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Summary 

A new and relatively simple method for edge gradient analysis 

(EGA) has been developed to determine the modulation transfer 

function (MTF) of photogrammetrical systems. The MTF can be 
calculated as the ratio of the amplitude of those frequencies 

present in the original edge to the amplitude of the same fre­

quency in the scanned edge image. Thus a differentiation of the 
edge scan - as usually implemented - is not necess ary. In order 

to avoid a division by zero we multiplied the edge images by the 

so called Hanning function before performing the Fourier analy­
sis . From the point of noise sensitivity the method using a 
Hanning window is advantageous in comparison to the edge diffe­

rentiation method. The edge gradient analysis method and the 

grating pattern method are compared . Artificial edge, natural 
roof edge, and grating patterns were used to determine the quali­

ty of the photogrammetrica1 system. Good agreement of all MTF 
measurements was found. Furthermore, the resolution found from 

MTF curves agreed well with the resolution obtained from three­
bar targets . Generally, the MTF curves obtained from patterns in 

the flight direction were lower than the MTF's perpendicular to 
the flight direction due to airplane movement. The influence of 

linear image motion and its compensation was examined and is 

discussed. Furthermore, the longitudinal motion of the object as 
defect of focus is studied analytically and experimentally for a 
close range . 

1 . Introduction 

In photogrammetry the image quality of photographs is of great 
importance. The optical transfer function (OTF) and especially 
the modulation transfer function (MTF) are useful techniques for 
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measuring the image quality of photographs. The MTF is the result 
of the contributions of the links in the image transfer forming 

chain, namely, the camera, the film, image motion (in systems 
without forward motion compensation, FMC), vibratins, and the 
atmosphere /1/ . 

In this paper, a new method for edge gradient analysis (EGA), 

using a Hanning window, is developed and discussed. A comparison 

is made with the other methods to measure the MTF of aerial 

survey lens systems from the image structures. The measured MTF 

curves are given showing the reliability of different methods. 
Furthermore, the influences of linear image motion and focusing 
defect on image quality is examined. 

2. Methods for Determining the MTF from Image structures 

The edge gradient analysis (EGA) is a technique for obtaining 
the MTF from edge images recorded on photographic film, especial­
ly useful for evaluation of images not containing targets. During 

the past 20 years different calculation methods for EGA have been 

developed /2-6/. One method, based on the differentiation of the 
edge, has often been used for MTF determination. The OTF is 
determined from the Fourier transform of the spread function, 

obtained from differentiating the edge image. It can be called an 

edge differentiation method. We have developed a new and relati­
vely simple method for EGA /6/. The method is based on the Fou­
rier spectrum amplitude ratio between the real and an ideal edge 
image. It can be called an edge spectrum ratio method. From a 

purely mathematical analysis both methods are equivalent. However 

for practical applications they have to be treated differently. 

In the edge spectrum ratio method, the MTF is obtained by 
dividing the spatial frequency spectrum of an ideal edge. From 

the definition of the MTF, it folloWS that 

T(R) = IO(R)1 = 
k' (R) 

( 1) 

k(R) 
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where k(R), k'(R), and D(R) are the Fourier-transforms of an 

ideal edge, a scanned edge, and the line spread funktion respec­

tively. 

The division of the direct numerical Fourier-transforms of the 

edge in the image and object space leads to a problem because 

infinitely expanded edges must be limited by a multiplication 
with a rectangular function (window), leading to zero amplitudes 

at even harmonic frequencies in the spectrum of the ideal edge. 
To avoid a division by zero, the rectangular function must be 

replaced by another window function. We found that the so called 

Hanning function is a very suitable window function. 

The Hanning function can be written as /7/ 

{

l/2 

H(u) = 0 

- l/2cos(21ru/L) 

with the length L of the limited edge . 

(2) 

u < 0, u> L 

A smoothed curve is obtained from the spectrum of an edge image 

multiplied by the Hanni ng function , which is in good agreement 
with the spectrum's envelope. Zero amplitudes are no longer pre­

sent when using the modified edge spectrum ratio method. With a 
Hanning window the equation (1) can be rewritten as 

T(R) = (3) 

, 
where kH(R) and kH(R) are the Fourier-transforms of the Hanning 
fUnction multiplied by a scanned edge and an ideal edge respecti­
vely. 

Figure 1 shows schematically the procedure for the MTF determi­
nation . Before applying the Fourier-transformation, both scanned 
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and ideal edges must be multipli­

ed by the Hanning function. By 

the introduction of the Hanning 

function, noise on top of an edge 

image can also be suppressed. The 
edge spectrum ratio method has 

been compared with the edge dif­

ferentiation method. From the 

point of noise sensitivity the 

edge spectrum ratio method using 

a Hanning window is advantageous. 

For comparison with EGA, a 

variable spatial frequency grat­

ing pattern was used for the 
determination of the MTF . The 

contrast of the photographed 

pattern decreases due to diffrac­

tion and different disturbances 

with increasing spatial frequen-

cy. Using the convolution, the 

Fig.l Diagram to calculate imaging process can be simulated 

the MTF using the Hanning with a computer. The intensity 

function distribution of the grating pat-

tern is convoluted with a compu­

ter simulated model of the spread function and the result should 

compare with that of the scanned image of the grating /8/. The 

MTF is calculated as the absolute value of the Fourier-transform 

of the chosen spread function. 

3. Comparison between the MTF's Obtained from an Edge Image and 

a Grating Pattern 

A pair of artificial edge and grating patterns was oriented in 

the flight direction, and another pair was oriented orthogonally 

to it. Two suitable natural roof edges were used to compare the 

artificial edge. The test pattern images and the natural edge 
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images were scanned with a computer controlled microdensitometer 

and the measurements were evaluated by a computer. 

Figure 2 shows the MTF's obtained from grating patterns and from 

artificial and natural edges both in the flight direction (a) and 

perpendicular to the flight direction (b). It should be noted 
that there is little difference in the MTF of a natural and an 

artificial edge. We found good agreement of the results obtained 

with different test patterns. 

For an additional test of the MTF, we examined three-bar pat­

terns with different spatial frequencies. They were put close to 

the grating and edge patterns in order to determine resolution 

limits. The spatial frequencies at the intersection of the MTF, 

for well-defined artificial edges, and the threshold curves com­

pare well with the resolution limits obtained from the three-bar 

pattern in the flight direction and perpendicular to it, respec-
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Fig.2 (a): MTF of the test patterns in flight direction . (b): MTF 
of the test patterns perpendicular to the flight direction. 
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tively. This comparison proves the reliability of the different 
methods for the determination of image quality . 

4. Influence of Linear Image Motion on Image Quality 

There are different types of image motions such as linear, 
parabolic, sinusoidal, and random /1/. This paper deals only with 

linear motion. The quality of airborne photographs can be im­

proved by applying forward motion compensation (FMC). The photo­

graphs thus far referred to in this paper were obtained without 
using FMC, and this explains why in Figure 2 the MTF's of test 
patterns oriented in the flight direction are worse than those 

perpendicular to it. From the difference of the MTF's in the two 

directions, the image motion can be calculated. It will be com­

pared with the theoretical image motion. 

The image displacement during exposure time T is 

a = vTf'/H (4) 

where v is the speed of the airplane, f' is the focal length of 
the objective, and H is the altitude of the airplane. The spread 
function corresponding to the movement is a rectangular function 

of width a. The corresponding MTF is its Fourier transform 

HTFB = a (5) 

where R is the spatial frequency and a is the image motion. This 

is a sine-function. If the MTF is measured perpendicular to the 
flight direction and multiplied by this sine-function, the result 

measured in the flight direction should be obtained providing the 

signal-to-noise ratio is not to bad. According to linear response 

theory, the MTFF in flight direction can be written as 

(6) 
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where MTFp is perpendicular to the flight direction and MTFB is 

the MTF of the linear image motion. The image motion was there­

fore extracted from the measured MTF. The flight parameters were 

the following: 

v/H = 0.04342 1/sec 

T = 1/700 sec 

f' = 303.64 IDlD 

From equation (4) the image motion is obtained as 

a = 19)1m 

Figure 3 (a) shows the MTF of image motion with a = 19)Um. In 

Figure 3 (b) MTFF, MTFp' and MTFB'MTFp are shown together. Good 

agreement was obtained between MTFF and MTFB'MTFpo 

Two airborne photographs of the same scene, taken with and 

without FMC, were compared to investigate the linear image mo­

tion. Corresponding roof-edges were chosen and scanned with the 

microdensitometer. From the parameters of the photograph (v/H = 
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0.05491 lIsee, T c 1/160 sec and fl = 303.75 mm) the image motion 

was calculated according to equation (4) to be 104 Am as shown 
in Figure 4 (a). The HTF without FMC can be written as 

with MTF8 as the MTF of the linear image motion and MTFc that of 

the airborne photograph with FMC. Figure 4 (b) shows the combined 

curves MTFO' MTFC I 
image quality with 

well 

and MTFS-MTFC' A major improvement of the 

FMC can be seen by comparing MTFO and MTFC ' 

with MTFB'MTFc' One s hould notice that the MTFO compares 

first minimum 
ding the MTFO. 

and maximum of the sine-function can be seen regar-

It is shown that the use of FMC makes substantially better 

image quality possible. Aeria l survey cameras with FMC allow the 

use of high-resolution, but unfortunately low-sensitivity films, 

making long exposure times necessary. In order to test the image 

quality of airborne photographs with different film types, the 

same scene was photographed with films with different sensitivi­

t y , using a camera with FMC . Thes e airborne photographs were 
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analysed by EGA. The measured results indicate that the fine­
grain, high-resolution emulsion did not lead to the expected best 
image quality. We found that the airborne photographs taken with 

lODger exposure times were affected by vibration and roll of 

the aircraft during exposure. 

5. study of the Transversal and Longitudinal Object Motion at a 

close Range 

In close-range photogrammetry, the object motion reduces the 

image quality of the photographs, especially when the object is 
very close to the camera. The linear transversal motion of the 

object leads to a linear image motion, as mentioned above . A 

longitudinal object displacement results in a defocusing of the 

image plane. 

In a laboratory experiment the influence on the image quality 

of the transversal and longitudinal object motion at close range 
were studied. A test target consisted of four edges . A pair of 

the edge patterns was oriented in the direction of the transver­
sal object motion in order to determine experimentally the MTF of 

the lateral image motion, and another pair was oriented ortho­
gonally to it. The target was placed into a precision X-Y-coordi­

nate stage mounted on an optical bench and driven by computer 

controlled stepping motors. Using a camera, the test edges were 
photographed with the linear transversal Object motion during 
exposure with and without a longitudinal object shift. The resul­

ting edge images were scanned with a microdensitometer. The MTF's 
were obtained from this data using EGA. 

A number of edge images having different amounts of image 
motion were investigated. The theoretical and experimental 
results agreed well. 

A longitudinal focal shift arises from a longitudinal object 
shift. On the basis of geometrical optics, the defocused image 
point consists of a circular patch of light of radius Az'tan~ 
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where ~I is the aperture angle in the image space and AZ' the 

defocusing. The defocused MTF is obtained by the Fourier-trans­

form of the image patch. This is given by a Bessel function of 

first kind and first order 

(8) 

where Z=2~z'tan~/ . The first zero of (8) occurs when Z=3 . 83 . 

Figure 5(a) shows a defocused MTF curve calculated from the 

defocusing of ~z'=1.18 rnm, and corresponding longitudinal object 

shift of 10 mm. Three curves are shown together in Figure 5(b). 

Curves measured with and without defocusing I, 2 respectively, 

illustrate the effect of the defocusing on the MTF measurement; 

Curve 3 was obtained by multiplying the MTF values measured in 

the proper focus by the known values of the defocused MTF. Good 

agreement was found with the MTF curve measured from the de fo­

cused photograph. From a set of defocused 
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Fig.s (a): Defocused MTF curve with Az'=1.18 mm. (b): 1 -- MTF 
curve measured with defocusing. 2 -- MTF curve measured without 

defocusing. 3 -- Calculated MTF curve with defocusing . 
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MTF's, we found good agreement with the calculated values even 
for large amounts of defocusing. It was found that geometrical 

optics holds for large defects of focus. 

6. ConclusioD 

Different methods to determine the MTF from image structures 
were discussed and compared. For EGA a new and relatively simple 

method was developed, applying a Hanning function. Alternatively 

a grating pattern in the same photograph was examined. The MTF's 
of both methods were found to be in good agreement. The two 

techniques can be used complementary and increase the reliability 
of image quality determination. EGA however has, from a practical 

point of view, the advantage not to rely on artificial edges, but 

to work almost as well on natural roof-edges. The resolution 
obtained from measured MTF's were compared with the resolution 
from three-bar targets. Again a good agreement was found. Fur­
thermore, the influence of linear image motion was examined and 

the improvement of image quality with FMC discussed. For photo­
graphs taken with high resolution films, FMC is found to be 

necessary. Due to longer exposure times additional disturbance 

are introduced and need to be considered like vibrations. In 
laboratory measurements the image motion and the defocus at close 

range were examined. Even for large amounts of defocusing, the 
measurements agreed well with the calculations. 
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