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Abstract: The problem of maintaining balance between consumption and production of electric energy
in the presence of a high share of intermittent power sources in a transmission grid is addressed. A
distributed, asynchronous optimization algorithm, based on the ideas of cutting-plane approximations
and adjustable robust counterparts, is presented to compute economically optimal adjustable dispatch
strategies. These strategies guarantee satisfaction of the power balancing constraint as well as of
the operational constraints for all possible realizations of the uncertain power generation or demand.
The communication and computational effort of the proposed distributed algorithm increases for each
computational unit only slowly with the number of participants, making it well suited for large scale
networks. A distributed implementation of the algorithm and a numerical study are presented, which
show the performance in asynchronous networks and its robustness against packet loss.

Keywords: Distributed Robust Optimization, Economic Dispatch, Asynchronous Algorithms

1. INTRODUCTION

It is a declared goal of many industrial nations to increase the
share of “green energy’ in the domestic energy mix. Due to the
uncertain nature of renewable power sources, one major control
challenge is to maintain balance between the consumption and
generation of electrical power.

Current practice is to optimize a nominal dispatch plan with
regard to some predicted consumption and production trajec-
tories. To compensate prediction errors, a hierarchy of con-
trol mechanisms is implemented to maintain the stability, cf.
Bergen and Vittal [1999]. In order to not violate device and
transmission constraints even in the presence of (unavoidable)
prediction errors, the nominal dispatch plans need to be fairly
conservative. To overcome this conservatism one can optimize,
for example, over adjustable plans instead of nominal ones. One
idea proposed in this direction is to use stochastic programming
tools, e.g. Dvijotham et al. [2012]. Another approach recently
proposed in Warrington et al. [2012] and Bienstock et al. [2012]
is based on the theory of affinely adjustable robust counter-
parts. The idea, also known as linear decision rules (eg. Garstka
and Wets [1974]), is well known in operations research. For an
introduction, examples and theoretical treatment see the book
Ben-Tal et al. [2009]. It is known that linear decision rules
are, apart from the one-dimensional case cf. Bertsimas et al.
[2010], in general not optimal compared to arbitrary decision
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rules. However, finding the latter is in general computationally
intractable, which justifies to search for affine rules.

The contributions of this paper are as follows. We consider
a simple power network model, involving controllable and
uncontrollable devices affected by external, unknown distur-
bances. The robust economic dispatch problem is to design a
control strategy over a finite horizon that ensures a balancing of
the power supply and demand at all times. We focus on control
strategies that are affine in the disturbance signal and formulate
the robust counterpart of the resulting optimization problem.

The main contribution of this paper is the proposal and imple-
mentation of a distributed, asynchronous algorithm for solving
the robust economic dispatch problem. First, we show that
the robust counterpart has a very characteristic structure, in-
volving fairly complex local constraint sets and few coupling
constraints. Then, we show that the problem decomposes as
the dual problem formulation is considered. Based on these
considerations, we illustrate the applicability of a fully dis-
tributed, asynchronous algorithm, the cutting-plane consensus
algorithm, recently proposed in Bürger et al. [2012b]. We pro-
vide a novel interpretation of the method for this problem class.
Namely, we show that the algorithm results to be a trajectory
exchange method, where processors exchange predicted trajec-
tories to make cooperative decisions. Finally, we present the
results of a distributed, asynchronous implementation of the
optimization algorithm in a spatially distributed computation
network. The implementation shows that the algorithm per-
forms well in asynchronous networks with extremely different
computation speeds and has a high robustness against failures in
the communication network, such as packet losses. The imple-
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mentation proves the suitability of the cutting-plane consensus
algorithm for solving management and decision problems over
wide-area communication networks.

The remainder of this paper is organized as follows. Section 2
introduces the economic dispatch problem subject to uncertain-
ties and the affinely adjustable robust counterpart method. In
Section 3 the problem structure is exploited, and an algorithm is
presented to solve it in a completely distributed fashion. Finally,
Section 4 provides the implementation results and shows the
robustness of the presented solution.

Notation: The notation employed is standard. Upper case letters
are used for matrices and lower case for vectors. [A]k, [b]k
denotes row k of the matrix A and element k of the vector k,
respectively. Calligraphic letters, e.g., C, denote index sets.

2. ROBUST ECONOMIC DISPATCH PROBLEM

The robust economic dispatch problem is to compute a power
generation schedule to satisfy an uncertain demand while min-
imizing the economic cost. We consider here an adjustable
planning approach and design affine design decision rules over
a finite prediction horizon which ensure that the uncertain de-
mand is satisfied and all operational constraints are met.

2.1 Network Model and Problem Statement

We consider a simplified model of a power distribution net-
work, consisting of ideal transmission lines which connect dif-
ferent devices such as power generating plants, distribution sys-
tems or industrial consumers. We assume that the operational
cost critically depends on the generated active power p and only
marginally on the voltage which we will neglect in our model,
cf. Bergen and Vittal [1999].

Device Models A device might be controllable (e.g. genera-
tor) or uncontrollable (e.g. general load) and it might be affected
by uncertainties (e.g. wind farm). Each device has an associated
power schedule pi = [pi(1) . . . pi(T )] ∈ RT over a given time
horizon T . We stick to the convention, that p(τ) ≥ 0 means a
positive power flow from the device into the power grid. Let in
the following C be the index set of all controllable devices, V
the index set of uncontrollable devices. Some of the devices are
influenced by an external, unknown disturbance δi. We denote
the index set of all devices affected by uncertainties withD.

Uncontrollable Devices: The time evolution of an uncontrol-
lable device is modeled as

pi = ri + Giδi, (1)
where ri ∈ R

T is a forecast reference trajectory and Gi ∈ R
T×T

a lower triangular matrix. Furthermore, δi ∈ R
T is a possible

forecast error which belongs to some given bounded set
∆i = {δ ∈ RT | Qiδ + qi ∈ Ki} (2)

with Ki a closed, convex, pointed cone in RNi , and Qi ∈ R
Ni×T ,

qi ∈ R
Ni given.

Controllable Devices: A controllable device is represented by
a linear dynamical system, with the control input ui(τ) and the
associated power schedule being the systems output, i.e.,

xi(τ + 1) = Ãixi(τ) + b̃i,uui(τ) + b̃i,δδi(τ)
pi(τ) = c̃T

i xi(τ), xi(0) = xi,0.
(3)

with xi(τ), b̃i,u, b̃i,δ, c̃i ∈ R
ni , Ãi ∈ R

ni×ni . We incorporate here
explicitly the possibility, that a controllable device is affected

by an uncertainty δi ∈ ∆i, as it is, e.g., the case with curtailable
wind farms. It is a standard result that the linear dynamical
system (3) can be solved explicitly for the state and output
trajectories

xi = Aixi,0 + Bi,uu + Bi,δδ

pi = CT
i xi

(4)

with xi ∈ R
ni·T , Bi,u, Bi,δ, Ci ∈ R

ni·T×T , Ai ∈ R
ni·T×ni·T . Note that

in this form pi corresponds directly to the power schedule.

Each controllable device has a set of operational constraints,
which might depend explicitly on the uncertainties affecting the
device and must be satisfied for all possible realizations of the
disturbances. The set of admissible state and input trajectories
for device i is given by

Xi ×Ui = {(x, u) | Tix + Uiu + Viδ ≤ vi ∀δ ∈ ∆i}. (5)

Economic Dispatch Problem Using this general model, we
are ready to formalize the economic dispatch problem.

Power Balance Constraint: We assume an ideal transmission
grid with neither loss nor limits on the line currents. Under
this assumption the only remaining constraint is the net power
balance: At each time instant the overall power production has
to match the overall power consumption∑

i∈C

pi(τ) +
∑
i∈V

pi(τ) = 0, τ ∈ {1, . . . ,T }. (6)

The power balance constraint introduces T equality constraints.

Optimization Objective: Each controllable device has associ-
ated an economic convex cost function Ji(xi, ui) : Rni·T ×RT →

R. We assume here that the cost functions are piecewise linear,
i.e.,

Ji(xi, ui) = max{cT
1,xxi + cT

1,uui + d1, . . . ,

cT
mi,xxi + cmi,uui + dmi } (7)

with c j,x ∈ R
ni·T , c j,u ∈ R

T , d j ∈ R. The overall objective is the
sum of all device objectives.

Taking these components together, we can formalize the opti-
mal dispatch problem with uncertainties:

min
ui

J =
∑
i∈C

Ji(xi, ui)

s.t. Power Balance Constraint (6)
Device Constraints (5).

(8)

Due to the uncertainties in the constraints and objective, prob-
lem (8) is not directly feasible in the present form. To overcome
this issue, we will use in the following the idea of affinely
adjustable robust counterparts, see Ben-Tal et al. [2009].

2.2 Affinely Adjustable Robust Counterpart

To handle the uncertainties, we seek here for feedback rules
that depend explicitly on the measured disturbance sequence,
i.e., ui = ui(δ1, . . . , δ|D|). We restrict ourselves here to affine
decision rules of the form

ui = ρi +
∑
j∈D

Pi jδ j (9)

with Pi j ∈ R
T×T . In order to maintain causality, the disturbance

feedback gains Pi j are required to be lower triangular matrices.
Diagonal elements in the matrix Pi j represent the ability of
a system to react on the current disturbance. That is, if the
diagonal elements exist, the disturbance δ j(τ) is known at the



time ui(τ) is applied. This assumption is necessary for at least
some devices to maintain exact power balancing.

After restricting to the affine decision rules (9), the resulting
optimization problem still depends on the uncertainties δi.
However, one can now formulate the robust counterpart , i.e.,
a nominal optimization problem with the same solution as the
uncertain problem, see Ben-Tal et al. [2009].

Controllable Devices: The set of admissible decision rules
for a controllable device i has to be designed such that the
operational constraints (5) are satisfied. This leads to an infinite
dimensional problem description with an equivalent nominal
robust counterpart.
Proposition 1. The set of feasible feedback rules, respecting
(5) is given by

Πi(x0) =
(ρi, {Pi j} j∈D)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ρi ∈ R
T ,Pi j ∈ R

T×T , lower triang.
∃ y jk ∈ K∗j

[F]kρi +
∑
j∈D

qT
j y jk ≤ [h]k

yT
jkQ j = −[FPi j + G j]k

∀ rows k, ∀ j ∈ D


(10)

with F = TiBi,u + Ui, G j = TiBi,δ j + Vi, h = vi − TiAixi,0 and K∗
the cone dual to K.

The proof follows from Ben-Tal et al. [2009] and a similar result
has been presented in Warrington et al. [2012].

Power Balance Constraint: As a next step we consider the net
balancing constraint (6). Under the proposed affine control law
the balancing constraint becomes∑

i∈C

Ci(Aix0,i + Bi,u(ρi +
∑
j∈D

Pi jδ j) + Bi,δδi) =

−
∑
i∈V

(ri + Giδi) ∀δ j ∈ ∆ j, ∀ j ∈ D. (11)

Proposition 2. Constraint (11) is satisfied for all disturbance
realisations δ j ∈ ∆ j, ∀ j ∈ D if and only if the following
equations hold:∑

i∈C

Ci(Aix0,i + Bi,uρi) = −
∑
i∈V

ri (12a)∑
i∈C

Ci(Bi,uPi j + 1i jBi,δ) = −G j ∀ j ∈ D, (12b)

where 1i j denotes the indicator function which is 1 if i = j and
0 otherwise.

We again omit the proof since a similar result has been pub-
lished in Warrington et al. [2012].

Optimization Objective: It remains to define the objective (7) in
the presence of disturbances. We focus on a min-max formula-
tion and aim to minimize the worst case loss

Ji(ρi, {Pi j} j) = max
δ j∈∆ j

Ji(xi, ρi +
∑
j∈D

Pi jδ j).

The main advantage of the min-max problem formulation is
that, besides the absolute bounds, no further properties on the
underlying disturbance distribution have to be known.

We transform the optimization problem into epigraph form by
introducing one new variable J̄i together with the constraint
J̄i ≥ maxδ j∈∆ j Ji(xi, ρi+

∑
j∈D Pi jδ j) for each controllable device.

Introducing the robust counterpart, similar as before, leads to
the set of feasible upper bounds on the cost:

Γi(x0) =
J̄

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

J̄ ∈ R
∃ y jk ∈ K∗j∑

j∈D

qT
j y jk + cT

k,uρi + cT
k,x(Ax0 + Buρi) + dk ≤ J̄

yT
jkQ j = −[(cT

k,xBu + cT
k,u)Pi j + 1i jcT

k,xBδ]
for k = 1 . . . mi, ∀ j ∈ D


(13)

Summarizing, we obtain the robust economic dispatch problem

min
ρi,Pi j,J̄i

J =
∑
i∈C

J̄i

s.t. Pwr Balance Constraints (12a), (12b)
(ρi, {Pi j} j∈D, J̄i) ∈ Πi × Γi ∀i ∈ C.

(14)

The robust economic dispatch problem (14) has a very charac-
teristic structure. It has a linear objective function, some linear
coupling constraints, and |C| local constraint sets. Each local
constraint set belongs to exactly one controllable device and
contains the local operational constraints, restricting the power
generation ρi and feedback gains Pi j, as well as the upper bound
for the cost function J̄i.

3. DISTRIBUTED SOLUTION

We are now seeking an algorithm to solve the robust economic
dispatch problem in a fully distributed way. That is, we want
a processor to be placed at the controllable devices, with the
local operational constraints of the device only known to this
processor. The processors should cooperatively solve the large
scale robust economic dispatch problem, by exchanging mes-
sages over an asynchronous communication network.

3.1 Lagrange Dual and Separability

The first step for deriving the distributed algorithm is to con-
sider the dual problem of (14). We formulate a partial La-
grangian of the problem by dualizing the coupling constraints
(12). Let λ ∈ RT and Λ j ∈ R

T×T ∀ j ∈ D be the dual
variables corresponding to the constraints (12a), (12b), respec-
tively. Now, the dual optimization problem of (14) becomes

max
λ,Λ j

λT
∑
i∈V

ri +
∑
j∈D

< Λ j,G j > +∑
i∈C

min
ρi,Pi j

{
J̄i + λT Ci(Aix0,i + Bi,uρi)+∑

j∈D

< Λ j,Ci(Bi,uPi j + 1i jBi,δ) >
}

s.t. (ρi, {Pi j} j, J̄i) ∈ Πi × Γi ∀i ∈ C.

(15)

Next, for each controllable device i we introduce a new variable
ui and reformulate the max-min problem (15) as a separable
semi-infinite program:

max
λ,Λ j,ui

λT
∑
i∈V

ri +
∑
j∈D

< Λ j,G j > +
∑
i∈C

ui

s.t. ui ≤ J̄i + λT Ci(Aix0,i + Bi,uρi)+∑
j∈D

< Λ j,Ci(Bi,uPi j + 1i jBi,δ) >

∀(ρi, {Pi j} j, J̄i) ∈ Πi × Γi ∀i ∈ C.

(16)

This problem has a nice structure. It has one linear objective
function and each processor (i.e., controllable device) is as-
signed one convex constraint set, represented here by a linear



semi-infinite constraint. This form is advantageous, as it allows
now to apply the cutting-plane consensus algorithm, recently
presented in Bürger et al. [2012a] and Bürger et al. [2012b].

3.2 The Cutting-Plane Consensus Algorithm

The conceptual idea of the algorithm can informally be de-
scribed as follows. Instead of solving the semi-infinite program
(16) directly, each processor solves a linear program with a
polyhedral outer-approximation of the semi-infinite constraint
set. Each processor i ∈ C stores and updates its own set of
constraints, denoted with B[i]. The processors exchange their
set of constraints, generate new constraints and then update
their set B[i]. Under some additional technical modifications,
the processors will eventually all compute the optimal solution.
As a main contribution of this section, we show that the cutting-
plane consensus algorithm applied to the economic dispatch
problem turns out to be a trajectory exchange method, similar to
the methods intensively studied in distributed model predictive
control, see e.g., Richards and How [2007]. We first introduce
the approximate program and then describe the generation of
new constraints.

We replace the semi-infinite constraints in (16) with a set of
linear constraints by selecting suitable sampling points from the
sets Πi × Γi. Let

B =
{
(ρk

i , {P
k
i j} j, J̄

k
i ) ∈ Πi × Γi, i ∈ C, k = {1, . . . ,Ki}

}
,

be such a set of sampling points. With this we formulate the
approximate program

max
λ,Λ j,ui

λT
∑
i∈V

ri +
∑
j∈D

< Λ j,G j > +
∑
i∈C

ui

s.t. ui ≤ J̄k
i + λT Ci(Aix0,i + Bi,uρ

k
i )+∑

j∈D

< Λ j,Ci(Bi,uPk
i j + 1i jBi,δ) >

∀ (ρk
i , {P

k
i j} j, J̄

k
i ) ∈ B.

(17)

The polyhedral constraint set of the linear program (17) is
an outer-approximation of the semi-infinite constraint set in
(16). That is, any feasible point of (16) is also feasible for
(17). An additional (technical) challenge arises from the non-
uniqueness of the optimal solution of (17). For the algorithm
to work correctly, it is necessary to employ a unique solution
rule, when solving the linear program, see Bürger et al. [2012b]
for a detailed explanation. We consider here, as in Bürger et al.
[2012b] the unique minimal 2-norm solution to (17).

The constraints of (17) are affine in the decision variables
ui, λ,Λ j. The constant term is simply J̄k

i , i.e., the upper bound
on the cost function for the corresponding processor. The con-
straint data corresponding to the multiplier λ is

pk
i,nom := Ci(Aix0,i + Bi,uρ

k
i ).

That is, the multiplier λ is associated to the predicted nomi-
nal power generation schedule of the controllable device, cor-
responding to the sampled input trajectory ρk

i . Similarly, the
multipliers Λ j are associated to the disturbance dependent ad-
justable control components, i.e.,

Pk
i j := Ci(Bi,uPk

i j + 1i jBi,δ).

In summary the constraint data of device i, i.e., B[i] contains
several plans. A plan consists of (i) a “predicted” nominal
power schedule, i.e., pk

l,nom, l ∈ C, (ii) the corresponding feed-
back gains {Pk

l j} j and (iii) the corresponding upper bound of the

cost functions J̄k
l . The power generation corresponding to this

sampling point can be simply computed as

pk
i := pk

i,nom +
∑
j∈D

Pk
i jδ j.

The processors store and exchange such power generation plans
between each other. Note that only the generation plan needs
to be exchanged, while the corresponding input sequence, i.e.,
ρk

i , {P
k
i j} j, remains private information of the device.

To define the optimal solution of (16) it is not sufficient to
store only one plan for each device. It is well known in lin-
ear programming (and also in semi-infinite optimization, see
Hettich and Kortanek [1993]) that at most as many constraints
as decision variables are necessary to determine a feasible solu-
tion. Therefore, for the robust economic dispatch problem, each
device needs to store at most

d = T + |D|
T (T + 1)

2
+ |C|

plans (i.e., constraints of the approximate program). In fact,
once the approximate linear program (17) is solved, one can
drop all except of d active constraints, without changing the
optimal solution. We will say in the following that these d
active constraints are the relevant plans, i.e., they are the plans
determining the optimal solution to the approximate program.

The next decisive question is how the given approximation (17)
can be improved further. Let zq = (uq, λq, {Λq, j} j) denote the
argument of the optimal solution to the approximate program
(17). Consider the following optimization problem correspond-
ing to device i ∈ C:

u∗i (λq, {Λ j,q} j∈D) = min
ρi,Pi j,J̄i

J̄i + λT
q Ci(Aix0,i + Bi,u pi)+∑

j∈D

< Λ j,q,Ci(Bi,uPi j + 1i jBi,δ) >

s.t. (pi, {Pi j} j, J̄i) ∈ Πi × Γi.

(18)

Now, if uq,i ≤ u∗i (λq, {Λq, j} j∈D), then the optimal solution (uq,
λq, {Λq, j} j), computed with the approximate linear program,
is also feasible for the corresponding semi-infinite constraint.
Otherwise, the approximation is not exact enough, and proces-
sor i generates a new linear constraint of the form

ui ≤J̄∗i + λT Ci(Aix0,i + Bi,uρ
∗
i )

+
∑
j∈D

< Λ j,Ci(Bi,uP∗i j + 1i jBi,δ) >, (19)

where J̄∗i , ρ
∗
i , {P

∗
i j} j is the optimal solution of (18). The prob-

lem (18) is basically a robust optimal planning problem for
a controllable device. The local constraints Πi × Γi represent
the local operational constraints of the device and the robust
counterpart of the cost function. Additionally, the nominal gen-
eration schedule is “penalized” by the dual variables λ, and the
adjustable component is penalized by Λi j.

Finally, the generated plans need to be exchanged. After having
solved the approximate program and having created a new con-
straint, the processor sends all relevant plans to its neighbors.

We formally summarize the computational procedure each pro-
cessor performs in Algorithm 1. For an in-depth discussion
of the algorithm and a convergence proof we refer to Bürger
et al. [2012b]. We want to point out that the convergence of the
algorithm does not depend on the linearity of the underlying
optimization problem. The distributed algorithm, as presented
here is applied to the dual of the economic dispatch problem,



Algorithm 1 Cutting-Plane Consensus Algorithm

Require: Initial set of plans B[i]
0

loop
(S1) Transmit the set of plans B[i]

t to all out-neighbors and
receive the plans B[ j]

t from all in-neighbors.
(S2) Form the approximate linear program (17) and com-
pute the 2-norm solution λ(t), Λ j(t), ui(t); determine the
set of relevant plans B[i]

tmp.
(S3) Compute a new plan, i.e., a nominal power trajectory
pk

i , the feedback components {Pk
i j} j, and the cost bound J̄k

i
by solving the local planning problem (18).
(S4) Add the new plan (pk

i , {P
k
i j} j, J̄

k
i ) to the set, i.e.,B[i]

t+1 =

B
[i]
tmp ∪ (pk

i , {P
k
i j} j, J̄

k
i ).

end loop

and will solve the dual problem. However, it is shown in Bürger
et al. [2012b] that the algorithm allows to reconstruct the opti-
mal primal solution. This is due to the fact, that the processors
store and exchange predicted plans. These plans allow to re-
construct the primal solution from the computed dual solution.
Finally we want to point out that the algorithm iterates through
a series of feasible solutions, i.e., when it is stopped too early
the solution might not be optimal yet, but it will be feasible.

We will show in the next section, that the algorithm performs
well in practice in asynchronous communication networks.
We show in particular, that the algorithm is extremely robust
against packet losses in the communication.

4. DISTRIBUTED IMPLEMENTATION

The described model and algorithm was implemented in Matlab
in two different versions. First, an asynchronous version of
the algorithm was implemented, running on the spatially dis-
tributed computers attached to the institutes network. A second
implementation was performing the distributed algorithm in
a synchronous fashion on one computer. We used ROME, a
modeling language for robust optimization, cf. Goh and Sim
[2011], for the local subproblems and the IBM CPLEX solver
for all optimization programs. In the following we first describe
the devices we used, followed by details on the distributed
implementation and finally a short computational study on the
convergence and message loss.

For comparison we also implemented the complete centralized
optimization problem using ROME and IBM CPLEX. For
smaller size problems, e.g., two and four device cases, we were
able to solve the robust economic dispatch problem centrally,
and we could verify in this way that the proposed distributed
algorithm computed the correct solution. However for the larger
model considered in this section, the centralized approach ran
into memory problems and could not compute the solution.

4.1 Network Model and Devices

In our study we consider a grid of 16 controllable devices 2 with
an all-to-all communication. We implemented three small, five
medium and three large generators plus two small, two medium
size and one large storage. A small generator, e.g. gas turbine,
and all storages, e.g. pumped hydro-power, are able to react on
current disturbances, i.e., have nonzero diagonal entries in the
2 16 was the maximum number of personal computers available for the study.

gain matrices Pi j. Medium size and large generators have only
subdiagonal entries, that is, they can react on past disturbances
only.
A generator is modeled without relevant dynamics but with
constraints on the maximum and minimum power output as
well as with rate constraints. A storage has a direct feed-through
from input to output, as well. Beyond it has an integral be-
haviour to simulate the storage level. The model incorporates
constraints on maximum and minimum power output, rate con-
straints and minimum and maximum storage level. In general,
the smaller a device the less restrictive are the respective rate
constraints, but the more expensive is the produced power. The
larger a device the larger is the maximum power output and
storage capacity.
The considered uncontrollable devices are an uncertain de-
mand and intermittent wind energy production, both without
dynamics, i.e., the matrix Q contains only diagonal elements.
The demand pD(τ) = qD,pred(τ) + δD(τ) was modeled with a
sinusoidal reference trajectory and infinity norm bounds on the
disturbance, i.e.,

∆D = {δ ∈ RT | ‖δ(τ)‖ ≤ dmax(τ)}.
We used error bounds of 10% as reported in Vilar et al. [2012].
The wind energy production pW (τ) = qW,pred(τ) + δW (τ) was
modelled with a sinusoidal reference trajectory qW,pred(τ), as
well. The considered disturbance bounds were

∆W = {δ ∈ RT | ‖δ(τ)‖ ≤ dmax(τ), ‖δ(τ + 1) − δ(τ)‖ ≤ rmax}.

We chose values increasing from ±5% to ±20% of the installed
capacity for the absolute bounds and a rate constraint of 20%
according to Hodge and Milligan [2011] and Wan [2011].

4.2 Distributed Implementation

For the distributed implementation we used 16 personal com-
puters, ranging from rather old dual core with 2.2 Ghz to eight
core machines with 2.83 Ghz and available memory from two
GB to eight GB. During the simulation they where partially
used for daily tasks. Each computer was running the algorithm
of one controllable device and communicating with all other de-
vices. For the communication we used UDP sender and receiver
objects of the DSP System Toolbox in Matlab. UDP is a very
fast, low overhead transmission protocol without guarantee of
delivery or flow control. It only provides checksums for data
integrity and therefore seemed very suitable for the algorithm
and our our simulation.

In Figure 1 the results of one simulation are shown. We stopped
the optimization after the slowest processor completed 300
iterations. In the same time the fastest computer completed
over 1200 iterations. It was more than 4 times faster, showing
the asynchrony of the algorithm in practice. Furthermore the
message loss is depicted with a color code from white meaning
0% loss over yellow and red to black depicting 100% message
loss. Despite the heavy loss ranging from 40.7% up to 71.4%
due to the simple UDP communication, the obtained solution
agreed with the solution from the synchronous implementation
with perfect communication up to 0.01%.

4.3 Message Loss and Convergence

The results of the asynchronous implementation motivated a
computational study on the effect of message loss on the con-
vergence which was performed with a synchronous imple-
mentation on a single computer. We simulated message loss
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Fig. 1. Results of a distributed implementation using UDP com-
munication between 16 personal computers with different
hardware. Despite the heavy message loss and asynchrony
the correct solution was found.

from 0% to 90% by dropping the desired percentage of mes-
sages chosen randomly through a uniform distribution. Figure
2 shows the convergence results of the 16 controllable devices
case. We were not able to compute the optimal value J∗ using
the centralized approach. Therefore, the minimum considered
here, i.e., J∗, is the best value achieved in a serial implementa-
tion of the novel algorithm. The result shows, that even with
90% loss the convergence is quite fast and about 40 to 80
iterations depending on the desired accuracy were enough.

5. CONCLUSION

We proposed a novel distributed, asynchronous algorithm to
efficiently solve the economic dispatch problem under uncer-
tainty. In particular we applied the theory of affinely adjustable
robust counterparts and showed how the resulting optimization
program can be solved in a distributed way by the recently pro-
posed cutting-plane consensus algorithm. We provided a novel
interpretation of the cutting-plane consensus as a trajectory
exchange method, highlighting the connection to approaches
in MPC literature. A computational study was performed that
demonstrates the applicability of the proposed algorithm in
highly heterogeneous, asynchronous networks with a high rate
of message loss.

Ongoing work includes a more detailed modeling of the power
network with transmission constraints as well as methods to
decrease the problem dimension or the number of exchanged
messages. Future work will focus on the implementation of the
proposed algorithm in an receding horizon fashion.
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Fig. 2. Convergence of the algorithm in a synchronous imple-
mentation with different percentages of message loss.
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