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Iterative nonlinear joint transform correlation for the
detection of objects in cluttered scenes

T. Haist and H.J. Tiziani
Institut für Technische Optik, Universität Stuttgart

Abstract— An iterative correlation technique with digital image
processing in the feedback loop for the detection of small objects
in cluttered scenes is proposed. A scanning aperture is combined
with the method in order to improve the immunity against noise
and clutter. Multiple reference objects or different views of one
object are processed in parallel. We demonstrate the methodby
detecting a noisy and distorted face in a crowd with a nonlinear
joint transform correlator.

Index Terms— image processing, object registration, object de-
tection, correlation, joint transform correlator, feedback, iterative
methods, face recognition, pattern recognition

I. I NTRODUCTION

CORRELATION methods are well established techniques
for object positioning and object recognition[1]. Digital

electronics[2] and different optical setups[1], [3], [4],[5] have
been used to compute the cross–correlation between image and
reference patterns. Among the optical methods, nonlinear joint
transform correlators (JTC) are often employed because of the
ease of implementation. Furthermore, the reference patterns
are directly useable at the input stage and no filter generation
is necessary. Therefore, real–time operation is possible.

Optimized filters[6], [7], [8], [9], [10], the incorporation
of three–dimensional information[11], [12], multiple input
images[13], [14], [15], pre– and post–processing[16], [17],
[18], and different nonlinear techniques[19], [20], [21],[22]
are suitable methods to improve the correlator performance.
In this article, we concentrate on an iterative correlation
technique for the detection of small objects in cluttered scenes
(non–overlapping noise).

The basic idea of iterative correlation goes back to work of
Smolińska[23], Iwaki et al[24], Alam and Karim[25], [26],
and Yu and Cheng[27]. Edwards and Murase[28] used a
correlation based approach in the spatial domain in order to
detect multiple copies of one reference object. Smolińska[23]
employed a scanning aperture for the correlation of small
parts of a complex scene with simple patterns like circles.
An electronic feedback system guided the aperture of the Van
der Lugt correlator to the regions of main interest within the
scene. Iwaki et al[24], [29] and Alam and Karim[25] improved
a bipolar JTC by arranging the input and reference objects in
a circular arrangement. First, the cross–correlation was com-
puted. After that, the different input patterns were multiplied
with the corresponding correlation peak intensities and a new
input image was generated. Alam and Karim also proposed to
apply additive instead of multiplicative feedback[26]. Yuand
Cheng[27] used a similar approach where one input object and

multiple reference objects were presented simultaneously. For
their experiments, the authors used alphabetic characters.

The disadvantage of these methods is the need to know
the positions of the input patterns in advance. We circumvent
this problem by using digital image processing within the
feedback loop of the correlator. By this approach, we obtaina
significantly improved correlator output for very complicated
scenes even if multiple reference patterns have to be detected.
The sensitivity against noise is further reduced by a scanning
aperture.

We demonstrate the feasibility of the method by detecting
a small face in a crowd with a simulated nonlinear JTC.
Although the face is blurred, noisy, sub–sampled, and has a
nonlinear transformed histogram, scale-invariant detection is
possible.

II. A NALYSIS

In Fig. 1 a complex scene including different faces is shown.
We want to detect one specific face (reference). The reference
face is very small compared to the whole image (relative area
< 1%) and a lot of similar faces are present. To make the
problem more difficult, we smoothed the face in the input
image, transformed the histogram byI ′ = I1.5, and sub–
sampled the whole image. Magnified versions of the face to
be detected and the reference pattern are shown in Fig. 2.

Fig. 1. input scene

Chellappa et al[30] gave a good introduction to ordinary
digital image processing approaches to the problem of face
recognition. Javidi et al used a nonlinear joint transform
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(a) reference pattern (b) corresponding area within
the scene in Fig 1.

Fig. 2. reference pattern and modified part of the input scene

correlator for the implementation of a neural network in order
to achieve robust face recognition with multiple reference
faces[31]. Their system yields very good discrimination among
different faces although it is based on a non-iterative technique
and therefore faster that the method we propose in the rest of
the this paper. However the motivation of this work differs
from ours in that we want to detectsmall faces in very
cluttered scenes. Both methods may be combined in order to
first detect a face with our system and then to use the approach
in Ref. [31] to further evaluate the detected face without the
cluttered background.

Apart from correlation methods, considered here, morpho-
logical processing[32], [33] seems to be especially convenient
for the detection of small objects in cluttered scenes.

LCD

P1 P2 P3

OASLM

Fig. 3. optical JTC implementation

In the following, we shortly summarize the basic principle
of joint transform correlation. Fig. 3 shows one typical op-
tical implementation of nonlinear joint transform correlation.
The input imageO(x, y) (input) and the reference object
R(x, y) (reference) are written side by side into one spatial
light modulator. A lens performs the Fourier transform. The
intensity of the Fourier transform, for example generated by
an optically addressed light modulator[34], [35], is called
the joint transform power spectrum (JTPS). The correlation
is obtained by Fourier transforming this JTPS back into the
spatial domain.

If the input and the reference are separated by2x0, then the
complex light field at the planeP1 (Fig. 3) is

I(x, y) = O(x − x0, y) + R(x + x0, y). (1)

The JTPS then is given by

j(fx, fy) = |r(fx, fy)|
2 + |o(fx, fy)|2 (2)

+r∗(fx, fy)o(fx, fy) + r(fx, fy)o
∗(fx, fy),

where we used the reduced coordinatesfx = x2/(λf) and
fy = y2/(λf) with the focal lengthf of the Fourier trans-
forming lens.λ denotes the wavelength and(x2, y2) are the
spatial coordinates in the Fourier planeP2. r and o are the
Fourier transforms ofR andO.

The inverse Fourier transform of Eq. 3 yields

C(x, y) = R(x, y) ⊗ R(x, y) + O(x, y) ⊗ O(x, y)

+O(x + 2x0, y) ⊗ R(x, y)

+O(x − 2x0, y) ⊗ R(x, y), (3)

where⊗ denotes correlation. The first two terms of Eq. 3 are
the auto–correlations, the third and the fourth term are the
cross–correlations.

Improvement of the correlation peak quality is possible
by the introduction of nonlinear transforms to Eq. 3 be-
fore the inverse Fourier transform is performed. Well known
techniques are binarization[36], [21], [20], [22], k-th law
nonlinearities[37], [38], and windowing[36]. For our simu-
lations we used an easily implementable (for example by
optically addressed liquid crystal displays[34], [35]) k-th law
nonlinearity withk = 0.5, that is the JTPSj is transformed
by

j′ =
√

j (4)

prior to the inverse Fourier transform. All simulations were
done with additional zero–padding in the input plane to
avoid aliasing due to the discrete Fourier transform (circular
correlation error).

III. I TERATIVE CORRELATION

Although nonlinear joint transform correlation is a powerful
method for object recognition, very demanding problems like
the face in the crowd lead to a poor overall performance
of the correlator. In Fig. 4, the intensity in the correlation
plane for the correlation between the scene (Fig. 1) and the
reference face (Fig. 2) is shown. This correlation result is
not satisfactory because strong noise hides the correlation
peak. We now explain an iterative correlation technique that
significantly improves the correlator output.

Fig. 4. nonlinear JTC correlation of Fig. 1 with Fig. 2 (a)
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A. Single reference case

The basic idea of the proposed method is to use the
correlation result of Fig. 4 to modify the input image. The
correlator outputC(x, y) is used to compute a mask that is
multiplied with the original input image to obtain a new input
image for the JTC. The algorithm for the mask computation
is depicted in Fig. 5: First, the mask is initialized with a
fixed constantc2. Then, C(x, y) is normalized to 255 and
lexicographically scanned. If a peak valueC(xp, yp) exceeds
a fixed threshold, the peak at this position(xp, yp) is further
evaluated: we scan the mask over the reference pattern area at
the position in the mask that corresponds to the peak position.
At each position in the mask, the new valueC(xp, yp)

c1 is
written into the mask ifC(xp, yp)

c1 exceeds the old mask
value.c1 is constant (see below). In other words: we replace
the mask with the maximum of the old mask and a rectangle
with the size of the reference pattern at the position of the peak
and with the valueC(xp, yp)

c1. A typical mask is shown in
Fig. 6.

initialize mask
mask(x,y) = c2 = constant

normalize C(x,y) to 255

scan C(x,y)
x = 0 .. 128
y = 0 .. 128

p := C(x,y)

C(x,y) 
> c3

mask(x2,y2)
> p^c1

scan mask
x2 = x .. x + pattern size x
y2 = y .. y+ pattern size y

mask(x2,y2) = p^c1

next

yes

no

yes

no

next

Fig. 5. mask computation within feedback (single referencecase)

The new input image is obtained by the multiplication of
this mask with the last input image. Again, the correlation
is performed, and we iteratively repeat the whole process
until a predetermined number of iterations is reached. After
three iterations, we obtain the correlation result shown inFig.

7. The peak that corresponds to the reference face now is
easily detectable, and the position of the object is correctly
determined. Some noise and broadening of the peak still
remains due to differences between the reference and the input
image. Therefore, the peak position — and the object position
— can only be determined within an accuracy of two or
three pixels. The important point here is that the cluttered
background has been reduced and no false peaks have been
detected. Additional digital post–processing by smoothing can
be used to improve the output quality of the correlator.

Fig. 6. mask computed with the algorithm in Fig. 5

Within the algorithm, three constantsc1, c2, andc3 are used.
c2 is used to initialize the mask and is therefore the mask
background.c1 is approximately 1 and can be used to further
amplify strong peaks. A large value forc1 therefore speeds
up the iteration whereas a large value ofc2 tends to lower
the convergence rate. Only peaks ofC(x, y) greater thanc3

are evaluated. Therefore it is necessary thatc3 is chosen to be
less than the minimum correlation value that one obtains for
the object to be detected. Large values tend to improve the
convergence speed. We set this parameter to 70 throughout
our experiments, but it may be necessary to change this value
for other applications. For very large images with small target
objects it might be necessary to reducec3. For large target
objects one might try to increasec3.

Fig. 7. nonlinear JTC correlation of Fig. 1 with Fig. 2 (a) with 3 iterations

In order to obtain suitable values forc1 and c2, we ran
the whole simulation with different values forc1 andc2. The
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results are presented in Table I. The tabulated values show
the peak–to–average–correlation energy(PCE), defined as
the ratio of the correlation peak and the total energy in the
correlation plane, and the number of iterations necessary to
obtain aPCE > 0.003. Empty boxes (c2 ≥ 1.3 or c2 ≤ 0.8 )
indicate that the correct solution wasn’t found for the choice
of parameters. For the problem at hand,c1 = 1.1 andc2 = 30
seems to be a good choice. These values were therefore used
for the rest of our experiments.

As it is well known, the nonlinearity employed in the
Fourier domain often significantly affects the discrimination
ability. Here, we observed a rather weak influence probably
due to the small reference pattern area. The performance of
the system began to decrease significantly (approximately by
20 per cent) if small (k = 0.8) or large (k = 0.2) k-th law
nonlinearities were used. Detailed investigations concerning
the optimum nonlinearity are an option for future research.
Here we concentrated on the iterative method and used only
the k = 0.5 nonlinearity for the experiments.

Fig. 8. input scene of Fig. 1 with additive Gaussian noise (σ = 0.3)

We added different amounts of Gaussian noise to the already
smoothed input image to test the resistance against additive
noise. No smoothing was used after the noise had been added.
Even with quite strong noise (standard deviationσ = 0.17),
face recognition is possible. The final PCE (after iteration) is
constant (within statistical limits). If very noisy images(σ ≥
0.2) are used, the iteration converges to the wrong solution.
A simple approach to improve the JTC performance for small
references is to divide the input image into smaller sub-images
that are correlated one after the other with the reference
pattern[23]. For every single correlation, the percental amount
of clutter is therefore strongly reduced. By dividing the input
plane into4× 4 sub-images (with an overlap of 50%) we can
detect the reference face even with strong noise (σ = 0.4). An
image distorted byσ = 0.3 additive noise is shown in Fig. 8.

The computational cost of the aperture approach is un-
fortunately increased compared to the conventional cross–
correlation. For the correlation of two256 × 256 images the
number of multiply–add computations (MAC) is[2]545 · 106

whereas for a512× 512 image4.9 · 109 MAC are necessary.
Due to the necessary overlap between the sub-images (we have
to be sure that the pattern we are looking for is not cut into

two halves)42 = 16 correlations are necessary. Therefore,
the overall computational cost is increased by a factor of
16 ∗ 545 · 106/4.9 · 109 = 1.8.

This number departs (due to real world effects) from the
theoretical factor of about four, which one obtains by using
the simple proportionality ’computational cost per 1D FFT∼
n log2 n’.

B. Multiple reference case

In the preceding section, a single reference pattern has
been recognized. Now, we explain how some additional image
processing within the mask computation is employed in order
to search for different reference patterns.

The main problem with multiple reference patterns is that
it is not clear to which reference pattern a correlation peak
corresponds. Take as a simple example two reference patterns
that are presented simultaneously to the correlator: because
the reference patterns are spatially separated, a peak could
correspond to position 1 in the input plane and pattern 1 or
position 2 and pattern 2. Therefore, it is in general not clear
which parts of the input image are to be amplified by the mask.

The basic approach of correlation can be visualized in the
spatial domain as sliding the reference pattern across the input
image. For every position of the sliding window, the sum of
the multiplications of the reference pixels with the pixelsof
the input image is computed. Another approach, quite similar
to correlation, is to add the absolute differences between the
reference pixels and the pixels of the input image. Obviously
this sum of the absolute errors(SAE) is minimal if the sliding
window is at the correct position, corresponding to the position
of the reference face in the scene. Mathematically

SAE(i, j) =
∑

x,y∈Λ

|O(i + x, j + y) − R(x, y)|, (5)

whereΛ denotes the reference pattern area.

Fig. 9. Nonlinear JTC correlation with three reference patterns: result for
subarea of the noisy (σ = 0.2) input imag. The strong peak correspondes to
the correct reference pattern.

If the pattern in the scene corresponds exactly (same digital
gray-levels) to the reference pattern, theSAE is zero at
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c2 c1 = 0.8 c1 = 0.9 c1 = 1.0 c1 = 1.1 c1 = 1.2 c1 = 1.3

10 PCE∗10
−3 4.4 5.9 4.9 4.0

iterations 3 3 2 4
20 PCE∗10

−3 4.8 3.1 4.9 5.9
iterations 3 2 2 3

30 PCE∗10
−3 4.3 3.1 5.4 3.9

iterations 3 2 2 4
40 PCE∗10

−3 3.2 5.6 5.1 4.5
iterations 3 3 2 3

50 PCE∗10
−3 4.1 5.3 4.7 4.0

iterations 4 3 2 3
60 PCE∗10

−3 4.1 4.9 4.1 5.1
iterations 5 3 2 3

70 PCE∗10
−3 3.9 4.2 3.6 5.1

iterations 6 3 2 3
80 PCE∗10

−3 3.0 3.6 3.1 5.8
iterations 7 3 2 3

90 PCE∗10
−3 4.8 3.0 5.4

iterations 4 4 3

TABLE I

PCEAND NUMBER OF NECESSARY ITERATIONS FORPCE > 0.003 FOR DIFFERENT PARAMETERSc1 AND c2

the correct position. Due to distortions, noise, and different
histograms this is unfortunately not the case for practical
applications like the problem at hand. Here, direct evaluation
of the SAE is not suitable because the signal to noise ratio
is very low.

Nevertheless, theSAE is a valuable parameter because it
is low if the patterns are similar and high if they are different.
Therefore, we employ theSAE within the mask computation
for multiple reference patterns. The following strategy isused:
after a reasonably high peak has been found in the correlation
plane (see Fig. 6), theSAE is computed for all the possible
positions (corresponding to the peak) in the input scene using
the corresponding reference patterns. Only the part of the input
scene that corresponds to the minimalSAE is amplified.

For large reference patterns, theSAE computation can be
a time consuming process if the whole image is processed.
Acceleration is possible by going directly to the next position
of the sliding window as soon as it becomes obvious that a
position is not correct or at leastprobably not correct[39].

Combined with iterative correlation, only a few positions
of the sliding window have to be examined and the reference
patterns are small (for example20×30 pixels). Therefore, the
computational cost is negligible, as compared to the Fourier
transforms.

We tested theSAE approach by using three reference
patterns. The three different sized versions of the reference
face were applied in parallel by arranging them at different
positions in the input plane in order to obtain a scale–invariant
detection of the face. We modified the input image by copying
a magnified (magnification = 2) version of the reference face
into it. Both faces, now present in the input image, were
correctly detected even at high noise levels (σ = 0.2). The
peak corresponding to the small face is shown in Fig. 9
together with the smaller peaks due to the other reference
pattern. As described above, the SAE is used in order to decide
which one of the peaks is correct. For the subarea with the
large face, a similar correlation result is obtained. We canalso
use rotated faces or multiple faces instead of scaled versions

of one reference face.
Moreover, we employ theSAE as an additional parameter

in order to decide if the result obtained with the iterative
correlation method really corresponds to a reference pattern.
This is necessary because iterative correlation convergesto a
(wrong) solution with low PCE and highSAE if no reference
pattern is present in the input scene. For our example, it was
always sufficient to use the condition normalizedPCE >
0.001 AND SAE < 5 · 10−12 as a criterion to decide if the
obtained solution corresponds to a reference pattern.

Other approaches for scale–invariant detection were used in
the past[40], [41], [42]. We tried to use the Fourier–Mellin[40],
[43], [44], [45] transform within the iteration but failed to
obtain acceptable results probably due to the complexity of
the input scene. The basic idea to correlate the Fourier power
spectra (which are shift invariant and therefore tractableby the
Mellin transform) is not suitable here because the information
of the spatial position of spatial frequencies within the images
is lost due to the elimination of the phase of the Fourier
transform. But this information is important if we want to
detect a face within a scene that contains other faces because
the characteristic spatial frequencies are very similar, and
therefore additional information about the position of these
frequencies is necessary.

IV. CONCLUSIONS

We have presented an iterative correlation method that
employs digital image processing within the feedback loop.
By this approach, the performance of a simulated nonlinear
joint transform correlator has been improved in order to detect
distorted and noisy objects in cluttered scenes. The iterative
correlator was able to detect small patterns that were not
detectable with the one–pass correlator. We have demonstrated
detection with multiple reference patterns in parallel, and a
scanning aperture at the input plane has been used to improve
the immunity against Gaussian noise and clutter.

We thank the Deutsche Forschungsgemeinschaft (DFG) for
financial support.
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