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Abstract

The class of Complex Metallic Alloys (CMAs) is interesting for its wide range of
physical properties. There are materials that exhibit high hardness at low density or
good corrosion resistance, which is important for technological applications. Other
compounds are superconductors, have strong anisotropic transport coefficients or
exhibit a novel magnetic memory effect. The theoretical investigation of CMAs
is often very challenging because of their inherent complexity and large unit cells
with up to several thousand atoms. Molecular dynamics simulations with classical
interaction potentials are well suited for this task – they can handle hundreds of
thousands of atoms in reasonable time. Such simulations can provide insight into
static and dynamic processes at finite temperatures on an atomistic level.
The accuracy of these simulations depends strongly on the quality of the employed

interaction potentials. To generate physically relevant potentials the force-matching
method can be applied. A computer code called potfit has been developed at the
Institute for Theoretical and Applied Physics (ITAP) especially for this task. It
uses a large database of quantum-mechanically calculated reference data, forces
on individual atoms and cohesive energies, to generate effective potentials. The
parameters of the potential are optimized in such a way that the reference data are
reproduced as accurately as possible.
The potfit program has been greatly enhanced as part of this thesis. The opti-

mization of analytic potentials, new potential models as well as a new optimization
algorithm were implemented. Potentials for two different complex metallic alloy
systems have been generated and used to study their properties with molecular
dynamics simulations.
The first system is an approximant to the decagonal Al-Pd-Mn quasicrystal. A

potential which can reproduce the cohesive energy with high accuracy was gen-
erated. With the help of this potential a refinement of the experimentally poorly
determined structure model could be performed.

17



18 Abstract

The second class of potentials was fitted for intermetallic clathrate systems. They
have interesting thermoelectric properties which originate from their special struc-
ture. Silicon- and germanium-based clathrate potentials were derived and the influ-
ence of the complex structure on the thermal conductivity has been studied.



Effektive Potenziale zur numerischenUn-
tersuchung komplexer intermetallischer
Phasen

Zusammenfassung in deutscher Sprache

Einleitung

Mit der Entwicklung der Mikrochips in den 1950er Jahren und der Einführung
von Hochleistungsrechnern wurde die Simulation als weitere tragende Säule in
der physikalischen Forschung etabliert. Obwohl dieses Feld deutlich jünger ist als
die bereits bestehenden, Experimental- und theoretische Physik, wurden hier in
den letzten Jahrzehnten wertvolle Beiträge geleistet. Viele Entdeckungen in den
verschiedenen Teilgebieten waren nur mit der Hilfe von Computersimulationen
möglich. Vor allem in der statistischen Physik und der Quantenmechanik kann die
Simulation als Verbindung zwischen Theorie und Experiment angesehen werden.
Die äußerst komplexen theoretischen Modelle können häufig nur durch numerische
Verfahren berechnet werden. Dies ermöglicht anschließend einen Vergleich mit
experimentell verfügbaren Daten. Simulationen können dabei neue Modelle testen
oder bei der Interpretation neuer experimenteller Daten helfen.
Die Anwendungsgebiete von Computersimulationen sind dabei praktisch un-

begrenzt. Die Skala reicht von Simulationen auf (sub)atomarer Ebene, über ma-
kroskopische Systeme bis hin zum gesamten Universum. Obwohl diese Systeme
erhebliche Unterschiede aufweisen, ist die numerische Herangehensweise doch

19



20 Zusammenfassung in deutscher Sprache

recht ähnlich. Das zugrundeliegende physikalische Modell muss jeweils an die de-
terministische Natur des Computers angepasst werden. Dazu werden üblicherweise
die physikalischen Dimensionen wie Raum und Zeit diskretisiert. Anschließend
werden die physikalisch relevanten Gleichungen durch numerische Verfahren ge-
löst.
Das Thema dieser Arbeit sind atomistische Computersimulationen. Sie finden

in verschiedenen Forschungsrichtungen Anwendung, z.B. in den Materialwissen-
schaften, der Chemie und auch der Physik.
Hauptsächlich werden drei verschiedene Arten von Simulationen verwendet.

Die präziseste Methode basiert auf der Dichtefunktionaltheorie und berücksichtigt
sowohl die Elektronen als auch die Atomkerne auf quantenmechanischer Ebene.
Diese sehr aufwändigen Rechnungen können allerdings nur für kleine Systeme und
kurze Simulationszeiten durchgeführt werden.
Eine Näherung wird verwendet, um die Simulationen auch für größere Sys-

teme durchführen zu können. Die Tight-Binding-Methode benutzt Einteilchen-
Wellenfunktionen freier Atome, ähnlich der LCAOMethode. Dadurch wird sowohl
der Rechenaufwand, aber auch die Genauigkeit der Simulation deutlich reduziert.
Die älteste Simulationsmethode ist die Molekulardynamik (MD). Dabei werden

die Atome als Punktmassen idealisiert, die durch ein effektives Potenzial miteinan-
der wechselwirken. Mit dieser Vereinfachung können deutlich mehr Atome als mit
den vorhergehenden Methoden simuliert werden. Auf handelsüblichen Computern
sind so Simulationen mit mehreren Millionen Atomen in vertretbarer Zeit möglich.
Die Genauigkeit der Ergebnisse hängt dabei stark von den verwendeten Potenzialen
ab.
Mit MD Simulationen ist es möglich, neue Materialien zu untersuchen, die auf-

grund ihrer Komplexität für quantenmechanische Rechnungen nicht zugänglich
sind. Ein Beispiel dafür sind Quasikristalle, deren Kristallgitter aperiodisch ist,
was zu einer unendlich großen Einheitszelle führt. Aber auch einige periodische
Strukturen können einen hohen Grad an Komplexität aufweisen. In der Klasse der
komplexen metallischen Phasen gibt es Strukturen mit mehreren tausend Atomen
in einer Einheitszelle. Um diese oftmals stark ungeordneten Phasen zu untersuchen
können MD Simulationen eingesetzt werden.
Für physikalisch korrekte MD Simulationen werden präzise Potenziale benötigt.

Diese werden üblicherweise an einige experimentelle oder quantenmechanische
Daten angepasst. Für komplexe Systeme ist dies aber oft nicht möglich, da keine
Daten vorliegen und auch nicht ohne Weiteres berechnet werden können.
In einem Teil dieser Arbeit geht es um die Erzeugung physikalisch fundierter
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Potenziale für komplexe metallische Verbindungen. Dazu wird die Force-Matching-
Methode verwendet. Diese setzt nicht auf spezielle, experimentell oder quanten-
mechanisch bestimmte Größen. Statt dessen wird eine Vielzahl von quantenmecha-
nisch berechneten Kräften auf einzelne Atome benutzt, um ein effektives Potenzial
anzupassen. Durch die geeignete Wahl dieser Referenzdaten können effektive Po-
tenziale für komplexe Verbindungen mit mehreren Elementen entwickelt werden.
Das bereits vorhandene Programm potfit wurde dazu deutlich erweitert. Es wur-

den eine neue Potenzialform, ein neues Potenzialmodell sowie ein neues Optimie-
rungsverfahren implementiert. In dieser Arbeit werden die Vorgehensweise zur
Erstellung eines Potenzials erläutert und auch einige Anwendungen vorgestellt.

Die in englisch verfasste Arbeit ist in drei Teile gegliedert. Im ersten Teil geht
es um die theoretischen Grundlagen. Dabei werden die Strukturen der komple-
xen Verbindungen als auch deren Eigenschaften, wie z.B. die Thermoelektrizi-
tät, erläutert. Der zweite Teil beschäftigt sich mit den verwendeten numerischen
Methoden. Es werden die Grundlagen der quantenmechanischen Simulationen
dargelegt, die Molekulardynamik mit effektiven Potenzialen vorgestellt sowie die
Force-Matching-Methode und deren Implementierung geschildert. Im letzten Teil
werden die Ergebnisse, die mit den Potenzialen berechnet wurden, vorgestellt.

Theoretische Grundlagen

Komplexe metallische Phasen

Die Klasse der komplexen metallischen Phasen ist bereits seit Beginn des 20. Jahr-
hunderts bekannt. Trotzdem sind für viele physikalische Eigenschaften dieser Ver-
bindungen nur wenige Daten veröffentlicht. Das liegt zum einen an der Schwierig-
keit, Einkristalle in ausreichender Größe zu züchten. Zum anderen aber waren auch
die theoretischen Modelle und Methoden nicht ohne Weiteres für diese Systeme
anwendbar.
Komplexe metallische Phasen zeichnen sich durch drei charakteristische Eigen-

schaften aus. Sie haben eine große Einheitszelle mit hunderten oder tausenden von
Atomen; diese hat eine clusterbasierte Unterstruktur und enthält einen gewissen
Grad an Unordnung. Vor allem durch die Clusterstruktur und die Unordnung erge-
ben sich neue physikalische Phänomene etwa zur Plastizität (Metaversetzungen)
oder Ordnung-Unordnungs-Phasenübergänge.
Eine spezielle Form der komplexen Phasen bilden die Quasikristalle. Deren Kris-
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tallstruktur ist aperiodisch, was zu einer unendlich großen Einheitszelle führt. Viele
CMA Strukturen können als rationale Approximanten eines Quasikristalls ange-
sehen werden. Sie besitzen lokal eine ähnliche atomare Struktur, die sich jedoch
periodisch wiederholt. Für Approximanten können die etablierten Simulationsme-
thoden ohne große Anpassungen angewandt werden.
Für technologische Anwendungen sind Klathrate momentan von besonderem

Interesse. Dabei geht es vor allem um die Verwendung als Thermoelektrika, welche
aus Abwärme elektrische Energie gewinnen können. Die Klathratstruktur wurde
dabei zuerst bei Wassermolekülen unter hohem Druck gesehen, inzwischen jedoch
auch bei den Halbleiterelementen Silizium, Germanium und Zinn. Es gibt verschie-
dene Varianten dieser Struktur, die jedoch alle nach dem gleichen Prinzip aufgebaut
sind. Die Halbleiterelemente bilden zwei oder drei Arten von Käfigen, z.B. Dode-
kaeder und Tetrakaidekaeder für eine Typ I Struktur. Diese Käfige werden dann
raumfüllend angeordnet und bilden das Gerüst der Klathrate. Außerdem besteht
die Möglichkeit, ein weiteres Atom im Inneren eines jeden Käfigs zu platzieren
oder einzelne Gerüstatome durch Fremdatome zu ersetzen. Dadurch ergeben sich
vielfältige Möglichkeiten, die physikalischen Eigenschaften von Klathraten gezielt
zu verändern.

Thermoelektrika

Sowohl in der Industrie als auch in privaten Haushalten entsteht bei vielen Prozes-
sen Abwärme, die nicht genutzt wird. Oft liegt die Effizienz von Maschinen und
Anlagen deutlich unter 50%. Durch Rückgewinnung von Energie aus Abwärme
könnte der Nettoenergieverbrauch in vielen Bereichen deutlich reduziert werden.
Mit Thermoelektrika ist es möglich, thermische Energie in elektrische Energie um-
zuwandeln. Momentan liegt der Wirkungsgrad dieser Materialien bei etwa 10%,
eine Verbesserung ist Gegenstand vieler aktueller Forschungen.
Die historische Entwicklung ist in drei unterschiedlichen Zeitabschnitten erfolgt.

Zwischen 1820 und 1850 wurden die grundlegenden Effekte entdeckt und ma-
kroskopisch erklärt. Nach der Entwicklung der Thermodynamik und statistischen
Physik wurden in der Zeit von 1955 bis 1970 die meisten der bis heute verwen-
deten Materialien identifiziert. Bis zum Jahre 1995 gab es keine nennenswerte
Fortschritte, erst mit dem Konzept des Phononenglas-Elektronenkristalls wurde
die Forschung wieder intensiviert.
Die Effizienz eines Materials wird über die Figure of Merit definiert. Sie ist

proportional zur elektrischen Leitfähigkeit und antiproportional zur thermischen
Leitfähigkeit. Je größer diese Zahl ist, desto mehr Energie kann umgewandelt
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werden. Für eine möglichst große Figure of Merit sollte ein Material also eine hohe
elektrische und eine niedrige thermische Leitfähigkeit aufweisen. Das wird durch
das Konzept des Phononenglas-Elektronenkristalls beschrieben. Für Phononen,
die Träger des Wärmestroms, sollte das Material sich wie ein Glas verhalten, für
die Elektronen jedoch wie ein herkömmlicher Kristall.

Algorithmen und numerische Methoden

Computersimulationen haben in der Forschung und auch in der Industrie in den
letzten Jahrzehnten eine bedeutende Rolle eingenommen. Durch die immer weiter
wachsende Leistungsfähigkeit moderner Supercomputer können viele Messungen
und Experimente schon vorab simuliert werden, was Kosten sparen und mögliche
Fehlerquellen bereits frühzeitig aufdecken kann. Ein wesentlicher Teil dieser Ar-
beit basiert auf atomistischen Simulationen von Festkörpern. Dabei werden zwei
verschiedene Methoden eingesetzt, die quantenmechanische Ab-initio-Simulation
und die klassische Molekulardynamik.

Ab-initio-Simulationen

Die grundlegende Idee der Ab-initio-Simulationen ist es, das quantenmechanische
Vielteilchenproblem numerisch zu lösen. Aufgrund der unglaublichen Komplexität
ist dies aber nur im Rahmen gewisser Näherungen möglich. Die dabei wichtigste
ist die Dichtefunktionaltheorie; sie erlaubt es, das Problem auf die Berechnung
einer Elektronendichte umzuformulieren. Mit dem Hohenberg-Kohn Theorem
ist es anschließend möglich, alle physikalischen Eigenschaften eines Systems zu
bestimmen.
In der Praxis werden die Kohn-Sham Gleichungen selbstkonsistent gelöst, wobei

insbesondere das Austausch-Korrelationsfunktional Probleme bereitet. Mit Hilfe
verschiedener Näherungen sowie der Verwendung von Pseudopotenzialen kann
aber auch hier der benötigte Rechenaufwand reduziert werden.
Mit Ab-initio-Methoden lassen sich heutzutage Simulationen von periodischen

Systemenmitwenigen hundert Atomen durchführen. Auch dynamische Phänomene
können auf kleinen Zeitskalen untersucht werden.
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Molekulardynamik

Eine weitere Methode für Partikelsimulationen ist die Molekulardynamik. Um
Rechenzeit zu sparen, wird hier eine sehr drastische Näherung verwendet. Die Elek-
tronen werden nicht berücksichtigt und die Atome als Punktmassen angenommen,
die durch ein effektives Potenzial miteinander wechselwirken. Dadurch wird die
Präzision dieser Simulationen reduziert, die Anzahl der zu simulierenden Atome
jedoch erheblich vergrößert. Auf einem Desktopcomputer können dadurch Systeme
mit mehreren Millionen Teilchen simuliert werden.
Die entscheidende Komponente für die Genauigkeit molekulardynamischer Si-

mulationen sind die effektiven Potenziale. Können diese die Wechselwirkungen
zwischen den Atomen mit hinreichender Genauigkeit wiedergeben, sind die Resul-
tate oft nur wenig schlechter als Ab-initio-Simulationen. Während früher, aufgrund
mangelnder Rechenleistung, oft modellhafte Potenziale verwendet wurden, werden
heutzutage die Potenziale an experimentelle oder quantenmechanisch berechnete
Referenzdaten angepasst. Dabei werden sowohl Mehrkörperterme als auch rich-
tungsabhängige Wechselwirkungen erzeugt, die für die korrekte Beschreibung
vieler Festkörper benötigt werden.

Force-matching mit potfit

Um physikalisch möglichst präzise effektive Potenziale zu erzeugen, kann die
Force-Matching-Methode angewandt werden. Dabei werden die Parameter eines
Potenzials so optimiert, dass quantenmechanisch berechnete Referenzdaten mög-
lichst genau reproduziert werden können. In der Regel werden dazu die Kräfte auf
einzelne Atome, die kohäsive Energie sowie der Spannungstensor einer Struktur
benutzt, es können jedoch noch weitere physikalische Größen hinzugefügt werden.
Die Implementierung im Computerprogramm potfit umfasst drei verschiedene
Optimierungsalgorithmen, die sowohl tabellierte als auch analytische Potenziale
anpassen können.
Mit der Force-Matching-Methode können Potenziale für verschiedene Einsatz-

zwecke erzeugt werden. Sowohl durch die Wahl der verwendeten Referenzdaten
als auch durch die Gewichtung der einzelnen Daten ist es möglich, die Potenzia-
le zu spezialisieren. Dabei sollte auf jeden Fall darauf geachtet werden, dass die
resultierenden Potenziale nur begrenzt transferierbar sind.
Für diese Arbeit wurden ausschließlich analytische Potenziale erzeugt. Die da-

zu nötigen funktionalen Formen, als auch die Anpassungen im Programm potfit
werden ausführlich geschildert. Ein für die Erzeugung von Potenzialen äußerst
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wichtiger Punkt, die Validierung, wird detailliert erläutert.

Weitere Methoden & Programme

Zur Berechnung einiger physikalischer Eigenschaften ist der Einsatz von Zusatzsoft-
ware erforderlich. Dies ist insbesondere der Fall, wenn die Berechnung entweder
Informationen von verschiedenen Zeitschritten oder von mehreren Simulationen
benötigt. In dieser Arbeit ist das die Berechnung der thermischen Leitfähigkeit
sowie der phononischen Zustandsdichte und der Dispersionskurven.
Außerdem werden die grundlegend verschiedenen Methoden zur Bestimmung

der thermischen Leitfähigkeit diskutiert und verglichen.

Simulationen und Ergebnisse

Al-Pd-Mn

Das ternäre Al-Pd-Mn System bildet viele komplexe Strukturen, wovon einige eine
neue Art der Plastizität zeigen. In den Approximanten eines dekagonalen Quasikris-
talls, den ε-Phasen, wurde eine Metaversetzung beobachtet, deren innere Struktur
experimentell jedoch nur sehr ungenau bestimmt werden konnte. Zur numerischen
Beschreibung dieser Versetzung können aufgrund der Systemgröße keine quanten-
mechanischen Rechnungen verwendet werden. Mit Molekulardynamik hingegen
können sowohl die Struktur optimiert werden als auch deren Dynamik untersucht
werden.
Für die Referenzdaten zur Erzeugung eines effektiven Potenzials wurden ver-

wandte binäre Strukturen als auch theoretische Modellstrukturen verwendet. Um
die Tauglichkeit verschiedener analytischer Potenzialmodelle zu testen wurden drei
Potenziale angepasst, jeweils mit unterschiedlichen Funktionen. Dabei stellte sich
heraus, dass für EAM-Potenziale Oszillationen sowohl in der Paar- als auch der
Transferfunktion zu den besten Ergebnissen führen.
Die drei Potenzialmodelle wurden sowohl auf statische als auch dynamische

Eigenschaften hin untersucht. Die Abweichungen der Energie lagen dabei jeweils
im Bereich weniger meV/Atom, der für die thermodynamische Stabilität ausschlag-
gebende Abstand zur konvexen Hülle konnte jedoch nur von Modell III korrekt
wiedergegeben werden. Auch in den dynamischen Simulationen, der Bestimmung
der Schmelztemperatur sowie der elastischen Konstanten waren die Ergebnisse mit
diesem Potenzial am genauesten.
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Klathrate

Die Anwendung von Klathraten als Thermoelektrika ist seit Ende des 20. Jahrhun-
derts bekannt. Durch die niedrige thermische Leitfähigkeit ergibt sich eine hohe
Effizienz bei der Umwandlung von Wärme in eine Spannungsdifferenz. Die dazu
am besten geeigneten Materialien sind oft binäre oder ternäre Verbindungen mit
einem hohen Grad an Komplexität. Zur Untersuchung der thermischen Leitfähig-
keit von verschiedenen intermetallischen Klathraten wurden effektive Potenziale
erzeugt, die insbesondere die Gitterdynamik in diesen Systemen gut reproduzieren
können.
Für die Wechselwirkung der Gerüstatome wurden richtungsabhängige Potenziale

verwendet, um die gerichteten Bindungen in den tetraedrisch koordinierten Struk-
turen möglichst genau modellieren zu können. Die Referenzdaten zur Potenzialop-
timierung wurden quantenmechanischen Simulationen von einfachen Klathraten
entnommen. Der Schwerpunkt lag dabei auf den zwischenatomaren Kräften, die
für die Gitterdynamik verantwortlich sind. Die Energien und Spannungen wurden
ebenfalls berücksichtigt, allerdings nur mit einer geringen Gewichtung.
Die Potenzialerzeugung wurde in mehreren Stufen durchgeführt. Zuerst wurden

die Potenziale für die leeren Klathrate ohne Gastatome angepasst. Anschließend
wurden die binären Systeme zu den Referenzdaten hinzugefügt und die zusätzlich
benötigten Potenziale gefittet. Zur Validierung der erzeugten Potenziale wurden
sowohl die phononische Zustandsdichte als auch die Dispersionskurven berech-
net. Für einfache Strukturen konnten diese Daten auch mit Ab-initio-Rechnungen
verglichen werden. Bei komplexeren Strukturen war dies nicht immer möglich.
Die thermische Leitfähigkeit wurde sowohl für germanium- als auch silizium-

basierte Klathrate untersucht. Dabei wurden je drei Strukturen unterschiedlicher
Komplexität verwendet. Die leeren Käfige besitzen die größte Leitfähigkeit. Durch
die Gastatome, die in den Käfigen sitzen, werden Streuzentren für Phononen ge-
schaffen, die Leitfähigkeit dieser Systeme ist deutlich reduziert. Werden zusätzlich
noch einige der Gerüstatome durch Leerstellen ersetzt, kann die thermische Leitfä-
higkeit noch weiter verringert werden.

Zusammenfassung
Im Rahmen dieser Arbeit wurden effektive Potenziale für verschiedene komplexe
metallische Phasen erstellt. Das dazu verwendete Programm potfit wurde dabei
um einen Optimierungsalgorithmus und eine winkelabhängige Wechselwirkung



Zusammenfassung in deutscher Sprache 27

erweitert. Mit der eingesetzten Force-Matching-Methode können Potenziale für
Materialien erstellt werden, die bisher in MD Simulationen nicht zugänglich waren.
Für das ternäre Al-Pd-Mn wurden Potenziale speziell für die Strukturoptimie-

rung der ε-Phasen angepasst. Dabei wurde die Eignung verschiedener analytischer
Funktionen im EAM Potenzialmodell untersucht. Für Oszillationen sowohl in der
Paar- als auch Transferfunktion konnten dieAb-initio-Referenzwerte am genauesten
reproduziert werden.
Zur Untersuchung der thermischen Leitfähigkeit in Klathraten wurden richtungs-

abhängige Potenziale für germanium- und silizium-basierte Systeme erzeugt. Die
phononischen Zustandsdichten sowie die Phononendispersion konnten damit sehr
gut wiedergegeben werden, was für den thermischen Transport von besonderer
Bedeutung ist. Für beide Arten von Klathraten, Germanium und Silizium, wurden
jeweils drei Strukturen mit steigender Komplexität erzeugt und deren thermische
Leitfähigkeit mit der Green-Kubo-Methode simuliert. Dabei zeigte sich, dass mit
steigender Komplexität die Leitfähigkeit reduziert wird.
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Part I.

Theoretical background





Chapter 1:

Introduction

With the discovery of microchips in the 1950’s and the following introduction of
high performance computer systems the field of simulational physics was estab-
lished. While it is considerably younger than the two traditional fields, theory and
experiment, it has proven very valuable over the last decades. Many breakthroughs
in different areas were only possible with the aid of computer simulations. Es-
pecially for statistical mechanics and quantum mechanics it can be regarded as a
connection between theory and experiment. The complex theoretical models can be
solved by numerical calculations and then be compared with experimental results.
In this way a simulation can help test models or assist in the interpretation of new
experimental results.
The aspects of computer simulations can be manifold. From simulations on an

atomistic scale to macroscopic objects or even the whole universe, everything can
be treated with the appropriate methods. While the systems are vastly different, the
computational approaches are very similar. The underlying model has to be adapted
to the deterministic nature of computers. Usually this is done by discretizing the
physical dimensions like time and space. Afterwards the equations that govern the
behavior of the system are solved with numerical methods.
The field that is concerned with in this work is atomistic computer simulations.

They have a large scope of application in different research areas like materials
science, chemical engineering as well as physics. Many different aspects of matter
can be investigated, for example predicting properties of new materials or studying
macroscopic processes on an atomistic scale.
There are three different methods which are currently used for atomistic simu-

lations. The most accurate one is based on density functional theory. It accounts
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for both electrons and nuclei and solves the quantum mechanical equations within
some approximations. The accuracy of these so called ab initio methods, however,
comes with a tradeoff. Only small systems with periodic boundary conditions can
be simulated for short periods of time.
A simplified model is used for tight binding calculations. There single atom wave

functions of free atoms are calculated, similar to the linear combination of atomic
orbitals (LCAO) approach. When compared to ab initio calculations, tight binding
is usually less accurate but considerably faster and can handle more atoms.
The most basic atomistic simulation method is classical molecular dynamics.

The atoms are treated as point masses which interact through an effective potential
according to Newton’s laws. This simplification allows for the fast simulation of
many billion atoms for several nanoseconds on state of the art supercomputers.
Even on common desktop computers simulations of several hundred thousand
atoms can be run in feasible time. The results of these calculations strongly depend
on the quality of the interaction potentials.
With MD simulations it is possible to study new classes of materials, which have

previously been inaccessible due to their inherent complexity. The best example
for this are quasicrystals. Their crystal structure is aperiodic, i.e. the unit cell is
infinitely large. But also for some periodic crystals the lattice structure can be
complicated. Within the class of complex metallic alloys there are some structures
that have several thousand atoms in their unit cell. To study these often highly
disordered systems with computational methods, molecular dynamics simulations
can be employed.
An important aspect of MD calculations is the model for the interactions. Com-

monly used effective potentials are fitted to experimental data or ab initio calculated
parameters. For complex systems such data is often unavailable, the effective po-
tentials used are mostly model potentials with no physical justification.
The main part of this work deals with the generation of accurate potentials for

complex metallic alloys. This can be achieved with the force-matching method,
which dramatically increases the amount of reference data used in the fitting process.
The basic idea behind it is rather simple. Forces on individual atoms as well as
energies and stresses of different atomic structures are calculated with ab initio
methods. These values are then used as reference data for the potential fitting. The
combination of the appropriate ab initio reference data makes it possible to fit
potentials for complex systems containing more than a single chemical element.
The already existing implementation of the force-matching method in the pot-

fit code has been greatly enhanced with new features and potential models. The
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process of generating an effective potential is described and some applications for
complex metallic alloys are discussed.

The thesis is divided into three parts. The first part introduces the theoretical
basics. Complexmetallic alloys are characterized and an overview of thermoelectric
materials and their applications is given. The second part is about the algorithms
and numerical methods used in this work. Density functional theory, molecular
dynamics and force-matching are discussed in detail. In the last part the results
obtained with the effective potentials are reported.
Part of this work has been previously published in other publications by the

author, see List of publications, page 235.



34 Chapter 1 – Introduction



Chapter 2:

Complex metallic alloys

The crystal structure of metals often is surprisingly simple. Most of them have
either a face centered or body centered cubic unit cell containing only few atoms.
Their arrangement has been determined at the beginning of the 20th century by
X-ray diffraction. Because of their periodicity in real space they show a distinct
diffraction pattern with sharp Bragg peaks. A typical experimental image from a
diffraction experiment is shown in Fig. 2.1.
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Figure 2.1: Two diffraction patterns of different crystal structures. Left: Simu-
lated diffraction pattern of a bcc lattice. Right: Experimental diffraction
pattern of a natural quasicrystal. From [16].

While this is also true for many intermetallic phases, there are some alloys which
do not follow this rule. Maybe the most prominent one has been found by Pauling
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[91]. In 1923 he discovered a NaCd2 compound with so many Bragg peaks, that
he was unable to determine all atomic positions. 30 years later it turned out that
there were more than 1100 atoms sitting in a single unit cell.
This kind of complexity could not be handled by the methods available at that

time. Nowadays experimental and theoretical studies have become feasible with
the help of computers. A diffraction pattern with several thousand Bragg peaks
can be resolved quickly with the help of powerful numerical algorithms. Atomistic
simulations can provide new details on the structure and the dynamic behavior of
complex phases.
In the following section some common properties of these complex metallic

alloys will be discussed. The connection to quasicrystals is explained and clathrate
systems are introduced. They are both special subclasses of complex metallic alloys
which have been studied in detail for this work.

2.1 Properties
According to Urban and Feuerbacher [117], a complex metallic alloy can be
characterized by the following three attributes:

1. They have a large unit cell.

2. The unit cell has a cluster substructure.

3. There is inherent disorder on the atomic scale.

Large unit cell The most remarkable fact of CMAs, when compared to other
metallic alloys, is the number of atoms per unit cell. Common lattice types like
body-centered cubic, hexagonal close packed and face-centered cubic have 2, 2 and
4 atoms per unit cell, respectively. The amount of disorder in these systems is thus
very limited.
Over the last decades many different structures with several hundred atoms per

unit cell have been discovered. In 2009 a complex metallic alloy with more than
23 000 atoms per unit cell has been reported by Weber et al. [120]. Due to the
large number of atoms, different kinds of disorder can be found in these systems.
Some of these structures can be identified as rational approximants to quasicrys-

tals, which have an infinitely large unit cell. They are discussed in Sec. 2.2.
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Cluster substructure Understanding the crystal structure of CMAs on an atomic
level is often very difficult. Fortunately the atoms are usually arranged in clusters,
which in turn also arrange in regular patterns. Two of the most common cluster
types are the Mackay [76] and the Bergman [14] cluster. They are built from basic
polyhedra, like e.g. icosahedra or dodecahedra, which are packed into one another.
The exact structure of both, Mackay and Bergman cluster, is shown in Fig. 2.2.

(a) (b)

Figure 2.2: (a) The three innermost shells of a Mackay cluster: icosahedron
(red), icosidodecahedron (green), icosahedron (blue) containing 55 atoms.
(b) First three shells of the Bergman cluster: icosahedron (red), dodecahe-
dron (green) icosahedron (blue) containing 45 atoms. From [36].

The size of these clusters can differ notably from the size of a unit cell. As a
consequence interesting physical phenomena, like the metadislocations in the ε
phases of Al-Pd-Mn [35], can be found in various CMAs.

Inherent disorder Due to the big unit cells and the large number of atoms, there
can be disorder on different levels. The configurational disorder results from statis-
tically varying orientations of the inner shell with respect to the outer shells. This
type of disorder can also be created when the packing of the clusters is not perfectly
compatible, e.g. when the size of an inner shell distorts the atomic positions of the
outer shells. Chemical or substitutional disorder is created when different elements
can occupy certain lattice sites. This phenomenon is called fractional occupancy. If
there are geometrical constraints, partial site occupation can occur. The probability
to find an atom at that particular lattice site is smaller than 1 to prevent additional
defects. Finally split occupation can be found, which describes the case of two
nearby lattice sites of which only one can be occupied at a time.
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2.2 Quasicrystals
A very special subtype of complex metallic alloys are quasicrystals. They were
discovered in 1984 by Shechtman et al. [104]. In an X-ray diffraction pattern of
an Al-Mn alloy they observed fivefold symmetry, which is forbidden in periodic
crystals. The sharp Bragg peaks, however, indicated long-range order. It became
clear that this alloy had an icosahedral symmetry, incompatible with translational
periodic order. Something similar was already know from mathematics, where
Penrose [93] had discovered quasiperiodic tilings of the two-dimensional space.
Those also show long-range nonperiodic translational and orientational order with
a rotational symmetry incompatible with periodic translational order.

Figure 2.3: Scanning electron microscopy (SEM) micrograph showing an as-
grown single-grain i-Al-Pd-Re quasicrystal. The icosahedral symmetry
can be seen on a macroscopic scale. From [103].

The term quasicrystal was created by Levine and Steinhardt [75] to account
for the quasiperiodic translational order in these systems. In the last decades not
only icosahedral quasicrystals have been found, also octagonal, decagonal and
dodecagonal quasicrystals were reported. They are periodic in one direction and
aperiodic with eight-, ten- or twelve-fold symmetry in the plane perpendicular to
it. An experimental image of an icosahedral quasicrystal is shown in Fig. 2.3.
With their infinitely large unit cell quasicrystals can be regarded as a special type
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of complex metallic alloy. Many of them are aluminum-based alloys (Al-Ni-Co, Al-
Pd-Mn, Al-Cu-Fe, etc.) yet other compositions have also been discovered (Cd-Yb,
Zn-Mg-Sc, etc.). The region of the phase diagram where these quasicrystals are
stable is often very narrow. The neighboring phases usually are (complex) metallic
alloys.

2.2.1 Generating aperiodic structures
To describe the structure of quasicrystals an extension of the conventional crys-
tallography is necessary. A quasiperiodic pattern in d-dimensional space can be
generated from a higher-dimensional configuration space. A common approach
is the cut-and-project formalism. It uses an acceptance stripe to project a subset
of the higher dimensional lattice into a lower-dimensional space. An example to
generate a one-dimensional quasiperiodic sequence is shown in Fig. 2.4.

θ = cot−1(τ )S
L

S
L

L
S

L
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Figure 2.4: Creating a one-dimensional aperiodic sequence with the cut-and-
project formalism. The acceptance stripe is shown in orange.

All points of the two-dimensional lattice that are within the acceptance stripe
are projected onto a straight line. Two different distances are created, a short one
S (marked red) and a long one L (marked blue). The sequence created with the
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cut-and-project method is quasiperiodic if the hyperspace is cut by an irrational
gradient and periodic for an rational one. For the two-dimensional example in
Fig. 2.4, the resulting quasiperiodic pattern is a part of the well-known Fibonacci
sequence. There are many other ways of generating it, in the end it can be reduced
to the sequence 1, 1, 2, 3, 5, 8, 13, 21, . . ., the Fibonacci numbers Fn.
Another important property of quasicrystals is their relation to the golden mean

τ . It can be calculated as τ = 2 cos(π/10) = (1 +
√

5)/2 and has the numeric
value of approx. 1.618 03. Several ratios of the geometry of icosahedra, pentagons
and decagons are related to τ . Many tilings and diffraction patterns can be in- or
deflated by integer powers of τ , to yield patterns indistinguishable from the original.

2.2.2 Periodic approximants

In the literature many approximants of quasicrystals are studied. They are periodic
structures, which can also be derived from the higher-dimensional description of
the quasiperiodic lattice. Their unit cell is well-defined and finite with a similar
local atomic arrangement as in the real quasicrystal.
To generate a Fibonacci quasicrystal with the cut-and-project formalism, the

hyperspace has to be cut at an angle of θ = cot−1(τ). If the golden mean is
approximated by the ratio of two integer numbers, p/q, the resulting structure will
be periodic. The integers p and q are chosen as two subsequent Fibonacci numbers,
because of the following property:

lim
n→∞

Fn
Fn−1

= τ. (2.1)

The periodic structures are then referred to as 1/1-, 2/1- or higher approximants of
a quasicrystal.

Goldman and Kelton [44] give several reasons for studying approximants and
why this can be helpful.

1. Quasicrystals typically form at compositions near those of
crystalline approximant phases.

2. The approximants provide a well-defined starting point for
models of the local atomic structure of quasicrystals

3. Both quasicrystalline and approximant phases have similar
physical properties.
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The properties of the approximants may be easier to understand theoretically,
since all of the calculational mechanisms established for periodic crystals may be
applied more readily to them.
All of the points mentioned above are obviously related. From the similarity of the

composition a similarity in the local atomic arrangements and physical properties
can be deduced. Approximants are important structures for studying the formation
and stability of quasicrystals. They can be handled by tools developed for periodic
structures, e.g. band-structure and phonon spectra calculations.

2.3 Clathrate systems

Another subtype of complex metallic alloys are clathrate systems. They can be
characterized as host-guest structures, where guest atoms are trapped in the frame-
work of the host structure. The first report of a clathrate system is from 1811 by
Davy [28]. He discovered a hydrated clathrate system formed by chlorine and
water molecules. The structure of these systems was solved with X-ray diffraction
data by Pauling [92] in 1935. There are different structural modifications of hy-
drated clathrates, which are denoted by the roman letters I–VII. They differ in the
structure of the cages in the framework, more details can be found in Karttunen
et al. [57] and Fig. 2.5.
It was discovered that hydrated clathrates occur naturally at the ocean floor and

the ice-cores of the Arctic and Antarctic. Under high pressure water can form the
clathrate structure and trap gases such as methane or carbon dioxide. The interesting
fact about these structures is their very low thermal conductivity when compared to
ice. This fact makes them an interesting candidate for large scale hydrate deposits
as an energy source.
The clathrate structure was also found for semiconducting group 14 elements. In

1965 Kasper et al. [58] discovered type I and II clathrates in the silicon-sodium
system. Cros et al. [27] noted the fact, that clathrates are interesting because they
are semiconductors with an adjustable band gap as early as 1970. The potential
application as thermoelectric materials, however, was not considered for a long time.
In 1998 Nolas et al. [87], using the “phonon glass – electron crystal” concept of
Slack and Rowe [105], proposed clathrates as potential thermoelectric materials.
That marked the beginning of the popularity of clathrates in thermoelectricity. This
subject is covered in detail in chapter 3, the structural details of clathrates are
discussed in the following subsection.
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Figure 2.5: Different types of clathrate frameworks with the corresponding
space group. The basic building blocks are given in the same color on the
bottom. [αb] stands for a cage with b α-membered rings, (Mx) gives the
total number of atoms. From [57].
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2.3.1 Structure of type I clathrates
The clathrates investigated in this work are all of the type I crystal structure. They
can contain up to 54 atoms per unit cell. The space group is Pm3̄n, with the
Wyckoff positions given in Tab. 2.1. Different modifications of this structure have
been found in experiment. There is an empty structure, Ge46, where only the host
framework is present. In binary systems the cages are filled with guest atoms. An
example is the Ba8Si46 structure. For ternary systems some atoms of the framework
are then being replaced with a third element, e.g. in Ba8Ge40Au6.

Multiplicity Wyckoff letter Site symmetry
2 a m3̄. inside small cage
6 d 4̄m.2 inside large cage
6 c 4̄m.2 host framework
16 i .3. host framework
24 k m.. host framework

Table 2.1: Crystallographic lattice sites in type I clathrate systems.

The basic building blocks of type I clathrates are two cage-like structures. A
dodecahedron and a tetrakaidecahedron formed by 20 and 24 atoms, respectively.
They are shown as red and teal atoms in Fig. 2.6. A single unit cell contains two
dodecahedra and six tetrakaidecahedra. The dodecahedra a form a bcc lattice, while
the tetrakaidecahedra fill the remaining gaps. This is illustrated in Fig. 2.7.

Figure 2.6: Cage structures in the framework of type I clathrates. Left: Do-
decahedron formed by 20 red atoms. The central atom is shown in green.
Right: Tetrakaidecahedron formed by 24 red and teal atoms.
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In a binary system, the cages are filled. The most typical guest atoms are alkali,
alkaline-earth and halogen atoms. Depending on the size of the framework atoms,
it is necessary to introduce vacancies to stabilize the system. This is the case for
Ba8Ge4323. Three of the germanium atoms sitting on the 6c position are replaced
by vacancies. This position is shared between four adjacent tetrakaidecahedra, it is
shown in teal in Fig. 2.6 and 2.7.
The type I clathrate structure has also been found in ternary alloys. For the

germanium system this are in particular Ba8ZnxGe46−x−y2y [4], Ba8Au5.3Ge40.7
[122] and Ba8Ni3.5Ge42.120.4 [86]. As for the binary systems, vacancies are
required to stabilize the structure.

Figure 2.7: Spatial arrangement of the two types of clusters in a type I clathrate.
The left and central cells show the arrangement of the six tetrakaidecahedra
and two dodecahedra in the unit cell, respectively. The entire unit cell with
both types of cages is shown on the righthand side.

The silicon-based type I clathrate systems have been investigated very thor-
oughly because of their superconducting properties [53]. Especially the clathrates
Ba8TMxSi46−x (with TM =Au, Ag, Cu) have shown promising results. A clathrate
I structure where different atoms occupy the different cages was reported by Böhme
et al. [18]. In the Na2Ba6Si46 structure the dodecahedra host a sodium atom while
the tetrakaidecahedra host a barium atom.

2.3.2 Structure of type II clathrates
The first intermetallic type II clathrate structure was reported by Guloy et al.
[47] in 2006. Like the type I clathrates, their framework consists of tetrahedrally
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coordinated group 14 atoms, which are arranged in two cages. The dodecahedron
[512] cage, made up from 20 atoms is the same as in type I. Instead of the 24 atom
tetrakaidecahedron a 28 atom hexakaidecahedron [51264] is found. Each unit cell
contains 16 dodecahedra and 8 hexakaidecahedra. These cages allow for 24 guest
atoms, giving rise to the formula 224Ge136.
Each hexakaidecahedron is surrounded by 16 dodecahedra, forming a super-

tetrahedron (Fig. 2.8). The edges of this tetrahedron are aligned along the face
diagonals of the cubic unit cell.

Figure 2.8: Sixteen dodecahedra in a type II clathrate structure. They form a
super-tetrahedron, whose edges run parallel to the face diagonal of the unit
cell. From [47].

Besides the germanium structure, type II clathrates were also discovered with
silicon frameworks. The NaxSi136 (0 ≤ x ≤ 24) structure was reported in 1965 by
Kasper et al. [58]. Due to the lack of single crystal samples the physical properties
could only be measured for microcrystalline specimens. In 2010 the first single crys-
tal measurements were reported by Beekman et al. [12]. With special techniques
it is now possible to create an almost empty Si clathrate NaxSi136 (x < 1).
The applications for type II clathrate system, however, differ from the type I struc-

tures. The thermal conductivity is higher, so the overall thermoelectric efficiency
is lower. The type II clathrates have also been investigated in theory and shown
interesting optical properties, making them promising materials for optoelectronic
devices [1].
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Chapter 3:

Thermoelectric materials

In 2010 the world energy consumption was about 363EJ1. While it is unlikely that
this value will decrease in the foreseeable future, alternative ways of reducing the
net energy consumption have to be investigated. Besides making processes more
energy efficient, the recovery of energy from waste heat is of great interest in many
different fields of applications.

Space Heating
41%

Refrigeration
5%

Lighting and
Appliances
26%

Water Heating
20%

Air Conditioning
8%

Figure 3.1:Domestic energy consumption in the United States in 2005. Source:
U.S. Energy Information Administration,Residential Energy Consumption
Survey 2005.

In the industrialized part of the world, there are usually four major sectors con-
suming energy. The largest is industry, followed by transportation, residential and
1according to Key World Energy Statistics 2012 of the International Energy Agency,
http://www.iea.org/publications/freepublications/publication/kwes.pdf

47

http://www.iea.org/publications/freepublications/publication/kwes.pdf


48 Chapter 3 – Thermoelectric materials

commercial use. The domestic energy consumption is shown in detail in Fig. 3.1.
Almost 75% of the energy is used for heating or cooling, one quarter for lighting
and other appliances. In industry a large part is required for mechanical processes
as well as heating or cooling.
The maximum efficiency for any thermodynamic process is given by the Carnot

efficiency. It is defined as

ηCarnot = 1− Tc
Th
, (3.1)

where Tc and Th are the lowest and highest temperatures occurring in the process.
In every day work cycles this efficiency is never reached. The energy efficiency for
mechanical processes is usually in the range of 0.1 to 0.5, for heating it is a little
better, ranging from 0.3 to 0.8. This means that often only a small fraction of the
energy is used and most of it is lost due to various effects.
With thermoelectric materials it is possible to convert a temperature gradient into

an electric voltage and vice versa. Using these materials to recover electric energy
from waste heat, the net energy consumption could be dramatically reduced. The
problem with these materials is that they have a very low efficiency of about 10%.
One aspect of recent research is finding thermoelectric materials with a higher
efficiency. Another approach tries to manipulate the underlying physical properties
of currently used materials to achieve a better conversion ratio.
In this chapter the basic principles of thermoelectric materials are presented.

The different properties like electric and thermal conductivity are discussed and
some examples for recent advances in the field are given. A more comprehensive
introduction as well as a review on thermoelectrics is given by Nolas et al. [88].

3.1 History and technological applications
The development of thermoelectric materials happened during three distinct peri-
ods of time. In the decades from 1820 to 1850 the basic effects were discovered.
Macroscopic explanations were found and their application in thermometry was
recognized. For about 80 years there was no real progress. In the late 1930s the
microscopic processes were understood and new materials were discovered. Most
of today’s thermoelectrics were developed in the late 1950s and 1960s. The devel-
opment of the thermoelectric efficiency for this period is shown in Fig. 3.2.
The latest period of thermoelectric research started in the 1990s, when new com-
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Figure 3.2: Development of the figure of merit of thermoelectric materials
near room temperature during the 20th century. Adapted from [88].

pounds like skutterudites and clathrates were identified as possible thermoelectric
materials. The recent activities concentrate on systems that can be characterized
with the “phonon glass–electron crystal” (PGEC) concept of Slack and Rowe
[105].

Established materials

Before the latest research period in the 1990s, different compounds have been used
for thermoelectric refrigeration. The most simple structure is bismuth telluride
(Bi2Te3) with the space groupD5

3d [70]. It is also indicated in Fig. 3.2. The proper-
ties have been measured in great detail for both n- and p-type materials. Although
it is not the best thermoelectric material, it is still of interest for the compounds it
forms.
The two structures antimony telluride (Sb2Te3) and bismuth selenide (Bi2Se3)

are not as good thermoelectric materials as Bi2Te3. However, they both have the
same crystal structure as bismuth telluride. The addition of one or two to Bi2Te3
can greatly improve the thermoelectric properties.
There is complete solid solubility among the three compounds Bi2Te3, Sb2Te3

and Bi2Se3. A complete study of this pseudoternary system has not been attempted.
This is because the best p-type material has a composition close to the Bi2−xSbxTe3
pseudobinary system and the best n-type material is close to the Bi2Te3−ySey
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pseudobinary system. The thermoelectric efficiency of these materials is still very
low, yet about 50% higher than for simple alloys (cf. Fig. 3.2).
Other systems that have shown promising results are the bismuth and bismuth

with antimony systems. Their thermoelectric efficiency is slightly worse than the
previously described materials. However, if they are subjected to a magnetic field,
the efficiency can be increased up to a factor of 2. This is a distinct disadvantage,
because the strength of the magnetic field has to be in the order of 1T.
One of the first materials that was studied during the revival of interest in the

middle of the twentieth century was lead telluride (PbTe). It has a higher melting
temperature than Bi2Te3, 923 ◦C compared to 585 ◦C. At room temperature the
thermoelectric efficiency is lower than for Bi2Te3, but at higher temperatures it
eventually becomes superior. As for the bismuth systems it is preferable to use solid
solutions rather than simple compounds. Alloys can be formed by substituting tin
for lead or by substituting sulfur or selenium for tellurium.
Another system that has a comparable thermoelectric efficiency is the so-called

TAGS system. It stands for alloys containing the elements Te, Ag, Ge and Sb.
They are essentially alloys between the compounds AgSbTe2 and GeTe and closely
related to the lead telluride system.
Since neither silicon nor germanium have properties, that yield good thermoelec-

tric devices, it is surprising that solid solutions between the two elements form
alloys which can be used for thermoelectric applications. This is mainly due to
the significant reduction of the lattice thermal conductivity, which is about one
order of magnitude smaller for the alloy when compared to the single elements.
Their thermoelectric efficiency, however, is only comparable to the bismuth and
lead systems at temperatures above 1000K.

3.2 Thermoelectric effects
The general term thermoelectric effects usually comprises three effects. In 1821
Thomas Seebeck discovered, that a compass needle is deflected by a metal to which
a thermal gradient is applied. He had two metal rods which were connected at
both ends. If the contacts had different temperatures, a magnetic field was created.
He therefore called the effect “thermomagnetic”. The magnetic field, however,
was only created by the induced current in the metals. This mistake was later
corrected by Ørsted, who coined the term “thermoelectricity”. The effect to convert
a temperature gradient into an electric voltage was named after it’s discoverer, the
Seebeck effect.
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The inverse effect was discovered by Jean Peltier in 1834. If an electric current
runs over the contact of two metals, heat is created. Depending on the sign of the
current this heat can be either created or consumed. A simple explanation for this
effect can be found with the band theory of solids. The chemical potentials of the
two metals at the junction are aligned, which leads to an energy difference in the
conduction bands in the two metals. Electrons which cross the junction either have
to gain or lose energy to enter the other band. This energy is taken from or stored
in phonon modes, which heat up or cool down the junction.
The third effect, called the Thomson effect, was observed in in 1851 by Lord

Kelvin. All current-carrying conductors, except for superconductors, with a tem-
perature difference between two points either absorb or emit heat.

W X

a

b b

Y Z

Figure 3.3: Schematic drawing of a basic thermocouple. It consists of two
different materials a and b, which are connected at the two points W and
X. The voltage is measured at the contact points Y and Z. Adapted from
[88].

A basic thermoelectric circuit is shown in Fig. 3.3. There all three mentioned
effects can be observed. The Seebeck, Peltier and Thomson coefficients α, Π and τ ,
respectively, can be defined like this. Two different metals, a and b, have junctions
at W and X. If a temperature difference is created between these two points, a
voltage V can be measured between the points Y and Z. The Seebeck coefficient
is then defined as

αab =
dV
dT

. (3.2)

The Peltier coefficient Π relates the heat Q, which is dissipated at the junctions, to
the current I ,

Q = ΠabI. (3.3)
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If a current is flowing and a temperature gradient is present, then there is also heat
generated or absorbedwithin the thermocouple becauseα is temperature-dependent.
The gradient of the heat current is given by

dQ
ds

= τI
dT
ds
, (3.4)

where s is a spatial coordinate and τ the Thomson coefficient.

3.3 Figure of Merit
The performance of a thermoelectric material is measured by the figure of merit
Z. It is defined as

Z =
α2σ

κL + κe
, (3.5)

where α is the Seebeck coefficient, σ the electric conductivity and κL,e the thermal
conductivity of the lattice and the electrons, respectively. The figure of merit has
the dimension of K−1. It is common to multiply it with an absolute temperature T
to yield the dimensionless number ZT .
The higher ZT for a specific material is, the greater the thermoelectric efficiency

is. For the common thermoelectric materials as described in Sec. 3.1 a ZT value of
0.5 to 1.5 can be found. For special materials, the generally desired threshold value
of 2 has been reached. In 2001 Venkatasubramanian et al. [118] reported a ZT
value of about 2.4 at room temperature for a thin-film Bi2Te3/Sb2Te3 superlattice
device. With the use of nanostructuring and mesoscale modeling a ZT value of
∼ 2.2 at 915K could be reached by Biswas et al. [17] for a bulk material in 2012.
Clathrate structures also have ZT values in the range of 0.5 to 1.5. One of the

best materials is Ba8Ga16Ge30 with ZT = 1.35 at 900K. An overview of several
clathrate thermoelectrics is given by Kleinke [61].
The challenging fact about the optimization of the ZT value is that the quan-

tities given in Eq. (3.5) are not independent of one another. To achieve a high
thermopower, the Seebeck coefficient as well as the electric conductivity should
be high while the thermal conductivity should be as low as possible. In metals
there is usually a correlation between the electric and thermal conductivity. By
changing one, the other is also changed because of the physical principles of the
conduction processes. This lead to the “phonon glass–electron crystal” concept
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[105]. To yield a high ZT value a material should behave like a glass for phonons
and a crystal for electrons.
The following subsections will give brief introductions into the transport coeffi-

cients. More detailed explanations are given in Nolas et al. [88].

3.3.1 Thermal conductivity
The conduction of heat in a solid is based on two processes. The electrons and
the lattice contribute in different amounts, depending on the temperature. For
thermoelectric devices the lattice part is the interesting one. The electronic part
of the thermal conductivity is closely related to the electric conductivity and the
Seebeck coefficient. To get a highZT value, the lattice part, κL, should be as low as
possible. In the following the mechanism of the lattice heat transport is discussed.
From the kinetic gas theory the following approximation for the thermal conduc-

tivity can be found:

κ =
1

3
Cvl, (3.6)

where C is the heat capacity per unit volume, v the average particle velocity and
l the mean free path of a particle between collisions. This result was first applied
by Debye to describe thermal conductivity in dielectric solids, with C as the heat
capacity of the phonons, v the phonon velocity, and l the phonon mean free path.
The propagation of phonons in a crystal is restricted by two processes, the scat-

tering on defects and the scattering by other phonons. For purely harmonic forces
between atoms there are no phonon-phonon interactions and their mean free path l
would only be restricted by the crystal boundaries and defects. The thermal con-
ductivity in this case would be infinite. For anharmonic interactions there is a
phonon-phonon interaction, which leads to a finite mean free path and a finite
thermal conductivity.
At room temperature the thermal conductivity is dominated by phonon-phonon

scattering. The most important processes involve three phonons and can be of two
kinds. In the N-processes two phonons with wave vectors k1 and k2 interact to
form a third phonon with wave vector k3 such that

k1 + k2 = k3. (3.7)

The energy and momentum are conserved in this case, which only leads to a redis-
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tribution of the phonons but not to a thermal resistance. In Umklapp or U-processes
the momentum is not conserved. They do not have the form of Eq. (3.7) which
conserves the total momentumK. Instead

k1 + k2 = k3 +G, (3.8)

whereG is a reciprocal lattice vector. The sum of the two wave vectors k1 and k2
lies outside of the Brillouin zone. By subtracting a reciprocal lattice vectorG the
result is mapped back into the Brillouin zone. This is illustrated in Fig. 3.4.

kx

ky

k1

k3

k2

kx

ky

k1

k2

G

k3

Normal process Umklapp process

Figure 3.4: Two-dimensional representation of phonon-phonon scattering pro-
cesses. The gray square represents the first Brillouin zone. Left: N-process,
the total momentum is conserved. Right: U-process, the total momentum
is not conserved.

The scattering of phonons by defects is only important for very low temperatures.
The phonon mean free path l is then comparable to the dimensions of the crystal and
the phonons are scattered at the crystal boundaries. A discussion of the scattering
by the various point defects in crystals can also be found in [88].

3.3.2 Electric conductivity
The basic concept behind the electric conductivity is the band theory of solids.
According to quantum theory the energy levels of electrons in a solid are band-like,
which are separated from each other by forbidden zones. All charge carriers in
the so-called conduction band can contribute to the transport of electric current.
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In a perfectly periodic crystal the solution of the wave equation for an electron
are Bloch waves. The electrons can move freely within the crystal, there are only
certain restrictions to their energy levels and wave vectors.
The transport properties however do not depend on the concentration of charge

carriers. This would lead to an infinite value for a perfectly periodic potential. The
electric resistivity depends mainly on the scattering of the charge carriers. At ele-
vated temperature the main source of scattering are phonons, for low temperatures
it is the impurities and the defects.
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Part II.

Algorithms and numerical methods





Chapter 4:

Ab initio simulations

After the discovery of the atomistic structure of matter at the beginning of the 20th
century the stage was set for the formulation of the laws of quantummechanics. This
theory takes the existence of electrons and nuclei into account and allows for precise
predictions of physical phenomena. About one century later, a theoretical approach
for efficient computational methods that can treat a system of many electrons and
nuclei is, however, still a great challenge.
After a short historical overview of the development of quantum theory and the

different theoretical approaches to a quantum many-body system, several important
concepts like density functional theory, pseudopotentials and basis functions will be
introduced. This part will loosely follow the book of Martin [77], which provides
many more details on all of these subjects. At the end of the chapter, the VASP
code and the algorithms used therein will be presented.

4.1 History
The evolution of quantum theory started in the 1890s with the discovery of the
electron by Lorentz, Zeeman and Thomson. They all predicted charged particles
with a very small mass within the atoms. The corresponding positive mass, the
proton, was first seen by Rutherford in 1911 in his famous scattering experiment of
alpha particles. The atomic model of Bohr from 1913 tried to explain the stability of
atoms by only allowing a discrete set of levels for electrons. Even though his model
had some fundamental flaws, it inspired many famous physicists like Schrödinger,
Heisenberg and de Broglie and finally led to the theory of quantum mechanics.

59
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A very important steps was the introduction of the wave-particle duality. Einstein
postulated this already in 1905 for light waves or photons and de Broglie generalized
it for all particles in 1924. It relates the wavelength λ of a particle to its momentum
p by

λ =
h

p
,

with h being Planck’s constant. Based on this theory, Schrödinger generalized
the concept of particle waves in 1926. He found the equation for the propagation
of these waves – the Schrödinger equation – which allows for the mathematical
description of a quantum system. It can be obtained with a simple correspondence
rule from the Hamilton function of the related classical system. The Schrödinger
equation is the basic element of the wave formulation of quantum mechanics.
A different notation for quantum mechanics, the matrix formulation, had been

found byHeisenberg, Born and Jordan one year before. Schrödinger could show that
the wave and matrix formulations are equivalent. A generalization to the quantum
theory we know today was done by Dirac shortly afterwards. He introduced the
Bra-Ket notation, which is used as a standard way of representing quantum states
in an abstract way. It represents the wavefunction or any other states of a quantum
system with vectors in Hilbert space and allows for calculations without specifying
a concrete basis.
In the 1920s and ’30s many basic principles of quantum mechanics were dis-

covered. Heisenbergs uncertainty principle, the exclusion principle of Pauli, the
Fermi-Dirac and Bose-Einstein statistics and the symmetry or antisymmetry of the
wavefunction of identical particles. Together with the formulation of relativistic
quantum mechanics and the laws of statistical mechanics, these principles form the
basis of all modern theories of atoms, molecules and condensed matter.
Over the course of the 20th century there were also great efforts made in develop-

ing accurate and fast algorithms to solve quantummechanical problems numerically.
The currently used methods are presented in sections 4.2 to 4.4.
The outlook for the future of ab initio simulations is very promising. With ever in-

creasing computer power and new and improved algorithms, the number of possible
scenarios for quantum mechanical calculations will be growing steadily. Especially
with the possibility of finite-temperature and non-equilibrium simulations, which
are non-trivial in an ab initio framework, these methods could be applied to a
multitude of currently inaccessible problems.
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4.2 The quantum many-body problem

In quantum mechanics the operator for the total energy is the Hamiltonian. For a
system of electrons and nuclei it can be written as

Ĥ = ĤNN + Ĥee + ĤNe. (4.1)

There are three contributions with the indices N for nuclei and e for electrons.
The first term in (4.1) represents the kinetic energy and the interaction of the nuclei:

ĤNN = −
∑
α

~2

2Mα
∇2
α +

1

2

∑
α,β
α 6=β

ZαZβe
2

|Rα −Rβ |
. (4.2)

Upper case and greek subscript letters are used to indicate nuclei, lower case and
latin subscripts for electrons. The second term, Ĥee, is equivalent to the first one,
except it describes electrons.

Ĥee = −
∑
i

~2

2m
∇2
i +

1

2

∑
i,j
i 6=j

e2

|ri − rj |
(4.3)

The last term represents the interaction between the electrons and the nuclei:

ĤNe = −
∑
α

∑
i

Zαe
2

|ri −Rα|
. (4.4)

The ground state of a non-relativistic quantum system can be calculated with the
time-independent Schrödinger equation,

ĤΨ(ri,Rα) = EΨ(ri,Rα), (4.5)

where the many-body wavefunction

Ψ(ri,Rα) ≡ Ψ(r1, . . . , rn,R1, . . . ,RN )

depends on the coordinates of the n electrons and theN nuclei. The time evolution
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of the eigenstates of Eq. (4.5) is then given by Ψe−i(E/~)t.
Solving the Schrödinger equation for the Hamiltonian given in Eq. (4.1) is not

possible. Even for small systems containing only a few atoms the complexity of
this problem is far beyond the capabilities of any currently available computer. For
a single oxygen atom with eight electrons the amount of data is already incredibly
large. Assuming 10 bytes are required to store a single value of the many-body
wavefunction at a discrete point in space, the storage capacity needed for the entire
function can be calculated. For a 10×10×10 grid about 1024 bytes are needed,
which could be stored on a trillion 1TB hard drives.
The quantum many-body problem is thus only solvable within some approxima-

tions.

The Born-Oppenheimer approximation

The Born-Oppenheimer or adiabatic approximation is a very fundamental part of
most theoretical approaches to the quantum many-body problem. It makes use of
the fact, that the mass of the electrons is much smaller than the mass of the nuclei.
Therefore the term for the kinetic energy of the nuclei is “small” when compared to
the electron. The Born-Oppenheimer approximation can be thought of in different
ways:

• The nuclei are decoupled from the electrons
• The electrons follow the motion of the nuclei adiabatically
• There is no exchange of energy between nuclei and electrons

As a consequence the first term in Eq. (4.2) can be neglected and the nuclei are
considered as frozen at the positions {Rα}. The Schrödinger equation (4.5) can
then be written asĤee + ĤNe +

1

2

∑
α,β

ZαZβe
2

|Rα −Rβ |

φ = εφ. (4.6)

The wavefunction φ and the energy ε depend on the positions of the nuclei only as
parameters

φ = φ(ri, {Rα}) and ε = ε({Rα}). (4.7)

The ε({Rα}) can be identified as a potential energy of the nuclei.
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Rephrasing Eq. (4.5) yields[
−
∑
α

~2

2Mα
∇2
α + ε({Rα})

]
ϕ = E∗ϕ, (4.8)

where ϕ = ϕ(Rα) is the wave function of the nuclei. The energy E∗ is the total
energyE from Eq. (4.5). Using this approach, the wavefunction Ψ can be separated
into a part for the nuclei and a part for the electrons:

Ψ(ri,Rα) = φ(ri, {Rα}) · ϕ(Rα). (4.9)

Ignoring the nuclear kinetic energy, the Hamiltonian for the electrons can then
be written as

Ĥ = T̂ + V̂ext + V̂int + EII. (4.10)

The operator for the kinetic energy of the electrons is

T̂ = −
∑
i

~2

2m
∇2
i ,

V̂ext is the potential acting on the electrons due to the nuclei,

V̂ext =
∑
i,α

Vα(|ri −Rα|),

and V̂int is the electron-electron interaction,

V̂int =
1

2

∑
i 6=j

e2

|ri − rj |
.

The final term EII in Eq. (4.10) is the interaction of the nuclei with each other
and also includes terms that contribute to the total energy of the system. The effect
of the nuclei upon the electrons is put into an effective external potential for the
electrons, V̂ext. In this way, the Hamiltonian is still valid for pseudopotentials (see
Sec. 4.3.3) or other external fields.
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The variational principle

The expectation value of an operator Ô for an eigenstate is given by the time
independent expression

〈Ô〉 =
〈Ψ|Ô|Ψ〉
〈Ψ|Ψ〉

, (4.11)

which involves an integral over all coordinates. For the total energy, which is rep-
resented by the Hamiltonian from equation (4.10), this yields

E =
〈Ψ|Ĥ|Ψ〉
〈Ψ|Ψ〉

≡ 〈Ĥ〉 = 〈T̂ 〉+ 〈V̂int〉+

∫
dr Vext(r)n(r) + EII (4.12)

The expectation value of the external potential has been explicitly written as an
integral over the particle density n(r), defined as

n(r) =
〈Ψ|n̂(r)|Ψ〉
〈Ψ|Ψ〉

, where n̂(r) =
∑
i

δ(r − ri). (4.13)

The nucleus-nucleus term EII is important for total energy calculations, for the
electronic structure, i.e. the wavefunctions, it is only a classical additive term.
The basic task of ab initio simulation programs is finding the eigenstates of

the many-body Hamiltonian. These eigenstates are stationary points of the energy
expression Eq. (4.12). Using the variational principle this can be expressed as

δ
[
〈Ψ|Ĥ|Ψ〉 − E (〈Ψ|Ψ〉 − 1)

]
= 0, (4.14)

where the orthonormality of the wavefunction (〈Ψ|Ψ〉 = 1) is ensured with a
Lagrange multiplier. This is equivalent to the Rayleigh-Ritz variation method.
The ground state wavefunction Ψ0 can thus be obtained by minimizing the total

energy with respect to all parameters in Ψ({ri}).

4.3 Density functional theory
The basic consequence of density functional theory is that any property of a system
of many interacting particles can be calculated as a functional of the ground state
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densityn0(r). It has become the primary tool for calculating the electronic structure
of condensed matter and is increasingly popular for molecules and other finite
systems.
The modern formulation of density functional theory was given by Hohenberg

and Kohn [54] in 1964. They proved that the density of the particles can be con-
sidered a “basic variable”, from which all properties of the systems are unique
functionals. This concept was extended to finite temperature canonical and grand
canonical ensembles in 1965 by Mermin [79]. In the same year the work of Kohn
and Sham [62] was published, which is the basis of most modern approaches to
calculating the electronic structure of atoms, molecules and condensed matter.
The approach of Hohenberg and Kohn is to formulate density functional the-

ory as an exact theory of a many-body system. This formalism can be applied to
any system of interacting particles in an external potential Vext(r), especially to
electrons and fixed nuclei, where the Hamiltonian can be written as

Ĥ = − ~2

2me

∑
i

∇2
i +

∑
i

Vext(ri) +
1

2

∑
i 6=j

e2

|ri − rj |
. (4.15)

The basis are the following two theorems [77], which can be proven very eas-
ily [54]:

Theorem I: For any system of interacting particles in an external potential Vext(r),
the potential Vext(r) is determined uniquely, except for a constant, by the ground
state particle density n0(r).

As a conclusion of this theorem, the Hamiltonian is fully determined, except
for a constant shift of the energy. Thus the many-body wavefunction is also fully
determined for all ground and excited states. This means that all properties of the
system are completely determined simply be the ground state density n0(r).

Theorem II: A universal functional for the energy E[n] in terms of the density
n(r) can be defined, valid for any external potential Vext(r). For any particular
Vext(r), the exact ground state energy is the global minimum value of this
functional, and the density n(r) that minimizes the functional is the exact
ground state density n0(r).

This implies, that the functional E[n] is sufficient to determine the exact ground
state energy and density. This only holds for ground states, for excited states requires
additional information, such as the free-energy functional [79].
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The total energy functional for a system of interacting particles is given by

EHK[n] = T [n] + Eint[n] +

∫
dr Vext(r)n(r) + EII (4.16)

≡ FHK[n] +

∫
dr Vext(r)n(r) + EII, (4.17)

which can be derived from Eq. (4.10). The functional FHK[n] includes all internal
energies, potential and kinetic, of the interacting electron system,

FHK[n] = T [n] + Eint[n]. (4.18)

The Hohenberg-Kohn theorems however are not enough to perform electron
structure calculations. An instruction on how to determine the energy functional
E[n] is required, which was given only one year later.

4.3.1 The Kohn-Sham equations

In 1965 Kohn and Sham proposed an ansatz, that is the most widely used for elec-
tronic structure calculations [62]. Instead of using the original many-body problem,
they solved an auxiliary independent-particle problem. Using a self-consistent
method, the Kohn-Sham approach involves independent particles but an interacting
density.
The ansatz assumes that the density of the ground state of the original interact-

ing system is equal to that of some chosen non-interacting system. This leads to
independent-particle equations for the non-interacting system. They can be solved
exactly with numerical methods, the complicated many-body terms are incorpo-
rated into an exchange-correlation functional of the density. It can be shown that the
accuracy of the results for this auxiliary system depends only on the approximation
for the exchange-correlation functional.
The Kohn-Sham equations are based on the total energy functional of the Ho-

henberg-Kohn theorem 4.17. The ground state energy functional is rewritten in the
form

EKS = TS [n] +

∫
dr Vext(r)n(r) + EHartree[n] + EII + EXC[n], (4.19)

with the independent-particle kinetic energy TS and the classical Coulomb interac-
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tion energy of the electron density n(r) with itself,

EHartree[n] =
1

2

∫
dr dr ′

n(r)n(r′)

|r − r′|
, (4.20)

known as the Hartree energy.
All many-body effects of exchange and correlation in Eq. (4.19) are grouped into

the exchange-correlation energy EXC. It can be written in the form

EXC[n] = 〈T̂ 〉 − TS [n] + 〈V̂int〉 − EHartree[n]. (4.21)

Applying the variational principle leads to the Kohn-Sham Schrödinger-like
equations:

(HKS − εi)ψi(r) = 0, (4.22)

where the εi are the eigenvalues and HKS is the effective Hamiltonian

HKS(r) = − ~2

2m
∇2 + VKS(r), (4.23)

with

VKS(r) = Vext(r) +
δEHartree

δn(r)
+
δEXC

δn(r)

= Vext(r) + VHartree(r) + VXC(r). (4.24)

If the exchange-correlation potential VXC were known, these equations would
lead to the exact ground state density and energy for the interacting system. The
advantage of this approach is, that the remaining functionalEXC[n] can be expressed
as a local or nearly local functional of the density. The long range Hartree terms
and the independent-particle kinetic energies are separated out. This means that
the energy EXC can be expressed in the form

EXC[n] =

∫
dr n(r)εXC([n], r), (4.25)

where εXC([n], r) is an energy per electron at point r that depends only upon the
density n(r) in some neighborhood of point r.
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4.3.2 Functionals for exchange and correlation
The crucial quantity in the Kohn-Sham approach is the exchange-correlation energy,
expressed as a functional of the density EXC[n]. There are different approaches
on how to choose an appropriate functional, the two most popular being the lo-
cal density approximation (LDA) and the generalized-gradient approximation
(GGA). Recent developments in the field also use non-local formulations like
orbital-dependent functionals.

Local density approximation

The idea for the LDA is very simple. It was already presented by Kohn and Sham
in their original publication. Solids are often well described as a homogeneous
electron gas. The exchange-correlation energy is then simply an integral over all
space where the exchange-correlation energy density at each point is the same as
in a homogeneous electron gas with that density,

ELDA
XC [n] =

∫
dr n(r)εhomXC (n(r)). (4.26)

Despite of this approximation the LDA yields reasonable results for a wide range of
solids. It is implemented in most modern computer codes and has lead to improved
functionals, like GGA.

Generalized-gradient approximation

Anatural approach to improve the results of the LDA for inhomogeneous densities is
the incorporation of the gradient. The “gradient expansion approximation” (GEA)
was already proposed by Kohn and Sham in the original paper and realized by
Herman et al. [52] in 1969. The form

EXC[n] =

∫
dr n(r)fXC(n(r),∇n(r),∇2n(r)) (4.27)

however has some drawbacks. The first order derivatives often worsen the result,
while second order terms may have divergences. The basic problem is that gradients
in real materials are so large that the expansion breaks down.
To deal with these problems the generalized-gradient approximation (GGA)

was developed. It splits the exchange-correlation energy density εXC into the local
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exchange energy of the homogeneous gas and a dimensionless gradient-dependent
part FXC,

EGGA
XC [n] =

∫
dr n(r)εXC(n(r),∇n(r), . . .)

≡
∫
dr n(r)εhomX (n)FXC(n(r),∇n(r), . . .). (4.28)

The functional form of the FXC term is rather complicated. It is usually written
as an expansion, for which the coefficients have to be determined from training
data or from mathematical constraints. The most common parametrizations for the
GGA are BLYP [11, 71], PW91 [95] and PBE [94].

Advanced and hybrid functionals

Besides the basic local density formulations LDA andGGA there also are some non-
local approaches. That are the average density approach (ADA) and the weighted
density approximation (WDA). The results with these functionals are superior in
certain situations. A general comparison of local and non-local functionals has not
yet been performed.
A common issue of the Kohn-Sham approach is that many materials with lo-

calized or strongly interacting electrons cause problems. Usually transition metal
oxides as well as rare earth elements and compounds are difficult to deal with.
Different methods have been developed to incorporate effects that are important in
these systems. In particular the SIC and LDA+U approach are used.
SIC stands for “self-interaction corrections” and tries to correct for the unphysical

self-interaction in many functionals for exchange and correlationEXC. The LDA+U
methods use the regular local density calculations LDA or GGA and couple it with
an additional orbital-dependent interaction. Its purpose is to shift the localized
orbits relative to the other orbits, to correct errors known to be large in usual LDA
and GGA calculations.
Another class of functionals are called “hybrid” because they are a combination of

orbital-dependent Hartree-Fock and an explicit density functional. For the accuracy
of the energy these functionals provide the best results.
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4.3.3 Pseudopotentials
One of the most expensive parts of electronic structure calculations is the treat-
ment of the core electrons. These tightly bound electrons have a strongly localized
wavefunction, which can vary on short distances. For numerical calculations that
is very unfavorable. To reduce the efforts needed for the core electrons the concept
of pseudopotentials was established. The idea is to replace the strong Coulomb
potential of the nucleus and the effects of the tightly bound core electrons by an
effective ionic potential that acts on the valence electrons.

Frozen core approximation

The motivation for the introduction of pseudopotentials is the frozen core approxi-
mation. It assumes that the core electrons do not participate in chemical bonding
or other electronic properties. Only the valence electrons have an overlap with
electrons from other atoms. The inner shells can thus be treated as frozen and their
wavefunctions be calculated independently from the many-body system. This can
be done either by replacing the inner shells with an effective potential, like for most
pseudopotential methods, or by using pseudopotential operators but retaining the
full core wavefunctions, like in the projector augmented wave (PAW) approach.

Formal justification for pseudopotentials

A short proof for the justification of pseudopotentials, which also gives some insight
into their construction, shall be given here. It uses the ansatz

|Ψ〉 = |φ〉+
∑
n

cn|χn〉, (4.29)

where |Ψ〉 is the true wavefunction, |φ〉 the pseudo wavefunction and |χn〉 are the
core wavefunctions. The core and the true wavefunctions need to be orthogonal,
from which one can deduce

0 = 〈χn|Ψ〉 = 〈χn|φ〉+ cn ⇒ cn = −〈χn|φ〉, (4.30)

and |Ψ〉 = |ψ〉 −
∑
n

〈χn|φ〉|χn〉. (4.31)
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The Schrödinger equation then yields

Ĥ|Ψ〉 = Ĥ|φ〉 −
∑
n

Ĥ|χn〉︸ ︷︷ ︸
En|χn〉

〈χn|φ〉 = E|Ψ〉 = E|φ〉 − E
∑
n

|χn〉〈χn|φ〉.

(4.32)

Rearranging these terms leads to{
Ĥ +

∑
n

(E − En)|χn〉〈χn|

}
︸ ︷︷ ︸

pseudopotential Hamiltonian

|φ〉 = E|φ〉, (4.33)

where E is the exact eigenvalue of the true wave function Ψ. Solving this equation
in a self-consistent way, the pseudo wavefunction as well as the correct energy
values can be obtained.
The basic idea of pseudopotentials is illustrated in Fig. 4.1. For distances smaller

than a certain cutoff radius rc the real potential is replaced by the pseudopotential
Vpseudo. The real wavefunction, which has several knots in the core region, is then
replaced by a pseudo wavefunction without any knots. For distances greater than
rc, the all electron wavefunction and the pseudo wavefunction are identical.
The important property, which must be conserved by the pseudopotential, is the

phase shift δl(ε). The index l stands for the angular momentum of the scattered
wavefunction and ε for its energy. The scattering properties of a localized spherical
potential can be formulated in terms of this phase shift. The scattering cross-section
and all properties of the wavefunction outside the localized region are determined
by it.
By choosing a potential with more desirable properties, which can reproduce

the phase shift up to a modulo of 2πn, the numerical effort can be reduced greatly.
This does not change the properties of the wavefunctions outside of the scattering
region, they are invariant for such phase shifts.

Different approaches for pseudopotentials

The first ideas on how to effectively describe electron scattering from electrons were
published in the 1930s by Fermi and coworkers. A first application of pseudopoten-
tials to solids was presented by Hellmann [50] in 1935. The orthogonalized plane
waves (OPWs) method of Herring was the basis for the pseudopotential research
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Figure 4.1: Schematic representation of pseudopotentials and the correspond-
ing wavefunctions.

in the 1950s. It yielded accurate descriptions which led to the basic understanding
of many properties of sp-bonded metals and semiconductors. In modern computer
codes usually there are several different approaches to pseudopotentials available.
They are briefly discussed in the next paragraphs.

Norm-conserving pseudopotentials (NC-PP) are the basis for most modern
pseudopotential calculations. In 1979 Hamann et al. published a list of require-
ments for a “good” pseudopotential [49]. It comprises the following points:

1. All-electron and pseudo valence eigenvalues agree for the chosen atomic
reference configuration.

2. All-electron and pseudo valence wavefunctions agree beyond a chosen core
radius rc.

3. The logarithmic derivatives of the all-electron and pseudo wavefunctions
agree at rc.

4. The integrated charge inside rc for each wavefunction agrees (norm-conser-
vation).
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The points 1 and 2 are already clear from the definition of pseudopotentials. Point 3
follows from the requirement of a smooth potential, the dimensionless logarithmic
derivative D is defined as

Dl(ε, r) ≡ rψ′l(ε, r)/ψl(ε, r) = r
d

dr
lnψl(ε, r), (4.34)

where ψl is either the all-electron or pseudo wavefunction.
Inside of the core radius rc the integrated charge Ql has to be the same for the

all-electron (AE) and pseudo (PS) wavefunction,

Ql =

rc∫
0

dr r2
∣∣ψAEl ∣∣2 =

rc∫
0

dr r2
∣∣ψPSl ∣∣2 . (4.35)

This conservation ensures that the total charge in the core region is correct and that
the normalized pseudo-orbital is equal to the true orbital outside of rc. For solids
this means, that the pseudo-orbitals are correct between the atoms, in the region
where the bonding occurs.

Ultrasoft pseudopotentials (US-PP) are another approach to reducing the com-
putational efforts. Usually the goal of pseudopotentials is to have a function that
is as “smooth” as possible and yet accurate. One reason for this is that smooth
functions can be expressed with less Fourier components, which in turn require less
computational time. Increasing the “smoothness” of a pseudopotential is equivalent
to reducing the size of the Fourier space needed to describe the valence proper-
ties with a given accuracy. For norm-conserving pseudopotentials this accuracy is
usually reached by sacrificing some of the “smoothness”.
The ultrasoft pseudopotentials maintain the smoothness with a different approach.

The wavefunction is split up into two parts, a smooth function and an auxiliary func-
tion that represents the rapidly varying part close to the core. In cases where most
of the orbitals are tightly bound in the core region, US-PP can yield a huge speedup
compared to norm-conserving pseudopotentials, while keeping the accuracy the
same.

Projector augmented waves (PAW) are a general approach to the solution of
the electronic structure problem with the help of modern computational methods.
As the ultrasoft pseudopotentials it includes auxiliary localized functions. The full
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wavefunction in all space can be written as

|Ψ〉 = |Ψ̃〉+
∑
m

〈p̃m|Ψ̃〉
{
|Ψm〉 − |Ψ̃m〉

}
, (4.36)

where |Ψ〉 and |Ψ̃〉 are the all-electron and the smooth wavefunctions, respectively.
Both can be expanded into partial waves m in a sphere, |Ψ〉 =

∑
m cm|Ψm〉 =∑

m〈p̃m|Ψ̃〉|Ψm〉,which are the solution of the Schrödinger equation for an isolated
atom. The projection operators p̃ are defined by 〈p̃m|Ψ̃m′〉 = δmm′ .
With the PAW ansatz the full all-electron wavefunction is kept for the valence

part while the smoothness is also incorporated in the core region. Especially for
systems with both localized and delocalized valence states it can be beneficial. The
PAW method combines the accuracy of all-electron methods with the efficiency of
pseudopotentials. It is available in many commercial and free simulation packages.

4.4 Basis functions

For numerically calculating wave functions in a solid there are two approaches.
Plane waves are favorable in a periodic system while grid methods are usually
applied to finite systems. In modern computer codes both plane waves and grids
are used together with the fast Fourier transformation.
To expand a wavefunction in an infinite system an infinitely large basis set is

required. Using the Bloch theorem this problem can be solved. It states that in a
periodic solid all wavefunctions can be written as a product of a plane wave and a
lattice periodic function,

ψn(r) = exp(ikr)un(r), (4.37)

where

un(r + l) = un(r). (4.38)

The periodic function un is invariant under the translation of any lattice vector l. It
can be expanded into plane waves, using the reciprocal lattice vectorsG as wave
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vectors,

un(r) =
∑
G

cn,G exp(iGr), (4.39)

with G · l = 2πm, m ∈ Z. (4.40)

Therefore all electronic wave functions in a periodic solid can be written as sums
of plane waves,

ψn(r) =
∑
G

cn,k+G exp [i(k +G)r] . (4.41)

The Bloch theorem changes the problem of calculating an infinite number of
electronic wavefunctions to one of calculating a finite number of plane waves at an
infinite number of k points. Electronic states, however, are only allowed at certain k
points, determined by the boundary conditions. If the grid of these points is chosen
densely, the real wavefunction will agree almost perfectly with the interpolated one.
In this case the entire wavefunction can be represented by a discrete set of points
in k space. Methods to efficiently choose these special points in the Brillouin zone
were proposed, a popular one by Monkhorst and Pack [83].
The error originating from this k space sampling can always be reduced by using

a denser set of k points. The computational cost of performing a densely sampled
k space simulation can be significantly reduced with the k · p total-energy method
of Robertson and Payne [99]. It uses a coarse grid of k points and the k · p
perturbation theory to calculate the data for a dense grid.

4.4.1 Plane wave basis sets
Using Bloch’s theorem the wavefunctions at each k point can be expanded into
terms of a discrete plane wave set. This also requires an infinite set of plane waves.
The coefficients cn,k+G of those waves with a large kinetic energy (~2/2m)|k +
G|2 are usually small and can be neglected. Only the plane waves up to a certain
energy need to be considered, which leads to a limited number of plane wave basis
functions.
Introducing this cutoff energy leads to an error in the computed total energy.

The cutoff value should be increased until the calculated energy has converged. In
practice there are methods to perform calculations at lower cutoff energies with
only marginal errors.
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When plane waves are used as a basis set, the Kohn-Sham equations assume a
simple form. Substituting Eq. (4.41) into Eq. (4.22) and integrating over r yields
the matrix equation ∑

G′

HG,G′cn,k+G′ = εncn,k+G, (4.42)

where

HG,G′ =
~2

2m
|k +G|2δG,G′ + VKS(G−G′). (4.43)

The kinetic energy is diagonal in this form, the potential is described as the Fourier
transform. This matrix has to be solved for every k point with a diagonalization
method. The size of the matrix is determined by the choice of the cutoff energy
(~2/2m)|k+G|2 for the plane wave basis, it can be significantly reduced by using
pseudopotentials.

4.5 Physical properties from electronic
structure calculations

Calculating physical properties from electronic structure simulations can be a costly
problem. According to Newton’s laws the basic equations of motion for a set of
interacting nuclei are given by

MIR̈I = − ∂E

∂RI
= FI [{RJ}], (4.44)

where {RI} are the coordinates of the particles and E[{RI}] is their interaction
energy. These equations can be solved very efficiently with numerical algorithms
(cf. Sec. 5.2). In electronic structure calculations the forces on the nuclei, however,
also depend on the positions of the electrons.
To account for them, the Hellmann-Feynman theorem [41] can be used. It states

the the force on a nucleus is given strictly in terms of the charge density and does
not depend on the electron kinetic energy, exchange or correlation. From the general
expression of the total energy, Eq. (4.12), with the assumption of 〈Ψ|Ψ〉 = 1, one
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can calculate the force as

FI = − ∂E

∂RI
= −〈Ψ| ∂Ĥ

∂RI
|Ψ〉 − 〈 ∂Ψ

∂RI
|Ĥ|Ψ〉 − 〈Ψ|Ĥ| ∂Ψ

∂RI
〉 − ∂EII

∂RI
.

(4.45)

The middle two terms of the righthand side vanish for the fact that the exact
ground state solution is extremal with respect to all possible variations. The term
of Eq. (4.12) which depends on the position of the nucleiRI is the only one that
has to be accounted for:

FI = − ∂E

∂RI
= −

∫
dr n(r)

∂Vext(r)

∂RI
− ∂EII

∂RI
. (4.46)

Here n(r) is the unperturbed density and the nuclei are held fixed. It can be shown
that the right hand side of Eq. (4.46) is equal to the nuclear charge times the electric
field due to the electrons.
The force theorem can be generalized to calculate the derivative of the energy

with respect to any parameter λ in the Hamiltonian. This is also done using the
variational properties of the wavefunction. Additionally it can also be used to
calculate finite energy differences between any two state connected by a continuous
variation of the Hamiltonian. The general expression is given as

∂E

∂λ
= 〈Ψλ|

∂Ĥ

∂λ
|Ψλ〉 (4.47)

and

∆E =

λ2∫
λ1

dλ
∂E

∂λ
=

λ2∫
λ1

dλ〈Ψλ|
∂Ĥ

∂λ
|Ψλ〉. (4.48)

Using the force-theorem the calculations of interatomic forces can be done very
efficiently. This lead to the development of quantum molecular dynamics (QMD)
simulations. In 1985 Car and Parrinello [23] introduced a new algorithm that
unifies the two problems of the motion of the ions and of the electrons into a single
problem. This Car-Parinello algorithm solves the quantum electronic problem using
MD by adding a fictitious kinetic energy for the electronic states. Based on this
approach many forms of QMD simulations were developed.
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With the establishment of QMD simulations many dynamic properties of solids
could be calculated with high accuracy. This includes diffusion and transport pro-
cesses, mechanical properties as well as simple lattice dynamics.

4.6 VASP – The Vienna Ab initio Simulation Pa-
ckage
The Vienna Ab initio Simulation Package (VASP) is a widely used commercial
computer code for electronic structure calculations and quantum-mechanical molec-
ular dynamics, from first principles. It was created at the University of Vienna by
Kresse and Hafner [64–67]. All ab initio calculations performed for this work
were carried out with this program.
VASP is a plane wave DFT code which supports LDA, GGA and metaGGA

for the exchange-correlation energies. Different pseudopotential approaches, like
norm-conserving, ultrasoft or PAW potentials, can be used to solve the many-body
Kohn-Sham equations selfconsistently. The employed algorithms for matrix diag-
onalization are highly optimized and work very efficiently even with small plane
wave basis sets. Further increase in computational speed is gained by symmetry
analysis which reduces the number of degrees of freedom as much as possible.
The capabilities of VASP were greatly extended in the latest releases. It can

now perform Born-Oppenheimer molecular dynamics, structure relaxation as well
as transition state searches like the nudged elastic band method. Several physical
properties can be calculated directly by VASP without the need for external data
analysis tools. This includes phonons as well as elastic properties.
With the VASP code it is possible to run molecular dynamics simulations with

a few hundred atoms (≤ 500) on a ps timescale. This, however, requires several
weeks of computation time on regular computers, the bigger problem is the memory
requirement. Even for medium cutoff energies more than 50GB may be necessary
for such large systems.
A detailed review on the VASP package with comparisons to other, open-source

DFT codes, can be found in [48].
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Molecular dynamics simulations

A different approach to the simulation of solids is classical molecular dynamics
(MD). Compared to ab initio methods, it can treat particle numbers several mag-
nitudes larger in much shorter time. There obviously is a tradeoff, which for MD
simulations is the accuracy. After the discussion of the algorithms and atomic inter-
actions, the two different computer codes used in this work – IMD and LAMMPS
– will be shortly introduced and compared.

5.1 Basic assumptions
In Chapter 4, the Hamiltonian for a system of N interacting atoms was given in
Eq. (4.1). Applying the Born-Oppenheimer approximation is also possible in a
different way. For ab initio simulations the positions of the nuclei are kept fixed and
the electronic structure is calculated. Classical molecular dynamics uses the exactly
opposite approach. The contributions of the electrons are put into an effective
potential acting on the nuclei. This makes it possible to treat the atoms as simple
point masses.
With the further assumption that the classical description is correct, the Hamil-

tonianH can be written as a sum of kinetic and potential energy functions

H(q,p) = T (p) + V(q), (5.1)

which depend on the generalized coordinates q = (q1, . . . , qN ) and momenta
p = (p1, . . . ,pN ) of each atom. For MD simulations of condensed matter the
coordinates qi can be replaced by the Cartesian coordinates ri of the atoms.

79
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The kinetic energy T usually is of the simple form

T =

N∑
i=1

p2i
2mi

, (5.2)

withmi being the mass of atom i.
The potential energy V contains all the information on the interactions of the

particles. If V is well behaved, it is possible to obtain equations of motion fromH
which govern the time-evolution of the system. Generally these equations will be
of Newtonian form, but Hamiltonian or Lagrangian form are also possible.
A common approach for the potential energy V is to write it as a sum of terms

depending on the coordinates of single atoms, pairs of atoms, triplets of atoms,
etc.:

V =
∑
i

V1(ri) +
∑
i<j

V2(ri, rj) +
∑
i<j<k

V3(ri, rj , rk) + . . . . (5.3)

The notation i < j in the indices of the sums indicates summation over all pairs
i and j without counting any pair twice. The first term V1 represents an external
potential, like gravity or boundary conditions, acting on the particles. The remaining
terms represent particle interactions. The pair potential part, V2, as a rule depends
only on the magnitude of the pair separation rij = |rj − ri| and can be written
as V2(rij). Many effective potentials include the pair contribution in this simple
form. The triplet term, V3, is becoming more popular with increasing computer
power. It allows the calculation of directionally dependent forces, but computation
costs scale with O(N3). There are a few potentials which include this term, they
are explained in section 5.3.2. Four-body and higher terms in (5.3) are generally
assumed to be small compared to V2 and V3, so they are usually neglected.
This approximation for the potential energy has been used over the last decades

with great success. In the days of the first computers, using only the simple two-body
term V2 allowed for simulations with very limited resources. The understanding of
many properties and processes, provided by these calculations, was very useful and
could not have been acquired easily by other means. New results, however, have
indicated that this approximation is not appropriate for all systems and produces
results inconsistent with many experiments due to the neglect of many-body in-
teractions. Potentials that include the three-body term V3 can give more precise
predictions, especially for metals and semiconductors. But this comes at the cost
of a more complex calculation scheme and a more difficult way of defining and
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obtaining these multi-body interactions.
Comparing the molecular dynamics approach with ab initio simulations from

chapter 4, there are some fundamental differences. The time and length scales that
can be reached with MD calculations exceed ab initio simulations by at least two
orders of magnitude. A sketch, comparing these scales, is shown in Fig. 5.1.

time

length

1 fs 1 ps 1 ns 1 µs

1 nm

1 µm

1mm
Continuum models

Semi-empirical methods

DFT
methods

Figure 5.1: Time and length scales of different simulation methods. Ab initio
methods typically can cover system sizes up to a few nanometers and simu-
lation times up to a picosecond. The next group of simulation schemes are
the semi-empirical methods, which rely on some kind of parametrization
of the interactions. For even larger simulations, the atomistic representa-
tion of matter is replaced by a continuum. This is the basis for mesoscopic
methods and finite element methods (FEM).

Ab initio simulations can typically handle up to a thousand atoms on short
timescales. The semi-empirical methods, like MD calculations, can be used to
study billions of atoms for a few nanoseconds. The trade-off for the increased sys-
tem sizes and longer time scales is the precision of the simulations. The empirical
potentials that are used to approximate the potential energy V can never be as
accurate as calculations, which take the electronic structure into account. Another
problem for most of the potentials used in MD simulations is the transferability.
Theoretically the approximations for V should be valid for all possible scenarios. In
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reality, effective potentials only have a limited application range, where the simu-
lation results agree with experimental data. This can be special crystal structures
or temperature and pressure ranges. The problem of transferability is discussed in
more detail in Sec. 6.4.

5.2 Equations of motion

A fundamental part of every molecular dynamics simulation is the integration of the
equations of motion. There are several ways to obtain them, e.g. using the Lagrange
or Hamilton formalism known from classical mechanics. The most simple way is
to use Newton’s equations, which yield

mir̈i = Fi = −∇riV. (5.4)

The force Fi, acting on atom i, is given by the negative gradient of the potential
energy V with respect to its position ri. The second order differential equation can
be rephrased as two differential equations of first order:

ṙi(t) = pi(t)/mi (5.5a)
ṗi(t) = Fi(r1, . . . , rN ) = −∇riV(r1, . . . , rN ). (5.5b)

The explicit dependencies are given in equations (5.5) – it is assumed that the
potential energy V does not depend on the time and that the particles move without
friction. This, however, is not always the case, e.g. Langevin dynamics explicitly
includes a velocity term in (5.5b) to simulate Brownian motion.
To compute the trajectories of N particles, one has to solve either 3N second-

order differential equations, Eq. (5.4), or an equivalent set of 6N first-order dif-
ferential equations, Eq. (5.5). This problem is known as the classical initial value
problem. If the initial positions ri(t = 0) and velocities vi(t = 0) are given, the set
of first-order differential equations (5.5) can be used to calculate the time-evolution
of the system. To do this numerically, the problem has to be discretized in time.
The state of the system is then only defined at discrete time steps, equally spaced
by a distance τ : t = t0, t1, t2, . . . , where τ = tn+1− tn. In the following the short
notation

r(t) = (r1(t), r2(t), . . . , rN (t))T
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will be used. The equations of motion can then be written as

v̇(t) = a(x(t)) (5.6a)
ṙ(t) = v(t), (5.6b)

where a is the acceleration of the particles, defined as ai = Fi/m.

Integration schemes

There are many different methods to solve the differential equations (5.6) numeri-
cally. Not all of them can be used in molecular dynamics simulations for different
reasons. The two principal criteria by which the algorithms have to be chosen is
speed and numerical accuracy. Simple methods, like the Euler and Euler-Cromer
method, cannot be used because they do not conserve the total energy of a system.
The very popular Runge-Kutta methods do conserve the energy, however, they
need many function evaluations per step, which is not favorable for MD simula-
tions. Most of the simulation codes for classical molecular dynamics use the Verlet
algorithm or a slight modification called the leap frog method.
The Verlet method uses the centered 3-point formula for the second derivative to

get

ẍ(t) =
x(t+ τ) + x(t− τ)− 2x(t)

τ2
+O(τ2)

⇒ x(t+ τ) = 2x(t)− x(t− τ) + τ2a(x(t)) +O(τ4). (5.7)

Using also the centered 3-point formula for the velocity,

v(t) = ṙ(t) =
x(t+ τ)− x(t− τ)

2τ
+O(τ2), (5.8)

the Verlet method can be derived as

x(n+ 1) = 2x(n)− x(n− 1) + τ2a(n) (5.9a)

v(n) =
x(n+ 1)− x(n− 1)

2τ
. (5.9b)

This iteration scheme is not self-starting, to calculate x(1) the value of x(−1) is
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required. A simple solution is to use

x(−1) = x(0)− τv(0) +
τ2

2
a(0) (5.10)

which will reproduce the value of v(0), if put into equations (5.9).
This method has several advantages, which make it suitable for molecular dynam-

ics simulations. The discretization error for the positions is of O(τ4), the method
is time-reversible and has an upper bound for the error.
With a small modification, this method can be improved to yield better numeri-

cal performance and be less susceptible to round-off errors. For that purpose the
velocities are not defined at the time-steps tn, but at the half-steps at intermediate
times:

v(tn +
τ

2
) =

x(tn + τ)− x(tn)

τ
+O(τ2). (5.11)

Using the centered 3-point formula in the half steps, the velocity can be expressed
as

a(tn) = v̇(tn) =
v(tn + τ

2 )− v(tn − τ
2 )

τ
+O(τ2)

⇒ v(tn +
τ

2
) = v(tn −

τ

2
) + τa(tn) +O(τ3) (5.12)

From the definition in equation (5.11) x(n)− x(n− 1) = τv(n− 1
2 ), which can

be substituted into (5.9a):

x(n+ 1) = x(n) + τv(n− 1

2
) + τ2a(n)

= x(n) + τv(n+
1

2
). (5.13)

The leap frog scheme is thus

v(n+
1

2
) = v(n− 1

2
) + τa(n) (5.14a)

x(n+ 1) = x(n) + τv(n+
1

2
). (5.14b)
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To the start the iteration, a similar formula like (5.10) can be used:

v(−1

2
) = v(0)− 1

2
τa(0). (5.15)

The main advantage of this leap frog algorithm is that is suffers less from round-off
errors, as no τ2 term appears in (5.14a) when compared to (5.9a). This is important
because the time step in MD simulations may become small. Therefore, it is the
method of choice for running molecular dynamics simulations.

Thermodynamical ensembles

By using the leap frog scheme with no additional constraints, the simulations
are carried out in the microcanonical ensemble. The number of particles N , the
volume V of the system and the total energy E of the system are conserved. In
experimental situations this may not be the case, often the temperature is kept fixed
and the energy is changing. There are also situations where changing the volume
is necessary while keeping the pressure fixed. To reflect these constraints in MD
simulations, the integration schemes given in the previous subsection have to be
adjusted. In this subsection the most popular methods for simulating a constant
volume, constant temperature (NVT) and constant pressure, constant temperature
ensemble (NPT) will be briefly outlined.
To keep the temperature of a system constant, a heat bath much larger than the

system is used. The latter has a well-defined temperature and the smaller system has
no influence on the heat bath. Microscopically the heat is exchanged by collisions
of the particles with the wall that separates the system from the heat bath.
The temperature of a finite system is generally defined in the same way as for

infinite systems, it is proportional to the average of the kinetic energy per degree
of freedom. To impose a temperature on a system, rescaling the kinetic energies of
the particles is the most simple way. By rescaling the momenta pi of the particles
with

pi → pi

√
3/2(N − 1)kBT

Ekin
(5.16)

after each integration step, a system can be forced to a certain temperature. As
it turned out [89], this velocity rescaling induces deviations from the canonical
distribution and should therefore not be used.
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The Nosé-Hoover thermostat for simulating a NVT ensemble tries to introduce
the coupling to a heat bath via an external force acting on the particles. The equation
of motion (5.4) then depends explicitly on the velocities of the particles:

mir̈i = Fi(r)− ζ(r, ṙ)ṙi. (5.17)

Adding a friction term is the most direct way of affecting the kinetic energy of
the particles. The friction coefficient ζ can be determined from the differential
equation:

dζ
dt

=

(∑
i

v2i − 3NkBTD

)
/Q, (5.18)

whereQ is a parameter that determines the strength of the coupling to the heat bath
and TD is the desired temperature. This equation can be derived from the equations
of motion for a modified Hamiltonian, where the heat bath is explicitly introduced
into the system in the form of a single degree of freedom s. The Hamiltonian of
the total system is given as

H(q,p, s, ps) =
∑
i

p2

2mis2
+
∑
i<j

V(q) +
p2s
2Q

+ gkBT ln(s). (5.19)

g is the number of independent momentum-degrees of freedom of the system and
ps the canonical conjugate momentum of s. The derivation of the equations of
motions is shown in Thijssen [115].
A method to run simulations with constant temperature and constant pressure

was first presented by Andersen [5]. The basic idea is to incorporate the volume
into the equations of motion while scaling the spatial coordinates back to a unit
volume:

r′i = riV
1/3, (5.20)

where the prime denotes the real coordinate. This is also done for the momenta,

p′i = pi/(sV
1/3). (5.21)

The Hamiltonian (5.19) is extended by the volume V and the canonical momentum
pV . This can be thought of as the momentum of a piston closing the system. The
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two extra terms in the Hamiltonian are the ’potential energy’ PV and the ’kinetic
energy’ p2v/2W , where P is the pressure andW another parameter like Q.

H(q,p, s, ps, V, pV ) =
∑
i

p2i
2miV 2/3s2

+
∑
i<j

V(V 1/3q)

+
p2s
2Q

+ gkBT ln(s) + PV +
p2V
2W

. (5.22)

The corresponding equations of motion are also given in Thijssen [115].
Performing simulations in the NPT ensemble is not a trivial task. Tuning the

two free coupling parameters Q andW to the proper values can be very difficult.
There exist formulas for crude estimates of these properties, the temperature and
pressure, however, have to be monitored during the simulation. If the fluctuations
become too large, the parameters Q orW have to be adjusted and the simulation
has to be restarted.

5.3 Interatomic potentials

In Sec. 5.1 the potential energy V of a system of interacting particles is given as

V =
∑
i

V1(ri) +
∑
i<j

V2(ri, rj) +
∑
i<j<k

V3(ri, rj , rk) + . . . . (5.3)

For running molecular dynamics simulations, an appropriate form of this potential
energy has to be chosen. Over the last decades many different approaches have
been proposed, which, however, are often limited in their range of applicability.
A criterion to classify them is by the number of directly interacting particles. Po-
tentials that only use V2 and neglect any higher term contributions are called pair
interactions. The most common forms are discussed in Sec. 5.3.1. If the term V3 is
used in the potential form, they are referred to as three- or many-body interactions.
While theoretically there are potentials which use the V4 term, in practice this is
very unfeasible for mainly two reasons. It is very expensive to calculate four-body
interactions and also very difficult to obtain them. Many-body potentials are the
topic of Sec. 5.3.2.
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Tricks of the trade

To speed up molecular dynamics calculations, some clever methods can be used.
An important aspect is the size of the simulation box. On one hand it should be as
small as possible to keep the computational cost at a minimum. On the other hand
it has to be big enough to correctly reproduce the physical processes and allow
for reasonable statistical averages. The influence of the system size is discussed in
chapter 9 for the calculation of the thermal conductivity.
For the simulation of bulk properties, a system with periodic boundary conditions

(PBC) can be used. This reduces the computational load greatly because supercells
with the dimension of a few unit cells per side are enough for reliable simulations.
To use periodic boundary conditions, the simulation program has to create periodic
images for each surface and edge of the simulation box. In two dimensions these
are eight and in three dimensions 28. Particles that leave the simulation box on one
side are mapped back into the box on the opposite side. For 2D this is illustrated
in Fig. 5.2.
Using PBC effectively removes surfaces and allows for the calculation of an

infinite bulk system. It is also possible to apply other boundary conditions like
rigid boundaries, where atoms are fixed in space, or open boundaries. Often several
of these technique are combined to run simulations which are periodic in two
directions and open in the third. An example is the simulation of laser ablation,
where the system is open in the propagation direction of the laser and periodic in
the other directions.
In metallic systems the range of the interatomic forces is usually limited to a few

angstroms. This fact can be used to effectively reduce the computational cost of the
force calculations. The potential function only has to be calculated up to a certain
distance, all atoms further away do not contribute. This distance is called the cutoff
radius rc, which usually lies in the range of 4 to 8Å.
Another way of reducing the computation time is the implementation of neighbor

lists. To calculate the energy or force for atom i, a loop over all atoms j has to be
performed. Usually a large percentage of the atoms j is at a distance much larger
than the cutoff radius rc, thus they do not interact with atom i. By generating a list,
which contains only atoms that are closer than α · rc, the loop over all atoms can
be avoided. The parameter α has to be greater than 1, to include atoms that may
leave or enter an atom’s interaction radius. This neighbor list has to be updated on
average every 10 to 20 steps, there are sophisticated algorithms for an automatic
update scheme which are more efficient than a regular update after a fixed number
of timesteps.
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Figure 5.2: Schematic representation of periodic boundary conditions in two
dimensions. The main simulation box is in the center with bold lines. If
the red atom leaves this box to the right, its periodic image from the left
enters the box.

The bottleneck of neighbor lists is the update process. It requires two nested
loops over all atoms. To avoid this, the simulation box can be split up into smaller
regions, so called cells. These cells ideally should be only slightly larger than the
cutoff radius for the system. Then only atoms from the same or the neighboring
cells need to be considered for the interactions. To update the neighbor list for a
single atom, only the host cell of the atom as well as the neighbor cells have to be
processed. The algorithm is well suited for parallelization and scales very good
with the number of atoms. More details on these topics can be found in the book
of Allen and Tildesley [3].
A very recent development to speed up different kinds of computer simulations

is the use of graphics processors. It turned out, that the highly specialized graphics
processing units (GPU), primarily developed for computer games, can be used in a
very general way to run numerical simulations. This “General-purpose computing
on graphics processing units” (GPGPU) is very fast compared with a traditional
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computer processor, because a GPU is built to run many calculations in parallel.
With an efficient parallelization scheme an MD simulation can be speed up by
a factor of 100, compared to a single processor calculation. Porting an existing
MD code like IMD to graphics processors is not a trivial task. There are some
restrictions regarding the memory and data transfer which have to be circumvented
with special techniques. In this work noGPGPU has been used, since themany-body
interactions of IMD have not been adapted for the use with graphics processors
yet.

5.3.1 Pair interactions

The most simple potentials that can be derived from Eq. (5.3) are pair interactions.
They are assumed to be isotropic, i.e. they only depend on the pair distance rij =
|rj − ri| of the two atoms i and j. The potential energy for a system described by
pair interactions is given as

V =
∑
i<j

V2(ri, rj) =
∑
i<j

V2(rij) (5.23)

and the force Fi acting on atom i as

Fi = −
∑
i<j

∇iV2(rij). (5.24)

The potential energy V2 can be expressed in different ways. The review paper of
Vitek [119] gives an overview of pair potentials used for metal research. The most
important ones will be discussed in the following paragraphs.

Pair potentials

In the early days of MD simulations, when computer power was very limited, the
potentials had to be very simple. The function V2 was chosen as a single function
φ(rij). In systems with more than one type of atoms, the different potentials are
labeled φsisj , where si denotes the species of atom i. The s in the index of the
potential function φ is usually omitted for reasons of simplicity – is is written φij .
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The force Fi can then be calculated as

Fi = −
∑
i<j

∇ri
φij(rij) = −

∑
i<j

∂φij
∂rij

rij
rij

. (5.25)

The gradient∇ri acts on ri, it can be written as∇rij . To do this for all atoms in an
MD simulation, a single loop over all pairs of atoms is enough. Using neighbor lists
and exploiting Newton’s third law the calculation can be performed very efficiently.
Despite their very simple form pair potentials provide very accurate results for

some classes of materials. The famous Lennard-Jones potential [73] is often used
for noble gases while the Morse potential [84] can accurately describe the bonding
of diatomic molecules. Both potentials have an repulsive part due to the Pauli
principle and an attractive part for the van der Waals force. The functional forms of
all of the potentials mentioned are given in Sec. 6.6.3 and on the potfit homepage.
There are limitations to pair potentials which arise from the missing manybody

terms. Prominent examples are the Cauchy discrepancy and the “cohesive energy-
vacancy formation energy”-dilemma [90].

EAM potentials

There are several attempts to model many-body interactions with effective poten-
tials. Most of them rely on the term V3 from (5.3). They are discussed in Sec. 5.3.2.
By using many-body pair-function potentials it is possible to implicitly include
these effects without the term V3. A term which accounts for the environment
of the atoms has to be added to the previously introduced pair potentials. These
interactions are commonly known as embedded atom method (EAM) potentials.
It was introduced by Daw and Baskes [30], however the potential of Finnis and
Sinclair [42] and the glue model of Ercolessi et al. [38] use a very similar
approach, they only differ in the physical interpretation of the additional term.
All of these models are inspired by density functional theory. The basic idea is,

that the cohesive energy of an atom is determined by the electron density of the
neighboring atoms. This concept was presented by Stott and Zaremba [109] in
a quasiatom model, which calculates the embedding energy of an impurity atom as
a function of the electron density without the respective atom. For the embedded
atom method the electron density is calculated as a linear superposition of the
single atom electron densities.
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The total energy for an EAM potential is given by

V =
∑
i<j

φij(rij) +
∑
i

Ui(ni), (5.26)

where ni =
∑
j 6=i

ρj(rij). (5.27)

When compared to pair potentials, the term V2 of Eq. (5.3) is no longer a simple
function. It consists of the regular pair term φij and the embedding energy Ui of
atom i in the host density ni. For each atom the density ni (5.27) is calculated as
a sum over all neighboring atoms, with ρj being the transfer function of atom j.
It does not represent an actual physical density; ni is a purely empirical quantity.
A mathematically correct derivation of the EAM model from density functional
theory is given in [29].
Applying (5.4) to calculate the force Fi, acting on atom i, yields

Fi = φ′ij(rij)
rij
rij

+
[
U ′i(ni)ρ

′
j(rij) + U ′j(nj)ρ

′
i(rij)

] rij
rij

, (5.28)

where the prime signifies the derivative with respect to the distance rij . To calculate
the forces in an MD simulation a single loop over all atoms pair is no longer enough.
The force depends on the derivative of the embedding function of atom j. A first
loop which calculates all energies and densities and a subsequent second loop to
calculate the forces are therefore required. When compared to pair potentials, EAM
potentials are slower by a factor two. This, however, is acceptable, because they
can be applied to a wider range of materials and often yield more accurate results.
The shortcomings of pair potentials described earlier do not apply to EAM po-

tentials.

ADP potentials

Another approach for a simple model of many-body interactions was presented
by Mishin et al. in 2005 [82]. It is based on the embedded atom method but has
an additional bond-angle dependence. The model is called “Angular-Dependent
Potential” (ADP) method. In an orthogonal Cartesian system the potential energy
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is approximated by

V =
∑
i<j

φij(rij) +
∑
i

Ui(ni) +
1

2

∑
i,α

(µαi )2 +
1

2

∑
i,α,β

(λαβi )2 − 1

6

∑
i

ν2i .

(5.29)

The indices i and j run over all atoms and the superscripts α, β = 1, 2, 3 refer to
the Cartesian directions x, y and z. φ and U are the pair potential and embedding
function respectively, defined in the sameway as for EAMpotentials (cf. Eq. (5.26)).
The empirical host electron density n is the superposition of the single particle
densities ρ:

ni =
∑
j 6=i

ρj(rij) (5.27)

The terms three to five in Eq. (5.29) are responsible for the indirect directional
dependence of the potential. The vectors

µαi =
∑
j 6=i

uij(rij)r
α
ij (5.30)

and tensors

λαβi =
∑
j 6=i

wij(rij)r
α
ijr

β
ij (5.31)

are functions of two additional pairwise potentials u(r) and w(r), which should,
like φ, be written as usisj and wsisj . The quantities νi are traces of the λ-tensor:

νi =
∑
α

λααi . (5.32)

Angular-dependent potentials can be thought of as a kind of multipole expansion.
µi and λi are measures of the dipole and quadrupole distortion of the local environ-
ment of atom i. In the original publication the role of these terms is to penalize the
total energy for deviations from cubic symmetry. By fitting these potential models
to ab initio reference data, these terms no longer penalize but contribute regularly
to the total energy.
The total energy can formally also be derived from the MEAM formalism, which
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is introduced in Sec. 5.3.2. InMEAM, the angular dependence is introduced through
dipole and higher-order multipoles, similar to ADP. The difference is, that in an
MEAM potential these contributions make up a tensor electron density and in ADP
they contribute directly to the total energy (Equation (5.29)).
The ADP force Fi, calculated with (5.4) from Eq. (5.29) consists of two parts:

Fi =
∑
j 6=i

[ϕij + ψij ] . (5.33)

ϕ is the same expression as for the EAM force (Eq. (5.28)) andψ is the contribution
of the angular-dependent forces. As before, the prime signifies differentiation with
respect to the interatomic distance rij .

ψγij =
(
µγi − µ

γ
j

)
uij(rij) +

∑
α

(
µαi − µαj

)
u′ij(rij)

rγijr
α
ij

rij

+ 2
∑
α

(
λαγi + λαγj

)
wij(rij)r

α
ij +

∑
α,β

(
λαβi + λαβj

)
w′ij(rij)

rαijr
β
ijr

γ
ij

rij

+
1

3
(νi + νj)

[
w′ij(rij)rij + 2wij(rij)

]
rγij

(5.34)

To calculate ADP energy and forces only takes about twice as long as for EAM
potentials. This is another advantage over MEAM potentials.

5.3.2 Many-body interactions

For pair interactions the expansion of the total energy (Eq. (5.3)) is truncated after
the pair term V2. Developments in the last decades, however, made it feasible to
include the three-body term V3 as well. The computational time required for such
interactions is increased, because not only two but three nested loops over all atoms
have to be performed. An overview of empirical many-body potentials is given in
Erkoç [39]. The three most popular potentials will briefly be introduced in the
next paragraphs.
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MEAM potentials

In 1987, Baskes proposed an extension of the embedded atom method to account
for the directionality of interatomic bonding [10]. The total potential energy of the
modified embedded atom method (MEAM) potential was initially only defined for
a monoatomic system. It is given as

V =
∑
i<j

φij(rij) +
∑
i

Ui(ni), (5.35)

with ni =
∑
j 6=i

ρ(rij)− a
∑
j 6=i
k 6=i

(1− cos2 θjik)ρ(rij)ρ(rik), (5.36)

where θjik is the angle between atoms j, i and k. Meanwhile the model has been
extended for binary and ternary systems and there are many parametrizations avail-
able for different metallic systems. A simplified version has been published by
Lenosky et al. [74], which is also available in potfit.
The addition of the three-body terms makes the calculation of energy and forces

slower about a factor of three to five, when compared to EAM potentials.

Tersoff potentials

To model covalent bonds, Tersoff introduced an empirical potential which incor-
porates the bond order in an intuitive way [112]. There were several problems with
the first model, which were corrected in a subsequent paper [113]. The potential
energy has a rather complex form and contains 13 adjustable parameters.
There is a fundamental difference between the Tersoff potential and the other

potentials previously discussed. For models like EAM or ADP only the expression
for the total energy is given but not the specific form of the functions like the pair
function φ. The Tersoff potential already gives specific functions and only requires
the parameters to be adjusted for any new potential. On the one hand that makes
the fitting of a new potential rather straightforward, on the other hand the potential
model can never be as flexible as the EAM or ADP potentials.

Stillinger-Weber potentials

Another potential, that has predefined potential functions and only requires the
parameters, is the Stillinger-Weber potential [107]. Like the Tersoff potential, it is
designed to model silicon systems with two- and three-body contributions. The
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original potential energy is given in [107]. A slightly optimized version, as it
is implemented in the LAMMPS code, has 9 free parameters. Like the Tersoff
potential, the Stillinger-Weber model uses predefined potential functions.
The main application for Stillinger-Weber potentials are silicon and other ma-

terials which crystallize in the diamond structure. A tetrahedral configuration is
inherently embedded in the functional form. For surface or interface simulations
the potential yields wrong results, as for the case of an external pressure. Due to
the three-body contributions the computational effort is high, a short comparison
with ADP and Tersoff potentials is given in Sec. 9.5.

5.4 Lattice dynamics
To explain most thermodynamic properties like heat capacities or phase stability,
the motions of the atoms have to be taken into account. For example, the stable
phase of any material is determined by the minimum of the free energy G, defined
by

G = H − TS, (5.37)

whereH is the enthalpy and S the entropy. The primary source for the entropy are
thermal vibrations of the atoms. Neglecting the dynamics is thus equivalent to zero
temperature, which also means zero entropy.
In lattice dynamics the energy of a system is expressed as a Taylor expansion

E = E0 +
1

2

∑
j,j′

α,α′

∂2E

∂uα,j∂uα′,j′
uα,juα′,j′ + . . .

+
1

n!

∑
j(1),...,j(n)

α(1),...,α(n)

∂nE

∂uα(1),j(1) · · · ∂uα(n),j(n)

uα(1),j(1) · · ·uα(n),j(n)

+ . . . , (5.38)

where E0 is the equilibrium lattice energy and uj,α describes a component of
the vector displacement (α = x, y, z) of the atom labeled j from its equilibrium
position. The first order term in the expansion vanishes, because the residual forces
for the equilibrium positions vanish by definition. The second order term is the
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harmonic energy, all higher-order terms are grouped together as the anharmonic
energy.
To keep the equations as simple as possible, the harmonic approximation is

usually applied. There all anharmonic terms are neglected, which leads to a mathe-
matical model for the lattice vibrations that has exact solutions. The accuracy of
this approach is rather good. Many of the features of lattice dynamics are available,
such as the dependence of frequency on the wave vector. The corrections of the
higher-order terms can be introduced easily into the harmonic model, as long as
the atomic displacements are small, which is usually the case.
In DFT calculations the harmonic approximation is used, the derivatives in

Eq. (5.38) can be calculated from static simulations. With these data it is pos-
sible to calculate the dynamical matrix, from which phonon properties can be
deduced (cf. Sec. 7.1).
One advantage of MD simulations is that the dynamic properties can be calcu-

lated from the trajectories of the atoms. Anharmonic contributions are implicitly
included, as long as they are present in the effective potentials.

5.4.1 Anharmonic contributions
While the harmonic approximation can explain certain phenomena, e.g. the propa-
gation of sound waves or the interaction of radiation with crystalline matter, there
are also deficiencies. It is not possible to explain the finite lifetime of phonons,
the thermal expansion, the thermal conductivity and the temperature dependence
of phonons. All of these processes require the additional anharmonic terms in
Eq. (5.38), which account for interaction of three or more phonons.
In the framework of the second quantization it can be shown, that the anharmonic

terms have a physical interpretation in terms of collisions between phonons that
lead to changes in their frequencies and wave vectors. Even creation and anni-
hilation of phonons is described by them. The possible anharmonic three- and
four-phonon interactions are shown in Fig. 5.3. Due to the addition or subtraction
of a reciprocal lattice vectorG, the flow of energy can be changed, even reversed,
by the anharmonic interactions (cf. Sec. 3.3.1).

Thermal conductivity

The anharmonic terms are of special importance for the thermal conductivity in
a crystal lattice. In the harmonic approximation the phonons will transport the
heat from one end of the sample to the other without any impairment. There is



98 Chapter 5 – Molecular dynamics simulations

k, ω k′, ω′

k−k′±G,
ω−ω′

k, ω

k′, ω′

k−k′±G,
ω−ω′

k, ω
k′, ω′

k′′, ω′′

k−k′−k′′±G,
ω−ω′−ω′′

k, ω

k′, ω′

k′′, ω′′

k+k′−k′′±G,
ω+ω′−ω′′

k, ω

k′, ω′

k′′, ω′′
k+k′+k′′±G,
ω+ω′+ω′′

Figure 5.3: Third and fourth-order anharmonic phonon interactions with con-
servation restrictions. Phonons are represented by waves with arrows.
Adapted from [33].

nothing in the harmonic model that inhibits the flow of phonons, the lattice thermal
conductivity would be infinite. It is known from experiment, that the thermal
conductivity decreases with increasing temperature,which implies that the phonons
must be inhibiting the flow of heat.
InMD simulations the anharmonic effects are included implicitly via the effective

potential. If the physical properties like the phonon density of states or the thermal
conductivity are deduced from the trajectories of the particles, the anharmonic
contributions can be accounted for. In DFT simulations, where the dynamical
matrix approach is used, only the harmonic interactions can be calculated.

5.5 MD simulation packages
Mainly for two facts, the number of available molecular dynamics simulation pack-
ages is incredibly large. First, a simple MD code can be implemented rather quickly.
Secondly, not all available packages support all features. There often are different
fields of applications, e.g. there are codes that specialize in soft matter or liquids,
while others can only handle periodic crystal structures or special interactions.
For this work the IMD package was used for most simulations. The LAMMPS

code has been used to verify the results with a different implementation.
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IMD – ITAP Molecular Dynamics

The development of the ITAP molecular dynamics code, called IMD, was started
in 1995. It was publicly announced in 1997 by Stadler et al. [106]. IMD was
designed for running short range molecular dynamics simulations on massively
parallel computers. Over the course of time, many people have contributed to the
code and extended IMD by various features. Because of the focus on efficient
parallelization, it can be used on simple desktop computers as well as on state of
the art supercomputers. IMD was the holder of the world record for the simulation
with the most particles – in 1997 with 1.2× 109 atoms and in 1999 even with
5.1× 109 atoms.
Funding for the projects which contributed to the development were provided by

the Deutsche Forschungsgemeinschaft (DFG) through two Collaborative Research
Centers (SFB) 382 and 716. More information can be found in the IMD homepage1.
Since the first version of IMD, more effective potentials and different simulation

features were added. Today, IMD supports the most common short range poten-
tials like EAM, ADP, Tersoff and Stillinger-Weber as well as long-range coulomb
interactions. It is possible to run simulations in different thermodynamical ensem-
bles like NVE, NVT and NPT or with relaxation algorithms. Other features are
deforming a sample during the simulation, applying extra forces to specific atoms,
constraining the movement of certain atoms and calculating correlation functions.
The applications for these features are very diverse. The main research topics at the
ITAP, using IMD, are crack propagation and shock wave simulation, laser ablation,
structure optimization and lattice dynamics. In this work, IMD is used to calculate
dynamic properties of complex metallic alloys like phonon spectra and the thermal
conductivity.
The development of potfit, the ITAP force-matching code, is closely coupled to

IMD. Early versions were part of the IMD code, later it was split into a separate
package. The close relationship can still be seen as the potfit force routines were
adopted directly from IMD with only little adjustment. After potfit has completed
an optimization run, potentials in IMD format are written and can directly be used
in MD simulations.

1http://imd.itap.physik.uni-stuttgart.de/

http://imd.itap.physik.uni-stuttgart.de/
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LAMMPS – Sandia Code

Among the multitude of available MD codes, LAMMPS1 is one of the most used.
The acronym stands for Large-scale Atomic/Molecular Massively Parallel Simula-
tor. It is developed andmaintained at Sandia National Labs. People from institutions
all over the world have contributed to the program. Its features exceed the capabili-
ties of IMD in some areas, in others it is LAMMPS which lacks some functionality.
For this work LAMMPS was used as a comparison tool. More details are given in
Sec. 7.3.2.
One of the most interesting features of LAMMPS is the possibility to use some

sort of meta-programming in the input files. It is easily possible to write output
data in a required format or do some post-processing without the need of external
tools. An example is given in Sec. 9.5, where the LAMMPS output is written in a
way, that the IMD post-processing tools can read it.

1http://lammps.sandia.gov/

http://lammps.sandia.gov/


Chapter 6:

Force matching with the potfit code

There are different approaches on how to get an empirical potential for classic MD
simulations. A common way is to fit a potential to experimental data like lattice
constants, cohesive energies, surface energies and other important quantities. For
CMAs however, this approach is not viable, because there is only very little or no
reference data available for these systems.
A different method, which does not rely on any experimental data is the force

matching method [37]. It uses reference data calculated with first principle methods
to establish an effective interatomic potential. While the ab initio forces provide
the main source of reference data, one can use other ab initio calculated data to
arrive at potentials for very special applications. Potentials generated for fracture
simulations for example, should be fitted to lots of surfaces and strained/stressed
configurations.
This chapter will give a description of the implementation of the force matching

method in the potfit code and the algorithms used for optimization. An overview
over the different interactions is given and the details of the analytic potentials are
explained.

6.1 Overview of potfit

The potfit code has been developed by Peter Brommer during his diploma and
PhD thesis work [21, 22]. The first versions were bundled with the IMD package
(see Sec. 5.5). As more features were added, potfit was released as a standalone

101
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application. It is freely available on the potfit homepage1, licensed under the GNU
General Public License, Version 22.
The capabilities of potfit have been greatly extended since the first release. The

first version could only fit tabulated pair potentials, EAM potentials were added
shortly afterwards. Initially there were only two optimization algorithms available,
a third one has been added for the use with analytic potentials, which were imple-
mented during the author’s diploma thesis work [P1]. For the present thesis, the
angular dependent potentials were added. More potential models like MEAM or
electrostatic interactions were contributed by different authors. More information
can be found on the potfit homepage and in [P4].
The application flow of potfit is very simple. After the program has read the

parameter file, the configuration file and the potential file, neighbor lists for an
efficient calculation of forces and energies are created. If the optimization is enabled,
potfit enters the optimization loop, otherwise it is skipped. Finally the potential is
evaluated and the output is written. This contains the deviations, some averaged
deviations and the potential in various formats. The individual steps are described
in detail in the following sections.

6.2 Force matching
Many interatomic potentials in the literature are fitted to experimental data, which is
a convenient and reliable method to generate potentials for simple systems. Based
on structural data from diffraction experiments, modules of elasticity or other
quantities like vacancy formation or surface energy a potential can be fitted. For
simple systems with only few atoms per unit cell this is not a problem. Complex
metallic alloys usually have more atoms per unit cell, from about 20 to up to a
few thousand. For such large structures it is unfeasible to create a viable structure
model from diffraction data. If the diffraction data is available, the structure model
very often contains split positions and fractional occupancies which cannot be
implemented in computer simulations.
A different approach of generating an effective potential for a solid or liquid phase

of a material is the force-matching method of Ercolessi and Adams [37]. It does
not rely on any experimental data, only ab initio reference data is required. The
main idea is to replace the few experimental data by a large number of first-principle

1http://potfit.sourceforge.net
2http://www.gnu.org/licenses/old-licenses/gpl-2.0

http://potfit.sourceforge.net
http://www.gnu.org/licenses/old-licenses/gpl-2.0
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calculations. By using many different reference configurations, a force-matched
potential is usually more reliable than the experimental approach. The drawbacks
of these potentials are discussed in Sec. 6.4.
In order to use the force-matching method, a potential model is required which

maps the potential to a set of discrete datapoints. The most common models are
tabulated and analytic potentials. Tabulated potentials are defined by n parameters
α1, . . . , αn which represent the value of the potential at a certain distance. Analytic
potentials are also defined by n values of α, they represent the parameters of the
analytic potential functions. Both methods are shown in Fig. 6.1.

α1

α2

α3

αi = ε, σ

Figure 6.1: Two different ways of defining a potential model with n parameters
α1, . . . , αn. The tabulated potential is shown on the left. The parameters
αi represent the value of the potential at a certain distance. The analytic
potential on the right is a Lennard-Jones potential with the functional form
V (r) = 4ε[(σ/r)12 − (σ/r)6]. The parameters αi represent the depth ε
and width σ of the potential.

With either potential model, the set of parameters α has to be optimized to
reproduce the reference data as accurate as possible. An efficient way is by creating
a mathematical function, which maps the parameters α onto a single number. For
force-matching, usually a sum of squares is used to form the so-called target function
Z(α). It is defined as

Z(α) = ZF (α) + ZC(α), (6.1)

with

ZF (α) =

m∑
i=1

uk(Fk(α)− F 0
k )2, (6.2)
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and

ZC(α) =

Nc∑
r=1

wr(Ar(α)−A0
r)

2. (6.3)

The target function Z consists of two parts. ZF is the contribution from all devi-
ations to the reference data and ZC can be used to put additional constraints on
the parameters α. Both parts are calculated from deviations to a reference value.
Fk(α) are the quantities calculated with the current parameter set α, for example
forces, energies and stresses. The ab initio calculated values are denoted with a
superscript 0. Each summand can be assigned a weighting factor uk. The deviations
for the constraints follow the same scheme, Ar(α) are the values calculated with
the potential and A0

r are the desired values. It is also possible to assign weighting
factors wr to the different constraints.
If a potential can reproduce the reference data perfectly, the sum vanishes. In

every other case, the sum is larger than zero. The objective of an optimization
algorithm is to find the set of parametersα which yield the smallest target function.
Because the calculation of the individual components of the target function is very
expensive, the algorithms used for optimization have to be efficient.

6.3 Optimization algorithms
Finding an optimal configuration is a common problem in many parts of scientific
research. There is a whole area within computer sciences that only deals with
optimization algorithms of different kinds. Many distinct approaches have been
developed for engineering, economical and social problems.
In order to select an appropriate algorithm, the problem has to be analyzed in

detail. The target function Z(α) is a function of continuous variables, which has
many local minima. One requirement for the algorithm is the ability to leave local
minima and cover a large area of the parameter space in an efficient manner. For
the coarse optimization in potfit there are two different algorithms available. The
simulated annealing has been implemented by Peter Brommer, the differential
evolution algorithm has been added during this work. When running potfit, the
user can choose between these two algorithms. Subsequently a conjugate gradient
algorithm is used to descend to the minimum. While the former algorithms may
be skipped, the latter one cannot be disabled.
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The simulated annealing and the conjugate gradient algorithm are described in
detail in the PhD thesis of Brommer [22]. Only short summaries will be given
here. The new differential evolution algorithm is discussed extensively afterwards.

Random number generation

An important aspect of all stochastic optimization algorithms is the quality of
the random number generator. Over the course of a potfit run, up to one billion
random numbers may be required. To make sure that the random number sequence
is reproducible, a pseudorandom number generator has to be used. The Mersenne
twister algorithm from Saito and Matsumoto [102] has been implemented in
potfit. It provides equidistributed random numbers in up to 623 dimensions, has
a period of 2216 091−1 and is optimized for double digits. Because of the high
quality random numbers it provides, it is used in many computer codes for scientific
research.

6.3.1 Simulated annealing
The simulated annealing algorithm is modeled after the annealing process in metal-
lurgy. There a metal is heated and slowly cooled down again to increase the crystal
size and reduce the number of defects of the material. This process allows the
atoms to leave local minima of the configuration space and find new structures
with lower internal energy.
The first implementation of the simulated annealing algorithm was presented by

Kirkpatrick et al. [59] in 1983. It was used to find the optimal placement of chips
on amodule while taking into account the wiring. The algorithm is closely related to
statistical mechanics and uses random numbers to find global minima. By allowing
uphill moves that increase the value of the target function it is possible to leave
local minima. The stochastic approach makes the algorithm feasible for problems
with many degrees of freedom. While the original implementation was done for
discrete problems, a version for continuous variables was proposed by Corana
et al. [26]. A short summary of the algorithm is given in the next paragraph.

Optimization of functions with continuous variables

Letx be a vector inRn with the components (x1, x2, . . . , xn) and f(x) the function
to be minimized. The algorithm starts from a point x0, which can be generated
randomly, given by the user or be the result of a previous optimization. Possible
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candidates for a point xi+1 are generated by applying random moves along each
coordinate direction to xi. The new coordinates are uniformly distributed around
the corresponding coordinate ofxi; the width of the distribution is given by the step
vector v. A candidate point x′ is accepted according to the Metropolis criterion:

If ∆f ≤ 0, then accept the new point: xi+1 = x′

else accept the new point with a probability p(∆f) = exp(−∆f/T )

where ∆f = f(x′)− f(xi) and T is a parameter which is identified with temper-
ature.
For a constant value of T , the series of points xi does not follow a downhill

direction of the target function f . A large temperature, compared to the average of
∆f , will accept all candidate points and yield a random sampling of f .
For a successful optimization the simulated annealing algorithm has to be started

at a “high” temperature given by the user. After a certain number of trial steps is
performed, which is three times the dimension of x in potfit, it is assumed that
the algorithm has sampled the target function f sufficiently. The step vector v is
periodically adjusted, to ensure a balance between accepted and rejected sampling
points. A new optimal point found is stored as xopt. The temperature is reduced
and the algorithm starts again with creating trial points and evaluating the target
function.
There are different stopping criteria for this algorithm. In potfit the optimization

is aborted if there is only little or no improvement in the lowest value of the target
function f(xopt) or the temperature has been decreased 1000 times.

Determination of the starting temperature

It may be difficult for the user to select an appropriate starting temperature. If it
is chosen too high, many unnecessary optimization steps are performed. If the
temperature is too low, the sampling of the target function f might not cover the
whole parameter space.
There are methods to approximate a proper starting temperature T0 for simulated

annealing algorithms. The idea is to randomly sample the parameter space and
determine a temperature, that accepts almost all steps. Such a procedure, however,
can only be applied, if the initial point is a random point. It does not work when
x0 is already optimized.
To enable the feature in potfit, the anneal_temp parameter has to be set to

auto. The starting temperature will then be determined before the optimization of
the potential. Starting from the potential given by the user,m0 sample steps are
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performed and the temperature T0 is given by

T0 = ∆f+
(

log
m2

m2χ0 −m1(1− χ0)

)−1
. (6.4)

m1 andm2 denote the number of steps (m1+m2 = m0) with∆f ≤ 0 and∆f > 0,
respectively and ∆f+ is the average value of those ∆f values, for which ∆f > 0.
The number of stepsm0 is chosen as ten times the number of free parameters and
the acceptance rate χ0 as 0.8, as proposed by Ali and Gabere [2].

6.3.2 Powell’s conjugate gradient algorithm
After the optimization of the potential with either the simulated annealing or dif-
ferential evolution algorithm, a conjugate gradient method is applied subsequently.
Unlike the previous algorithm, is not able to leave local minima. However, it is
very efficient, regarding the number of function evaluations, in finding the local
minimum.
The algorithm used in potfit was first described by Powell [96] in 1965. It is

an enhancement of the generalized least squares method, which can be found in
[97]. Many of the implementations of the generalized algorithm are not suited for
the optimization of the error sum in potfit for two reasons. They assume a general
form of Z and do not take the high computational cost of calculating the gradient
of Z into account.
Powell’s method is designed to workwith a sum of squares of non-linear functions.

It needs the gradient only for the initial step and uses an approximation for all further
steps. The errors due to the approximation do not disturb the optimization and the
algorithm exhibits convergence properties comparable to the generalized least
squares method.

The generalized least squares method

The force-matching problem can be recast as the minimization of

Z(α) =

m∑
k=1

[f (k)(α)]2, (6.5)

where the f (k) represent all quantities from (6.2) and (6.3) that contribute to the
error sum. To solve this problem, different numerical algorithms are available. A
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common way is to rephrase it into a linear system of equations,

Aχ+ b = 0, (6.6)

which can be solved quickly with the help of linear algebra routines. A compre-
hensive description of the derivation of the least squares and Powell algorithms is
given by Brommer [22].

Minimization according to Powell

Powell’s algorithm can be used to minimize a sum of squares without calculating
derivatives. It uses difference quotients to estimate the gradient along a certain
direction in space. The errors from this approximation are negligible for the con-
vergence of the algorithm. One disadvantage of the applied gradient method is the
fact, that a local minimum cannot be left. A careful choice of the starting point is
essential for the success of this method. In potfit the starting point is usually the
result of a previous global optimization like simulated annealing or differential
evolution.

6.3.3 Evolutionary algorithm
Another stochastic optimization scheme has been implemented in potfit alongside
analytic potentials. The algorithm belongs to the class of evolutionary methods,
which have become increasingly popular over the last decade. Great efforts have
been made to improve these methods and to broaden their range of application.
The idea is based on the principles of the evolution theory from biology. There the
natural selection often is paraphrased with the “survival of the fittest”.
An evolutionary algorithm works with many approximate solutions to a problem,

which are referred to as the population. During one optimization step the population
is subjected tomechanisms inspired by biological evolution: reproduction,mutation,
recombination and selection. New approximate solutions are created and in the end
only the ones with the best target function values are carried over to the next step.
One advantage of evolutionary algorithms is, that there are no special require-

ments for the target function. Other algorithms, like conjugate gradient methods,
need a smooth target function with a well-defined derivative. That is not the case for
differential evolution. For potfit it is not an issue, but there are many optimization
problems where the target function has no mathematical closed-form expression.
The fact that the evolutionary algorithm yields good results for many different types
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of applications made it very popular.
In the following, the algorithm used in potfit is described in detail. Some addi-

tional techniques, which can speed up the optimization are also discussed.

Differential evolution

The algorithm used in potfit is called Differential Evolution (DE). It is a vector
based stochastic optimization method, which has been introduced by Storn and
Price [108]. Like all evolutionary algorithms it does notworkwith a single solution,
instead a uses a population P :

Pg = {xi,g}, i = 0, 1, . . . , Np − 1, g = 0, 1, . . . , gmax (6.7)
xi,g = {xj,i,g}, j = 0, 1, . . . , D − 1, (6.8)

where Np denotes the number of population vectors, g counts the generations and
D is the dimensionality of the problem. In potfit D is equal to the number of free
parameters and Np is set to 15D. The vector xi in (6.7) is equivalent to a set of
parameters α from (6.1).
The initialization of the population is done is two steps. At first, the initial poten-

tial provided by the user is read and stored as x0,0. All remaining vectors are then
generated by adding random numbers to each parameter:

λj = randj (6.9)

xj,0,0 =

{
x0,0,0 + λj(bj,U − xj,0,0) if λj > 0

x0,0,0 + λj(xj,0,0 − bj,L) if λj < 0.
(6.10)

λj is a normally distributed random number, scaled by a factor of 0.33. The index
j indicates that a new random number is generated for each parameter. The D-
dimensional initialization vectors bL and bU indicate the lower and upper bounds
of the parameter vectors x. The target function Z is calculated for each xi,0 and
stored in an array for later use. The second step is an opposite check – a special
technique which is not part of the standard DE algorithm. It is explained later on.
After the initialization is complete, the main optimization loop is entered. It con-

sists of three parts: mutation, crossover and selection. For reasons of parallelization,
DEworks with two arrays for the population. One holds the current and one the next
generation. If the selection has been performed, the next generation is copied to
the array holding the current one. Afterwards the loop is started again unless some



110 Chapter 6 – Force matching with the potfit code

abortion criteria have been met. In potfit, the DE loop also includes an opposite
check, which is performed after the selection, but before the start of a new loop.

x1

x2

xr0,G

xr2,G
xr1,G

minimum

parameter vectors
from generation G

xr1,G − xr2,G

xr0,G + F (xr1,G − xr2,G)

Figure 6.2: Contour plot of a two-dimensional cost function. The creation of
a mutation vector is illustrated. Individuals are drawn as black arrows, the
mutation vector in green.

Mutation In the first part of the DE optimization loop a mutation vector vi,g is
created from the current population by combining several individuals xi,g . There
are several different approaches on how to perform the combination. The basic
version of DE uses the following:

vi,g = xr0,g + F (xr1,g − xr2,g) . (6.11)

The indices r0, r1 and r2 are integer random numbers which should be mutually
exclusive. Each mutation vector is composed of a random vector plus the difference
of the other random vectors scaled by an amplification factor F . A schematic
representation of a two-dimensional optimization is shown in Fig. 6.2.
Other possible ways of generating mutation vectors are:

vi,g = xbest,g + F (xr1,g − xr2,g) , (6.12)
vi,g = xr0,g + F (xr1,g + xr2,g − xr3,g − xr4,g) , (6.13)
vi,g = xr0,g + (1− F ) (xbest,g − xr1,g) + F (xr2,g − xr3,g) . (6.14)



6.3 Optimization algorithms 111

The index ’best’ indicates the vector with the lowest target function and ri are
again mutually exclusive random numbers in [0, Np − 1]. There is a notation to
classify all different mutation variants of the DE algorithm – DE/x/y/z. The x
denotes the base vector, y denotes the number of difference vectors used and z
represents the crossover method. The version in Eq. (6.11) is called DE/rand/1/exp,
it uses a random base vector xr0,g and one difference vector. Mutation schemes
in Eqs. (6.12) to (6.14) are called DE/best/1/bin, DE/rand/2/bin and DE/rand-to-
best/1/bin, respectively. They are all available in potfit, as well as DE/best/2/bin and
DE/rand-to-best/2/bin. As a rule of thumb, the value for the amplification factor F
should be between 0.5 and 1. In potfit the value is determined automatically by an
algorithm, which is explained in detail in the paragraph “Self adapting parameters”.

Crossover To get a diversity enhancement in the population, a crossover step is
performed. It mixes the previously generated mutation vectors vi,g with the target
vectors xi,g in order to generate trial vectors ui,g. Generally just a binary choice
is made, which is defined as

ui,g = uj,i,g =

{
vj,i,g if randj [0, 1) < Cr

xj,i,g otherwise.
(6.15)

The jth component of the mutant vector is accepted for the trial vector with a
probability ofCr. If this is not the case, the component of the target vector is retained.
randj [0, 1) is a uniformly created random number and Cr is called crossover rate.
In order to prevent the case ui,g = xi,g at least one component of the mutant vector
vi,g is always accepted. The general recommendation of Cr ∈ [0.8, 1.0] is given
in [108]. In potfit this parameter is also part of the self-adapting algorithm and is
not set explicitly.

Selection The last part of the DE optimization loop is a simple one-to-one selec-
tion. Each trial vector ui,g competes against the corresponding target vector xi,g.
The one which yields the lower target function Z survives into the next generation
g + 1:

xi,g+1 =

{
ui,g if Z(ui,g) ≤ Z(xi,g)

xi,g otherwise.
(6.16)
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After the selection has been performed the algorithm checks, if any of the abortion
criteria are met. If that is the case, the optimization is complete, otherwise another
optimization loop is performed. The abortion criterion given by Storn and Price
is very simple. After gmax generations have been calculated, the algorithm should be
canceled. As there is no real prediction possible, how many iterations the algorithm
needs to achieve an acceptable result, a different criterion have been implemented
in potfit. A critical threshold is introduced with a value of 10−6, which can be
adjusted by the user. After each loop, the difference of the target vectors with the
smallest and largest target function is calculated. As long as the difference is greater
than the critical threshold the optimization will do another loop. That means until
all target vectors have not yet retracted to a very narrow area in parameter space
the algorithm will continue. Additionally, the optimization is stopped if the target
function is less than the critical threshold.
Some additional methods are available, which can improve the performance

of the DE algorithm. They were not part of the original version, they have been
added later by different authors. In the case of potfit two enhancements are used,
the opposite check and the self-adapting parameters. They both can speed up the
optimization and make it computationally more efficient.

Opposition-based differential evolution

The regular DE scheme starts with some candidate solutions and tries to improve
them towards an optimal solution. The computational time, among others, is related
to the distance of these initial guesses from the optimal solution. One way of speed-
ing up the optimization process is to simultaneously check the opposite solutions.
A detailed description of the opposition-based DE along with verifications and
tests can be found in [24].
The enhancement is based on the concept of opposite numbers. For a real number

x in the interval [a, b] the opposite, denoted by x̆, is defined as

x̆ = a+ b− x. (6.17)

This definition can also be applied to a point in higher dimensional space. For aD-
dimensional pointQ(x1, x2, . . . , xD), where x1, x2, . . . , xD are real numbers and
xi ∈ [ai, bi], i = 1, 2, . . . , D, the opposite point Q̆ is defined as Q̆(x̆1, x̆2, . . . , x̆D)
where

x̆i = ai + bi − xi. (6.18)
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In the implementation there are two distinguishable stages, the initialization stage
and the generation advancement.

Initialization After the DE algorithm has finished the initialization, an opposite
check is performed. There are three steps, which are necessary. First the opposite
population O0 is created as described above in Eq. (6.18):

Oi,j = aj + bj − Pi,j , i = 1, 2, . . . , Np, j = 1, 2, . . . , D. (6.19)

Then the target function is evaluated for each target vector xi,0 in O0. Finally the
Np target vectors from the set {P0, O0}, which yield the lowest error sum, are
determined. They are stored in P0 and will be used as the initial population of the
DE algorithm.
To determine the target vectors with the lowest error sum, the set {P0, O0} is

stored in a single array, as well are the corresponding error sums. Then a quicksort
algorithm is used to efficiently sort both arrays. Finally the first Np entries of the
array can be used as the new population.

Generation advancement The opposite check for the generation advancement
works basically in the same way as for the initialization step. It is performed after
the selection stage, with a certain probability Jr, called jumping rate. Usually the
probability is set to 60% at the beginning of the optimization. After every ten
opposite checks, Jr is multiplied by a factor of 0.9. For an ongoing optimization,
the probability to perform an opposite check is continuously reduced. The reasons
for that are rather simple. First, the opposite check is computationally almost as
expensive as one iteration of the basic DE algorithm. Second, as the optimization
progresses, all target vectors move closer and closer together. The probability to
achieve a significant improvement with an opposite check will thus become smaller
and smaller. Finally, Rahnamayan et al. [98] showed, that a decreasing jumping
rate leads a faster convergence than a constant or increasing one.
The generation advancement however has one important difference from the

initialization routine. The opposite of each parameter is calculated dynamically.
That means, that the maximum and minimum value of each parameter no longer is
given by the predefined interval [aj , bj ]. It is determined from the minimum and
maximum values of the individual parameters in the current population:

Oi,j = MINgj + MAXgj − Pi,j , i = 1, 2, . . . , Np, j = 1, 2, . . . , D. (6.20)
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MINgj (MAXgj ) denotes the minimal (maximal) value of the jth component of
all target vectors in generation g. That is necessary, to prevent a jump outside of
the already shrunken search space, which would destroy the converged population.
Hence, the opposite is calculated with respect to the extent of the current population
and not the initial range [aj , bj ].

Self-adapting control parameters

The choice of the control parameters in differential evolution simulations is a
complex task. A set which works well for one problem may fail for a different
one. Heuristic rules to determine these parameters were developed. However, these
rules are not applicable globally. They also may only work for certain problems. A
simple solution that can handle all problems is to include the control parameters
into the population and allow them to evolve along with the main parameters.
According to Eiben et al. [34], the change of control parameters can be catego-

rized into three classes.

1. Deterministic parameter control, which alters the parameters according to a
deterministic scheme.

2. Adaptive parameter control, which uses some kind of feedback from the
optimization to change the parameters.

3. Self-adaptive parameter control is the idea of “evolution of the evolution”.
The control parameters are also subject of the optimization and will be ad-
justed to optimal values.

One possible way of using the self-adaptive parameter control with differential
evolution has been proposed by Brest et al. [20]. The algorithm optimizes the two
parameters F and Cr while keeping the population size Np fixed.
Each target vector xi,g is extended by two additional parameters, F (i) and C(i)

r .
The previously global parameters F and Cr are now replaced by “per vector” pa-
rameters, which can be added to the optimization very easily. The new control
parameters are calculated as

F
(i)
g+1 =

{
Fl + rand1Fu if rand2 < τ1

F
(i)
g otherwise

(6.21)
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and

C
(i)
r,g+1 =

{
rand3 if rand4 < τ2

C
(i)
r,g otherwise.

(6.22)

randi, with i ∈ {1, 2, 3, 4}, are uniform random values from [0, 1], τ1 and τ2 rep-
resent the probabilities of adjusting the control parameters F and Cr, respectively.
Fl and Fu are the lower and upper bound for the amplification factor F , Cr takes
values from [0, 1]. In potfit the values for τ1, τ2, Fl, Fu are taken as fixed values
0.1, 0.1, 0.1, 0.9. The new values for F and Cr are calculated before the mutation
is performed, so they are used in the generation of the new population Pg+1.

Field of application

The DE algorithm has primarily been implemented for the use with analytic po-
tentials (Sec. 6.6). It can also be used for tabulated potentials, but there are some
drawbacks, which make it less efficient than the simulated annealing algorithm.
The support of differential evolution has to be enabled explicitly at compile time,
otherwise simulated annealing is used.
The main reason why DE does not work well with tabulated potentials are the

missing bounds for the parameters. For analytic potentials, the user has to specify
the range [aj , bj ] for each parameter explicitly. That is not the case for tabulated
potentials. Using the DE scheme without any bounds is possible, but very error-
prone. A simple one-dimensional example shall be given to explain the problem.
Let P be a generation with Np = 4 individuals. Their values are xi = i, i =

1, 2, 3, 4 and the minimum value of the target function is at x0 = 20. It is very
unlikely to reachx0 by themeans of themutation rules given in Eqs. (6.11) to (6.14).
For a simple downhill target function, the optimal value can be reached after few
generations. For complex target functions, it might never be reached.
If all parameters of a potential are in a very narrow range far away from the

optimum, the DE algorithm might be very ineffective. The solution of adding
upper and lower bounds for tabulated potentials is not possible. In potfit, the unit
system is not fixed, it can be chosen be the user. Bounds for the potential values
which work for electron volts may be completely wrong for a different energy unit.
The simulated annealing does not suffer from this problem. It does not rely on

bounds and is thus the standard optimization algorithm in potfit.
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6.4 Reference data

The quality of a force-matched potential significantly depends on the reference
data used in the fitting process. The key concept which is important in this context
is transferability. It describes the ability of a certain potential to correctly describe
different configurations with the same parametrization. For effective potentials
there is usually a trade-off between transferability and precision. A potential that
can reproduce energy and forces of a single configuration with high accuracy is
less transferable. In contrary, a transferable potential can describe different config-
urations, but with lower accuracy.
In potfit there are two ways to influence the fitting process with regard to trans-

ferability. One is the possibility to use weights for the different parts of the target
function Z. The other is the proper choice of reference configurations. To get a
transferable potential, which is usable in different situations, a wide range of ref-
erence structures should be used. Configurations with different lattice types as
well as surfaces, grain boundaries or any type of defects may be included. For a
precise potential the selection of reference structures should contain mostly related
configurations with similar local atomic environments. Reducing ambiguities in
the reference data usually leads to a more accurate potential.
The decision, if a potential should be more precise or more transferable depends

on its intended use. An example for the application of a transferable potential are
phase transitions, where the potential has to be able to describe all phases which
are involved. For a structure optimization, a very precise potential is needed. All
occurring structures are very similar, the important quantity is the accuracy of the
energy. The direction of the potential fitting can be steered with different weighting
factors.
Another problem, which has to be considered is the radial distribution function

g(r) of the reference data. To generate a reliable potential, forces should be available
from a minimum distance rmin to the cutoff distance rc. Otherwise the optimization
problem may contain degrees of freedom that do not influence the result. An
example is shown in Fig. 6.3.
There are two different approaches to eliminate unsupported parameters. On the

one hand the set of reference configurations can be extended to include additional
structures, which, however, is not always possible or might require new and time
consuming DFT calculations. On the other hand the parametrization of the potential
can be changed. For a tabulated potential the unsupported nodes at the beginning
can be omitted or the spacing between nodes can be changed to solve the problem.
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Figure 6.3: A potential (red) with unsupported parameters and the correspond-
ing radial distribution function (blue). The first minimum of the potential
at a distance of about 1.1Å is not supported by the reference data. All
parameters, that are responsible for the first minimum can be changed
without changing the error sum.

In the case of analytic potentials the solution may not always be trivial, but the
lower and upper bounds of the parameters can be used to prohibit such features.

6.4.1 Weights
The influence of the different kinds of reference data on the potential fitting can be
adjusted with several weighting factors. There are two global weights, the energy
weight wE and the stress weight wS . When the contributions to the error sum are
calculated, these factors are multiplied onto the errors to increase or decrease their
influence on the optimization. The deviation part ZF of (6.2) can be written in
detail as

ZF =

m∑
i=0

(
Fi − F 0

i

)2
+ wE

k∑
j=0

(
Ej − E0

j

)2
+ wS

6k∑
l=0

(
Sl − S0

l

)2
. (6.23)

The weighting factors w can be used to adjust the relative importance of the force,
energy and stress deviations. While the force term is always fixed at a weight of
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wF = 1, the other weights can be any number greater or equal to 0. The special
case w = 0 disables the contribution to the error sum.
By choosing the correct ratio of the weighting factors, the optimization can be

guided into different directions. A high energy or stress weight will yield a precise
potential, which is only little transferable. Small weights put the emphasis on the
forces. To arrive at transferable potentials, the weights should be chosen in such a
way that all parts of (6.23) do contribute to the error sum. In practice this can be a
really tricky issue as several aspects have to be considered.
The most important thing is the different number of summands in each sum

in (6.23). There are m forces, k energies and 6k stress deviations which are all
summed up. Whilem, which is equal to three times the total number of atoms, can
be as large as a few ten thousands, k is usually in the range from 20 to 100. Another
point are the different units for forces, energy and stresses. Forces are given in
eV/Å, energy in eV/atom and stresses in units of 160.2GPa. The numeric values
of the deviations often differ by several orders of magnitude. As there is no general
rule, the weights have to be adjusted for each optimization run individually. To
support the user, potfit will write all contributions to the error sum into different
files. They can be used to generate scattering plots, which yield a rough estimation
of the contribution for each type of data. An example is shown in Fig. 6.4. These
data can be used to choose the appropriate weighting factors.
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Figure 6.4: All contributions to the error sum of a MgZn potential, created
for testing purposes in [P1]. The horizontal axis counts the number of
datapoints for each quantity. The unweighted error sums for the individual
parts are 72.207 for forces, 0.395 for energies and 0.910 for stresses.
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There is also another type of weighting factors available, which can be used
to control the optimization. They are called configuration weights and apply to
all quantities calculated from a single configuration. The total error sum of all
deviations ZF can be expressed as a sum over all configurations,

ZF =

P∑
c=0

wcZ
c
F , (6.24)

where P is the total number of configurations,wc the configuration weight and ZcF
the sum of errors for a single configuration. These weights can be used to put the
emphasis of the fitting process on specific configurations while retaining others
which are less important.

6.5 Tabulated potentials

A convenient way of storing interatomic potentials is a simple table. The value of
each potential function at a few thousand sampling points is stored in a text file.
The tabulated format was the first one supported by potfit. It is inspired by MD
codes, where potentials are usually stored in memory as arrays. Computers can
perform table lookups much faster than calculating the potential value from an
analytic formula. For running MD simulations the tabulated potential is read at
the beginning and stored in memory. To determine a value between two sampling
points, different kinds of interpolation methods can be used.
Optimizing tabulated potentials in potfit uses sampling points with cubic spline

interpolation. However, the number of sampling points has to be reduced greatly,
compared to MD potentials. There is no limit, yet no more than 15 should be
used for a single potential. There are two reasons for that. First, the number of
degrees of freedom should be as small as possible. The optimization algorithms
can handle problems with about one hundred parameters in reasonable time. With
an increasing number of degrees of freedom the optimization time increases and the
probability to find the global optimum decreases. Second, the parameters should
all be independent of one another. For densely tabulated potentials the single pa-
rameters cannot be changed individually. Changing a single value also changes the
neighboring values significantly. Fig. 6.5 illustrates the problem.
Changing a parameter in a tabulated potential is not straightforward. To fulfill

the energy and momentum conservation, a potential and its derivative have to be
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Figure 6.5: Changing a parameter of a densely tabulated potential. The blue
potential on the left is tabulated with 200 sampling points. Its value at
r = 5Å is changed by adding a Gaussian, yielding the red potential. The
area inside the square is magnified on the righthand side. At each sampling
point the old blue potential is connected to the new red potential with an
arrow.

smooth. By simply adjusting a single parameter without adapting its neighbors,
the interpolated potential may lead to undesired results in MD simulations. One
possible solution is using Gaussians to change a potential. Instead of changing a
single value, a Gaussian, centered at the distance of the considered parameter, is
added to the potential. Neighboring parameters are automatically changed while
keeping the potential function and its derivative smooth. An example is shown in
Fig. 6.5.
For a reasonable spacing of the sampling points, the neighboring values only

should only be changed marginally. The parameters can be considered indepen-
dent and the optimization algorithms work at optimal performance. No additional
artificial constraints need to be taken care of. A potential with proper spacing is
shown in Fig. 6.6.
If potfit is compiled for tabulated potentials, the way parameters are changed

depends on the optimization algorithm. For simulated annealing, the previously
described Gaussian is added to the current potential to generate a new trial potential.
The properties of the Gaussian are also determined with a random number genera-
tor. The width and height are the absolute value of normally distributed random
numbers, yet the height is multiplied by the distance vector v (see Sec. 6.3.1). Pow-
ell’s least squares algorithm is used for finding the absolute minimum of a prerelax
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Figure 6.6: The same potential as in Fig. 6.5, tabulated at only 15 sampling
points. The potential between the sampling points is interpolated with
splines. Applying the same change as before, adding a Gaussian at r = 5Å,
yields the red potential. The parameter at the center is changed as desired
whereas the neighboring parameters remain virtually unchanged.

potential. The changes for single parameters are very small and usually do not
affect the neighboring datapoints. That is why the parameters are changed directly
without the addition of Gaussians. The third optimization algorithm, differential
evolution, is not suitable for tabulated potentials. The main reason is the same as
for densely tabulated potentials. By combining parameter values from different
potentials, the neighbors would also have to be changed. This is contradicting to
the biological principles the algorithm is based on. It is however possible to use
the differential evolution scheme with tabulated potentials, the results are usually
not as good as with simulated annealing.
For the present work only analytic potentials have been used. More details on

tabulated potentials can be found in [22] and on the potfit homepage.

6.6 Analytic potentials
A different way of representing interatomic potentials with a set of parameters are
analytic functions. In addition to the free parameters a functional form has to be
defined. There are several well-known analytic potentials, Lennard-Jones [73] and
Morse [84] being the most popular ones. Many different functional forms have
been developed since. An overview of the functions used in this work can be found
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in Sec. 6.6.3, all available potentials in potfit are listed on the potfit homepage.
In general analytic potentials can be defined with few parameters. The Lennard-

Jones potential has only two free parameters (cf. Fig. 6.7). With a small number of
parameters the optimization space is also very limited and the algorithms can work
efficiently. On average an analytic potential consists of three to six free parameters.
An EAM potential for a binary system has about 30 parameters, an ADP potential
about 50 to 60. Tabulated potentials on the other hand usually have more free
parameters, up to twice of the number of analytic potentials
For analytic potentials, there is the possibility that the parameters have a physical

meaning. In a Lennard-Jones potential, the parameters ε and σ are directly related
to the dimer binding energy and the equilibrium distance, respectively. Another
example are the EAM potentials from Johnson and Oh [56] for bcc metals. They
contain the unrelaxed vacancy formation energy, the atomic volume, the Voigt shear
modulus as well as the anisotropy ratio. These kind of relations can be derived
analytically for simple lattice types like fcc or bcc. For CMAs, these relations do
not hold because of the complex atomic arrangements.

ε = 0.5, σ = 2.0 σ = 2.0
σ = 2.2

Figure 6.7: Two plots of analytic Lennard-Jones potentials. The potential on
the left is defined by the two parameters ε = 0.5 and σ = 2.0. The right
plot highlights the influence of a single parameter on the whole range of
the potential. Changing σ from 2.0 to 2.2 changes the potential at almost
every distance.

When comparing analytic to tabulated potentials, they have one decisive advan-
tage. For tabulated potentials it is very important to support all sampling points
with reference data. Otherwise these parameters are unsupported and can obstruct
a proper optimization. Analytic potentials do not suffer from this problem. Param-
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eters are no longer local, as for tabulated potentials, they have an effect at most
distances. An example is shown in the right part of Fig. 6.7. By choosing the proper
analytic function for a potential, the reference data need not be continuous. It may
contain gaps or consist only of a few peaks. One important aspect is the fitting of
potentials for systems with minor constituents. If there are only few atoms of a
certain species in each reference configuration, the tabulated approach will usually
yield a potential which is only reliable at certain distances. With analytic functions
the problem can be circumvented.
The drawback of analytic potentials are the predefined functional forms. While

tabulated potentials can assume virtually all possible functions, analytic potentials
are very limited. By choosing a Lennard-Jones potential for a certain interaction,
it is not possible to generate a parametrization which incorporates oscillations or a
second minimum. If an analytic function is inadequate for a system, the result of the
optimization will exhibit considerable deficits. Selecting the appropriate functional
form for an analytic potential is a crucial step in the optimization process. As a
starting point, potentials of similar systems can be used or functions which are
more flexible can be considered.
There are analytic potentials which are very rigid and which are more flexible.

The behavior depends on the number of free parameters to some degree. Potentials
with two or three parameters often have the same shape, which can only be scaled
or translated. Typical examples for rigid potentials are the Lennard-Jones and the
Morse potentials. An example for a flexible parametrization is the EOP potential
from Mihalkovič et al. [81]. It is discussed in detail in Sec. 6.6.3.
In the next subsections some technical details of analytic potentials in potfit will

be discussed. The format of a potential file is explained, the internal data flow as
well as additional aspects of analytic potentials are reviewed. Finally the functional
forms used for this work will be introduced.

6.6.1 Potential files and internal calculations
To store analytic potentials efficiently a simple data format has been defined. It
consists of two parts, a header and a body. The header contains information on
the type of the interaction and the number of potentials. An example is shown in
Code Listing 6.1. The body holds the actual potential data, like the type and the
parameters.
The first line, starting with #F, has two parameters. One for the potential format

and one for the number of potentials. In potfit, the potential formats were adopted
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#F 0 5
#T ADP
#C Ge
## Ge-Ge Ge Ge Ge-Ge Ge-Ge
#I 0 0 0 0 0
#E

Code Listing 6.1: Potential file header data for a Germanium ADP potential.
Each header line starts with a # character, comment lines are marked with
##. More details are given in the text.

from IMD, so the formats 3 and 4 stand for tabulated potentials while format 0
denotes analytic potentials. The line with the T specifies the type of potential. From
a computational point of view it is unnecessary, but it can be very helpful for the user.
The same is true for the C-line, which holds the names of the chemical elements. It
is mainly used to properly label output data with interaction names, like Al-Mn,
instead of numbers like 0-1. A line starting with two # characters is considered a
comment and is ignored. Usually all interactions are listed there in the same order
as the appear in the file. To disable the optimization for one or more potential the
I-line can be used. There has to be a single digit for each potential, setting it to 1
will not optimize that particular potential. The end of the header has to be marked
with line containing only #E. Only body data is allowed after this point.

type lj
cutoff 7
epsilon 0.10 0.00 1.00
sigma 2.50 1.00 4.00

Code Listing 6.2: Definition of a Lennard-Jones potential in potfit.

To specify analytic potentials there is also a special format. A Lennard-Jones
potential is shown in Code Listing 6.2. Each potential definition starts with the
type keyword. It is followed by the unique identifier for a potential function, lj
in this case. The keywords for all available functions can be found on the potfit
homepage. The next line specifies the cutoff distance for the potential. It is not a
global setting, it can be different for each potential. After the type and cutoff lines,
the parameter values have to be specified. Each line needs exactly four entries.
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They are the parameter name, its value, minimum and maximum. The order of the
parameters for a functional form is fixed and has to be obeyed. The parameter name
given in the potential file is not respected for. It is only used for easy readability.
Detailed descriptions for each function and the order of parameters are available
on the potfit homepage.
After the potential files have been read by potfit the data is stored in memory. To

speed up the calculation, each analytic potential is tabulated at 500 sampling points.
The potential value is then interpolated from the table instead of calculated directly
from the analytic formula. Tabulating the analytic potentials has two advantages.
First, the force routines for tabulated and analytic potential can almost be identical.
They can access the potential data in the same way without any further conversion.
Second, new force routines from IMD or other MD codes can be adapted to potfit
rather easily because of the similar potential data structures.
Every time a potential value is changed, the corresponding table has to be updated.

The computational effort, however, is negligible, usually only one potential has to
be updated while the other ones remain unchanged. Depending on the mathemati-
cal functions used in the functional forms, tabulating potentials can improve the
performance of the force calculation by several orders of magnitude. Especially po-
tentials with exponential or trigonometric functions are computationally expensive
functions.

Smooth cutoff

Another problem for analytic potentials is the cutoff distance rc. To conserve energy
and momentum in an MD simulation, the potential as well as its derivative have to
vanish smoothly at the cutoff. Otherwise, atoms entering or leaving the interaction
distance of other atoms can suddenly become accelerated or decelerated.
For tabulated potentials the problem can be solved easily by adding a sampling

point at the cutoff distance with the fixed value of 0. The spline interpolation makes
sure that the potential and its derivative go smoothly to zero.
If an analytic potential is cut off at a certain distance, neither its value nor its

derivative will be zero in general. There are different solutions, the simplest one is
to shift the potential by the negative value at the cutoff distance. Doing so removes
the discontinuity of the function itself but not of the derivative. Another possibility
is to replace the potential for all distances greater than δrc with a parabola. The
parameter δ has to be chosen in such a way, that the connection at δrc is continuously
differentiable. Determining δ is very difficult for a fixed cutoff radius. The first
analytic version of potfit was implemented with a fixed value of δ, which lead to a
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varying cutoff radius. To guarantee the cutoff distance entered by the user, a cutoff
function Ψ(r) is introduced. It is shown in Fig. 6.8. At each sampling point, the
potential is multiplied with the cutoff function, the result is the effective potential
used in the force calculation.

distance

rc

without Ψ
with Ψ

0

1

distance
rc

h = 0.6
h = 1.0

Figure 6.8: Left: Oscillating pair potentials with a cutoff distance rc. The
gray potential has no cutoff function, it is simply cut off, leading to a
discontinuity at rc. The red curve is equal to the gray potential multiplied
with the cutoff function Ψ(r). Right: Plots of the cutoff function Ψ(r) with
two different parameters h. It determines from where on the potential is
smoothed.

The functional form of Ψ(r) used in potfit is taken from Mishin et al. [82]. It is
defined as

Ψ(x) =

{
x4

1+x4 for r < rc

0 for r > rc
, where x =

r − rc
h

. (6.25)

The parameter h determines the width of the smoothing, rc is the cutoff distance.
For small distances the function has a value of 1. At larger values, close to the
cutoff, it decreases gradually until it reaches zero exactly at rc. The high order of
x4 also guarantees that the derivatives of the potentials goes smoothly to zero. This
is important for the spline interpolation, it uses the second derivative to generate
continuously differentiable functions.
To enable the smooth cutoff for an analytic potential in potfit, the string _sc has

to be appended to the type identifier. An additional entry at the end of the parameter
list is required, which is usually called h. An example for a potential is shown in
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Code Listing 6.3.

type lj_sc
cutoff 7
epsilon 0.10 0.00 1.00
sigma 2.50 1.00 4.00
h 1.00 0.50 2.00

Code Listing 6.3: Definition of a Lennard-Jones potential with the smooth
cutoff option enabled.

With the parameter h added, each potential which uses the smooth cutoff has an
additional degree of freedom. The parameter is treated in exactly the same way as
a regular parameter. For an analytic potentials defined over distance the smooth
cutoff should be enabled. It is enabled for all potentials fitted in chapters 8 and 9,
except for the embedding function of EAM and ADP potentials.

6.6.2 Analytic parameters
The implementation of analytic potentials requires special functions for the treat-
ment of the parameters. Most important is the implementation of lower and upper
bounds for the parameters. A functional form can yield a reasonable potential with
one set of parameters and an unusable one with another set. To remove these inap-
propriate potentials from the optimization, the parameter space should optimally
only include the reasonable potentials. As there is no simple and fast algorithm to
test for this, the user has to specify an allowed range for each parameter. There are
defaults available for each potential from the makeapot utility, which should work
in most cases.
After a new parameter has been generated by the optimization algorithms, it is

verified that it is inside of the allowed range for that parameter. If it is outside,
the potential receives a punishment in the form of an additional contribution to
the error sum. The further the new parameter is away from the allowed range, the
bigger the punishment. It is calculated from the formula

Zpunish = 106x2, where x =

{
αi − αmax

i if αi > αmax
i

αmin
i − αi if αi < αmin

i

. (6.26)

A parabolic form is chosen to have a small punishment for very small violations
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and a steep increase for bigger violations of the predefined parameter range.
It is possible, that the optimal value for a parameter lies outside of the allowed

value range. An indication can be if the parameter value after the optimization is
equal or very close to one of the boundaries. A subsequent potfit run can be started
with the respective boundary increased or decreased to get an optimal potential.
An analytic parameter may have special relationships with other parameters

or posses special mathematical properties. In potfit there are special functions
available for both cases. It is possible to evaluate a new set of parameters and
adjust it according to predefined rules. An example is a potential, where parameter
a always has to be smaller than parameter b. The optimization algorithms alone
are not able to fulfill such conditions. The special function checks if all requested
conditions are met and adds a similar punishment like Eq. (6.26) if not. The special
mathematical properties may be discrete values or periodic parameters. In the later
case, the mapping of the parameter to the original period is important to keep the
optimization space as small as possible. Typical examples for a periodic parameter
are phase factors, which usually have values between 0 and 2π.
In the same way as entire potentials can be excluded from the optimization, single

parameters can be kept fixed. If the initial value as well as the lower and upper bound
all have the same numeric value, the parameter is removed from the optimization
table. This feature can be helpful for adapting already optimized potentials to a
different set of reference data, where most of the parameters can be kept fixed and
only few need to be adjusted.

Global parameters

For analytic potentials there is another feature available, which can be helpful in
different cases. Many analytic potentials from the literature use a single parameter
in different functions. In potfit these parameters are called “global parameters”. If
a global parameter is defined, it is assigned to a virtual potential and treated like
a regular parameter. Each potential can then access any global parameter, which
reduces the number of free parameters for a particular potential. An example for
the usage of global potentials in potfit is given in Code Listing 6.4.
To define a global parameter a new section has to be inserted in the potential

file. It has to be placed directly after the header, in front of the potentials. The
keyword for the section is global, followed by the number of global parameters.
Each parameter is specified like a regular parameter with value, lower and upper
boundaries. To use a global parameter in a potential, the same name followed by an
exclamation mark is required. The mapping of these parameters is done by name,
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global 1
h 1.00 0.50 2.00

type lj_sc
cutoff 7
epsilon 0.10 0.00 1.00
sigma 2.50 1.00 4.00
h!

Code Listing 6.4: Usage of a global parameter in potfit.

each global parameter name has to have a unique name.
A common application for global parameters feature is shown in Code Listing 6.4.

The cutoff parameter h of the smooth cutoff can be defined as a global parame-
ter. All potentials can then use the same cutoff function with a single parameter.
The resulting reduction of the number of free parameters also leads to a reduced
optimization space.

6.6.3 Available potential functions
The number of analytic potential functions is incredibly large. While many of them
are very similar, there are always little differences which are supposed to make
them more appropriate for one or another problem.
If a particular potential is missing in potfit, it can be added with very little effort.

The program has to be altered only at two different places. First, the potential
identifier as well as the number of parameters have to be defined. Second, the
analytic function has to be implemented as a standalone C-function which takes
the distance and the parameters as input and returns the potential value.
In potfit there are about 35 different functions implemented, they are all docu-

mented in detail on the homepage. The potentials that have been used for the CMAs
are introduced in the following paragraphs.

Pair potentials

The functional forms of the pair potentials used in EAM and ADP potentials is
called “empirical oscillating pair potential” (EOP). It has been successfully used



130 Chapter 6 – Force matching with the potfit code

for different intermetallic and quasicrystal systems [81]. The potential is defined as

φ(r) =
C1

rη1
+
C2

rη2
cos(kr + ϕ) (6.27)

with the six free parameters C1,2, η1,2, k and ϕ. The short range repulsion is
covered by the first term, the first minimum as well as any oscillations can be
attained with the second term. That makes the function very flexible. Depending
on the choice of parameters, it can model very different potentials. It is possible the
have a single minimum, a repulsive shoulder or minima for the second and third
neighbors. EOP potentials with different parametrizations are plotted in Sec. 8.3.
For comparison, the very simple Morse potential has been used. It is used in the

following parametrization:

φ(r) = De [1− exp(−a(r − r0))]
2
. (6.28)

The three parametersDe, a and r0 determine the depth, the width and the position
of the minimum of the potential. With this functional form it is not possible to
model a purely repulsive potential or second and third neighbor minima.

Transfer functions

To model the transfer function in EAM and ADP potentials, a function proposed by
Chantasiriwan and Milstein [25] has been used. They showed that oscillations
in the transfer function are necessary for a potential to yield the correct higher-order
elasticity. The function is defined as

ρ(r) =
1 + a1 cos(αr) + a2 sin(αr)

rβ
, (6.29)

where α and β are positive parameters, responsible for the frequency of the os-
cillations and the strength of the decay, respectively. The expression is similar
to the form representing Friedel oscillations, ρ(r) = λ cos(2kr + δ)(r/r1)−3.
Equation (6.29) provides more flexibility by not fixing the decay at β = 3.
For computational reasons a second form of this potential has been implemented.

It uses addition theorems to remove the second trigonometric function:

ρ(r) =
1 + a cos(αr + ϕ)

rβ
. (6.30)
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As a simple alternative for the transfer function, an analytic decay and an expo-
nential decay can be used. This type of function was used by the first EAM models
in the 1980s by Johnson [55].

Embedding functions

In 1984 Rose et al. [101] developed an universal equation of state for metals. Today
it is used in many EAM potentials, with only slight modifications. The version
which is implemented in potfit has been proposed by Banerjea and Smith [8]. It
has the following form:

U(n) = −U0 [1− γ lnn]nγ + U1n. (6.31)

ADP dipole and quadrupole potentials

For the dipole and quadrupole functions there is not much data available in the
literature. Mishin et al. used simple exponential decays in the original publication.
To be more flexible, the functions of Chantasiriwan and Milstein (6.30) have
been used in this work.

6.7 Testing a potential
Themost important step in fitting an effective potential is the testing of its properties.
After potfit has finished the optimization process, the quality of the potential in
general and for specific applications has to be determined. There are several ways
of testing a potential which will be presented in this section. The order is from very
general tests to very specific applications.

potfit error sum

A first indication for the quality of a potential is directly given by potfit. Before the
program is terminated, an error report is created which contains information about
the deviations of the final potential from the reference data. An example is shown
in Code 6.5.
The objective of the optimization algorithm, the total error sum, is given at the

beginning of line 2. Additionally, the individual contributions are presented in
detail on lines 3 to 5. While these numbers can provide a rough estimate of the
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1 ###### error report ######
2 total error sum 519.640133, count 11059 (10200 forces, 98 energies, 588 stresses)
3 sum of force-errors = 4.937880e+02 ( 95.025% - av: 0.048411)
4 sum of energy-errors = 1.857213e+01 ( 3.574% )
5 sum of stress-errors = 7.103907e+00 ( 1.367% )
6 rms-errors:
7 force 1.316211e-01 (131.621123 meV/A)
8 energy 3.259047e-02 ( 32.590473 meV)
9 stress 1.427852e-02 ( 0.089129 MPa)

Code Listing 6.5: potfit error report after the optimization, taken from a Al-
Pd-Mn potential.

quality of the potential, they can also be misleading. A low error sum does not
guarantee a reliable potential and a large error sum does not necessarily stand for a
bad potential. This is related to the issue of transferability, described in Sec. 6.4.
A more meaningful quantity is the root mean square (RMS). It is given in the

error report on lines 7 to 9. For convenience the numbers are converted to common
units like meV or MPa. The RMS gives a statistical measure of the deviations
from the reference data. These errors can be used to compare the performance
of different potentials for the same reference data. Yet they do not provide any
information on how the potential behaves in MD simulation or for structures that
were not included in the reference data.

Scatter plots

A quick way of getting on overview of all datapoints used for the optimization is a
scatter plot. There the values of the effective potential and the ab initio reference
values are interpreted as points in two-dimensional space. If there is perfect agree-
ment, all plotted points should fall on the identity line. For all other cases the points
deviate from it. Fig. 6.9 shows scatter plots for forces, energies and stresses.
With scatter plots global trends in the optimization can be identified quickly. If

there is a problem with the potential and the calculated values are all too small,
the majority of the points deviates to the left. The distance of a datapoint to the
identity line is a direct measure of its deviation, the further it is away, the larger the
error is.
For an optimized potential most of the points should coincide with the identity

line. In Fig. 6.9 this is the case for the forces and the energies. The stresses however
show a global trend to the right, which indicates that the values are too big. For a
potential which needs to yield precise stress values, the potential should be refitted
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Figure 6.9: Scatter plots for forces, energies and stresses. The value computed
with the effective potential is shown on the horizontal axis, the ab initio
value on the vertical axis. The dashed line is the identity line.

with an increased stress weight.

Split reference data

Checking the fitted potential with other data than the reference data is important
for the transferability. Splitting the initial reference dataset into two parts is an
common approach. The first part is used for the optimization while the second part
is used for the testing. Another source for testing data are ab initio MD runs. If
some snapshots of the MD trajectory have been used for fitting, other snapshots
can be used for testing. To make sure that these snapshots are mostly uncorrelated,
they should be a few timesteps apart from each other.
If the errors for the reference and test set are similar, the potential can be regarded

as suited for these kind of structures. As a first test for transferability, configurations
from different structures can be included in the reference database. As long as
the errors are reasonably small, the potential can be tested further in real MD
simulations.

“Direct” properties

All previously described tests only use static evaluations of the potential. The next
step is to run simple MD simulations. This is done in order to see if the potential
can stabilize different structures and yield correct ground state energies.
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To test for structural stability, relaxation runs can be performed. The atoms are
moved until the residual forces on all atoms are below a predefined threshold. With
a good potential, these new positions should only differ marginally from the ab
initio reference positions.
The structural stability is also of interest at finite temperatures. A simple NVE

run for a few thousand timesteps can reveal deficiencies in the potential very quickly.
For all temperatures below the melting point the structure should remain stable
and neither collapse nor explode.

“Advanced” properties

Depending on the requirements to the potential, some implicit properties can also
be checked. The quantities that determine the structure, the forces and energies,
can be fitted directly. Advanced properties like the melting temperature, phonon
properties as well as the reaction to external perturbations are not a direct part of
the fitting process.
These tests are more complex to set up and may require external analysis tools.

Some of them are described in chapter 7 and part III.

Specific applications

The final and most important test is the application of the potential to the problem
is was fitted to. If the potential is not able to perform a specific task or yields
unphysical results, the fitting process has to be restarted with adjusted reference
data.



Chapter 7:

Additional methods & computer codes

Modern algorithms for calculating dynamic properties of atomic systems can be
very complex. A reasonable approach is to separate the simulation part from the
analysis part. Each program can be specialized for the individual tasks without any
tradeoffs. It has also the advantage that an analysis tool can be used by different
simulation codes as long as there is a common data format.
For the present work different analysis tools have been used. In the following

sections the programs for calculating phononic properties like the density of states,
dispersion relation and the thermal conductivity will be discussed. Some of them
are available on the internet, distributed under an open source license, while others
were implemented by the author.

7.1 Phonon density of states

To calculate the phonon density of states (PDOS) there are different approaches.
The direct calculation from the trajectories of the atoms requires a few ten thousand
timesteps and a large simulation box. A task which can be easily handled with
molecular dynamics, for ab initio simulations this method is not feasible. Using the
harmonic approximation to calculate the dynamical matrix is another possibility. It
only requires small samples and uses static configurations, which can be managed
with DFT codes.

135
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Direct calculation

Performing an MD simulation for the direct calculation of the phonon density of
states (PDOS) is rather simple. First a supercell of the atomic structure has to be
created. It should be big enough to eliminate finite size effects. For the clathrate
systems a 5×5×5 supercell has been used. After an initial thermalization stage of
about 10 000 steps, the actual simulation is started. It is a regular NVE run with
200 000 steps, where the positions and velocities of the atoms are stored every 10
steps. To save disk space and for easy processing a binary format is used.
The calculation of the phonon density of states is done with the nMOLDYN1 pro-

gram, created by Róg et al. [100]. It is especially designed for the computation and
decomposition of neutron scattering spectra, but it can be used for other quantities.

To be able to import simulation data into nMOLDYN, it has to be converted
to the NetCDF2 data format. There is a python script that comes with IMD, that
can do the conversion from the binary data file created during the MD run to the
NetCDF format.
The density of states is calculated in two steps. First the velocity autocorrelation

function (VACF) is computed. It is defined as:

Cvv =
1

N

N∑
α=1

wα
1

3
〈vα(0) · vα(t)〉, (7.1)

where wα is a weighting factor, which is proportional to the mass. The phonon
density of states G(ω) is the Fourier transform of the VACF,

G(ω) =

∞∫
0

dt exp(−iωt)Cvv(t). (7.2)

There are several parameters that can be adjusted. It is possible to select a subset
of the atoms or assign different weighting factors. An important parameter is the
“Resolution”. It determines the width of the Gaussian, which is used to mimic the
finite resolution of experimental detectors. The velocity autocorrelation function is
multiplied by the Gaussian and then the result is Fourier transformed to yield the

1http://dirac.cnrs-orleans.fr/plone/software/nmoldyn/nmoldyn-2/
2http://www.unidata.ucar.edu/software/netcdf/

http://dirac.cnrs-orleans.fr/plone/software/nmoldyn/nmoldyn-2/
http://www.unidata.ucar.edu/software/netcdf/
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phonon density of states. A comparison of a PDOS with and without this Gaussian
is shown in Fig. 7.1.
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Figure 7.1: Two phonon density of states calculated from the same VACF.
The blue curve is smoothed by multiplying a Gaussian before the Fourier
transform.

The width of the Gaussian determines how smooth the function will be. For a
small resolution value, single peaks can still be distinguished. This is not the case
for larger values where several peaks are merged into a broad single peak. The
parameter has to be given in a percentage of the total trajectory length. For an MD
run with 200 000 steps and a timestep of 0.1 in IMD units a reasonable value is
between 0.1 and 1.

Dynamical matrix calculation

A different approach, which requires significantly less force calculations, uses the
dynamical matrixD. In harmonic approximation it can be obtained from the atomic
force constant matrices Φ, which can be written as

Φαβ

(
jj′

ll′

)
= − Fα(jl)

uβ(j′l′)
. (7.3)
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The subscripts α and β denote the Cartesian components, j and j′ the atoms and l
and l′ the unit cells. F is the force acting on an atom and u the atomic displacement
from the equilibrium position.
The dynamical matrix is then given by

Dαβ(jj′,k) =
1

√
mjmj′

∑
l′

Φαβ

(
jj′

ll′

)
exp(ik[r(j′l′)− r(j0)]). (7.4)

Heremj is the mass of atom j, r(j′l′) is the position of atom j′ in unit cell l′ and k
is the wave vector. The phonon frequencies ω and eigenvectors e can be calculated
from

ω2e(k, ν) = D(k)e(k, ν), (7.5)

where ν is the label of the solution.
The finite displacementmethod is implemented in the phono.py code from Togo

et al. [116]. The algorithm is explained in detail in the manual on the homepage1.
Before calculating a PDOS, the considered structure has to be relaxed. Subse-

quently phono.py can create the necessary displacements from the equilibrium
positions of the atoms. For each symmetry inequivalent direction of each Wyckoff
position a structure is generated. The forces in these configurations have to be calcu-
lated with ab initio methods. Afterwards the output is collected by phono.py and
written into a single force file. From this file the dynamical matrix can be computed.
Different phonon related properties like the PDOS can then be extracted.
The effort of this method depends on the number of atoms and the symmetry of

the unit cell. For a clathrate system with an empty cage, e.g. Ge46, there are 46
atoms in the unit cell. The space group Pm3̄n has 12 Wyckoff position, of which
3 are occupied. A total of 8 symmetry inequivalent displacements are necessary,
resulting in 8 force calculations. For the 2×2×2 supercell structure of Ba8Ge43
with 408 atoms, 26 displacements are necessary.

7.2 Phonon dispersion curves
Closely related to the phonon density of states are the phonon dispersion curves.
They give the wave vector dependence on the phonon frequencies for different direc-
tions in k-space. Experimentally these dispersions can be measured indirectly via
1http://phonopy.sourceforge.net/

http://phonopy.sourceforge.net/
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the interaction of lattice waves with other waves. Often inelastic neutron scattering
is used, another possibility is electron energy loss spectroscopy.
For theoretical analysis, the dispersion curves can be calculated from the dynam-

ical matrix. The phono.py program, presented in Sec. 7.1, can be used to compute
the phonon dispersion. The density functional perturbation theory (DFPT) pro-
vides another method to calculate the dynamical matrix. It uses the linear response
theorem and yields accurate results. DFPT is not available in the version of the
VASP code used for this work, hence the phono.py code is used.

Phonon dispersions from molecular dynamics simulations

For MD simulations it is possible to obtain the phonon dispersion from the VACF
(Eq. (7.1)), yet such an approach is not as straightforward as for the PDOS. In 2011
Kong [63] presented a method to calculate the dynamical matrix from an ordinary
MD run. It is implemented in the fix_phonon1 package, which is available for
LAMMPS.
Instead of determining the force constants Φ from finite displacements, the lattice

Green’s function coefficients G are used. They can be obtained from the second
moments of the displacements:

Gαβ

(
jj′

ll′

)
= 〈uα(jl)uβ(j′l′)〉. (7.6)

The force constants Φ are related via

Φαβ

(
jj′

ll′

)
= kBTG

−1
αβ

(
jj′

ll′

)
. (7.7)

Usually the analysis is done in reciprocal space, where the displacements are
defined as the Fourier transform:

ũj(k) =
1√
N

∑
l

u(jl) exp(−ikrl). (7.8)

The Green’s function in reciprocal space is

G̃αβ(jj′,k) = 〈ũjα(k)ũ∗j′β(k)〉, (7.9)

1http://code.google.com/p/fix-phonon/

http://code.google.com/p/fix-phonon/
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where ∗ denotes the complex conjugate. With Φ̃ = kBT G̃
−1 the dynamical matrix

can be written as

Dαβ(jj′,k) =
1

√
mjmj′

Φ̃αβ(jj′,k). (7.10)

A regular MD simulation can be set up in LAMMPS to measure the atomic
displacements. The external analysis tool requires an additional file, which provides
the mapping of the atoms in the supercell back to the simple unit cell. It is necessary
to evaluate Eq. (7.6), where the indices l and l′ denote the different unit cells. While
the simulation is running, a binary output file is createdwith the dynamical matrices.
A postprocessing tool can subsequently calculate the phonon density of states, the
phonon dispersion curves as well as several other dynamical properties.

7.3 Thermal conductivity
“The thermal conductivity has proven to be one of the most difficult transport coef-
ficients to calculate” – Evans and Morriss [40]

In the literature there are mainly two different approaches to solve this problem.
One is the use of nonequilibrium molecular dynamics (NEMD) simulations. These
methods are also referred to as “direct methods”. The other approach uses statisti-
cal mechanics to derive transport properties like the bulk viscosity or the thermal
conductivity. It is named after its two original authors, Green-Kubo method. Both
methods will be discussed in the following subsections.

7.3.1 Nonequilibrium molecular dynamics methods
The NEMD approach or direct method uses Fourier’s law

J = −κ∆T, (7.11)

which relates the heat current J to the thermal conductivity κ and the temperature
gradient ∆T . The heat current is defined as an amount of energy transferred in
a given time through an area perpendicular to the flux direction. It is typically
given in units of W/m2. The thermal conductivity κ in general is a 3×3 tensor. For
practical reasons usually only a single component of the tensor is calculated in an
MD simulation.
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To exploit Eq. (7.11), a nonequilibrium molecular dynamics simulation has to be
performed. An external perturbation is introduced and the response of the system
is measured. In some cases changes to the equations of motion or the integration
scheme may be required.
There are three different methods to calculate the thermal conductivity with

Fourier’s law. Tenenbaum et al. [111] and Michalski [80] impose a temperature
gradient on the sample and measure the resulting heat current. The method of
Müller-Plathe [85] does the opposite, it imposes a heat current and measures
the resulting temperature gradient.
Some aspects, however, are common for all three methods. The simulation box

is always chosen in such a way, that it is elongated in a particular direction. This
is the direction in which the thermal conductivity is measured. An example is
shown in Fig. 7.2. It is designed to resemble experimental measurements of the
thermal conductivity. There a small rod is heated on one end and the temperature
is measured at the other end.

Figure 7.2: Setup of the simulation box for a typical thermal conductivity
calculation. The box is divided in layers along the x-axis, indicated by
bold lines. Each layer can consist of several unit cells, drawn with thin
lines.

Another thing all methods have in common is the use of layers. The simulation
box is divided in layers along the x-axis. A single layer can consist of several unit
cells as shown in Fig. 7.2. The utilization of these layers is a little different for the
different methods. They are explained in the following paragraphs.

Thermal walls

The method of Tenenbaum et al. [111] uses the previously described layers to
define artificial walls inside the simulation box. They are shown as dashed lines
in Fig. 7.3. Two temperatures Tc (cold) and Th (hot) are defined such that (Tc +
Th)/2 = T , where T is the equilibrium temperature. Each wall inside the system is
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Tc

Th

L

Figure 7.3: Simulation setup for the Tenenbaum method. The cold (left) wall
and hot (right) wall define the temperatures for all internal walls of the
system.

assigned a temperature, calculated from the interpolation of the previously defined
temperatures Tc and Th. A red dotted line is shown in Fig. 7.3.
An additional force Fw(r) is introduced in the equations of motion, which only

acts on atoms hitting a wall. Their velocity in x-direction is rescaled according to a
Maxwell distribution with the temperature of the corresponding wall. Afterwards
the particle is put back into its original layer, with the sign of the velocity changed.
The system is forced into a stationary nonequilibrium state, characterized by a
thermal gradient.
For each layer k a local temperature Tk can be calculated as

Tk =
1

3nkkB

nk∑
i=1

miv
2
i , (7.12)

withnk being the number of atoms in layer k. From these temperatures, the gradient
∆T can be computed. In general it is smaller than the expected value of ∆T =
(Th − Tc)/L.
The heat current J in a molecular dynamics simulation is defined as

J(t) =
d
dt
∑
i

riẼi, (7.13)

where Ẽi is the difference of the current energy of particle i from its average,
Ẽi = Ei(r)− 〈Ei〉. There are different ways of computing J , Eq. (7.13) can be
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rephrased into the following form:

J(t) =
∑
i

viẼi +
∑
i 6=j

(Fji · vj)rij . (7.14)

With the temperature gradient∆T and the heat currentJ the thermal conductivity
can be calculated from Eq. (7.11).

Using a heat bath

The method of Michalski [80] is very similar to the previous one. Instead of
active walls, the simulation is coupled to a heat bath. The outer most layers are
placed in contact with heat reservoirs of temperatures Th = 1.5T and Tc = 0.5T .
In practice simply the velocities of all atoms inside the outer layer is rescaled to
the desired temperature. This approach is very easy to implement as it does not
require additional terms in the equations of motion.
To maintain a steady temperature gradient, the rescaling has to be performed

after each MD step. The heat current J can be calculated in the same way as before,
using Eq. (7.14). Another possibility to determine the heat current is through the
energy. The amount of energy entering and leaving is related to the heat current
via

Jx =
∆E

A∆t
, (7.15)

where A is the cross section of the system.
The thermal conductivity can be determined from Eq. (7.11). The temperature

gradient is calculated from the different layers using Eq. (7.12). With Fourier’s law
the conductivity along x-direction is given as

Jx = −κdT
dx
. (7.16)

Exchanging the velocities

The third method differs from the previous two in the fact that the heat current is
imposed on the simulation and the resulting thermal gradient is measured. It was
introduced by Müller-Plathe [85] and has a considerable advantage. The heat
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current vector J is a quantity with large fluctuations. It converges very slowly and
large temperature gradients are required to get a noise-free signal. By inducing the
heat current it need not be calculated. The temperature gradient on the other hand
is a quantity averaged over many particles which usually converges quickly.
The setup is equivalent to the other two NEMD methods. The simulation box is

divided into N layers perpendicular to x-direction. For each layer the temperature
is defined by Eq. (7.12). To generate the heat current in the simulation, a cool layer
(k = 0) and a hot layer (k = N/2) are defined. In each timestep the velocities of
the hottest atom of the cool layer and the coldest atom of the hot layer are exchanged.
This mechanism creates an energy transfer from the cool to the hot layer, which
induces a heat current from the hot to the cool layer. A schematic simulation box
is shown in Fig. 7.4.

k: 0 1 N /2 N -1

heat current heat current

Figure 7.4: Setup of a thermal conductivity simulation according to Müller-
Plathe. Energy is transferred from the layer 0 toN/2 by exchanging veloc-
ities of particles. A heat current from the hot to the cool layer is induced.
The special arrangement is due to the periodic boundary conditions.

The spatial arrangement is needed to make this method work with periodic bound-
ary conditions. The right end of the simulation box is connected to the left end.
Putting the hot layer on the right end would directly connect it to the cool layer.
By putting it in the middle, the energy can flow off in two directions, ending up in
the same cool layer. Periodic boundary conditions have the advantage, that most
conservation laws are fulfilled without additional effort. Changing the velocity of
two atoms preserves the total linear momentum, the total kinetic energy and the
total energy. Implementing the Müller-Plathe method into an existing MD code is
straightforward.
For two reasons the implementation of this algorithm in IMD is slightly different

than in the original publication. First, it is very expensive to find the atoms with the
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lowest/highest kinetic energy inside a layer. For large systems with a few thousand
atoms per layer this can slow down a simulation significantly. The other reason is
also connected to the size of a single layer. By exchanging the velocities of two
atoms, the energy exchange is very small. To reach a steady state, the system thus
requires very long simulation times.
Both of these problems can be solved by rescaling the velocities of all atoms

inside the hot and cool layers. The rescaling factor is calculated as

∆vk =

√
1± ∆E

Ek
, where ∆E = 2A∆t jx. (7.17)

The plus and minus sign are used in the hot and cool layer, respectively. The surface
areaA = Ly ·Lz has to be counted twice, the energy can flow off in two directions.
The heat current in x-direction, jx, is a fixed value, specified by the user.
The simulation output data yields a temperature gradient, which can be used to

determine the thermal conductivity κ with Eq. (7.11). A typical progress of the
temperature gradient is shown in Fig. 7.5.
In the beginning of the simulation the temperature is almost constant over all

layers. Only for the cooled and heated layers there is a difference. After 125 ps the
temperature in the outer layers has started to decrease noticeably. After 750 ps an
almost steady temperature gradient is present over the entire sample. It only changes
slightly until the end of the simulation. To calculate the value of the gradient, only
the inner layers’ temperatures are used. The outermost three layers are neglected,
they are too much under the influence of the energy exchange. Which layers are
used to calculate the gradient depends on the total number of layers, their thickness
as well as the imposed heat current. From the average temperature gradient the
thermal conductivity can be calculated with Eq. (7.11).

7.3.2 The Green-Kubo approach

A different method of measuring the thermal conductivity is with the Green-Kubo
relations. In the 1950s Green and Kubo independently published a theory relating
transport coefficients and autocorrelation functions [45, 46, 68]. For the thermal
conductivity one can measure the fluctuating heat current and then calculate its
autocorrelation function.
To determine the thermal conductivity in the Green-Kubo formalism the auto-
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Figure 7.5: Temperature distribution along the x-direction in a Müller-Plathe
simulation at different time steps. The simulation box with a length of
877Å is divided into 40 layers. Each of the 21 unique layers from k = 0
to 20 is shown in the plot.

correlation of the fluctuating heat current is integrated:

κ =
1

3V kBT 2

∞∫
0

〈J(t) · J(0)〉 dt, (7.18)

where J is defined as in Eq. (7.13). The single particle energy Ei consists of
the kinetic energy p2i /2mi and the potential energy Vi. The partitioning of the
total energy onto the single particles is only unique for pairwise interactions. It
could be shown that for manybody interactions this partitioning does not affect the
results [72].
Equation (7.18) averages over all three components of the heat current vector.

To compute the thermal conductivity for a specific direction only on component of
the heat current is needed. The factor 1

3 in the coefficient can then be omitted. The
other components of the tensor of thermal conductivity can be computed with a
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simulation box with the corresponding principle axes.
For an efficient computation of the heat currentJ , it can be expressed in quantities

often used in MD simulations.

J(t) =
d
dt
∑
i

riẼi =
∑
i

viẼi +
∑
i

riĖi, (7.19)

where

Ė = vi · fi +
∑
j

(∇rj
Vi) · vj = −

∑
j

(∇ri
Vj) · vi +

∑
j

(∇rj
Vi) · vj .

(7.20)

Putting this into the second part of Eq. (7.19) yields∑
i

riĖi = −
∑
i,j

r(∇ri
Vj) · vi +

∑
i,j

ri(∇rj
Vi) · vj , (7.21)

which can be expressed as

∑
i

riĖi =
∑
i

∑
j

(rj − ri)⊗ (∇riVj)

 · vi =
∑
i

Wi · vi. (7.22)

Wj is the partitioning of the total virial tensor onto the individual particles. With
this, Eq. (7.19) can be written as

J(t) =
∑
i

(
Ẽi +Wi

)
· vi. (7.23)

This is the formula that is used by IMD to compute the heat current. The single
particle virialWi is also needed for calculating the stress tensor and can be accessed
without any additional effort.
Running a Green-Kubo simulation with IMD requires three parameters. The

average energy 〈Ei〉 has to be determined before the calculation of the heat current.
The parameter hc_av_start sets the timestep for the start of the averaging process.
It should be big enough to thermalize the entire sample. The first phase is terminated
when hc_start timesteps are reached. The evaluation of the heat current is then
performed until the end of the simulation. It is written to an output file every hc_int
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steps. For calculating the autocorrelation function and the thermal conductivity
postprocessing tools have to be used.

Processing the output data

The output file of IMD contains the heat current J at the discrete timesteps, defined
by the hc_int parameter. To obtain the thermal conductivity κ, the autocorrelation
of the heat current has to be integrated, cf. Eq. (7.18). The heat current auto-
correlation function (HCACF) can be calculated quickly using the fast Fourier
transformation (FFT) method. The integral of the autocorrelation is subsequently
calculated with another script, using the Simpson rule.
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Figure 7.6: Normalized autocorrelation function of the heat current J(t) in a
single Ge46 simulation.

The Green-Kubo method works well for liquids, where it yields reliable results.
For solids, there is usually a problem with the convergence of the integral. A typical
autocorrelation function for a solid system is shown in Fig. 7.6.
The function looks as expected in the first 200 ps. There is a large value at t = 0

which then decays at an exponential rate. From 300 ps on there are oscillations,
which are getting bigger with increasing time. In numerical simulations the auto-
correlation function is cut off at a certain time, when the correlation function is
virtually zero. That is not possible for solid systems. The correlation function does
not vanish as expected. The fact that the values are increasing for large times is
caused by the numerical calculation of the autocorrelation function and can safely
be ignored.
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Figure 7.7: Integrated autocorrelation function of the heat current J(t) in a
single Ge46 simulation.

The integral of the autocorrelation function of the heat current has to converge to
yield a reasonable value for the thermal conductivity. When integrating the function
shown in Fig. 7.6 this is not the case. The thermal conductivity does not converge,
the integral diverges for large times (shown in Fig. 7.7).
To obtain reasonable values from the Green-Kubo method additional considera-

tions are necessary. In contrast to the direct method, this is a statistical approach.
Instead of looking at a single simulation, the average over several simulations should
be considered. In Fig. 7.8 the average autocorrelation functions for 20 and 50 runs
are shown. They look very similar to the single run function for small times. The
oscillations at greater times, however, are almost completely averaged out.
But even for the averaged autocorrelation functions the integral does not converge.

For both functions of Fig. 7.8 the integral is shown in Fig. 7.9. For times smaller
than 50 ps the values almost match perfectly. Afterwards the average of the 50 runs
is bigger until they are more or less identical again for t > 400 ps.
In the literature there are different approaches on how to get meaningful results

with the Green-Kubo formalism. The most simple solution is to define some cutoff
time tc, after which the autocorrelation function is assumed to be zero. However
there is no justification for thismethod. The cutoffwould have to be chosenmanually
for each run, depending on the integrated autocorrelation function.
Another common solution is to approximate the autocorrelation with another

function,which does decay to zero. Usually the function accounts for an exponential
decay as well as oscillations. Dong et al. [32] use the following function to calculate
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Figure 7.8: Averaged normalized autocorrelation function of the heat current
J(t) of Ge46 for 20 and 50 runs.
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Figure 7.9: Integrals of the averaged HCACF shown in Fig. 7.8.
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the thermal conductivity in different phases of Germanium:

g(t) = A0 exp(−t/τ0) +
∑
j

Bj exp(−t/τj) cos(ωjt). (7.24)

A different function, that also takes the different wavelengths of the acoustic, short
range, long range and optical modes into account is used in [78]. Very similar is
the method of Bernstein et al. [15]. There the real integral of the autocorrelation
is calculated up to a certain point in time. After that point the autocorrelation is re-
placed by an exponential decay. Both of these approaches lead to reasonable results,
however they both require manual adjustments and may introduce considerable
errors by replacing the autocorrelation functions with approximations.
Another way of calculating the thermal conductivity from the autocorrelation

function of the heat current is used by Lee et al. [72]. Instead of taking the real-
space operator J(t), its Fourier transform, defined by

S(ω) =

∞∫
0

dtJ(t) exp(iωt) (7.25)

is used. The temperature-dependent thermal conductivity is the zero-frequency
limit of the frequency-dependent κ(ω, T ),

κ(T ) = κ(ω, T )|ω=0 =
1

3V kBT 2
|S(ω)|2ω=0. (7.26)

The problem for this approach is the integral in Eq. (7.25), which has to be calcu-
lated up to infinity. MD simulations end after a finite amount of time, thus again
an artificial cutoff time is introduced, which is determined by the length of a simu-
lation.
For the calculations performed in the present work a different method has been

used, which will be explained in the following paragraphs.

Integral averages The method chosen for the present work takes into account
the statistical origin of the Green-Kubo relation. Several MD runs are carried out,
which only differ in the seed for the random number generator. The initialization of
the velocities according to a Maxwell distribution is different for each run, resulting
in different trajectories for all particles. Instead of averaging over the autocorrelation
of the heat current of every run, the integrals of the individual runs are averaged.
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For each discrete time t, it is possible to indicate an error, calculated as the standard
deviation of all individual integrals. An example for 20 runs is shown in Fig. 7.10.
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Figure 7.10:Averaging over multiple integrated autocorrelation functions. The
individual runs are shown with thin lines. The average is drawn in black
with error bars.

To determine the value of the thermal conductivity the first plateau of the integral
has to be identified. One possibility is a script, which determines the gradient of
the integral. If the gradient is smaller than a predefined threshold for a certain
amount of timesteps, the plateau is found. Such routines usually yield poor results
for non-well behaved functions. In the present work the plateau region is identified
manually. The range of the plateau is passed to a script, which then determines
the thermal conductivity. From the standard deviations of the individual runs an
average over the plateau is calculated.
In Fig. 7.10 one possible choice for the plateau is between 200 and 300 ps, where

the integral has an approximate value of about 37. Using the analysis script yields
a range from 33.878 to 38.891, which results in a total value for the thermal con-
ductivity of 36.4± 2.5 W/mK.
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7.3.3 Comparison
Both methods presented here, the NEMDMüller-Plathe and the EMD Green-Kubo
method, have some disadvantages. A short comparison is given in Tab. 7.1.
The first point is the way the thermal conductivity is calculated. In the direct

methods, the actual temperature of the sample is used to calculate a thermal gradient.
The Green-Kubo method uses a statistical approach and does not rely on a thermal
gradient. Looking at the scales of Fig. 7.5, one can determine the problem of the
direct approach. There is a temperature gradient of 100K on a length of about
450Å. This corresponds to 2.2× 109 K/m, a value that can never be reached in
experiment. Due to the huge gradient, the results of the direct method have to be
regarded with caution. They depend strongly on the potential and can be off by
several orders of magnitude. As this problem is inherent to the direct method, the
effect can only be weakened by choosing a larger sample but not removed from the
simulation.

Müller-Plathe Green-Kubo
Calculation direct statistical approach
Integrator special (NVX) NVE
Simulation type NEMD EMD
Sample size big small
# of simulations 1 > 10

Table 7.1: Comparison of different aspects of the direct method for calculating
the thermal conductivity and the Green-Kubo method.

The second point concerns the implementation of the different methods into
existing molecular dynamics simulation packages. Here bothmethods require about
the same amount of work. For the direct method the integration scheme has to be
changed while the output can be taken from existing functions. The Green-Kubo
method does not require any changes to the integrator, here the atomic properties
like energies and velocities have to be used to calculate the heat current for each
time step.
An important difference is the simulation type. The direct method uses a nonequi-

librium simulation while the Green-Kubo method can be performed in an equilib-
rium run. This is especially important when choosing the interatomic potentials.
If they are not fitted explicitly for different temperatures the results of the direct
method is unpredictable. In equilibrium simulations most potentials can be used
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and are able to yield reliable results with the Green-Kubo method.
When performing thermal conductivity simulations, the size of the simulation

box is very important. The direct method requires a large cell compared to the
Green-Kubo method. It has to be big enough to allow a constant thermal gradient
to develop between the heated and cooled layers. Usually it should be at least 100Å
long, depending on the size of a unit cell. The size of the directions perpendicular
to the heat current should also be at least 2 unit cells, to allow for a meaningful
temperature definition in each layer. For the Green-Kubo method, the size of the
simulation cell should be big enough to provide enough statistical data. Usually a
few thousand atoms are enough; the direct method requires a few hundred thousand.
For a single simulation with the same amount of time steps the Green-Kubo method
requires a lot less computational effort than the direct method.
Because of the statistical approach to the thermal conductivity, the number of sim-

ulations required to get a reliable result is on the order of 10 to 50. This fact, together
with the large samples required for the direct method, makes the computational
efforts required for both methods virtually equal. While the Green-Kubo methods
requires many small simulations, the direct approach uses a single simulation with
a much larger simulation box.

Experimental results

Although bothmethods of calculating the thermal conductivity yield reliable results
the comparison with experimental values is very difficult. When using molecular
dynamics simulations, different aspects have to be considered.
An important point is, that the simulated structure is a perfect crystal with no

impurities or defects. In experimental measurements that is not the case. All real
crystals have impurities or defects which influence the thermal conductivity. In
computer simulations only a very small fraction of a (perfect) crystal can be simu-
lated.
The thermal conductivity obtained from molecular dynamics simulations is not

the total thermal conductivity. As described in Sec. 3.3.1, there are contributions
from the lattice and from the electrons. In MD simulations the atoms are regarded
as point masses which interact according to an effective potential. Electronic inter-
actions are not accounted for. Yet it is possible that some electronic contributions
are present in the effective potential through the fitting process. The “effective”
thermal conductivity that can be calculated from molecular dynamics simulations
is the lattice part with some electronic contributions. For small temperatures this
effect should not play an important role, only at higher temperatures the electronic
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contributions become considerable.
From experimental measurements the lattice thermal conductivity can be calcu-

lated with the Wiedemann-Franz law. The ratio of the electronic contributions to
the thermal and electrical conductivity of a metal is proportional to the temperature,

κe
σ

= LT. (7.27)

The proportionality factorL is the Lorenz number, equal to 2.44× 10−8 WWK−2.
Measuring the electrical conductivity, the electronic part of the thermal conductivity
can be calculated. Subtracting it from the total thermal conductivity yields the
lattice part of the thermal conductivity.
While a direct comparison with experiment values is not possible, the relative

values can be compared. This can be done for different temperatures or different
structures. The trend from the experimental values usually can be reproduced.
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Part III.

Simulations and results





Chapter 8:

Potentials for the Al-Pd-Mn system

The ternary intermetallic system Al-Pd-Mn is interesting because of the high num-
ber of complex phases it forms. There are several binary Al-Pd and Al-Mn phases
with small solubilities of the third element. An icosahedral quasicrystal as well as
two decagonal quasicrystals with their approximants can also be found. The subject
of this work are the approximants of one of the two decagonal quasicrystals. They
differ in the lattice constant in the periodic direction, one has 1.2 nm, the other
1.6 nm. The 1.6 nm-phases, also called ε phases, and their approximants are being
investigated because they show a novel type of dislocation, a metadislocation. It
was first observed under plastic deformation by Klein et al. [60] in 1999. Due to
the large unit cells and huge number of atoms involved, the atomic structure of the
approximants as well as the core of the metadislocation could only be resolved
poorly.
In the present work the lowest approximants, ξ and ξ′, of the decagonal qua-

sicrystal with 1.6 nm periodicity are used to calculate ab initio reference data. An
analytic potential is fitted with the potfit code and tested thoroughly. Different ana-
lytic functions are used, allowing for oscillations on different length scales. These
potentials stabilize new structure models of the ε phases and describe their energy
with high accuracy.
Parts of this work is based on the author’s diploma thesis [P1]. The results have

appeared in a publication [P3]. The structure optimization was performed by Frigan
and Santana with the help of the fitted potentials [P2].

159



160 Chapter 8 – Potentials for the Al-Pd-Mn system

8.1 Structure model

The first structure model for the ξ′-phases was established by Boudard et al. [19] in
1996. It is based on diffraction data gathered from large single crystals. An attempt
to describe the structure with a 6-dimensional hyperlattice was made by Beraha
[13]. For the use in computer simulations both descriptions have a drawback. There
are split positions of aluminum and the transition metal atoms as well as many sites
with an occupancy factor smaller than one. To refine the structure model and make
it applicable for higher approximants effective potentials are required. The unit
cells of the ξ and ξ′ phase contain approximately 160 and 320 atoms, respectively,
which can still be handled with ab initio methods. For larger approximants and the
metadislocations more than thousand atoms have to be considered.
Fitting effective potentials and refining a structure model are iterative processes

which progress in stages. From an initial structure model a preliminary potential
can be created. With the data from this potential the structure model can be refined,
which leads to an optimized potential. The cycle can be repeated several times,
until there is no more improvement for both the potential and the structure model.

ξ ξ′

Figure 8.1: Tiling decoration of the ξ and ξ′ phases. The gray and white
hexagons are equal, they are highlighted for optical reasons. A pseudo-
Mackay cluster is located at each vertex of the hexagons.

The basic building blocks of the ξ and ξ′ phases, two types of clusters, are ex-
plained in the next subsection. Their structure model was refined while the potential
fitting was still ongoing. Intermediate structures were used as reference data for
the potentials. For a complete understanding of the structure and the optimization
process of the potential the final structure will be presented in advance.
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Basic building blocks

The structure of the ξ and ξ′ phase can be decorated by a single flattened hexagon
tile with an edge length of about 7.6Å. In the ξ phase the hexagons are all aligned in
the same direction, whereas in the ξ′ phase the orientation alternates. Both decora-
tions are shown in Fig. 8.1. For higher approximants of the decagonal quasicrystal
additional tiles are required, e.g. pentagons and nonagons.

[0 0 1]

[1
0

0
]

Figure 8.2: Decorated tiling of the ξ′ phase. The manganese atoms are shown
in blue, the palladium atoms are pink and the aluminum atoms are drawn
as yellow spheres.

At each vertex of a hexagon there is a pseudo-Mackay icosahedral (PMI) cluster,
as described in Sec. 2.1. The central atom, a manganese atom, is located directly on
the vertex, while the surrounding aluminum and palladium atoms form the shells
of the cluster. In between the clusters, at the center of the hexagons, there are atoms
forming small clusters. A tiling model with the corresponding atomic decoration
for the ξ′ phase is shown in Fig. 8.2.
In the direction perpendicular to the plane containing the hexagons, the [0 1 0]-

direction, the structure is periodic. The layers are stacked on top of each other with
a lattice constant of about 1.6 nm. Columns of PMI clusters are formed, located at
the vertices of the hexagons. A simple illustration is given in Fig. 8.3.
The clusters in the center of the hexagons, depicted with a green framework and

gray faces in Fig. 8.3, form a so-called large bicapped pentagonal prism (LBPP).
They are made up from two almost spherical shells, an inner Al10Mn2 shell and
an outer Pd10Al32 shell. The LBPP are arranged in a zig-zag pattern along the
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Figure 8.3: Stacking of the clusters is the ε phases. Three of the layers in the
periodic direction are shown. For the ξ and ξ′ phase there are two different
layers with a spacing of about 8Å. The Pd10 pentagonal prisms are omitted
from the LBPP.

periodic stacking axis. Only nine atoms of the LBPP cluster are not shared with
the neighboring PMI clusters.
After the structure optimization was complete, the original atomic decoration

given by Boudard et al. [19] was changed slightly. The inner shell of the PMI
cluster is occupied by only nine aluminum atoms, which do not form a simple
geometric shape. For the LBPP the symmetry is broken by changing the central
atoms from manganese to aluminum and palladium. The structure is most stable
when the connecting atom between the two inner clusters is a manganese atom.
By replacing one aluminum atom from the outer shell with a vacancy, the most
stable structure is formed. The optimized inner and outer shells of both clusters
are shown in Fig. 8.4.

8.2 Empirical potentials for Al-Pd-Mn
To study the structure of the ε phases with MD simulations reliable effective poten-
tials are required. In a ternary system six potentials for the interaction of the three
elements are necessary. For the Al-Al potential there are many parametrizations
available for different temperature and pressure ranges. A Pd-Pd potential is also
available. The Mn-Mn interaction is the only one missing of the pure potentials.
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(a) (b)
Figure 8.4: Atomic clusters in the ξ and ξ′ phases after the structure optimiza-

tion. (a) PMI cluster (b) LBPP.

For the mixing potentials, the most likely ones to be available are the Al-Pd and
Al-Mn potentials, because in these systems there are stable alloys. The Pd-Mn
interaction is unavailable, since manganese and palladium do not mix.
One possibility to generate a potential for a ternary system is to use the already

available potentials and only fit the missing ones. This approach, however, only
works for simple metals. With few atoms in a unit cell and a regular period arrange-
ment, the local structure is almost identical for all atoms. A pure element potential,
like Al-Al, can thus still be valid in simple binary compounds. Fitting only the
mixing potential Al-X often leads to accurate results.
The atomic structure and the composition are the main reasons why the simple

approach usually fails for complex metallic alloys. In the large unit cells with the
cluster substructure there usually are several completely different local environ-
ments. This affects the pure as well as the mixing potentials and cannot be neglected.
In CMAs often one of the elements is present as a minor constituent. The inter-
actions of these elements might differ significantly from the bulk, depending on
the neighboring atoms. An effective potential for a 50-50 composition might look
completely different than for a 90-10 composition of the same elements.
To create an effective potential for the Al-Pd-Mn system no previously fitted po-

tentials were used. All interactions were fitted from a generalized template potential
without any restrictions. The following will give details on the reference data, their
generation, as well as on the fitting procedure itself. The analytic functions used
for the different potential models are also discussed.

Fitting procedure

The fitting process for the potentials was not performed in one pass. While the
structure optimization was not completed, several intermediate potentials were
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created. Every time an improved structure was found, the reference database was
updated, depending on the performance of the potentials. During that stage only
basic tests for the energy and structure stability were performed. For the final
potentials a more detailed testing was carried out.
The settings for the parameters of potfit were also adjusted during the various

optimization runs. The values which are given here are the final values used for all
potential models. The energy weight was set to wE = 22 500, to obtain potentials
that yield precise energies but also reasonable forces. For configurations with
about 150 atoms, the effective weights of the energies are approximately 50. The
stress weight wS was set to 750. With the six components of the stress tensor,
each component is weighted with a factor of 10 when compared to the forces. The
weights on the individual configurations are given next to the structure data in the
next paragraph.
The cutoff radius rc was chosen as 7Å. A PMI cluster has a radius of about

5Å for the outer shell, this means that the influence of the central atom on the
entire cluster is incorporated in the potentials. With the smooth cutoff function the
effective cutoff is a little bit shorter, approximately at 6.5Å.

Reference data

Choosing the appropriate reference data for the potential fitting is not a trivial
task. Especially for potentials that shall stabilize structures which are unknown
and not included in the reference database. To get reliable data when calculating
the stability of the structures the pure phases of the three elements were included,
Al.cF4, Pd.cF4 and Mn.cI58.
The binary structures used in the fitting process are given in Tab. 8.1. Most of

them are also indicated in the ternary phase diagram in Fig. 8.5. All structures
are ground states and are fully relaxed with ab initio methods. All residual forces
in these configurations are very small and do not contribute much to the fitting
process. The only information gained from these structures is their energy and the
equilibrium lattice constant. The structure data is taken from the alloy database of
Widom and Mihalkovič [121].
Over the course of the potential fitting and the structure optimization the num-

ber of available ternary structures steadily increased. In the beginning only few
structures, generated with the canonical cell tiling (CCT) approach [51] were avail-
able. They have a different structure, yet the atomic composition is close to the ε
phases. One configuration of the T phase was included, which has an increased
manganese content. As the first results of the structure optimization were available,
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Al-Mn structures Al-Pd structures
Al10Mn3.hP26 1 AlPd.cP8 1

Al11Mn4.aP15 10 Al21Pd4.tI116 10

Al12Mn.cI26 10 Al3Pd2.hP5 10

Al6Mn.oC28 1

AlMn.tP4 1

Table 8.1: Binary structures used for the Al-Pd-Mn potential fitting. The num-
bers in the second and fourth column indicate the configuration weights
for the preceding structure.

they were added to the reference database. All structures mentioned up to this point
are ground states.
To get more data for the force-matching process, MD simulations with a CCT

structure were performed. To compensate for the low manganese content and the
problems in the fitting process resulting therefrom, five randomly picked aluminum
atoms were replaced by manganese atoms in some of the simulations. Three series
of MD runs were carried out, at 600, 1100 and 1800K with small strains applied
to the lattice. The melting point of Al-Pd-Mn is at 1116K, the third dataset is thus
from the liquid phase. From each of the three simulations several snapshots were
extracted and added to the reference data. An overview of all ternary structures
used in the reference database is given in Tab. 8.2.

8.2.1 Different potential models
In the diploma thesis of the author it was shown that for complex structures like Al-
Pd and Mg-Zn oscillations are important to model the atomic interactions properly.
To verify this for even more complex systems, different analytic models were tested
for the Al-Pd-Mn potentials. EAM potentials were used, the functions for the
different models are given in Sec. 6.6.3.
The main difference of the three models are the analytic functions. Model I

permits oscillations in the pair potential but not in the transfer function. In contrast,
model II can have oscillations only in the transfer function. Finally, the third model
permits oscillations in both, pair and transfer function. The analytic forms are the
EOP potential (Eq. (6.27)) for the oscillating and the Morse potential (Eq. (6.28))
for the simple pair function. As oscillating transfer function the CSW potential is
used (Eq. (6.29)), the simple transfer function is represented by a simple exponential
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Configuration Weight Comment
T = 0 Al92Pd28Mn10 1 from CCT

Al92Pd28Mn8 1 from CCT
Al112Pd36Mn6 1 from structure optimizationa

Al114Pd34Mn6 1 from structure optimizationa

Al112Pd34Mn6 1 from structure optimizationa

Al110+xPd32Mn8 1 from structure optimizationa,b

Al124Pd8Mn24 10 T-phase
Al147Pd43Mn18 5 ξ-phasea

Al294Pd88Mn16 5 ξ′-phasea

T > 0 Al92Pd28Mn8 1 QMD (600, 1100, 1800K)
Al92Pd28Mn10 5 QMDa (1500K)

Table 8.2: Ternary structures used for the Al-Pd-Mn potential fitting. Structures
denoted by a were generated in the course of the structure optimization. b
denotes structures, which have a variable number of atoms in the innermost
shell (cf. Tab. 8.6).

decay

ρ(r) = α exp(−βr). (8.1)

All models use the same embedding function of Rose et al. [101] (Eq. (6.31)). The
total number of free parameters for all models is given in Tab. 8.3.
For all three potential models the smooth cutoff function, described in Sec. 6.6.1,

model I model II model III multiplicity
pair 6 + 1 3 + 1 6 + 1 6

transfer 2 + 1 4 + 1 4 + 1 3

embedding 3 3 3 3

total 60 48 66

Table 8.3: Number of free parameters for the Al-Pd-Mn potential models. The
multiplicity gives the potential count for a ternary system. For all pair and
transfer functions the additional cutoff parameter is indicated by the +1.
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is enabled. The number of free parameters for all pair and transfer functions is
therefore increased by one.

8.3 Testing the potentials
After the structure optimization was completed, the final potentials were tested for
various properties. Besides the basic test for structure stability and accuracy some
dynamic properties were also calculated.

Error sums

After the optimization process the total error sums as well as the RMS errors are
calculated by potfit. The values for all three potential models are given in Tab. 8.4.

RMS errors for Model I Model II Model III
forces [meV/Å] 266.89 247.47 220.07

energies [meV/atom] 20.82 14.50 12.53

stresses [kPa] 100.91 76.04 98.30

total error sum 17 806.51 13 068.23 6550.34

Table 8.4: RMS errors and total error sums after the optimization for forces,
energies and stresses, calculated from the reference data.

While the significance of the total error sum is negligible, the RMS errors can be
used to judge the potentials. For forces and energies, model I has the largest errors
and model III the smallest. For stresses, models I and III are almost identical, model
II has the lowest error. Especially the energy error is important for the potentials, if
they are to be used in structure optimization. Here the value of model III is almost
50% smaller than the one of model I.
An optical representation of the force and energy errors is given by the scatter

plots in Fig. 8.6. The upper row shows the energy errors,which look almost identical
for all three models. In the magnified insets, differences can be seen. The deviations,
in agreement with the RMS, decrease significantly from model I to model III. A
similar behavior is found for the forces, shown in the bottom row. For model I,
the overall shape of the datapoints appears wider with more far off values. The
differences in the force RMS between the models II and III is not visible in the
scatter plots.
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Figure 8.6: Scatter plots for forces and energies. The value computed with the
effective potential is shown on the horizontal axis, the ab initio value on
the vertical axis. The dashed line is the identity line. Insets are scaled by a
factor 4.5.

To check the transferability of the potentialmodels, the RMS errors have also been
calculated for a different set of configurations. During the structure optimization
many similar structures were created, which were not included in the reference
database for the potential optimization. There are snapshots of the ξ′1 phase, which
can be decorated with hexagons and nonagons, as well as artificial structures that
have not been observed in experiment. The results are shown in Tab. 8.5.

RMS errors for Model I Model II Model III
forces [meV/Å] 141.90 131.90 130.46

energies [meV/atom] 10.42 10.47 10.28

stresses [kPa] 32.39 23.76 36.89

total error sum 3007.66 2641.95 2592.26

Table 8.5: RMS errors and total error sums for the testing dataset. None of the
structures therein was used in the fitting process of the potentials.

The errors for all three potential models are very similar for the testing dataset,
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especially the energy errors. The total values are much smaller than before. In the
reference database there are several high-temperature MD runs included, the forces
therein can become very large. In the testing dataset only ground state structures
are included, which have significantly smaller forces.
Based on the simple error calculations from the optimization process the models

cannot be rated. Model I seems to perform a little worse than the other two models,
but to make a decision about the quality of the models further test are required.

Structure refinement

During the structure refinement the two types of clusters were optimized with
respect to the total energy difference to a convex hull. To judge the stability of
different structures, their energy is compared to a mixture of competing phases,
which is called the convex hull. It is defined over a ternary phase diagram and
contains the cohesive energies of all stable compounds as vertices. If the energy
of a structure is below this convex hull, it is considered thermodynamically stable,
otherwise it could decompose into the neighboring structures, lowering its energy.
The structures defining the convex hull for the ε phases are T-AlPdMn, Al12Mn,
Al21Pd8, and Al3Pd2. They are marked in the phase diagram in Fig. 8.5, where
also the convex hull is indicated by black solid lines.
Another important quantity for structure optimization is the formation enthalpy

∆H . It is defined as the difference of the total energy of a system to the hypothetical
pure element energy of the same composition. The formation enthalpy can be
calculated rather quickly without the need for external tools. Calculating the convex
hull on the other hand is done with the QHULL program [9].
The initial structure determination of Boudard et al. [19] could not resolve the

occupancy of the first shell of the PMI cluster. The number of aluminum atoms
is unknown as they are difficult to observe in diffraction experiments. Structures
from eight to eleven aluminum atoms per PMI cluster were generated and tested.
Since each unit cell of the ξ phase contains four PMI clusters, the average number
of atoms is used to denote the different structures.
The energies for all 13 structures are given in Tab. 8.6. All of them are completely

relaxed with the respective potentials. For the EAM potentials this leads to small
displacements in the structures when compared to the ab initio reference data. For
model I, the average displacements are 0.10Å/atom, 0.08Å/atom for model II and
0.11Å/atom for model III. When considering the mobility of the first shell, the
small displacements show that all models can stabilize these structures and provide
accurate energy values.
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Number of atoms Eab initio ∆E [meV/atom]
per PMI [eV/atom] Model I Model II Model III
8.00 −4.753 −13 −12 −20
8.25 −4.755 −6 −7 −13
8.50 −4.756 −1 −3 −5
8.75 −4.757 +3 +2 +2
9.00 −4.755 +4 +4 +3
9.25 −4.747 +1 +1 +1
9.50 −4.741 +1 +0 +2
9.75 −4.731 −6 −5 −2

10.00 −4.731 +0 +2 +4
10.25 −4.714 −12 −12 −5
10.50 −4.704 −15 −17 −7
10.75 −4.692 −19 −21 −13
11.00 −4.683 −22 −24 −17

Table 8.6: Cohesive energies (in eV/atom) of different optimized configura-
tions for the ξ phase. The energy differences ∆E between the ab initio
calculations and the respective model are given in meV/atom.

From the energy differences it can be seen that the structures, containing nine or
ten aluminum atoms in the first shell, are reproduced with very small errors. For
the other structures the errors are considerably larger. In ab initio simulations, the
structures with eight or eleven atoms in the first shell were mechanically unstable.
The atoms drifted in- or outwards to achieve an inner shell with nine or ten atoms.
The ab initio formation enthalpy for these structures, shown in Fig. 8.7, also

predicts the most stable structure for nine atoms, with another local minimum at
ten atoms. The effective potentials show errors which are comparable to those in
Tab. 8.6. For less than 8.5 and more than 10 atoms in the inner shell, the enthalpies
differ more than 10meV/atom.
To determine whether a structure is thermodynamically stable, the energy dif-

ference to the convex hull has to be calculated. If the difference is negative, the
structure is considered stable, otherwise it is unstable. The energy difference to the
convex hull has been calculated for all structures in Tab. 8.6. The results are shown
in Fig. 8.8.
A difference between models I and II and model III can be seen. While the values
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are decreasing almost monotonously for models I and II, a shallow minimum is
present in the data of model III. The potential models I and II have the lowest
distance to the convex hull for more than ten atoms in the first shell of the PMI
cluster. As these structures are all mechanically unstable, the potential models are
not suited for the structure optimization.

Eab initio ∆E [meV/atom]
composition [eV/atom] Model I Model II Model III
ξ –228-64-12 −4.702 −5 +4 0

ξ –224-68-12 −4.748 +1 +7 +4

ξ′ –228-64-12 −4.703 −5 +3 +1

ξ′ –224-68-12 −4.748 +1 +5 +5

Table 8.7: Energy differences of the almost stable ε phases to the ab initio refer-
ence values. The composition is given in numbers of aluminum, palladium
and manganese atoms. All inner shells of the PMI clusters are occupied
with nine atoms.

The result of the structure optimization are four structures, which are unstable by
less then 1meV/atom. In these structures not only the inner shell of the PMI clusters
is changed, but also the atoms in the LBPP are rearranged. Details on the structure
are given in [P2]. Two of these structures are ξ phases and two are ξ′ phases. There
is no special notation, the composition in numbers of aluminum, palladium and
manganese atoms is used to denote the structures. The energy differences from the
ab initio calculated reference value are given in Tab. 8.7.
All three potential models can reproduce the energies of the optimized structures

with errors of few meV/atom. For effective potentials the values are very good,
taking into account that none of the structures was included in the fitting process of
the potentials. The formation enthalpies were also calculated (Tab. 8.8), with very
similar results. The displacements after relaxation with the effective potentials are
about 0.1Å/atom for all three models.
Based on the static energy calculations all three potential models seem to be of

equal quality. For further analysis of the potentials several dynamic properties were
calculated.
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∆Hab initio ∆HEAM −∆Hab initio

composition [eV/atom] Model I Model II Model III
ξ –228-64-12 −0.488 −6 +1 −1

ξ –224-68-12 −0.513 0 +4 +3

ξ′ –228-64-12 −0.488 −6 0 0

ξ′ –224-68-12 −0.514 0 +2 +3

Table 8.8: The ab initio formation enthalpies ∆H and the deviations of the
three analytic potential models. The composition is given in numbers of
aluminum, palladium and manganese atoms. All inner shells of the PMI
clusters are occupied with nine atoms.

Dynamic properties of the potentials

Up to this point only energy calculations and relaxation simulations were performed.
Before studying any dynamic properties of the potentials, the structural stability at
finite temperatures has to be ensured. Equilibrium MD simulations were carried
out at 300K and the mean-square displacements of the atoms were calculated for
all three potential models. They are defined as

∆2
i (t) = 〈(Ri(t)−Ri(0))2〉, (8.2)

where Ri(t) is the position of atom i at time t. To compare the value, the time
average over the entire simulation is calculated. The results are very similar for
all models, model I has a displacement of 0.13Å2, model II of 0.20Å2 and model
III of 0.15Å2. These values show that the potentials can stabilize the structure at
room temperature. At higher temperatures the mean-squared displacements are no
longer constant, the structure shows some type of self-diffusion.
To study the diffusion, a long ab initio MD simulation at 1200K of 50 ps was

performed during the structure optimization. In a time-averaged picture of the
density, the atoms in the first shell of the PMI cluster showed a rotational degree
of freedom. The density plots are shown in Fig. 8.9.
The results for all three potential models are comparable to the ab initio simula-

tion. The atoms on the innermost shell of the PMI clusters are not fixed, they can
orient in different directions. The threefold axis of this inner shell always points
along a fivefold axis of the outer PMI shell.
All EAM potentials can stabilize the structure even at this elevated temperature.
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Figure 8.9: Time-averaged density plots for the ξ phase. Only the atoms in a
7Å thick layer perpendicular to the [0 1 0]-direction are shown. Red and
yellow mark a high value while blue and gray represents low values of
the density. The ab initio simulation is shown in the top left image. The
MD simulations of the three models are indicated with the corresponding
number.
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The density plots show the same orientational degree of freedom as the ab initio
simulation. For model I the image looks darker, the densities are smeared out,
indicating a greater thermal motion of the atoms than expected. Model II and III
do not have this problem to this extent. While model II looks almost identical than
the reference image, model III has some faint gray areas.
The melting point for the ξ phase has been determined for all three potential

models. In a simple approach the atomic volume has been calculated while the
sample was slowly heated from 950 to 1400K. At the melting point there is a
distinct jump in the atomic volume which corresponds to the melting transition.
For model I the melting was determined as 1130K, for model II as 1370K and for
model III as 1300K. With this method the melting point is generally overestimated,
due to the high heating rates. The heating rate of the simulation of 5× 10−5 K
per timestep is equal to 5× 109 K/s. The sample is overheated before the melting
process can occur, leading to an increased melting temperature. When compared
to the experimental value of 1118K1, the value of potential model I is definitely
too low, while the other models are in the expected temperature range.
To test a property that was not included in the reference dataset, the elastic

constants for the ξ phase were calculated. The orthorhombic unit cell has nine
independent elastic constants, which were determined by examining the cohesive
energy during homogeneous deformations of the sample.

ab initio Model I Model II Model III
C11 175.79 255.25 244.66 200.98

C22 192.75 269.79 246.74 193.61

C33 227.46 243.53 246.64 160.57

C12 58.76 158.83 145.57 102.76

C13 67.85 146.75 146.78 92.95

C23 56.34 151.19 146.51 107.04

C44 72.54 42.57 42.42 42.77

C55 67.77 41.46 47.19 46.66

C66 71.25 48.51 48.21 43.76

Table 8.9: Elastic constants of ξ-Al-Pd-Mn in GPa.

The results for all three models are shown in Tab. 8.9. The errors for all models
are rather big, especially for the values of C12, C13 and C23. The elastic constants
1private communication with M. Feuerbacher
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differ by up to a factor of three. The potentials are not able to correctly describe the
shear stresses. However, the results are not surprising because of the reference data
used in the fitting process. The only samples that includedmechanical deformations
were the high-temperature MD snapshots. They were strained along either of the
Cartesian axes perpendicular to the periodic stacking axis of the approximant. The
corresponding elastic constants C11 and C22 are reproduced by model III with a
certain accuracy.
This shows clearly that the potentials fitted for the structure optimization are

limited in their application range. For the energy and enthalpy calculations the
results agree with the ab initio simulations up to a few meV/atom. For physical
quantities that were not present in the reference database, like elastic constants, the
potentials are not applicable.
When comparing the three different potential models, all of them provide reason-

able results for the tests performed. While the error sums after the fitting process are
very similar, the potentials show different behaviors when used in MD simulations.
The trends from the RMS errors can be noticed in all tests. Models I is usually the
one with the largest errors or deviations from the ab initio simulation. Models II
and III are often very close with only slight advantages for model III.
The potential functions of model III are plotted in Fig. A.1. The individual

parameters for all functions are given in Tab. A.1.

8.4 Outlook

The lowest approximants of the decagonal Al-Pd-Mn quasicrystal can be accurately
described with the potential. In an ongoing work, which involves the decoration
of the higher approximants as well as the core of the metadislocation, they also
yield reasonable results. This is because the decoration of the new tiles does not
contain new structural elements. The PMI clusters and LBPPs are present with
only marginal deviations from the versions of the lower approximants.
The exact decoration of the metadislocation core, however, is still a challenge.

New methods using a Monte-Carlo approach can be used to find the optimal struc-
ture. It uses randomly arranged cluster configurations to locate the lowest energy
arrangement of the atoms. The effective potentials generated in the present work
can be used for that purpose.
To study the movement of the metadislocation the potentials are probably not

suited. It is assumed that a metadislocation core can move through the bulk when an
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external stress is applied to the material. The elastic constants for all three potential
models do vastly differ from the ab initio reference values, thus the results may be
wrong.
To generate potentials for the accurate simulation of the motion of metadisloca-

tions, new potentials are required. The reference data should be revised and more
stressed and strained samples should be included.



Chapter 9:

Intermetallic clathrate systems

In this chapter the physical properties of two clathrate systems are investigated.
Effective potentials which include angular dependent terms have been generated for
both germanium- and silicon-based structures. Clathrates are promising candidates
for thermoelectric devices, in which the thermal conductivity plays a key role.
Phonons are the carriers of the heat current, they have to be modeled accurately.
The phononic properties of the potentials are tested in different MD simulations.
The thermal conductivity is measured with the Green-Kubo formalism for dif-

ferent structures of both types of systems. The influence of complexity can be
measured directly by introducing vacancies in the clathrate framework. Therefore
new structures, that have not yet been observed in experiment, are created.

9.1 Ab initio calculations
Prior to setting up the ab initio reference database, the pseudopotentials available in
the VASP package have been tested in detail. The lattice dynamics and the phonon
properties depend inherently on the lattice parameter. To ensure the simulations
are in agreement with experiment, two modifications of germanium were relaxed
with five different DFT schemes. The α-Ge as well as the clathrate structure Ge46
both have a cubic unit cell, containing 8 and 46 atoms, respectively. The results are
shown in Tab. 9.1, the lattice parameter of the relaxed structure is denoted by a0,
the energy by E0.
The different types of pseudopotential (US-PP and PAW) and the density approx-

imation (LDA, GGA and PBE) are all explained in Sec. 4.3.2 and 4.3.3. It can be
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pseudopotential and
density approximation

α-Ge
a0 E0

Ge46
a0 E0

US-PP + LDA 5.6247 −5.1997 10.4885 −5.1490

US-PP + GGA 5.7586 −4.5356 10.7340 −4.5017

PAW + LDA 5.6460 −5.1751 10.5264 −5.1252

PAW + GGA 5.7779 −4.5206 10.7685 −4.4872

PAW + PBE 5.7826 −4.4931 10.7756 −4.4615

experiment 5.6581 − 10.5522 −
1 from [7]

2 private communication with Y. Grin

Table 9.1: Lattice constants (in Å) and cohesive energies (in eV/atom) for two
modifications of germanium. The experimental data is measured at 300K.

seen that for both structures the LDA approachmatches the experimental data better
than the GGA version. The values for the ultrasoft potentials are always below the
PAW values, for all available densities. The absolute energies also differ for the
LDA and GGA simulations. This, however, can be neglected, because only energy
differences can be deduced from DFT calculations without further considerations.
For all ab initio calculations the LDA together with PAW potentials were used.

9.2 Reference database and fitting procedure
The potential fitting for the clathrate systemswas performed as amulti-stage process.
First the potentials for the framework atoms were generated and tested. In a second
run the additional potentials for the binary systems were determined, while keeping
the framework potential fixed. To improve the results, a third run was performed,
where all potentials were optimized simultaneously. The chosen approach has the
advantage, that the parameter space in the first two stages is significantly reduced
when compared to a single-stage fitting process of all potentials.

Framework potentials

The reference database for both the Ge- and Si-potentials contained the equivalent
structures of the respective systems. An overview is given in Tab. 9.2.
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Structure Weight Amount Comment
T = 0 X46 50 1 ground state

X46 1 8 from phono.py
α-X 50 1 ground state
X3 100 1 artificial structure

T > 0 X46 1 13 QMD (300K)
X46 1 10 QMD (300–1800K)
α-X 1 39 QMD (300K)

Table 9.2: Reference database for the clathrate framework potentials. X rep-
resents the element, either Ge or Si. The configuration weights and the
number of configurations for each structure are given.

The ground states for the clathrate and the diamond structure are included with
a configuration weight of 50. From the calculation of the dynamical matrix with
phono.py there are eight configurations where single atoms are displaced. An
artificial structure, containing three atoms at distinct distances is also included. It
was created to close the gap in the radial distribution function at about 3Å. The
three atoms are arranged in a triangle with the edge lengths of 2.8Å, 3.0Å and
3.2Å.
Most of the configurations are taken from MD runs at finite temperature. For the

clathrate structure one run at a constant temperature of 300K and one run with
an increasing temperature from 300 to 1800K was performed. Snapshots of the
structure were extracted, each about 100 fs apart. The forces on the atoms were
recalculated with higher accuracy. The number of snapshots from the MD run with
the diamond structure is increased, to compensate for the small number of atoms
in the unit cell.
The total amount of reference data for the framework potentials is 74 configura-

tions containing 2104 atoms. Together with the energy and stress values, there are
6937 contributions to the error sum.
For the total energy and stress weight very low values of 20 and 30 were chosen,

respectively. The potentials are supposed to yield accurate descriptions of the
dynamics of a system, which are determined by the interatomic forces. Putting a
low weight on the other quantities leads to a high accuracy for the forces.
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Potential functions

In the Ge-system the necessity of angular dependent terms in the clathrate potentials
was investigated. A regular EAM potential and an ADP potential were fitted. The
reference data and the optimization settings were identical for both potentials. As
the ADPmodel is an extension to the EAMmodel, the exact same analytic functions
can be used in both potentials (cf. Tab. 9.3).

potential EAM ADP reference
pair EOP EOP Eq. (6.27)

transfer CSW CSW Eq. (6.30)
embedding BJS BJS Eq. (6.31)
dipole − CSW Eq. (6.30)

quadrupole − CSW Eq. (6.30)

Table 9.3: Potential functions used for the EAM and ADP clathrate potentials
for the framework.

For all functions but the embedding term the smooth cutoffwas enabled. Different
values for the cutoff radius were tested, a value of 6Å lead to the best results and
was used for all potentials from that point on.
The ADP potential for the Si-system uses the same analytic functions as the

germanium potential. An EAM potential for this system was not created.

Binary systems

For the fitting of the binary potentials the reference database was extended. It
is, however, no longer equivalent for both types of host atoms. Even though both
clathrates have barium as a guest atom inside the cages, the frameworks are different.
In the Si-system there is no problem, the structure Ba8Si46 is stable. For the larger
germanium atoms a fully occupied cage structure is unstable, three of the atoms
have to be replaced by vacancies to stabilize the system. The symmetry of the
Ba8Ge4323 unit cell is broken, it can be restored by using a 2×2×2 supercell
containing 408 atoms. The additional structures used in the fitting process of the
binary potentials are given in Tab. 9.4.
The reduced symmetry of the Ge-system can also be seen in the number of

configurations from the phono.py program. There are 26 symmetry inequivalent
displacements needed, while for the Si-system only 11 are required.
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Si Structure Weight Amount Comment
T = 0 Ba8Si46 1 1 ground state

Ba8Si46 1 11 from phono.py
T > 0 Ba8Si46 1 9 QMD (300K)

Ge Structure Weight Amount Comment
T = 0 Ba8Ge4323 1 1 ground state

Ba8Ge4323 1 26 from phono.py
T > 0 Ba8Ge4323 1 9 QMD (300K)

Table 9.4: Additional reference data used to fit the binary structures. The
upper table shows the data for the silicon system, the lower table for the
germanium system.

To keep the potential model for the binary system as simple as possible, the
analytic functions were adjusted to the atomic environments in the structures. The
interactions of the framework were adopted from the simple systems. For the Ba-Ba
and Ba-X interaction, the structure was examined in detail. The barium atoms are
located at the centers of the cages with a pair separation distance of about 6.3Å in
the germanium cages and 5.7Å in the silicon cages. For the most simple model,
the Ba-Ba interaction was neglected, the potential was set to zero. Only the Ba-X
interaction was accounted forwith a simple pair potential and the angular-dependent
terms of the ADP model.
Potentials for both systems were fitted with the simple model and tested sub-

sequently. In static simulations the potentials performed well but they failed at
temperatures above 150K. All systems did collapse after a few thousand timesteps.
A first attempt to solve the problem was by changing the reference database of

the fitting process. Several structures of the almost collapsed configuration were
extracted from an MD run. The forces in these configurations were calculated with
VASP and added to the reference database. Even with an increased weighting factor
on these new configurations the resulting potentials were not able to stabilize the
systems.
The second attempt was to introduce the Ba-Ba interactions as simple repul-

sive functions. The new potentials did stabilize the system without the previously
described problems. In order to reduce the number of free parameters in the op-
timization process, the pair function of the Ba-Si interaction was changed to the
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potential Ba-Ba Ba-Si Si-Si
pair SOFT CSW EOPP

transfer CSW − CSW
embedding BJS − BJS
dipole SOFT CSW CSW

quadrupole SOFT CSW CSW

Table 9.5: Potential functions used for the binary Ba-Si ADP potentials. The
SOFT function is an analytic decay to model a repulsive potential.

CSW-type. The analytic functions used for the final potentials in the clathrate sys-
tem are shown in Tab. 9.5. The SOFT potential is a “softshell” model, defined
as

φ(r) =
(α
r

)β
. (9.1)

The energy and stress weights are set to 50 and 30 for both systems, respectively.
The increased energy weight is to account for the increased number of atoms in
the structures.
All potentials fitted for the clathrate systems are given in appendix A. The pa-

rameters for all potentials are listed and the individual functions are plotted.

9.3 Potentials for Si-based clathrate systems
After the fitting process of the potentials was complete, their properties were deter-
mined in different MD simulations. Besides the structural stability and the lattice
constants, the phonons play an important role for the thermal conductivity.
To simulate the simple clathrate structures, containing only one element, the

potentials from the first stage of the optimization process were used. For the binary
systems the final potentials were used.
The RMS errors from the final potfit run are given in Tab. 9.6. For a comparison

with the Ge-system, two datasets were tested. In dataset a) all structures used in
the fitting process are included. For dataset b), which is used for comparison, the
three almost collapsed structures are removed. While the errors for both sets are
very similar for the energy and stress, the total error sum and the force error differ
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significantly. In the three additional structures the atomic distances are very small
and the potentials have problems reproducing the resulting big forces.

Dataset error sum forces energies stresses
a) 526.93 131.35 37.31 0.11

b) 293.04 93.52 35.02 0.11

Table 9.6: Total error sum and RMS errors for the Ba-Si clathrate potential.
Dataset a) includes all structures from the fitting process. In dataset b) the
three almost collapsed structures are removed. The errors for the forces
are given in meV/Å, for the energies in meV/atom and for the stresses in
MPa.

The lattice parameters for three different clathrate structures were determined
with the LAMMPS package. It allows relaxation runs which also isotropically relax
the simulation box vectors. The results, together with experimental values are given
in Tab. 9.7.

Structure ab initio ADP experiment
Si46 10.11 10.10 10.191

Ba8Si46 10.24 10.18 10.332

Ba8Si4323 20.27 19.88 −
1 from [69]

2 from [110]

Table 9.7: Lattice constants for three Si-based clathrate systems in Å. The
Ba8Si4323 structure has not yet been observed in experiment.

The values of the ADP potentials agree well with the ab initio calculations for the
experimentally observed Si46 and Ba8Si46 structures. For Ba8Si4323 the deviation
is 2%, which is still acceptable.
To test the structural stability, several MD simulations have been performed at

different temperatures andwith different structures. For 300 and 600K all structures
were stable. Higher temperatures have not been tested because there the electronic
contribution to the thermal conductivity increases significantly.
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9.3.1 Phonon dynamics
To determine the phononic properties of an effective potential usually the density of
states and the dispersion relation are calculated. The requiredmethods are described
for ab initio and MD simulations in Sec. 7.1 and 7.2.
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Figure 9.1: Phonon density of states for the empty clathrate structure Si46. The
ADP frequencies are scaled by a factor 0.98.

The density of states from ab initio and MD simulations for the Si46 structure is
shown in Fig. 9.1. For an effective potential the agreement with the DFT results is
very good. The peak at 14THz as well as the minor peaks from 8 to 13THz are
well reproduced. For lower frequencies there are minor discrepancies. The single
peak expected at 5THz is shifted to 5.8THz. Below 4THz both calculations agree
well. The oscillations of the ADP data for small frequencies might be attributed to
anharmonicities in the potential, which are not present in the ab initio calculation.
The phonon dispersion curves for the Si46 system in the (6, ξ, ξ)-direction are

shown in Fig. 9.2. Like in the density of states, the high frequency behavior is very
similar, the gap from 6 to 8THz is clearly visible. A difference is noticeable in the
low-lying optical modes. In the MD calculation the frequencies are too high, as
the peak in the density of states already indicated. There are also small oscillations
present, which are especially prominent for the highest phonon modes. They are
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Figure 9.2: Phonon dispersion curves for Si46 along the (6, ξ, ξ)-direction.
Left: MD simulation with the ADP potential. Right: DFT calculation.

most likely an artifact of the effective potentials.
For the density of states of the filled clathrate system Ba8Si46, shown in Fig. 9.3,

the agreement for low frequencies is better than for high frequencies. The three
peaks at 2, 4 and 5THz agree with only small deviations. For frequencies above
6THz the values of the ADP potential are constantly shifted about 2THz to the
right. The reason for this is unclear. High frequencies correspond to the vibrations
of the framework, they are also present in the empty cage structure Si46. Adding
guest atoms creates phonon modes at low frequencies.
The phonon dispersion curves agree well forDFT andMD simulations. In Fig. 9.4

the (ξ, 0, 0)-direction is plotted. There the same issues for frequencies above 8THz
are present as in the density of states. The low frequencies do show an almost
perfect agreement. However, the slope of the acoustic modes is too steep when
compared to the ab initio data.
When compared to the dispersion curves of the empty cages, the optical modes

are shifted to a lower frequency, due to the so-called rattling modes of the guest
atoms. The thermal conductivity for the filled systems should be lower than for the
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Figure 9.3: Phonon density of states for the Ba8Si46 clathrate structure. The
ADP frequencies are not scaled.

empty structure.

9.4 Potentials for Ge-based clathrate systems
Fitting the potentials for the Ge-based clathrate systems was done in the same
way as for the Si-systems. Only the number of atoms in the reference data was
increased. For the Si clathrates the stable binary structure is Ba8Si46 containing 54
atoms, for Ge clathrates it is Ba8Ge4323 with 408 atoms per unit cell. The number
of datapoints in the Ge-system is almost four times larger than in the Si-system,
42 939 to 11 059. As a consequence, the total error sum after the optimization is
much larger than for the Si potentials.
The RMS errors are given in Tab. 9.8. In dataset a) all structures used in the

fitting process are included. For dataset b), which is used for comparison, the three
almost collapsed structures are removed. When compared to the RMS errors of the
Si potential, the values are very similar. The force and stress residuals are almost
the same, only the energy errors are about 70% larger.
An important difference in the fitting process can be seen in the radial distribution
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Figure 9.4: Phonon dispersion curves for Ba8Si46 along the (ξ, 0, 0)-direction.
Left: MD simulation with the ADP potential. Right: DFT results.

Dataset error sum forces energies stresses
a) 5091.90 140.10 59.96 0.14

b) 1905.71 94.90 59.27 0.13

Table 9.8: Total error sum and RMS errors for the Ba-Ge clathrate potential.
Dataset a) includes all structures from the fitting process. In dataset b) the
three almost collapsed structures are removed. The errors for the forces
are given in meV/Å, for the energies in meV/atom and for the stresses in
MPa.
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Figure 9.5: Radial distribution functions g(r) for germanium and silicon
clathrate systems. Only the distances of the framework atoms are taken
into account.

functions in Fig. 9.5. For all silicon-based systems the first and second neighbor
distances are the same in all structures used in the reference data. As a result the
total error sum as well as the individual contributions are only increased slightly
when changing from the Si to the Ba-Si system.
In the binary germanium system a new neighbor distance emerges, which is due

to the introduction of the vacancies. A schematic drawing is shown in Fig. 9.6.
All atoms close to the vacancy positions can move towards the empty space. The
first neighbor distance is slightly increased and a new peak below 3.5Å appears.
The previously sharp second and third neighbor peaks are merged into a single
broad peak. For the fitting process of the binary Ba-Ge system the potentials from
the simple Ge system need to be adjusted to these features. The optimization was
restarted several times to guarantee an optimal potential.
The lattice parameters for the different Ge-based clathrate systems are given in

Tab. 9.9. For the empty cages and the filled structure the agreement is very good.
The experimentally found structure, Ba8Ge4323, which forms a 2×2×2 supercell
with 408 atoms, is overestimated by 4%.
Stabilizing MD simulations in the temperature range of 150 to 600K was not

possible with all generated potentials. Only after several optimization runs with
adjusted configuration weights the potentials were able to provide the required
stability.



9.4 Potentials for Ge-based clathrate systems 191

r2

Figure 9.6: Influence of the vacancies to the structure of Ba8Ge4323. The dark
atoms are located on the 6c positions and can be replaced by a vacancy.
Top: Ideal structure without vacancies. Bottom: Two atoms have been
replaced by vacancies. As a result all white atoms are moved. The arrow
in the bottom right corner indicates the new pair distance r2.

Structure ab initio ADP experiment
Ge46 10.53 10.53 10.551

Ba8Ge46 11.19 11.22 −
Ba8Ge4323 21.08 21.93 21.312

1 private communication with Y. Grin
2 from [6]

Table 9.9: Lattice constants for three Ge-based clathrate systems in Å. The
Ba8Ge46 structure has not yet been observed in experiment and is unstable
in ab initio simulations.
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9.4.1 Phonon dynamics
The phonon properties were calculated for the empty clathrate structure as well as
the experimentally found binary Ba8Ge4323 compound.
To address the question of the necessity of angular-dependent potentials, an EAM

potential was fitted to the same reference data as the ADP potentials. For the Ge46
structure, the phonon density of states was calculated for both effective potentials
as well as with DFT methods.The results for all simulations are shown in Fig. 9.7.
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Figure 9.7: Phonon density of states for the empty clathrate structure Ge46.
The ADP frequencies are scale by a factor 1.02 to match the ab initio data.
The EAM frequencies are unscaled.

While the agreement of the ADP and ab initio data is very good, the EAM
potential is less accurate. The lower peak is split into two peaks and the upper peak
is too wide and at too low frequency. For the ADP potential the only difference
is the shift of the lower peak. The oscillations at very low frequencies, which are
more pronounced for the EAM potential, can be caused by two different sources.
One possibility are artifacts caused by the potential. The other possibility are
anharmonic contributions, which are not accounted for in the ab initio calculation.
The additional effort required to calculate angular-dependent potentials, when

compared to EAM, is justified by these results. For the Si-based clathrate system a
preliminary EAM potential showed a comparable performance. Without any direc-
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tional dependence in the interaction the clathrate structures cannot be described
accurately enough to perform meaningful MD simulations.
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Figure 9.8: Phonon dispersion curve of Ge46 along (6, ξ, ξ). Left: MD simula-
tion with ADP potentials. Right: DFT calculation. The ADP frequencies
are unscaled.

The results of the calculation of the phonon dispersion curves for the Ge46 are
shown in Fig. 9.8. The overall agreement is good, only in the frequency range from
3 to 5THz the results differ. The low-lying optical modes are reproduced well. As
in Si46, the slope of the acoustic branches is too steep.
For the binary Ba-Ge clathrate systems the accuracy of the effective potentials,

when compared to ab initio calculations, is no longer as high as for the previous
systems. The reason is the considerable increase in complexity of the structure.
Up to this point the unit cell with an edge length of about 10Å contained about
50 atoms. The equivalent binary Ba8Ge46 structure is not stable according to ab
initio calculations and has not been observed in experiments. By replacing three
framework atoms with vacancies, the structure can be stabilized. The distribution of
the three vacancies on six possible sites leads to a symmetry breaking in the single
unit cell. To restore the symmetry, a 2×2×2 supercell with 408 atoms is required.
Even with fast DFT codes the simulation of these structures is very tedious.
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The phonon density of states, calculated with the ADP potential, can only match
the shape of the ab initio curve when the frequencies are scaled. In Fig. 9.9 the
ADP frequencies are scaled by a factor of 0.9. The overall shape can be matched,
only the details are missing.
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Figure 9.9: Phonon density of states for Ba8Ge4323. The ADP frequencies
are scaled by a factor 0.9.

A calculation of the phonon dispersion curves for the Ba8Ge4323 structure was
very difficult, both with ab initio methods and with MD simulations. For the ab
initio simulation the required 26 displacements can be calculated with medium
precision, setting up the dynamical matrix and calculating the eigenvalues is a
tedious problem. The 408 atoms in the unit cell yield 1224 phonon branches,
which take several hours to calculate. For the visualization only every 10th branch
is shown. The MD simulations of Ba8Ge4323 did not show any peculiarities, the
calculation of the dispersion curves from the atomic displacements, however, did
not work well. One reason might be the method itself, which was designed for small
unit cells. The large number of atoms might require a different approach, like the
velocity autocorrelation method mentioned in Sec. 7.2. Another possible reason
for the problems are the algorithms used in the post-processing tool, which seem
to have conversion problems for such large datasets.
Both dispersion curves are shown in Fig. 9.10. The ab initio calculation shows

phonons at very low negative frequencies, which can be neglected for such a large
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Figure 9.10: Phonon dispersion relations for the Ba8Ge4323 system along the
(6, ξ, ξ)-direction. Left: MD simulation of with ADP potentials. Right: ab
initio calculation.

system. For the MD result the negative frequencies make up a large fraction of the
spectrum, in the plot they are removed. Usually meta- or unstable structures exhibit
negative frequencies, both in the density of states and phonon dispersion relation.
As this is not the case, the negative frequencies might be related to the calculation
method.
The MD simulation, shown on the left, yields frequencies only up to 5THz and

optical modes at 1THz. For the frequencies in between, the data is too dense to
distinguish any phonon modes. When compared to the density of states, the higher
frequencies are missing, whichmight be related to the large negative phonon modes.
In the ab initio calculations, shown on the right hand side of Fig. 9.10, the optical

modes also start at the very low frequency of 1THz. The individual modes at
higher frequencies are no longer distinguishable due to the number of atoms in the
unit cell. The thermal conductivity of this structure should be lower than for all
previously examined structures.
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9.5 Thermal conductivity
The effective potentials generated for the intermetallic clathrate systems were used
to study the thermal conductivity of different structures. First several tests were
performed to establish a common calculation method and to investigate the in-
fluence of the system size. The thermal conductivity of clathrate structures with
increasing complexity was measured at room temperature. For the most complex
structure the results were not conclusive, another calculation method was used as
comparison. Finally the influence of vacancy ordering on the thermal conductivity
was investigated.

9.5.1 Diamond structure
The first test of the Green-Kubo method was performed for germanium in the
diamond structure. Results of differentmethods with various potentials are available
in the literature and can be used for comparison.
All simulations for the diamond structure were performed using the LAMMPS

code. The output was written in an IMD compliant format, so the already existing
postprocessing tools could be used. A Stillinger-Weber type potential from Ding
and Andersen [31] and a Tersoff potential [114] were used as comparison. All
results are averaged over 20 MD runs with 1.5 million timesteps at 300K. The
experimental value for the thermal conductivity of germanium at 300K is about
60W/mK [43]. In Fig. 9.11 the normalized HCACF is shown in the top row for
all three potentials. The corresponding integrals with error bars are shown directly
below.
The simulations with the three different potentials yield very different results.

For the ADP potentials the HCACF decays very quickly, the integral yields a value
of about 20. The Stillinger-Weber potential produces an autocorrelation function,
which does decay very slowly. Its integral also converges slowly, requiring long
simulation times. The numerical value for the thermal conductivity is 165. With the
Tersoff potential an intermediate result is obtained. The integrated autocorrelation
function converges after about 150 ps with a value of 87.
The large discrepancies between the individual potentials show that the Green-

Kubo method is very sensitive concerning the employed interactions. While all
models can stabilize the crystal structure at the correct lattice constant, the results
differ by almost one order of magnitude. An explanation for the low value of the
ADP potentials is the lack of transferability in the potential. Although it was fitted
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Figure 9.11: Thermal conductivity of α-Ge calculated with an ADP, Stillinger-
Weber and Tersoff potential. The autocorrelation functions are shown in
the upper row, the corresponding integrals below. All simulations were
performed at 300K with a 6×6×6 supercell containing 1728 atoms.

with α-Ge reference data, the phonon properties are not reproduced correctly. The
value for the Tersoff potential is comparable to a previous calculation of Dong
et al. [32]. They reported a thermal conductivity of 114W/mK using the Tersoff
potential and the Green-Kubo method with a slightly different integration technique.
The reason why the Stillinger-Weber potential yields such a high value is not clear.

9.5.2 Empty clathrate structures
Before calculating the thermal conductivity of the clathrate systems, the required
system size was determined. In computer simulations of solids there is the possi-
bility of finite-size effects. Particularly periodic boundary conditions, which are
used for all simulations in the present work, can change the outcome of simula-
tions dramatically. To exclude any finite-size effects in the thermal conductivity
calculations, the system size was increased until a steady value was achieved.
The simulations were performed with the IMD code and 1.8 million timesteps

at the respective temperature. The first 300 000 steps are used to equilibrate the
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Figure 9.12: Comparison of the HCACF and the corresponding integrals for
different supercells. The simulations are performed with the Ge46 structure
at 300K.

sample and measure the reference energy of the single atoms. The heat current J is
subsequently measured for 1.5 million steps. In Fig. 9.12 the result of 20 averaged
simulations are shown for cubic systems with an edge length of 2, 4 and 6 unit cells.
The number of atoms in the simulations was 368, 2944 and 9936, respectively.
The influence of the finite-size effects can be seen clearly in the HCACF and

the integrated thermal conductivity. For the 2×2×2 supercell the autocorrelation
function decays the fastest, the integral converges at a very low value. When the
system size is increased, the autocorrelation decays slower, which yields a higher
thermal conductivity.
The measurements were done for all system sizes up to a 7×7×7 supercell at

two different temperatures to determine the minimum system size for meaningful
simulations. For the Ge46 structure the results are shown in Fig. 9.13, for Si46 in
Fig. 9.14.
Apart from the absolute values, both figures look very similar. The 2×2×2 su-

percells are not able to provide reasonable results. The number of atoms is too
small to provide meaningful statistical averages. All other structures with larger
simulation boxes can provide the necessary amount of data for statistical analysis.
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Figure 9.13:Dependence of the thermal conductivity of Ge46 on the simulation
box size for two different temperatures.

Apart from the dip for all 4×4×4 supercells, the simulations converge already for
the 3×3×3 supercell, within an error limit. The dip is present in all four test series,
it is more pronounced for lower temperatures and almost not visible for the Si46
structure at 300K. The reason is not completely clear. A possible explanation can
be found looking at the density of states for the different box sizes. In the 4×4×4
results there is a small extra peak visible at about 1THz, which is missing for all
other sizes. To calculate the wavelength of these phonons, the velocity of sound is
required. For α-Ge the value is about 5000m/s, for the clathrate structure it should
be a little bit lower. Assuming a velocity of sound of 4000m/s, thewavelengthwould
be 40Å, almost exactly the size of the simulation box of the 4×4×4 supercell. The
phonon mode is a shortcoming of the ADP potential, which can be circumvented
by using a bigger or smaller simulation box.
For the present work, all values for the thermal conductivities were extracted

from the simulations of a 6×6×6 supercell. To get reliable and comparable data,
all calculations should be performed under similar conditions.
In the literature there is another theoretical study of the thermal conductivity of the
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Figure 9.14: Thermal conductivity of Si46 at 150 and 300K for different sim-
ulation box sizes.

Ge46 clathrate system. Dong et al. [32] used a Tersoff potential and reported a κ of
12.2W/mK, which is comparable to the value of the ADP potentials, 16.2W/mK.

9.5.3 Filled clathrates
The complexity of the clathrate systems can be increased by introducing guest
atoms in the host framework. For type I structures there are eight cages, which
can host such atoms. A common element used is barium, a heavy alkaline-earth
metal. It can be placed into the silicon cages, forming the Ba8Si46 structure. When
placed into the germanium cages, the structure becomes unstable, until some of
the framework atoms are removed. To restore the symmetry broken by the intro-
duction of vacancies, a 2×2×2 supercell of Ba8Ge4323 can be used in computer
simulations. The experimentally observed superstructure has either a partially- or
fully-ordered distribution of the vacancies, depending on the preparation method
of the crystal [6].
The HCACF and the integrated thermal conductivity for the Ba8Si46 structure

are shown in detail in Fig. 9.15. With the addition of the barium guest atoms, the
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thermal conductivity is reduced, as predicted from the phonon dispersion curves.
The autocorrelation function decays much quicker than for the empty clathrate,
which leads to a lower value of the integral.
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Figure 9.15: Left: Normalized HCACF for the Ba8Si46 structure. Right: Inte-
grated thermal conductivity at T = 300K.

As for the empty structures, the thermal conductivity has also been calculated for
different box sizes. The result is shown in Fig. 9.16. The 2×2×2 simulation box
is too small to provide reasonable statistics and the dip at 4×4×4 is also visible.
When compared to the empty structure, the thermal conductivity is reduced to one
third.
The filled clathrate structure for the Ge-system is Ba8Ge4323, which introduces

guest atoms as well as vacancies. The detailed results from the Green-Kubo method
are shown in Fig. 9.17. It is particularly noticeable that the correlations of the heat
current decay almost instantly. For times larger than 10 ps only noise is left. Despite
the short correlations, the Green-Kubo method provides reasonable results .
The thermal conductivity of Ba8Ge4323 has been determined for three different

box sizes. The results, shown in Fig. 9.18, predict a very low conductivity of about
0.95W/mK. As the supercells with 3 and 5 unit cells per edge are not available, the
conversion of the value cannot be checked. Regarding the small absolute differences
of the thermal conductivity for this system, a value in the range between 0.8 to
1W/mK can safely be assumed.
An experimental value for the thermal conductivity of Ba8Ge4323 was measured

by Aydemir et al. [6]. The Wiedemann-Franz law was used to extract the lattice
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Figure 9.16: Thermal conductivity of the Ba8Si46 system for different box
sizes at 300K.
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Figure 9.17: Left: Normalized HCACF for the Ba8Ge4323 structure. Right:
Thermal conductivity at 300K.
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Figure 9.18: Thermal conductivity for the Ba8Ge4323 structure at 300K.

contributions of the thermal conductivity. For a temperature of 300K the total
value is 3.2W/mK, the lattice part 2.7W/mK and the electronic part 0.5W/mK.
The result from the MD calculation is too small by a factor of 3.
Unfortunately there are nomeasurements available for the otherGe-based clathrate

systems. The empty cage structure has been synthesized, the crystal size, however,
was too small to perform any macroscopic measurements.

9.5.4 Artificial structures
To further investigate the influence of the structural complexity on the thermal con-
ductivity, additional structures were created. The frameworks of both stable binary
systems were exchanged, yielding two new structures, Ba8Ge46 and Ba8Si4323.
Both have not been observed in experiment – DFT calculations predict them as
unstable. With the effective potentials it is possible to stabilize these systems by
adjusting the lattice parameter. Doing so, both structures can be used in MD simula-
tions to calculate the thermal conductivity. The results then allow for a comparison
between three degrees of complexity of the same system.
The values obtained for the Ba8Si4323 system are in the expected range. They are

lower than for the Ba8Si46 structure, yet higher than for the germanium counterpart.
Details for the HCACF are given in Fig. 9.19. The decay is short, the corresponding
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Figure 9.19: Left: Normalized HCACF for the artificial Ba8Si4323 system.
Right: Thermal conductivity calculated at 300K.

integral, however, converges quickly to a value of 1.61W/mK. The dependence on
the box size is shown in Fig. 9.20. The 2×2×2 supercell is again too small, the
values for both larger boxes are almost identical.
For the filled germanium clathrate without vacancies the HCACF and the thermal

conductivity are given in Fig. 9.21. The results are comparable to Ba8Si46, the
absolute values are lower.
The dependence of the thermal conductivity on the simulation box is shown

in Fig. 9.22. For the 4×4×4 supercell a dip is visible as for the empty clathrate
structure. In the phonon density of states there are some very low contributions at
1THz,whose wavelength is about the same as the box length. The 6×6×6 supercell
yields a lower value than the boxes with 3 and 5 unit cells per edge. The reason for
this are probably low frequency phonons, which occur as artifacts of the potentials.
The artificial structures have provided valuable data. From the empty structure

and one filled clathrate for each element, the question of the low thermal conductiv-
ity cannot be solved completely. With the artificial structures both systems can be
compared for all degrees of complexity. For an increasing complexity both systems
show the same behavior. The low thermal conductivity of the clathrate systems is
thus a combination of the rattling modes of the guest atoms and the low phonon
modes, created by the vacancies.
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different box sizes. The simulations are performed at a temperature of
300K.

9.5.5 Comparison with the direct method

A verification of the calculated thermal conductivities is difficult. The experimental
values cannot be used as reference values, they often include electronic contribu-
tions and are measured on real crystals, containing defects and impurities. The
values obtained fromMD simulations inherently depend on the employed potentials.
To verifying the results, the same potential can be used with a different calculation
method. Apart from the influence of the method itself, for a reliable potential the
results should not differ significantly.
For the calculation of the thermal conductivity from MD simulations, the Green-

Kubo method and the direct method are available. Two Müller-Plathe runs with
different system sizes were performed for the Ba8Ge4323 system. Both simulations
used 4 unit cells per edge in the directions perpendicular to the heat current. The
number of unit cells in the direction of the heat current was chosen as 20 and 40.
The temperature distribution after 100 ps is shown in Fig. 9.23. The number of

layers was kept fixed at 40. Thus the number of atoms per layer is increased for the
larger box, which provides a better statistical average for the individual layers.
With the heat current imposed on the sample, the thermal conductivity can be
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calculated. The large system used a heat current of 0.000 005 in IMD units, which
is about 3.2× 109 W/m2 in SI units. For the small sample half the heat current
was applied. The calculated thermal conductivities are 0.59W/mK for the short
sample and 1.04W/mK for the long sample.
When compared to the value obtained with the Green-Kubo method, 0.93W/mK,

the long sample yields a similar value. The value of the short sample is too small.
With only 20 unit cells in the direction of the heat current, the heat flux is restricted
by finite size effects. For the same sample and twice the heat current, the value for
the thermal conductivity did not change.
The quality of the potentials is sufficient to achieve an agreement for two different

methods, which use equilibrium and non-equilibrium MD simulations. A qualita-
tive comparison between the two methods for the different clathrate structures was
not attempted.
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9.5.6 Ordered vacancies
An open question for the Ba8Ge4323 structure is the influence of the vacancy
arrangement on the thermal conductivity. In the experimentally refined structure
model the vacancies are almost fully ordered. The possible positions for the replace-
ment of a framework atom with a vacancy are the 6c positions. They are shown in
detail in Fig. 9.24.

Figure 9.24:Arrangement of the spiro-hexagon chains in the Ba8Ge4323 struc-
ture. The atoms sitting on the 6c position, connecting the hexagon faces
of the clusters, are drawn as teal spheres. Adapted from [6].

The structure determination showed, that out of the two positions belonging
to one hexagon, the occupation factor of one site is 91%, for the other it is only
9%. The perfectly ordered structure would have all atoms sitting on one site. A
schematic drawing is shown in the left hand side of Fig. 9.25.
By shifting one chain to either side, the order can be broken, resulting in an align-

ment of the vacancies along one direction. Doing so creates layers with alternating
high and low concentrations of framework atoms along that direction. On the right
hand side of Fig. 9.25 the shifted chains are highlighted in red. The layers are
perpendicular to the red lines. Experimentally it is extremely difficult to produce
these structures and measure their thermal conductivity. In computer simulations
the vacancies can be ordered easily.
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Figure 9.25: Distribution of atoms and vacancies on the 6c position in the
Ba8Ge4323 structure. Vacancies are draw as white spheres, germanium
atoms as blue spheres. The unit cell is only shown partially. Left: Complete
ordering. Right: Partial ordering. Adapted from [6].

A Ba8Ge4323 structure was created, where the vacancies in the x-direction are
arranged as shown in the right hand side of Fig. 9.25. The ordering along the other
two directions was not altered.
The results with the Green-Kubo method are shown in Fig. 9.26. In the averaged

integral of the HCACF as well as the individual components for all Cartesian
directions there is no significant effect visible. The decay in the autocorrelation
function does not change, compared to the fully-ordered Ba8Ge4323s structure. For
an in depth analysis the individual components of the heat currentJ were examined.
The thermal conductivity has been calculated for all three directions, the results are
shown on the right hand side of Fig. 9.26. While there is a slightly smaller value
for the x-direction until 100 ps, the fluctuations are too large to quantify the effect.
Taking the error bars into account, a prediction of the effect is not possible. The
overall very low thermal conductivity as well as the expected small changes may
be below the precision the Green-Kubo method and the effective potentials can
provide.

9.6 Conclusion
With the potfit program and ab initio calculated reference data, effective potentials
for intermetallic clathrate systems were generated. Their phononic properties were
tested and compared to DFT reference data. The angular-dependent potentials show
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Figure 9.26: Thermal conductivity for the vacancy-ordered Ba8Ge4323 struc-
ture at 300K. Left: Normalized HCACF. Right: Individual components of
the integrated HCACF for the three Cartesian directions.

good agreement for the phonon density of states as well as the phonon dispersion
curves of simple and more complex structures.
Using the Green-Kubo method, the thermal conductivity of six clathrate struc-

tures was determined. An overview of the results is given in Tab. 9.10. The general
trends are the same for both types of systems. For the empty cages, the X46 struc-
ture, the largest values for the thermal conductivity were found. When guest atoms
are placed inside the cages of the framework, the thermal conductivity is reduced.
The rattling modes of the guest atoms act as scattering centers for the heat carrying
phonons. The lowest value for the thermal conductivity was found in the most
complex systems, the Ba8X4323 clathrates. The vacancies, which replace several
framework atoms, reduce the lattice thermal conductivity even further.

System X46 Ba8X46 Ba8X4323

Ge 16.2± 1.2 3.7± 0.2 0.93± 0.01

Si 43.1± 4.1 6.6± 0.2 1.61± 0.04

Table 9.10: Thermal conductivity for different clathrate systems at 300K in
units of W/mK.

To test the reliability of the potentials and the Green-Kubo method, the thermal
conductivity has also been calculated with the direct method. The results for both
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methods are very similar. Regarding the different approaches and the small effects
measured, the potentials can be considered well suited for these simulations.
The question of the influence of vacancy ordering could not be resolved clearly.

For the ordered structure the values were almost identical to the regular structure
of Ba8Ge4323. Either the thermal conductivity does not change, the effect is very
small or it cannot be captured with the effective potentials.
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Chapter 10:

Summary and Outlook

In the present work different complex metallic alloys have been studied with mole-
cular dynamics simulations. The required interatomic potentials were generated
using the force-matching method, implemented in the potfit code. A large database
of ab initio calculated quantities, like forces and energies, was used to fit an ef-
fective potential. To verify the physical relevance of the potentials, different tests
were performed to determine their static and dynamic properties. Besides lattice
constants, the melting temperature or the phonon dispersion curves were calculated
and compared to ab initio results. With the force-matching method it was possible
to generate accurate potentials for complex metallic alloys, which were previously
inaccesible in MD simulations.
A major part of the thesis concerns the improvement of the already existing

force-matching code potfit. An new optimization algorithm, differential evolution,
was implemented. It uses a self-adapting scheme for the control parameters and is
well suited for analytic potentials. New features like global parameters, the smooth
cutoff function and configuration weights were introduced to facilitate the fitting
of analytic potentials for complex metallic alloys. Angular-dependent potentials
were ported from the IMD code to potfit, allowing the generation of directionally
dependent interactions. The sucess of this work can be seen in the ever increasing
number of potfit downloads from the homepage as well as the feedback from its
users.
The ternary Al-Pd-Mn system was used to determine the suitability of different

analytic potential functions for CMAs. Three models,which allowed for oscillations
in different parts of the EAM formalism,were created. The reference data was taken
from the simulaneously performed structure optimization of the ε phases. While all
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models showed similar results for basic tests, the advanced properties could only
be reproduced by two of the three models. Especially the formation enthalpy and
the distance to the convex hull was difficult to reproduce for all models. Additional
tests like the calculation of the melting point, elastic constants and cluster dynamics
showed, that the potential model with oscillations in the pair and transfer functions
can most accurately describe the ε phases.
The second class of systems investigated are intermetallic clathrates. They are

promising candidates for thermoelectric applications. To model the strongly di-
rectional dependent interactions in their framework, ADP potentials were fitted.
Usually the host atoms of clathrate structures are germanium or silicon, containing
heavy guest atoms like barium. The potentials for Ge- and Si-based clathrates were
generated in a multi-stage fitting process. First the interaction of the framework
was optimized. In the second step the framework potential was kept fixed while the
interactions required for the barium guests were fitted. The resulting potentials can
accurately reproduce the ab initio calculations of the phononic properties, which
are important for realistic thermal transport simulations.
The thermal conductivity has been determined for different clathrate systems,

using the Green-Kubo formalism. For germanium- and silicon-based frameworks,
three structures with increasing complexity were investigated in detail. The results
were very similar for both elements. The value for the thermal conductivity was
largest for the empty clathrate. When guest atoms are placed inside the cages, the
thermal conductivity is reduced significantly. The lowest values for the thermal
conductivity were found for the most complex structures. By replacing some of the
framework atoms with vacancies, the disorder in the system can be increased. The
thermal conductivity decreases when going from the simple structures to the com-
plex ones. However, not only the rattling modes of the guest atoms are responsible,
the vacancies also contribute to the reduction of the thermal conductivity.
Measuring the influence of vacancy-ordering in the most complex structure was

not possible with the Green-Kubo method and the effective potentials. The effect
on the already low value of the thermal conductivity of Ba8Ge4323 is either below
the error margin or cannot be reproduced by the potentials. A possible scenario
where the effect should be more pronounced is the Ge4323 system. Without the
guest atoms, the overall value for the thermal conductivity is higher. Small changes
can thus be detected more easily.
Another interesting application of the clathrate potentials are the ternary systems.

There are many structures, where some of the framework atoms are replace by a
third element, e.g. gold or nickel. The mechanisms responsible for the reduction of
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the thermal conductivity in these systems are the topic of current research projects.
Using the already established potentials as a starting point, the interactions for
ternary systems can be generated very efficiently.
In the present work it could be shown that analytic potentials generated with the

force-matching method can be used to study complexmetallic alloys withmolecular
dynamics simulations. With the appropriate reference data even intricate properties
like formation enthalpies or the thermal conductivity can be accurately described
by the potentials.
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Appendix A:

Analytic parameters for the potentials
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parameter pair transfer embedding dipole quadrupole
1 49.9999 −0.2263 −4.9277 −0.4159 −0.5434

2 26.2375 4.6098 0.6031 3.7864 2.5759

3 30.8244 3.5936 −0.0006 6.3000 3.4353

4 4.2577 2.6775 2.5022 2.5721

5 3.6016

6 0.5623

h 3.1270 0.5000 1.4476 2.8413

Table A.2: Potential parameters for the pure Si clathrate potential. The analytic
functions are given in Tab. 9.3. The order of the parameters is according
to the definition on the potfit homepage. The cutoff radius is 6Å.
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Figure A.2: Plots of the ADP potentials for the Si system.
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Figure A.3: Plots of the ADP potentials for the Ba-Si system.
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parameter pair transfer embedding dipole quadrupole
1 7002.5065 −0.1856 −4.3789 0.1600 0.6291

2 19.3280 3.7814 0.6291 7.7149 2.8188

3 −83.0881 −0.0000 −0.0009 6.2996 5.8143

4 5.9236 2.5475 2.4459 1.8578

5 3.7778

6 2.9061

h 1.5770 0.5475 1.1369 4.0082

Table A.4: Potential parameters for the pure Ge clathrate potential. The analytic
functions are given in Tab. 9.3. The order of the parameters is according
to the definition on the potfit homepage. The cutoff radius is 6Å.

−0.6

−0.3

0.0

0.3

0.6

0.9

1.2

1 2 3 4 5 6

pa
ir
po
te
nt
ia
l[
eV

]

distance [Å]

0.0

0.1

0.2

0.3

0.4

1 2 3 4 5 6

tra
ns
fe
rf
un
ct
io
n
[a
.u
.]

distance [Å]

−5.0

−4.0

−3.0

−2.0

−1.0

0.0

0 1 2 3 4

em
be
dd
in
g
fu
nc
tio

n
[e
V
]

electron density [a.u.]

0.0

0.2

0.4

1 2 3 4 5 6

po
te
nt
ia
le
ne
rg
y
[e
V
]

distance [Å]

dipole
quadrupole

Figure A.4: Plots of the ADP potentials for the Ge system.
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