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constrained points. These matrices are then transformed into the system’s config-
uration space in order to form the final constraint matrix and its orthogonal com-
plement. The avoidance of singularities in the formulation is discussed. The method
is especially suited for the dynamic analysis of multibody systems with many con-

straints and/or closed-loops.

1 Introduction

Recently there has been increasing interest in efficient meth-
ods for the dynamic analysis of multibody systems subject to
constraints, i.e., systems with closed loops or systems with
specified motion. Usually, such systems lead to mixed differ-
ential-algebraic equations (DAEs) which are obtained by for-
mulating the initial dynamical equations of the unconstrained
(or open-loop) system, and then imposing the constraints. The
corresponding dynamical equations are expressed in the initial
(or dependent) coordinates and incorporate the constraint re-
actions by means of Lagrange multipliers. The direct integra-
tion of the equations needs the attachment of the constraint
equations, and the problem is referred to the solution of a set
of DAEs. Several methods for numerical treatment of such
equations are available, e.g. [1]-[3], and many researchers
prefer this approach due to its substantial simplicity and ease
of derivation of the DAEs. Consequently, many general pur-
pose multibody computer programs are based on this approach
[4]. On the other hand, the numerical algorithms for solving
the DAEs are commonly evaluated as computationally inef-
ficient and unstable.

The difficulties in numerical treatment of DAE systems have
stimulated the development of methods oriented at automatic
elimination of constraint reactions from the analysis and re-
solving the governing equations into a more familiar form of
purely differential equations. An additional advantage is the
reduction of dimension of the problem. More or less manifestly
and based on different principles of mechanics, the crux of
the approach lies in the determination of a matrix being an
orthogonal complement to the constraint matrix, see e.g. [5]-
[12]. Since the ideal constraint reactions are, in principle, co-
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linear with so-called constraint vectors contained in the con-
straint matrix, the multiplication of the initial (constraint re-
action-containing) dynamical equations by the orthogonal
complement matrix results in the reaction-free (or purely-ki-
netical) equations of motion.

The orthogonal complement matrix is determined either by
an a priori or literal choice of independent (or tangent) vari-
ables [5]-[7], [9], [11]) or by numerical methods. In practice,
the literal choice of the independent variables is often difficult
and may lead to singularities. Therefore, a range of methods
for the automatic generation of orthogonal complement ma-
trices has grown rapidly in recent years. The coordinate par-
titioning (LU decomposition) method [7], the zero-eigenvalues
theorem method [8], [13], the singular value decomposition
method [14], [15], and the methods based on the Householder
transformations [16], [17] and the Gram-Schmidt orthogon-
alization process [18], [19] are representative examples of meth-
ods of this type.

The objective of this paper is to present the development of
a method for the automatic generation of an orthogonal com-
plement matrix to the constraint matrix, suited for dynamic
analysis of multibody systems with many constraints and/or
closed-loops. The formulation of the method is based on the
observation that the orthogonal and tangent directions to the
constraint manifolds can easily be determined in local (often
Cartesian) reference frames. The transformation of the local
tangent directions into the system'’s configuration space is the
key to the proposed method. The avoidance of singularities in
the formulation is discussed, and some illustrative examples
are included.

2 Preliminary Definitions

Consider an (n— m)-degree-of-freedom multibody system
with closed-loops (internal constraints) and/or constraints due
to contacting the environment (external constraints), see Fig.
1(a). Time-dependent constraints are also admissible for
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Fig.1 Aclosad-loop/constrained and unconstrained multibody systiem

modelling specified motion requirements imposed on the sys-
tem. In the first step, let us release the system from the m
constraints in order to build an n-degree-of-freedom open-loop
(unconstrained) system, see Fig. 1(b). Note, that this can usu-
ally be done in many different ways.

The assumption of this paper is that the dynamics of the
unconstrained system is determined by any method and, in
fact, there is a range of methods for obtaining equations of
motion for such systems. The corresponding dynamical equa-
tions can be written in the following form

M(a.1)q=h(q,q.0), (1

where M is the n x n symmetric positive-definite mass matrix;
q=[q, . . -, ga” is the column matrix representation of the
unconstrained system coordinates; h = [A,, . . ., h.)” represents
the external, centrifugal, and Coriolis forces on the system;
and ¢ is the time.

In order to retrieve the behavior of the closed-loop/con-
strained system, the removed constraints must be imposed on
the unconstrained system. Assume that there are p constrained
points with m; constraints at the ith constrained point
(m;+. . .+ m,=m), which constrain the relative position (po-
sition implies both position and orientation) of the contacting
bodies (internal constraints) or the position of the bodies in
contact with the environment (external constraints). Let us
introduce the constraint equations by means of the ith con-
strained point /ocal coordinates x;=[xy, . . ., Xi)"

T,(x;,l) = 0; (2)

where ;= /i1, . . ., fim)", m;=<n;. The superscript (" ) denotes
that the corresponding function is expressed in the local co-
ordinates x; which describe the relative position of the con-
tacting bodies (internal constraints) or the position of the body
in contact with the environment (external constraints), hence
ms6 (for the internal constraint at point 4 in Fig. 1, x; is
assumed to be equal to x4 =x4~ — X4+, Wwhere x4# and x4 are
the positions of points A" and A’ relative the inertial frame).
From the point of view of efficiency of the reported method
it is essential to choose a minimal number of local coordinates
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x, for defining the constraints (2), if possible n,=m, (the prob-
lem will be discussed more precisely later on).

The interdependence between the local coordinates x, and
the system's /nitial coordinates q can be written as

x, =gd{q), (3)

where g, contains at least twice differentiable functions. Using
this, the constraints (2) can be expressed in q and 1/, i.e.,
f4q.0)=1424q).0)=0 (i=1, . . ., p). Then, defining the total
vector of constraints on the system as f=[f/, . . ., I';] T the
initial (constraint reaction-containing) governing equations of
the motion of the system are:

Mg=h+C")\, (4)

Cﬁ"’&]:o, (5)

where C(q,r) =df/dq=[C], . . ., C,i;]]r is the m x n constraint
matrix, and C'r= di,/dq refers to the ith constrained point;
A=[Al, .. ., A]]” contains m Lagrang{e multipliers, A, =[A,,
w1z .,k,,,,*}T; and ¢o(q.1) = [cqy, . . -, €g]  is the m-dimensional
column matrix, co, = (8f,/3q) q + (3f,/3¢) " . One can easily de-
duce that (5) expresses the constraint equations transformed
to the second-order kinematical form, and the initial conditions
1(q,,0)=0 and £(qo,90,0) =0 have to be satisfied.

The governing Eqs. (4) and (5) form a set of DAEs, and the
numerical treatment of such equations may be computationally
inefficient. Thus, methods aimed at automatic elimination of
the constraining forces C’'A from the analysis, and conse-
quently reducing the dimension of the problem and trans-
forming the resultant equations to the form of purely
differential equations, are often introduced. The clue to these
methods, mentioned in Section 1, consists in the left-sided
premultiplication of the dynamical Egs. (4) by an (n—m) xn
orthogonal complement matrix D(q,) such that DC’ =0, which
represents the vanishing virtual work of the constraint forces.
As aresult, the dynamical equations transform to the following
form

DMq = Dh. (6)

These reaction-free dynamical equations, mixed with the con-
straint Egs. (5), form the governing differential equations of
the motion.

As the constraint matrix C can be obtained by mathematical
manipulations when (2) and (3) are defined, the determination
of D is usually not so evident. For small systems, D can be
often found by inspection (see, e.g., [6], [12], [20]); for large
systems the literal determination of D is much more compli-
cated. Hence, in applications D is usually determined with the
use of numerical methods, [7], [13]-[19]. In this paper another
method for the automatic generation of the orthogonal com-
plement matrix is proposed. This method is conceptually simple
and assures avoidance of singularities in the analysis. Moreover
it gives an interesting insight into the problem of dynamic
analysis of constrained systems, and may have a tutorial value
as well.

Of critical importance for further formulation is the obser-
vation that the columns of C” and D7 are, respectively, the
covariant representations of the constraint vectors spanning
the constrained subspace, and the contravariant representa-
tions of vectors spanning the tangent (null) subspace in the
system's configuration space treated as an n-dimensional Rie-
mannian space. The same concerns the constraint matrices and
their orthogonal complements in the local reference frames
(n~dimensional Riemannian spaces). This yields different for-
mulae for the transformation of the local constraint matrices
and the local orthogonal complement matrices into the system’s
configuration space. These aspects are described in detail in
{12). The present paper has been deliberately written in the
simplest possible, standard, engineering notation. Only in some
places and when it is indispensable, the reader is referred to
[12] for the mathematical background.
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3 Solution

The reported method is based on the observation that D,
can be easily found as an orthogonal complement on C, in the
n~dimensional (n, < 6) subspace referred to the ith constrained
point (i=1, . . ., p). The transformation of the local D, ma-
trices into the configuration space is, generally speaking, the
way to build the matrix D used in (6).

As stated in (2), the constraint equations are expressed in
local coordinates x,. Defining

C,=of/ox, (7

where C, is the m, x n, matrix of maximal rank, an (n,~m,) X n,
matrix D, is usually easy to define such that

Der=0. (8)

Note that if m, = n,, D, does not exist and, as it will be shown,
this is the most favorable case from the standpoint of the
efficiency of the method.

Let us build the global vector of the local coordinates, x = [x{,
.., x)", and according to (3) introduce the relationship

X, &{Q)
x=| : |=8@Q)= i 9
Xp 2,(q)
Denoting the dimension of x by k (k=n,+. . . +n,), the fol-
lowing k x n Jacobian matrix can be defined

dg1/3q
J(qQ)=0x/3q= : ’
ag,/op
which is the transformation matrix relating x and q, x =Jq.

Using the above definitions, the global k x m matrix €” and
the global k x (n—m) matrix D7 are:

(10)

(e7 0--- 0]
er-| @ G0
0 0---C7
—[)l 0...0-]
!
D= °b’° ; (an
Li: 0---B7

where 0 denotes the null matrix of proper dimension.

Since the columns of C7 are the covariant components of
the constraint vectors in the local reference frames, the co-
variant representation of the vectors in the system’s configu-
ration space can be obtained by using the following transfor-
mation formula (refer to [12] for the background)

c’=1C". (12)
As said previously, the columns of D7 are contravariant rep-
resentations of vectors spanning the tangent directions in the
local reference frames. Hence, following the formulation given
in [12], the transformation formula reads as D"=3""D", and
demands k = n and rank(J) =n. For a general case, however,
k=<n, and for k<n the following approach should be under-
taken.

Let us append the k local coordinates x by n—k comple-
mentary coordinates y, and define the full dimension extended
local coordinates x’

<<[-vo-[5a)

so that the nx n Jacobian matrix J’,

(13)
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v arsae | 08709 | J
J' =dg /aq-[h/aq]—[ﬁ:l. (14)

is of maximal rank (note that x" =1"q).
Irrespective of the choice of y, the matrices €'” and D*7,
referred to the extended local coordinates x”, can be defined

as
CT
kxm
o r
(n=k)xm
D’ 0
kx(k=m) kx{n—k)
0 | !
(n-k)x (k—m) (a—k)x(n—k)

[

D'7= (15)

where 0 and I denote the zero and unit matrices with the
dimensions indicated. Note that the ranks of €' and D' 7 are
maximal, and equal m and n — m, respectively, if only the ranks
of ¢” and D7 are maximal.

Now, in order to build C and D, the following formulae are
available:

CT=J' T '=¥'CT;

D’=Q3")"'D",

(16)
amn

As said, €' Tand D7 can be built irrespectively of the choice
of y. A reasonable choice for y is to set them as appropriate
n—k elements from q. The (n—k)xn matrix G defined in
Eq. (14) will then contain only one nonzero (equal to 1) entry
in each row. Exploiting this, the matrices J and G can sym-
bolically be writtenasJ = [J, J,]and G=[I 0], where I denotes
the (n—k) % (n—k) identity matrix, and the k X k matrix J,
must be invertible (det (J,)#0) in order to assure invertibility
of 3'. The matrix (J')”' used in Eq. (17) can then be repre-
sented symbolically as

0 1

P (n-kyxk (n—k)x(n—k)

a'=l T gy (18)
kxk kx (n-k)

The symbolic representation of Eq (18) means that the rows
of 3")"" as compared with (J')”" are in the same setting as
the columns of the symbolic partition J=[J; J,] as compared
with J used in Eq. (14). These processes can easily be auto-
matized in computations.

Summarizing, the following algorithm of the reported
method can be proposed.

Algorithm

1* Release the system from the constraints, and derive the
dynamical Eqs. (1) of the wnconstrained system;

2* Formulate the constraint Eqs. (2) expressed in the /ocal
coordinates of the ith constrained point (i=1, . . ., p);

3* Introduce the interdependences (3) between the x; and
the q coordinates, and formulate the Jacobian matrix J ac-
cording to (10);

4° Formulate C;and D, (i=1, . . ., p) according to (7) and
(8), respectively. If m;=n;, D; does not exist;

5° Build matrices C” and D7, and then
cording to (11) and (15), respectively;

6° Partition J symbolically to J=[J; J;] so that the kXK
matrix J, is invertible and calculate (3) " using the symbolic
relation (18)

7° Determine D (and C, if needed) according to (17) and
(16).

‘T and D'7 ac-
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Fig.3

The unconstrained systems of Example 1

4 Applications

Example 1. Letusconsider first the four-bar linkage shown
in Fig. 2. Two possible ways of constructing the unconstrained
system will be discussed, see Fig. 3. Denoting q = [6,,6:,6]",
the dynamical equations of each of the unconstrained systems
can be derived in form (1). For brevity, the equations will not
be reported here. (In fact, the equations for Case b are simpler
then the equations for Case a. Hence, cutting closed-loops in
the middle can be recommended).

Introducing the local coordinates x, and y, as relative po-
sition coordinates of 4” and A', x4=x4"—-x4’, and
Ya=Ya" —Ya’, the constraint equations for both Cases are

]|'x‘=0. ]13}’4‘0. (19)
The local constraint matrix €, corresponding to (11), is (for

both Cases)
10
c=[o I]'

and the local D matrix does not exist because of m=k=2.

(20)
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Thus, the extended dimension matrices C* and D’ are:

10 0
¢'’=|01|, D'"=|0]|, (21)
00 1
From kinematics we find:
1
_ | xa| _ | hicosB, + I:cosb, + lycosby - a
= [.v.l 1o N [ !|5iﬂs| + I;sinﬂ: + l,sinﬂ, -b |’ (220)
B _x,.q _ | hicosb, + l,cosb, - a + 1yc0s8,
¢ L-u. :._ [ l,sind, + lsindy — b — lysind; |’ (225)
respectively, and the Jacobians defined in (10) are:
_ [ =#sin6, - bsing, ~ hysine,
di= | hcosd, Icosh; lycosdy | (23a)
| —#sin6, —1sin8, — bysing,
Yo = l licos8, Icosfy —/ycosb, | (&30)
The extended Jacobian may be chosen as
L JI
3=|........ . i=ab, (24)
010

which corresponds to the extended local coordinates
x' =|x44.0:]". (Note that **1"" in (24) can change its column
position according to the choice of 6,, i=1, 2, or 3, in the
extended local coordinate vector x'). For this particular po-
sition of **1,"" the matrix D can be found from (17) as

[ Iysin(6, - 6,)]
" Iysin(6; — 6,)
D! = 1 "
. lysin(6, - 8,)
| Aysin(8, - 6,),
[ bsin(8, + a,ﬂ
I,sin(8; + 6,)
D= 1

lysin(6; - 8,)
| Lsin(8;+6,) |

Regarding the problem of singularity of 3, for both Cases
rank (J)=max = 2 is assured unless all three links are parallel.
Leaving this case out of the analysis, the /local singularity may
occur when any two links are parallel. When the ith and the
Jth links are parallel, iyj=1,2,3, the 2x 2 submatrix formed
by the ith and jth columns of J is singular; the determinant
of the submatrix equals zero. Hence *‘1"’ in J' must appear
either in the ith or jth column position in order to assure the
maximal rank and invertibility of J'. The second-column po-
sition of *“1’” in (24) is correct for sin(f; —8,) #0 (Case a) and
sin(f; +8,) #0 (Case b). Otherwise, ‘*1'" should be placed in
the first- or third-column position.

(25a)

(25b)

Example 2. Now, let us modify the example to the problem
shown in Fig. 4. Building the unconstrained system as in Fig.
3(a), the constraint equation is

Je=ya- (XA —;&) tana=0,

where x4 and y, are the position coordinates of the point A
in the xy-reference frame. On the other hand, the constraint
expressed in the xy,-reference frame takes a more simple form,
i.e.,

(26a)

Jo=xia=c=0. (26b)
As stated in Section 3, the description of the constraints on
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Fig. 4 Example 2 illustration

the system by a possible minimal set of /ocal coordinates gives
advantages in the analysis. These advantages will be illustrated
here by comparing the two cases of the constraint formulation:
Case a, (26a), where two local coordinates x4 and y, are in-
troduced; and Case b, (26b), where only one /ocal coordinate
x4 is introduced. The mathematical formulations for the two
cases are:

Ck["?““}, &, (27a,b)
_ | —tsiné, —1Isinb; - lsind,
_[ licosf; lcosf, [icosh, ]' (284)
Jy=[-/lcos(f, —a) —lcos(0,—a) —hcos(B;—a)l. (28b)
0,‘,':[ ! ] D, does not exist, (29a,b)
tana
—tana 1
C.7= 1 |, &T=]o0], (30a,b)
0 0
1 0 00
D.7=|tana 0|, B,7=|10], (31a,b)
0 1 01
’ J‘ ’ Jb
), = s gsn J,= o010 |0 ©G2ab
001

cosf, + sinfitana B cosf, + sinf,tana
lisin(8; - 60,) l,sin(ﬂ;—ﬂl)
D,= ,  (33a)
L !1Sil'l{0_| T ﬂ;) _ leil'l(ﬁz - 81}
l,sin(ﬂ; == 0|) ’35“1(83 = 8[)

l,cos(f; — a)

~ licos(8; — ) 58

’ (33b)
’3@8(03 = G)

licos(f, — @)
respectively.

S Discussion
The reported method seems to be conceptually simple and
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easy to apply. Steps 1°-5° of the algorithm described in Section
3 should be completed in the stage of physical and mathe-
matical modelling of the problem, and the numerical treatment
is needed only in Steps 6° and 7° to be executed repeatedly.
It is worth noting that Step 6°, which can be easily automatized
in computations, may be aimed not only at avoiding the sin-
gularities but also at building the best conditioned matrix J'
as well, which may be of importance in calculations. Note also
that changes in formulating 3, and through it in determining
D, do not affect the integration process of (6) and (5) carried
out in q. This is still valid for the analysis of constraint ad-
dition/deletion problems since the total dimension of D and
C is constantly n. The utility of the method has also been
proved for the symbolic derivation of the orthogonal comple-
ment matrices.

The numerical treatment of the n—m dynamical Egs. (6)
requires that they must be combined with m constraint equa-
tions in the second-order kinematical form (5) (note that the
matrix [MD7,C"] is of maximal rank in principle). In order to
avoid the constraint violation due to the numerical errors of
integration, Baumgarte's constraint stabilization method may
be applied [21, 22]. In the meaning of this method, the dy-
namical equations (6) should be mixed with

Ca+co+K,f+K =0, (34)

where K, and K, are diagonal matrices of appropriately chosen
gain values. However, the well-known shortcomings of the
numerically erroneous Baumgart’s method cannot be avoided,
for more details see [22].

Beside the formulation of the constraint reaction-free dy-
namical Egs. (6), the reactions of the rejected constraints can
be retrieved. Namely, the Lagrange multipliers, introduced in
(4), can be found as

A= —(CM~'C) (co+ CM ™ 'h) = \(q.9.1), (35)
and the jth (j=1, . . ., m) constraint reaction is
rjzc_ij= rj{q !q:t)v (36)

where ¢, is the jth column of C”. Note that the vector of the
Jjth constraint reaction is represented in (36) by covariant com-
ponents in the system’s configuration space. Hence, neither A;
nor sqre(r+. . . +ry) is, in general, the constraint reaction
value in the physical sense; the configuration space may not,
in general, be a physical space. In order to retrieve the physical
meaning of the constraint reactions, they should be retrans-
formed to the local reference frames, where the constraint
reactions can be easily interpreted. The transformation is as
follows (refer to [12])

EJ' (Y'Yl — erxj
{-oe-[2]

where & is the jth column of C7 defined in (11), and fjisa
column matrix of dimension k. In other words, (37) projects
the constraint reactions r;, defined in the system’s configu-
ration space, into the space defined by x, and each of the
constraint reactions is represented only in a particular local
reference frame of x; in which the corresponding constraint is
defined; see the structure of €7 defined in (11).
From (4) and (35) it follows immediately that [23]

Mi=h—-C(CM~'C") '(co+ CM~'h). (38)

This system of equations has also dimension 7 as Eqgs. (5) and
(6), and the evaluation of matrix D is not required. In order
to avoid the numerical instability and constraint violation due
to numerical errors of integration, as previously, Baumgart’s
constraint stabilization method may be applied, i.e., (38) may
be replaced by

Mi=h-CT(CM'C") (e, +CM 'h+K,f +K,f), (38a)
and the shortcomings of Baumgart’s method are still valid.

37
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The computational efficiency of both the approaches, i.e.,
by the use of the orthogonal complement matrix and by the
direct elimination of A as stated in (38), is an open question.
In [24), however, the two methods are examined in detail, and
the advantages of the first method are emphasized. Moreover,
the concept of the orthogonal complement matrix is introduced
and used in many other papers concerning the dynamic analysis
of constrained systems, e.g., in [4]-[20], which prove the utility
of the approach. This work contributes to the methods for the
generation of orthogonal complement matrices.
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