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Abstract— This work presents results from a new field-testing
campaign conducted on the three-bladed Controls Advanced
Research Turbine (CART3) at the National Renewable Energy
Laboratory in 2014. Tests were conducted using a commercially
available, nacelle-mounted continuous-wave lidar system from
ZephIR Lidar for the implementation of a lidar-based collective
pitch feed-forward controller. During the campaign, the data
processing of the lidar system was optimized for higher avail-
ability. Furthermore, the optimal scan distance was investigated
for the CART3 by means of a spectra-based analytical model
and found to match the lidar’s capabilities well. Throughout
the campaign the predicted correlation between the lidar mea-
surements and the turbine’s reaction was confirmed from the
measured data. Additionally, the baseline feedback controller’s
gains were tuned based on a simulation study that included
the lidar system to achieve further load reductions. This led to
some promising first results, which are presented at the end of
this paper.

I. INTRODUCTION

During the last few years, several contributions from the
scientific community have proposed lidar-assisted control
concepts to reduce fatigue loads of modern wind turbines,
ranging from collective pitch feed-forward [1], [2], individual
pitch control [3], nonlinear model predictive control [4],
[5], [6], and yaw control [7], [8]. In spite of this, only
very few results from field testing of such concepts have
been reported so far. As a follow-up to the campaigns
conducted by Stuttgart Wind Energy (SWE) and the National
Renewable Energy Laboratory (NREL) in 2012 [9], [10], a
new field testing campaign was arranged by NREL, DNV
GL, ZephIR, and SWE. The campaign used a commercial
lidar from ZephIR that was mounted on the three-bladed
Controls Advanced Research Turbine (CART3) to have the
ability to further test and optimize different controllers.

For this work, NREL provided the CART3 as well as
the operation and data acquisition system on-site, ZephIR
provided a continuous-wave (CW) lidar system, and DNV
GL and SWE each provided their controllers. Despite this,
in this work only the SWE controller is considered. ZephIR
adjusted the lidar to optimize the system’s data availability
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and meet the requirements for using the data for real-time
control. SWE investigated the optimal scan distance for the
lidar combined with its feed-forward controller by using
a spectra-based analytical model [11] of the correlation
between the rotor-effective wind speed sensed by the turbine
and its lidar estimate. In addition, the SWE controller was
optimized by re-tuning the feedback gains in a simulation
study. This study included the simulation of a lidar that
has characteristics that are very similar to the real system’s
characteristics.

With these optimizations the controller was run for a
couple of minutes, and the findings are provided below.
These results confirm the expected correlation between the
lidar and the turbine and show the potential for reducing
loads.

This paper is organized as follows. Section II summarizes
the field-testing environment. Section III outlines the differ-
ent optimizations. Section IV presents the campaign results,
and Section V discusses the conclusions and future work.

II. FIELD-TESTING ENVIRONMENT

A. The CART3

The field testing for this work was conducted on NREL’s
CART3 at the National Wind Technology Center in Boulder,
Colorado. The geographical location and the easy access to
the turbine’s control system make the CART3 an optimal
test environment for evaluating new and advanced control
algorithms of wind turbines. The CART3 is a 600-kW
variable-speed pitch-controlled turbine with a rotor diameter
of 40 m, a hub height of 36.6 m, and a rated rotor speed
of 37 rpm. It was modified with a three-bladed rotor and as
a result, currently operates at 550 kW because of resonance
issues [12]. Heavy instrumentation, such as strain gauges,
accelerometers, and a meteorological tower—installed 80 m
in front of the turbine’s mean wind direction (292◦)—
complemented the field-testing setup.

B. The ZephIR DM Lidar System

The ZephIR DM is a circularly scanned, CW coherent
Doppler lidar1. Optimized for installation on a nacelle roof,
it generates line-of-sight (LOS) Doppler measurements every
20 ms. The period of the continuous circular scan is 1 s.
Research reported by Bossanyi [1] indicates that this lidar
scan geometry and frequency is very well suited to lidar
feed-forward turbine control. The LOS measurements are

1www.zephirlidar.com/DM



Fig. 1. The ZephIR DM lidar installed on the CART3 at the National
Wind Technology Center. (Photo by Lee Jay Fingersh, NREL 32910)

used by the ZephIR to calculate various wind field quantities,
such as horizontal wind speed, vertical wind shear, wind
veer, and wind yaw misalignment relative to the turbine
axis. The lidar can operate at ranges from 10 m to more
than 300 m. CW operation and the focusing approach to
probe beam localisation ensures high sensitivity, permitting
measurements even in very clear air, as encountered during
the field-testing campaign reported here.

Figure 1 shows the ZephIR lidar installed on the CART3.

C. The SWE Collective Pitch Feed-Forward Controller

The tested controller used in this study is the same as in the
previous campaigns in 2012 and is described in more detail
in [9] and [10]. Because of the modular concept of the SWE
collective pitch feed-forward controller, only the module
"LidarDataProcessing" had to be changed to incorporate the
signals from the ZephIR DM lidar. The rotor-effective wind
speed from lidar data is calculated by:

v0L = vhorz cosαH , (1)

where vhorz and αH are the horizontal wind speed and the
yaw misalignment from the ZephIR output, respectively. The
calculation is done this way because the longitudinal wind
component is assumed to be responsible for the aerodynamic
torque. Furthermore, the quality flags reported by the system
with every measurement are evaluated to ignore bad data.

III. OPTIMIZATION

To achieve the best results possible with this field-testing
campaign, different optimizations regarding the lidar sys-
tem’s algorithms, its measurement configuration, and the
feedback controller have been performed.

A. Lidar System Algorithms

The lidar determines the incoming wind field by combin-
ing multiple LOS wind speed measurements in various ways.
To generate the required rotor-effective measurements, the
lidar’s "fit-derived" algorithms were used. These algorithms
apply a parameterised wind model in real time, using a
least-squares fitting procedure, to the measured LOS Doppler

readings. As a result, horizontal wind speed at the centre
of the scan, wind yaw misalignment, and the power law
coefficient of vertical shear can be obtained. During the
experiments, these wind measurements were updated at
100-ms intervals, which were accessed using the MODbus
protocol for input into the controller. The ZephIR DM
lidar was initially optimized to provide highly accurate 10-
min-averaged wind measurements, as might be required for
conventional turbine performance measurements. However,
control systems require maximum signal availability at high
rates. Therefore, during the experimental period reported
here, the lidar’s data filters were adjusted to maximise
availability, ensuring reliable inputs to the controller at up to
0.1 Hz. Availability (as defined by "lidar quality" in Section
IV) was greater than 98.5% after these optimizations.

B. Lidar System Measurement Configuration

To get good lidar measurements, an optimization of the
physical measurement configuration is needed.

For the given lidar system, only the measurement distance
can be optimized, because the system comes with a fixed
circular trajectory at a fixed cone half-angle of 15◦ and an
averaging time of 2 s (corresponds to two sweeps around the
circle trajectory) for the "fit-derived" outputs. Those values
have been fixed before deploying the lidar system.

Basically, there are two issues to be considered when
optimizing a lidar’s measurement configuration for feed-
forward control. First, the measurement distance should be
chosen to get the best correlation. This is a challenging task,
because there are several effects involved that change the
correlation, such as wind evolution and the range weighting
function. At a closer distance, the wind will evolve less,
but the range weighting will be smaller. Furthermore, the
rotor extracts the most energy at around 3/4 of the blade
span, and the wind speed at this position will contribute
more to the rotor-effective wind speed. Second, the signal has
to be transferred in a timely fashion to the control system.
To avoid unnecessary and harmful control action and obtain
optimal performance, the wind speed from the lidar has to be
filtered by an adaptive low-pass filter based on the transfer
function GRL between the rotor-effective wind speed and its
lidar estimate [13], [14]. Thus, a minimum distance can be
calculated to have a timely control action.

Here, we need for each measurement distance xL the
transfer function GRL to calculate the time delay introduced
by the filtering. This can be done by conducting a simulation
study in the time domain, as shown in Figure 2. Therefore,
the wind components u,v, and w on a spatial and temporal
grid (x,y, t) have to be generated by inverse Fourier trans-
formations that are based on spectral properties. In the case
of the Kaimal turbulence model, these spectral properties are
the auto spectrum Sii,h for the wind component h of the ith
grid point and the squared coherence γ2

i j,1(k) between the
longitudinal component of the ith and the jth grid point
[15]. Then, the wind field has to be scanned by a lidar
simulator to obtain the LOS wind speeds, and from those
the lidar estimate of the rotor-effective wind speed v0L is



γ2

i j,1( f )

Sii,h( f )

γ2
RL( f )

GRL( f )

u(x,y, t)
v(x,y, t)
w(x,y, t)

v0(t)

v0L(t)

FF−1

Simulation

Calculation

Fig. 2. Basic concept of the correlation model.

calculated. Furthermore, the rotor-effective wind speed v0,
which is based on simulated turbine data or directly from the
wind field, has to be calculated. In the last step, the transfer
function GRL and the squared coherence γ2

RL can be estimated
based on Fourier transformations. Because of the properties
of the numerical Fourier transformation the estimate of the
transfer function improves with the length of the simulation.
Finally, we would need to conduct endless simulations to get
exact values.

To avoid this issue, we solved this constrained problem
with a brute force optimization based on a spectra-based
analytical model [11], shown Figure 2. The main idea is
to calculate the correlation directly based on the turbulence
spectral properties. The following three steps give a short
overview of the applied procedure:

1) Correlation Coefficient: One way to quantify the qual-
ity of correlation between the rotor-effective wind speed and
its lidar estimate is to use the correlation coefficient:

ρRL =
σ2

RL
σLσR

, (2)

where σ2
RL is the covariance between the two signals v0 and

v0L, and σL and σR are the standard deviations, respectively.
For perfect correlation, ρRL is 1 and for no correlation, 0.

The value of ρRL can be obtained in the time domain
from the two signals without any problems. In the frequency
domain, we can use the following relationships:
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where SRL is the cross spectrum between both signals, and
SLL and SRR are the auto spectra. The spectra can be calcu-
lated by the Fourier transforms of the signals as described in
[11]. Wind evolution is considered in the analytical model by
using the model from [16] and the decay parameter α = 0.4.
Ongoing research shows that this parameter is site dependent
and might be too high to represent the real wind evolution.

Finally, we can calculate the correlation coefficient ρRL
directly from the spectral wind information for each mea-
surement distance xL, as shown in Figure 3 (top). Hence,
if only considering ρRL, the optimal measurement distance
would be xL = 40 m.
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Fig. 3. Correlation coefficient (top), maximum coherent wave number
(center), and buffer time (bottom) over measurement distance.

2) Timing: As mentioned earlier, the timing issue also has
to be addressed to find the optimal measurement distance.
Therefore, the time delay of the low-pass filter fitted to
each transfer function GRL has to be calculated. The transfer
function GRL from the lidar estimate of the wind speed to
the rotor-effective wind speed can be calculated by:

GRL =
SRL

SLL
. (5)

Because of its low-pass behaviour, the transfer function is
approximated by a first-order Butterworth filter. The filter
is parametrized by a cut-off frequency, fcutoff = k̂v̄/(2π),
at −3 dB below the static gain, where k̂ is the maximum
coherent wave number and v̄ is the average wind speed.

The time delay is obtained from the following consider-
ations: with Taylor’s hypothesis, the wind needs the time
xH/v̄ to evolve from the measurement plane to the hub of
the turbine. Because of the averaging over the full trajectory,
v0L is already delayed by TScan/2 = 1 s. The filter delay is
approximated by TFilter. When using the filtered wind in the
feed-forward controller, the signal has to be synchronized
with the wind reaching the rotor plane, as shown in Figure 4.
Therefore, the necessary time delay is:

TBuffer =
xH

v̄
− 1

2
TScan −TFilter − τ. (6)

The time τ compensates the pitch actuator, which is negli-
gible because the CART3’s pitch actuators are very fast.

Finally, the maximum coherent wave number k̂ and the
corresponding TBuffer can be calculated for each focus dis-
tance xL, shown in Figure 3 (center and bottom). We used
v̄ = 20 m/s, assuming that we would not operate the CART3
at higher mean wind speeds. Compared to the two lidar
systems used in 2012, the maximum coherent wave number
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Fig. 4. Timing of the lidar signal.

k̂ is lower for the ZephIR DM lidar than for the SWE
scanner [10], but similar to the one for the Vindicator [9].

3) Results: A negative buffer time TBuffer indicates that
the wind speed signal would be too late. We can define
the constrained optimization problem as maximizing the
correlation coefficient ρRL by changing xL such that the
buffer time TBuffer is not negative:

max
xL

ρRL such that: TBuffer ≥ 0. (7)

Therefore, the optimal focus distance considering both op-
timal correlation and timely signal is xL = 52 m. Because
this is close to the suggested value by ZephIR for the
measurement distance of xL = 58 m, no changes were made
to this value.

C. Re-Tuning of the Feedback Gains

Embedding a feed-forward controller in the control loop
offers the ability to re-tune the feedback gains. The band-
width of the feedback controller can be lowered because
the feed-forward controller is rejecting the main ratio of the
disturbance. The feedback loop stabilizes the steady state and
accommodates for improper disturbance measurements and
model uncertainties. Thus, the obtained benefits of the feed-
forward controller can be reinvested in tuning the feedback
gains to reduce structural loads.

A lidar feed-forward controller mainly assists the feedback
controller in low frequencies because the lidar signal is
filtered to avoid harmful control action. The improvement
of the feed-forward controller can be observed in Figure 5
in the power spectral density (PSD) analysis of the generator
speed. In a brute-force optimization, the feedback gains are
tuned by relaxing the gains to obtain a high reduction in
the damage equivalent loads (DELs). The gains are chosen
such that a similar control performance as without the lidar
feed-forward controller is achieved for the generator speed.
The optimization was made using two different wind fields,
with mean wind speeds of 16 m/s and 18 m/s, and yielding
a reduction of the proportional gain kp and an increased time
constant Ti of the integral controller.

To validate the obtained optimized feedback gains, a
lifetime analysis (LTA) was performed and evaluated with
respect to the DELs of the tower-base bending moment
MTy and the standard deviation of the generator speed Ωg.
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Figure 6 shows the LTA comparison between the feedback
controller and the retuned feedback controller incorporated
with the lidar feed-forward controller. The standard deviation
of the generator speed was similar for both controllers but
the DEL was heavily reduced for the optimized controller
setup.

IV. RESULTS

A. Verification of the Correlation

During the campaign, the correlation was verified to design
the SWE feed-forward controller. For this verification, we
extracted two blocks of the CART3 data collected in the
beginning of December 2013 (see Table I). The blocks were
chosen according to the following criteria:
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• Wind speeds constantly over 4 m/s are needed to apply
the wind speed estimator using turbine data

• Block length must be at least 30 min to have enough
data to calculate the spectra

• Lidar quality must be at least 60%.

Lidar quality is defined as the percentage of the data that is
flagged by the lidar system as a valid measurement (fit flag
equal to 1 and no error code in the data itself). During the
beginning of the campaign, this value was around 40%, and
sometimes no data were available for various consecutive
seconds of the measurement. As discussed earlier, reopti-
mization of the ZephIR lidar’s settings to maximise avail-
ability significantly improved the lidar data quality to above
90% during later phases of the measurement campaign.

For both blocks, the horizontal wind speed, rotor-effective
wind speed from the lidar, and turbine data are plotted in
Figure 7. In both blocks, the calculated rotor-effective wind
speed v0L matches the reaction of the turbine v0 better than
the horizontal wind speed vhorz. This can be confirmed with
the transfer functions calculated from the spectra of the data.
In Figure 8, the measured transfer function from v0L to v0
fits the model better than the transfer function from vhorz
to v0. This means that using v0L instead of vhorz for the
feed-forward control requires less filtering and provides more

benefits regarding the expected load reductions. Therefore,
we used v0L and set k̂ = 0.03 rad/m.

Regarding the timing, we discovered that the measured
wind arrives as expected at the turbine. We assumed that
the lidar is installed around 2 m behind the hub and thus
xH = xL −2 m = 56 m in front of the turbine. Based on this
assumption, the expected delay between v0L and v0 should
be with TScan = 2 s:

TPreview =
xH

v̄
− 1

2
TScan. (8)

Because we measured values close to this (see Table I), no
tuning was needed, and we kept the prediction time at 0 s.

Based on this analysis, the correlation of the ZephIR lidar
and the CART3—predicted by the analytical model—could
be confirmed. Hence, the timing and filtering of the SWE
feed-forward controller is set to a prediction time of τ = 0 s
and a maximum coherent wave number of k̂ = 0.03 rad/m.

B. Field-Testing Results from the Optimized Controller

Because of low wind conditions during the campaign, the
CART3 was de-rated to a rated rotor speed of 26 rpm.

Unfortunately, still only a few minutes of region 3 data
could be collected before the lidar system was dismounted;
however, this data shows promising results, which indicate
that the controller works as intended. Figures 9 and 10 show
a reduction of the generator speed variations in the expected
frequency range.

V. CONCLUSIONS AND OUTLOOK

This work presents results from the field testing of a com-
mercial CW-lidar system as input to the SWE collective pitch
feed-forward controller. Different optimizations have been
successfully applied to the lidar system’s internal algorithms
and the measurement configuration of the system as well as
to the gains of the feedback controller. The results show that
using a commercial lidar system for feed-forward control is
possible, and, the structural turbine loads can be reduced as
intended.



TABLE I
OVERVIEW OF EVALUATED DATA.

Block Start Time End Time Lidar Mean wind speed [m/s] Delay [s] k̂
ID quality [%] v0 v0L Taylor Data [rad/m]
1 12-01 01:05:00 12-01 01:50:00 65.83 8.83 8.45 6.6 6.2 0.025
2 12-02 03:55:00 12-02 04:25:00 67.94 10.64 10.12 5.5 5.4 0.031

time [s]

Ω
g

[r
p

m
]

0 5 10 15 20 25
1115

1120

1125

1130

Fig. 9. Generator speed Ωg from de-rated and re-tuned controller: FF off (dark blue) and FF on (light blue).
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During the testing portion of the campaign, it was not pos-
sible to collect more than a few minutes of data. This means
that more data has to be collected in future field-testing
campaigns to provide more substantiated conclusions.

ACKNOWLEDGMENTS

The authors would like to thank everyone from NREL,
SWE, ZephIR, and DNV GL involved in this campaign for
their contribution and support. This work was supported
by the U.S. Department of Energy under Contract No.
DE-AC36-08GO28308 with the National Renewable Energy
Laboratory. Funding for the work was provided by the DOE
Office of Energy Efficiency and Renewable Energy, Wind
and Water Power Technologies Office.

REFERENCES

[1] E. Bossanyi, A. Kumar, and O. Hugues-Salas, “Wind turbine control
applications of turbine-mounted lidar,” in Proceedings of The Science
of Making Torque from Wind, Oldenburg, Germany, 2012.

[2] D. Schlipf and M. Kühn, “Prospects of a collective pitch control
by means of predictive disturbance compensation assisted by wind
speed measurements,” in Proceedings of the German Wind Energy
Conference DEWEK, Bremen, Germany, 2008.

[3] F. Dunne, D. Schlipf, L. Y. Pao, A. D. Wright, B. Jonkman, N. Kelley,
and E. Simley, “Comparison of two independent lidar-based pitch
control designs,” in Proc. 50th AIAA Aerospace Sciences Meeting
Including the New Horizons Forum and Aerospace Exposition, 2012.

[4] J. Laks, L. Y. Pao, E. Simley, A. Wright, N. Kelley, and B. Jonkman,
“Model predictive control using preview measurements from LIDAR,”
in Proceedings of the 49th AIAA Aerospace Sciences Meeting Includ-
ing the New Horizons Forum and Aerospace Exposition, Orlando,
USA, 2011.

[5] A. Körber and R. King, “Nonlinear model predictive control for wind
turbines,” in Proceedings of the European Wind Energy Association
Annual event, Brussels, Belgium, 2011.

[6] S. Gros, “An economic nmpc formulation for wind turbine control,”
in Decision and Control (CDC), 2013 IEEE 52nd Annual Conference
on, Dec 2013, pp. 1001–1006.

[7] K. A. Kragh, M. H. Hansen, and T. Mikkelsen, “Precision and short-
comings of yaw error estimation using spinner-based light detection
and ranging,” Wind Energy, vol. 16, no. 3, p. 353Ű366, 2012.

[8] P. A. Fleming, A. K. Scholbrock, A. Jehu, S. Davoust, E. Osler, A. D.
Wright, and A. Clifton, “Field-test results using a nacelle-mounted
lidar for improving wind turbine power capture by reducing yaw
misalignment,” Journal of Physics: Conference Series, vol. 524, no. 1,
p. 012002, 2014.

[9] A. Scholbrock, P. Fleming, L. Fingersh, A. Wright, D. Schlipf,
F. Haizmann, and F. Belen, “Field testing LIDAR based feed-forward
controls on the NREL controls advanced research turbine,” in 51th
AIAA Aerospace Sciences Meeting Including the New Horizons Forum
and Aerospace Exposition, Dallas, USA, 2013.

[10] D. Schlipf, P. Fleming, F. Haizmann, A. Scholbrock, M. Hofsäß,
A. Wright, and P. W. Cheng, “Field testing of feedforward collective
pitch control on the CART2 using a nacelle-based lidar scanner,” in
Proceedings of The Science of Making Torque from Wind, Oldenburg,
Germany, 2012.

[11] D. Schlipf, J. Mann, and P. W. Cheng, “Model of the correlation
between lidar systems and wind turbines for lidar assisted control,”
Journal of Atmospheric and Oceanic Technology, vol. 30, no. 10, pp.
2233–2240, 2013.

[12] P. A. Fleming, A. D. Wright, L. J. Fingersh, and J.-W. van Wingerden,
“Resonant vibrations resulting from the re-engineering of a constant-
speed 2-bladed turbine to a variable-speed 3-bladed turbine,” in
Proceedings of the 49th AIAA Aerospace Sciences Meeting Including
the New Horizons Forum and Aerospace Exposition, Orlando, USA,
2011.

[13] D. Schlipf and P. W. Cheng, “Adaptive feed forward control for wind
turbines,” at - Automatisierungstechnik, vol. 61, no. 5, pp. 329–338,
2013.

[14] E. Simley and L. Pao, “Reducing lidar wind speed measurement
error with optimal filtering,” in Proceedings of the American Control
Conference, Washington, USA, 2013.

[15] IEC 61400-1, Wind turbines - Part 1: Design requirements, Interna-
tional Electrotechnical Commission Std., Rev. third edition, 2005.

[16] R. A. Pielke and H. A. Panofsky, “Turbulence characteristics along
several towers,” Boundary-Layer Meteorology, vol. 1, pp. 115–130,
1970.


