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Abstract

The Gravity Recovery And Climate Experiment (GRACE) mission was launched on Mar. 17,
2002 and has provided the scientists with the gravity data for nearly ten years. The time vari-
able gravity field provided by the GRACE has improved our knowledge of the earth in many
fields such as hydrology, oceanography and glaciology.

But compared to those “hot” fields, the publications of GRACE in seismology is considerably
less. However, GRACE can provide scientists with an independent observation of the earth-
quake process. Coincidentally, some of the largest earthquakes are within GRACE’s life span —
Sumatra-Andaman Earthquake (Indonesia) 2004, Maule Earthquake (Chile) 2010 and Téhoku
Earthquake (Japan) 2011. Furthermore, a smaller earthquake — Sichuan Earthquake (China)
2008 has also been examined to test whether the GRACE can detect earthquakes smaller than
M, = 8.0. Different from the traditional methods of the earthquake researches, the gravity
method has its advantages: 1. Massive: global scale; 2. Insight: gravity changes can reveal
the underground mass changes which do not cause so much motion on the earth surface; 3.
Convenient: superior to the traditional methods, the spaceborne gravimetry can get the data
from the ocean and glacier parts.

The conditions of the data are different among these four earthquakes. The procedures to elim-
inate the GRACE observation errors and unwanted geophysical data are necessary. First, the
Cyo term should be replaced by the Satellite Laser Ranging (SLR) data. Second, the hydrology
signal especially in the regions of Chile and Sichuan should be eliminated by the Global Land
Data Assimilation System (GLDAS) model. Third, Fan filter or Gauss filter 350 km should be
applied.

Time series analysis by the two-phase changepoint detection and hypothesis testing are applied
for each earthquake which is a point-wise analysis. Least squares adjustment is performed on
each point to display the coseismic and postseismic signals. Meanwhile, the surface analysis is
done by the Empirical Orthogonal Functions (EOF) as it has a flexible base which can suit the
data automatically.

Although the observation errors have been removed as much as possible, the limited spatial
and time resolutions of the GRACE satellite and to retrieve relatively weak earthquake signal
among the strong hydrological signals are still problems in the analysis.

GRACE can detect some of the large earthquakes, but it depends on the earthquake type, area
and the length of the time-series before and after the earthquake. Both coseismic signal and
postseismic signal are detected in Sumatra-Andaman Earthquake. Meanwhile, there is no sig-
nificant coseismic signal in the time series of Sichuan Earthquake, but the EOF detects suspi-
cious earthquake signal in mode 2 with the magnitude less than 1 yGal. For Maule Earthquake,
only the coseismic signal is detected. Due to the limited dataset, the detection of the coseismic
signal is successful but the postseismic signal is not long enough to be detected in Tohoku
Earthquake. However, the different filters will affect the magnitude of the gravity change, so

XI



the real gravity changes of those four areas are still under debate. Last, EOF can be used for the
separation of the earthquake signals.

Compared to other geodetic technics the gravity method can detect the signals underground
and in the ocean areas. The coseismic and postseismic signals detected by GRACE show un-
derground processes of the earthquakes which can help scientists better understand the earth-
quake mechanism and will contribute to the earthquake prediction in the future.

Key Words : GRACE, Earthquake, Gravity, EOF, Geodesy, Seismology.
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Chapter 1

Introduction

1.1 Geodesy, Physical Geodesy and Seismology

Geodesy (from Greek “~ewdaroia” - geodaisia means “division of the Earth”) is the science of
studying the shape, size and gravity field of the Earth.! It is one of the branches of the earth
sciences. The geodesists set up global and national control networks by using space and ter-
restrial techniques in order to study some of the geodynamical topics such as crustal motion,
tides, and polar motion, which need fixed geo-datums and the corresponding coordinate sys-
tem (Helmert, 1880). In German speaking world geodesy is divided into two subdisciplines:
“Erdmessung” or “hohere Geodésie” which means the “Higher Geodesy” and focuses on the
earth measurement in the global scale and the “Ingenieurgeodédsie” which means “Practical
Geodesy” or “Engineering Geodesy” and emphasizes on the specific regions of the earth and
includes surveying.

Physical geodesy belongs to the “Erdmessung” or “hohere Geodésie” and concerns with de-
termining the physical shape of the earth while geodesy studies the geometrical shape as well
(Sneeuw, 2006). The physical shape of the earth is the geoid defined as one of the equipotential
surface of the earth’s gravity field.

Seismology in a broad sense is the branch of science concerned with earthquakes and related
phenomena.” The main method most seismologists are using is the body waves and the surface
waves.

With extremely fast development of the space techniques and the satellite geodesy methods,
the satellites provide us with very valuable data on global scale. In recent decades the earth re-
lated researches are using more and more data from the gravity satellites or altimetry satellites
which are traditionally considered to be served for the geodetic science, such as oceanography,
hydrology and glaciology. Some of the excellent works proved the combination of seismology
and physical geodesy is helpful to detect some of the earth inner processes.

1.2 Purpose of the Research

Earthquake is one of the most devastating disasters that human beings have to face.

nternational Association of Geodesy (IAG), 2011: http:/ /www.iag-aig.org/index.php?tpl=intro&id_c=72&id_t=357
20xford Dictionary, 2011: http:/ /oxforddictionaries.com/definition/seismology?q=seismology



2 Chapter 1 Introduction

Table 1.1: Significant Earthquakes Damages in the Recent Years*

Date Location Fatalities Magnitude b
Jan. 26,2001 Gujarat, India 20,085 7.6
Dec. 26,2003 Southeastern Iran 31,000 6.6
Dec. 26,2004 Off west coast northern Sumatra,Indonesia 227,898 9.1
Oct. 8,2005 Pakistan 86,000 7.6
May. 26,2006 Java, Indonesia 5,749 6.3
May. 12,2008 Eastern Sichuan, China 87,587 7.9
Jan. 12,2010 Near Port-au-Prince, Haiti 222,570 7.0
Feb. 27,2010 Off the coast of central Chile 525¢ 8.8

Mar. 11,2011 Pacific Ocean, East of Oshika Peninsula, Japan 15,822 d 8.9-9.1

"Data mainly from: http://www.eoearth.org/article/Earthquake

bData from United States Geological Survey (USGS) 2010

“Data from: http:/ /www.interior.gob.cl/filesapp/listado_fallecidos_desaparecidos_27Feb.pdf
9Data from Japanese National Police Agency (10.12.2011)

Figures of death to us might be only numbers but for the families who lost their relatives in the
earthquakes, one or more means their whole lives changed. If we can know more about the
earthquake mechanism, we can better protect ourselves from earthquakes.

There are many different prospects of doing research on earthquake and the final goal all the
researchers want to achieve is the prediction of the earthquakes. However, due to the com-
plexity of the earth’s structure and motions, before we could predict the earthquakes, there are
many related topics of the earthquake that we need to seek for convincing answers. The satel-
lite missions offer us a great opportunity to observe the earth from the special eyes in the sky
which have global views.

Papers on the application of the gravity method in geodesy emerge only in the recent ten years,
because of the launching of the global satellites CHAMP, GRACE and GOCE. And indeed the
gravity method has its advantages compared to the other methods:

1. Massive: Global scale;

2. Insight: Gravity changes can reveal the underground mass changes which do not cause
so much motion on the earth surface;

3. Convenient: Superior to the traditional methods, the spaceborne gravimetry can get the
data from the ocean and glacier parts..

Meanwhile indeed part of the observed fluctuations are due to geodynamic causes, but as the
gravity changes are dominated by the hydrology, ocean, atmosphere changes, the geodynamic
signal are usually the smallest. In geoscience, there are many unknown topics, such as the
mantle rheology, mantle water diffusion, postseismic gravity changes. The satellite gravimetry
data can be an independent source for such researches. The model extracted from such model
can help to constrain the seismological model as well.
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Achievements in this thesis:
1. Modeling the earthquakes signals from GRACE;
2. Analysis the coseismic and postseismic signals signals from GRACE;

3. Compare some of the geophysical interpretations by different authors.

1.3 Outline of the Work

Chapter 2 Satellite Missions is the introduction of several satellite missions especially the
GRACE mission and the application in the earthquake.

Chapter 3 Modeling of the Gravity Changes Due to Earthquakes is the part of the data pro-
cessing and the modeling. It includes some mathematical basics of the spherical harmon-
ics, filtering, Empirical Orthogonal Functions (EOF), error estimation and some necessary
information about the different datasets.

Chapter 4 Data Analysis includes the analysis of the four different large earthquakes —
Sumatra-Andaman Earthquake (Indonesia) 2004, Sichuan Earthquake (China) 2008,
Maule Earthquake (Chile) 2010 and Tohoku Earthquake (Japan) 2011. I will mainly focus
on the co- and postseismic signal analysis of Sumatra-Andaman Earthquake.

Chapter 5 Conclusion and Recommendation provides a brief summary and results of the the-
sis and the outlook of the research in the future.






Chapter 2

Satellite Missions

2.1 Overview of Spaceborne Gravimetry Satellite Missions

Due to the space techniques and the innovative sensor technologies, especially accelerome-
ters and gradiometers, and because of the development of Satellite-to-Satellite Tracking (SST)
method, the satellite gravity missions CHAMP, GRACE and GOCE have caused dramatical
improvements in Earth gravity field recovery.

The first gravity satellite is CHAllenging Mini-Satellite Payload for Geosciences and Applica-
tion (CHAMP) see Fig. 2.1. CHAMP, which was designed as a geodesy satellite, is sponsored
by Deutsches GeoForschungsZentrum (German Research Centre for Geosciences) (GFZ) and
expected to work for five years. The orbit parameters of the satellite are: the inclination (87.3°)
and the initial altitude (454 km). The satellite was launched on Jul. 15, 2000 and re-entered
Earth’s atmosphere on Sept. 20, 2010. There were many different sensors on board: dual-
frequency Global Positioning System (GPS) receiver, three-axes accelerometer, magnetometer
instrument package, digital ion drift meter and retroreflector array. On Sept. 19, 2010 after ten
years, two months and four days (after 58277 orbits) the mission came to the end.

Figure 2.1: CHAMP Satellite (http://www.hal.ca/height/introduction/index.htm)

As CHAMP has achieved better results than those from SLR missions in the recovery of the
earth gravity field, the mission Gravity Recovery And Climate Experiment (GRACE) followed
with the intention to get even better results.

CHAMP uses the High to Low Satellite-to-Satellite Tracking (HL-SST), while except the HL-SST
by the GPS on board the GRACE and following GOCE uses Low to Low Satellite-to-Satellite
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Tracking (LL-SST) by K-band distance measurement as well. By using this technology, the ac-
curacy of GRACE data is much better than CHAMP data. So much so, that temporal variations
can be monitored. The details of the GRACE mission will be in Sec. 2.2.

Figure 2.2: GOCE Mission (http://ilrs.gsfc.nasa.gov/satellite_missions/list_of _satellites/goce_general.html)

After the GRACE mission came the Gravity Field and Steady-State Ocean Circulation Explorer
(GOCE) mission by European Space Agency (ESA). The satellite was launched on Mar. 17,
2009 and the expected life is two years. The inclination of the satellite is 96.7° and the altitude
is about 250 km. There are three scientific instruments on the GOCE satellite: gradiometer
(three pairs of three axis, servo-controlled, capacitive accelerometers), 12-channel GPS receiver
and laser retroreflector. With the help of the instruments and the low orbit, the main aim of
the mission is first to determine a very high accuracy of the gravity anomalies which is about
1 mGal. The second goal is to determine the geoid with an accuracy of 1-2 cm. The final aim
is to get a better than 100 km spatial resolution for the two aims mentioned above (Drinkwater
et al., 2007). Such high resolution will enable us for the modeling of the structure of the Earth’s
crust and mantle (Ilk et al., 2005).

CHAMP, GRACE and GOCE, they perfectly complement each other. CHAMP as the first low
Earth orbit satellite which collected continuously precise orbit data have brought a new level
of gravity measurement accuracy and important experience for the following missions as well.
The second mission GRACE achieves an extremely high accuracy for the long and medium
wavelengths and furthermore it allows observing temporal gravity variations. Meanwhile
GOCE, although it has lower accuracy for the lower part of the signal spectrum, will reach
an extraordinary high spatial resolution for the earth static gravity field (Ilk et al., 2005) see
Fig. 2.3. There are many different applications in the inter-discipline research areas by using
the data of the three satellite missions. For GRACE, the application is mainly in the time vari-
able gravity field, but for the GOCE, it is in the high resolution static field.

Since GRACE is more accurate than CHAMP and has been in the orbit for more than ten years
which is much longer than GOCE, in my research the gravity field will be modeled by GRACE
and in the following section the GRACE mission will be specified.
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Figure 2.3: Space & Time Resolutions of Three missions (Ilk et al., 2005)

2.2 GRACE Satellite Mission

2.2.1 General Information

& _‘3’ 5

Figure 2.4: GRACE Mission (http://grace.jpl.nasa.gov/multimediagallery/)

GRACE mission is designed and operated by National Aeronautics and Space Administration,
U.S (NASA), and Deutsches Zentrum fiir Luft- und Raumfahrt e.V. (German Aerospace Center)
(DLR). The project management is by Jet Propulsion Laboratory, U.S (JPL). JPL, Center for
Space Research (University of Texas at Austin) (CSR) and GFZ are responsible for the data
processing, distribution and management.

The GRACE satellites were produced by Astrium GmbH under contract by JPL and Space Sys-
tems/Loral (SSL). The important sensors of the satellites directly inherited from the CHAMP
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mission.! GRACE was launched on Mar. 17, 2002 from Plesetsk in Russia. GRACE mission
consists of two identical spacecrafts which are 220 km apart from each other in an 89° inclina-
tion orbit 485 km above the Earth. The period of the satellite is 90 minutes. The expected life
of the satellites was about five years. Although showing signs of aging, the satellites are still
working up to date which is more than nine years already.

2.2.2 Instruments on Board

GPS BKUP.
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epsocc N
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(a) Inner View
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«O:gb"‘
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Figure 2.5: GRACE Satellite (Inner, Top and Bottom Views)
(http://op.gfz-potsdam.de/grace/satellite/satellite.html)

There are several instruments on the satellites (Dunn et al., 2002):
GPS: Give the usual precise orbit determination and time signals;
K-Band Ranging system (KBR): SST at K-band (24.5 GHz) and Ka-band (32.7 GHz);

Ultra-Stable Oscillator (USO): Provide clock signals for SPU and KBR;

1GFZ, 2011: http:/ /www.gfz-potsdam.de/portal/ gfz/Struktur/ Departments/Department+1/sec12/ projects
/grace/grace_systems/satellites;jsessionid=184DB5407B81 ABE361316426D144454F
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Star Camera Assembly (SCA): Attitude observations for KBR pointing and satellite attitude
control;

Instrument Processing Unit (IPU): GPS signal processing; produce output observables; per-
form GPS signal processing processes SCA images; collect housekeeping data; output
timing signals; select KBR switches & cross-strapping;

Signal Processing Unit (SPU): Down convert Radio Frequency (RF) signals from the three GPS
antennas (Precision Orbit Determination (POD), occultation and back-up) and the KBR;
digitize data for IPU;

Accelerometer (ACC): Provide measurements to remove non-gravitational forces.

The basic measurement of the GRACE satellite is the distance between the two satellites by
GPS and K-band microwave ranging system.

2.2.3 Gravity Recovering Approaches and Datasets

POD plays a key role in the gravity field recovery for two reasons (Liu, 2008):
1. to locate the data, such as the KBR observations;

2. to use the orbit perturbations as gravitational signal, as the orbit is mainly a result of the
earth’s gravitation.

Specifically for GRACE, KBR determines the range and the range rate. Meanwhile the orbits
are tracked by GPS. Although GPS measurement can be used for the gravity field recovery
alone, KBR is much more accurate. Generally there are five methods to recover the gravity field
from the distance measurements by GPS and KBR mainly using the energy conservation law and
Newton'’s second law of motion although energy conservation law derives from Newton’s second
law of motion. In the following context only the most important formulae of each approach
will be listed, more details can be seen in (Liu, 2008; Abart, 2005).

Numerical integration approach The observations of this method is the deviations of the orbit
tracked by GPS and the prior gravity model such as EGM96 (The Development of the Joint
NASA GSFC and NIMA Geopotential Model EGM96, 1998).

The linearized observation equation is:

or = Adx + dorg (2.1)

where

or residuals from GPS tracking data to prior model for each epoch
A Design matrix

éx  unknown potential coefficients

&, state transition matrix

Jrg initial state vector

The numerical integration method can be divided into different types: theoretically such
as using the variation equations (Abart, 2005) and mathematically there are three main
categories: Runge-Kutta methods, multi-step methods and extrapolation methods.
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Short arc approach This approach is based on Newton’s equation of motion as a boundary
value problem in the form of a Fredholm-type integral. More detail can be found in
(Mayer-Giirr, 2006). For an orbit arc in the time interval [tp, tg], tp < to and the corre-
sponding boundaries are r(tp) and r(tg). The interpolation of any time ¢ with the time
span [tp, o] is:

r(v) = (1—v)r(tp) +vr(tg) — (to—tp)* [ K(v,v)i (V) dv/ (2.2)

L~

Vl

t—tp

fo—tr and the kernel function is:

where normalized time v =

vV(1—-v)if v <v

2.3
v(1-=v)if v >v 23)

K (v,v') = {

For the twin satellites of GRACE, project the baseline (between satellite 1 and 2) into the
line of sight direction:

0(v) =eap- (r2—11) (2.4)

Energy balance approach By using the law of energy conservation, the relationship in inertial
space between the potential V' and satellite’s motion is (Jekeli, 1999):

t t
1.0 oV
V= lif- /ﬁfm /——m—E 25
5 [ ; rdt+ [ 0 (2.5)
S~ to to
Exin —_———— N——
Eng Erot

Vv potential energy of the earth’s gravitational field

Exin kinetic energy of the satellite

Eng work done by non-gravitational force (dissipative forces( Fy ))
E.ot time variation of the gravitational potential

Ey  energy constance of the system

To simplify the model, we assume that Fx = 0 and a static gravitational field, Eq. (2.5)
reduces to

V:%HF—& (2.6)
Acceleration approach This approach is based on Newton’s law of motion:
i=VV (2.7)
And for a precise orbit, the rough approximation is:

r(t—ot) —2r (t) +r(t + ot)
(8)°

(2.8)

=

The more detailed description can be found in (Reubelt et al., 2003)
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Mascons approach This method is described in (Rowlands et al., 2005)

6Cn (1 + k’ R2
5Szm} o (21+1) / Yins (@ @9

where

k; loading Love number of degree
p surface density at epoch t

Despite the differences in the methods for the gravity field recover, the selection of different
earth models such as the prior gravity model can also lead to changes in the datasets of GRACE.
As a result, there are many versions of GRACE datasets: GFZ, CSR, JPL, GSFC, CNES, ITG and
DEOS.

Table 2.1: GRACE Datasets

Dataset Lmax Interval ~ Recovery Approach Raw Data
GFz 120 monthly Numerical integration GPS & KBR
CSR 60 monthly Numerical integration GPS & KBR
JPL 120 monthly Numerical integration GPS and KBR

GSFC 60 monthly Mascons KBR
L1 . GPS, KBR
CNES 50 10-day =~ Numerical integration LAGEOS—1/2SLR
ITG 60 monthly Short arc GPS & KBR
DEOS 50 —120 monthly Acceleration GPS & KBR

2.3 Application to Earthquake Monitoring

There are many applications of these satellite gravity missions. Fig. 2.6 shows the mass changes
by the hydrological cycles such as ice mass changes, rainfall as well as the geophysical phe-
nomenon: viscosity, mantle rheology.

The earthquake researches depending on the CHAMP mission was based on the magnetic mea-
surement (Zakharenkova et al., 2008; Balasis and Mandea, 2007) and the Earth’s inertial tensor
change (Gross, 2003).

Sun and Okubo (1993) developed the conventional dislocation theory for spherical harmonics,
which is the basis in this work for GRACE analysis of earthquake signals. They compared the
analytical expressions of degree variances of the coseismic geoid and gravity changes for shear
and tensile sources for three real earthquakes and the expected errors of GRACE. The result
was that coseismic deformations for earthquakes with seismic magnitudes above M, = 7.5
were expected to be detected by GRACE (Sun and Okubo, 2004).

Soon after the publication of the paper, the devastating Sumatra-Andaman Earthquake took
place in Indonesia. Two years later the article published on Science magazine put the result
of Sun’s work into reality. Han et al. (2006) is the first paper of using GRACE data to detect
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Figure 2.6: Geophysical Phenomenon Related to the Earth Mass Changes (Ilk et al., 2005)

a real earthquake and he got a conclusion that it was hard to get by the traditional geodetic
methods or even the seismological methods. Han used his own method to process GRACE
data and applied the Gauss filter for the gravity field. For the analysis of the earthquake signal,
the method of the mean of GRACE gravity anomaly data was used and GRACE results was
compared to a seismically derived dislocation model.

Due to Han's successful application of GRACE data to the earthquake analysis, in the following
years, many geodesists were carrying out related work in the Sumatra Area. By the method of
mean, Han could well display the coseismic signals. But due to the limitation of the time span
after the earthquake the postseismic signals was not analyzed.

Ogawa and Heki (2007) is the first to derive the postseismic signal from the Sumatra earth-
quake. They used the CSR Level 2 release 1 data and Gauss filter for GRACE data. Different
from Han et al. (2006), they modeled the annual, biannual signals and earthquake parameters
as well. They found the significant postseismic signal in GRACE data after 2004 in the Suma-
tra area and it was the first detection of the postseismic gravity/geoid changes with satellite
gravimetry. The mechanism of such signal was worth investigation. They analyzed many of
the results in this area by GPS researches and it could not be explained by the afterslip model
and the viscous relaxation of the mantle. So the third mechanism — water diffusion around the
down-dip end of the fault raised. But they did not provide any modeling of the geoid varia-
tions caused by this process (Panet et al., 2010). Chen et al. (2007) used the CSR Level 2 release
4 data for the analysis and used the destriping filter which had less noise than the results from
(Han et al., 2006) from the release 1 data.

Panet et al. (2007) applied wavelet analysis in the Sumatra area because it is better to separate
the different components of the relaxation and to localize the coseismic gravity low in the An-
daman. But for the mechanism of the postseismic signal, they concluded that it was due to the
the response of a highly viscous material under the active Central Andaman Basin and partly
related to the afterslip (Panet et al., 2007).

EOF analysis can also be utilized in earthquake research. However, we could not detect any
event of M, smaller than 8, because the signal of the earthquakes would be smaller than the
noise level (de Viron et al., 2008). This conclusion was different from Sun and Okubo (2004)
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which set the limit to M,, = 7.5. The dataset was Centre National d’Etudes Spatiales (National
Center for Space Studies, France) (CNES) release 1 and they used the EOF decomposition, then
looked for the jump in the time event and did the test. The explanation of the EOF results
was hard to do because of the noise of GRACE data and the limited resolution (de Viron et al.,
2008).

The spherical harmonic coefficient as well as the synthesized gravity field can also show the
changes when the large earthquakes take place. Cannelli et al. (2008) used the statistical method
to detect the changepoint in the spherical harmonic coefficient and found a statistically signifi-
cant deviation of the low-degree J; time series from their secular trend when fitting the GRACE
time series by a bilinear function. Han and Ditmar (2007) used the localized spherical harmon-
ics to detect the earthquake signals. The Sumatra-Andaman Earthquake significantly broke
the time series of many of the global spherical harmonic coefficients below degree and order
55, which could be detected only after localizing the global coefficients at the right place. In
the following year, Han used the Slepian basis function to detect the earthquake from GRACE
data. The Slepian basis functions are particularly suitable for analyzing the regional mass vari-
ations associated with the large earthquakes because first they are concentrated in the region
and secondly the mutually orthogonal and harmonic as well (Han et al., 2008).

de Linage et al. (2009) used both a spectral window with a cosine taper over degree 30-50 and
Gauss filter to process Le Groupe de Recherche de Géodésie Spatiale (Space Geodesy Research
Group, France) (GRGS) and CSR GRACE data and applied the least squares adjustment to
model the earthquake signals and showed agreement with previous researches. However, the
interpretation of the coseismic signal which was caused by the ocean mass lateral redistribution
was different from Han et al. (2006). Meanwhile, the estimated postseismic relaxation was 0.7
year which was different from 0.6 year by Ogawa and Heki (2007).

In the previous papers, all the authors did not consider the Nias earthquake in 2005 in GRACE
data. The reason was that the Nias earthquake was so close to the Sumatra earthquake that it
was hard to separate them. Actually this was only a hypothesis and nobody proved it. Einars-
son et al. (2010) used a statistic method to prove that it was not possible to separate the Sumatra
earthquake from the Nias earthquake only by using GRACE data.

The most recent research was done by Panet et al. (2010), using GRGS/CNES data and Contin-
uous Wavelet Transform (CWT) to analyze the Sumatra area and combining GPS and GRACE.
They concluded that the postseismic signal was due to the upper mantle rheology and GRACE
detected well the density variations resulting from large-scale deformation and provided a
unique view of the mantle viscous response to the earthquakes. Using the GRACE Level 1 data
to invest Sumatra-Andaman Earthquake and Maule Earthquake were also done by the (Han
et al., 2010).

Except the focus on Sumatra-Andaman Earthquake (Indonesia) 2004, Maule Earthquake
(Chile) 2010 and Tohoku Earthquake (Japan) 2011 are also being investigated by Heki and
Matsuo (2010b), Matsuo and Heki (2011) and Han et al. (2010) using GRACE data. Further
research on the ocean height in Sumatra was done by Broerse et al. (2011).






Chapter 3

Modeling of the Gravity Changes Due to
Earthquakes

3.1 Representation of the Gravity Field

Gravity field outside the earth is a Laplace field, which has no divergence (V - g = 0) and is
conservative (V x g = 0). So the gravity potential (g = VV) fulfilled the Laplace equation
which is the special form of the Possion’s equation of which the right side is 0:

AV =0 3.1)

The solutions are called harmonic function (see Appendix. A). The potential of gravitation is a
harmonic function outside the attracting masses but not inside the masses: there it satisfied the
general form of Poisson’s equation. Solutions of the Laplace equation of the gravitation field in
Spherical Coordinates are called Spherical Harmonics:

V(r,0,A) =

M & (R
r

41 ]
R ) Z P (€08 0) (Cpin cos MA + S, sinmA) (3.2)

1=0 m=0

where

V(r,0,A) gravitational potential at the point with spherical coordinates (7,6, A)
GM constant of the earth

R radius of the earth

b, Normalized Legend functions

Sim» Ciw - Normalized Stokes Coefficients of the spherical harmonics

More generally, not only can the gravity field be expressed into the spherical harmonics but
also an isotropic gravitational field F(6, A) on the sphere:

00 I
F(0,A) =Y _A; ) Piy(cos8)(Cpy cosmA + Sy sinmA) (3.3)
1=0 m=0

where A is the eigenvalue of the field.

Similar to the Fourier transform the transformation between the F(6, A) and the coefficients Clm/
Sim can be implemented by Global Spherical Harmonic Computation (GSHC) (Sneeuw, 1994)
which contains Global Spherical Harmonic Synthesis (GSHS) and Global Spherical Harmonic
Analysis (GSHA).
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3.1.1 Global Spherical Harmonic Synthesis (GSHS)

Continuous
An(0) | | & 5 Cim
B, (6) } = z; 1m (cos 6) { gim (3.4a)
F(8,A) = i [Am (8) cosmA + By, (8) sinmA] (3.4b)

Eq. (3.4b) is the 1-dimensional Fourier transform along the latitude circles. There are other
methods for this transformation such as the 2-dimensional Fourier transform (Sneeuw and Bun,
1996). The continuous formulae are analytical, but for the practical consideration, the discrete
formulae are more useful. The function on the sphere F (6,A) has to be properly sampled
according to the discretization of the grid for example

Ao =Ti=2i, i=0,1,...,2L—1;
0, =7, j=0,1,...,2L 1.
Discrete
A L G
= (cos 6;) = 3.5a

L

61,)\ ) cos mAj + By (6;) sinmA; (3.5b)
— ]

It is obviously that Eq. (3.5b) is nothing but a discrete Fourier series.

3.1.2 Global Spherical Harmonic Analysis (GSHA)

The general formulae for GSHA corresponding to Eq. (3.3) without dimension are:

Cim 1 - cos mA
5" }_ E/ F(6,A) le(cose){ sinmA }dcb (3.6)
(]

® is the integral area which is a unit sphere (0 < A < 27,0 < 0 < 1) and ® = sin0 df dA. The
following discussion is the practical computation of the equation above.

Continuous
An(0) | _ 1 2 cos mA
By (0) } (14 6mo) 7'(/0 F(6,2) { sin mA } dA (3.72)
Cim | _ 1+6mo /" Am (9) | 5 .
5 } = — ; B, (6) Py, (cosB) sinf do (3.7b)

Omo 1s the Kronecker delta function. When m = 0, §,,0 = 1 otherwise d,,0 = 0.

The same as the GSHS, the discretization is also necessary in GSHA.
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Discrete
An(6:) | _ 1 2Ll . J cosmA;
B () § L (1+8mo+6me) ]ZO Fi A) sinmA, (38
Cim } = to be determined (3.8b)

Slm

L is the maximum degree and Eq. (3.8a) is the discrete Fourier transform.

There are different ways to get the Cy,,,, Sy, in Eq. (3.8b). Before discussing the method, variables
need to be expressed into the matrix form:

Am (91) Bm (91) ~C~mm NSmm
Am (92) Bm (92) CSerl,m S~m+1,m
A = Am (93) , B = Bm (63) , C fnd Cm+2,m , S = Sm+2,m
Am (QN) Bm (QN) CLm ng
l?mm(xl) I?m—i—l,m(xl) I?Lm(xl)
b wm (X2)  Pryim(X2) Pry(x2)
Pmm(xN) P‘erl,m (xN) me(xN)

According to Eq. (3.5a), the relationship between A, (61), By (61) and Ci, Sim is obvious and
the matrix form is A = PC, B = PS. The unknowns in Eq. (3.8b) are Cim, Sim. So the most
straightforward way is the Least Squares Method (Gauss, 1939) and the solution is:

C = (P'p)"'PTA, S=(P'P)"'P'B (3.9)
and adjust the solution to a similar way as Eq. (3.5) and (3.8) :
Cim A (0;)
G } Z Py, (cos 6;) { B (6) } (3.10)

where ideally the PTP = ¢I. Unfortunately the reality is that PTP # ¢I because the PT P is not
a diagonal matrix while Fig. 3.1 shows the normal matrix (PTP) of a global field. In order to
deal with the correlated unknowns, there are some methods to solve the problem:

Approximate Quadrature By comparing the Eq. (3.10) and (3.7b) we can get:

C~lm 1 { Am (Gi) }
~ —(1+6 P 0; 3.11
with weights
T .
s? =N sin 6; (3.12)
or
sl = N 2 sin@ (3.13)
Z sin 9k
k=1

see (Ellsaesser, 1966)
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a) Least Square Method b) Approximate Quadrature Method c) First Neumann Method
0 0
60 60
120 120
[}
<
=) 180 180
Q
a
240 240
300 300
— 360 360
60 120 180 240 300 360 0 60 120 180 240 300 360 0 60 120 180 240 300 360
Order
| e esss——_] e
0 500 1000 0 1 2 3 0 1 2 3

Figure 3.1: Normal Matrices

First Neumann Method The approximate orthogonality can be attained in the discrete case
by inserting the weight matrix s} which was found by Neumann in the year of 1838. The
normal matrix is approximately diagonal:

PTWP =2 (2 —6u0) I (3.14)
Therefore, Eq. (3.8b) becomes:
Cin | _1 (14 dmo) isn P, (cos 6;) An (0:) (3.15)
Slm 4 m0 = ilm i B,, (01) .
with
Si’l
1 1 1 S}l 1
pz(JCl) pz(Xz) Pz(xL 1) 2 0
" Co =, (3.16)
e o co g :
Por(x1) Por(x2) ... Por(xp41) N 0
ST+1

; : T P
with weight s} | = 387 ;.

3.2 Eigenvalue

This section will mainly deal with the vector A; and the transformation between different di-
mensions which will be used in GRACE and GLDAS model.

3.2.1 Gravity Anomaly

The following context is only a short introduction of the gravity anomaly, for more details
please see (Hoffmann-Wellenhof and Moritz, 2005).
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The difference between gravity potential on the geoid W and normal gravity potential U is the
anomalous potential or disturbing potential T

Wi(x,y,z) =U(x,yz)+T(xyz2) (3.17)
By computing the gradient of Eq. (3.17) we can get the relationship of the three vectors:
g=17+9g (3.18)
The gravity anomaly at the point P is the scalar form of the Eq. (3.18):
Ag (P) =g (P)—7(Q) (3.19)

Q is the approximate location of P which is the footprint of P on the reference ellipsoid (ap-
proximated by the geosphere) (see Fig. 3.2).

Geoid

Geosphere

)
Geocenter

Figure 3.2: Geoid, P & Q (Moritz, 2010)

In order to see the changes of the gravity anomalies more clearly, subtract the gravity anoma-
lies by the eight years” annual mean as shown in Fig. 3.3(d) and it is the field mainly discussed
in the thesis.

Above all is the theoretical analysis of the gravity anomaly. The eigenvalue of the gravity
anomaly can be directly derived from the fundamental equation of physical geodesy (Hoffmann-
Wellenhof and Moritz, 2005; Sneeuw, 2006):

bg=—"——°T (3.20)

Expand T into spherical harmonics and insert into Eq. (3.20):

GM & ( 1+1 2\ (R & - 5
og = =z E) <_R + ) () Z Py (cos 0)(Cyyy cos mA + Sy sinmA)

R r
m=0
GM & RN\ L ) i (3.21)
-~ RrRZ E -1 <r> Z 1 (€08 0) (Cpyyy cos mA + Sy sSinmA)
1=0 m=0

So obviously the eigenvalue is:



20 Chapter 3 Modeling of the Gravity Changes Due to Earthquakes

a) Gravity . b) Normal Gravity

0" 90"E180°EWSO'W O 0 90 E180°EWI'W 0O
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Figure 3.3: Gravity Anomaly (CSR Mar. 2003)

3.2.2 Equivalent Water Height (EWH)

Gravity anomaly can reflect the gravity changes in a region. Mass changes close to the surface,
however, can also be expressed as surface density or, e.g, as equivalent water height. The
relationship between the surface mass changes and the gravity changes is discussed in (Wahr
and Molenaar, 1998). The geoid height N can be expressed in spherical harmonics:

N(r,0,A) Z (cos 0)(Cyyy, cosmA + Sy, sinmA) (3.23)

HM~

Time dependent changes in the geoid height can be also expressed:

1
SN(r,0,A) Z (cos 0)(6Cy, cos mA + 85y, sinmA) (3.24)

uMg

which is the superposition law of the spherical harmonics.

Suppose dp (1,0, L) to be the density redistribution leading to the geoid changes. According to
(Chao and Gross, 1987) ép is related to 6Cy,,, 65y, as follows:

0Cm _ 3 B
OSim } N 4:7'[Rpave (2[ + 1) /5P (1’, QIA)le(COS 9)

r\*2 [ cos(mA) | .
X (E> { sin (mA) }stde)\dr

(3.25)
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where pave = 5.517 X 103 kg/ m? is the average density of the earth. Surface density 7 is
derived by integrating over a thin layer:

51 (6,1) = / 5o (r,6,¢) dr (3.26)

thin layer

Compare to the earth radius (6371 km) the imaginary thin layer is about 10-15 km. So the term
(r/R)"*? ~ 1 and Eq. (3.25) can be reduced to

6Crn } 3 / )
- o1 (0, A) Py, (cos
(SSlm surf mass 47TRpave (21 + 1) n ( ) m( )

x { Cs‘l’rf E%; }sinG do dg

(3.27)

Eq. (3.27) is the relationship between the direct gravitational attraction of the surface mass and
the corresponding changes in the spherical harmonics coefficients. The overall changes of the
gravity consist not only of the gravity changes of the surface mass but also the corresponding
changes of the underlying solid earth loaded and deformed by the surface mass.

{ ‘;CS?“” } = k; x { ‘;gl’“ } (3.28)
Im } solid Earth Im ) gurf mass

where k; is the Love number of degree [ (Farrel, 1972). Practically the (elastic) Love number
see Table. 3.1 used the value described in (Han and Wahr, 1995) by using the Earth model
Preliminary Reference Earth Model (PREM) (Dziewonski and Anderson, 1981).

Table 3.1: Love Numbers. (Han and Wahr, 1995)
l k; l ki l k;

+0.000 7 —0.081 30 —0.040
+0.027 8 —0.076 40 —0.033
—0.303 9 —-0.072 50 —0.027
—0.194 10 —0.069 70 —0.020
—0.132 12 —0.064 100 —0.014
—0.104 15 —0.058 150 —0.010
—0.089 20 —-0.051 200 —-0.007

NUl b WO N~ O

Interpolation is necessary if the degree is not listed in the Table. 3.1.

In all, the whole earth changes caused by the additional surface load on earth can be expressed
by the following equation which is the summation of the Eq. (3.27) and (3.28).

{ 5Clm }:{ (Sclm } +{ (Sclm } (329)
0 Slm 551’” surf mass 551 m solid Earth

Above all, the discussion and equations are for an arbitrary field which can be treated as a
surface mass load on earth. The gravity change can be assumed as equivalent to the mass
change in a thin layer on the surface of the earth. If the density of thin layer is equal to the
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density of the water, we call it Equivalent Water Height (EWH). EWH is obtained by dividing

the surface density J5 by the density of water:

_ 9n(9,A)
Pw

. (3.30)

Equivalent water height can also be expanded into spherical harmonics similar to Eq. (3.24):

o |
hw(0,A) =RY_ Y Py(cos 0)(6Cyyy cos mA + 38y, sinmA) (3.31)
=0 m=0

Comparing Eq. (3.31), (3.30) and (3.3) and using Eq. (3.6):

6Ch | 1 / ~ cos (mA) | .
55, } ~ InRow 00 (6, 1) Py, (cos ) x sin (mA) sin6 df d¢ (3.32)
Both Eq. (3.27) and Eq. (3.32) are the surface mass load or pressure. Comparing those two
equations:
6Cm } 3pw { 5élm }
= X A 3.33
{ OSim surf mass Pave (2l + 1) OSim ( )
Considering the solid earth changes, the whole earth changes caused by the surface mass load
can be expressed:
0Cum } 30w (1 +kl) { (SCIm }
_ w J °C 3.34
{ 5Slm Pave (21 + 1) 551711 ( )
Combine with Eq. (3.24). Finally the eigenvalue is
Pave (21 +1)
= ——<R 3.35
"= B (11 K) (3.35)

Above all are the equations for the equivalent water height.

These and other quantities (not derived here) are summarized in Table. 3.2.
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Table 3.2: Options of Eigenvalue A; (Rummel and van Gelderen, 1995)

Quantity Dimension (A;) Unit
None 1 —
Geoid R m
Gravity Potential GTM m?/s?
Gravity Anomaly (1-1) %—];A x 10° mGal
First Radial Derivative —(I+1) GR—]XI x 10° mGal

Second Radial Derivative
Surface Gradient
Equivalent Water Height

Surface Mass Density

I+1)(14+2)58 x10° E

I(I+1) rad
Pave 2141
3w TR R m
Pave 21+1
5 TR R kg/m?

3.3 Low Degree Term of the Field

Before launching the GRACE satellites, experts have pointed out that the ocean tide models at
that time (2002) were not accurate enough to correct GRACE data at harmonic degrees lower
than 47 and the accumulated tide errors might affect the GRACE data up to harmonic degree 60
(Knudsen, 2003; Knudsen and Andersen, 2002). Furthermore, the ocean tide model errors are
already considered as a dominant error source for gravity field retrieved from GRACE (Visser
et al., 2010). Table. 3.3 lists the eight major ocean tidal components.

Table 3.3: Major Tides (Knudsen and Andersen, 2002; Visser et al., 2010)

Constituent Frequency Alias Origin
[Day] [Day]

Semi-diurnal

M, 0.5175 13.6 Lunar principal

) 0.5000 162.2 Solar principal

N> 0.5274 9.1 Lunar major elliptic of M,

K> 0.4986 1460  Lunar/Solar declinational
Diurnal

K3 0.9973 0.9969 Solar declinational

O 1.0758 0.9969 Lunar principal

Py 1.0028 0.9969 Solar principal

O 1.1195 0.9969 Lunar elliptic of Oy
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It is known that Cyg is not well-determined by GRACE because the GRACE orbit geometry is
less sensitive to this coefficient of the gravity field (Tapley et al., 2004). The Cyg term is related to
the earth dynamic oblateness (J2) by Cog = —J>/ V5. In Gross et al. (2008), the author compared
different degree-2 terms from GRACE (CSR), SLR, GPS and modeled by the sum of the effect
due to atmospheric surface pressure, ocean-bottom pressure, land hydrology and the global
mass-conserving ocean layer and concluded that SLR measurements were found to agree best
with the modeled degree-2 terms. So here only the GRACE and the SLR Cyp are compared.

(a) Cyp from GRACE and SLR (b) Fourier Analysis of Cyg from GRACE and SLR
o 35X 1070 ‘ ‘ ,
—GRACE —GRACE
o —SLR s 10710 —SLR
X gl

2.5 1

N

Amplitude

C,, ~4.8416948x 107

1 2
Frequecy|[cyclelyear]

20032004 2005 2006 2007 2008 2009 2010 2011 0 1 2 3 4
Year Frequecy[cycle/year]

Figure 3.4: Analysis of the Cog Term from GRACE and SLR

The maximum difference between the time series of the GRACE (CSR) and SLR Cypy terms is
7.1782 x e~ 19, from 2002 to 2009 the RMS of the difference is 1.7488 x ¢~ 10, however from 2009
to 2011 the RMS increases to 2.9136 x e~ 10 (see Fig. 3.4(a)). In the spectrum domain (Fig. 3.4(b))
that the first value is only the drift and zoom into the frequency 1-3 there is only one peak
in SLR term which the annual cycle. But for the GRACE (CSR) data the three peaks are at
about 0.25, 0.5, 1, 2.2 cycle per year which are about 4 years, 2 years, 1 year and 167.4 days
respectively. And look up in the Table. 3.3. The corresponding tides for the approximate time
span is the K; (1460 days = 4 years) and S, (162 days). The GRACE data indeed significantly
contained the K; and S, tide errors.

Except CSR data, GFZ and GSFC data have also been analyzed and compared with SLR data
of the Cy term. Obviously the similar pattern was found in the other datasets see Fig. 3.5 and
similar results can be found in Chen and Wilson (2008). Due to the limited data set the peak in
the spectrum is not exactly at the position where the tide is but rather close and the close one is
considered to be the one which is successfully detected. So the K; tide can be seen in CSR, GFZ
and GSFC data but the S; tide can only be seen in the GSFC and CSR data and in GFZ data
there is not so obvious S, tide detected but in the vicinity of the S, frequency there are some
large values. The reason for this is the slightly different tide model (see Table. 3.4). In contrast,
SLR data shows only a large peak at the normal seasonal frequency which is the combination
of the atmospheric pressure variations and the variations in the distribution of water in the
oceans and on land e.g. (Nerem et al., 2000).
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Figure 3.5: Fourier Analysis of Cy

S; and K; tides produce systematic errors in GRACE due to the inaccurate tide model and the
satellite geometry. The most common way to reduce the errors is the averaging. But unfortu-
nately the averaging cannot eliminate the S, and K; errors. The results of Knudsen and Ander-
sen (2002) show that by using the actual orbit parameters, S; and K; are practically unreduced
in GRACE monthly averaged gravity fields but the diurnal tides are almost fully reduced. So
even subtracting the mean cannot reduce the errors as the alias period of the tide is more than

one year.
Dataset Model Description
Tidal Arguments & Doodson (1921)
CSR Amplitudes/Phases Cartwright & Tayler (1971)
Diurnal/Semi-Diurnal Band Harmonics of model
Harmonics FES2004 to degree 100.
LongiPerlod Band -all Self-consistent equilibrium model.
constituents
Tidal Arguments & Doodson (1921)
GFZ  Amplitudes/Phases Schwiderski (1983)
Multi-satellite selection of
Tidal Harmonics harmonics for discrete tidal
lines from FES2004 model (Lefevre, 2005).
Derived from FES2004
GSFC Convolution Weights (monthly, fortnightly, diurnal, semidiurnal)
and SCEQ (Semi-annual and Annual)
Expansion Complete to degree 90

Table 3.4: CSR, GFZ, GSFC Tide Models (Bettadpur, 2007; Flechtner, 2007; Watkins and Yuan, 2007)

Here the graph shows the difference of GRACE gravity anomalies which have been subtracted
the means between the GRACE field and SLR-C;y GRACE field. It shows the scaled Cpy and
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GRACE field Subtract the GRACE field with SLR C20 term of CSR Mar.2003
9

Figure 3.6: GRACE Field Subtract the GRACE Field with SLR Cyo Term

the largest variation are in the high latitude areas as the results from (Chen et al., 2008; Han
et al., 2005) which reports the S, alias near the Filchner-Ronne ice shelf.

(a) Gravity Difference at 85°N, 103°E (b) Gravity Difference at 31°N, 103°E

0.15 T T T T T T T T T 1.5

0.1

0.05f

Gravity Anomaly Difference [uGal]
Gravity Anomaly Difference [uGal]
o

-15

2003 2004 2005 2006 20?{7 2008 2009 2010 2011 20032004 2005 2006 20%7 2008 2009 2010 2011
ear ear

Figure 3.7: Gravity Differences in the Spatial Domain Caused by Cyo Term from GRACE and SLR Data

Fig. 3.7 shows the time series changes between the GRACE and the SLR-Cyy GRACE which in-
dicates that approximately the influence is magnitude 1 yGal and need to be considered. And
other author has proved that replacing the Cyy term with other estimation for example the SLR
will improve the gravity field (Chen et al., 2005). In this thesis, SLR Cyo term (Cheng and Tap-
ley, 2004) instead of the original Cy term in GRACE are used, but without the consideration of
the correlation of the spherical harmonic coefficients.

3.4 Spatial Filtering

As the signal contains errors (see Fig. 3.3(d) and 3.8) and to reduce the errors usually the mean
values are subtracted and it is the same on the sphere.
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Figure 3.8: GRACE Signals and Errors

Filtering on the sphere is much more complex than that on the plain despite the principle is the
same. Generally the filters are divided into four groups:

Deterministic Filter Stochastic Filter
Isotropic Filter e.g, Gauss Filter e.g, Wiener Filter (isotropic)
Anisotropic Filter e.g, Fan Filter e.g, Wiener Filter (anisotropic)

Table 3.5: Types of Filters

The definitions are

1. Deterministic filter: do not consider about the real signal and only depends on the math-
ematical analysis of the model;

2. Stochastic filter: considering the statistical property of the real observations such as
Signal-to-Noise Ratio (SNR);

3. Isotropic filter: the weight function only depends on the degree or in another word,
azimuth independent;

4. Anisotropic filter: the weight function depends on both degree and order.

In this thesis, only the theory of the deterministic filter will be discussed.

3.4.1 General Theory

The two dimensional “Legendre transform” is defined in Eq. (3.6). And now we use

(3.36)

sin mA

Yim (6,A) = Ppy(cos ) { cosmA }



28 Chapter 3 Modeling of the Gravity Changes Due to Earthquakes

which is called the Surface Spherical Harmonic Function (its property can be seen from Ap-
pendix. A or (Wahr, 1996)) to rewrite the formula:

Clm 1 / ~

- = — 37

5, } pp F(0,A) Y, (6,A) d® (3.37)
P

The following theorem and formulae are according to the report Jekeli (1981).

The general definition of the convolution of two functions defined on the sphere is:
H(0,4) = (G+F) (8,1) = - //G $,5)F(0,) d (3.38)

where ¢, ¢ are spherical coordinates, colatitude and longitude in the system rotated by the
angles 0, A and 6, A are the spherical coordinates on the sphere.

Since it is rather too complex to explain the 2D convolution of G (1, ¢) which is both based on
latitude and longitude (anisotropic filter). Thus the G (1) based only on the ¢ (isotropic filter)
is used. Eq. (3.38) can be used:

H(8,1) = (G+F)(0) = 5 / [cw ) do (3.39)

But the difference is that d® = sin df dA where cosy = cosfcosf + sinfsinfcosv and
v = A — A. Next, expand the G (¢) by using the normalized and non-normalized Legendre
polynomials:

G(y) =Y gPp(cosp) = V20 +1Y_ g Py (cos ) (3.40)
I=0 1=0
And because of the addition theorem of the Legendre polynomials:
1 & o s
P (cosp) = 1 mZ::O im (8,A) Y (6, 1) (3.41)
So l
GW) =Y~ Y Vi (B,3) Vi (6,1) (3.42)
iz V2l +1,=0

- - _i 0 gl ~ - -
H (9,1) 4”4/120 21+1,,;0Y”“ (8,1) Vi (6, ) F (0) d
[ee] gl ~ _ 1 /~
- Y, (,2) — [[ Y1, (6,A\)F(6,7) d

® (3.43)
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Therefore the spectrum of H (6, A) is

1
My = ————21 fim 3.44
I 5 +181f1 (3.44)

which is not hy,, = g1 fi, as the the convolution theorem states in the Cartesian coordinate.

Treat Eq. (3.39) as an operator:
1
r= H//G@p) (o)do (3.45)

And it is easy to get:
1

V2041

which means that the I' is an eigenfunction. According to this, we can conclude that the 2D con-
volution on the sphere by the function that can be expanded into spherical harmonics is equal
to the operation on the spherical harmonic coefficients by the spectrum of the corresponding
function (e) and the kernel ( G (¢) ). The eigenfunctions are Yy, (6, 1) and \/ﬁ g are the

'Y, (6,A) = 81 Yim (6,7) (3.46)

eigenvalues (Meissl, 1971).

Then treat the function G (¢) as the smooth function and rewrite it to a normalized weighting
function:

__ w(y)
G(y) = T 4 T ()0 (3.47)

where |w ()| < 1for 0 < ¢ < 7. Then use Eq. (3.6) but the non-normalized Legendre polyno-
mials when m = 0, so P; = /2] + 1P, and then integral the A:

~ s
C V2I+1 )
gim } = /G () Pi(cos ) siny dy (3.48)
* 0
81
the same as Eq. (3.44) and let:
b= (3.49)

V2041

practically B; is very important, it is the eigenvalue in the Eq. (3.46) and the constant that
multiply to the corresponding degree of the spherical harmonics.

Finally B; can be directly multiplied to the spherical harmonic coefficients, considering the
general case in the Eq. (3.38) and combining with Eq. (3.3), the filtered field H (é,}_\) can be
expressed in the spatial domain:

agk

1
H(,A) =Y BiA1 ). Piy(cosf)(Cpycos mA + Sy sinmA) (3.50)
m=0

1

0
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3.4.2 Gauss Filter

For a common deterministic filter such as the Gauss filter, generally there are three steps to
define the B; which is a weight in the spectral domain for the spherical harmonics of degree

I:

First, define the weight function in the spatial domain, thus the weight function of the Gauss
filter is:
w=e¢ *1-cos¥) 550 (3.51)

w expresses the weight in the spatial domain, 1 is the spherical distance and a is the averaging
cap.
The second step is to normalize the w on the whole sphere by using the Eq. (3.47):

c B efa(lfcoslp) 35
(p) = e (3.52)

The last step is to get B; which is the spectrum of the function G (¢) using the Eq. (3.48) and
(3.49):

s

ae—a(l—cost[}) ]
,Bl = / WPI (COS l/)) Slnl/) dll] (353)
0

Due to the complexity of the integral of the P, (cos i) we cannot get the explicit formula for .
Instead the recursion formulae are:

21 +1
Biv1=— p Bi+Bi-1,1 =1
Bo=1, (3.54)
14+e 2 1
Pr=1—=2 "

Wahr and Molenaar (1998) changed the normalization of w by normalizing the w (Jekeli, 1981)
so that ;L :wa(lp) d® = 1. We get

b e—b(l—costp)
R T (3.55)

with b = In(2) /(1 — cos(r1/2/R)) and the ry,, the spherical distance on the earth surface
where w(r1,2,/R) = 1/2w (0).

Finally the set of formulae becomes:

2[+1
Biy1 = — 5 Bi+pi-1,1>1
,BO =1, (3.56)
14+e 2 1

L

Fig. 3.9 shows the B of Gauss filter.
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3.4.3 Fan Filter

The Fan filter is developed by (Zhang et al., 2009). It is an anisotropic filter. However, the idea
of the Fan filter is very straightforward. By using the equation similar to Eq. (3.50):

0 !
H(0,A) =Y _BiA1 ), BuPiu(cos8)(Cpy cosmA + Sy sinmA) (3.57)

=0 m=0
The same fB; and B, can be used to smooth the degree and order of spherical harmonic coeffi-
cients. This method can change any deterministic isotropic filter into anisotropic filter. It is a
very flexible filter. But on the other hand, the smoothing process is treated independently on
the degree and order and this filter lacks a theoretical basis. Fig. 3.9 shows the B of Fan filter.
Its name originates from the shape of the filter in the spectral domain which looks like a fan.

a) Gauss M= 200 km b) Gauss r,,= 400 km
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Figure 3.9: The Spectrum Domain of Gauss and Fan Filters

Here is the comparison between Gauss filter and Fan filter by using the damping factor ()

(Kusche, 2007):
!

JfH*(B,2) d® ¥ % Bifim

=2 __ — 1=0m=0 (3.58)
2 co
[[F2(6,1) dP I

[=0m=0



32 Chapter 3 Modeling of the Gravity Changes Due to Earthquakes

Another formula is raised in (Devaraju and Sneeuw, 2009):

_ SNR(H (@)
XSNR = m (3.59)

__ Signal power
where SNR= G050 -

The result for CSR data Mar. 2003 of the Gauss filter 500 km thGNR = 0.23 and Fan filter (Gauss
filter 500 km) a$y, = 0.24. It indicates that the Fan filter can reduce the noise slightly better
than the Gauss filter. Furthermore, several researches related to GRACE detecting earthquake
signals use this filter (Ogawa and Heki, 2007; Heki and Matsuo, 2010a; Matsuo and Heki, 2011),
in this thesis the Fan filter based on 350 km Gauss filter is used.

3.4.4 Destriping Filter

This filter is described in (Swenson and Wahr, 2006). See from Fig. 3.3(d), there are significant
north to south stripes in the original field. And see from Fig. 3.10(a) and (c) which apply the
Gauss filter and Fan filter only, the north to south stripes can be clearly seen as well. These
three signals in the spatial domain indicate the correlation in the spectral domain. Swenson
found that the even and odd coefficients do not appear correlated with one another. For a

given spherical harmonic order, the simplified operation of the destriping filter is described by
(Chen et al., 2007):

1. use least squares to fit a polynomial the even and odd coefficient pairs separately;
2. remove the same polynomial of a certain order such as 3.

b) Gauss Filter 500 km + Destriping Filter
90 N=——=— = v
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Q0

0 90 E180 EW9OW 0

———

d) Fan Filter 500 km + Destriping Filter
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Figure 3.10: Destriping Filter Combined with Gauss and Fan Filter
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After applying the destriping filter, in the Fig. 3.10, the north to south stripes are not so signifi-
cant in 3.10(b) and (d).

[ nGal ]

Figure 3.11: Difference of the Fan and Gauss Filter

Last, compare the combination of the Gauss filter and Fan filter with the destriping filter. See
Fig. 3.11, the differences between the Gauss filter and Fan filter indicate that as an anisotropic
filter, Fan filter eliminates the longitude dependent errors much more than the Gauss filter.
And by applying the destriping filter, it removes the errors in the higher latitudes which is
related to removing the correlation errors of the lower orders.

However, as in my thesis the earthquake data are analyzed and many of the earthquakes are
ruptured in the north to south direction, the stripes should be cautiously removed.

Furthermore there are many other filters such as the EOF filter (Wouters and Schrama, 2007;
Bentel, 2009), Regularization filter (Lorenz, 2009), Optimal filter (Klees et al., 2008) and Han’s
filter (Han et al., 2005) which can be used alternatively.

3.5 Eliminate the Hydrology Signal

To eliminate the hydrology signal is necessary though GLDAS model is not accurate enough.
By such elimination, to some extent, the hidden earthquake signals might appear.

The hydrological effect is estimated by GLDAS model. GLDAS model is developed by scien-
tists at Goddard Space Flight Center (GSFC) of NASA and National Oceanic and Atmospheric
Administration, U.S (NOAA), National Centers for Environmental Prediction, U.S (NCEP)
(Rodell et al., 2004).

GLDAS is a global, high-resolution, offline (uncoupled to the atmosphere) terrestrial modeling
system which uses ground and space-based observations together to constrain Land Surface
Models (LSMs) with observation based meteorological fields. GLDAS model is a numerical
model and the data is provided in equivalent water height on a 1° x 1° grid on JPL website
(http:/ /grace.jpl.nasa.gov/data/gldas/). Such data cannot be directly used in my research
since all the data used here is expressed in the gravity anomalies. Nevertheless the transforma-
tion between the equivalent water height and the gravity anomalies should be applied and is
described in Sec. 3.2.2. Meanwhile, GLDAS does not provide any uncertainty estimation.

See from the Fig. 3.12(a), there are some areas GLDAS model is not valid — Greenland, Tibet,
north Canada and Siberia, due to the lack of ground data from Fig. 3.12(b). In the Sahara
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3 b) Raw GLDAS Model in Mar.2003
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Figure 3.12: GLDAS Model

Desert and the Arabian Desert, GLDAS model agrees with the local properties. In the Amazon
area, GLDAS indicates strong hydrological changes. In Fig. 3.12(c), because of the effect of the
data leakage, the blank area disappears but it is more smooth than the figure in the left due to
the increased resolution and the smoothing process. The leakage effect will affect some of the
earthquake areas analyzed — Sichuan and Maule.

b) Eliminate GLDAS Model from GRACE(Mar.2003)
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Figure 3.13: Eliminate GLDAS Model from GRACE

After subtracting GLDAS model from GRACE, the signals in Amazon, north Canada and south
Africa where the hydrology effect is decreased significantly (see Fig. 3.13). However, GLDAS
model cannot estimate all the hydrological data, for example, in the Amazon area it is reported
that GLDAS cannot estimate the 2005 Amazon drought which could be estimated by GRACE
data (Chen et al., 2009). Because the model is not valid globally, leakage effect and the problem
of some particular area, GLDAS model cannot fully eliminate the hydrology effect while the re-



3.6 Error Analysis 35

maining hydrological effect will affect the analysis of the earthquake coseismic and postseismic
changes. In this thesis, the hydrology effect has the biggest influence on Sichuan area where
it is near to Tibet. There is no GLDAS model in a small part of the selected area of Sichuan.
Maule area is near the coastline and Amazon area, where both leakage and strong hydrology
effect cannot be fully modeled by GLDAS.

3.6 Error Analysis

The Error estimation is mainly on GRACE data because GLDAS model is a numerical model
that there is no error estimation for this model. For the errors in GRACE, there are two types
of errors in GRACE (Wahr et al., 2006):

1. Stochastic errors: due to the errors in the monthly GRACE solutions;

2. Model errors: the difference between the true GRACE solutions and corresponding real
geophysical changes such as gravity anomalies.

Here the Stochastic error is what will be discussed. The model errors can be reduced by the
better geophysical model such as the tide model mentioned in Sec. 3.3.

The discussion begins from Eq. (3.57). Rewrite the equation by combining all the time-
independent coefficients defining the averaging kernel together:

co
H6,A) =Y Y (AmCim + BinSim) (3.60)
=0 m=0

where A}, = BiA1Bm Py (cos ) cosmA and By, = BiA1BmPry (cosf) sinmA.

oo
0H (9,7\) = Z Z (A10Cry + BindSim) (3.61)
=0 m=0

6H (9, )—t), 5Cyp,, and 65, are the corresponding errors from Eq. (3.60).

5Cy,y and 85y, are the diagonal elements of the covariance matrix which contained in GRACE
data as the "calibrated errors" in the Stokes coefficients. It intends to represent all the Stochastic
errors of the gravity field solutions.

Let
- ~  .x 1T
Kpo = [Ajm; Bim) and Cpo = [6Ci; 651m]

where Kpo and Cpg is the degree ordering described in Appendix. C. Error propagation law
is applied to analyze the errors in the spatial domain. Then rewrite the terms into the matrix
format:

H= KDO X CDO (362)

Applying the error propagation law (see (Sneeuw and Krumm, 2008)):
Qu = KQcK’ (3.63)

The formula above is not the full error propagation (Sneeuw, 2000) but the block error propa-
gation. Finally the error field is oy = \/diag (Qp) in the spatial domain, see Fig. 3.14.
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. @) Error of the Fan Filter 350m . b) Error of the Gauss Filter 350m
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Figure 3.14: Errors of the Fan Filter and Gauss Filter

From the Fig. 3.14 we can observe that the largest error appears in the low latitude areas but not
on the equator. The Fan filter can reduce more errors than the Gauss filter which agrees with
the results of the Damping factor in Eq. (3.59). And the difference of those two filters indicates
that the reduction of the errors is mainly in the low latitude area as well. Compare the Fig. 3.14
with the Fig. 3.6, the pattern is opposite but the Cyy error is much smaller than the stochastic
error.

3.7 Modeling of Earthquake-induced Changes in the Gravity
Anomaly

In the gravity data the co-seismic and post-seismic changes are the most significant. And such
signal can be only observed in the area near the epicenter. Since the types of earthquakes are
different, the behaviors of such changes are also different.

3.7.1 Modeling of Co-seismic and Post-seismic Processes
The co-seismic process is modeled by:

a1+ azt + Y (a2i41 cos (wjt) + azio sin (wit)) ift <ty
1

y(t to) = (3.64)

ST oIS

(ﬂ2i+7 Ccos (wit) + a4 g sin (wit)) if t > tg,

ay + agt +
i=1
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The post-seismic process is modeled by:

2 t—t
y (t, to) =ai3+ Z (612i+12 CoSs (wit) + api113 sin (wit)) + 61186770 with t > £ (3.65)
i=1

where

wi annual frequency

wy the frequency of S; tide in Sec. 3.3

t  time with unit of year

to  the month when earthquake took place

Eq. (3.64) and (3.65) are very common equations (Einarsson et al., 2010; de Linage et al., 2009;
Ogawa and Heki, 2007; Heki and Matsuo, 2010a; Matsuo and Heki, 2011). Therefore in this
research the same model is applied.

a1 & a7 and a; & ag are the bias and linear trend before and after the earthquake respectively.
The annual signals most probably caused by hydrology variations and the S, tide are estimated
by cos (wjt) and sin (w;t) withi =1, 2.

The co-seismic rupture from Eq. (3.64) is:

2
ay + agtg + Z (ﬂ21’+7 CoSs (wito) + a1 gsin (a]ito)) -
i=1
2

ay + arto + Z (a2i+1 Ccos (wito) + a4 sin (wito))
i=1

and the post-seismic signal is estimate by the exponential term alge*@ in Eq. (3.65). The
discussion of T which is Maxwell Relaxation Time will be in the Sec. 3.7.3.

T was fixed to 0.6 in the estimation of the postseismic signal of Sumatra by Ogawa and Heki

(2007). In this thesis, T is also estimated. However, as a small change in the estimation in T will
t—t,
lead large change in the regression model as the term ajge™ + will enlarge the effect of the .

The stabilities of the two models are compared:
1.
2 t—t

y=a+ Z (ag; cos (wjt) + a1 sin (wit)) + a6e’TO (3.66)
i=1

t—tg

=ame T 3.67)
y (
By linearization of the two model and insert the t and initial value, for Eq. (3.66):
_ : ; ~ —5 (=t
A =11 cos(wit) sin(wit) cos(wat) sin(wat) e 0 age © (— (3.68)
0

and construct the normal matrix (N = AT A) and do the singular value decomposition of N.
The condition number ¥ = (Max Eigenvalue) / (Min Eigenvalue). x changes with the different
initial number. When agp = 0.5 and 1p = 0.7, for Eq. (3.66) xk = 1005.3 and for Eq. (3.67)
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x = 297.6, which means Eq. (3.67) is more stable than Eq. (3.66). Although adjustment of all
the parameter together will be much better than adjustment by part, the estimation of 7 is still
done separately otherwise the other coefficient will be affected.

The estimation is done by the least squares method and 7 is estimated by Levenberg-Marquardt
algorithm (Seber and Wild, 2003) or Trust-Region-Reflective algorithm (Coleman and Li, 1996)
which are different from the non-linear least-squares minimization method using a quasi-
Newton iterative algorithm (Tarantola, 2005) in de Linage et al. (2009). Meanwhile as the signal
is not stable after two years from the earthquake time and the instability of the regression
model, only two years data is estimated for 7.

The model contains the t; which is the changepoint in the time series. Two questions should
be answered:

1. Time domain: As there are 106 months, when is the most significant jump in the time
series? If the time fo detected is in the month when the earthquake took place, such
detection is successful otherwise the detection fails.

2. Spatial domain: Whether in the spatial domain the rupture at “earthquake month” is
significant only in the area near the epicenter.

Only if these two tests are both successful, can we say the changepoint detection is successful.
And the discussion of those two tests will be in Sec. 3.7.2.

Meanwhile 7 is not a parameter for the normal changepoint detection but a geophysical pa-
rameter which will be discussed in Sec. 3.7.3.

Here is an example of the fitting by Eq. (3.64) of GRACE data in Sumatra-Andaman Earthquake
(Indonesia) 2004 on (3°N, 96°E) by Fan filter 350 km to give you an expression of what kind of
data that are dealt with.

b) Epicenter Single Time Series

10 T
— '
T 3 i
S = !
> > 5 :
> ,
£ S :
g g !
< < b i
2 > 0f ‘
g 3
© o

7200304 05 06 07 08 09 10 11 ™ 200304 05 06 07 08 09 10 11
Year Year

Figure 3.15: Model the Earthquake Time Series (Sumatra)
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Figure 3.16: Maxwell Relaxation Time T (Sumatra)
3.7.2 Changepoint Detection

A changepoint is a time at which the structural pattern of a time series changes (Lund et al,,
2007). The earthquake signals are not always big jumps which can be directly seen from the
time series and sometimes the coseismic jumps are hidden in the signals. However, the change-
point detection is easier than that in climate science since only one changepoint in the time
series of earthquake signals. Corresponding to the two questions raised in Sec. 3.7.1, two tests
are explained below:

¢ Two Phase detection (Lund and Reeves, 2002) is the detection of the significance in the
time domain;

* Ratio test is the detection of the significance in the spatial domain.

3.7.2.1 Two Phase Changepoint Detection

The aim of the Two Phase detection is similar to Cannelli et al. (2008) that to find whether there
are 