This is exemplarily shown in Fig. 4.9 for the

sample with uniform frozen-phonon disorder and an average grating period of 400

nm. However, the following procedure to obtain the Urbach energies is in principle

the same for all samples. In Fig. 4.9 (a), the whole ln(Ext) spectrum is plotted

versus the photon energy. It can be seen that the peak height as well as the steepness

of the resonance slopes decrease for a larger disorder amount. In order to better

recognize the steepness of the slope, the spectral range in Fig. 4.9 (b) is restricted

to the region around the higher energy resonance. To every spectrum the linear

equation

ln(Ext) = ln(Ext0) +

(
E − E0

EU

)
(4.2)

is fitted, which can be obtained by applying the natural logarithm to Eq. (4.1).

These linear fits are shown as dashed curves in Fig. 4.9 (b) and the fitted Urbach

energy values are also specified therein. It can be seen that the slope of each curve

is quite nicely reproduced by the linear fits. However, the gentle slope of the sample

with 80% disorder is difficult to recognize. As expected, the Urbach energy increases

for higher disorder amounts.

As already mentioned above, the Urbach energy is fitted to the higher energy peak

of all frozen-phonon spectra. The obtained Urbach energies of the samples with uni-

form as well as Gaussian frozen-phonon disorder are shown in Table 4.2 for different

disorder amounts and different grating periods. For some 80% spectra, it was not

possible to determine the Urbach energy. It can be seen that the Urbach energy
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becomes larger for all samples by increasing the disorder amount. Furthermore,

the Urbach energy increases faster for the Gaussian distribution when compared

to the corresponding grating periods of the uniform distribution. This is expected

since larger deviations than FWHM/2 from the perfect periodic grating position are

possible only for the Gaussian distribution. It can also be seen in Table 4.2 that

the Urbach energy strongly depends on the grating period. This is reasonable since

the spectra also change significantly by varying the grating period. However, the

relation of the grating period and the Urbach energy is not clear up to now.
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Figure 4.10: Experimental (filled squares) and calculated (open squares) normalized

coupling constants (black) compared to the behavior of the Urbach slopes (blue filled

circles) for uniform frozen-phonon disorder and a periodicity (a) d0 = 400 nm, (b) d0 =

425 nm, (c) d0 = 450 nm, and (d) d0 = 475 nm.

In order to see if the coupling constant of the disordered samples V Dis
2 and the

slope m of the Urbach energy show a similar behavior, V Dis
2 and m = 1

EU
are both

plotted versus the disorder amount for both distributions and all grating periods.

This is shown in Fig. 4.10 for uniform frozen-phonon disorder and in Fig. 4.11

for Gaussian frozen-phonon disorder. The behavior for different average grating
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Figure 4.11: Experimental (filled squares) and calculated (open squares) normalized

coupling constants (black) compared to the behavior of the Urbach slopes (blue filled

circles) for Gaussian frozen-phonon disorder and a periodicity (a) d0 = 400 nm, (b) d0 =

425 nm, (c) d0 = 450 nm, and (d) d0 = 475 nm.

periods d0 = 400 nm− 475 nm is displayed in panels (a) − (d), respectively. Due to

the unknown relation between the coupling constant and the Urbach energy slope,

two independent y axes are used. The relation between the two y axes is different

for the individual grating periods, however, it is equal for the same grating period

and the two different distributions. It can be seen in Figs. 4.10 and 4.11 that

the behavior of the Urbach energy slope (blue) is quite similar to the behavior

of the disorder dependent coupling constant (black). This is true for both the

experimentally obtained and the calculated normalized coupling constants. Some

deviations are visible like in Fig. 4.10 (d) or in Fig. 4.11 (a), which can be due to

the fitting process. However, the general behavior is reproduced quite well. Even

the faster decrease of the Gaussian frozen-phonon disorder when compared to the

uniform distribution can be seen.



Disordered structures 57

Table 4.3: Fitted Urbach energies EU of the samples with uniform as well as with

Gaussian long-range disorder for different disorder amounts D and different grating

periods d0.

D = 0% D = 20% D = 40% D = 60% D = 80%

Uniform

400 nm 8 meV 24 meV 160 meV 500 meV 500 meV

425 nm 5.5 meV 30 meV 175 meV 650 meV 550 meV

450 nm 15 meV 100 meV 400 meV 550 meV −
475 nm 44 meV 550 meV 7 eV 10 eV 10 eV

Gaussian

400 nm 8 meV 40 meV 430 meV 4000 meV −
425 nm 5.5 meV 50 meV 800 meV 1000 meV 6000 meV

450 nm 15 meV 125 meV 1000 meV 1200 meV −
475 nm 44 meV 2000 meV 7 eV 10 eV 10 eV

Since the behavior of the coupling constants and the slopes of the Urbach energies

is quite similar for frozen-phonon disorder, the Urbach energies are also fitted to the

samples with long-range disorder. However, it is more difficult to fit Eq. (4.2) to the

spectra of the long-range disorder samples. The fitted Urbach energies are shown

in Table 4.3 for the uniform distribution as well as the Gaussian distribution. By

comparing the values in this table to those for frozen-phonon disorder (Table 4.2),

it can be observed that the values for long-range disorder are much higher than

expected. Additionally, also the Urbach energies for the Gaussian distribution are

higher than those for the uniform distribution. This is expected and consistent with

the findings for frozen-phonon disorder. It is also found that the Urbach energies are

strongly dependent on the grating period as above. However, the order of magnitude

for the four different samples having the same grating period is comparable, which

is true for all grating periods.

Since the correct tendency of the Urbach energies is found, the same plots as in

Figs. 4.10 and 4.11 are shown for uniform and Gaussian long-range disorder in Figs.

4.12 and 4.13, respectively. However, the Urbach energy slopes (blue filled circles)

are only compared to the calculated normalized coupling constants (black open

squares) since it was not possible to experimentally obtain the coupling constants

due to the large amount of additionally excited waveguide modes. Panels (a) −
(d) of Figs. 4.12 and 4.13 again show the different results for the samples with

average periodicities d0 = 400 nm − 475 nm. As above, the y axes of the Urbach

slopes are different for the varying grating periods. However, the scale is exactly

the same for one specific grating period but other sample designs. By comparing

the black and the blue curves, it can be seen that the agreement is good for all
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Figure 4.12: Calculated normalized coupling constants (black open squares) compared

to the behavior of the Urbach slopes (blue filled circles) for uniform long-range disorder

and a periodicity (a) d0 = 400 nm, (b) d0 = 425 nm, (c) d0 = 450 nm, and (d) d0 = 475 nm.

grating periods and both distributions. Although the fitting procedure was more

difficult, also for long-range disorder the behavior of the coupling constants is quite

well reproduced by the behavior of the Urbach slopes. As above, the faster decrease

of the sample with Gaussian distribution can be obtained. Additionally, it can be

seen that the samples with long-range disorder reach much lower values for the same

disorder amount when compared to the corresponding values of the samples with

frozen-phonon disorder.

These findings indicate that the coupling constant is somehow related to the slope

of the Urbach energy. However, this relation is not known up to now. It can just be

said that the Urbach slope is strongly dependent on the grating period. In order to

find this relation, further investigations have to be made, which is subject to future

research.
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Figure 4.13: Calculated normalized coupling constants (black open squares) compared

to the behavior of the Urbach slopes (blue filled circles) for Gaussian long-range disorder

and a periodicity (a) d0 = 400 nm, (b) d0 = 425 nm, (c) d0 = 450 nm, and (d) d0 = 475 nm.

4.1.3 Angular extinction spectra

The disorder samples described in section 4.1.1 were also measured with oblique

light incidence. For these measurements the cylindrical lens mentioned in section

3.2 was used and the whole CCD chip was read out. The measured angular extinction

spectra in TE polarization are shown in Fig. 4.14 for uniform frozen-phonon disorder

(panels (a) − (e)) as well as for uniform long-range disorder (panels (f) − (j)). The

extinction is color-coded and it is plotted versus the photon energy and the angle of

incidence ϑ. These measurements are exemplarily shown for an average periodicity

d0 = 450 nm. However, the behavior for the other grating periods is similar. The two

panels at the top (Fig. 4.14 (a) and (f)) show the measurements for a perfect periodic

grating arrangement. The disorder is increased for the panels below. For oblique

light incidence on the periodic samples, two waveguide modes are visible. The

splitting between these resonances decreases for smaller incidence angles. Whereas
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Figure 4.14: Measured angular extinction spectra in TE polarization with (a) − (e)

uniform frozen-phonon disorder and (f) − (j) uniform long-range disorder. The disorder

amount is increased from top (panels (a) or (f)) to bottom (panels (e) or (j)). The color-

coded extinction is plotted versus the photon energy and the angle of incidence.
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the upper energy waveguide mode is always visible, the lower energy waveguide

mode vanishes for normal incidence and small angles of incidence. It can be seen

that the upper energy waveguide mode stays at approximately the same energy for

ϑ ≈ 0◦. The lower energy waveguide mode stays also at almost constant energies

for ϑ ≈ 0◦, however, at a slightly lower energy value. This is not clearly visible due

to the decreased extinction values for this waveguide mode. The energy difference

between the upper and the lower energy waveguide modes is the photonic band gap.

It can be seen that the behavior is equal for positive and negative incidence angles.

Increasing the uniform frozen-phonon disorder amount results in a reduction of the

resonance height and a smaller waveguide mode separation (see Fig. 4.14 (a) −
(e)). However, the general behavior of a larger splitting between the two waveguide

modes for increasing incidence angles is preserved. The band gap between the two

waveguide modes disappears for a disorder amount of approximately 60%. For a

disorder amount of 80% additional weak waveguide modes at slightly higher ener-

gies are visible. The peak heights are about the same for all resonances due to the

strongly decreased waveguide modes of the perfect photonic crystal and the simulta-

neously increased background. However, for higher disorder amounts it is expected

that no waves can be coupled into the waveguide layer and thus leading to no visible

resonances in the spectrum.

For increased uniform long-range disorder (see Fig. 4.14 (f) − (j)) the peak heights

of the waveguide modes are also reduced. However, additional resonances arise

since the long-range order is not preserved. All of these waveguide modes split

up into two modes for oblique light incidence and the energy difference between

these two modes increases. This can be seen by the larger energy range for bigger

incidence angles. However, for small angles of incidence the individual waveguide

modes are hardly visible due to the large amount of additional resonances. By

increasing the uniform long-range disorder amount, the energy range in which the

waveguide modes are spread out becomes larger. The peak heights for the same

disorder amount are smaller for long-range disorder when compared to frozen-phonon

disorder. Therefore, also the excited waveguide modes vanish for smaller disorder

amounts. This can be seen for a disorder amount of 80%. Hardly any resonances are

visible for uniform long-range disorder, whereas the waveguide modes for uniform

frozen-phonon disorder can still be seen. For uniform frozen-phonon disorder, it

is even possible to observe the splitting of the waveguide modes for oblique light

incidence.

Figure 4.15 shows the same plots as in Fig. 4.14 but for Gaussian frozen-phonon

disorder (panels (a) − (e)) and for Gaussian long-range disorder (panels (f) − (j)).
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Figure 4.15: Measured angular extinction spectra in TE polarization with (a) − (e)

Gaussian frozen-phonon disorder and (f) − (j) Gaussian long-range disorder. The disorder

amount is increased from top (panels (a) or (f)) to bottom (panels (e) or (j)). The color-

coded extinction is plotted versus the photon energy and the angle of incidence.
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The principle behavior is similar to that already explained for uniform distribution.

However, the peak heights decrease faster for Gaussian distribution. This can be seen

especially for 80% frozen-phonon disorder, where the waveguide modes are clearly

visible for uniform distribution but hardly observable for Gaussian distribution. For

20% long-range disorder, it can be seen that the waveguide modes of the Gaussian

distribution are spread out over are larger energy range in comparison to the uniform

distribution. Whereas the waveguide modes for 40% uniform long-range disorder can

still clearly be seen, the resonances for 40% Gaussian long-range disorder are already

very weak. This is consistent with the findings of the previous section.

All samples were also measured in TM polarization, which is again exemplarily

shown in Figs. 4.16 and 4.17 for an average grating period d0 = 450 nm. The

measurements of the samples with uniform distribution are shown in Fig. 4.16 and

those with Gaussian distribution can be seen in Fig. 4.17. In TM polarization, not

only the waveguide modes can be excited but also the particle plasmon as already

mentioned earlier. For d0 = 450 nm, the waveguide modes and the particle plasmon

are coupled leading to the waveguide-plasmon-polariton. Therefore, the waveguide

modes in these plots are visible as extinction dips within the broad particle plas-

mon. The behavior of the waveguide modes in TM polarization is similar to that

in TE polarization. For frozen-phonon disorder (panels (a) − (e) in Figs. 4.16 and

4.17), the dip between the polariton-branches decreases by increasing the disorder

amount. As above, this decrease is faster for the Gaussian distribution. This can

be observed by the weaker contrast between the dips and the neighboring peaks for

the same disorder amount. For 60% uniform frozen-phonon disorder the dips are

still visible, whereas the waveguide modes for 60% Gaussian frozen-phonon disorder

cannot be recognized anymore. Instead, only the particle plasmon peak is visible.

The amplitude of the particle plasmon also decreases for larger disorder amounts,

which is true for both distributions.

In the spectra with long-range disorder, additional waveguide modes arise. The

waveguide modes cover a broader energy range with a smaller amplitude when

compared to the frozen-phonon measurements. Especially in the images with 20%

long-range disorder, this is clearly visible. In comparison to the samples with 40%

frozen-phonon disorder, hardly any waveguide mode resonances are visible for 40%

long-range disorder. The contrast between neighboring peaks and dips is very low.

As above, the waveguide modes of the samples with Gaussian distribution possess

lower amplitudes and they are also located in a broader energy range in comparison

to the waveguide modes of the samples with uniform distribution. For a disorder

amount of 40% and Gaussian long-range disorder it is already hard to distinguish the
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Figure 4.16: Measured angular extinction spectra in TM polarization with (a) − (e)

uniform frozen-phonon disorder and (f) − (j) uniform long-range disorder. The disorder

amount is increased from top (panels (a) or (f)) to bottom (panels (e) or (j)). The color-

coded extinction is plotted versus the photon energy and the angle of incidence.



Disordered structures 65

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

(j)

Figure 4.17: Measured angular extinction spectra in TM polarization with (a) − (e)

Gaussian frozen-phonon disorder and (f) − (j) Gaussian long-range disorder. The disorder

amount is increased from top (panels (a) or (f)) to bottom (panels (e) or (j)). The color-

coded extinction is plotted versus the photon energy and the angle of incidence.
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individual waveguide modes, whereas they are still recognizable for uniform long-

range disorder and the same disorder amount. As soon as the waveguide modes are

vanished, only the broad particle plasmon peak is visible. Also for long-range dis-

order, the particle plasmon amplitude decreases by increasing the disorder amount.

4.2 Quasiperiodic and fractal structures

In this section, the optical properties of 1D photonic crystals are studied for different

samples with quasiperiodic as well as fractal gold wire arrangements. All samples

are measured for normal light incidence as well as for oblique light incidence.

4.2.1 Sample designs

Table 4.4: Short, long, and average distances of the different Fibonacci samples.

short distance long distance average distance

Sample F1 ≈ 360 nm 425 nm 400 nm

Sample F2 ≈ 319 nm 450 nm 400 nm

Sample F3 ≈ 279 nm 475 nm 400 nm

Sample F4 ≈ 385 nm 450 nm 425 nm

Sample F5 ≈ 344 nm 475 nm 425 nm

Sample F6 ≈ 410 nm 475 nm 450 nm

Sample F7 400 nm ≈ 440 nm 425 nm

Sample F8 400 nm ≈ 481 nm 450 nm

Sample F9 400 nm ≈ 521 nm 475 nm

Sample F10 425 nm ≈ 465 nm 450 nm

Sample F11 425 nm ≈ 506 nm 475 nm

Sample F12 450 nm ≈ 490 nm 475 nm

Sample F13 400 nm 425 nm ≈ 415 nm

Sample F14 400 nm 450 nm ≈ 431 nm

Sample F15 400 nm 475 nm ≈ 446 nm

Sample F16 425 nm 450 nm ≈ 440 nm

Sample F17 425 nm 475 nm ≈ 456 nm

Sample F18 450 nm 475 nm ≈ 465 nm

The gold wires of the quasiperiodic photonic crystal samples are arranged in a

Fibonacci-like sequence, as mentioned in section 2.4.1, with the short and long
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segments S and L between two neighboring wires. The distances S and L and thus

also the average grating period are varied for the different quasiperiodic arrays and

are given in Table 4.4.

Table 4.5: Short, long, and average distances of the different Cantor samples.

short distance long distance average distance

Sample C1 ≈ 396 nm 425 nm 400 nm

Sample C2 ≈ 392 nm 450 nm 400 nm

Sample C3 ≈ 389 nm 475 nm 400 nm

Sample C4 ≈ 421 nm 450 nm 425 nm

Sample C5 ≈ 417 nm 475 nm 425 nm

Sample C6 ≈ 446 nm 475 nm 450 nm

Sample C7 400 nm ≈ 590 nm 425 nm

Sample C8 400 nm ≈ 780 nm 450 nm

Sample C9 400 nm ≈ 970 nm 475 nm

Sample C10 425 nm ≈ 615 nm 450 nm

Sample C11 425 nm ≈ 805 nm 475 nm

Sample C12 450 nm ≈ 640 nm 475 nm

Sample C13 400 nm 425 nm ≈ 403 nm

Sample C14 400 nm 450 nm ≈ 407 nm

Sample C15 400 nm 475 nm ≈ 410 nm

Sample C16 425 nm 450 nm ≈ 428 nm

Sample C17 425 nm 475 nm ≈ 432 nm

Sample C18 450 nm 475 nm ≈ 453 nm

As already mentioned in section 2.3, two different Cantor-like sets, namely the

(3, {1}, 5) set (Cantor) and the (6, {1, 4}, 3) set (Cantor-6), are used as fractal struc-

tures. The dimensions of the short, long and average distances are given in Tables

4.5 and 4.6 for the Cantor set and the Cantor-6 set, respectively. For compari-

son, also periodic gold wire arrangements with grating periods of 400 nm, 425 nm,

450 nm, and 475 nm are fabricated. All samples substrates consist of quartz with a

180 nm thick ITO waveguide layer on top. The gold wires with a width of 100 nm,

a thickness of 20 nm, and a length of 100µm are placed on the waveguide material

and were fabricated via electron-beam-lithography and a subsequent evaporation

process as described in section 3.1. Each array has a size of 100µm× 100µm.
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Table 4.6: Short, long, and average distances of the different Cantor-6 samples.

short distance long distance average distance

Sample C6-1 ≈ 389 nm 425 nm 400 nm

Sample C6-2 ≈ 379 nm 450 nm 400 nm

Sample C6-3 ≈ 368 nm 475 nm 400 nm

Sample C6-4 ≈ 414 nm 450 nm 425 nm

Sample C6-5 ≈ 404 nm 475 nm 425 nm

Sample C6-6 ≈ 439 nm 475 nm 450 nm

Sample C6-7 400 nm ≈ 484 nm 425 nm

Sample C6-8 400 nm ≈ 569 nm 450 nm

Sample C6-9 400 nm ≈ 653 nm 475 nm

Sample C6-10 425 nm ≈ 509 nm 450 nm

Sample C6-11 425 nm ≈ 594 nm 475 nm

Sample C6-12 450 nm ≈ 534 nm 475 nm

Sample C6-13 400 nm 425 nm ≈ 407 nm

Sample C6-14 400 nm 450 nm ≈ 415 nm

Sample C6-15 400 nm 475 nm ≈ 422 nm

Sample C6-16 425 nm 450 nm ≈ 432 nm

Sample C6-17 425 nm 475 nm ≈ 440 nm

Sample C6-18 450 nm 475 nm ≈ 457 nm

4.2.2 Normal incidence extinction spectra

The normal incidence extinction spectra of the periodic gold wire arrangements were

measured as a reference. The TM (black lines) and TE polarized (red lines) spectra

are shown in Fig. 4.18. The grating period was changed between d0 = 400 nm

(bottom) and d0 = 475 nm (top) in steps of 25 nm. It can be seen that only

one waveguide mode is excited for all spectra. However, the resonance peak of

the waveguide mode is shifted to lower energies for larger grating periods. This is

expected and has already been explained in sections 2.1.2 and 2.1.3.

The first measured samples with normal light incidence are the Fibonacci samples.

The different spectra of samples F1 − F6, F7 − F12, and F13 − F18 are shown in

Fig. 4.19, Fig. 4.20, and 4.21, respectively. Whereas TE polarized light (red lines)

can only excite the waveguide modes, TM polarized light (black lines) additionally

excites the particle plasmon. By looking at the TE polarized spectra of samples F1−
F3, it is found that the main waveguide mode is excited at the same energy position.

The only visible difference is the changing resonance amplitude. This is also found
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Figure 4.18: Extinction spectra of samples with periodic gold wire arrangements for

normal light incidence in TM (black lines) and TE (red lines) polarization. The grating

period d0 is changed from 400 nm (bottom) to 475 nm (top) in steps of 25 nm. The

different spectra are shifted upward for clarity.

for samples F4 and F5. However, the waveguide mode resonance is shifted to lower

energies when compared to samples F1 − F3. The energy of sample F6 is again

shifted to lower values. By looking at the specifications of these samples (Table

4.4), it is found that samples F1 − F3 possess an average wire distance of 400 nm

and samples F4 and F5 an average distance of 425 nm. The average wire distance

of sample F6 is 450 nm. The resonance energies of the periodic samples coincide

with those of the Fibonacci samples with the according average wire distance. This

indicates that the average wire distance is responsible for the location of the main

waveguide mode. The same is true for the TM polarized spectra. Only the particle

plasmon is additionally excited.

If this finding that the average wire distance is responsible for the main resonance

energy was true, samples F8 and F10 as well as samples F9, F11, and F12 should

possess the same resonance energy (see Fig. 4.20). Indeed, this can be obtained

for the corresponding measurements. By comparing the spectra in Figs. 4.18, 4.19,

and 4.20, the waveguide modes of the samples with the same average wire distance

appear at the same energies.
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Figure 4.19: Extinction spectra of the Fibonacci samples F1 to F6 for normal light

incidence in TM (black lines) and TE (red lines) polarization. The different spectra are

shifted upward for clarity.

The waveguide mode resonance of samples F13 − F15 as well as of samples F16 −
F18 is shifted to lower energies by increasing the sample number (Fig. 4.21). In

contrast to the spectra in Figs. 4.19 and 4.20, the resonance energies are always

different for each of the six individual samples. This can be explained by the corre-

sponding average wire distances, which are never the same for these samples (Table

4.4). The average wire distance increases from sample F13 to sample F15. The same

is true for sample F16 to F18. The average wire distance of sample F16 lies between

that of samples F14 and F15. This can also be obtained in the spectra, where the

waveguide mode energy of sample F16 is between that of the other two samples.

All the measurements of the Fibonacci samples have in common that the average

wire distance determines the energy position of the main waveguide mode resonance

as well as that the resonance amplitude is dependent on the other sample parameters.

However, the latter finding is not yet analyzed in detail. In order to understand this

behavior, the Fourier transform of the individual samples has to be considered.

The Fourier transform is calculated by a computer program and the analysis of

the Fourier peaks is done by following the procedure described in Ref. [135]. The
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Figure 4.20: Extinction spectra of the Fibonacci samples F7 to F12 for normal light

incidence in TM (black lines) and TE (red lines) polarization. The different spectra are

shifted upward for clarity.

starting point is the higher-dimensional periodic real lattice (see Fig. 4.22 (a)) and

its corresponding lattice in reciprocal space (see Fig. 4.22 (b)). Since the samples

in this section are only Fibonacci-like structures, a rectangular lattice with lattice

constants a in x direction and b in y direction has to be used (compare to Figs.

2.13 and 2.14 for the Fibonacci sequence). As already mentioned in section 2.4.1,

the angle αnew between the physical space ξ and the x axis of the periodic grid is

given by tan(αnew) =
b
aτ
. This angle is maintained in reciprocal space. The short

and long wire distances S and L are defined by S = b sinαnew and L = a cosαnew,

the average wire distance M is given by M = S+τL
1+τ

[136]. As it is explained in

Ref. [135], the reciprocal lattice points connected by a straight line (see Fig. 4.22

(b)) show periodic contributions to the Fourier transform of the Fibonacci sequence.

The yellow dashed line segment in Fig. 4.22 (b) is repeated periodically in reciprocal

physical space kξ and is given by

k1 =
2π/a

cos(ψ)
cos(ψ − αnew) = . . . = 2π

τ + 1

S + τL
=

2π

M
. (4.3)
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Figure 4.21: Extinction spectra of the Fibonacci samples F13 to F18 for normal light

incidence in TM (black lines) and TE (red lines) polarization. The different spectra are

shifted upward for clarity.

Equation (4.3) indeed proves that a waveguide mode resonance is present with an

energy corresponding to the average distance M.

When a straight line in 2D reciprocal space crosses kξ, the amplitude is maximum

at this crossing point. By increasing the kξ values, the distance of all the points

on this line to the kξ axis also increases. Thus, the amplitude of the Fourier peaks

varies with the sinc function given in Eq. (2.47). Therefore, the absolute value of

the sinc function is the envelope curve of all peaks lying on a straight line in 2D

reciprocal space. Two straight lines (dotted lines) with angle ψ to the kx axis are

plotted in Fig. 4.22 (b). One of these two lines crosses the kξ axis in the center of the

reciprocal space, whereas the other one is shifted by 2π
a

in kx direction. Thus, the

crossing point of the second line is given by
(

2πaτ
τa2−b2

/ 2πb
τa2−b2

)
. Therefore, the envelope

curve corresponding to this second straight line is shifted by the value k2 (red line

segment in Fig. 4.22 (b)), which is given by

k2 =
2πaτ

(τa2 − b2) cos(αnew)
= . . . =

2π

L− S
. (4.4)
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Figure 4.22: (a) A 2D periodic lattice with periods a and b in x and y direction in

order to obtain the Fibonacci-like sequence in physical space ξ. (b) The corresponding

2D reciprocal lattice with periods ka = 2π
a and kb =

2π
b in kx and ky direction in order to

obtain the Fourier transform of the Fibonacci-like sequence.

All the points in 2D reciprocal space are covered by periodically shifting the straight

line in ±kx direction leading to periodically shifted envelope functions. This is also

found in Ref. [135], which is shown there in Fig. 4. However, in the paper of Wolny

the diffraction pattern is shown (sinc2), whereas in this thesis the Fourier transform

is analyzed (|sinc|).

The Fourier transforms of four different samples together with three envelope curves

are exemplarily shown in Figs. 4.23 and 4.24. The red envelope function corresponds

to the line through the center of the 2D reciprocal space with a slope a
b
. The green

and blue envelope curves correspond to straight lines with the same slope but with

a shift of 2π
a
and 4π

a
in kx direction, respectively. Note that the Fourier peaks do not

reach the amplitude of the corresponding envelope function, which might be due to

numerical limitations of the Fourier transform calculations. The small peaks around

the main Fourier components belong to a shifted envelope function.

Sample F1 and sample F2, whose Fourier transforms are plotted in Fig. 4.23 (a)

and (b), possess the same average wire distance (M = 400 nm). This means that

the spectral distance between two neighboring Fourier peaks corresponding to the

same envelope function is k1 = 2π
M

≈ 1.57 × 107 1
m

for both samples. However, the

difference L − S is about 85 nm for sample F1 and about 131 nm for sample F2.

Thus, the shift k2 between two neighboring envelope functions is different for both

samples. This also means that the first zero of the envelope function, which also

appears at k2, is different for both samples. Since L − S is bigger for sample F2,

the halfwidth of the envelope function is smaller for this sample leading to a faster
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(a)

(b)

Figure 4.23: Fourier transforms for (a) sample F1 and (b) sample F2. The average wire

distance is M = 400 nm for both samples, but the difference L − S is higher for sample

F2. Three different envelope curves are also plotted for both samples.

reduction of the peak height. Therefore, the peak height strongly depends on k2

when k1 is kept constant. This is also seen in the measured spectra, where the

waveguide mode resonance of samples F1 and F2 appears at the same energy with a

slightly smaller amplitude of the sample F2 resonance. Note that all Fourier peaks

of sample F1 appear at exactly the same position as those of sample F2 even though

the two Fourier transforms look completely different. This is due to the different k2

values of the two samples.

Samples F14 and F17, whose Fourier transforms are displayed in Fig. 4.24 (a) and

(b), possess the same difference L−S but a different average wire distance M. Since

L − S is equal to 50 nm for both samples, the halfwidths, the zeros, and the shift

of the corresponding envelope functions are the same. However, due to the smaller
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(a)

(b)

Figure 4.24: Fourier transforms for (a) sample F14 and (b) sample F17. The difference

L−S is equal to 50 nm for both samples, but the average wire distance is higher for sample

F17. Three different envelope curves are also plotted for both samples.

average wire distance of sample F14, two Fourier peaks of the same envelope function

are further apart than for sample F17. Thus, the Fourier peaks of the two samples

are not at the same position. Also in the spectra of these two samples the energy

shift of the main waveguide mode resonance is visible.

The different spectra of all measured Fibonacci samples are consistent with the

findings presented here. By using this approach, it is possible to tailor the sample

parameters in order to obtain the desired resonances. The individual resonances can

be shifted to other energies and the amplitudes of the resonances can be tuned.

The next measured samples are the Cantor samples. The spectra of samples C1 −
C6, C7 − C12, and C13 − C18 are shown in Figs. 4.25, 4.26, and 4.27, respectively.
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Figure 4.25: Extinction spectra of the Cantor samples C1 to C6 for normal light incidence

in TM (black lines) and TE (red lines) polarization. The different spectra are shifted

upward for clarity.

As above for the Fibonacci samples, the TM polarized spectra are shown as black

curves and the TE polarized spectra as red curves. By looking at the spectra with TE

polarization for samples C1 − C6, those of samples C1, C4, and C6 seem to be quite

similar but with a shift of the resonance energies. All of these three spectra show

a small double peak with approximately the same separation. The main resonances

are located around the energy positions of the average wire distance. However,

the short wire distance is also close to the average wire distance (see Table 4.5).

Therefore, it is not clear whether the two peaks surround the location of the average

wire distance or the short wire distance. Additionally, it cannot be clearly identified

if one of the peaks is located at the resonance position of the average or the short wire

distance. The TE spectra of samples C2 and C5 possess two clearly separated main

peaks with approximately the same energy difference between them, but at different

energy positions. It seems that the two peaks in each spectrum are shifted to

slightly higher and lower energy positions when compared to the resonance position

corresponding to the average wire distance. Whereas the amplitude of the lower

energy peak is the bigger one in the spectra of samples C1, C4, and C6, the higher
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Figure 4.26: Extinction spectra of the Cantor samples C7 to C12 for normal light

incidence in TM (black lines) and TE (red lines) polarization. The different spectra are

shifted upward for clarity.

energy peak in the spectra of samples C2 and C5 has a slightly bigger amplitude.

The two main peaks are further separated in the TE spectra of sample C3. They

are again located around the energy position of the average wire distance. However,

the lower energy peak is a quite broad peak with a low amplitude. It seems that

this peak consists of at least two nearby resonances. The TM polarized spectra

show in principle the same behavior with an additionally excited particle plasmon.

However, the double peaks in the spectra of samples C1, C4, and C6 cannot be

clearly obtained. By comparing the TM spectrum of sample C1 to that of the

periodic sample with grating period 400 nm (see Fig. 4.18), the resonance positions

appear at approximately the same energies. However, the higher energy resonance of

sample C1 is much broader, which is due to the two waveguide modes with the small

energy difference. In the TM spectra of samples C2 and C5, the two resonances of

the mainly excited waveguide modes can be clearly obtained. The separation of the

peaks can also be recognized in the TM spectrum of sample C3. In comparison

to the TE spectrum of sample C3, the double peak of the lower energy waveguide
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Figure 4.27: Extinction spectra of the Cantor samples C13 to C18 for normal light

incidence in TM (black lines) and TE (red lines) polarization. The different spectra are

shifted upward for clarity.

mode can be seen much better in the TM spectrum. Summing up the findings of

samples C1 − C6, the main waveguide mode resonances arise at energy positions

around the average wire distance with none of the peaks located at exactly the

resonance corresponding to this distance. The separation between the waveguide

mode resonances increases for a bigger large wire distance. It seems that the lower

energy peak consists of several resonances that are further apart from each other for

a bigger large wire distance.

In each TE polarized spectrum of samples C7 − C12 (see Fig. 4.26) only one main

peak is visible. By comparing these resonance positions to the ones in the spectra

of the periodic gratings (see Fig. 4.18), it is found that they are located at the

energy positions of the corresponding short wire distance. The other resonances

visible in the spectra of samples C1 − C6 cannot be obtained here. Since all the

resonances should appear around the corresponding average wire distance, the sep-

aration between these peaks must be quite large. In the spectra of samples C1 −
C6 it is also found that the lower energy peak consists of several resonances. These
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resonances are distributed over a larger energy range with a smaller amplitude when

the large wire distance is bigger. Therefore, it is probably hard to measure these

resonances for samples C7 − C12. In the TM polarized spectra some modulations in

the particle plasmon resonance are visible, especially for samples C7 and C9. These

modulations are due to excited waveguide modes. However, it is not clear which

sample parameters are responsible for these resonances.

The spectra of samples C13 − C18 in Fig. 4.27 are quite similar to those of samples

C1 − C6 in Fig. 4.25. However, the separation between the two excited main peaks

is a little bit smaller for samples C13 − C18. It has been said for samples C1 − C6

that the separation between the waveguide mode resonances increases for a bigger

large wire distance. Since the large wire distance is the same in the corresponding

spectra of samples C1 − C6 and C13 − C18, the increasing separation might be

due to the increasing difference L−S. By comparing the spectra of samples C13 −
C18 to those of the periodic samples, it is found that the higher energy resonance

corresponds to the waveguide mode of the periodic sample with a grating period

equal to the short wire distance of the Cantor sample. This is in agreement with

the findings above. It is also found that the lower energy peak consists of several

resonances that are distributed over a larger energy range for a larger difference

L− S.

In summary, the resonances in the Cantor spectra are located around the energy

corresponding to the average wire distance and the higher energy mode corresponds

to the individual short wire distance. The lower energy peak consists of several

resonances that are distributed over a larger energy range for an increased difference

L − S. The separation between higher and lower energy peaks is dependent on

the difference L − S. However, a detailed analysis of the Fourier transform as

in the case of the Fibonacci-like sequence is not possible since there is no similar

construction method of the Cantor sequence making use of a higher-dimensional

space. Therefore, it is not known which sample parameters are responsible for all

the Fourier peaks. However, all the resonances are in agreement with the Fourier

peaks in the numerically calculated Fourier transform of the corresponding Cantor

lattices.

The last measured samples were those with the Cantor-6 structured gold wire arrays.

The TM (black lines) and TE (red lines) spectra of samples C6-1 − C6-6, C6-7 −
C6-12, and C6-13 − C6-18 are shown in Figs. 4.28, 4.29, and 4.30, respectively.

In all spectra multiple waveguide mode resonances are excited. It can be seen in

the TE spectra of samples C6-1, C6-4, and C6-6 that these resonances are excited
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Figure 4.28: Extinction spectra of the Cantor-6 samples C6-1 to C6-6 for normal light

incidence in TM (black lines) and TE (red lines) polarization. The different spectra are

shifted upward for clarity.

over a small energy range with a shift to lower energies for a higher average wire

distance. By comparing these spectra to the periodic ones, it is found that the

resonance corresponding to the average wire distance is located between the two

main resonances of the Cantor-6 samples. In the spectra of samples C6-2 and C6-

6 four main peaks are visible. They are spread over a larger energy range when

compared to samples C6-1, C6-4, and C6-6. The resonances of sample C6-2 are

located at higher energies than the resonances of sample C6-5 due to the lower

average wire distance. As for samples C6-1, C6-4, and C6-6, the main peaks of

samples C6-2 and C6-6 are centered around the k value corresponding to the average

wire distance. In the spectrum of sample C6-3 also four main peaks centered around
2π
M

are visible. These peaks cover a relatively broad energy range. As it has been

observed for the Cantor samples, the main peaks of the Cantor-6 samples are located

around the average wire distance. The energy range over which the resonances are

excited also increases for a larger difference L − S. However, in comparison to the

Cantor samples, more resonances are excited for the Cantor-6 samples which are

spread over a larger energy range.
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Figure 4.29: Extinction spectra of the Cantor-6 samples C6-7 to C6-12 for normal light

incidence in TM (black lines) and TE (red lines) polarization. The different spectra are

shifted upward for clarity.

The second set of Cantor-6 measurements (samples C6-7 − C6-12) is shown in Fig.

4.29. In the spectra of samples C6-7, C6-10, and C6-12 three or four main peaks

are visible. The separation between the individual peaks is comparable for these

three spectra. The peaks are located around the energy position of the average

wire distance. The energy range covered by the excited resonances is already large

when compared to the spectra of samples C6-1 − C6-6. This can be explained

by the fact that L − S is quite large for these samples. The peak with the highest

energy is approximately located at the resonance position corresponding to the short

wire distance. This has also been observed for the Cantor samples. Samples C6-8,

C6-9, and C6-11 also possess a resonance at the energy of about the short wire

distance. However, this is not necessarily at the peak possessing the highest energy.

It cannot be observed in these three spectra that the peaks are located around the

energy position corresponding to the average wire distance. This can be due to the

weaker amplitudes of the lower energy peaks. Another possibility might be that

these waveguide modes cannot be excited due to an energy below cutoff.
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Figure 4.30: Extinction spectra of the Cantor-6 samples C6-13 to C6-18 for normal light

incidence in TM (black lines) and TE (red lines) polarization. The different spectra are

shifted upward for clarity.

The measurements of the samples C6-13 − C6-18 are consistent with the findings

above. The resonance of a periodic grating with a periodicity corresponding to the

short wire distance is always at the peak positions of one of the higher energy peaks.

The covered energy range of the main peaks is larger for a larger difference between

the L and the S segment. All the peaks are approximately located around the energy

corresponding to the average wire distance. These findings are consistent with those

of the Cantor sample. However, for the Cantor-6 samples more waveguide modes

are excited and the main peaks are spread over a larger energy range. As already

mentioned for the Cantor set, a detailed analysis of the Fourier transform as in the

case of the Fibonacci-like sequence is also not possible for the Cantor-6 set.



83

Chapter 5

2D plasmonic structures

In this chapter the measurements of 2D quasiperiodic and 2D periodic plasmonic

crystals are compared. First, the normal incidence spectra are presented. After-

wards, a theoretical model is developed for 2D metallic photonic crystals with nor-

mal light incidence. Next, measurements for oblique light incidence are shown. The

theoretical model is then expanded for inclined light incidence. In the last section,

the theoretical model is used to predict the absorbance spectra of 2D quasiperiodic

plasmonic solar cells.

5.1 Sample designs

The samples in this chapter are 2D metallic photonic crystals with gold disks on

top of a hafnium dioxide (HfO2) waveguide layer with a thickness of twg = 180 nm,

which is shown in Fig. 5.1 (a) and (b). The gold disks of 25 nm height are elliptically

shaped and rotated by the angle γ around the x axis of the sample. The short main

axis diameter of the gold disk has a length du and the long main axis diameter a

length dv (see Fig. 5.1 (c) and (d)). The arrangement of the gold dots is either

periodic with a periodicity of Px in x direction and with Py in y direction (Fig.

5.1 (b) and (d)) or it is quasiperiodic with the gold disks placed on the vertices

of a Penrose tiling with an edge length of P = 530 nm (Fig. 5.1 (a) and (c)).

Note that the Penrose tiling is not a real Penrose tiling but an approximant, where

the golden mean τ in perpendicular space is approximated by the rational number

τ ′ = 8
5
(see Eq. (2.51) in section 2.4.2). However, in the following sections it is just

called a Penrose tiling. Two different periodic structures were fabricated: a square

lattice with Px = Py = 530 nm and a rectangular lattice with Px = 492 nm and

Py = 570 nm. The diameters of the gold disks du and dv as well as the rotation of
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Figure 5.1: Sample design of (a) a 2D quasiperiodic arrangement and (b) a 2D periodic

arrangement of gold disks on top of a 180 nm thick HfO2 waveguide layer and a quartz

substrate. The elliptically shaped dots with main axis diameters du and dv and a rotation

of γ around the sample x axis are arranged (c) on the vertices of a Penrose tiling with an

edge length P and (d) in a periodic fashion with periodicities Px and Py.

the disks around the x axis are varied for different samples. This is indicated for

the specific measurements in this chapter.

5.2 Normal incidence extinction spectra

The gold disks of sample 1 possess an average short main axis diameter of du =

120 nm, an average long main axis diameter of dv = 130 nm, and a rotation of

γ = 0◦ around the sample x axis. For this sample, a second layer of 25 nm high

gold disks separated by 50 nm of magnesium fluoride (MgF2) is present as well. The

intension was a coupling of the two excited particle plasmons. When the disks in

both gold particle layers are equal in size, the particle plasmons should appear at

the same photon energy. Due to the close distance to the other gold particle, both

resonances should be coupled leading to shifts to lower energies as well as to higher

energies. However, the diameters of the gold disks in the upper layer are much

smaller than those of the lower layer. Therefore, the particle plasmon energy of the
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gold disks in the upper layer is at higher energies and not in the energy range of the

measured spectra. Thus, the two particle plasmons are not coupled to each other.

The particle plasmon of the upper gold layer is not considered in the following. Two

different structure designs were fabricated: a Penrose tiling with an edge length

P = 530 nm and a periodic lattice with Px = Py = 530 nm. These measurements

have already been shown in Ref. [137]. However, these results are shown here in

order to compare them to other geometries of the gold disks.
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Figure 5.2: Extinction spectra of (a) a Penrose tiling with P = 530 nm and of (b) a

square lattice with Px = Py = 530 nm. The main axis diameters of the gold disks are

du = 120 nm and dv = 130 nm with a rotation of γ = 0◦ around the sample x axis. The

incident polarization was changed from α = 0◦ (bottom) to α = −90◦ (top). The spectra

are shifted upward for clarity.

The extinction spectra of the Penrose tiling and the square lattice are displayed in

Fig. 5.2 (a) and (b), respectively. The incident polarization is changed between

α = 0◦ and α = −90◦ in steps of −6◦. The spectrum in the center has a polarization

of 45◦. This means that the polarization difference is 3◦ when compared to the

previous and the following spectra. This is indicated by the smaller offset between

the spectra. The particle plasmon for an incident polarization of α = 0◦ is located
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at higher energies (approximately at 1.6 eV) when compared to the particle plasmon

for a polarization of α = −90◦ (approximately at 1.4 eV). This is due to the fact that

the main axis diameter of the gold disks in x direction (corresponding to α = 0◦) is

shorter than the one in y direction. In the theory section 2.1.1 it is explained that

a smaller main axis diameter results in a larger form factor. Thus, the resonance

frequency (or energy) is shifted to higher values. The red lines in Fig. 5.2 (a) and

(b) indicate the location of the expected waveguide modes. For the Penrose tiling,

TE and TM polarized waveguide modes propagating in directions 0◦, 36◦, ... excite

the first two resonances, and TE and TM polarized waveguide modes in directions

18◦, 54◦, ... excite the last two resonances. For the square lattice, the first two

resonances are due to TE and TM polarized waveguide modes along the sample x

or y direction, whereas the last two resonances arise due to TE and TM polarized

waves in diagonal direction. A more detailed description of the expected positions

of the waveguide modes is given in section 5.3. The lower energy waveguide modes

are located within the particle plasmon resonance leading to a coupling between

the waveguide modes and the particle plasmon. This can be seen by the fact that

the expected waveguide mode energy is not at a peak position but rather at a dip

position. For the waveguide mode resonances at approximately 1.65 eV and 1.75 eV

of the Penrose tiling (Fig. 5.2 (a)), it can be seen that the red line is almost at

the energy position of a peak maximum for a polarization α = −90◦. However,

due to the fact that the particle plasmon shifts to higher energies for a polarization

of α = 0◦, the coupling between the waveguide modes and the particle plasmon

is stronger leading to an extinction maximum at slightly higher energies than the

expected ones for the waveguide modes. In the spectra of both the quasiperiodic

lattice and the periodic lattice, waveguide mode resonances at four different energies

are visible for normal incidence. However, the waveguide modes differ in their energy

positions when the spectra of the Penrose tiling are compared to those of the square

lattice. The situation changes for oblique light incidence what will be discussed in

section 5.5.

The gold disks of sample 2 possess an average short main axis diameter of du =

97 nm, an average long main axis diameter of dv = 118 nm, and a rotation of γ = 40◦

around the sample x axis. For this sample, only one layer of gold particles is present

as shown in Fig. 5.1 (a) and (b). The quasiperiodic sample is a Penrose tiling with

an edge length of P = 530 nm and the two periodic samples are one sample with

a square lattice and Px = Py = 530 nm as well as one sample with a rectangular

lattice and Px = 492 nm and Py = 570 nm.
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Figure 5.3: Extinction spectra of a Penrose tiling with P = 530 nm. The main axis

diameters of the gold disks are du = 97nm and dv = 118 nm with a rotation of γ = 40◦

around the sample x axis. The incident polarization was changed from (a) α = 0◦ (bottom)

to α = −90◦ (top) and from (b) α = −90◦ (bottom) to α = −180◦ (top). The spectra are

shifted upward for clarity.

The extinction spectra for the Penrose tiling, the square lattice, and the rectangular

lattice are shown in Figs. 5.3, 5.4, and 5.5, respectively. The polarization of the

normally incident light is changed from (a) α = 0◦ to α = −90◦ and from (b)

α = −90◦ to α = −180◦ in steps of −6◦. Measurements with a polarization of

α = −45◦ as well as with α = −135◦ are also included. The spectra of the different

sample designs have in common that a particle plasmon at a photon energy of

approximately 1.6 eV is visible for a polarization of about α = −50◦ as well as a

particle plasmon at approximately 1.8 eV for α = −140◦. This is due to the fact

that the short main axis of the gold disks is rotated by 40◦ = −140◦ and the long

main axis by 130◦ = −50◦ with respect to the x axis of the sample. Especially in

the spectrum of the square lattice with α = 0◦ it is visible that two particle plasmon

resonances are excited, namely that along the short main axis and that along the

long main axis. In the bottom curve of Fig. 5.4 (a), this can be obtained by the

broad resonance at about 1.8 eV and the shoulder at lower energies. This is due to

the fact that particle plasmons can only be excited along the principal axes [93, 94].
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Figure 5.4: Extinction spectra of a square lattice with Px = Py = 530 nm. The main

axis diameters of the gold disks are du = 97nm and dv = 118 nm with a rotation of

γ = 40◦ around the sample x axis. The incident polarization was changed from (a) α = 0◦

(bottom) to α = −90◦ (top) and from (b) α = −90◦ (bottom) to α = −180◦ (top). The

spectra are shifted upward for clarity.

The particle plasmon resonances are modulated by the waveguide mode resonances

leading to waveguide-plasmon-polaritons. As already described for Fig. 5.2, the

first two and the last two waveguide mode resonances for the Penrose tiling are due

to TE and TM polarized waves propagating along the directions 0◦, 36◦, ... as well

as to TE and TM polarized waves propagating along 18◦, 54◦, ..., respectively. At

approximately 1.45 eV and 1.55 eV, additional resonances are more or less visible.

The energies of these additional resonances correspond to TE and TM polarized

waves with a propagation constant of approximately 2π
530 nm

. However, it is not clear

why these resonances arise since there are no main Fourier peaks for the Penrose

tiling for this k value. It might be possible that the Fourier peaks with this k value

are enhanced in comparison to the other Fourier peaks due to sample imperfections.

For the square lattice, the first two resonances arise due to TE and TM polarized

waves propagating in x or y direction. The last two resonances stem from TE and

TM waves propagating in diagonal direction. As it can be seen in the bottom curve
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Figure 5.5: Extinction spectra of a rectangular lattice with Px = 492 nm and Py =

570 nm. The main axis diameters of the gold disks are du = 97nm and dv = 118 nm

with a rotation of γ = 40◦ around the sample x axis. The incident polarization was

changed from (a) α = 0◦ (bottom) to α = −90◦ (top) and from (b) α = −90◦ (bottom)

to α = −180◦ (top). The spectra are shifted upward for clarity.

of Fig. 5.4 (a), the first two resonances consist of double peaks indicating a slight

deviation of the two periodicities in x and y direction.

The waveguide mode resonances of the rectangular lattice are due to TE and TM

polarized waves propagating in y direction, in x direction as well as in diagonal

direction. The individual resonances are more or less pronounced since TE and TM

waves in x or y direction cannot always be excited. It is expected that only a TE

polarized wave can be excited in y direction (resonance at about 1.35 eV) and only a

TM polarized wave can be excited in x direction (resonance at about 1.65 eV) for α =

0◦. By looking at the bottom spectrum of Fig. 5.5 (a), there are resonances clearly

visible that are due to TM polarized waves propagating in y direction (resonance

at about 1.45 eV) as well as due to TE polarized waves propagating in x direction

(resonance at about 1.55 eV). This deviation is connected to the particle plasmons

and will be explained in detail in section 5.3.
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Figure 5.6: Extinction spectra of a rectangular lattice with Px = 492 nm and Py =

570 nm. The main axis diameters of the gold disks are du = 88nm and dv = 120 nm

with a rotation of γ = 25◦ around the sample x axis. The incident polarization was

changed from (a) α = 0◦ (bottom) to α = −90◦ (top) and from (b) α = −90◦ (bottom)

to α = −180◦ (top). The spectra are shifted upward for clarity.

Another sample (sample 3) consisting of gold disks with average main axis diameters

du = 88 nm and dv = 120 nm as well as a rotation of γ = 25◦ around the x axis

of the sample was fabricated. The second layer of smaller gold particles separated

by 50 nm MgF2 is also present for this sample. However, the particle plasmons of

the upper gold disk layer do not influence the spectra in the measured energy range

due to the much smaller particle diameters. In order to study the above mentioned

influence of the particle plasmons due to the rotated, elliptical gold particles in the

lower gold disk layer, a rectangular arrangement of gold disks with Px = 492 nm

and Py = 570 nm is regarded. The extinction spectra of this sample are shown

in Fig. 5.6 for normally incident light with the polarization changed from α = 0◦

to α = −90◦ (panel (a)) as well as from α = −90◦ to α = −180◦ (panel (b))

in steps of −6◦. At first sight, the spectra of sample 3 (Fig. 5.6) are similar to

those of sample 2 (Fig. 5.5). However, one can see that the lower energy particle

plasmon resonance of sample 3 is shifted to lower energies when compared to the
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spectra of sample 2. This can be clearly seen by looking at the distance between the

waveguide mode at approximately 1.35 eV and the lower energy particle plasmon

(see spectra with α ≈ −48◦ of Fig. 5.5 and with α ≈ −66◦ of Fig. 5.6). The higher

energy particle plasmon stays approximately at the same energy (see spectra with

α ≈ −138◦ of Fig. 5.5 and with α ≈ −156◦ of Fig. 5.6). However, it is expected

that the higher energy particle plasmon should shift to larger energies and the lower

energy particle plasmon to only slightly lower energies due to the different particle

geometry (different form factor). This different behavior can be explained by the

fact that the gold particles of sample 3 possess an MgF2 layer on top, whereas there

is only air above the particles of sample 2. The slightly higher refractive index

shifts both particle plasmons to lower energies (see Eq. (2.13) and the discussion

about the resonance frequency in section 2.1.1) when compared to the same particle

geometry with air above the particles. Additionally, it seems that the resonances

at about 1.45 eV and 1.55 eV are less pronounced in the α = 0◦ spectrum of sample

3 (bottom curve in Fig. 5.6 (a)) when compared to the corresponding spectrum of

sample 2 (bottom curve in Fig. 5.5 (a)).

In order to compare the behavior of the waveguide modes, the peak heights of the

first two waveguide modes, namely a TE as well as a TM polarized wave propagating

in y direction of the sample, are plotted in Fig. 5.7. For the peak heights in Fig.

5.7, the difference between the maximum extinction value of the specific resonance

and the minimum value on the higher energy side is used. A similar behavior can be

recognized for samples 2 (black) and 3 (red). However, small deviations are visible.

The peak heights for the TE polarized wave propagating in the sample y direction

(Fig. 5.7 (a)) show a minimum value at about α = −108◦ with a small shift to

higher polarization angles for sample 3 when compared to sample 2. The minimum

peak height for the TM wave propagating in y direction (Fig. 5.7 (b)) is at about

α = −156◦ for sample 2 and at about α = −168◦ for sample 3. This deviation is

due to the differently shaped particles and the different rotation angles around the

sample x axis. A detailed explanation of this behavior will be given in section 5.4.

5.3 Theoretical model for 2D structures

A theoretical model for 1D disordered and quasiperiodic metallic photonic crystals

has been introduced in section 2.5 as well as in Refs. [101] and [78]. However, for

2D metallic photonic crystals, this model has to be expanded. The first step of the

2D theoretical model is the same as for the 1D model: the spatial arrangement of

the plasmonic particles is described by a delta function at each lattice point. For
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Figure 5.7: Behavior of the peak heights of sample 2 (black) compared to the peak

heights of sample 3 versus the incident polarization α. The peak heights of these two

samples are compared for (a) a TE polarized wave propagating in y direction as well as

for (b) a TM polarized wave propagating in y direction.

the 2D case, this is given by

f(x, y) =
∑
n

δ(x− xn) δ(y − yn). (5.1)

The nth nanodisk has the coordinates xn and yn. Next, the 2D Fourier transform

is taken. In order to reduce the calculation time of the 2D Fourier transform, the

projection slice theorem is used [138, 139]. The projection slice theorem is sketched

in Fig. 5.8. It states that the 2D Fourier transform

F (kξ, kη) =

∫ ∞

−∞

∫ ∞

−∞
f(ξ, η)e−i(kξξ+kηη) dξ dη (5.2)

of a structure (Fig. 5.8 on the left) can be obtained by projecting the structure

coordinates onto a line with the angle β (Fig. 5.8 at the top)

Pβ(ξ) =

∫ ∞

−∞
f(ξ, η) dη (5.3)
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Figure 5.8: Sketch of the projection slice theorem. The projection of a 2D lattice onto a

line in direction β (top) and the subsequent 1D Fourier transform (right) is equal to the

2D Fourier transform (left) and the inspection of a slice in direction β (bottom).

and performing the 1D Fourier transform of this line (Fig. 5.8 on the right)

Sβ(kξ) =

∫ ∞

−∞
Pβ(ξ)e

−ikξξ dξ (5.4)

=

∫ ∞

−∞

[∫ ∞

−∞
f(ξ, η) dη

]
e−ikξξ dξ.

Sβ(kξ) is then the slice of F (kξ, kη) in direction β through the center of the Fourier

transform with kη = 0 (Fig. 5.8 at the bottom). The whole Fourier transform

is obtained for varying β between 0◦ and 180◦. However, due to the fact that

the Fourier transform of periodic as well as quasiperiodic lattices show essentially

discrete values [118], only these angles β have to be considered, where the main

Fourier peaks are expected.

This Fourier transform is crucial in order to know which waveguide modes can be

excited. The normally incident light is diffracted at the grating and coupled into

the waveguide layer in the directions of the Fourier components with the specific

propagation constants k. Incident light with a polarization Eα, whose electric field

vector is rotated by the angle α around the sample x axis, can excite a TE as well

as a TM polarized waveguide mode in direction β (see Fig. 5.9 (a)). The TE (TM)



94 2D plasmonic structures

kx

ky

a
b

Ea
ETE

ETM

(a)

kx

ky

a

Ea

Eplu

Eplv

g u

v(b)

0.0 0.5 1.0 1.5 2.0
0

1

2

3

4
E

n
e
rg

y
in

e
V

k in 2p/a

TE

TM

vacuum

substrate

(d)(c)

kx

ky

b

ETEv

Eplu

Eplv

g u

v

ETEu

ETMu

ETMv

Figure 5.9: (a) TE and TM waves propagating in direction β with ETE and ETM as

the vector addition of the incident polarization Eα. (b) The incident polarization excites

one particle plasmon in u and one in v direction of an elliptical metal particle. (c) Each

particle plasmon can excite a TE as well as a TM polarized wave in direction β. (d)

Dispersion relations of a TE (black solid) and a TM polarized (red dashed) waveguide

mode as well as those of vacuum (green short-dashed) and quartz (blue dash-dotted) for

a 180 nm thick HfO2 waveguide on quartz.

polarized waveguide mode is defined to have the electric field vector (magnetic field

vector) on a plane perpendicular to the propagating wave [140]. The components

obtained by splitting the incident polarization into a TE as well as a TM polarized

wave are given by [141]

CTE = Cα sin(α− β), (5.5)

CTM = Cα cos(α− β) (5.6)

with Cα as a factor that is dependent on the incident wave. This means that an

incident polarization with α = 0◦ can only excite a TM polarized wave in x direction

(β = 0◦) and a TE polarized wave in y direction (β = 90◦). For a rectangular
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arrangement of the nanodisks, no TE polarized wave with a propagation constant

k = 2π
Px

as well as no TM polarized wave with k = 2π
Py

can be excited. However, for

a quasiperiodic lattice, the TE as well as the TM polarized wave is present for any

propagation constant k. By looking at the spectra of Fig. 5.5, one can recognize

that both the TE polarized wave in x direction (resonance at 1.55 eV) and the TM

polarized wave in y direction (resonance at 1.45 eV) are still present for α = 0◦.

This can only be explained by also considering the particle plasmons.

It is well-known that the electric field vector of an incident polarization Eα can

only excite particle plasmons along the principal axes u and v of a metallic particle

[93, 94]. Therefore, Eα has to be split into one electric field component Eplu in u

direction as well as into one electric field component Eplv in v direction leading to

[141]

Cplu = CαCu cos(α− γ), (5.7)

Cplv = CαCv sin(α− γ) (5.8)

for an elliptically shaped particle with a rotation γ around the x axis of the sample

(see Fig. 5.9 (b)). Cu and Cv are factors dependent on the eccentricity as well as

on the size of the particle. These factors are related to the extinction cross section

at the corresponding resonance energy. It is possible now to treat these two particle

plasmons as two independent polarizations incident on the sample. Each individual

electric field vector of the particle plasmon can excite a TE as well as a TM polarized

waveguide mode in direction β leading to the electric field components ETEu and

ETMu for the plasmon in u direction and ETEv and ETMv for the plasmon in v

direction. This is visualized in Fig. 5.9 (c) as blue arrows for the u plasmon and as

red arrows for the v plasmon. The obtained components are given by [141]

CTEu = −Cplu sin(β − γ), (5.9)

CTMu = Cplu cos(β − γ), (5.10)

CTEv = Cplv cos(β − γ), (5.11)

CTMv = Cplv sin(β − γ) (5.12)

with Cplu and Cplv of Eqs. (5.7) and (5.8), respectively. The − sign in Eq. (5.9)

is needed since ETEu is pointing in the opposite direction than ETE and ETEv (see

Fig. 5.9 (a) and (c)).

The complete components CTE, add and CTM, add for a TE and a TM polarized wave

in direction β are obtained by adding the individual components (Eqs. (5.5), (5.9),

and (5.11) for the TE wave and Eqs. (5.6), (5.10), and (5.12) for the TM wave)
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leading to [141]

CTE, add = CTE + CTEu + CTEv, (5.13)

CTM, add = CTM + CTMu + CTMv. (5.14)

The Fourier transform Sβ(kξ) in direction β is weighted with the square value of

CTE, add as well as CTM, add. The total intensity of the waveguide modes can be

calculated by integrating the weighted Sβ(kξ) over all angles β leading to [141]

Ftot, TE =

∫ 360◦

0◦
Sβ(kξ)C

2
TE, add dβ, (5.15)

Ftot, TM =

∫ 360◦

0◦
Sβ(kξ)C

2
TM, add dβ. (5.16)

The part of Sβ(kξ) with positive kξ is used for 0◦ 6 β < 180◦ and that with negative

kξ for 180
◦ 6 β < 360◦. Note that no particle plasmons can be excited for dielectric

nanodisks. In this case, CTEu, CTEv, CTMu, and CTMv are zero. For circular metal

particles, Cu is equal to Cv.

As already mentioned above, the Fourier components are characterized by a specific k

value. However, not the k value but the corresponding energy E is needed in order to

calculate the spectrum. Therefore, the k values are transferred to the corresponding

energies by using the waveguide dispersion relations. The dispersion relations of TE

and TM waves propagating in a 180 nm thick waveguide layer of HfO2 are plotted

in Fig. 5.9 (d) as black solid and red dashed curves, respectively. It can be seen

that the energy of a TE waveguide mode for a specific k is always lower than the

energy of a TM waveguide mode. As a reference, also the dispersion relations of

the air cover (green short-dashed) and the quartz substrate (blue dash-dotted) are

plotted.

The Fourier components of Eqs. (5.15) and (5.16) are characterized now by ampli-

tudes Ak at energies Ek. In order to calculate the spectrum, a phenomenological

model is used [142, 143]. The transmission amplitude t and the reflection amplitude

r are given by

t =td e
iϕt − tplu cos2(α− γ) Γplu e

iϕplu

E − Eplu + iΓplu

(5.17)

− tplv sin2(α− γ) Γplv e
iϕplv

E − Eplv + iΓplv

− A
∑
k

Ak Γk e
iϕk

E − Ek + iΓk

.

r =rd e
iϕr +

rplu cos2(α− γ) Γplu e
iϕplu

E − Eplu + iΓplu

(5.18)

+
rplv sin2(α− γ) Γplv e

iϕplv

E − Eplv + iΓplv

+ A
∑
k

Ak Γk e
iϕk

E − Ek + iΓk

.
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The directly transmitted light is described by the first term of Eq. (5.17) with

the amplitude td and the phase ϕt and the directly reflected wave is given by the

first term of Eq. (5.18) with the amplitude rd and the phase ϕr. These values are

dependent on the structure without the plasmonic lattice on top. The next two

terms in each equation correspond to the excited particle plasmons in u and in v

direction with the spectral widths Γplu and Γplv, the phases ϕplu = ϕplv = π
2
, and

the plasmon energies Eplu and Eplv. The last term in each equation is the sum over

all waveguide modes that can be guided in the energy range E. For this term, the

above calculated amplitudes Ak at the corresponding energies Ek are taken together

with the spectral width Γk and the phase ϕk. The spectral widths of the waveguide

modes are assumed to be constant for all waveguide modes in the spectrum with

a value of about 0.01 eV. It is also assumed that the spectral widths of the two

particle plasmons are equal (Γplu = Γplv) with a value in the order of 0.1 eV. In the

case of dielectric particles, the plasmon amplitudes tplu, tplv, rplu, and rplv are equal

to zero. For circular disks, tplu is equal to tplv leading to only one particle plasmon

term
tpl Γpl e

iϕpl

E−Epl+iΓpl
. The same is true for the reflected particle plasmon.

The phase of a waveguide mode without the interaction of the particle plasmon has

a value ϕj,∞ with j being either t for the transmitted wave or r for the reflected

wave. This is true when the energy of the waveguide mode is totally different to

the energy of the particle plasmon. When waveguide mode and particle plasmon

possess the same energy, the phase of the waveguide mode is shifted by a value of π

with respect to the undisturbed waveguide mode. The undisturbed waveguide mode

with a lower energy than the particle plasmon possesses the phase ϕj,∞, whereas the

phase of the undisturbed waveguide mode with a higher energy than the particle

plasmon is given by ϕj,∞ + 2π. Thus, the phase of the waveguide modes can be

described by [141]

ϕk =2arctan

(
E − Eplu

Γplu

)
cos2(α− γ) (5.19)

+ 2 arctan

(
E − Eplv

Γplv

)
sin2(α− γ) + ϕj,∞ + π.

For dielectric particles, the phase of the waveguide modes is just ϕj,∞. The transmit-

tance and the reflectance spectra can be calculated by using T = |t|2 and R = |r|2,
respectively. The extinction spectrum is given by Ext = − ln(T ).

The just described simulation model for an extinction spectrum is sketched in Fig.

5.10. The weighted Fourier components given in Eqs. (5.15) and (5.16) are used

to identify the amplitudes at specific k values. In Fig. 5.10 (a) this is shown for

one direction β. The waveguide dispersion relations for TE (black) and TM (red)
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Figure 5.10: (a) Weighted Fourier components in direction β for TE (black) and TM

polarization (red) in the relevant k range. (b) The TE (black) and TM (red) dispersion

relations assign the corresponding energies to the given propagations constants. (c) Extinc-

tion spectrum with peak amplitudes of the waveguide modes given by the corresponding

Fourier peak amplitudes.

polarized waves are used to identify the energies to the corresponding k values of the

Fourier components (see Fig. 5.10 (b)). This is done for all directions β. Finally,

the amplitudes and the corresponding energies are used to calculate the desired

extinction spectrum (see Fig. 5.10 (c)).

In order to verify our model, the extinction spectra calculated with the model de-

scribed above are compared to the measured spectra of section 5.2. The first spectra

are calculated for the Penrose tiling as well as for the square lattice of sample 1,

which is shown in Fig. 5.11 (a) and (b), respectively. As it has been explained above,

the waveguide mode resonances correspond to a TE wave or a TM wave propagat-

ing in the directions given by the Fourier peaks. Since the TE waveguide dispersion

relation is always below the TM waveguide dispersion relation, the energy of a TE

resonance is always smaller than that of a TM resonance for the same propagation

constant. For the Penrose tiling, the first two waveguide modes correspond to TE

and TM waves propagating in directions β = 0◦, 36◦, . . . and the last two to TE and



Theoretical model for 2D structures 99

1.4 1.6 1.8 2.0 2.2

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

1.4 1.6 1.8 2.0 2.2

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
Penrose tiling

Energy in eV

E
xt

in
ct

io
n

(a)

Square lattice

E
xt

in
ct

io
n

Energy in eV

 = 0°

 = -90°
(b)

Figure 5.11: Measured (black) and modeled (red) extinction spectra of (a) a Penrose

tiling with P = 530 nm and of (b) a square lattice with Px = Py = 530 nm. The main axis

diameters of the gold disks are du = 120 nm and dv = 130 nm with a rotation of γ = 0◦

around the sample x axis. The incident polarization was changed from α = 0◦ (bottom)

to α = −90◦ (top). The spectra are shifted upward for clarity.

TM waves in directions β = 18◦, 54◦, . . .. The first two resonances for the square

lattice are due to TE and TM waves propagating in directions β = 0◦, 90◦, . . .

and the other two are due to TE and TM waves propagating in diagonal direc-

tion. For the particle plasmon energies Eplu = 1.555 eV and Eplv = 1.369 eV, the

plasmon spectral widths Γplu = Γplv = 0.2 eV, the waveguide mode spectral widths

Γk = 0.01 eV, and amplitude and phase of the directly transmitted light td = 1

and ϕt = 0.085π, the extinction spectra (red curves in Fig. 5.11) are calculated by

using Eq. (5.17). These parameters are dependent on the particles as well as on the

layer specifications of the sample. It is assumed that a directly transmitted wave

possesses a transmission amplitude td = 1. This is not necessarily true since the

material without the grating on top can also absorb part of the light leading to a

lower transmission amplitude. However, the agreement between measured (black)
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and modeled (red) curves is quite good. This is especially true for the Penrose tiling.

The fitting parameters tplu = 0.1434, tplv = 0.1580, and A = 0.0084 were obtained

by fitting the amplitudes to only one curve. All other spectra were calculated by

using the same parameters. The fitting process is necessary so that the correct ratio

between the amplitudes is obtained.

This already indicates that the model described above provides reasonable results.

However, the spectra are also modeled for the other samples. The Penrose tiling
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Figure 5.12: Measured (black) and modeled (red) extinction spectra of a Penrose tiling

with P = 530 nm. The main axis diameters of the gold disks are du = 97nm and dv =

118 nm with a rotation of γ = 40◦ around the sample x axis. The incident polarization was

changed from (a) α = 0◦ (bottom) to α = −90◦ (top) and from (b) α = −90◦ (bottom)

to α = −180◦ (top). The spectra are shifted upward for clarity.

of sample 2 was measured for different incident polarizations (see Fig. 5.3). The

spectra were then modeled and compared to the measured spectra, which is shown

as red and black curves in Fig. 5.12. As for sample 1, the directly transmitted light

amplitude and phase are assumed to be td = 1 and ϕt = 0.085π. However, the energy

positions of the particle plasmon are changed to Eplu = 1.813 eV and Eplv = 1.629 eV

due to the different particle shape. The phases of the particle plasmons are kept

constant by ϕplu = ϕplv = π
2
and the spectral widths of the individual resonances
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are given by Γplu = Γplv = 0.15 eV and Γk = 0.01 eV. The fitting parameters for the

individual amplitudes are fitted to just one curve and are given by tplu = 0.0685,

tplv = 0.0896, and A = 0.001. All the other curves are calculated with the same

parameters. The agreement between the measured and the modeled curves is very

good. Only some minor deviations for the dips at 1.75 eV and 1.85 eV around a

polarization of α = −135◦ are visible. The rest is modeled very well.
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Figure 5.13: Measured (black) and modeled (red) extinction spectra of a square lattice

with Px = Py = 530 nm. The main axis diameters of the gold disks are du = 97nm

and dv = 118 nm with a rotation of γ = 40◦ around the sample x axis. The incident

polarization was changed from (a) α = 0◦ (bottom) to α = −90◦ (top) and from (b)

α = −90◦ (bottom) to α = −180◦ (top). The spectra are shifted upward for clarity.

The measured spectra of the square lattice as well as the rectangular lattice of sample

2 were also modeled, which is plotted in Figs. 5.13 and 5.14, respectively. With

the fitting parameters tplu = 0.0784, tplv = 0.1169, and A = 0.0022, the spectra

were calculated for all polarization angles. A very good agreement between the

measured and the calculated curves is achieved for both the square as well as the

rectangular lattice. Especially the spectra with the rectangular lattice are interesting

since specific resonances disappear for distinct polarizations. As already mentioned

above, the waveguide modes initially expected to disappear, namely the TE mode
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Figure 5.14: Measured (black) and modeled (red) extinction spectra of a rectangular

lattice with Px = 492 nm and Py = 570 nm. The main axis diameters of the gold disks are

du = 97nm and dv = 118 nm with a rotation of γ = 40◦ around the sample x axis. The

incident polarization was changed from (a) α = 0◦ (bottom) to α = −90◦ (top) and from

(b) α = −90◦ (bottom) to α = −180◦ (top). The spectra are shifted upward for clarity.

propagating in x direction and the TM mode propagting in y direction for α = 0◦ or

the TM mode propagating in x direction and the TE mode propagting in y direction

for α = −90◦, are still present for the corresponding polarization. This is true for

both the measured and the modeled spectra. As it was explained for the theoretical

model, this is due to the waveguide modes excited by the particle plasmons. In these

spectra, the peak height behavior of the waveguide modes is also predicted quite

well, which means that the waveguide modes disappear for the same polarizations in

the measurements and the model. This is due to the parameters Cu and Cv, which

are related to the extinction cross section for the corresponding particle plasmon. A

detailed study of this peak height behavior is carried out in section 5.4.

The measured spectra of sample 3 were also compared to the calculated ones, which

is shown in Fig. 5.15. Here, the transmission amplitude and phase of the directly

transmitted wave, the particle plasmon phases, as well as the individual spectral

widths are the same as for sample 2. The particle plasmon energies are changed
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Figure 5.15: Measured (black) and modeled (red) extinction spectra of a rectangular

lattice with Px = 492 nm and Py = 570 nm. The main axis diameters of the gold disks are

du = 88nm and dv = 120 nm with a rotation of γ = 25◦ around the sample x axis. The

incident polarization was changed from (a) α = 0◦ (bottom) to α = −90◦ (top) and from

(b) α = −90◦ (bottom) to α = −180◦ (top). The spectra are shifted upward for clarity.

to Eplu = 1.774 eV and Eplv = 1.563 eV due to the different particle shape. Again,

the amplitudes tplu, tplv, and A were fitted to only one measured spectrum. All red

curves in Fig. 5.15 were calculated with the same fitting parameters, namely with

tplu = 0.0999, tplv = 0.1125, and A = 0.0029. The agreement between the measured

and the modeled curves is good for all polarizations. The peak height behavior is

again well described. As already mentioned above, this is due to the parameters Cu

and Cv, which are related to the extinction cross sections of the particle plasmons,

and will be discussed in section 5.4.

5.4 Peak height behavior

In order to study the peak height behavior of the different waveguide mode reso-

nances in conjunction with different particle eccentricities, different particle sizes,
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Table 5.1: Particle parameters for the different S-matrix calculated spectra.

du dv Eccentricity e Particle size A Rotation angle

Shape 1 87.5 nm 94.5 nm 0.378 6494 nm2 30◦

Shape 2 100 nm 108 nm 0.378 8482 nm2 30◦

Shape 3 78.75 nm 105 nm 0.661 6494 nm2 30◦

Shape 4 90 nm 120 nm 0.661 8482 nm2 30◦

Shape 5 90 nm 120 nm 0.661 8482 nm2 60◦

and different particle rotations, several spectra were simulated by using S-matrix

calculations. The gold particles in the simulations possess the different shapes given

in Table 5.1. For each of the two different eccentricities e, two different particle

sizes A were used. Additionally, for the eccentricity e = 0.661 and the particle size

A = 8482 nm2, the rotation angle γ of the gold particle was changed. The gold

disks are arranged in a rectangular lattice with Px = 492 nm and Py = 570 nm. The

simulations were performed for the polarizations α = 0◦, 18◦, 45◦, 72◦, 90◦, 108◦,

135◦, and 162◦. The normalized peak heights of a TE polarized and a TM polarized

wave propagating in y direction for the different polarizations are plotted in Fig.

5.16 (a) and (b), respectively. It can be seen that the minimum peak height for a TE

polarized wave in y direction is at slightly higher polarizations for an eccentricity

e = 0.378 when compared to the peak heights with e = 0.661. For a TM polarized

wave in y direction, the minimum peak height of the sample with rotation angle

γ = 60◦ is shifted to higher polarizations.

As already mentioned in section 5.3, the values Cu and Cv are related to the ex-

tinction cross section at the corresponding particle plasmon resonance energy. In

order to verify this assumption, the minimum values of C2
TE, add (see Eq. (5.13))

and C2
TM, add (see Eq. (5.14)) with Cu and Cv as the extinction cross sections at

the resonance position are compared to the minimum values of the peak heights of

Fig. 5.16. The polarizations of these minimum values are obtained by fitting a sin2

function to the corresponding curves. These polarizations as well as the predicted

ones for the different shapes are given in Table 5.2. The predictions and the fitted

values are quite close, especially for Shapes 1− 3. Larger deviations are present for

Shapes 4 and 5. However, the order of magnitude is still close. These deviations

might be due to several reasons. First, the energies of the particle plasmons are close

to the waveguide modes, which might influence the peak height behavior. The peak

heights are obtained by the difference of the maximum value of the resonance and

the minimum on the higher energy side, which should give us the real peak heights.

However, there might still be an influence of the particle plasmons. Second, the
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Figure 5.16: Behavior of the peak heights of the different S-matrix spectra with the

specifications given in Table 5.1 versus the incident polarization α. The peak heights are

compared for (a) a TE polarized wave propagating in y direction as well as for (b) a TM

polarized wave propagating in y direction.

extinction is calculated every 2.5meV for the S-matrix simulations. It might be

possible that the real maximum position of the resonance is at an energy value be-

tween two calculated ones. Third, the S-matrix calculations are truncated leading

to deviations in the resonance positions as well as the peak heights. Fourth, the

calculation of the extinction cross section is based on an approximation. It might be

possible that the real extinction cross sections vary from the calculated ones lead-

ing to a different position of the minimum peak height. Therefore, the predictions

and the polarizations of the S-matrix calculated peak height minima agree quite

well. This indicates that the values Cu and Cv are really related to the extinction

cross section at the corresponding particle plasmon resonance energy. All calculated

spectra of section 5.3 are making use of this ratio between the two extinction cross

sections.
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Table 5.2: Polarizations of the minimum peak heights of a TE as well as a TM

wave propagating in y direction obtained from the S-matrix spectra as well as the

predicted ones for the different particle shapes.

Shape 1 Shape 2 Shape 3 Shape 4 Shape 5

αmin, TEy

S-matrix 83.2◦ 83.3◦ 64.1◦ 57.6◦ 70.1◦

predicted 81.2◦ 85.4◦ 64.0◦ 68.8◦ 75.0◦

αmin, TMy

S-matrix 13.5◦ 5.2◦ 15.6◦ 19.3◦ 36.1◦

predicted 7.5◦ 4.2◦ 17.3◦ 15.0◦ 21.2◦

5.5 Angular extinction spectra
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Figure 5.17: S-polarized extinction spectra of (a) a Penrose tiling as well as (b) a square

lattice for incidence angles ϑ = 0◦ (black) and ϑ = 3.5◦ (red) and an azimuthal angle

φ = 90◦.

Samples 1 and 2 were also measured for different angles of incidence ϑ. The first

measurements of sample 1 shown in Fig. 5.17 were performed for ϑ = 0◦ (black

curves) as well as for ϑ = 3.5◦ with the azimuthal angle φ = 90◦ and s-polarized

light (α = 0◦). The spectra were measured for both a Penrose tiling and a square

lattice, which are shown in Fig. 5.17 (a) and (b), respectively. The azimuthal angle

φ = 90◦ in the angle-dependent spectra means that the waves propagating in x and

in −x direction possess the same energy, whereas the energy of the waves propagat-
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ing in y and in −y direction is different. Since only a TM wave is propagating in

x direction and only a TE wave in y direction for the square lattice with α = 0◦,

only a splitting of the TE polarized wave (resonance at about 1.47 eV) is visible in

Fig. 5.17 (b). The TE and TM waves propagating in diagonal direction also show

a splitting (see resonances above 1.9 eV). For the Penrose tiling, however, all of

the four waveguide mode resonances split up into several modes due to the ten-fold

symmetry in reciprocal space (compare to Fig. 5.9 (a)). The resonance at approx-

imately 1.64 eV for normal incidence is due to TM polarized waves propagating in

directions β = 0◦, 36◦, .... For ϑ = 3.5◦ this resonance splits up into several different

ones, one of them propagating in direction β ≈ 0◦. This means that the waveguide

mode with this photon energy is still present. In the spectrum, one can see that this

dip is indeed at the same energy position. However, TE polarized modes (resonance

at about 1.53 eV) with β ≈ 0◦ and β ≈ 180◦ are not present for ϑ = 3.5◦ leading to

a peak instead of a dip in the spectrum.
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Figure 5.18: P-polarized extinction spectra of (a) a Penrose tiling as well as (b) a square

lattice for incidence angles ϑ = 0◦ (black) and ϑ = 3.5◦ (red) and an azimuthal angle

φ = 90◦.

P-polarized (α = −90◦) spectra of sample 1 with φ = 90◦ for incidence angles ϑ = 0◦

and ϑ = 3.5◦ were also measured for the Penrose tiling as well as the square lattice.

These spectra are shown in Fig. 5.18. The particle plasmon for this polarization is

shifted to lower energies due to the longer main axis diameter of the elliptical gold
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particles. By comparing the two different incidence angles for the square lattice

(Fig. 5.18 (b)), it is clearly visible that the TE polarized waveguide mode stays

at the same photon energy (about 1.47 eV), whereas the TM polarized mode splits

up into two modes. This can be easily understood by the fact that only a TE

mode is propagating in x direction and a TM mode in y direction. As above for

α = 0◦, both waveguide modes propagating in diagonal directions split up into two

modes. For normal incidence on the Penrose tiling, the TM polarized waveguide

mode propagating in directions β = 0◦, 36◦, ... (photon energy of about 1.64 eV) is

almost at a peak position for α = −90◦ instead of a dip position for α = 0◦. This

is due to the fact that the particle plasmon is shifted to lower energies leading to

a less coupled waveguide mode to the particle plasmon. For ϑ = 3.5◦ a dip can

be obtained at the same energy position indicating that no TM polarized wave is

propagating in directions β ≈ 0◦ and β ≈ 180◦. For a TE polarized wave in direction

β = 0◦, 36◦, ..., the dip at about 1.53 eV for normal incidence stays approximately

at the same energy position indicating that the waveguide mode in ±x direction is

the dominant effect. However, a splitting is visible for this resonance as well.

Sample 2 was also measured for oblique light incidence. The first spectra are shown

for the square lattice with s-polarized light (Fig. 5.19) as well as with p-polarized

light (Fig. 5.20). The angle of incidence is changed between 0◦ (bottom) and 6◦

(top). The azimuthal angle is kept constant at φ = 0◦ in Figs. 5.19 (a) and 5.20

(a). For Figs. 5.19 (b) and 5.20 (b), the azimuthal angle is changed to φ = 90◦.

The energy position of the plain normal incidence waveguide modes is indicated

by the vertical red dashed lines in all panels. The behavior of the s-polarized (p-

polarized) spectra is similar for both azimuthal angles. This is reasonable since the

periodicity is equal in x and y direction meaning that it should not be possible

to distinguish between the s-polarized (p-polarized) data for φ = 0◦ and φ = 90◦.

However, due to the elliptically shaped gold disks, the spectra are still slightly

different. Nevertheless, the principle behavior is still comparable. The TE polarized

waveguide mode (≈ 1.47 eV) propagating in directions β = 0◦ or β = 90◦ splits

up into two main peaks for oblique incidence, whereas the TM polarized waveguide

mode (≈ 1.57 eV) stays almost constant. This behavior is expected. However, a

small fraction of the TE polarized mode stays at ≈ 1.47 eV and a small fraction of

the TM polarized mode splits up into two modes. This can especially be seen for

the TM waveguide mode at ≈ 1.57 eV in the s-polarized spectra. While the main

peak stays at this energy, an additional resonance is observable on the higher energy

side moving to higher energies as the angle of incidence increases. This can only be

explained by the elliptical, rotated particles and will be discussed in section 5.6.
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Figure 5.19: S-polarized extinction spectra of a square lattice for (a) φ = 0◦ as well as

for (b) φ = 90◦. The angle of incidence is changed between ϑ = 0◦ (bottom) and ϑ = 6◦

(top) in steps of 1◦. The spectra are shifted upward for clarity.

For the p-polarized spectra, the behavior is opposite, meaning that the TE polarized

waveguide mode stays approximately constant for oblique light incidence and the

TM polarized waveguide mode splits up into two modes as expected. However, a

small part of the TE polarized wave splits up into two additional modes and a small

part of the TM polarized wave stays at approximately the same photon energy.

Again, this is due to the elliptical, rotated particles and will be discussed in section

5.6.

Both the TE and the TM polarized waves propagating in the diagonal directions

split up into two modes for s- as well as for p-polarization. The situation changes

for φ = 45◦ where either the TE polarized waveguide mode (p-polarization) or the

TM polarized waveguide mode (s-polarization) stays approximately constant. In

this case, the TE as well as the TM polarized waveguide modes split up into two

modes. However, it is not possible to measure this with the current setup.
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Figure 5.20: P-polarized extinction spectra of a square lattice for (a) φ = 0◦ as well as

for (b) φ = 90◦. The angle of incidence is changed between ϑ = 0◦ (bottom) and ϑ = 6◦

(top) in steps of 1◦. The spectra are shifted upward for clarity.

Next, the rectangular lattice of sample 2 was measured in s- and p-polarization,

which is shown in Fig. 5.21 and Fig. 5.22, respectively. As above for the square

lattice, the angle of incidence was changed between ϑ = 0◦ (bottom) and ϑ = 6◦

(top) in steps of 1◦. Panel (a) shows in both figures the spectra for an azimuthal

angle φ = 0◦ and panel (b) the spectra for φ = 90◦. The energy positions of the

plain waveguide mode resonances are indicated by the red dashed lines. For φ = 0◦,

the TE and TM polarized waveguide modes propagating in y direction stay at an

approximately constant energy while the TE and TM polarized waveguide modes

propagating in x direction split up into two modes. This is true for both s- and

p-polarization (Figs. 5.21 (a) and 5.22 (a)) and can be easily understood by the fact

that the absolute values of the modes in ±y direction are equal whereas those of the

modes in ±x are not. However, the TM polarized waveguide mode in y direction

is more pronounced for s-polarization and the TE polarized waveguide mode in y

direction for p-polarization. For circularly shaped particles it is expected that the

less pronounced resonances cannot be excited at all. Due to the elliptical, rotated

particles, a small fraction of these modes is still able to propagate in y direction.
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Figure 5.21: S-polarized extinction spectra of a rectangular lattice for (a) φ = 0◦ as

well as for (b) φ = 90◦. The angle of incidence is changed between ϑ = 0◦ (bottom) and

ϑ = 6◦ (top) in steps of 1◦. The spectra are shifted upward for clarity.

For φ = 90◦, the waveguide modes propagating in y direction split up into two

modes and those in x direction stay at an almost constant energy position. The TM

polarized waveguide mode in x direction is more pronounced for s-polarization and

the TE mode in x direction for p-polarization. Similar considerations as for φ = 0◦

can be made here in order to explain the occurrence of the specific resonances.

The s-polarized spectra have in common that the more pronounced TE wave splits

up into two modes and the more pronounced TM wave stays at approximately the

same photon energy (Fig. 5.21). This is in agreement with the behavior of the

s-polarized spectra of the square lattice. In contrast, the more pronounced TE wave

in the p-polarized spectra stays at about the same energy position, whereas the

more pronounced TM polarized wave splits up into two modes. Also this behavior

is consistent with the findings of the p-polarized spectra of the square lattice.

The last angle-dependent measurements of sample 2 were performed for the Penrose

tiling. As above, s-polarized (Fig. 5.23) as well as p-polarized (Fig. 5.24) spectra

were measured with the azimuthal angle to be either φ = 0◦ (panels (a)) or φ = 90◦
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Figure 5.22: P-polarized extinction spectra of a rectangular lattice for (a) φ = 0◦ as

well as for (b) φ = 90◦. The angle of incidence is changed between ϑ = 0◦ (bottom) and

ϑ = 6◦ (top) in steps of 1◦. The spectra are shifted upward for clarity.

(panels (b)). The energy positions of the plain normal incidence waveguide modes

are again shown by the red dashed lines. As the Penrose tiling possesses ten-fold

symmetry in reciprocal space (see Fig. 5.9 (a)), each waveguide mode splits up in up

to ten modes for oblique light incidence. For normal incidence, the absolute value of

the propagation constants in directions β = 0◦, 36◦, ... is equal for each β. The same

is true for β = 18◦, 54◦, ... , however, with a slightly higher propagation constant

when compared to directions β = 0◦, 36◦, ... . For oblique light incidence, the waves

propagating in directions β = 0◦, 36◦, ... (β = 18◦, 54◦, ...) do not possess the same

absolute value of the propagation constant. An azimuthal angle φ = 0◦ generates a

mirror symmetric behavior of the waveguide modes with respect to the x axis leading

to 6 different propagation constants for β = 0◦, 36◦, ... and 5 different propagation

constants for β = 18◦, 54◦, ... . The mirror symmetric behavior of the waveguide

modes for φ = 90◦ is given with respect to the y axis. For this azimuthal angle,

the waveguide modes propagating in directions β = 0◦, 36◦, ... split up into 5 modes

and those in directions β = 18◦, 54◦, ... into 6 modes. These waveguide modes are
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Figure 5.23: S-polarized extinction spectra of a Penrose tiling for (a) φ = 0◦ as well as

for (b) φ = 90◦. The angle of incidence is changed between ϑ = 0◦ (bottom) and ϑ = 6◦

(top) in steps of 1◦. The spectra are shifted upward for clarity.

more or less pronounced, namely a polarization α = 0◦ results in a maximum value

of a TM wave propagating in ±x direction as well as a maximum value of a TE

wave propagating in ±y direction. The opposite is true for α = 90◦. This means

that the major waveguide mode resonance having about the same energy when

compared to the normal incidence spectrum is present for a TM wave propagating

in direction β = ±90◦ for s-polarization with φ = 0◦ (1.87 eV, Fig. 5.23 (a)) as well

as for a TM wave propagating in direction β = ±0◦ for s-polarization with φ = 90◦

(1.64 eV, Fig. 5.23 (b)). For p-polarization, the major waveguide modes keeping

the resonance energy almost constant are the TE wave propagating in direction

β = ±90◦ for φ = 0◦ (1.75 eV, Fig. 5.24 (a)) and the TE wave propagating in

direction β = ±0◦ for φ = 90◦ (1.53 eV, Fig. 5.24 (b)). However, also some minor

resonances with higher or lower energies are present in the system. They are simply

much less pronounced and, thus, less visible. The TE waves (TM waves) show the

opposite behavior for s-polarization (p-polarization).
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Figure 5.24: P-polarized extinction spectra of a Penrose tiling for (a) φ = 0◦ as well as

for (b) φ = 90◦. The angle of incidence is changed between ϑ = 0◦ (bottom) and ϑ = 6◦

(top) in steps of 1◦. The spectra are shifted upward for clarity.

5.6 2D theoretical model for oblique light inci-

dence

The theoretical model described in section 5.3 was developed for normal incidence.

However, in order to model the spectra for oblique light incidence, this model has

to be expanded, which is described in this section.

The first step is again the description of the spatial arrangement by Dirac delta

functions and the subsequent 2D Fourier transform. This 2D Fourier transform can

be calculated with the help of the projection slice theorem [138, 139]. The individual

slices in direction β are given by Sβ(kξ) of Eq. (5.4). As it was already described in

section 2.1.2, the propagation constants βp are given by

βp = kxy + g (5.20)

with kxy = k0 sin(ϑ) being the wave vector component parallel to the sample surface

(see Fig. 5.25 (a)) and g being the location of the Fourier components in reciprocal
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space. This relation was already given in Eq. (2.28). For normal light incidence,

kxy is equal to zero meaning that the propagation constants of the waveguide modes

are just given by the k vectors of the Fourier peaks. For oblique light incidence,

however, kxy is not equal to zero leading to the vector addition given in Eq. (5.20).

This means that the propagation constants for oblique light incidence (filled circles)

can be obtained by shifting the Fourier transform (open circles) by kxy, which is

displayed in Fig. 5.25 (b). The absolute value of the propagation constants for an

angle of incidence ϑ and an azimuthal angle φ is given by [144]

βp =
√
k20 sin

2(ϑ) + g2 + 2 k0 sin(ϑ) g cos(φ− βFT ) (5.21)

with k0 as the absolute value of the incident wave vector and g as the Fourier

component with distance g to the center of the Fourier transform. The directions

of the individual Fourier components is denoted by the angle βFT .

Since each Fourier component as well as each component kxy is dependent on the

energy of the incident light with polar angle ϑ, the vector kxy is different for each

Fourier component. Therefore, the TE and TM dispersion relations of Eqs. (2.24)

and (2.25) are needed, which are plotted as black solid and red dashed curves in Fig.

5.25 (c), respectively. The energies and the corresponding kxy values are obtained

by the intersections of a straight line with angle ϑ to the energy axis and the folded

dispersion curves. These kxy values can be utilized to find the location of the angular

propagation constants by using Eq. (5.20). The vectors from the center of the

Fourier transform that are pointing to the angular propagation constants define the

directions in which the waveguide modes are propagating. The angle β defines the

angle between the direction of the angular propagation constant and the sample x

axis. Due to the fact that the TE and TM dispersion relations are different, the

TE waves do not propagate in the same directions as the TM waves for the same

Fourier component. However, the Fourier transform in Fig. 5.25 is shifted by a

constant kxy component for all TE and TM propagation constants. In this picture,

the TE and TM wave are propagating in the same β direction. This is easier to

explain since we do not have to distinguish between the TE and the TM direction.

However, we have to keep in mind that the TE and TM directions are different for

the real calculations.

The polarization Eα of the incident light is defined to have the Eα, xy component

rotated by the angle α around the sample x axis (see Fig. 5.25 (d)). When light

with this polarization is incident on the sample, Eα has to be split into a TE as

well as a TM wave propagating in direction β (see Fig. 5.25 (d)). This leads to the
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components [144]

CTE = ±
√
C2

α,xy sin
2(α− β) + C2

α,z, (5.22)

CTM = Cα,xy cos(α− β), (5.23)

where Cα,xy and Cα,z are defined by

Cα,xy =
Cα√

1− sin2(ϑ) sin2(φ− α)
cos(ϑ), (5.24)

Cα,z = − Cα√
1− sin2(ϑ) sin2(φ− α)

sin(ϑ) cos(φ− α). (5.25)

The + sign in Eq. (5.22) is used when 0◦ 6 α − β < 180◦ and the − sign is used

when 180◦ 6 α−β < 360◦. The factor Cα in Eqs. (5.24) and (5.25) is dependent on

the incident light with polar angle ϑ and azimuthal angle φ. Since Eα, z is always

normal to the direction of propagation, only CTE is dependent on Cαz.

It has been mentioned above that for a square lattice or a rectangular lattice with

φ = 0◦ and s-polarization no TM wave is expected to propagate in ±x direction.

However, in Fig. 5.19 (a) as well as in Fig. 5.21 (a) a small resonance is visible for

a TM polarized wave propagating in x direction. This resonance is split into two

for oblique light incidence. As it has already been explained in section 5.3, this is

due to the elliptically shaped particles that are rotated by the angle γ around the

sample x axis.

Incident light with polarization Eα can excite particle plasmons in such metallic

particles, but only along the principal axes u, v, and z. The components Cplu, Cplv,

and Cplz (see Fig. 5.25 (e)) are given by [144]

Cplu = Cα,xy Cu cos(α− γ), (5.26)

Cplv = Cα,xy Cv sin(α− γ), (5.27)

Cplz = Cα,z Cz (5.28)

with Cu, Cv, and Cz as factors dependent on the eccentricity and size of the metal

particles. Each of these excited particle plasmons can be regarded as polarized

light that is incident on the sample. As it was explained above for polarized light

incident on the sample, each particle plasmon can excite a TE as well as a TM

wave propagating in direction β (see Fig. 5.25 (f)). This leads to the following
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Figure 5.25: (a) k-vector incident on the sample for an angle of incidence ϑ and an

azimuthal angle φ. (b) The Fourier transform (open circles) is shifted by kxy in order to

obtain the propagation constants for oblique light incidence (filled circles). (c) Dispersion

relations of a TE (black solid) and a TM polarized (red dashed) waveguide mode as well

as those of vacuum (green short-dashed) and quartz (blue dash-dotted) for a 180 nm

thick HfO2 waveguide on quartz. (d) TE and TM waves propagating in direction β with

ETE and ETM as the vector addition of the incident polarization Eα. (e) The incident

polarization excites particle plasmons along the main axes of an elliptical metal particle.

(f) Each particle plasmon can excite a TE as well as a TM polarized wave in direction β.
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components [144]

CTEu = −Cplu sin(β − γ), (5.29)

CTEv = Cplv cos(β − γ), (5.30)

CTEz = Cplz, (5.31)

CTMu = Cplu cos(β − γ), (5.32)

CTMv = Cplv sin(β − γ). (5.33)

The − sign in Eq. (5.29) is needed since ETEu points in the opposite direction than

the other TE components. Note that the electric field vector in z direction can only

excite a TE polarized wave as already mentioned above.

The overall components CTE, add for a TE as well as CTM, add for a TM wave are

obtained by the addition of the individual components (Eqs. (5.22), (5.29), (5.30),

and (5.31) for TE polarized waves as well as Eqs. (5.23), (5.32), and (5.33) for TM

polarized waves) [144]

CTE, add = CTE + CTEu + CTEv + CTEz, (5.34)

CTM, add = CTM + CTMu + CTMv. (5.35)

As it has been explained for normal incidence, Sβ(kξ) in direction β has to be

weighted with the square value of CTE, add as well as with CTM, add. However, this is

not the initial slice of the Fourier transform but the slice through the center of the

reciprocal space and the shifted Fourier peak. The total intensity is then obtained

by integrating over all directions β leading to

Ftot, TE =

∫ 360◦

0◦
Sβ(kξ)C

2
TE, add dβ, (5.36)

Ftot, TM =

∫ 360◦

0◦
Sβ(kξ)C

2
TM, add dβ (5.37)

with the positive kξ axis of Sβ(kξ) for 0◦ 6 β < 180◦ and the negative one for

180◦ 6 β < 360◦.

The rest of this model is equal to the normal incidence model in section 5.3. As it

has been explained there, the transmission and reflection amplitudes are obtained

by using Eqs. (5.17) and (5.18) with the phase of the waveguide mode given by Eq.

(5.19). The transmittance and reflectance spectra can be calculated by using T = |t|2

and R = |r|2, respectively. The extinction spectrum is given by Ext = − ln(T ).

For the samples measured with oblique angle of incidence (see spectra in section

5.5), the individual spectra are calculated by using the just described model. The
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Figure 5.26: Measured (black) and modeled (red) extinction spectra of (a) a Penrose

tiling as well as (b) a square lattice in s-polarization for incidence angles ϑ = 0◦ (bottom)

and ϑ = 3.5◦ (top) and an azimuthal angle φ = 90◦. The spectra are shifted upward for

clarity.

measured (black) and modeled (red) spectra of sample 1 in s- and p-polarization

are shown in Figs. 5.26 and 5.27, respectively. Panels (a) of both figures depict

the spectra of the Penrose tiling and panels (b) those of the square lattice. The

angle of incidence was changed between ϑ = 0◦ (bottom) and ϑ = 3.5◦ (top) for an

azimuthal angle of φ = 90◦. The fitting parameters tplu = 0.1434, tplv = 0.1580, and

A = 0.0084 were used for calculating all spectra. These parameters were obtained

by fitting the curve to just one spectrum. The agreement between the measured and

the modeled spectra is especially good for the Penrose tiling. The four waveguide

mode resonances for normal incidence split up into several peaks for oblique light

incidence. This behavior is different for s- and p-polarization. The difference has

already been explained for the spectra in Figs. 5.17 and 5.18. Exactly this different

behavior is described very well in our model. The location of the resonances in

the modeled spectra coincides with those of the measured ones. This behavior

can be seen in Fig. 5.26 (a) for s-polarized light (φ = 90◦ and α = 0◦) as well

as in Fig. 5.27 (a) for p-polarized light (φ = 90◦ and α = −90◦). The location

of the resonances for the square lattice is also predicted quite well by our model

(see Figs. 5.26 (b) and 5.27 (b)). As it has been already explained in Fig. 5.17

for s-polarization, the TE polarized waveguide mode splits up into two modes for
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Figure 5.27: Measured (black) and modeled (red) extinction spectra of (a) a Penrose

tiling as well as (b) a square lattice in p-polarization for incidence angles ϑ = 0◦ (bottom)

and ϑ = 3.5◦ (top) and an azimuthal angle φ = 90◦. The spectra are shifted upward for

clarity.

oblique light incidence, whereas the TM polarized mode stays at about the same

energy. This behavior can be seen for both measured and modeled spectra (see Fig.

5.26 (b)). The opposite behavior can be obtained for p-polarization, namely the TE

polarized resonance stays at a constant energy and the TM polarized resonance splits

up into two modes. Again, this is visible for the measured as well as the modeled

spectrum (Fig. 5.27 (b)). Also the splitting of the waveguide modes propagating

in diagonal direction is well predicted in the modeled spectra. However, deviations

are visible for the waveguide mode resonances within the plasmon resonance. These

deviations can also be obtained for normal incidence. The reason of the appearance

of these deviations is unknown.

The spectra of sample 2 were also modeled using the theoretical model described

above in this section. First, this is shown for s- as well as p-polarized spectra of the

square lattice in Figs. 5.28 and 5.29, respectively. The angle of incidence is changed

between ϑ = 0◦ (bottom) and ϑ = 6◦ (top) in steps of 1◦. The azimuthal angle is

φ = 0◦ in panels (a) and φ = 90◦ in panels (b). The fitting parameters tplu = 0.0784,

tplv = 0.1169, and A = 0.0022 were fitted to only one curve and were used for all

other spectra.
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Figure 5.28: Measured (black) and modeled (red) extinction spectra of a square lattice

in s-polarization for (a) φ = 0◦ as well as for (b) φ = 90◦. The angle of incidence is

changed between ϑ = 0◦ (bottom) and ϑ = 6◦ (top) in steps of 1◦. The spectra are shifted

upward for clarity.

It can be nicely seen that the TE polarized waveguide mode (1.47 eV) splits up

into two modes, whereas the TM polarized waveguide mode (1.57 eV) stays at ap-

proximately constant energies for s-polarization (see Fig. 5.28). However, also a

small fraction of the TE polarized mode stays at about 1.47 eV and a small part

of the TM polarized mode splits up into two modes. This behavior is visible in

both the measured as well as the modeled spectra. This can only be explained by

the elliptically shaped, rotated metal disks. As it has been explained above for the

theoretical model, the incident polarization can excite the particle plasmons only

along the principal axes. These rotated polarizations can excite waveguide modes

propagating in directions β (see Fig. 5.25 (f)). For φ = 0◦ and α = −90◦ (see

Fig. 5.28 (a)), the TE (TM) polarized waves are propagating in ±x (±y) direction.
Therefore, it is only expected that the TE (TM) waveguide mode splits up into two

modes (stays at constant energies). However, due to the fact that the gold disks

are elliptically shaped and rotated by γ = 40◦, the excitation of a TE (TM) po-

larized mode propagating in ±y (±x) is possible. This leads to the small fraction
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Figure 5.29: Measured (black) and modeled (red) extinction spectra of a square lattice

in p-polarization for (a) φ = 0◦ as well as for (b) φ = 90◦. The angle of incidence is

changed between ϑ = 0◦ (bottom) and ϑ = 6◦ (top) in steps of 1◦. The spectra are shifted

upward for clarity.

of the TE polarized mode staying at approximately constant energies as well as to

the small fractions of the TM polarized wave splitting up into two modes. Similar

explanations can be given for the s-polarized spectra with φ = 90◦ (see Fig. 5.28

(b)). However, the waves propagating in ±x direction have to be replaced by waves

propagating in ±y direction and vice versa. The behavior of the measured spectra

is very nicely reproduced by the modeled spectra, which verifies our model.

The p-polarized spectra for φ = 0◦ and φ = 90◦ were also calculated using the same

fitting parameters as above. Also here, a very nice agreement between measured and

modeled curves is achieved. In contrast to s-polarization, the major TE peak stays

at constant energies and the major TM peak splits up into two modes. However, a

minor TE peak splitting up into two modes as well as a minor TM peak staying at

approximately constant energies can be obtained in both the measured as well as

the modeled spectra. As above for the s-polarized spectra, this behavior can only

be explained by the elliptically shaped, rotated metal disks. For φ = 0◦ and α = 0◦

(see Fig. 5.29 (a)), a TE polarized wave propagating in ±x direction as well as a
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TM polarized wave propagating in ±y can only be explained by the excitation due

to the particle plasmons along the main axes of the rotated metal disks. The same is

true for TE polarized waves propagating in ±y direction as well as for TM polarized

waves propagating in ±x direction, when φ = 90◦ and α = −90◦ (see Fig. 5.29 (b)).
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Figure 5.30: Measured (black) and modeled (red) extinction spectra of a rectangular

lattice in s-polarization for (a) φ = 0◦ as well as for (b) φ = 90◦. The angle of incidence is

changed between ϑ = 0◦ (bottom) and ϑ = 6◦ (top) in steps of 1◦. The spectra are shifted

upward for clarity.

This behavior can especially be seen by looking at the spectra of a rectangular

lattice. Due to the fact that the periodicity in x and y direction is different, also the

TE (TM) polarized waveguide modes appear at different energies in the spectrum.

The measured (black) and modeled (red) curves are shown in Figs. 5.30 and 5.31

for s- and p-polarization, respectively. The angle of incidence is changed between

ϑ = 0◦ (bottom) and ϑ = 6◦ in steps of 1◦. In panel (a) the azimuthal angle is

φ = 0◦ and in panel (b) φ = 90◦. The fitting parameters for the modeled curves are

given by tplu = 0.0784, tplv = 0.1169, and A = 0.0022. As can be seen in Figs. 5.30

and 5.31, the agreement between the measured and the modeled curves is also here

quite good.

The resonances at about 1.37 eV, 1.47 eV, 1.55 eV, and 1.66 eV are due to TE and
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Figure 5.31: Measured (black) and modeled (red) extinction spectra of a rectangular

lattice in p-polarization for (a) φ = 0◦ as well as for (b) φ = 90◦. The angle of incidence

is changed between ϑ = 0◦ (bottom) and ϑ = 6◦ (top) in steps of 1◦. The spectra are

shifted upward for clarity.

TMwaves propagating in±y direction as well as to TE and TM waves propagating in

±x direction. For φ = 0◦ and s-polarization (Fig. 5.30 (a)), the TE polarized wave in

±y direction as well as the TM polarized wave in ±x direction can only be explained

by the rotated metal particles. These resonances are present in both the measured as

well as the modeled spectra. It can be clearly seen that the waves propagating in ±y
direction stay at constant energies, whereas the waves propagating in ±x direction

split up into two modes. This behavior is very well described by the modeled

curves. For φ = 90◦ and s-polarization (Fig. 5.30 (b)), the TE polarized wave in ±y
direction and the TM polarized wave in ±x direction are more pronounced when

compared to the TM polarized wave in±y direction and the TE polarized wave in±x
direction. This time, the waves propagating in ±y direction split up into two modes,

whereas the waves propagating in ±x direction stay approximately constant. Also

this behavior is modeled quite well. As already mentioned above, the two different

azimuthal angles in s-polarization show a splitting of the more pronounced TE wave,

whereas the more pronounced TM wave stays at approximately constant energies.
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For φ = 0◦ and p-polarization (Fig. 5.31 (a)), the waves propagating in ±y direction
stay at constant energies and the waves in ±x split up into two modes as for φ = 0◦

and s-polarization. However, the more pronounced waves for p-polarization are the

TE wave in ±y direction and the TM wave in ±x direction. As already explained

above, the minor resonances can only be explained by the rotated metal disks. The

waves propagating in ±y direction for φ = 90◦ and p-polarization (Fig. 5.31 (b))

split into two modes and the waves in ±x direction stay approximately constant.

This is different in comparison to the p-polarized spectra with φ = 0◦. It is also

different that the TM polarized wave in ±y direction and the TE polarized wave in

x direction are the more pronounced resonances. However, the more pronounced TE

wave stays at constant energies, whereas the more pronounced TM wave splits into

two modes. The behavior of these spectra is verified by our model meaning that the

excitation of the minor resonances can be explained by the model presented above.
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Figure 5.32: Measured (black) and modeled (red) extinction spectra of a Penrose tiling

in s-polarization for (a) φ = 0◦ as well as for (b) φ = 90◦. The angle of incidence is

changed between ϑ = 0◦ (bottom) and ϑ = 6◦ (top) in steps of 1◦. The spectra are shifted

upward for clarity.

Finally, the angle-dependent spectra of the Penrose tiling of sample 2 were calculated

with the model described above. The s- and p-polarized spectra are depicted in
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Figure 5.33: Measured (black) and modeled (red) extinction spectra of a Penrose tiling

in p-polarization for (a) φ = 0◦ as well as for (b) φ = 90◦. The angle of incidence is

changed between ϑ = 0◦ (bottom) and ϑ = 6◦ (top) in steps of 1◦. The spectra are shifted

upward for clarity.

Figs. 5.32 and 5.33, respectively. The spectra with an azimuthal angle of φ = 0◦

are shown in panel (a) and those with φ = 90◦ are plotted in panel (b). The angle

of incidence is varied in steps of 1◦ between ϑ = 0◦ and ϑ = 6◦. The modeled curves

(red) are calculated with the fitting parameters tplu = 0.0685, tplv = 0.0896, and

A = 0.001 for all spectra. Since the Penrose tiling possesses ten-fold symmetry in

reciprocal space, the behavior is more difficult to explain when compared to the

square and the rectangular lattice. However, this has been done above in section

5.5. We can observe a splitting into five or six modes of each of the normal incidence

waveguide modes. These resonances are more or less pronounced depending on the

incident azimuthal angle as well as the incident polarization. Some minor resonances

due to the elliptical particles are also present. However, due to the fact that one

resonance for normal incidence splits into several modes for oblique light incidence,

these additional waveguide modes are hardly visible in the spectra. Mostly, they

are even located at the same energy positions of the already present modes leading

to a higher resonance peak. However, the modeled curves (red) calculated with

the above presented model are compared to the measured spectra (black) for both
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s- and p-polarization. The agreement between the measured and the calculated

spectra is very good, which verifies our model. Therefore, quasiperiodic spectra can

be modeled by using this approach.

5.7 Plasmonic solar cells
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Figure 5.34: Solar cell design with (a) a 2D quasiperiodic arrangement and (b) a 2D

periodic arrangement of gold disks on top of a 30 nm thick SiO2 spacer layer, a 30 nm thick

Si waveguide layer, and a SiO2 substrate. The gold disks with diameter d are arranged

(c) on the vertices of a Penrose tiling with an edge length P and (d) in a periodic fashion

with a periodicity P.

Possible applications of such metallic photonic crystals are light emitting diodes

(LEDs) or solar cells. In either case, the waveguide layer consists of a semiconductor

having a relative high index of refraction. For LEDs, a forward biased voltage is

applied so that light of a specific energy is emitted. However, the working principle

of solar cells is reversed meaning that light incident on the semiconductor generates a

current. The efficiency of such devices can be enhanced when light is coupled into or

out of the waveguide layer. This can be achieved by using a grating structure. Since

all measurements in this thesis are based on light that is incident on the metallic

photonic crystal, we will present here a method for enhancing the efficiency of solar

cells. However, similar structure designs can be used to increase the efficiency of

LEDs.
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The sample in this case consists of a silicon dioxide (SiO2) substrate with a 30 nm

thick crystalline silicon (Si) waveguide layer on top and is shown in Fig. 5.34. The

arrangement of the circular gold disks with a diameter d of 100 nm and a height

of 50 nm is either quasiperiodic or periodic. Since the particle plasmon resonance

is strongly damped when a metal is directly placed on an absorbing semiconductor

[145], a passivation layer between the Si layer and the gold disks is introduced. This

passivation layer consists of a 30 nm thick SiO2. Another effect of this additional

SiO2 layer is that the sample structure is more symmetric leading to a lower cutoff

energy of the waves that can be guided in the Si layer [104]. In the quasiperiodic

tiling the metal particles are placed on the vertices of a Penrose tiling with an edge

length P = 425 nm (see Fig. 5.34 (c)). The period of the square lattice is also

P = 425 nm (see Fig. 5.34 (d)).
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Figure 5.35: S-matrix calculated (a) transmittance and (b) reflectance spectra

(black solid lines) as well as the corresponding Fano modeled spectra (red dashed

lines) for a periodic gold disk arrangement.
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In order to predict the absorption enhancement of such a plasmonic solar cell, the

normal incidence transmittance and reflectance spectra of the periodic structure is

calculated by using S-matrix simulations. This is necessary since reasonable fit-

ting parameters are needed for the model presented in section 5.6. These S-matrix

calculated transmittance and reflectance spectra are shown as black solid lines in

Fig. 5.35 (a) and (b), respectively. The transmittance (T = |t|2) and reflectance

(R = |r|2) curves of our Fano model fitted by using the transmission and reflection

amplitudes t and r of Eqs. (5.17) and (5.18) are plotted as red dashed curves in

Fig. 5.35 (a) and (b). The direct transmission and reflection coefficients td and rd

are fitted to the transmittance and reflectance spectra of the structure without the

plasmonic disks and are given by

td = 1.3370− 0.8147E + 0.3420E2 − 0.0575E3, (5.38)

rd = 0.0325 + 0.7545E − 0.2046E2 + 0.0053E3. (5.39)

The phases of the directly transmitted and reflected waves are set to be ϕt = 0.269 π

and ϕr = 0.864π, respectively. As already mentioned in section 5.3, the two par-

ticle plasmon terms of Eqs. (5.17) and (5.18) combine to only one term given by
tpl Γpl e

iϕpl

E−Epl+iΓpl
and

rpl Γpl e
iϕpl

E−Epl+iΓpl
, respectively. For the energy, the phase, and the spectral

width of this particle plasmon resonance, the values Epl = 2.0722 eV, ϕpl = π/2, and

Γpl = 0.1081 eV are used. The different waveguide modes in the energy range E pos-

sess the spectral widths Γk = 0.01 eV. Their amplitudes Ak are calculated with the

approach presented in section 5.6 and the corresponding energies Ek are obtained

by using the waveguide mode dispersion relations of the structure. The phases of

the waveguide modes ϕk are calculated with Eq. (5.19) as well as with the phases

of the undisturbed reflected and transmitted waveguide modes ϕt,∞ = 0.4104 π

and ϕr,∞ = 0.7096π, respectively. The fitting parameters for the correct ratio be-

tween the particle plasmon and the waveguide modes are given by tpl = 0.1512,

rpl = 0.1668, and A = 0.01025. It can be seen in Fig. 5.35 (a) and (b) that

the agreement between the S-matrix spectra (black solid) and the Fano model (red

dashed) is good. Only above an energy value of about 2.2 eV, the waveguide modes

in the Fano model are much more pronounced when compared to the S-matrix cal-

culations. This is due to an increased absorption coefficient of the Si layer above

this value, which is neglected in the Fano model. Due to the strong damping, the

waveguide modes above 2.2 eV cannot be excited. Therefore, only the energy region

below this value is considered. Since an electron-hole pair can only be excited above

the band gap energy Eg = 1.12 eV [146], only higher energy values are used. In the

following, all spectra are restricted to the energy region between 1.12 eV and 2.2 eV.
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For solar cells, it is important to know how much light can be absorbed. Therefore,

the absorbance A is calculated with A = 1− T − R. The transmittance T and the

reflectance R are calculated for the square lattice as well as for the Penrose tiling

by using the above mentioned parameters. It is assumed that an electron-hole pair

is created for each absorbed photon in the Si layer [147]. However, part of the light

is also absorbed by the metal particles, which reduces the amount of absorbed light

in the semiconductor. Thus, the calculated absorbance is higher than the part that

is only absorbed by the Si layer, which is in the energy region of the excited particle

plasmon. However, it is expected that the amount of light absorbed in the gold disks

is independent of the structural arrangement leading to the same absorbed fraction

for the Penrose tiling and the square lattice. Furthermore, the light that is coupled

into the waveguide slab is only absorbed by the material in this layer.

(a)

(c)

(b)

(d)

Figure 5.36: Polarization dependent absorbance spectra for p-polarized light of (a)

a Penrose tiling and (b) a square lattice as well as for s-polarized light of (c) a

Penrose tiling and (d) a square lattice. The angle of incidence is ϑ = 6◦ and the

azimuthal angle φ is changed between 0◦ and 90◦.

The azimuthal angle as well as the polar angle incident on the solar cell are different

for various local times and days. Therefore, it is important to have a look at the

p- and s-polarized absorbance spectra with changing azimuthal angles for a specific
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angle of incidence. The p-polarized absorbance spectra of a Penrose tiling and a

square lattice are plotted as color-coded images for ϑ = 6◦ in Fig. 5.36 (a) and

(b), respectively. The azimuthal angle is changed in these plots between φ = 0◦

and φ = 90◦. The s-polarized quasiperiodic and periodic spectra are shown in Fig.

5.36 (c) and (d). By comparing the color-coded spectra of the Penrose tiling to the

corresponding ones of the square lattice, one notices that the absorbance maxima of

the quasiperiodic lattice stay almost at the same energy position, whereas the max-

ima of the periodic lattice are very sensitive to the incident azimuthal angle. This

means that the quasiperiodic structure is much less polarization dependent due to

the higher rotational symmetry. Thus, it is expected that only in the quasicrystalline

case the absorbance is almost identical for any incident azimuthal angle, which is

desirable.

(a)

(c)

(b)

(d)

Figure 5.37: Angle dependent absorbance spectra for p-polarized light of (a) a

Penrose tiling and (b) a square lattice as well as for s-polarized light of (c) a Penrose

tiling and (d) a square lattice. The part from Γ to N belongs to an azimuthal angle

of 18◦ and the part from Γ to M belongs to φ = 45◦. The part from Γ to X belongs

to an azimuthal angle of 0◦.

Next, the angle dependent spectra are observed. The color code images for the

quasiperiodic as well as the periodic arrangement in p-polarization are shown in
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Fig. 5.37 (a) and (b), those in s-polarization are plotted in Fig. 5.37 (c) and

(d). The right hand side in each panel belongs to an angle of incidence variation

for φ = 0◦, whereas the left hand side stems from an angle of incidence variation

for φ = 18◦ in the qausicrystalline case and for φ = 45◦ in the periodic case.

Normal incidence is indicated by Γ and the (pseudo-)Brillouin zone edge for φ = 0◦

is given by X. N and M describe the pseudo-Brillouin zone edge for the Penrose

tiling with φ = 18◦ as well as the Brillouin zone edge for the square lattice with

φ = 45◦. For the quasicrystalline arrangement much more waveguide modes can be

observed in comparison to the periodic lattice meaning that more different energies

of the incident photons can be absorbed. Furthermore, the left part in each panel

resembles the right part much better in the quasiperiodic case.

Due to the fact that the polar and azimuthal angles incident on the solar cell change

significantly, the efficiency should be almost constant for different ϑ and φ. There-

fore, it is crucial to calculate the average absorption Aavg, which is given by [148]

Aavg =

∫ λg

λmin

Atot(λ) S(λ) dλ. (5.40)

The wavelengths λmin and λg in this equation are defined by λmin = 1240/Emax

and λg = 1240/Eg with the above mentioned energy values Emax = 2.2 eV and

Eg = 1.12 eV. The total absorption Atot is the arithmetic mean of the p- and the

s-polarized absorbance spectra Ap−pol and As−pol

Atot(λ) =
Ap−pol(λ) + As−pol(λ)

2
. (5.41)

S(λ) in Eq. (5.40) is the direct solar and circumsolar spectrum. It is dependent

on the air mass the sunlight is propagating through. Therefore, S(λ) changes for

different zenith angles meaning that it also varies for different incident angles ϑ in

combination with different azimuthal angles φ. In order to calculate the different air

mass irradiance spectra, the Simple Model for the Atmospheric Radiative Transfer

of Sunshine (SMARTS2) [149] is used. The average absorption of the enhanced

structure Aavg, enh can be normalized to that of the bare structure Aavg,Bare, which

gives the enhancement factor EF [150]

EF =
Aavg, enh

Aavg,Bare

. (5.42)

In the enhanced structure, the metal particles are either arranged in a quasiperiodic

(Aavg, Penrose) or in a periodic fashion (Aavg, Square).

In order to see how the enhancement factor changes during the day as well as over

the year, EF is plotted versus these two parameters in Fig. 5.38 (a) for the Penrose
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Figure 5.38: Enhancement factor of (a) a Penrose tiling for different days of the

year and local times. The colored lines indicate different local times. For these local

times, the enhancement factor is plotted in (b) versus the day of the year in the

corresponding colors. The same plots are shown in panels (c) and (d) for the square

lattice. The course of the sun for three different days of the year is shown in the

inset of panel (d).

tiling and in Fig. 5.38 (c) for the square lattice. For these color-coded plots, an

average latitude and longitude of Germany (51◦ N, 9◦ E [151]), an average roof pitch

of 35◦ [152], and a solar cell directing to the south are assumed. In order to visualize

how the polar and azimuthal angles change for different local times and days of the

year, the course of the sun is shown for three different days in the inset of Fig. 5.38

(d). The sun rises always in the back of this figure and it sets in the front. The

highest course of the sun belongs to a summer day, the middle one to a spring/fall

day, and the lowest one to a winter day. The sun is always shown for noon.

It can be seen in Fig. 5.38 (a) and (c) that the enhancement factor for the quasiperi-

odic arrangement is more constant when compared to the periodic arrangement. Es-

pecially for noon the enhancement factor of the Penrose tiling stays almost constant

throughout the whole year. In contrast, the enhancement factor of the structure

with the square lattice is lower during wintertime and higher during summertime.
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In order to analyze this behavior better, the enhancement factors for 8:00 a.m., 10:30

a.m., 12:30 p.m., 2:30 p.m., and 5:00 p.m. are plotted versus the day of the year in

Fig. 5.38 (b) and (d) for the quasiperiodic and the periodic tiling, respectively. The

cross sections with the corresponding colors in dark green, black, blue, light green,

and cyan are also indicated in Fig. 5.38 (a) and (c).

For local times at 10:30 a.m. and 2:30 p.m. both the Penrose tiling and the square

lattice show enhancement factors of about 15 in winter and around 16 in summer.

However, the structure with the quasiperiodic gold disk arrangement reaches almost

constant values between 15.8 and 16.2 between the beginning of March and the

mid of October, whereas the structure with the periodic lattice achieves the same

values only between the beginning of April and the mid of September. A similar

behavior can be obtained by looking at the curve for a local time around noon in

the quasicrystalline case. However, the enhancement factor is slightly bigger during

wintertime and the constant values between 15.8 and 16.2 are even reached between

the mid of February and the end of October. In contrast, for a local time around

noon in the periodic case, the enhancement factor is reduced in winter to a value

of about 14.7 and increased in summer to a value of about 16.6. Between the mid

of April and the end of August, the enhancement factor has values of above 16.4.

However, from the end of October until the beginning of March, values of only about

15 are reached. Enhancement factors between 15.8 and 16.2 are only achieved from

the mid of March until the beginning of April as well as from the mid of September

until the beginning of October. Thus, the enhancement factor in the quasicrystalline

case stays a quite long period of the year at almost constant values between 15.8 and

16.2 for local times between 10:30 a.m. and 2:30 p.m., whereas the enhancement

factor deviates from these values for several weeks in the periodic case.

Since it is desirable to reach quite high values in the morning and evening hours due

to a higher energy consumption for these times, the enhancement factors for 8:00

a.m. and 5:00 p.m. are also regarded. Although the enhancement factors are reduced

in both structural arrangements, the maximum values in the quasicrystalline case

are about 15.8, whereas the maximum values for the square lattice are approximately

15.5. In the morning and evening hours during wintertime, the enhancement factor

of both structural arrangements is much lower than 15 since the zenith angle is quite

high then.

All in all, a variation of the enhancement factors in summertime are obtained be-

tween 15.8 and 16.2 for the Penrose tiling as well as between 15.5 and 16.6 for

the square lattice. Except for the morning hours and the late afternoons, almost

constant values between 15.8 and 16.2 are reached for at least 7.5 months in the
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quasicrystalline case, whereas these values are only met for 5.5 months at the most

in the periodic case. Even in the early morning and the late afternoon a maximum

enhancement factor of about 15.8 is reached during summertime for the Penrose

tiling, whereas a maximum value of only 15.5 is obtained for the square lattice. In

comparison to the square lattice where the enhancement factor around noon varies

between 14.7 and 16.6, the enhancement factor around noon of the Penrose tiling

only changes between 15.1 and 16.1. This means that more constant values are

reached throughout the day as well as the year for the Penrose tiling.

A total enhancement factor EFtot can be calculated by integrating the average ab-

sorption of the enhanced structure over the local time tlocal as well as over the day of

the year tday and by normalizing that to the same integration of the bare structure,

which is given by

EFtot =

∫ 365

1

∫ 24

0
Aavg, enh dtlocal dtday∫ 365

1

∫ 24

0
Aavg,Bare dtlocal dtday

. (5.43)

This calculation leads to a value EFtot = 15.573 for the quasiperiodic as well as to

a value EFtot = 15.515 for the periodic structure. This means that, although the

enhancement factor reaches higher values for the square lattice, the total enhance-

ment factor is slightly higher for the Penrose tiling. This is due to the more constant

values throughout the day and the year in the quasicrystalline case.

These findings indicate that the performance of a solar cell with a quasiperiodic

metal disk arrangement is more stable during the day as well as over the year.

Especially in the morning and the evening hours, when more electricity is needed, the

enhancement factor of the Penrose tiling is higher. Additionally, the enhancement

factor stays longer at constant values over the year. This is particularly of interest

since also more electricity is needed during wintertime. For thicker silicon layers,

more waveguide modes can be excited leading to a even higher absorbance for both

structural arrangements. Thus, also the enhancement factor will be increased for

both lattices. However, the enhancement factor should be still more constant for

the Penrose tiling. Additionally, a higher difference of the total enhancement factor

is expected.
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Chapter 6

Conclusion and outlook

The work presented in this thesis deals with aperiodic metal gratings on top of a

waveguide material. These metallic photonic crystals possess either a 1D grating

or a 2D grating. The aperiodic gratings in one dimension are either disordered or

arranged on the coordinates of Fibonacci-like sequences or Cantor sequences. For

the aperiodic gratings in two dimensions, the gold disks are placed on the vertices

of a Penrose tiling. All the aperiodic structures are compared to periodic ones.

The samples are fabricated by using electron-beam lithography that allows a precise

positioning of the metal particles at the desired coordinates.

The metallic photonic crystals in this thesis can excite a waveguide mode and also

a particle plasmon. For the structures with a 1D grating, the particle plasmon can

only be excited for a polarization perpendicular to the gold wires. When these

resonances are in the same energy range, they are coupled to each other leading to

a waveguide-plasmon polariton as presented in former work [31, 32].

First, the optical properties of the 1D disordered structures are analyzed. Two

different disorder models are used (frozen-phonon disorder and long-range disorder)

combined with two different kinds of distributions (uniform distribution and Gauss-

ian distribution). For all disorder structures, the average grating period as well as

the disorder amount was varied. It was found that the amplitude of the excited

waveguide mode decreases for an increased frozen-phonon disorder amount. This is

due to a less efficient excitation of the waveguide mode. When the particle plasmon

is additionally excited, the smaller amplitude can also be obtained. However, this

reduced amplitude might be visible as a reduced contrast between the two peaks

and the dip in between. Varying the grating period just shifts the waveguide mode

resonance to different energy positions. The amplitude decreases faster in the case

of Gaussian distribution when compared to uniform distribution. For long-range
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disorder, the amplitude for a larger disorder amount also decreases. However, also

additional waveguide modes can be excited. All the excited waveguide modes possess

slightly different energies leading to a broadened resonance. Due to this large number

of additional waveguide modes, the amplitude reduction is faster when compared to

the samples with frozen-phonon disorder. Again, the waveguide mode amplitudes

decrease faster for Gaussian distribution. All these findings are consistent with the

results of D. Nau [101].

These disordered samples were fabricated in order to confirm the behavior of the

coupling strength V2, which is reduced for an increased disorder amount. For this

purpose, the energy positions of the extinction maxima were plotted versus the grat-

ing period for the different frozen-phonon disorder amounts. A Hamiltonian (see Eq.

(2.33)) was fitted to each of the plots in order to identify the corresponding coupling

strength. This was done for both uniform and Gaussian distribution. By comparing

the experimentally obtained coupling strengths to the calculated ones of Ref. [101],

a good agreement is achieved. Therefore, the simple model used to calculate the cou-

pling strengths is confirmed. However, due to the large amount of waveguide modes

for long-range disorder, the coupling strengths cannot be experimentally obtained.

Therefore, the Urbach energy, as it is known for disordered structures, is determined

for the samples. This was done for the frozen-phonon samples first in order to see if

it is possible that the Urbach energy is related to the coupling strength. It is found

that the Urbach energy is strongly dependent on the grating period and, thus, also

on the polaritonic system. Whereas the coupling strength decreases for a larger dis-

order amount, the Urbach energy increases. However, the coupling strength might

be inversely related to the Urbach energy. By plotting both the coupling energy and

the Urbach slope versus the disorder amount into the same diagram, it is found that

the behavior is quite similar. The exact relation is not known yet since the Urbach

slope is different for all grating periods. However, the ratio between the coupling

energy and the inverse Urbach energy is kept constant for the same grating period.

The agreement for both distributions is quite good. Therefore, the Urbach energies

of the long-range disorder samples were also determined and compared to the cal-

culated coupling energies. The ratio between the coupling energy and the Urbach

slope is kept constant for the same grating period. It is found that, also for this

disorder model, the coupling energy shows a similar behavior for increasing disorder

amounts than the inverse Urbach energy. This means that the inverse Urbach en-

ergy is somehow related to the coupling strength. However, the correct relation still

has to be found. It also means that the model for calculating the coupling strengths

is valid.
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In the next part of this thesis, the optical properties of the 1D quasiperiodic struc-

tures were analyzed. The gold wires in these structures were placed on the coor-

dinates of Fibonacci-like sequences. It was found that the main waveguide mode

resonance is excited at an energy position corresponding to the average wire distance.

The amplitude of the waveguide mode resonance is dependent on the difference be-

tween the long and the short wire distance. All Fourier peaks can be explained

by using the cut formalism, which is a method to construct the Fibonacci-like se-

quences. By using this approach and by varying the construction parameters, the

Fourier peaks can be tuned to the desired energy position with the desired ampli-

tude. It is also possible to change the ratio between different Fourier peaks.

For the last part of the 1D structures, the Cantor and Cantor-6 samples were fab-

ricated and measured. In contrast to the Cantor samples, much more waveguide

mode can be excited for the Cantor-6 samples. However, all excited resonances are

located around the average wire distance for the Cantor as well as for the Cantor-6

samples. Additionally, one of the excited resonances always corresponds to the short

wire distance. For an increased difference between the long wire distance and the

short wire distance, all the peaks are spread over a larger energy range. However, a

detailed analysis of the Fourier transform could not be found.

Next, the optical properties of the 2D structures were analyzed for normally incident

light on the sample. The gold disks of these samples were elliptically shaped and

rotated by the angle γ around the sample x axis. The eccentricity and γ were

different for the three samples. In comparison to the 1D structures, there are some

important differences. First, a particle plasmon can be excited for a polarization

along one of the main axes. For a polarization angle between the directions of

the two main axes, both particle plasmons can be excited, however with a reduced

amplitude of both particle plasmon resonances. Second, waveguide modes can be

excited in all directions of the x -y-plane provided that a Fourier component exists in

that direction. In each of these directions, a TE as well as a TM polarized wave can

be excited depending on the incident polarization. For linearly polarized light along

the sample x axis, it is expected that only a TM wave can propagate in x direction

and only a TE wave in y direction. However, for elliptically shaped particles rotated

by the angle γ around the sample x axis, also a TE wave propagating in x direction

and a TM wave propagating in y direction are present. This can only be explained

by the assumption that the excited particle plasmons along the main axes are able

to excite waveguide modes by themselves.

Based on these findings, a theoretical model was developed in order to be able to

model the optical properties of such 2D metallic photonic crystals. The directions
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in which the waveguide modes propagate are given by the 2D Fourier transform

of the structure coordinates. Not only those waveguide modes are considered that

are directly excited by the incident light, but also those waveguide modes that are

due to the particle plasmons along the main axes of the particles. These plasmon

waveguide modes are dependent on the material as well as on the shape and the size

of the particle. The summation of the different components determines the weighting

factor for a TE or a TM wave propagating in a specific direction. The waveguide

dispersion relations for a TE as well as a TM wave assign the corresponding energies

to the k values of the Fourier peaks. The amplitudes of the resonances are dependent

on the amplitudes of the Fourier peaks as well as on the weighting factor. A Fano

model is used to calculate the spectra including all amplitudes and energies of the

resonances present in the specific energy range. Since the waveguide mode and

the particle plasmon are coupled to each other when they are in the same energy

range, the phase of a waveguide mode changes when it is shifted through the particle

plasmon. If the waveguide mode has the same energy as the particle plasmon, its

phase is shifted by π when compared to an undisturbed waveguide mode. Therefore,

the phase of the waveguide mode changes for all waves propagating in the waveguide

layer depending on its energy. With all these considerations, it is possible to model

the optical properties of such 2D systems. This was done for all samples and a good

agreement was achieved between the measured and the modeled spectra.

The 2D structures were also measured for oblique light incidence. Depending on the

polarization as well as on the azimuthal and polar angle of the incident light, the

waveguide modes split into several modes. Due to the higher rotational symmetry

of the quasiperiodic structures, the splitting results in more modes when compared

to the periodic structures. In the normal incidence spectra of the square lattice

sample, it cannot be seen that waveguide modes can be excited by the electric field

vectors of the particle plasmons. However, three resonances are visible for oblique

light incidence while it was expected to only see one or two resonances. This is again

proof that the plasmon waveguide modes are present in the system.

The theoretical model presented for normally incident light was then expanded for

oblique light incidence. The basic concepts were the same, however, some parts

had to be adjusted. The propagation vectors of the waveguide modes are now

dependent on the vector addition of the wave vector parallel to the sample surface

kxy and the reciprocal lattice vectors of the structure [32, 80]. One has to keep

in mind that each Fourier component as well as each kxy component is dependent

on the energy of the incident wave leading to a different kxy value for each Fourier

component. Additionally, the propagation direction of a TE wave differs from that of
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a TM wave for the same Fourier component. Due to the oblique incidence of light,

also the weighting factors of the specific waveguide modes have to be modified.

However, after the amplitudes of the waves and their corresponding energies have

been identified, the optical properties can be modeled using the same Fano model

as for normal incidence. The comparison between the measured and the modeled

spectra again provides a good agreement.

In the last part of this thesis, the above presented model was used to predict the

absorption enhancement of plasmonic solar cells. A silicon solar cell was assumed

with either a quasicrystalline or a periodic arrangement of gold disks on top. In

order to provide reasonable results, the transmittance and reflectance spectra of the

periodic structure was first calculated for normal incidence by using an S-matrix

approach. The Fano modeled spectra were then fit to the corresponding S-matrix

spectra in order to obtain reasonable fitting parameters. Due to the more isotropic

band structure of the solar cell with the quasiperiodic tiling, it was found that the

absorption enhancement is more constant throughout the day as well as over the

year when compared to the periodic tiling. Also the total enhancement factor was

slightly higher in the quasiperiodic case.

Based on the results of this thesis, interesting future tasks can be studied. The

investigations of the 1D disordered samples showed a connection between the Urbach

energy and the coupling constant. It was found that the Urbach energy is strongly

dependent on the grating period of the metallic photonic crystal. However, the

correct relation between the two parameters is not known up to now.

It was predicted in this thesis that plasmonic solar cells possessing a quasiperiodic

arrangement of the metal disks provide a more constant absorption enhancement

throughout the day and over the year when compared to periodic structures. How-

ever, such solar cells have to be fabricated in order to verify the predictions. Fur-

thermore, this solar cell design has not been optimized so far. Changing the solar

cell parameters could lead to an improved absorption of the incident light. It might

be also advantageous to place the metal disks underneath the silicon layer. An anti-

reflection layer on top was also not considered in the presented solar cell design.

The efficiency of these solar cells should also be compared to the efficiency of a solar

cell with a totally disordered metal disk arrangement. For this purpose it would be

also interesting to understand the behavior of 2D frozen-phonon disordered metallic

photonic crystals. A detailed study of different disorder amounts should be made.

The disorder should not only be changed in x direction as it has been done in Ref.

[80], it should be allowed to vary in all directions.



142 Conclusion and outlook

Another research area related to the plasmonic solar cells are LEDs. It is also possi-

ble to use a quasicrystalline arrangement to improve the light extraction efficiency.

These structures can be studied in future research as well.
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