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Iterative nonlinear joint transform correlation for the
detection of objects in cluttered scenes

T. Haist and H.J. Tiziani
Institut fur Technische Optik, Universitat Stuttgart

Abstract— An iterative correlation technique with digitalimage  multiple reference objects were presented simultaneobsty
processing in the feedback loop for the detection of small gects  their experiments, the authors used alphabetic characters
in cluttered scenes is proposed. A scanning aperture is corited The disadvantage of these methods is the need to know

with the method in order to improve the immunity against noise th it fthe i t patt in ad We circurn
and clutter. Multiple reference objects or different views of one € posilions of the Input patterns in advance. vve circurnven

object are processed in parallel. We demonstrate the methotly ~ this problem by using digital image processing within the
detecting a noisy and distorted face in a crowd with a nonlinar feedback loop of the correlator. By this approach, we obain

joint transform correlator. significantly improved correlator output for very complied
| ndex Terms_image processing, object registration’ Object de- scenes even |f mu|tlp|e reference patterns haVe to be édtect
tection, correlation, joint transform correlator, feedback, iterative ~ The sensitivity against noise is further reduced by a scanni
methods, face recognition, pattern recognition aperture.
We demonstrate the feasibility of the method by detecting
a small face in a crowd with a simulated nonlinear JTC.
Although the face is blurred, noisy, sub—sampled, and has a
ORRELATION methods are well established techniquasonlinear transformed histogram, scale-invariant ditecis
for object positioning and object recognition[1]. Digitalpossible.
electronics[2] and different optical setups[1], [3], [#8] have
been used to compute the cross—correlation between imalge an Il. ANALYSIS

reference patterns. Among the optical methods, nonlim@ar j | Fig. 1 a complex scene including different faces is shown.

transform correlators (JTC) are often employed becauseof {ye want to detect one specific face (reference). The referenc

ease of implementation. Furthermore, the reference pattefyce is very small compared to the whole image (relative area

are directly useable at the input stage and no filter germerati_- 1%) and a lot of similar faces are present. To make the

is necessary. Therefore, real-time operation is possible. problem more difficult, we smoothed the face in the input
Optimized filters[6], [7], [8], [9], [10], the incorporati® jnage, transformed the histogram By = I, and sub-

of three—dimensional information[11], [12], multiple WP sampled the whole image. Magnified versions of the face to

images[13], [14], [15], pre- and post—processing[16],][17he detected and the reference pattern are shown in Fig. 2.
[18], and different nonlinear techniques[19], [20], [2122]

are suitable methods to improve the correlator performance
In this article, we concentrate on an iterative correlation
technique for the detection of small objects in clutterezhes
(non—overlapping noise).

The basic idea of iterative correlation goes back to work of
Smolihska[23], Iwaki et al[24], Alam and Karim[25], [26€],
and Yu and Cheng[27]. Edwards and Murase[28] used a
correlation based approach in the spatial domain in order to
detect multiple copies of one reference object. Smolif&Xa
employed a scanning aperture for the correlation of small
parts of a complex scene with simple patterns like circles.
An electronic feedback system guided the aperture of the Van
der Lugt correlator to the regions of main interest withie th
scene. lwaki et al[24], [29] and Alam and Karim[25] improved
a bipolar JTC by arranging the input and reference objects in
a circular arrangement. First, the cross—correlation veams-c
puted. After that, the different input patterns were miikigp Fig. 1. input scene
with the corresponding correlation peak intensities an@w n
input image was generated. Alam and Karim also proposed toChellappa et al[30] gave a good introduction to ordinary
apply additive instead of multiplicative feedback[26]. #ad digital image processing approaches to the problem of face
Cheng[27] used a similar approach where one input object amtognition. Javidi et al used a nonlinear joint transform

I. INTRODUCTION
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F The JTPS then is given by

J(fzvfy) = |T(fmvfy)|2+|0(frafy)|2 (2
+r*(fa fy)o(fzvfy) + T(frvfy)O*(fma fy)v

where we used the reduced coordinafgs= z2/(\f) and
fy = y2/(Af) with the focal lengthf of the Fourier trans-
forming lens.\ denotes the wavelength arids, y2) are the
spatial coordinates in the Fourier plafi®. » and o are the
Fourier transforms of? and O.

The inverse Fourier transform of Eq. 3 yields

(a) reference pattern  (b) corresponding area within C(z,y) = R(z,y)® R(z,y)+ O(x,y) ® O(x,y)
the scene in Fig 1. +0(z + 220, y) ® R(z,y)

where® denotes correlation. The first two terms of Eq. 3 are
the auto—correlations, the third and the fourth term are the

correlator for the implementation of a neural network inesrd cross—correlations. . N .
to achieve robust face recognition with multiple referencg Improyement (.)f the corre_latlon peak quality is possible
faces[31]. Their system yields very good discriminatioroagn y the |_ntroduct|on (.)f nonlinear 'Fransforms to Eq. 3 be-
different faces although it is based on a non-iterativeneagple fore the inverse Fpungr t_ransform is performed. Well known
and therefore faster that the method we propose in the reslt%(fhn'ques are binarization[36], [21], [20], [22]. k-thwla

the this paper. However the motivation of this work diﬁer?onl'nea”t'ESBg’ [38], a_r|1d .W|n|dowmg[§|6]. fFor our S|||mub
from ours in that we want to detedmall faces in very ations we used an easily implementable (for example by

cluttered scenes. Both methods may be combined in orderoi?)tiCaIIy addressed liquid crystal displays[34], [35]ytkiaw

first detect a face with our system and then to use the appro@t%'"nearity withk = 0.5, that is the JTPJ is transformed

in Ref. [31] to further evaluate the detected face withoet t y .
cluttered background. i'=i )
Apart from correlation methods, considered here, morphprior to the inverse Fourier transform. All simulations wer
logical processing[32], [33] seems to be especially coierén done with additional zero—padding in the input plane to
for the detection of small objects in cluttered scenes. avoid aliasing due to the discrete Fourier transform (¢&ncu
correlation error).

Fig. 2. reference pattern and modified part of the input scene

P1 P2

IIl. | TERATIVE CORRELATION

- Although nonlinear joint transform correlation is a powsrf

method for object recognition, very demanding problems lik

the face in the crowd lead to a poor overall performance

LCD OASLM of the correlator. In Fig. 4, the intensity in the correlatio

plane for the correlation between the scene (Fig. 1) and the
reference face (Fig. 2) is shown. This correlation result is
not satisfactory because strong noise hides the correlatio

Fig. 3. optical JTC implementation peak. We now explain an iterative correlation technique tha
significantly improves the correlator output.

In the following, we shortly summarize the basic principle 00
of joint transform correlation. Fig. 3 shows one typical op-
tical implementation of nonlinear joint transform cortéda.
The input imageO(z,y) (input) and the reference object
R(z,y) (reference) are written side by side into one spatial
light modulator. A lens performs the Fourier transform. The
intensity of the Fourier transform, for example generatgd b
an optically addressed light modulator[34], [35], is cdlle
the joint transform power spectrum (JTPS). The correlation
is obtained by Fourier transforming this JTPS back into the
spatial domain.

If the input and the reference are separate@:ty; then the
complex light field at the plan®1 (Fig. 3) is

I(z,y) = O(x — xo,y) + R(z + x0,y). 1)

Fig. 4. nonlinear JTC correlation of Fig. 1 with Fig. 2 (a)



PREPRINT OF HAIST ET AL. OPTICS COMMUNICATIONS 161, 310-317999) 3

A. Single reference case 7. The peak that corresponds to the reference face now is
The basic idea of the proposed method is to use tgasily (_Jletectable, and_the position of th_e object is cdyect_
correlation result of Fig. 4 to modify the input image. Th&€termined. Some noise and broadening of the peak sitill
correlator outputC(z,y) is used to compute a mask that id€mains due to differences between the reference and the inp
multiplied with the original input image to obtain a new inpuiMage. Therefore, the peak position — and the object pasitio
image for the JTC. The algorithm for the mask computatiorr ¢a@n only be determined within an accuracy of two or

is depicted in Fig. 5: First, the mask is initialized with dhree pixels. The important point here is that the cluttered
fixed constantc,. Then, C(z,y) is normalized to 255 and background has been reduced and no false peaks have been

lexicographically scanned. If a peak valG&z,, y,) exceeds detected. Additional digital post—processing by smodajttuan

a fixed threshold, the peak at this positior,, y,) is further be used to improve the output quality of the correlator.
evaluated: we scan the mask over the reference patterntarea a
the position in the mask that corresponds to the peak positio
At each position in the mask, the new val@&z,,y,) is
written into the mask ifC(z,,y,)! exceeds the old mask
value.c; is constant (see below). In other words: we replace
the mask with the maximum of the old mask and a rectangle
with the size of the reference pattern at the position of #ekp

and with the valueC(z,,y,)“'. A typical mask is shown in

Fig. 6.

Fig. 6. mask computed with the algorithm in Fig. 5

Within the algorithm, three constants, ¢, andcs are used.

e —— co is used to initialize the mask and is therefore the mask
T g backgroundc; is approximately 1 and can be used to further
ormlize ) 1025 amplify strong peaks. A large value foi therefore speeds

up the iteration whereas a large value @ftends to lower
=ncey) et the convergence rate. Only peaks@fx,y) greater tharnc;

y=0.128

are evaluated. Therefore it is necessary thats chosen to be
less than the minimum correlation value that one obtains for
the object to be detected. Large values tend to improve the
convergence speed. We set this parameter to 70 throughout
our experiments, but it may be necessary to change this value
for other applications. For very large images with smalédr
objects it might be necessary to reduge For large target
objects one might try to increass.

300

250

200

150

100

50

0.l
150

Fig. 5. mask computation within feedback (single referecase)

The new input image is obtained by the multiplication of
_th|3 mask with the |aSt_|npU_t image. Again, the correlatioggy 7. nonlinear JTC correlation of Fig. 1 with Fig. 2 (a) W iterations
is performed, and we iteratively repeat the whole process
until a predetermined number of iterations is reached.rAfte In order to obtain suitable values faf and c;, we ran
three iterations, we obtain the correlation result showRiqn  the whole simulation with different values far andc,. The
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results are presented in Table I. The tabulated values shtvo halves)4? = 16 correlations are necessary. Therefore,
the peak-to—average—correlation ene(@CE), defined as the overall computational cost is increased by a factor of
the ratio of the correlation peak and the total energy in th& * 545 - 10°/4.9 - 10° = 1.8,
correlation plane, and the number of iterations necessary t This number departs (due to real world effects) from the
obtain aPCFE > 0.003. Empty boxesd> > 1.3 orcy < 0.8) theoretical factor of about four, which one obtains by using
indicate that the correct solution wasn'’t found for the cleoi the simple proportionality ‘computational cost per 1D FFT
of parameters. For the problem at hand= 1.1 andc; =30 nlog: n'.
seems to be a good choice. These values were therefore used
for the rest of our experiments. B. Multiple reference case
As it is well known, the nonlinearity employed in the In the preceding section, a single reference pattern has
Fourier domain often significantly affects the discriminat been recognized. Now, we explain how some additional image
ability. Here, we observed a rather weak influence probahpyocessing within the mask computation is employed in order
due to the small reference pattern area. The performancet@fearch for different reference patterns.
the system began to decrease significantly (approximaiely b The main problem with multiple reference patterns is that
20 per cent) if small ¥ = 0.8) or large & = 0.2) k-th law it is not clear to which reference pattern a correlation peak
nonlinearities were used. Detailed investigations camiogr corresponds. Take as a simple example two reference psttern
the optimum nonlinearity are an option for future researctat are presented simultaneously to the correlator: Isecau
Here we concentrated on the iterative method and used oftig reference patterns are spatially separated, a peakl coul
the & = 0.5 nonlinearity for the experiments. correspond to position 1 in the input plane and pattern 1 or
position 2 and pattern 2. Therefore, it is in general notrclea
which parts of the input image are to be amplified by the mask.
The basic approach of correlation can be visualized in the
spatial domain as sliding the reference pattern acrossithé i
image. For every position of the sliding window, the sum of
the multiplications of the reference pixels with the pixefs
the input image is computed. Another approach, quite simila
to correlation, is to add the absolute differences betwbaen t
reference pixels and the pixels of the input image. Obvipusl
this sum of the absolute errofS AE) is minimal if the sliding
window is at the correct position, corresponding to the tasi
of the reference face in the scene. Mathematically

SAE(i,j)= ) |0(i+x,j+y) -~ R(z,y)l, ()
z,yeA
Fig. 8. input scene of Fig. 1 with additive Gaussian noise=(0.3) where A denotes the reference pattern area.

We added different amounts of Gaussian noise to the ali
smoothed input image to test the resistance against ag
noise. No smoothing was used after the noise had been ¢

300 —

Even with quite strong noise (standard deviator= 0.17), 250 ]
face recognition is possible. The final PCE (after iteratisi
constant (within statistical limits). If very noisy imagés > 20

0.2) are used, the iteration converges to the wrong solt
A simple approach to improve the JTC performance for s
references is to divide the input image into smaller subgies 100-|
that are correlated one after the other with the refer
pattern[23]. For every single correlation, the percentabant
of clutter is therefore strongly reduced. By dividing the@ii
plane into4 x 4 sub-images (with an overlap of 50%) we (
detect the reference face even with strong naise-(0.4). An
image distorted by = 0.3 additive noise is shown in Fig. -.
The computational cost of the aperture approach is un-
fortunately increased compared to the conventional cross—
correlation. For the correlation of tw256 x 256 images the F'gb- 9. Fthe noisu(— 0.2) inout | Th N d
number of multiply—add computations (MAC) is[2}5 - 10° fhue ifr?egt :e?epé)r:i}g(p_anén)].'nPUt 'mag. The strong peaic correspondes fo
whereas for &12 x 512 image4.9 - 10° MAC are necessary.
Due to the necessary overlap between the sub-images (we havéthe pattern in the scene corresponds exactly (same Higita
to be sure that the pattern we are looking for is not cut infgray-levels) to the reference pattern, tBedF is zero at

150 —

Nonlinear JTC correlation with three reference gratt: result for
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[e2 | [c1=08 ] c1=09 ] ca1=10]aa=11]ca=12]a=13]
10 | PCE%10—3 4.4 5.9 4.9 4.0
iterations 3 3 2 4
20 | PCEx10—3 4.8 3.1 4.9 5.9
iterations 3 2 2 3
30 | PCEx10—3 4.3 3.1 5.4 3.9
iterations 3 2 2 4
40 | PCE*10—3 3.2 5.6 5.1 4.5
iterations 3 3 2 3
50 | PCEx10—3 4.1 5.3 4.7 4.0
iterations 4 3 2 3
60 | PCEx10—3 4.1 4.9 4.1 5.1
iterations 5 3 2 3
70 | PCEx10—3 3.9 4.2 3.6 5.1
iterations 6 3 2 3
80 | PCEx10—3 3.0 3.6 3.1 5.8
iterations 7 3 2 3
90 | PCEx10—3 4.8 3.0 5.4
iterations 4 4 3
TABLE |

PCEAND NUMBER OF NECESSARY ITERATIONS FORPC'E > 0.003 FOR DIFFERENT PARAMETERS:1 AND c2

the correct position. Due to distortions, noise, and d#fér of one reference face.

histograms this is unfortunately not the case for practical Moreover, we employ th& AFE as an additional parameter

applications like the problem at hand. Here, direct evadmat in order to decide if the result obtained with the iterative

of the SAF is not suitable because the signal to noise rataorrelation method really corresponds to a reference npatte

is very low. This is necessary because iterative correlation conveogas
Nevertheless, th& AE is a valuable parameter because ifwrong) solution with low PCE and higiAE if no reference

is low if the patterns are similar and high if they are difiere pattern is present in the input scene. For our example, it was

Therefore, we employ th§ AE within the mask computation always sufficient to use the condition normalizéd’E >

for multiple reference patterns. The following strategysed: 0.001 AND SAE < 5-107'2 as a criterion to decide if the

after a reasonably high peak has been found in the correlatigbtained solution corresponds to a reference pattern.

plane (see Fig. 6), th€ AE is computed for all the possible Other approaches for scale—invariant detection were used i

positions (corresponding to the peak) in the input scenegusithe past[40], [41], [42]. We tried to use the Fourier—MdHi,

the corresponding reference patterns. Only the part ofati [43], [44], [45] transform within the iteration but failedt

scene that corresponds to the mininsad £ is amplified. obtain acceptable results probably due to the complexity of
For large reference patterns, tSel £ computation can be the input scene. The basic idea to correlate the Fourier powe

a time consuming process if the whole image is processé@ectra (which are shift invariant and therefore tractapléne

Acceleration is possible by going directly to the next gosit Mellin transform) is not suitable here because the inforomat

of the sliding window as soon as it becomes obvious thatcthe spatial position of spatial frequencies within theges

position is not correct or at leagtobably not correct[39]. is lost due to the elimination of the phase of the Fourier
Combined with iterative correlation, only a few positiongransform. But this information is important if we want to

of the sliding window have to be examined and the referengétect a face within a scene that contains other faces becaus

patterns are small (for exampie x 30 pixels). Therefore, the the characteristic spatial frequencies are very similad a

computational cost is negligible, as compared to the Fouri&erefore additional information about the position of she

transforms. frequencies is necessary.
We tested theSAE approach by using three reference
patterns. The three different sized versions of the refaren IV. CONCLUSIONS

face were applied in parallel by arranging them at different We have presented an iterative correlation method that
positions in the input plane in order to obtain a scale—iawdr employs digital image processing within the feedback loop.
detection of the face. We modified the input image by copyirBy this approach, the performance of a simulated nonlinear
a magnified (magnification = 2) version of the reference fageint transform correlator has been improved in order t@det
into it. Both faces, now present in the input image, wergistorted and noisy objects in cluttered scenes. The Nerat
correctly detected even at high noise levels=£ 0.2). The correlator was able to detect small patterns that were not
peak corresponding to the small face is shown in Fig. detectable with the one—pass correlator. We have demtetstra
together with the smaller peaks due to the other referendetection with multiple reference patterns in paralleld an
pattern. As described above, the SAE is used in order to dec&tanning aperture at the input plane has been used to improve
which one of the peaks is correct. For the subarea with ttiee immunity against Gaussian noise and clutter.

large face, a similar correlation result is obtained. We alan We thank the Deutsche Forschungsgemeinschaft (DFG) for
use rotated faces or multiple faces instead of scaled vessidinancial support.
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