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Abstract

Data from the Gravity Recovery and Climate Experiment (GRACE) has significantly
improved our knowledge of the terrestrial water cycle. With the availability of GRACE
data from 2002, we are now able to perform even climate change studies with respect
to water storage variations. However, as GRACE is already after its expected lifetime,
we have to find methods for filling the missing months in the past data and to possibly
bridge the gap until GRACE Follow On.

In this study, we, therefore, analyze the potential of Copula-based methods for
simulating GRACE coefficients data from other hydrological data sources. The method
exploits linear and non-linear relationships between two or more variables by fitting
a theoretical Copula function into an empirical bivariate or multivariate distribution
function. Finally, new data, which is then consistent with the previously derived
dependence structure, can be simulated by evaluating the conditional distribution
function given by the theoretical Copula.

First, we want to analyze the applicability of the proposed method to spherical
harmonic coefficients data from GRACE. As the approach involves several drawings
of random data, we are interested if this random nature has any impact on the results.
We therefore generate filtered out of unfiltered GRACE coefficients, based on the
previously derived dependence structure. The comparison between the simulated
and filtered data shows a very good agreement with negligible differences in both of
the spatial and spectral domain.

We also want to evaluate if Copula-based methods are able to estimate reliable
water storage changes from the independent hydrological data. Therefore, we derive
the dependence structure between filtered water storage changes from GRACE and
global gridded precipitation data from the Global Precipitation Climatology Center
GPCC. Based on the fitted theoretical Copula, we then simulate water storage changes
from precipitation data. The Copula-based estimates are compared with filtered
GRACE coefficients data in both of the spectral and spatial domain. We also perform
a catchment-based analysis between area-aggregated time-series of simulated and
GRACE-derived water storage change. The analysis shows that our estimates and
the original filtered GRACE coefficients data are in very good agreement. Thus, we
conclude that the proposed method is indeed able to fill the missing months in the
GRACE-dataset and to extend even the time-series until the launch of GRACE Follow
On.
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Chapter 1

Introduction

Terrestrial water storage is of great importance in various fields of human life. Its
availability and change can affect the agricultural and industrial applications (Shik-
lomanov, 1998; Douglas and Lettenmaier, 2003; Fiedler and Döll, 2007). However, in
the past, it was not possible to measure water storage change directly (Rodell and
Famiglietti, 1999). Strassberg et al. (2007) and Yeh et al. (2006) studied water storage
changes from the variations in groundwater levels and soil water saturation (1.1).
However, the groundwater and soil water saturation that is observed on a single
location is not adequate to be used on large spatial scales (Riegger et al., 2012; Tourian,
2013).

Figure 1.1: Overview of the hydrological compartments. Surface water is the water on the surface of
the planet e.g. stream, river, lake, wetland, or ocean. Soil moisture is the quantity of water contained
in the soil. Ground water is the water located under the Earth’s surface in soil pore spaces and the
fractures of rock formations.

Satellite observation of the time variable Earth’s gravity field is an indirect way to
measure water storage changes on large spatial scales. Before 2000, it was possible to
measure the Earth’s time variable gravity field only by Satellite Laser Ranging (SLR)
at global scales. However, SLR provides observations of the seasonal variations of the
long wavelengths (up to degree and order 4) (Nerem et al., 2000) and these resolutions
are not enough for catchment-scale studies.
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CHAllenging Minisatellite Payload (CHAMP) mission was launched with the aim of
capturing the time variable gravity field based on the Satellite to Satellite Tracking
(SST). The CHAMP satellite was detected by using on-board GPS receivers. However,
the quality of the GPS observations and processing standards were not high enough
to derive time variable gravity field estimation and to use it for hydrological studies
(Qiang and Moore, 2005). Since 2002, the Gravity Recovery and Climate Experiment

Figure 1.2: Overview of CHAMP mission. For the first time, the gravity field is determined only using
data from a single satellite. High-low satellite to satellite (hlSST) provides 3-D coordinates of the
position of the satellite using Low Earth Orbiting (LEO) (Flechtner, 2014).

(GRACE) provides an indirect measurement of the time variable part of the Earth’s
gravity field. GRACE is observing the relative motion of the center of mass of the two
satellites by measuring the distance between the satellites with very high precision (Ta-
pley et al., 2004).
GRACE helps hydrologists to analyse water storage changes over landmasses (Letten-
maier and Famiglietti, 2006). The total water storage change is derived from the time-
variable part of the Earth’s gravity field

∆TWS(t) = ∆GW(t) + ∆SW(t) + ∆SWE(t) + ∆SM(t)− ∆R(t) (1.1)

∆TWS(t) is total water storage

∆GW(t) is ground water

∆SW(t) is surface water

∆SWE(t) is snow water equivalent

∆SM(t) is soil moisture
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∆R(t) is runoff

∆ is the difference of each quantity between two subsequent time steps

Figure 1.3: Configuration of Gravity Recovery and Climate Experiment (GRACE)(www.space-
airbusds.com).

1.1 Problem statement

Besides the advantage mentioned above of GRACE, the drawbacks should also be
mentioned. Wahr et al. (1998) predicted that GRACE would measure the effect of
changes in large-scale continental water basin with an accuracy of approximately
2 mm of water equivalent heights. However, this accuracy could not be achieved for
the time-variable gravity field because of very high noise content in the coefficients
of short-wavelength observed by GRACE (Wahr et al., 2004). These errors show
themselves as North-South stripes in spatial domain maps. Therefore, a certain
filtering method should be applied to the GRACE data. Due to the filtering process
which constrains the noisy signal to a desired output signal, the noise is reduced with
the danger of losing the signal as well.

Moreover, GRACE has outlived its predicted lifetime by more than five years (Ta-
pley et al., 2004). Consequently, there is always a high risk of data failure. Figure
1.4 shows an overview of GRACE information on July 22, 2014. The mean altitude of
above 6370 km is on the left vertical axis, and solar flux in the right and the year is at
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Figure 1.4: Overview of GRACE lifetime predictions. Solar flux is on the right axis, and the mean
altitude above 6370 km on the left axis and the year is in the bottom. It shows three different scenarios
for estimating the lifetime of the GRACE that is based on the amount of cold gas resources and battery
life. According to the different scenario, the lifetime of GRACE will be finished between till 2020 (GFZ

Helmholtz Center Potsdam).

horizontal. As shown in Figure 1.4 shows that solar flux decreased until 2009, and it
has an increasing trend from 2009 until 2014. Three different scenarios are predicted to
estimate the lifetime of GRACE. Figure 1.4 clearly shows the decreasing altitude of the
GRACE satellites. Due to the accelerometer and K-band data problems, some months
in the GRACE data set are missing as shown in Figure 1.5. Between 2004 and 2010, no
data is missing in the GRACE data set. GRACE Follow On is the next satellite which
will be launched late in 2017 (Flechtner et al., 2013). Like GRACE, GRACE Follow On’s
main objective is to obtain a high-resolution global model of the Earth’s gravity field
on a monthly basis for an expected length of 5 years. In case of failure of GRACE before
launch of GRACE Follow On, a loss of data is expected to happen. Therefore, it would
be desirable if some reliable fields of water storage changes are derived from other
parameters, such as assimilation of the GRACE data with one hydrological parameter,
for instance, the precipitation data.
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Figure 1.5: Missed data in GRACE. The red boxes are the months when the data is missing, due to
accelerometer or accelerometer and K-band data problems (Flechtner, 2014).

The problems can be categorized as:

• Lack of availability of legacy data for the water storage anomalies

• GRACE data outage in observed GRACE

• GRACE always has a high risk of data gap because it already outlived its predicted
lifetime

• The noise level in coefficients with high degree and order, i.e. the coefficients of
short-wavelength

1.2 Literature review and research questions

Are there any alternatives for providing reasonable estimation of water storage?
Could it be used to bridge the possible gap between the GRACE and GRACE Follow On
mission, which will be launched in 2017?

To answer these questions, Weigelt et al. (2013) suggested that hl-SST is a viable
source of information for time variable gravity field that can serve to some extent to
bridge a possible gap between the end of life of GRACE and the availability of GRACE
Follow On. They applied a thorough reprocessing strategy and a dedicated Kalman
filter to CHAMP data to show that it is possible to derive the very long-wavelength time
variable gravity field features down to spatial scales of approximately 2000 km at the
annual frequency and for multi-year trends. They validated the results with GRACE
data and surface height changes from long-term GPS ground stations in Greenland.
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Rietbroek et al. (2014) published an article entitled "Can GPS-derived surface loading
bridge a GRACE mission gap?" They investigated two "gap-filler" approaches based
on GPS-derived low-degree surface loading variation (GPS-I) and (GPS-C) and (REF-S)
which is a seasonal harmonic variation into the expected GRACE mission gap. Their
results show in terms of noise level, the seasonal gap-filler method (REF-S) has a better
performance compared to the GPS-I and GPS-C methods, which are still affected by
spatial aliasing problems.

Another idea could be finding the relation between the water storage anomalies
that is derived from GRACE and hydrologic parameters like precipitation to estimate
and assimilate the missing data of GRACE using Copula-based analysis.

Over ten years ago, the Copula-based approach started to be used in different
fields of science like economics, hydrology, and meteorology. In finance, the Copula-
based method is used for various applications e.g. risk modelling in the market,
asset allocation, and derivative pricing (Cherubini et al., 2004; McNeil et al., 2005). In
hydrology e.g. (Bardossy and Li, 2008), they borrow the idea of the Copula method,
to show the dependency structure without the influence of the marginal distribution.
Both the Gaussian Copula and non-Gaussian Copula approaches are used in this
paper. The results indicate the non-Gaussian Copulas give better results than the
geostatistical interpolations. In meteorology science, Copula-based methods have
different applications such as combining radar information and gauge measurements
(Vogl et al., 2012). In this study, Copula models are applied to describe the dependency
structure between gauge observations and rainfall derived from radar reflectivity at
the corresponding grid cells. Also Laux et al. (2011) presented a new Copula-based
method for further down-scaling regional climate simulations.

The fundamental concept of the Copula is introduced by Sklar theorem (Sklar,
1959) which is used to model the dependency structure between two or more vari-
ables. General information about Copula-based methods can be found in (Joe, 1997)
and (Nelsen, 2010). The method exploits linear and non-linear dependency between
two or more variables by fitting a theoretical Copula function into an empirical
bivariate or multivariate distribution function. Finally, new data, which is consistent
with the previously derived dependency structure, can be simulated by evaluating
the conditional distribution function given by the theoretical Copula. Different types
of theoretical Copula families are defined. One of the most common Copula families
is Archimedean Copulas that are used in this thesis.

In this work, two approaches will be discussed, and the applicability of Copula-
based methods to spherical harmonic data from GRACE are analyzed. This process
involves several drawings of random data, and we are interested to know if this
random nature has any impact on the results. Then, filtered data is generated out of
unfiltered GRACE coefficients based on their derived dependency structure. Therefore,
it is important to find out can Copula-based method find the dependency structure
between filtered and unfiltered GRACE coefficients? Is simulated field equal to the
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initial filtered GRACE? Does the Copula-based simulation have any impact on the
resulting maps of water storage changes?

The second approach is to analyze the potential of the Copula-based approach
for simulation and estimation of GRACE data from other hydrological data sources.
The method exploits linear and non-linear dependency between two or more variables
by fitting a theoretical Copula function into an empirical bivariate or multivariate dis-
tribution function. Finally, new data, which is consistent with the previously derived
dependency structure, can be simulated by evaluating the conditional distribution
function which is given by the theoretical Copula.

Then, the research question can be summarized as below:

1. Can the Copula-based approach be introduced as a tool to smooth (filter) GRACE
data?

2. Can the Copula-based approach be used to assimilate hydrological data and
GRACE?

3. Can Copula-based approach be used to bridge a possible gap between GRACE
and GRACE Follow On?

The thesis is outlined as follows:

Chapter 2 contains brief introduction to fundamental statistical theory including
definitions for PDF, CDF. Also, a brief overview of Copula theory is given. Chapter 3
describes spherical harmonic data from GRACE as well as the precipitation data from
GPCC (Schneider et al., 2013), which is used in this study.

Chapter 4 discusses how the Copula-based approach can be applied to the GRACE
data. The Copula-based approach will be used to capture the dependency of unfil-
tered and filtered data. In addition, simulated data using Copula-based approach,
is compared with filtered data as reference data such as the residual map and the
degree variance of the simulated data. Water storage anomalies and RMS of data are
analyzed in different catchments. A leave out validation is performed to assess the
Copula-based technique performance.

In chapter 5, application of the Copula-based approach is presented. Water stor-
age anomalies estimation using precipitation is discussed. This chapter deals with the
question "Can Copula-based approach capture the dependency between precipitation
and GRACE data and simulate water storage?"

Chapter 6 provides the conclusion of this study and highlights of the application
of the Copula-based approach. Moreover, the outlook for this study which opens
rooms for future work, is discussed.
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Chapter 2

Method

2.1 Distribution functions of uni-, bi-, and multivariate
random variables

2.1.1 Probability Density Function (PDF)

The Probability Density Function (PDF) fM of a continuous random variable M is a
function that describes the probability for the random variable to take on a certain
value. The integral of the PDF over a certain range gives the probability that the random
variable take on a value within that range. The PDF is denoted by fM(m) and shown
by (Walck, 2007):

P(a < M < b) =
b∫

a

fM(m)dm (2.1)

Some characteristics of PDFs are as follows:

• fM(m) is always positive, that is, fM(m) > 0, for all M ∈ (−∞, ∞) (Chan and
Tong, 1985).

• The area under the curve fM(m) ∈ (−∞, ∞) is equal to 1.

P(−∞ < M < ∞) ≡
∫ ∞

−∞
fM(m)dm = 1 (2.2)

The bivariate probability density function of M and N has the general form of
fMN(m, n). It is given by (King, 2008):∫ ∞

−∞

∫ ∞

−∞
fMN(m, n) dm dn = 1 (2.3)
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Figure 2.1: Probability Density Function. PDF of a normal distribution with mean (µ)= 50 and standard
deviation (σ)=10 is presented.

2.1.2 Cumulative Distribution Function (CDF)

The Cumulative Distribution Function (CDF) of a random variable M is given by:

FM(m) = Pr(M ≤ m) (2.4)

The CDF is given by equation (2.5) (Kottegoda and Rosso, 2008):

FM(m) =

m∫
−∞

fM(m)dm. (2.5)

The CDF of random data with the mean (µ)= 50 and standard deviation (σ)=10 is shown
in Figure 2.2. The properties of CDF are given by:

0 6 F(m) 6 1, when m ∈ (−∞, ∞),

F(−∞) = 0, F(∞) = 1,

if m1 < m2 then F(m1) < F(m2),

P(m1 < m < m2) = F(m2)− F(m1).

The joint probability distribution of M and N is expressed with cumulative density
function (CDF):

FMN(m, n) = Pr(M ≤ m, N ≤ n) =
∫ n

−∞

∫ m

−∞
fMN(m, n)dmdn (2.6)

Figure 2.3 indicates the bivariate normal distribution of two random variables and
their probability density functions.
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Figure 2.2: Cumulative Distribution Function "CDF" of a normal distribution with mean (µ)= 50 and
standard deviation (σ)=10 is presented.

Figure 2.3: Bivariate normal distribution of two random variables M and N with univariate marginal
distributions PDF, fM(m) and fN(n).

2.1.3 Marginal distribution

The stochastic behavior of the univariable data is described by its probability distribu-
tion. In Figure 2.3, the green and blue lines are the marginal distributions of random
variables M and N respectively. For the bivariate case, the marginal distribution of
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M is the probability of M over N. Integrating the joint probability distribution over n
leads to:

FM(m) =
∫

n
FMN(m, n) dn =

∫
n

FM|N(m|n)Fn(n) dn (2.7)

where

FMN(m, n) is the joint distribution of M and N.

FM|N(m|n) is a conditional distribution.

The different types of marginal distributions used in this study are explained in the
B.

2.2 Copula theory

Sklar (1959) introduced Copula functions as a powerful tool to model the dependency
between variables. The name "Copula" is a Latin word which means a link or tie.
Copula-based methods do not require any assumptions regarding the underlying
probability distributions of the data. The method exploits the linear and non-linear
relationships between two or more variables by fitting a theoretical Copula function
into an empirical bivariate or multivariate distribution function. Finally, new data
which is now consistent with the previously derived dependency structure can be
simulated by evaluating the conditional distribution function which is given by the
theoretical Copula. Therefore, it can model complex dependency structures.

2.2.1 Sklar’s theorem

Sklar’s theorem indicates that a Copula function C connects a given multivariate dis-
tribution function with its univariate marginals. For bivariate distribution, for the
joint distribution FMN(m, n) with univariate marginal distribution functions FM(m)
and FN(n), there is a Copula C (Sklar, 1959).

FMN(m, n) = C(FM(m), FN(n)) = C(x, y) (2.8)

C : [0, 1]2 → [0, 1] (2.9)

If C is a Copula and FM and FN are distribution functions, FMN can be defined as a joint
distribution with FM and FN. The Probability Density Function (PDF) of the bivariate
distribution fM,N(m, n), is represented through:

fM,N(m, n) = C(FM(m), FN(n)) · fM(m) · fN(n) (2.10)

where fM(m) and fN(n) are the univariate marginal PDFs of M and N. The Copula
function is unique when the marginals are continuous.
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2.2.2 Characteristic of Copulas

Some characteristics of Copulas are given by (Genest and Rivest, 1993) and (Jaworski
et al., 2010). In the bivariate case, a Copula is represented as a function C from [0, 1]2

to [0, 1] so that ∀x, y ∈ [0, 1]:
C(x, 0) = C(0, y) = 0 (2.11)

C (x, 1) = x and C (1, y) = y (2.12)

Copula is an increasing function. It implies that ∀x1, x2, y1, y2 ∈ [0, 1] with x1 ≤
x2 and y1 ≤ y2 holds

C(x2, y2)− C(x2, y1)− C(x1, y2)− C(x1, y1) ≥ 0 (2.13)

Copula is a continuous function:

|C(x2, y2)− C(x2, y1)| ≤ |x2 − x1|+ |y2 − y1| (2.14)

2.2.3 Copula density

The Copula density is computed by differentiating Copula cumulative distribution
function.

c(x, y) =
∂2C(x, y)

∂x∂y
(2.15)

2.2.4 Empirical Copulas

The empirical Copula is an estimator for the unknown theoretical Copula distribution,
and it is defined in the rank space. It is defined as (Genest and Rivest, 1993; Laux et al.,
2011):

Ce(x, y) =
1
n

n

∑
i=1

1(
ri

n + 1
6 x,

si

n + 1
6 y) (2.16)

where

(r1), . . . , (rn) denote the pairs of ranks of the data (m1, n1), . . . , (mn, nn)

n is the length of the data vector

1(...) is the indicator function. If the condition is true, the indicator function is equal
to 1. Otherwise, the indicator function is equal to 0.
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2.3 Theoretical Copula

2.3.1 Elliptical Copula

Elliptical Copulas are derived from elliptical distributions. The multivariate normal or
Student distribution leads to the Gaussian or t-Copula, respectively. The correlation
between two normally distributed random variables x and y is calculated: (Schmidt,
2006) by:

Corr(x, y) =
Cov(x, y)√

Var(x)Var(y)
(2.17)

Equation 2.17 describes the linear dependency between x and y. The Gaussian Copula
for two variables x and y is defined as:

C(x, y) = ΦΣ(Φ−1(x), Φ−1(y)) (2.18)

where

Σ is the correlation matrix
(

1 ρ
ρ 1

)
,

ΦΣ is the CDF of bivariate normal distribution with correlation matrix Σ,

and Φ is the Copula generator.
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Figure 2.4: The Gaussian Copula for two random variables x and y with ρ = 0.25.

The t-Copula is derived from the multivariate t-distribution. The t-Copula is given
by

C(x, y) = tν,Σ(t−1
ν (x), t−1

ν (y)) (2.19)

tν is a univariate t distribution with degrees of freedom ν
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Figure 2.5: The t-Copula for two random variables x and y with ρ = 0.25.

tν,Σ is multivariate t distribution with a correlation matrix Σ and degrees of freedom
ν

As it can be seen in Figure 2.4 and 2.5, both of Gaussian and t-Copula are defined by
the same correlation coefficient ρ = 0.25.

The Copula families discussed so far have been derived from certain families of
multivariate distribution functions.

On the other hand, a number of Copulas can be estimated directly with the sim-
ple form. They are named Archimedean Copulas.

2.3.2 Archimedean Copula

An Archimedean Copula can be presented in the following form:

C(x1, . . . , xd; θ) = φ−1{φ(x1) + . . . + φ(xd), θ} (2.20)

where θ is Copula parameter and the function φ is the generator of the Copula with
the following characteristics (Melchiori, 2003):

• for all x ∈ (0, 1), φ(x) < 0, φ is decreasing

• for all x ∈ (0, 1), φ(x) < 0, φ is convex

• φ(0) = ∞

• φ(1) = 0
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and φ−1 is defined by

φ−1(t) =

{
φ−1(t; θ), if 0 ≤ φ ≤ φ(0)
0, ifφ(0) ≤ φ ≤ ∞

also for bivariate case
C(x, y) = φ−1(φ(x), φ(y)). (2.21)

They are three commonly used Archimedean Copula which are explained as follows.

1. Frank Copula
The generator of the Frank Copula (1979) is given by
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Figure 2.6: Frank Copula with parameter θ = 8. The Frank Copula is a symmetric Archimedean Copula.

φFr(t) = − ln{ e−θt − 1
e−θ − 1

} (2.22)

The parameter θ is defined over ∈ (−∞, ∞)− {0}. The Frank Copula is given by

Cθ(x, y) =
1
θ

ln(1 +
(e−θx − 1)(e−θy)

e−θ − 1
) (2.23)

Frank Copula allows to model data with positive and negative dependency. The
large positive and negative θ indicate high dependency and θ = 1 implies total
independence. The Frank Copula is a suitable method for two data sets with the
same dynamic characteristics.
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Figure 2.7: Clayton Copula with parameter θ = 3. The Clayton Copula is an asymmetric Archimedean
Copula, it shows greater dependence in the lower tail than in the upper tail.

2. Clayton Copulas
The generator of the Clayton Copula (Clayton 1978) is given by:

φCl(x) =
1
θ
(x−θ − 1) (2.24)

Therefore, the Clayton Copula is defined as

Cθ(x, y) = (x−θ + y−θ − 1)−
1
θ (2.25)

where θ is restricted on the interval [−1, ∞). If θ = 0, it shows the independence
case and when θ → ∞, indicate high dependency in the lower rank space.

3. Gumbel Copulas

This Copula is popular for its ability to capture strong upper tail depen-
dence and weak lower tail dependence. Gumbel Copula (1960) is used to model
asymmetric relationship in the data (Jaworski et al., 2010). The Gumbel Copula
generator is written as:

φ(t)Gu = (− ln t)θ (2.26)

The CDF of the Gumbel Copula is given as

Cθ(x, y) = e−((− ln(x)θ)+(− ln(y)θ))
1
θ (2.27)

The Copula parameter θ is on the interval [1, ∞). If θ is equal 1, Copula shows
independence. When θ → ∞, the Gumbel Copula indicates high dependence
between the random variables.
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Figure 2.8: Gumbel Copula with parameter θ = 3. Gumbel Copula can capture strong upper tail
dependency and weak lower tail dependency.

Table 2.1: Three common families of Archimedean Copulas (Clayton, Frank, and Gumbel Copula) and
their generator, parameter space, and their formula. θ is the parameter of the Copula called the depen-
dence parameter, which measures the dependence between the marginal.

Family Generator Parameter Formula

Clayton φCl(t) = 1
θ (t
−θ − 1) −1 ≤ θ Cθ(x, y) = (x−θ + y−θ − 1)−

1
θ

Frank φFr(t) = − ln{ e−θt−1
e−θ−1 } −∞ < θ < ∞ Cθ(x, y) = −1

θ ln(1 + (e−θx−1)(e−θy−1)
e−θ−1 )

Gumbel φ(t) = (− ln t)θ 1 ≤ θ Cθ(x, y) = e−((− ln(x)θ)+(− ln(y)θ))
1
θ

2.3.3 Copula parameter estimation

The widely used estimation method for Copula parameter is the Maximum Likelihood
ML estimation methodology. The Copula parameters in this study are derived from
ML estimation.

2.3.3.1 CMLE and IFME

Canonical Maximum Likelihood Estimation CLME and Inference for Margins Esti-
mation are two methods for estimation of the Copula parameter. For both methods,
the first step is marginal distribution estimation. Then, a pseudo sample of the
transformed observation is used to estimate Copula parameter. In the IFME method,
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the marginal distribution’s parameters are estimated and in the CMLE the univariate
marginals are the empirical distribution functions (Giacomini, 2005).

It is assumed that the sample data (m1, m2, m3, . . . , mn) are n independent and
identically distributed (iid) random variable. These data are transformed into uniform
variates (r1, r2, r3, . . . , rn). The transformation is the non parametric estimation of the
empirical CDF of the marginal distribution.

r̂i = F̂i(mi) (2.28)

where

F̂i(m) =
1

n + 1

n

∑
i=1

1(mi,n ≤ m) (2.29)

and where 1 an indicator function.

The transformed data ri have uniform marginal distributions, and they are called
pseudo-samples.

ûi =
1

n + 1
rank(mi) (2.30)

where rank(mi) is the rank among i = 1, . . . , n in increasing order.

Let c(r1, r2, r3, . . . , rn) be the density function of Copula C(r1, r2, r3, . . . , rn; θ), and
let θ be Copula parameter. The Copula parameter θ is estimated by maximizing the
Maximum Likelihood equation

θ̂ = arg max
θ

n

∑
i=1

log c(r1, r2, r3, . . . , rn; θ) (2.31)

The interpretation of Copula parameter is shown in Figure 2.9. The Copula parameter
θ = 1.5 and 2 and 5 are used in the Copula formula and results are shown as follows:
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Figure 2.9: Frank, Gumbel, and Clayton Copula with parameter θ = 1.5. Frank Copula (left) shows
a weak tail dependency, Gumbel Copula (center) shows an upper tail dependency and a weak linear
dependency, Clayton Copula (right) shows a lower tail dependency in the data and very weak upper
tail dependency with Copula parameter θ = 1.5.
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Figure 2.10: Frank, Gumbel, Clayton Copula with parameter θ = 2. Frank Copula (left) represents
weak tail dependency and Gumbel Copula (center), there is upper tail dependence and weak linear
dependency, Clayton Copula (right) shows a clear lower tail dependence between x and y with Copula
parameter θ = 2.
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Figure 2.11: Frank, Gumbel, Clayton Copula with parameter θ = 5. Frank Copula (left) shows a weak
tail dependency and Gumbel Copula (center), upper tail dependence also shows a linear dependency
with dependency in lower part appears, Clayton Copula (right) indicates very high dependency on
lower tail part with Copula parameter θ = 5.



2.4 Computation of conditional CDF of Archimedean Copula 21

2.4 Computation of conditional CDF of Archimedean
Copula

In this section, the conditional CDF of Clayton, Frank, and Gumbel Copula are
computed. The conditional CDF Clayton Copula is given by:

CClayton
Y=y (x, y) = x−θ−1(−1 + x−θ + y−θ)(

−1
θ −1) (2.32)

and for Frank Copula:

CFrank
Y=y (x, y) =

e−xθ(−1 + e−yθ)

(−1 + e−θ)(1 + (−1+e−xθ)(−1+e−yθ)
−1+e−θ )

(2.33)

The conditional CDF Gumbel Copula is:

CGumbel
Y=y (x, y) =

(− ln xθ−1)(ln y(θ−ln yθ)(
1
θ
−1)

)

xe(− ln x(θ+ln yθ)(
1
θ
)
)

(2.34)

Empirical Copula CDF
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Figure 2.12: empirical Copula (left) of two random variables and corresponding Frank Copula (right)
that fitted to it.

Figure 2.12 shows the empirical Copula of two random variables. The Frank Copula
(right) is fitted to the empirical Copula. The Figure 2.13 shows the conditional CDF of
Frank Copula which is simulated with Copula parameter θ = 3 between two arbitrary
random variables x and y. The conditional cumulative CDF is shown for different val-
ues of y. It shows the different probability for different values of y. It shows that all
values for y = 0.5 have equal probability. However, the probability of values is not
equal to other lines which are shown in this figure.
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Figure 2.13: The conditional CDF Frank Copula with parameter θ = 3 and y = 0.05, . . . , 0.95.

2.5 Simulating from Copula-based conditional random
data

This section provides the essential steps for simulation data using Copula-based condi-
tional random data. The following steps are taken to fit the suitable theoretical Copula
function and assimilate data (Laux et al., 2011; Vogl et al., 2012).

1. Independent identically distribution (iid)-transformation of input time-series.

2. Compute the marginal distribution FM(m) and FN(n) of the input data M and N.

3. Transform data to rank space using the estimated marginal distributions of data
with ri and si in rank space.

4. Compute the empirical Copula to the dependence structure of random variables
using the rank transformed data.

Ce(x, y) =
1
n

n

∑
i=1

1(
ri

n + 1
6 x,

si

n + 1
6 y) (2.35)

5. Fit a theoretical Copula function Cθ(x, y).

6. Compute the conditional Copula function,

P(X 6 x | Y = y) =
∂

∂y
C(x, y) (2.36)

7. Sample random data from the conditional Copula CDF.

8. Transfer the sample back to the data space using the inverse marginal.
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Chapter 3

Data

3.1 GRACE

3.1.1 Mission states

The Gravity Recovery and Climate Experiment GRACE was launched on March 17,
2002 as a joint project between the US National Aeronautics and Space Administration
(NASA) and German Aerospace Center (DLR). The initial goal of the project was to
provide a high-resolution global model of the Earth’s static and time-variable gravity
field (Tapley et al., 2004).

The mission was expected to last for five years (Tapley et al., 2004), but GRACE
is still in orbit. Application of GRACE in the determination of the gravity variations
is useful in a variety of scientific research areas such as hydrology (Ramillien et al.,
2004), oceanography (Chambers and Willis, 2009), and solid Earth sciences (Swenson
et al., 2008).

The GRACE-mission satellite consists of two identical spacecrafts equipped with
a GPS flight receiver very similar to CHAMP satellite. These spacecrafts move in a
nearly polar orbit with the inclination of 89◦ and an altitude of approximately 500 km.
Both satellites measure the distance to each other through K-band microwave ranging
instrument. The absolute positions of the two spacecrafts are measured by GPS
receiver and twin star cameras. The twin satellites are also equipped with a precise
accelerometer, which can measure the non-gravitational acceleration.

GRACE satellites are tracking each other in Low Earth Orbit (LEO), so GRACE is
called low-low satellite to satellite tracking (LL-SST) mission. The Earth’s gravity
field variation can be determined by using the observed changes in the inter-satellite
distance, position, and acceleration of each satellite (Han, 2003).
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Figure 3.1: GRACE mission concept. GPS satellites measure the absolute position of twin satellites and
transmit the measurement to the GPS ground station for further processing. The distance between
these two satellites is measured through the measurement of K-band distance. The non-gravitational
acceleration is measured in each spacecraft precisely.

As it is shown in Figure 3.1, these two satellites constantly maintain a two-way
microwave-ranging link between them. This system detects the distance between the
satellites with an accuracy of about 1µm. The variation in the computed inter-satellite
range can be transformed into the variation of the Earth’s gravity field (Han, 2003).
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3.1.2 Data source

The GRACE coefficients are provided by four different institutes: The Geo Forschungs
Zentrum (GFZ) in Potsdam, Germany, the Center of Space Research (CSR) in Austin,
Texas, the Centre National D’Etudes Spatiales (CNES) in Toulouse, France, the Jet
Propulsion Laboratory (JPL) in Pasadena, California. In this thesis, the data are used
from CSR. The CSR provides spherical harmonic coefficients up to the degree and
order of 60.

In this thesis, 5 years of GRACE data (2005–2009) from CSR is used. The data is
given in terms of spherical harmonics. Due to some problems in orbital configuration
and de-aliasing products, high-frequency noise can be seen in the spherical harmonic.
The noises present themselves as North-South stripes. Therefore, to eliminate the
noise, we need to apply a filter to the data. A regularization filter, which is described in
(Lorenz, 2009) and (Sneeuw et al., 2014), is applied to decrease the high noise content
in the higher frequencies of the GRACE data. The degree 0 and 1 coefficients were
removed throughout our computations, as GRACE is blind towards these coefficients.
In this research, the monthly data is used from January 2005 until December 2009.

3.2 Data preprocessing

3.2.1 Removing degree 0 and 1

Degrees 0 and 1 are removed from the data sets. The GRACE coefficients are sorted
by coefficient from of January 2005 until December 2009. As it can be seen in Figure

Figure 3.2: The spherical harmonic coefficients are sorted in sixty months. There are monthly data from
January 2005 till December 2009.
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3.2, the 3717 coefficients within 60 months are stored in a matrix with the size of
[3717 × 60]. This arrangement is applied to both filtered and unfiltered GRACE-
coefficients.

3.2.2 Removing annual cycle

First, the annual cycle of the data is removed. Then, these data are assumed to be inde-
pendent and identically distributed (iid, Knill, 2009). Time series data are sometimes
influenced by annual effects. These effects can bring about changes in the data that
normally occur at the same time, and in about the same magnitude, every year. The
filtered and unfiltered GRACE coefficients show annual cycle as shown in Figure 3.3,
which is caused auto-correlation in the filtered and unfiltered GRACE coefficient.
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(a) C22,0 before removing the annual cycle
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Figure 3.3: Time series of C22,0 (degree of 22 and order of 0) in filtered GRACE (left). Time series of C22,0
in filtered GRACE after removing the annual cycle (right).
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Figure 3.3 (a) shows C22,0 from January 2005 until December 2009. The time-series
clearly shows an annual cycle. One way to remove this effect is subtracting the mean
annual cycle from the data. Therefore, the mean of January, February, . . . , December
is removed from the respective month in the GRACE data. The mean annual cycle is
derived from 5 years of GRACE-data (2005 – 2009). The Figure 3.3 (b) shows C22,0 after
removing the annual cycle.

3.3 Precipitation

Precipitation data is provided from different data sources, e.g. the Global Precipitation
Climatology Center "GPCC" (Schneider et al., 2013), Global Precipitation Climatology
Project "GPCP" (Adler et al., 2003), Climate Prediction Center precipitation "CPC"
(Chen et al., 2008), Climatic Research Unit "CRU" (Harris et al., 2013) and University of
Delaware "DEL" (Matsuura and Willmott, 2012).

Among the available precipitation data sets, the Global Precipitation Climatol-
ogy Center (GPCC) seems to deliver the most reliable data and widely used for
precipitation (Lorenz and Kunstmann, 2012). Therefore, precipitation data from GPCC
has been used for this study. It is developed on the basis of the most comprehensive
database of monthly observed worldwide precipitation data. Between 10,000 and
40,000 stations contribute to GPCC for monthly data collection. In GPCC, some process-
ing steps are also taken, including quality control, quality assurance, and interpolation
to the desired grid size.

In this study, the precipitation data are transformed to the spherical harmonic
coefficients (Sneeuw, 1994).

Figure 3.4: Precipitation data in July 2009 [mm]. This data is provided from GPCC.
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Chapter 4

Proof of concept

In this chapter, the applicability of Copula-based methods in case of Spherical Har-
monic Coefficients (SHC) derived from GRACE is analysed. As the approach involves
several drawings of random data, the impacts of this random nature on the results are
studied. The Copula method is applied to both unfiltered and filtered GRACE data.
Then filtered data are generated out of the unfiltered GRACE coefficients, based on
formerly derived dependency structure.

As a stochastic filtering is applied to the GRACE data, it can be assumed that a
linear dependency exists between the unfiltered and filtered data. In order to capture
the dependency structure between unfiltered and filtered GRACE coefficients, two
approaches are studied in this thesis:

1. Applying the Copula-based approach to monthly data and finding the relation
between one month in unfiltered and the corresponding month in filtered GRACE
coefficients data.

2. Applying the Copula-based approach to each of the coefficients in the period
from 2005 to 2009. Finding the relation between one time series of the coefficient
in unfiltered and corresponding coefficient in filtered GRACE data.

In the first approach, the dependency structure between filtered and unfiltered data are
derived for all SH-coefficients from a single month. In other words, all 3721 coefficients
from one month for filtered data set and all 3721 coefficients from the same month for
the unfiltered data are analysed. In the second approach, for each SH-coefficient the
dependency structure from the time-series of the whole 60 months is derived sepa-
rately.

4.1 Applying Copula-based method to monthly data

The monthly data are transformed to normalized rank space. The filtered and unfil-
tered GRACE coefficients show a linear dependency as it is shown in Figure 4.1.
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Figure 4.1: Filtered and unfiltered GRACE coefficients in 2005.

As it is shown in Figure 4.1, we can assume the Copula-based approach is able to find
this dependency structure between filtered and unfiltered data. Therefore, the Copula-
based method is studied for monthly filtered and unfiltered GRACE coefficients. The
processes of applying Copula-based technique are explained in detail in chapter 2. All
steps are also shown as an algorithm in Figure 4.2.
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Figure 4.2: Overview of the fitting the theoretical Copula to bivariate data and simulating data using
Copula approaches. Two monthly data sets are shown for unfiltered and filtered GRACE-coefficients.
Marginal distributions are fitted to both filtered and unfiltered GRACE-coefficients, respectively. These
distributions can be used for transforming the data from the data to the rank space. In the next step,
an empirical Copula is computed. Then, a theoretical Copula is fitted to the empirical distribution
function, and data are simulated. As the data are simulated in rank space, simulated data must be
transformed to data space.
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Figure 4.3: Unfiltered (left) and filtered (right) GRACE data in February 2005 [mm]. As it can be
seen, the noisy data in higher degrees show themselves in the map as North-South strips (Swenson
and Wahr, 2006). On the right side, North-South strips are removed from the map. Some patterns
are shown in South America, Himalayas and West Africa. These patterns show the water storage
anomalies in February 2005.

The monthly unfiltered and filtered GRACE data is shown for February 2005 in Figure
4.3. The Copula-based approach is expected to find the dependency structure between
unfiltered (left) and filtered (right) data. The results of Copula-based random data
from Clayton, Gumbel, and Frank Copula are shown as follows:

(a) Clayton (b) Gumbel

(c) Frank

Figure 4.4: Copula-based derived random data from Clayton, Gumbel, and Frank Copula in February
2005.
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As it can be seen in Figure 4.4 the North-South stripes are still on the maps. The results
show that Copula-based approach is not able to remove noisy data and simulate the
filtered data in the monthly approach. One reason for failing the Copula-based ap-
proaches in monthly studies can be related to the marginal distribution of unfiltered
and filtered GRACE coefficients that are shown in Figure 4.5.
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Figure 4.5: Fitting the marginal CDF to unfiltered and filtered GRACE coefficients in February 2005.

Figure 4.5 shows the theoretical marginal CDF distributions cannot fit to the empiri-
cal CDF distributions especially around zero. As the Figure 4.1 shows, there is still a
possibility to capture the dependency of the monthly coefficients. Therefore, finding
a suitable marginal distribution for monthly GRACE coefficients can be suggested for
future studies. In the second approach, the Copula-based method is applied to each
coefficient separately for the period from January 2005 until December 2009.
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4.2 Applying Copula-based method to each coefficient

4.2.1 Fitting marginal distribution

The CDF marginal distribution of three different coefficients and their errors are
presented in Figure 4.6. In this subsection, C3,02 in lower degrees, C21,00 in middle
degrees, and C59,01 in higher degrees are studied. The empirical (black), logistic (blue),
generalized extreme value (green), t-location-scale (light green), extreme value (red),
generalized Pareto (orange) and normal (light blue) are indicated in this figure.
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(b) C3,02 filtered
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Figure 4.6: Marginal CDF distribution and their error for three different coefficients.

In case of C3,02, the generalized extreme value, t-location-scale, and normal distribu-
tion dedicate very small error in both the filtered and unfiltered GRACE coefficients.
Also for C21,00 degree 21 and order 0, as it can be seen in the Figures 4.6 c and d,
t-location-scale, normal and generalized extreme value show better performance.
They fit to empirical CDF distribution with very small error.

As it is shown in Figure 4.6 (e), for C59,01 unfiltered GRACE coefficient, general-
ized extreme value and t-location-scale show less error compared to generalized
Pareto. In case of C59,01 filtered GRACE coefficient, extreme value (red), t-location-scale
(light green) and generalized extreme value (green) are fitted to the empirical (black)
distribution with very small error. For all the three coefficients shown, logistic
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distribution function does not fit to the empirical CDF distribution.

As in all three coefficients, generalized extreme value CDF distribution gives bet-
ter results with less error, in this study generalized extreme value distribution is used.
However, selecting a suitable marginal CDF distribution still open to be investigated.
Therefore, for future research, another marginal CDF distribution can be studied. For
more information about theoretical distributions, which are performed to find the
best-fitted distribution, see Appendix B.

4.2.2 Transforming data into rank space

The filtered, and unfiltered GRACE coefficients are transformed from data space to the
normalized rank space of [0, 1]. The unfiltered and filtered GRACE coefficients show
a linear dependency. Also the higher degrees show some linear dependency, even if
there is more scattering than in the lower degrees. It is also the same for the other
coefficients which are presented in Appendix D.
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Figure 4.7: The unfiltered and filtered GRACE coefficients for order 0 and degree 2 to 10.
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Figure 4.8: The unfiltered and filtered GRACE coefficients for order 0 and degree 11 to 25.



38 Chapter 4 Proof of concept

unfiltered
0 0.2 0.4 0.6 0.8 1

fil
te

re
d

0

0.2

0.4

0.6

0.8

1
Empirical Copula C

C26,00

unfiltered
0 0.2 0.4 0.6 0.8 1

fil
te

re
d

0

0.2

0.4

0.6

0.8

1
Empirical Copula C

C27,00

unfiltered
0 0.2 0.4 0.6 0.8 1

fil
te

re
d

0

0.2

0.4

0.6

0.8

1
Empirical Copula C

C28,00

unfiltered
0 0.2 0.4 0.6 0.8 1

fil
te

re
d

0

0.2

0.4

0.6

0.8

1
Empirical Copula C

C29,00

unfiltered
0 0.2 0.4 0.6 0.8 1

fil
te

re
d

0

0.2

0.4

0.6

0.8

1
Empirical Copula C

C30,00

unfiltered
0 0.2 0.4 0.6 0.8 1

fil
te

re
d

0

0.2

0.4

0.6

0.8

1
Empirical Copula C

C31,00

unfiltered
0 0.2 0.4 0.6 0.8 1

fil
te

re
d

0

0.2

0.4

0.6

0.8

1
Empirical Copula C

C32,00

unfiltered
0 0.2 0.4 0.6 0.8 1

fil
te

re
d

0

0.2

0.4

0.6

0.8

1
Empirical Copula C

C33,00

unfiltered
0 0.2 0.4 0.6 0.8 1

fil
te

re
d

0

0.2

0.4

0.6

0.8

1
Empirical Copula C

C34,00

unfiltered
0 0.2 0.4 0.6 0.8 1

fil
te

re
d

0

0.2

0.4

0.6

0.8

1
Empirical Copula C

C35,00

unfiltered
0 0.2 0.4 0.6 0.8 1

fil
te

re
d

0

0.2

0.4

0.6

0.8

1
Empirical Copula C

C36,00

unfiltered
0 0.2 0.4 0.6 0.8 1

fil
te

re
d

0

0.2

0.4

0.6

0.8

1
Empirical Copula C

C37,00

unfiltered
0 0.2 0.4 0.6 0.8 1

fil
te

re
d

0

0.2

0.4

0.6

0.8

1
Empirical Copula C

C38,00

unfiltered
0 0.2 0.4 0.6 0.8 1

fil
te

re
d

0

0.2

0.4

0.6

0.8

1
Empirical Copula C

C39,00

unfiltered
0 0.2 0.4 0.6 0.8 1

fil
te

re
d

0

0.2

0.4

0.6

0.8

1
Empirical Copula C

C40,00

Figure 4.9: The unfiltered and filtered GRACE coefficients for order 0 and degree 26 to 40.
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Figure 4.10: The unfiltered and filtered GRACE coefficients for order 0 and degree 41 to 55.
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Figure 4.11: The unfiltered and filtered GRACE coefficients for order 0 and degree 56 to 60. The data
transformed to the rank space using the CDF which are shown in the Figure 4.6

Figure 4.11 shows the scatter plots of order 0, for other order the relation between the
unfiltered and filtered coefficients shows identical behavior.

4.2.3 Computing Copula parameter

The Copula parameters are computed as explained in subsection 2.3.3. Figure 4.12
shows Archimedean Copula parameters for each coefficient.

Clayton parameter for filtered and unfiltered GRACE coefficients are shown in
Figure 4.12 (a), the lower degrees and orders indicate high dependency between the
two data sets. However, a weak dependency between filtered and unfiltered GRACE
coefficients is shown for the higher degrees and orders. As it can be seen in Figure 4.12
(b) Frank Copula parameters indicated that Frank Copula can capture the dependency
between unfiltered and filtered GRACE coefficients. However, for some coefficients in
higher degree and order, the Clayton is not able to capture the dependency structure
between these two data sets.



4.2 Applying Copula-based method to each coefficient 41

Figure 4.12: The computed Copula parameters for each coefficient of unfiltered and filtered GRACE data.
The vertical axis shows the degree, and horizontal shows the order of coefficients. Note the Copula
parameters of these three Archimedean Copulas should not be compared to each other, because different
Copula has a different range of possibility of Copula parameter. Higher parameters indicate higher
dependency which can be concluded from the Copula parameter and the rank correlation Kendall’s τ,
see Appendix C.

The Gumbel Copula parameters illustrate the high dependency between data in lower
degrees and orders. Gumbel can capture the dependency of filtered and unfiltered
GRACE coefficients better than Clayton.

As the dependency between the unfiltered and filtered coefficients are linear, it
was predictable that Frank and Gumbel Copula can model the dependency structure
between the coefficients.
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4.2.4 Fitting theoretical Copula

The Figure 4.13 shows the fitted theoretical Copula for the coefficients of lower degree
(C2,00, C5,01, and C6,01) and higher degrees (C56,00 and C60,00).
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Figure 4.13: Fitting the theoretical Copula to dependency structure between unfiltered and filtered data.

C5,01 and C6,01 show a very high linear dependency and all the three theoretical Copu-
las capture this dependency. C60,00 shows upper tail dependence and Gumbel Copula
fits better to this dependency structure. For other coefficients, results are the identical
which can be found in D.
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4.2.5 Simulating Copula-based derived random data

After fitting the theoretical Copula to the empirical Copula, the random data are gen-
erated in the rank space using input data as it is shown in 2.5. In this research, 1000
random time series data are simulated for each coefficient. It was assumed that 1000
samples could give a reliable result. However, for future studies this process can be
done using a fewer or more number of sampling data.

4.2.6 Transferring data from rank space to data space

These simulated data are transformed from the normalized rank space to the spectral
space. As all of the random data have equal probability, the mean value of the 1000
random data are computed. In order to compare the data with the filtered GRACE
coefficients, first, the data are transformed to the spatial domain.
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4.3 Comparison

The main aim of this chapter is to see whether the Copula-based approach can
capture the dependency structure between GRACE unfiltered and filtered data. Figure
4.14 presents unfiltered GRACE data (up-left) and filtered GRACE data (up-right) in
February 2006. After filtering the raw data, some patterns became visible in South
America and northern Australia and the Himalayas.

Figure 4.14: Unfiltered and filtered GRACE data in February 2006 [mm]. The unfiltered data show
on the left side. As it can be seen, the noisy data in higher degrees show themselves in the map as
North-South strips (Swenson and Wahr, 2006). The data provided by CSR requires filtering to be
studied. In this study, data have been filtered by stochastic filtering. On the right side, North-South
strips have been removed from the map. Some patterns appear in South America, northern Australia,
Himalayas and West Africa. These patterns show water storage anomalies in February 2006. The
simulated data using Frank Copula, Clayton Copula, and Gumbel Copula are shown in this figure.
The unfiltered data in February is considered as the source data for the Copula-based approach. The
results are compared with the filtered data (top right) for validation the results. Moreover, it can be
seen in the figure that the simulated data show nearly the same patterns, as the filtered data in South
America, North Australia, West Africa and Himalayas.

Figure 4.14 shows the result of simulated data using Copula-based approach. The
result of Clayton Copula(left), Frank Copula (center), and Gumbel Copula (right)
are shown in this figure. The Copula-based simulated data have similar patterns
compared to filtered GRACE data. However, for validation of the results, some tests are
needed to be ensure the results e.g. comparing of degree variance, the residual, and
analysing the time series of filtered GRACE data and random data consistency with the
derived dependency structure on the map.
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4.3.1 Degree variance

In this step, degree variance (i.e. the total spectral power of the signal per degree)
of unfiltered and filtered GRACE data, and the simulated data by the Copula-based
approach are observed. The degree variance is expressed by the following equation:

σ2
l =

l

∑
m=−l

σ2
lm (4.1)
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Figure 4.15: Degree variance unfiltered and filtered GRACE data and Copula filtered data.

As it can be seen in the Figure 4.15 the degree variance of unfiltered data (black) falls
sharply until to degree 25 to 30, then there is a slight increase up to degree of 60.
The red line shows filtered data which decreases contentiously. The Copula-based
derived random data from Gumbel Copula is in blue, Clayton Copula is purple, and
Frank Copula is in green. They decrease sharply up to degree 60. This Copula-based
random data show very good agreement with the original (filtered GRACE) data.
Figure 4.15 (a) shows degree variance of data for March 2005. A difference can be seen
in lower degrees between filtered GRACE and the Copula-based derived random data.
However, after degree 3 they show the same degree variance up to degree of 60.

Figure 4.15 (b) and (f) show the degree variance of data for July 2005. The lines
indicate that although unfiltered (black) shows higher degree variance in degree 2 and
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3, it does not affect the Copula-based derived random data. The results are completely
matched to original filtered data.

Figure 4.15 (c) presents the degree variance of data for November 2005. A big gap is
shown in lower degrees between the unfiltered and filtered data. The Copula-based
random data are agreed very well to filtered data, their degree variances increase up
to degree 4, and then the degree variance decreased sharply from degree 4 to degree 60.

Figure 4.15 (d), (e), (h), and (g) show the same degree variance for the unfil-
tered, filtered, Gumbel, Clayton, and Frank Copula up to degree 10. Then the filtered
and Copula-based derived random data decrease until the degree 60.



48 Chapter 4 Proof of concept

4.3.2 Residual

One way to analyze the performance of Copula-based derived random data are
computing the residual map between the Copula-based simulated data and filtered
GRACE data. In this case, the residual plot can be computed by subtracting filtered
GRACE data from the data that are simulated by the Copula-based approach.
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Figure 4.16: Residual of simulated data using Archimedean Copula a) Clayton Copula, b) Frank Copula,
c) Gumbel Copula in February 2006 [mm].

The results are shown in Figure 4.16. In these figures, the color bar has been changed
to ±50 mm. The residual maps show mainly random patterns, which seem similar
to typical GRACE-type North-South stripes. However, some regions also show some
physical patterns, e.g. over central Africa. Furthermore, all three maps show similar
features. They show the same pattern, but the magnitudes of the patterns are different.
Errors are shown randomly, overestimation and underestimation in simulated data can
also be observed. However, in the south part of Africa, an overestimation in simulated
random data appears in all residual maps for February 2006. The other months look
very similar, but these are not shown further here.
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4.3.3 Analysing time series in different area and their RMS

In this subsection, three major river basins that are well-distributed over the globe
are chosen. The river basins are Amazon, Mississippi, and Ganges. Each basin has
a time series for 60 months. In Figure 4.17 (a), the water storage anomaly is shown
from January 2005 to December 2009 in Amazon. The time series of Copula-based
random data derived from Gumbel Copula, Frank Copula, and Clayton Copula agree
well with the filtered GRACE data. While, the time series of Gumbel Copula shows
better performance. For most of the months, the results of Gumbel Copula is relatively
agreed with filtered GRACE data.
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Figure 4.17: Time series of filtered data and Copula derived random data in Amazon, Mississippi, and
Ganges

As it can be seen in the Figure 4.17(b) in Mississippi River, data that are simulated by
Copula-based approach show a similar trend and dynamic as filtered data. During
most months (except for the peaks and troughs), the data derived from the Gumbel
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Copula, Frank Copula, and Clayton Copula agrees well with the filtered GRACE data.
The figure implies that Copula-based approach can maintain the dynamic behaviour
of the data in Mississippi. However, Copula-based data show a difference of around
20 mm in September 2005 or March 2009.

Figure 4.17(c) indicates time series of GRACE filtered data and Copula-based ran-
dom data (Clayton, Frank, and Gumbel Copula) in the Ganges. The data derived from
the Gumbel Copula, Frank Copula, and Clayton Copula agree well with the filtered
GRACE data.

Table 4.1: RMS of filtered GRACE data, Clayton, Gumbel, and Frank Copula in Amazon, Mississipi and
Ganges

RMS [mm] Filtered Clayton Gumbel Frank

Amazon 123.95 121.17 122.49 121.41
Mississippi 40.58 39.68 40.07 40.07
Ganges 93.28 91.78 91.73 92.16

The RMS of the signal for the filtered GRACE data and the Copula-based random data
derived from Clayton Copula, Gumbel Copula, and Frank Copula are shown for Ama-
zon, Mississippi, and Ganges. For all of them the RMS of the conditional random data
from derived dependency structure from the Copula-based approach are the same
power as filtered GRACE data. The results of the RMS show that Copula-based ap-
proach will maintain the power of the signal.

Table 4.2: Correlation of Clayton, Gumbel, and Frank Copula with filtered GRACE data in Amazon,
Mississipi and Ganges

Correlation with filtered Clayton Gumbel Frank

Amazon 0.99 0.99 0.99
Mississippi 0.98 0.99 0.99
Ganges 0.99 0.99 0.99

The correlation between random data with filtered GRACE data are shown in Table 4.2.
The correlation is equal to 0.99 for all Copula-based random data (Clayton Copula,
Gumbel Copula, and Frank Copula). Therefore, Copula-based approach maintains the
dynamic of filtered behaviour.

The results in spectral and spatial domains show that Copula-based approach
successfully captured the dependency structure of filtered and unfiltered GRACE
data.
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Chapter 5

Prediction of water storage changes
from precipitation

5.1 Introduction

In this Chapter, the idea of predicting the water storage anomalies from precipitation
data is studied as an application of the Copula-based method. For this purpose, the
monthly filtered GRACE data and monthly precipitation data from January 2005 to
December 2009 are analysed.

The left flowchart 5.1 shows an overview of fitting the theoretical Copula to em-
pirical Copula. The processing steps are similar to Chapter 4. However, instead of
unfiltered GRACE data, now the precipitation data are used. At first, precipitation and
filtered GRACE data are transformed to the rank space. Then, the empirical Copula
between the precipitation and filtered GRACE data are computed. Finally, the three
Archimedean Copula are fitted to the empirical Copula.

The shown flowchart in 5.1 (right) presents how the water storage anomalies are
predicted from precipitation using Copula-based approaches. The theoretical Copula
is fitted to the empirical Copula. One thousand random data are drawn from derived
conditional Copula-based approach. These drawn data is transformed to the data
space. These Copulas derived random data are expected to be the water storage
anomalies. Therefore, the Copula-based data are compared with water storage
anomalies which is derived from filtered GRACE data.
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Figure 5.1: Overview of fitting Copula to bivariate data and simulating data using Copula-based ap-
proaches for precipitation and filtered GRACE data.
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5.2 Prediction of water storage anomalies from
precipitation using Copula-based approach

Figure 5.2 represents a sample of Copula-based approach application. We want to
find out if the Copula-based methods are able to capture the dependency structure
between precipitation and filtered GRACE data.

The color bar is not the same because the magnitude of the water storage anomalies
and precipitation is different. Furthermore, the maps are shown different patterns of
precipitation and water storage anomalies. The red circle points that the patterns are
totally different in South America.

Figure 5.2: Overview of Copula-based approach application, the prediction of water storage anomalies
from precipitation data using Copula-based techniques. Precipitation is shown on the left, and the
water storage anomalies data is on the right side in September 2009 [mm]. As it can be seen, different
patterns are shown in South-America specified by a red circle.

As a result, all the processes mentioned in chapter 4 are applied to find out the relation
between the filtered GRACE and precipitation data.
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5.2.1 Transforming data into rank space
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Figure 5.3: Precipitation and filtered GRACE coefficients. Degree 2–16 and order 0.
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Figure 5.4: Precipitation and filtered GRACE coefficients. Degree 17–31 and order 0.
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Figure 5.5: Precipitation and filtered GRACE coefficients. Degree 32–46 and order 0.
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Figure 5.6: Precipitation and filtered GRACE coefficients. Degree 47–60 and order 0.
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Figure 5.3, 5.4, 5.5, and 5.6 show a linear dependency between the precipitation and
filtered data from degree 2 to degree 22 while it is more scattered in the higher de-
grees. However, for some coefficients, it is completely independence. For instance,
C36,00 show the total random distribution, and it can be assumed that the Copula-based
approach is not able to capture the dependency structure for this coefficient.

5.2.2 Computing Copula parameter

The Copula parameters for the precipitation and filtered GRACE data are computed.
The results are as follows.

Figure 5.7: Copula parameters for each coefficient. The vertical axis shows the degree and horizontal dis-
plays the order of coefficients. Clayton Copula parameters are on the top-left, Frank Copula parameter
is located on the top-right, and Gumbel Copula parameters are shown on the bottom. Note the Copula
parameters of these three Archimedean Copulas should not be compared to each other, because differ-
ent Copula has a different range of possibility of Copula parameter. Higher parameters indicate higher
dependency which can be concluded from the Copula parameter and the rank correlation Kendall’s τ,
see Table C.1.

Figure 5.7 shows the Clayton Copula parameters on the top-left, Frank Copula param-
eters on the top-right, and the Gumbel Copula parameters on the bottom. Even the
parameter are different for all three Archimedean Copulas, the dependency is high
in the lower part of the spectrum, and lower dependency can be observed in higher
degrees. For instance, Figure 5.7 (top-right) show high dependency up to degree 50.
However, these parameters show very weak dependency for the coefficients that are
higher than degree 50.
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Figure 5.8: Fitting the Archimedean Copula to dependency structure between filtered and precipitation
data.

The top row of the Figure 5.8 shows a negative linear dependency for the coefficient
C2,00 which can only be represented by Frank Copula. For the coefficients, C5,01 and
C6,01 all the three Copula models can capture the dependency structure between the
precipitation and filtered GRACE coefficients. However, for higher degrees a weak de-
pendency can be observed e.g. C56,00 and C60,00 show a very weak dependency.
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5.3.1 Comparison

Figure 5.9: The water storage anomalies are predicted from precipitation data using the Copula-based
approach in September 2009.

Figure 5.9 shows the results of three different Archimedean Copula in September
2009. Precipitation is used as input data on the top-left. Also water storage anomalies
(top-right) is presented as reference map to compare with the simulated data. The
results of three different Archimedean Copula, Gumbel Copula (left), Clayton Copula
(center), and Frank Copula (right) show very similar patterns compared to filtered
GRACE data. However, the patterns of the results of Gumbel Copula and Clayton
Copula show a higher magnitude.

For validation the results, the degree variance, the residual, and catchment anal-
yses are studied as follows.
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5.3.2 Degree variance

The total spectral power of the signal per degree is computed for precipitation,
unfiltered and filtered GRACE data, and the Copula-based data derived from the
dependency structure between the precipitation and filtered GRACE data. The degree
variance implies whether the Copula-based approach can maintain the power of the
signal.
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(c) November 2005
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(e) September 2008
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Figure 5.10: Degree variance precipitation, unfiltered and filtered GRACE data, and Copula derived
random data. The degree variance of the precipitation (star blue), Gumbel Copula (blue), Clayton
Copula (purple), Frank Copula (green), unfiltered (black), and filtered (red) GRACE data are shown
this figure.

Figure 5.10 shows a big gap in the lower degrees between the Copula-based data and
the filtered GRACE data. However, 5.10 (a) and (g) show similar degree variance for
the Copula-based data and filtered GRACE data. Figure 5.10 (e) shows the same de-
gree variance for filtered GRACE data and Copula-based derived random data after the
degree 2 for Gumbel Copula and Clayton Copula. Also, for all months, the degree
variance of the Frank Copula show lower degree variance compared to other Copula-
based data.
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5.3.3 Residual

Copula-based simulated data is subtracted from filtered GRACE data as the reference.
The residual maps of the Copula-based data and filtered GRACE data are shown in
Figure 5.11. As it can be seen in 5.11a, 5.11b, and 5.11c, even they are shown the random
patterns over the oceans, all three maps show similar residual patterns over the land
e.g. South America and West Africa. However, the Copula-based approach can still
capture the patterns. Therefore, the Copula-based approach needs to be improved to
give more precise results.
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Figure 5.11: Residual of Copula-based data derived from the dependency structure between precipitation
and filtered GRACE data. The residual of the Clayton Copula (a), Frank Copula (b), and Gumbel (c)
are shown in September 2009 [mm]. It should be mentioned the color bar is changed to ±50 mm.
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5.3.4 Analysing time series in different areas and their RMS

In this subsection, first three basins are selected based on seasonal variability, size, and
geographical property. Then, the time series of Copula-based derived random data
and filtered GRACE data are analysed within the time period from January 2005 to
December 2009.
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Figure 5.12: Time series of the Copula-based data and GRACE data in Zambezi, OB, and Victoria River.
Water storage anomalies are shown in y axis in mm, and the x axis gives the period from January
2005 to December 2009.

Time series of water storage anomalies and derived random data using Copula
(Clayton, Gumbel, and Frank Copula) in Zambezi river basin are shown in Figure
5.12 (a). The time series of the Gumbel Copula (blue), Clayton Copula (purple), and
Frank Copula (green) have a resonance agreement with the filtered GRACE data (red).
Time series of the Gumbel Copula (blue) and Clayton Copula(purple) show better
performance compared to Frank Copula (green). In some months, they agree well
with the filtered GRACE data (red). Although, Frank (green) shows less agreement.
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The time series of water storage anomalies and Copula-based derived random data
from Gumbel (blue), Clayton (purple), and Frank (green) are presented in OB. The
time series of Copula-based data derived from precipitation and filtered GRACE data
on Victoria River is shown in 5.12 (c). All the Copula-based predicted data indicate
a good agreement with filtered GRACE data. In peak points, the time series of the
Clayton Copula (purple) shows better performance considering its less difference with
original data. The difference between Copula-based data and filtered data are around
60 mm, 10 mm, and 20 mm for the Frank Copula, Clayton Copula, and Gumbel Copula
in January 2006 respectively.

Table 5.1: RMS of filtered GRACE data, Clayton, Gumbel and Frank Copula in Zambezi, OB, and Vic-
toria river.

RMS [mm] Filtered Clayton Gumbel Frank

Zambezi 52.54 45.60 43.35 22.57
OB 21.39 7.56 10.56 3.88
Victoria 45.27 45.38 38.65 19.76

The RMS of filtered GRACE data is 52.54 mm in Zambezi. The information of the RMS
for Copula-based derived random data show Clayton Copula and Gumbel Copula
have better performance. However, RMS of Frank Copula is 22.57 mm and it shows
Frank Copula can not keep the power of the signal. According to Table 5.1, the Copula
derived random data show a very weak power of signal compared to filtered GRACE
data. The result of Clayton Copula is similar to filtered GRACE data in Victoria River.
However, the RMS of Copula derived random data from Frank Copula shows this
Copula is not able to keep the power of the signal.

Table 5.2: Correlation of Clayton, Gumbel and Frank Copula with filtered GRACE data in Zambezi, OB,
and Victoria river.

Correlation with filtered Clayton Gumbel Frank

Zambezi 0.91 0.90 0.90
OB 0.67 0.84 0.83
Victoria 0.79 0.79 0.77

As it can be seen in Table 5.2 the correlation between the Copula-based data and fil-
tered GRACE data is very high in Amazon. Therefore, Copula-based random data can
maintain the dynamic behaviour of filtered GRACE data in Amazon. However, the
correlation is weaker in Victoria River and OB. In the case of dynamic behaviour of
simulated data, Gumbel and Frank Copula with correlation 0.84 and 0.83 show better
performance in OB.
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5.3.5 Prediction of precipitation from GRACE coefficients using
Copula-based approach

The precipitation is simulated from filtered GRACE data to show the possibility of pre-
cipitation prediction from water storage changes. An Overview of precipitation predic-
tion from filtered GRACE data using Copula-based approach is illustrated in the Figure
5.13.

Figure 5.13: Overview of precipitation prediction from filtered GRACE data using Copula-based ap-
proach. The theoretical Copula is fitted to the empirical Copula, after that, one thousand random
data are simulated from filtered GRACE data. After that, the Copula-based derived random data are
transformed to data space. As all of the Copula-based derived random data have the same weight of
probability, the mean value of the one thousand Copula-based derived random data is computed as the
corresponding value.
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As it can be seen in Figure 5.14, filtered GRACE data of September 2009 is used as
input data to predict the precipitation data. They have different scale bar and pat-
terns. The Copula derived random data are shown in Figure 5.15. The Copula derived
random data from Gumbel Copula (left), Clayton Copula (center), and Frank Copula
(right) show similar patterns compared to real precipitation data (top-right) in Septem-
ber 2009.

Figure 5.14: Predicting precipitation data from GRACE data using Copula-based approach. The Copula-
based method captures the dependency structure of precipitation and filtered GRACE data.

Figure 5.15: Precipitation is simulated from filtered GRACE data (top-left) using Copula-based approach
in September 2009.
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Chapter 6

Summary, conclusion and outlook

6.1 Summary and conclusion

Data from the Gravity Recovery and Climate Experiment (GRACE) has significantly
improved our knowledge of the terrestrial water cycle. With the availability of GRACE
data from 2002, we are now able to even perform climate change studies with respect
to water storage variations. However, as GRACE is already after its expected lifetime,
we have to find methods for filling the gaps in both past data and also until the launch
of GRACE Follow On.

In this thesis, the potential of the Copula-based approach for simulation and es-
timation GRACE data from other hydrological data sources is analysed. The method
exploits linear and non-linear dependency between two or more variables by fitting
a theoretical Copula function into an empirical bivariate or multivariate distribution
function. Finally, new data, which is consistent with the previously derived depen-
dence structure, can be simulated by evaluating the conditional distribution function
which is given by the theoretical Copula.

First, the Copula-based methods are introduced briefly including the definition
and characteristic of Copula theory which is based on the Sklar’s theorem. The
Archimedean Copulas are one the most common Copula families. Three most widely
used of Archimedean Copula are introduced in chapter 2. In addition, an approach
is presented how conditional random data can be sampled which is consistent with
the previously derived dependence structure between two data sets. Further, the
Copula-based approach is introduced as a method that can capture the dependency
in spectrum data such as spherical harmonic coefficients (which can be) provided by
GRACE.

In chapter 3, the data used in this study are introduced. In chapter 4, it is anal-
ysed if the Copula-based data merging algorithm can be applied to spherical harmonic
data from GRACE. Therefore, conditional random samples, which are derived from
the dependency structure between filtered and unfiltered GRACE-data, are evaluated
in the spatial, spectral, and time domain. Comparing global maps of water storage
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changes from both the Copula-derived and filtered data reveals only minor random
differences. As three Archimedean Copulas (Clayton, Frank, Gumbel) are applied to
the data, in terms of filtering performance all studied Copula-based approach show
nearly the same performance e.g. RMS of initial filtered GRACE data is 123.95 mm and
the RMS of Clayton, Gumbel and Frank are 121.17 mm, 122.49 mm and 121.41 mm
respectively in Amazon basin. In terms of correlation, all of them indicate high
correlation with filtered data.

Chapter 5 evaluates if Copula-based approaches are able to estimate reliable wa-
ter storage changes from independent hydrological data. Therefore, the level of
dependency between water storage changes from GRACE and precipitation data
from GPCC are analysed. This dependency is used to generate conditional random
data from precipitation data, which is then compared in the spatial, spectral, and
time domain against GRACE-derived water storage changes. Then the water storage
anomalies are simulated from precipitation based on the fitted theoretical Copula. The
analysis shows that the estimates and the original filtered GRACE data are in a very
good agreement. The RMS of initial filtered GRACE data is 52.54 mm and the RMS of
Copula-based approach data from Clayton, Gumbel, and Frank Copula are 45.60 mm,
43.35 mm, and 22.57 mm in Zambezi respectively. Also, the correlation between the
Copula-based approach data and filtered GRACE data are 0.91, 0.90, 0.90 for Clayton,
Gumbel, and Frank Copula respectively.

Thus, from this analyses which are shown in the thesis, first of all we can apply
this Copula-based approach to spherical harmonic data and we can also use such an
approach in order to fill the gap in the GRACE time series.
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6.2 Outlook

In this research, it is for the first time that the Copula-based approaches are applied
to process the GRACE data. These techniques are successfully applied in different
fields of science like economics, hydrology, and climate study. The results show that
it is a feasible idea to design the tailor made Copulas for geodetic applications e.g.
filtering and data assimilation. Even this study shows good results, there are still some
shortcomings. Finding a suitable marginal distribution has to be further investigated.
Here we only test three Copulas. Other Copulas that might make more sense has to be
investigated. Furthermore, the data show an annual cycle, removing or keeping this
annual effect should be investigated.

The most important part of this study is the estimation of reliable water storage
anomalies from a hydrological parameter. Here, precipitation is used, and other types
of hydrological data like evapotranspiration, moisture flux divergence or even soil
moisture data could be considered to find better alternatives for prediction of water
storage changes.

Also, the monthly precipitation data is used for predicting water storage changes. We
used the precipitation of one month for the prediction of water storage change of the
corresponding month. For future studies, it might be worth to investigate the delay of
water storage changes to precipitation.

Another suggested application for a future study is assessing the filtering per-
formance of different filters using Copula-based techniques. In other words, one
can always assess the filtered field and its dependency to the original field using
Copula-based approach. It provides the opportunity to assess the performance of a
filter.
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Appendix A

Time variable GRACE coefficients and
surface density changes

A.1 Computation of the time variable GRACE coefficients

The geoid is defined as the equipotential surface of the Earth’s gravity field, which
coincides with the mean sea level of oceans (Torge, 2001). The geoidal height can be
computed from a spherical harmonic representation of the Earth’s gravity field:

N(θ, λ) = R
∞

∑
l=0

l

∑
m=0

P̃lm(cos θ)(C̃lm cos mλ + S̃lm sin mλ) (A.1)

where

N(θ, λ) is the geoid height at a point with the spherical coordinates (θ, λ).

R is the radius of the Earth which is approximately 6378.137 km.

C̃lm and S̃ are the normalized Stockes coefficients.

P̃lm are normalized associated Legendre functions of degree l and order m.

As the only time variable parameters in A.1 are the C̃lm and S̃lm, a time-dependent
change in the geoid heights ∆N is reflected by a difference between these coefficients.
∆N is a time-dependent change in the geoid. This change can be shown in terms of
∆C̃lm and ∆S̃lm, the spherical harmonic coefficients, as

∆N(θ, λ; t) = R
∞

∑
l=0

l

∑
m=0

P̃lm(cos θ)(∆C̃lm(t) cos mλ + ∆S̃lm(t) sin mλ) (A.2)
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A.2 Computation of surface density changes

The redistribution mass density ∆ρ(r, φ, λ) can cause the geoid change ∆N. The rela-
tion between the geoid change and density change is given by (Wahr et al., 1998):

∆C̃lm(t) =
3

4πRρave(2l + 1)

∫ ∫
∆ρ(r, θ, λ; t)P̃lm(cos θ)× (

r
R
)l+2 cos(mλ) cos φdφdλdr

(A.3)

∆S̃lm(t) =
3

4πRρave(2l + 1)

∫ ∫
∆ρ(r, θ, λ; t)P̃lm(cos θ)× (

r
R
)l+2 sin mλ cos φdφdλdr

(A.4)
where r is the distance of computation point from the Earth center, ρave is the average
density of the Earth which is 5517 kg

m3 . ∆ρ is concentrated in a thin layer of thickness
H at the Earth’s surface. H must be thick enough to contain the atmosphere, oceans,
ice caps, and ground water storage with significant mass fluctuations. ∆σ is the radial
integral of ∆ρ through this layer in following form:

∆σ(φ, λ) =
∫

∆ρ(r, φ, λ)dr (A.5)

therefore,

∆σ(φ, λ) = Rρw

∞

∑
l=0

l

∑
m=0

P̃lm(sin φ)(∆C̃lm cos(mλ) + ∆S̃lm sin(mλ)) (A.6)

where ρw is the density of water which is 1 kg
m3 . Also ∆σ

ρw
is the change in the surface

mass expressed in water equivalent heights. The relation between C̃lm, S̃lm and Clm,
Slm is given by:

∆C̃lm =
ρave

3ρw

2l + 1
1 + kl

∆Clm (A.7)

∆S̃lm =
ρave

3ρw

2l + 1
1 + kl

∆Slm (A.8)

where kl is love number, the mass fluctuations on the surface deforming the underlying
Earth, which implicates a change in the gravitational potential, and then a change in
the shape as well. The change in surface mass density caused by the changes ∆Clm and
∆Slm in the geoid coefficients is given:

∆σ(φ, λ) =
Rρave

3

∞

∑
l=0

l

∑
m=0

2l + 1
1 + kl

P̃(sin φ)(∆Clm cos(mλ) + ∆Slm sin(mλ)) (A.9)
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Appendix B

Overview of different parametric
distribution

This part covers probability distributions and related mathematical constructs that are
referenced in the thesis but are not covered in detail.

B.1 Normal distribution

A normal distribution in a variable X with mean µ and variance σ2 is a statistic distri-
bution with probability density function

p = F(x|µ, σ) =
1

σ
√

2π

∫ x

−∞
e−

(t−µ)2

2σ2 .dt (B.1)

µ is the mean value

σ is the variance of data
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Figure B.1: Normal distribution
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B.2 Generalized extreme value distribution

The generalized extreme value distribution is often used to model the smallest or
largest value among a large set of independent, identically distributed random val-
ues representing measurements or observations. The probability density function for
the generalized extreme value distribution is

y = f (x|k, ρ, σ) = (
1
σ

exp(−(1 + k
(x− µ)

σ

− 1
k
))(1 + k

(x− µ)

σ

−1− 1
k
)) (B.2)

location parameter µ

scale parameter σ

shape parameter k 6= 0

The generalized extreme value combines three simpler distributions into a single form,
allowing a continuous range of possible shapes that include all the three of the simpler
distributions. These are defined as type I, when k = 0 and for k > 0 is called type I I
and k < 0 is type I I I.
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Figure B.2: Generalized extreme value distribution

B.3 Extreme value distribution

The extreme value distribution is appropriate for modeling the smallest value from a
distribution whose tails decay exponentially fast. It can also model the largest value
from a distribution, such as the normal, by using the negative of the original values.
The probability density function for the extreme value distribution

y = f (x|k, ρ, σ) = σ−1 exp(
(x− µ)

σ
exp(− exp(

(x− µ)

σ
))) (B.3)
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Figure B.3: Extreme value distribution

B.4 Generalized Pareto distribution

The generalized Pareto distribution is often used to model the tails of another distribu-
tion. The generalized Pareto distribution allows a continuous range of possible shapes
that include both the exponential and Pareto distributions as special cases. The proba-
bility density function for the generalized Pareto distribution:

y = f (x|k, σ, θ) = (
1
σ
)(1 + k

x− θ

σ
)−1− 1

k (B.4)

The generalized Pareto distribution has three basic forms, each corresponding to a
limiting distribution of data from a different class of underlying distributions.

Distributions whose tails decrease exponentially.

Distributions whose tails decrease as a polynomial.

Distributions whose tails are finite.
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Appendix C

Rank correlation

The observations (M1, N1) and (M2, N2) are mentioned to be consistent if (M1 < M2)
and (N1 < N2) or if (M1 > M2) and (N1 > N2). This means that large (small) values
of the random variable M are related to large (small) values of the random variable N.
If the opposite is true, inconsistently will appear.

C.1 Spearman’s ρ and Kendall’s τ

The following functional shows relationship between the classical dependence param-
eters such as Kendall’s τ and Spearman’s ρ and Copula that mentioned in (Genest and
Rivest, 1993; Laux et al., 2011).

ρ = 12
∫

[0,1]2

xy.dCθ(x, y)− 3 = 12
∫

[0,1]2

Cθ(x, y)dxdy− 3 (C.1)

τ = 4
∫

[0,1]2

Cθ(x, y).dCθ(x, y)− 1 (C.2)

C.2 Upper/Lower tail dependence

Tail dependence relates the amount of dependence in the upper-right-quadrant tail or
in the lower-left-quadrant tail for a bivariate distribution. The upper and lower tail
dependence parameters of the random vector (X, Y) with Copula C, is outlined within
the following approach (Joe, 1997).

λup ≡ limx→1− P(Y > F−1
Y (x) | X > F−1

X (x)) = limx→1−
1− 2x + C(x, x)

1− x
(C.3)
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and

λlow ≡ limx→0+ P(Y 6 F−1
Y (x) | X 6 F−1

X (x)) = limx→0+
C(x, x)

x
(C.4)

The upper tail dependence expresses the probability occurrence of large positive values
at multiple locations jointly while the lower tail dependence expresses the probability
occurrence of small positive values.

C.3 Relation between Copulas and spearman’s ρ,
kendall’s τ

Frank

Spearman’s ρ and the Copula parameter needs the computation of the De-
bye Dk,

Dk(a) =
K
ak

a∫
0

tk

exp(t)− 2
dt (C.5)

in which k=1, 2, and they are given by

τ = 1 + 4[D1(θ)− 1]/θ (C.6)

and
ρ = 1− 12[D2(−θ)− D1(−θ)]/θ (C.7)

Clayton

The dependence between Clayton Copula parameter and Kendall’s τ rank
measure is given.

τ =
θ

θ + 2
(C.8)

whereas the relation between the Clayton Copula parameter and the dependence
measures Kendall’s τ and the tail dependence are simple, the relation between
the Copula parameter and the Spearman’s ρ is extremely complicated. The Clay-
ton Copula is asymmetrical and includes a lower tail dependence.
The relation between the Kendall’s τ. The tail dependence and the Copula pa-
rameter have closed forms. The relation between the Copula parameter and the
Spearman’s ρ has no closed form.

Gumbel

The relation between the Kendall’s τ. The tail dependency and the Copula
parameter have closed forms. The relation between the Gumbel Copula param-
eter and the Spearman’s ρ has no closed form. This Copula is usually used for
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asymmetrical tail dependence structure (Jaworski et al., 2010).

Table C.1: Relation and association between some Archimedean Copula ( Clayton, Frank, Gumbel) and
their rank correlation measure: Kendall τ and Spear-man ρ and Upper and Lowe tail dependence

Family Kendall’s τ Spearman’s ρ Upper tail Lower tail

Clayton θ
θ+2 Complicated 0 2−

1
θ

Frank 1 + 4[D2(θ)− 1]/θ ρs = 1− 12[D2(−θ)− D1(−θ)]/θ 0 0

Gumbel 1− θ−1 No closed form 2− 2
1
θ 0

Kendall’s τ, Spearman’s ρ and tail dependence is summarized in Table C.1, Table 2.1,
and C.1(Nelsen, 2010).
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Appendix D

Copula modelling of unfiltered and
filtered GRACE coefficients
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Figure D.1: Dependency structure between unfiltered and filtered GRACE data for order 1.
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Figure E.1: Dependency structure between precipitation and filtered GRACE data for order 1.
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Figure F.1: Degree variance of GRACE and Copula-based data 2005.
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Figure F.2: Degree variance of GRACE and Copula-based data 2006.
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Figure F.3: Degree variance of GRACE and Copula-based data 2007.
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Figure F.4: Degree variance of GRACE and Copula-based data 2008.
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Figure F.5: Degree variance of GRACE and Copula-based data 2009.
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Figure G.1: Degree variance of precipitation and GRACE, and Copula-based data in 2005.
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Figure G.2: Degree variance of precipitation and GRACE, and Copula-based data in 2006.
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Figure G.3: Degree variance of precipitation and GRACE, and Copula-based data in 2007.
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Figure G.4: Degree variance of precipitation and GRACE, and Copula-based data in 2008.
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(j) October 2009
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(k) November 2009
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(l) December 2009

Figure G.5: Degree variance of precipitation and GRACE, and Copula-based data in 2009.
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