
Universität Stuttgart

Geodätisches Institut

GOCE data analysis:

Optimized brute force solutions

of large-scale linear equation systems

on parallel computers

Diplomarbeit im Studiengang

Geodäsie und Geoinformatik

an der Universität Stuttgart

Matthias Roth

Stuttgart, September 2010

Prüfer: Prof. Dr.-Ing. Nico Sneeuw
Universität Stuttgart

Betreuer: Dr.-Ing. Oliver Baur
Universität Stuttgart

Erklärung der Urheberschaft

Ich erkläre hiermit an Eides statt, dass ich die vorliegende Arbeit ohne Hilfe Dritter und ohne
Benutzung anderer als der angegebenen Hilfsmittel angefertigt habe; die aus fremden Quellen
direkt oder indirekt übernommenen Gedanken sind als solche kenntlich gemacht. Die Arbeit
wurde bisher in gleicher oder ähnlicher Form in keiner anderen Prüfungsbehörde vorgelegt
und auch noch nicht veröffentlicht.

Ort, Datum Unterschrift

III

The satellite mission GOCE (Gravity field and steady-state Ocean Circulation Explorer) was set
up to determine the figure of the Earth with unprecedented accuracy. The sampling frequency
is 1 Hz which results in a massive amount of data over the one year period the satellite is
intended to be functional. From this data we can setup an overdeterminded linear system of
equations to estimate the geopotential coefficients which are required for modelling the Earth’s
gravity field with spherical harmonics in the desired high resolution.

The linear system of equations is solved “brute-force” which means that the normal equation
matrix has to be kept in memory as a whole. The normal equations matrix has a memory
demand of up to 65 GByte, hence we need a computer providing a sufficient amount of memory
and fast multiple processors for the computations to get them done in a reasonable time.

In this study, a program was written to compute the geopotential coefficients from simulated
GOCE data, as GOCE real data were not available yet. As a first step, the program was op-
timized for the computations to become more efficient. As a second step, the program was
parallelized to speed-up the computations by two different techniques: For a first version, the
parallelization was done via OpenMP which can be used on shared memory systems which
usally have a small number of processors. For the second version, MPI was used which is
suited for a distributed memory architecture, hence can incorporate much more processors in
the computations.

In summation, we gained a huge boost in efficiency of the program due to the optimization.
Furthermore, huge speed-up was gained due to the parallelization. The more processors are
incorporated in the computation, the more the overall efficiency drops because of increasing
communication between the processors. Here we could show that for huge problems the MPI
version is running more efficient than the OpenMP version.

VII

Contents

1 Introduction 1
1.1 The GOCE mission . 1
1.2 General words on high performance computing 2

1.2.1 Technical terms – processor, CPU, program, process, thread 3
1.2.2 Shared memory systems . 4
1.2.3 Distributed memory systems . 5
1.2.4 Hybrid systems – cluster computers . 6

1.3 Systems used for this study . 7
1.3.1 Systems for programming and simple testing 7
1.3.2 High performance computers . 7

2 Methodology of gravity field recovery 11
2.1 From gravitational potential to gravitational gradients 11

2.1.1 Base vectors and their derivatives . 12
2.1.2 Gravitational acceleration vector . 12
2.1.3 Gravitational gradients . 13

2.2 Coordinate frames . 14
2.3 Estimation of geopotential parameters . 15

3 Computational optimization 17
3.1 Data – format and input . 17

3.1.1 Byte order . 18
3.1.2 Data storage . 19

3.2 Design matrix assembly . 20
3.3 Normal equations system setup . 21

3.3.1 BLAS function calls . 23
3.4 Normal equations system solution . 24
3.5 Makefile . 24
3.6 Commandline options . 25
3.7 Runtime measurement routines . 26
3.8 Optimization results . 27

4 Parallelization with OpenMP 29
4.1 Open Multi-Processing (OpenMP) . 29
4.2 Program adaption . 30
4.3 Parallelization results . 32

4.3.1 Local computer and frontend . 32
4.3.2 SX systems . 33
4.3.3 Numerical precision of the computations 35

VIII

5 Parallelization with MPI 37
5.1 Introduction . 37

5.1.1 Message Passing Interface (MPI) . 37
5.1.2 Scalable Linear Algebra PACKage (ScaLAPACK) 38
5.1.3 Block-cyclic distribution . 40

5.2 Cluster installation . 42
5.2.1 The GIS-Cluster . 42
5.2.2 Brief installation guide for a Rocks Cluster 43
5.2.3 Numerical libraries installation . 44

5.3 Program adaption . 45
5.3.1 Data input and distribution. 45
5.3.2 Initializing a distributed matrix . 46
5.3.3 Design matrix assembly and redistribution 47
5.3.4 Normal equations system setup . 49
5.3.5 Normal equations system solution . 50

5.4 Further considerations . 51
5.4.1 Block size of a distributed matrix . 51
5.4.2 Linking a program which includes ScaLAPACK 52

5.5 Runtime results . 52
5.5.1 Varying number of CPUs . 52
5.5.2 Large-scale problems . 53
5.5.3 Numerical precision of the computation . 54

6 Conclusions and outlook 57

A Source code XIII
A.1 Block-cyclic distribution – an example . XIII
A.2 Conversion of ASCII to binary data . XIV
A.3 Shared memory version – OpenMP . XVI
A.4 Distributed memory version – MPI . XXI
A.5 Commonly used files . XXX

Bibliography XLVII

IX

List of Figures

1.1 Shared memory system – connection via a bus. 4
1.2 Shared memory system – connection via crossbar switch. 5
1.3 Distributed memory system. 6
1.4 Hybrid system – shared memory nodes are put together to form a cluster. 6
1.5 HLRS NEC SX systems. 8

2.1 Reference frames: EFRF, LNOF, LORF. 15

3.1 Computing the Legendre functions. 21
3.2 Computation of the normal equations system. 22

4.1 Flowchart of the OpenMP-parallelized version of the program. 31
4.2 Shared memory version with OpenMP on the frontend Asama. 32
4.3 Shared memory version with OpenMP on the SX-8. 33
4.4 As in figure 4.3, but for the SX-9. 34
4.5 Shared memory version with OpenMP on the SX-9. 35
4.6 OpenMP version, DE-RMS values and relative empirical errors. 36

5.1 ScaLAPACK software hierarchy. 38
5.2 General layout of the GIS-cluster. 43
5.3 Flowchart of the MPI-parallelized version of the program. 46
5.4 Distribution scheme of a block of the design matrix A. 48
5.5 Runtime depending on the block size of the distributed matrices. 51
5.6 Distributed memory version with MPI on the SX-8. 53
5.7 As in figure 5.6, but for the SX-9. 54
5.8 As in figure 5.6, but for the SX-9 and with lmax = 200. 54
5.9 Distributed memory version with MPI on the SX-9. 55
5.10 SX-8: runtime depending on maximum degree and order lmax for a different

number of whole nodes. 55
5.11 MPI version, DE-RMS values and relative empirical errors. 56

XI

List of Tables

1.1 Number of coefficients and amount of memory for normal equations matrix stor-
age dependent on maximum spectral resolution Lmax. 2

1.2 Hardware characteristics of the local computer that was used for programming
and testing. 7

1.3 Hardware characteristics of the cluster that was used for testing the distributed
memory version. 8

1.4 Hardware characteristics of the NEC SX frontends. 9
1.5 Hardware characteristics of the NEC SX systems. 9

3.1 SST data format (simulated data). 17
3.2 SGG data format (simulated data). 18
3.3 Time to read data on the NEC SX systems. 18
3.4 Byte order of the 32-bit integer number 305 441 741 (hexadecimal: 0x12 34 AB CD). 19
3.5 Commandline parameters. 26
3.6 Runtime results for three different program versions. 28

5.1 Hardware used for the cluster nodes. 42
5.2 Mandatory rolls for installing a computing cluster. 43
5.3 Renaming scheme for BLAS, LAPACK & Co. 45
5.4 Comparison of the parallelization between OpenMP and MPI, SX-9, n = 500 000,

16 CPUs. 55

1

Chapter 1

Introduction

This chapter provides a brief overview of the satellite mission GOCE and the motivation for
the usage of super computers. Also different types of computer architectures are introduced as
well as the systems used in this study.

Chapter 2 provides the mathematical background for the estimation of spherical harmonic co-
efficients. In this context, not only the necessary formulas are shown, but also relations which
may become useful for a later extension of the program.

Chapter 3 addresses optimizations with respect to data handling and computations. In chap-
ter 4 the parallelization of the program on a shared memory system using OpenMP is shown,
whereas chapter 5 deals with the parallelization on a distributed memory system using MPI.

Chapter 6 concludes the work and gives some outline for future enhancement. The source code
of the programs is listed in the Appendix.

1.1 The GOCE mission

The satellite mission GOCE 1 (ESA, 1999) was set up to measure the gravity field of the Earth
from space with unprecedented accuracy. The satellite is in near free fall around the Earth in
a low orbit of around 260 km height above ground. The low orbit was chosen that the signal
of the Earth’s gravity field is as strong as possible in the height of the satellite. In this low
height exists still some atmosphere, hence the satellite needs to be propulsed steadily to keep
its height. This steady push is produced by ion thrusters which accomplish this task with the
necessary precision and small force, and at the same time do not require much fuel .

On board of the satellite is a 3D electrostatic gravity gradiometer mounted near the satellite’s
centre of mass. On each of the three axes two accelerometers are mounted. Each accelerometer
contains a test mass of 320 g in form of a rectangular block with the size of 4 cm × 4 cm ×
1 cm made of a platinum-rhodium-alloy. The test masses are held by electrostatic forces in the
centre of the accelerometer. These forces are measured. Translations of the mass as well as
rotations are registered. In order to perform high-accurate measurements it is necessary that
the temperature is very stable and therefore is regulated very precisely.

The primary goal of the mission is the determination of a high-accurate, high-resolution model
of the static Earth’s gravity field. This model is deduced from the gradiometer data (Satellite

1Gravity field and steady-state Ocean Circulation Explorer

2 Chapter 1 Introduction

Lmax # coefficients RAM

10 118 0.2 MB
20 438 1.5 MB
50 2 598 51.5 MB

100 10 198 793.5 MB
120 14 638 1 634.8 MB
150 22 798 3 965.4 MB
200 40 398 12 451.2 MB
250 62 998 30 279.1 MB
300 90 598 62 622.1 MB

Table 1.1: Number of coefficients and amount of memory for normal equations matrix storage dependent on max-
imum spectral resolution Lmax.

Gravity Gradiometry – SGG) and GPS-observed satellite positions (Satellite-Satellite Tracking –
SST). The data sampling rate is 1 Hz which results in 86 400 recorded datasets per day, around
2.6 million datasets per month and around 32 million datasets per year. (In this rough calcula-
tion it is not considered that there exists resting periods and periods where no data is available
due to failure).

From this massive amount of data we can set up an overdetermined linear system of equations
to estimate the coefficients which are required for the modelling of the Earth’s gravity field
with spherical harmonics in the desired high resolution. The number k of coefficients can be
computed with

k = (Lmax + 1)2 − 3,

where Lmax is the maximum degree and order of the sherical harmonics. The memory require-
ment is dominated by the normal equations matrix. The necessary amount of memory can be
computed with

RAM = 8 k2 bytes.

Table 1.1 shows the amount of memory dependent on the spectral resolution.

Such a huge amount of data cannot be handled by a desktop computer in a reasonable time.
Also a desktop computer does not have the necessary amount of memory available. Therefore,
the goal is to develop a program which uses a parallel computer for the computation of the
spherical harmonic coefficients. First a version of the program for parallel computer systems
with shared memory was implemented. However this program could run on one node of the
computer only. To further speed up the program it is necessary to use more processors. There-
fore a second version of the program was implemented for systems with distributed memory.
A comparison of the perfomance of both program versions is conducted.

1.2 General words on high performance computing

The development of processors evolves rapidly. Within short periods faster and more en-
ergy efficient processors are introduced. Following the semi-annual publication of the top500
list (Meuer et al., 2010), one can see that the development of super computers progresses of

1.2 General words on high performance computing 3

the same degree. With each new generation of super computers the computing power in-
creases. Already the petaFLOPS2-mark is exceeded. The ratio of computation performance to
energy consumption increases steadily, hence also the energy efficiency of the computers rises
– but also the total power consumption increases as the demand of computing power grows
steadily.

Nowadays most super computers are build from standard components. Standard components
are mass produced which makes them cheap in comparison to especially developed compo-
nents. But there also exist special computer architectures which are designed for special re-
quirements.

There are several possibilities to group computers such as according to different memory con-
cepts:

• shared memory systems,
• distributed memory systems,
• hybrid systems (e. g. cluster computers).

Hybrid systems are a mixture of shared and distributed memory.

1.2.1 Technical terms – processor, CPU, program, process, thread

Although often the terms CPU3 and processor are used with the same meaning, they should be
distinguished. A CPU can be seen as the “heart” of a computer which executes the instructions
and performs integer calculations, whereas a processor can also be used for more general pur-
poses. In this thesis it is not necessary to distinguish between CPUs and processors and also it
is not of importance whether the processor cores are on the same chip or not.

Instructions for floating point calculations were added already to the early CPUs. But for sci-
entific purposes these processors were too slow and therefore often special coprocessors for
floating point operations were used. As the integration of circuits progressed, former separate
parts (like the floating point coprocessor – now called FPU4) were moved to the same chip as
the CPU to provide even faster execution of the operations. Also further extensions were in-
vented and added to the processors to enhance their computation abilities. Starting with the
MMX5, followed by the SSE6, those enhancements developed over the years in several versions,
and still development progresses. Those extensions add the possibility for vector processing to
the processor (but are used for vectorizing calculations of integer numbers mostly).

Altogether those components form the physical processor. Nonetheless, due to historical rea-
sons people still refer to this as CPU (which actually is only part of a processor) while meaning
processor. And also nowadays a physical processor (chip) normally holds more than one log-
ical processor. To distinguish between the physical and logical processors the latter are often

2FLOPS = FLoating point Operations Per Second (for scientific applications floating point numbers with double
precision are taken as a basis). 1 petaFLOPS equals 1015 FLOPS.

3CPU = Central Processing Unit
4FPU = Floating Point Unit
5MMX = Multi Media Extension
6SSE = Streaming SIMD (Single Instruction Multiple Data) Extensions

4 Chapter 1 Introduction

refered to as cores. In this terminology, one processor can consist of several cores. At the mo-
ment, desktop computers typically have 2–4 cores per processor (up to 6 cores for high end
desktop computers).

For the terms program, process and thread the same distinguishing problem arises. In the past, as
programs run on a single processor successively, a running program was called process. With
the introduction of parallel computing things changed: a program can now be divided into
several processes which in turn can run on several processors. Each process can be seen as an
individual instance of a program with its own exclusively used memory area which is protected
from the access of other processes. Threads are on the first sight the same as processes – often
a thread is called a lightweight process – but threads are only sub instances of processes. One
process can consist of many threads which have common access to the memory area of this
process (Tanenbaum, 2001).

1.2.2 Shared memory systems

As the name already implies, on a shared memory system all CPUs have access to the same
memory. This memory concept is quite common nowadays because many personal computers
are equipped with multi core processors which usually share the whole installed memory.

This concept permits simple implementation of a multi-threaded program, which is due to
simple communication between the individual CPUs. Messages are written in the memory
where other processes can read them. On the other hand, there need to be effective mechanisms
to protect the data in memory of the different processes against each other. When all processes
are part of the same program, there needs to be a mechanism to protect data beeing overwritten
by one process before another process is able to read it. The needed administrative expense
grows the more processors are added to work on the same computation task. Depending on the
type of task, at a certain point the administrative expense grows so much when one processor
is added that the computing power provided by this processor is almost completely needed for
the administrative workload. However, this type of system can be used in a very efficient way
– especially because of its simplicity.

There exist different approaches how to connect the CPUs with the memory:

Bus system The most common system is the bus system because it is used in standard per-
sonal computers. All CPUs are connected via a common bus7 to the memory (see figure 1.1).

RAM

CPU

RAM

CPU

RAM

CPU

RAM

CPU

Figure 1.1: Shared memory system – connection via a bus.

7As the vehicle from lat. omnibus = for all.

1.2 General words on high performance computing 5

The biggest advantage of the bus system is that it can be implemented without much design
costs and that it can be extended easily by connecting further CPUs or other memory units to
the bus.

The biggest disadvantage is that all CPUs have to share the bandwidth of the bus. Depending
on the implementation it can also mean that only one CPU has access to the memory while at
the same time the other CPUs have to wait.

Crossbar switch To get rid of the problems of the bus system, the crossbar switch was devel-
oped. With a crossbar switch each CPU has direct access to each memory unit (see figure 1.2).

RAM

CPU

RAM

CPU

RAM

CPU

Figure 1.2: Shared memory system – connection via crossbar switch.

The crossbar switch makes it possible that each CPU can use the full bandwidth for memory
access. Also possible waiting time decreases as one CPU can still access some memory banks
when another CPU accesses other ones.

The disadvantage of using a crossbar switch is that the complexity of the circuits rises exponen-
tially the more CPUs or memory banks are connected. There needs to be a direct connection
from each CPU to every memory bank. Hence this type of memory connection is only suited
for a very low number of CPUs.

1.2.3 Distributed memory systems

The most significant disadvantage of systems with shared memory is that these systems cannot
be expanded arbitrarily. Such a disadvantage is nonexistant with distributed memory systems.
On such systems each CPU has its own memory; memory access is restricted to the particular
CPU.

This combination of CPU and memory is referred to as node. Communication between CPUs
normally takes place over slow networks (see figure 1.3) – compared to the bandwidth of the
communication with the memory. Distributed memory systems can be expanded nearly in any
order. For example there exist systems with more than 100 000 CPUs. For such systems the
term massively parallel processing exists.

On the other hand, a bottleneck is caused from the communication over the network. A net-
work usually has longer latency than a memory bus. Before communcations can be established,
a process has to wait for a bit because of technical reasons, hence the process is slowed down.

6 Chapter 1 Introduction

RAM

CPU

RAM

CPU

RAM

CPU

RAM

CPU

Figure 1.3: Distributed memory system.

At the same time the complexity of the programs gets higher as programmers have to tell the
processes which of them should communicate with each other to send or receive data.

Parts of the program should be arranged in such a way that the amount of communication
between CPUs is as low as possible.

1.2.4 Hybrid systems – cluster computers

The motivation for hybrid systems is to combine the advantages of shared memory systems and
distributed memory systems. At first glance, hybrid systems look a lot like distributed memory
systems. The difference lies in the computing nodes which work like a shared memory system
each. Each node consists of several CPUs which share the node’s memory. The computing
nodes are connencted to each other via network which is usually much slower than the CPU-
memory connection within a nodes (see figure 1.4).

RAMCPU CPURAMCPU CPURAMCPU CPU

Network RAMCPU CPURAMCPU CPU

Figure 1.4: Hybrid system – shared memory nodes are put together to form a cluster.

Presently, the most common architecture to build super computers is such a hybrid one. Com-
puters built in such way are usually called cluster computers.

There are big advantages: building such a computer is cheap as one can use standard compo-
nents which are cheap due to mass production. Using standard components also makes it easy
to exchange a defective node. Also the computers are easily extensible by adding more nodes,
and the nodes can be exchanged by updated hardware.

Like distributed memory systems, a hybrid system has the disadvantages resulting from the
relatively slow communication between nodes. This can be countered by using faster network-
ing techniques. A further possibility is the consideration of the slow network connection while
programming. When computational intensive parts of a program favor the local memory over
the distributed memory the cost caused by the networking activity can be reduced consider-
ably. Hence, the program does the computations in less time.

The range of different systems is huge – starting from low-cost selfmade systems of a few PCs
connected by an Ethernet network, to high-end systems consisting of thousands of CPUs with

1.3 Systems used for this study 7

the components packed tightly in so called racks and connected through special networking
devices which enable fast communication.

1.3 Systems used for this study

Different computer systems were used for the implementation and testing of both versions of
the program. These systems are presented next.

1.3.1 Systems for programming and simple testing

Local computer. As local computer I will refer to the desktop computer which was used to do
the programming and also was sufficient for short tests which did not require much memory.
The advantage of this computer is that new libraries could be installed and tested with different
setting ad libitum.

This computer has a dual core processor. Hence, it was possible to write and test the shared
memory version of the program. Further hardware characteristics are presented in table 1.2.

local

type of processors AMD Athlon 64 X2 4200+
processors 1 (2 cores)
clock frequency 2.2 GHz
memory 1 GByte
operating system Linux (SuSE)

Table 1.2: Hardware characteristics of the local computer that was used for programming and testing.

GIS-Cluster. A small cluster computer consisting of disused desktop computers was built to
test the distributed memory version of the program. The different reasons for the setup of the
cluster and how to proceed to build a cluster will be explained in section 5.2.1 in detail. The
term GIS stands for “Geodätisches Institut Stuttgart”.

The cluster consists of two desktop computers as this is enough for testing purposes. The
specifications of the used computers are summarized in table 1.3. The frontend connects the
cluster to the university network. It is also used as computing node.

1.3.2 High performance computers

Several high performance computing platforms are supported by the HLRS8. For this study,
two systems were used: the SX-8 and its succeeding model, the SX-9. Both SX systems are built
by NEC.

8HLRS = High Performance Computing Center Stuttgart (Höchstleistungsrechenzentrum Stuttgart).

8 Chapter 1 Introduction

frontend computing node

type of processors Intel Pentium 4
processors 1 (1 core) 1 (1 core)
clock frequency 3.4 GHz 3.0 GHz
memory 1 GByte 1 GByte
operating system Linux (Rocks Clusters)

Table 1.3: Hardware characteristics of the cluster that was used for testing the distributed memory version.

Access to the SX systems is possible via their respective frontends. The frontends are used
for cross-compiling programs for the SX systems as well as for the interaction with the batch
system. The procedure for running a job on one of the SX systems is to submit a batch script to
its scheduler. In this batch script the demands (amount of memory, number of nodes, number
of processors, running time etc.) for the job as well as the program calls are defined. Depending
on these demands the scheduler administers the jobs and executes them when the appropriate
resources on the SX system are available.

The SX systems are so-called vector computers. The processors are no standard components
but especially produced for the SX systems. Each processor has a vector unit which is capable
for executing a floating point operation on multiple data. For scalar operations the processor
also has a scalar unit which runs at half the clock speed of the vector unit.

Figure 1.5: HLRS NEC SX systems (left: SX-8, right: SX-9).

NEC SX-8 and its frontends The SX-8 has two frontends called Asama9 and A1. Their char-
acteristics can be found in table 1.4. A picture of the SX-8 is displayed in figure 1.5. The vector
unit of the SX-8 processors has four vector pipes, hence can handle four floating point numbers
in parallel with a single instruction. The specifications of the SX-8 are listed in table 1.5.

NEC SX-9 and its frontends The SX-9 system, too, has two frontends. Accessible for us is
only the one called Ontake10. Its specifications can be found in table 1.4. A picture of the SX-9

9Named after Asama (jap. 浅間山), a 2542 m high volcano on the main island Honshū, Nagano prefecture.
10Named after Ontake (jap. 御嶽山), with 3067 m the second highest volcano of Japan, located on Honshū, border

of the prefectures Nagano and Gunma.

1.3 Systems used for this study 9

is shown in figure 1.5. The vector unit of the SX-9 processors has eight vector pipes, hence can
handle eight floating point numbers in parallel with a single instruction. The specifications of
the SX-9 can be found in table 1.5.

SX-8 frontends SX-9 frontend
Asama A1 Ontake

type of processors Intel Itanium 2 (IA-64) Intel XEON X7370 (x64)
processors 32 (1 core) 32 (1 core) 4 (4 core)
clock frequency 1.5 GHz 1.5 GHz 2.93 GHz
memory 256 GByte 512 GByte 128 GByte
operating system Linux (SuSE) Linux (SuSE) Linux (SuSE)

Table 1.4: Hardware characteristics of the NEC SX frontends.

NEC SX-8 NEC SX-9

type of processors NEC SX-8 NEC SX-9
processors per node 8 16
nodes 10 12
processors 80 192
clock frequency 2 GHz (vector), 1 GHz (scalar) 3.2 GHz (vector), 1.6 GHz (scalar)
vector pipes 4 8
memory per node 128 GByte 512 GByte
total memory 1.28 TByte 6 TByte
node-node interconnect IXS 8 GByte/s per node IXS 32 GByte/s per node
operating system SUPER-UX SUPER-UX
peak performance 1.2 TFLOPS 19.2 TFLOPS

Table 1.5: Hardware characteristics of the NEC SX systems.

11

Chapter 2

Methodology of gravity field recovery

2.1 From gravitational potential to gravitational gradients

In terms of spherical harmonics, the Earth’s gravitational potential reads

V(λ, ϕ, r) =
GM

R

∞

∑
l=0

l

∑
m=0

(
R
r

)l+1

P̄lm(sin ϕ) (c̄lm cos mλ + s̄lm sin mλ) (2.1)

(Heiskanen and Moritz, 1967). In this equation (λ, ϕ, r) are the spherical polar coordinates with
eastern longitude λ, northern latitude ϕ and the distance from the centre of the Earth r. GM is
the geocentric constant, R is the semi-major axis of a reference ellipsoid of revolution. Further,
the latitude dependent functions P̄lm(sin ϕ) are the 4π-normalized Legendre functions of the
first kind. The coefficients c̄lm and s̄lm are unknown geopotential parameters. L = lmax is the
maximum spherical harmonic degree.

In the following, starting from equation 2.1 gravitational gradients will be derived. The deriva-
tion is according to Baur (2007).

Before proceeding, we substitute P̄lm(sin ϕ)(c̄ cos mλ + s̄ sin mλ) in order to save space during
the derivations later on. The substitutions are as follows:

elm(λ, ϕ) := P̄lm(sin ϕ)

{
cos mλ m ≥ 0
sin mλ m < 0

are called the surface spherical harmonics and

v̄lm :=

{
c̄lm m ≥ 0
s̄lm m < 0

are the coefficients. The lower bound of the summation over n has to be changed to accommo-
date the substitution. With this, equation 2.1 reads

V(λ, ϕ, r) =
GM

R

∞

∑
l=0

l

∑
m=−l

(
R
r

)l+1

elm(λ, ϕ)v̄lm . (2.2)

12 Chapter 2 Methodology of gravity field recovery

2.1.1 Base vectors and their derivatives

Any point x given in polar coordinates on a sphere can be expressed in its cartesian counter-
part

x =

 x1
x2
x3

 =

 r cos ϕ cos λ
r cos ϕ sin λ

r sin ϕ

From this equations, the unit vectors eλ, eϕ and er, which form the local north oriented coordi-
nate frame as outlined in figure 2.1, can be obtained. To do this we first define

fi =

(
∂x1

∂i
e1 +

∂x2

∂i
e2 +

∂x3

∂i
e3

)
, with i = λ, ϕ, r

and we get the unit vectors

eλ =
fλ

‖fλ‖
= (− sin λ e1 + cos λ e2 + 0 e3) , (2.3)

eϕ =
fϕ

‖fϕ‖
= (− sin ϕ cos λ e1 − sin ϕ sin λ e2 + cos ϕ e3) , (2.4)

er =
fr

‖fr‖
= (cos ϕ cos λ e1 + cos ϕ sin λ e2 + sin ϕ e3) . (2.5)

Later, the partial derivations of the unit vectors are needed (equations 2.3 to 2.5). The most
difficult to derive is ∂

∂λ eλ, as one needs to extend the equation with cos2 ϕ + sin2 ϕ = 1 as
follows

∂

∂λ
eλ =

∂

∂λ
(− sin λe1 + cos λe2)

= − cos λe1 − sin λe2

= − cos λ
(
cos2 ϕ + sin2 ϕ

)
e1 − sin λ

(
cos2 ϕ + sin2 ϕ

)
e2

= − cos ϕer + sin ϕeϕ

The other partial derivations of the unit vectors are more easy to derive, so only the results are
given. Here all of them are listed:

∂

∂λ
eλ = − cos ϕer + sin ϕeϕ

∂

∂λ
eϕ = − sin ϕeλ

∂

∂λ
er = cos ϕeλ

∂

∂ϕ
eλ = 0

∂

∂ϕ
eϕ = −er

∂

∂ϕ
er = eϕ

∂

∂r
eλ = 0

∂

∂r
eϕ = 0

∂

∂r
er = 0

2.1.2 Gravitational acceleration vector

In Baur (2007) it is shown that the gradient operator for an equation given in polar coordinates
reads

grad =

(
eλ

1
r cos ϕ

∂

∂λ
+ eϕ

1
r

∂

∂ϕ
+ er

∂

∂r

)
. (2.6)

2.1 From gravitational potential to gravitational gradients 13

Now we are able to compute the gravitational acceleration vector according to

grad V =

(
eλ

1
r cos ϕ

∂V
∂λ

+ eϕ
1
r

∂V
∂ϕ

+ er
∂V
∂r

)
=

GM
R2

∞

∑
l=0

l

∑
m=−l

(
R
r

)l+2{
(2.7)

eλ
1

cos ϕ

∂

∂λ
elm(λ, ϕ)v̄lm + eϕ

∂

∂ϕ
elm(λ, ϕ)v̄lm − er(l + 1)elm(λ, ϕ)v̄lm

}
,

which commonly is represented with

grad V =

 Vλ

Vϕ

Vr

 .

2.1.3 Gravitational gradients

Now we have all parts together to obtain the gravitational gradient tensor

grad(grad V) =

(
eλ

1
r cos ϕ

∂

∂λ
+ eϕ

1
r

∂

∂ϕ
+ er

∂

∂r

)[
GM
R2

∞

∑
l=0

l

∑
m=−l

(
R
r

)l+2{

eλ
1

cos ϕ

∂

∂λ
elm(λ, ϕ)v̄lm + eϕ

∂

∂ϕ
elm(λ, ϕ)v̄lm − er(l + 1)elm(λ, ϕ)v̄lm

}]
. (2.8)

We get

grad(grad V) =
GM
R3

∞

∑
l=0

l

∑
m=−l

(
R
r

)l+3
{

(2.9)

eλ ⊗ eλ

(
1

cos2 ϕ

∂2

∂λ2 elm(λ, ϕ)v̄lm − tan ϕ
∂

∂ϕ
elm(λ, ϕ)v̄lm − (l + 1)elm(λ, ϕ)v̄lm

)
+ eλ ⊗ eϕ

(
1

cos ϕ

∂2

∂λ∂ϕ
elm(λ, ϕ)v̄lm +

tan ϕ

cos ϕ

∂

∂λ
elm(λ, ϕ)v̄lm

)
+ eλ ⊗ er

(
− l + 2

cos ϕ

∂

∂λ∂ϕ
elm(λ, ϕ)v̄lm

)
+ eϕ ⊗ eλ

(
1

cos ϕ

∂2

∂λ∂ϕ
elm(λ, ϕ)v̄lm +

tan ϕ

cos ϕ

∂

∂λ
elm(λ, ϕ)v̄lm

)
+ eϕ ⊗ eϕ

(
∂2

∂ϕ2 elm(λ, ϕ)v̄lm − (l + 1)elm(λ, ϕ)v̄lm

)
+ eϕ ⊗ er

(
−(l + 2)

∂

∂ϕ
elm(λ, ϕ)v̄lm

)
+ er ⊗ eλ

(
− l + 2

cos ϕ

∂

∂λ∂ϕ
elm(λ, ϕ)v̄lm

)
+ er ⊗ eϕ

(
−(l + 2)

∂

∂ϕ
elm(λ, ϕ)v̄lm

)
+ er ⊗ er ((l + 2)(l + 1)elm(λ, ϕ)v̄lm)

}
.

14 Chapter 2 Methodology of gravity field recovery

These terms usually are summarized in the 3× 3 array

grad(grad V) =

 Vλλ Vλϕ Vλr
Vϕλ Vϕϕ Vϕr
Vrλ Vrϕ Vrr

 .

In equation 2.9 it can be seen that

Vλϕ = Vϕλ, Vλr = Vrλ, Vϕr = Vrϕ

holds true. Hence the matrix is symmetric. Furthermore

Vλλ + Vϕϕ + Vrr = 0

holds true (Laplace condition).

Of course, in practical use the spectral resolution depends on the data sensitivity. Hence, the
series in equation 2.9 is truncated at L = lmax. For the GOCE mission, lmax = 250 is expected.
In this thesis only the radial element of the gravitational tensor, Vrr, is used. (Nonetheless the
program was prepared to incorporate the other terms easily). The radial component reads

Vrr(λ, ϕ, r) =
GM
R3

L

∑
l=0

l

∑
m=0

(
R
r

)l+3

(l + 1)(l + 2)P̄lm(sin ϕ) [c̄lm cos mλ + s̄lm sin mλ] . (2.10)

2.2 Coordinate frames

For the analysis of GOCE data, several coordinate frames must be considered (EGG-C, 2009).
The origin of the Local Orbit Reference Frame (LORF) lies in the nominal mass centre of the
satellite GOCE, axis ex is pointing in flight direction (along-track), axis ez is pointing away
from the Earth centre in near radial direction (quasi-radial) and axis ey completes the orthog-
onal, right-handed reference frame (cross-track). The gradiometer is mounted near the mass
centre of GOCE and has its own Gradiometer Reference Frame (GRF) in which the gravity gra-
dients are provided. Origin and axes of the GRF are according to the axes of the gradiometer.
Ideally, LORF and GRF would coincide. However, in reality the two systems deviate from each
other within a few degrees. In this study, for simplicity we presume that LORF and GRF are
identically.

The position of the satellite is given with respect to the Earth-Fixed Reference Frame (EFRF)
with its origin in the geocenter, axis e1 piercing the intersection of the equator and the Green-
wich meridian, axis e3 piercing the north pole and axis e2 to complete the orthogonal, right-
handed reference frame. And finally the spherical harmonics are evaluated in the Local North
Oriented Frame (LNOF) with axis eϕ pointing to the North, axis eλ pointing to the East and
axis er is radial. The different coordinate systems are outlined in figure 2.1.

To do the necessary coordinate transformations, quaternions are provided with the GOCE real
data. These quaternions describe the rotation of coordinates from the Inertial Reference Frame
(IRF) to the GRF and also from the EFRF to the IRF. Further the spherical coordinates of the
satellite are given, so that also the position with respect to the LNOF can be obtained.

2.3 Estimation of geopotential parameters 15

ϕ

0°

e1

e2

e3

eϕ
er

eλ

r

λ

ex ez

ey

Figure 2.1: Reference frames: Earth Fixed Reference Frame (e1, e2, e3), Local North Oriented Frame (eλ, eϕ, er)
and Local Orbit Reference Frame (ex, ey, ez).

The simulated GOCE data, the program works with, is already given in the proper coordinate
frame. Hence, these transformations are not necessary for the simulated data. This section
serves as a reminder when later on the GOCE real data will be preprocessed for the use with
the program as one has to consider these coordinate transformations at that time.

2.3 Estimation of geopotential parameters

There are expected around n = 30 million observations from GOCE for one year, and it is hoped
that more data will be gathered as the fuel consumption of the satellite is less than expected.
Hopefully no other problems occur like the failing of the main computer in February 2010
and the failing of the backup computer in July 2010. Luckily the experts from ESA were able to
solve the problem with a software patch which bypasses the failed chip (European Space Agency,
2010).

As we want to estimate up to u = 90 598 unknown coefficients for lmax = 300 we have an
overestimated system of equations. Hence we can make use of a least squares adjustment to
calculate the unknown parameters.

The observation equations can be written in matrix form as

y = Ax + e (2.11)

where we have the observations y which consist of the product between the design matrix A
and the coefficients x as well as the added residual errors e. The design matrix is filled for
each observation with one line of the partial derivatives of equation 2.10 with respect to the
coefficients c̄lm and s̄lm

∂Vrr
∂c̄lm
∂Vrr
∂s̄lm

}
=

GM
R3

L

∑
l=0

l

∑
m=0

(
R
r

)l+3

(l + 1)(l + 2)P̄lm(sin ϕ)

{
cos mλ

sin mλ
. (2.12)

16 Chapter 2 Methodology of gravity field recovery

The minimization of the square sum of the residuals

min
x
‖e‖2 = min

x
‖y−Ax‖2

results in the least squares estimate of the coefficients

x̂ =
(

ATA
)−1

ATy = N−1b (2.13)

where N = ATA is called the normal equation matrix and b is defined as b = ATy.

There exist other possibilities to solve the least squares problem, for example with iterative
solvers which do not need the explicit assembly of the normal equations matrix and hence
do not have the need for very much memory. But in our case we want the possibility to get
accuracy information of the parameter estimation. For this we need the normal equations ma-
trix N explicitly, so that we are able to obtain the variance-covariance matrix of the parameter
estimate

D(x̂) = σ̂2
(

ATA
)−1

= σ̂2N−1, (2.14)

σ̂2 =
êTê

n− u
, ê =

(
A
(

ATA
)−1

AT − I
)

y. (2.15)

17

Chapter 3

Computational optimization

In this chapter, the efforts which have been done to improve the efficency of the implementa-
tions in general are presented. For the linear algebra part of the program it is convenient to
have with the BLAS1 and LAPACK2 two powerful numerical libraries at hand. Those libraries
contain nearly all tools one needs for computing in the realms of linear algebra. For many
computer architectures specially optimized versions are available. These versions usually get
the best performance out of a computer they are designed for and accelerate the computation
significantly in comparison to the standard version.

For several architectures (e. g. x86 and x86-64) ATLAS3 is available. We also used this bundle
of libraries on the local computer. ATLAS contains a wide range of BLAS and LAPACK func-
tions which are compiled with specific settings according to the computer architecture. The
architecture is determined automatically during the installation.

The specific optimizations and changes for the different approaches to parallelize the program
are shown in the chapters on OpenMP and MPI (chapters 4 and 5).

3.1 Data – format and input

The simulated GOCE data are provided in ASCII format. These data are organized in two
files. The first file contains the satellite-satellite tracking (SST) information (satellite positions,
kinematic orbit) with respect to the LNOF. In particular the data are organized as one line
per dataset with the entries printed in table 3.1. The second file contains the satellite gravity
gradiometry (SGG) information. Again the data is organized as one line per dataset, the entries
are listed in table 3.2.

tSST time
x1, x2, x3 position [m]
ẋ1, ẋ2, ẋ3 velocity [m/s]
ẍ1, ẍ2, ẍ3 acceleration [m/s2]
λ, ϕ, r spherical coordinates [rad, rad, m]

Table 3.1: SST data format (simulated data).

1BLAS = Basic Linear Algebra Subprograms
2LAPACK = Linear Algebra PACKage
3ATLAS = Automatically Tuned Linear Algebra Software

18 Chapter 3 Computational optimization

tSGG time
Txx, Txy, Txz, Tyy, Tyz, Tzz gradient tensor components [E]

Table 3.2: SGG data format (simulated data).

lines SX-8 SX-9

ASCII: 50 000 19.51 s 25.00 s
100 000 38.80 s 49.52 s
200 000 77.58 s 97.32 s
500 000 >30 min 251.28 s

binary: 100 000 0.43 s 0.71 s
500 000 0.68 s 1.44 s

Table 3.3: Time to read data on the NEC SX systems.

It is possible that the data of one file start or end at different timestamps. Hence the data have
to be synchronized. This task includes searching for the file which data start later and for the
file which data end earlier. Only the data common to both files are to be used for the analysis.

When ASCII data are read by a computer, they have to be interpreted and converted to the bi-
nary format the computer uses before they can be used in computations. In most programming
languages the necessary functions are available to read ASCII files and convert the data while
reading. With a PC the reading and converting happen in a negligible amount of time, which
is smaller than 2 seconds for 500 000 lines on a 2.2 GHz Athlon CPU.

After porting the program to the NEC SX systems, it turned out that the scalar unit of the
CPUs is quite slow in comparison to the CPU of the desktop computer. For instance, it took
around 39 s to read 100 000 data records on the SX-8 (see table 3.3). From this, one would
expect that reading of 500 000 lines of ASCII data will take around 190 s. But sometimes the
SX-8 shows a weird behavior, as it is possible that different programs are executed on the same
node while requesting more CPUs than present. When too many processes share the same
node, performance drops for each process. As a matter of fact, data reading on the SX-9 is a bit
slower than on the SX-8. Altogether, these findings show that the scalar unit of the CPUs of the
SXs is not optimized for integer operations.

As mentioned before, for GOCE real data analysis the number of data records per day is 86 400,
which amounts to around 2.6 millon data records per month and roughly 32 millon data records
per year. It would take too long to convert this amount of data with the SX-8 from ASCII to
binary format. Therefore it was decided to convert the data beforehand on a local PC to binary
format and to write a corresponding input funtion.

3.1.1 Byte order

While converting the data, another problem occured. The NEC SX systems take binary data
in the so called big-endian format which means that the byte of the highest order is first. In
contrary, PCs save binary data in the so called little-endian format which means that the byte
of the lowest order is first.

3.1 Data – format and input 19

adress (byte) 1000 1001 1002 1003

little-endian 0xCD 0xAB 0x34 0x12
big-endian 0x12 0x34 0xAB 0xCD

Table 3.4: Byte order of the 32-bit integer number 305 441 741 (hexadecimal: 0x12 34 AB CD).

Basically, no special advantages or disadvantages are known why to choose the one or the
other byte order for hardware implementation. But the byte order should be considered when
binary data are used. In particular, this is true if it becomes necessary to move data from one
architecture to another.

In table 3.4, an example is given for data in big- and little-endian format. The number
305 441 741 (hexadecimal: 0x12 34 AB CD) shall be put to the address 1000 in memory as a
32-bit integer number. It also shows one of the benefits of the big-endian format: the byte
order is like “normal”, so numbers can be read easily by humans without reordering the bytes.
It also applies to floating point numbers that the byte order can be simply reversed to get the
other format, only there may be a different amount of bytes used to represent that numbers. A
function to do the byte swapping is provided in code 3.1.

double swapEndian_double(double in) {
int siz = sizeof(double);
double tmp;
char *tmp_ptr, *in_ptr;
int i;
in_ptr = (char*)∈
tmp_ptr = (char*)&tmp;
for (i = 0; i < siz; i++) {
tmp_ptr[i] = in_ptr[siz - 1 - i];

}
return tmp;

}

Code 3.1: Function for swapping the bytes of a double precision floating point number between little- and big-
endian

Because a desktop CPU can convert data quite fast, it was decided to convert the data on such
a PC and save them in big-endian format. If the data are read again on a PC, the program
reorders the bytes of the values back to little-endian format. And if the data are read on a SX
system there is no need for conversions anymore.

3.1.2 Data storage

Another, although less important, reason to change the input format of the data is that the scalar
unit of the SX processors gets a significant workload to put the single values of one line to the
respective array in memory. This was not measured in particular as this part of the process
takes only a few seconds. But nonetheless it is slower than the entire conversion of the data on
a PC. Therefore it was decided to write the data columns to single files, one file per column,
while converting the data from the ASCII format to the big-endian binary format.

The aformentioned measures allow to read the binary files directly to the different arrays in the
memory without the need of converting the data. The amount of time to read and convert the

20 Chapter 3 Computational optimization

data on the SX systems could be reduced severly this way to be less than one second for 500 000
datasets (see table 3.3).

As mentioned earlier, the data have to be synchronized before using them. This task is done
before converting the data to binary format. Hence, one can be sure that the saved binary data
are synchronized.

3.2 Design matrix assembly

During the setup of the design matrix A, the 4π-normalized Legendre functions of the first
kind, P̄lm(sin ϕ), have to be evaluated. There exist several ways to compute the P̄lm(sin ϕ).
Here, the algorithm according to Heiskanen and Moritz (1967) is used, which was shown to be
numerically stable to a sufficient degree and order:

P̄0,0(sin ϕ) = 1, (all P̄ with at least one negative index is set to zero),
P̄m,m(sin ϕ) = Wm,m cos ϕP̄m−1,m−1(sin ϕ),

P̄l,m(sin ϕ) = Wl,m

[
sin ϕP̄l−1,m(sin ϕ)−W−1

l−1,mP̄l−2,m(sin ϕ)
]

= Wl,m sin ϕP̄l−1,m(sin ϕ)−W∗l,mP̄l−2,m(sin ϕ),

with W1,1 =
√

3,

Wm,m =

√
2m + 1

2m
,

Wl,m =

√
(2l + 1)(2l − 1)
(l + m)(l −m)

=

√
4l2 − 1
l2 −m2 ,

W∗l,m = Wl,m ·W−1
l−1,m =

√
(2l + 1)(l + m− 1)(l −m− 1)

(l2 −m2)(2l − 3)
.

One can see easily that the factors W are only dependent on degree l and order m. Because
of this, it is possible to compute these factors beforehand and store them into a table in the
memory for later use. Also the trigonometric functions are only evaluated once for every ϕ
and again the values are stored in memory. The later computation of the Legendre functions is
accelerated considerably.

The original function for computing the Legendre functions was split into two. One for making
the independent initialization computations for the factors W, and the other one for the actual
calculations of the Legendre function for every ϕ. Looking at the indices of the factors W shows
that we need to compute lmax values for Wm,m, lmax

lmax+1
2 values for Wl,m and Wm,m, lmax

lmax−1
2

values for W∗l,m.

Per ϕ the number of values computed for the Legendre function equals (lmax + 1) lmax+2
2 . A

further gain in computing speed can be accomplished because we do not need to address values
in memory which is time consuming, but can revert to the last two computed values which still
reside in the registers of the processor. This is also shown in figure 3.1, where the arrows
indicate the used values. It is easy to imagine how confusing the necessary index calculations
of the first method are.

3.3 Normal equations system setup 21

m

l0 1 2 3

0

1

2

3

m

l0 1 2 3

0

1

2

3

P00 P10 P11 P20 P21 P22 P30 P31 P32 P33 ... P00 P10 P11P20 P21 P22P30 P31 P32 P33

Figure 3.1: Computing the Legendre functions, same color indicates same program loop. Left: old method with
complicated indexing, right: new method with simple indexing.

Further potential to speed up the computations can be achieved with rearranging the equation
2.12 to

∂Vrr
∂c̄lm
∂Vrr
∂s̄lm

}
=

L

∑
m=0

{
cos mλ

sin mλ

}
L

∑
l=m

GM
R3

(
R
r

)l+3

(l + 1)(l + 2)︸ ︷︷ ︸
=:Bl

P̄lm(sin ϕ) (3.1)

which mainly was swapping both summation indices. With a clever arrangement of the sum-
mands and factors, it becomes possible to separate further parts of the computation. For exam-
ple it is only necessary to compute the factors Bl per observation once for all l = 0, . . . , L, save
them for later usage and access only the precomputed values in memory. The same factors Bl
are used in the summation over m several times. As this also applies for the Legendre functions
P̄lm(sin ϕ) the summation over l (l = m, . . . L) only requires the multiplication of trigonomet-
ric functions with pre-evaluated values which makes it very fast. Here also the trigonometric
functions need only be computed once for m = 0, . . . , L, but as the same value is only needed
in the following loop over l, we can just store the specific values and not a whole vector.

One line of the design matrix consists of the partial derivatives with respect to the coefficients
c̄lm and s̄lm in an alternating fashion. While assembling the design matrix, we take into account
that some values are not needed. Those regarding s̄l0 are non-existant (see equation 2.1) and
those regarding c̄1m and s̄1m are zero by definition (origin of coordinate system resides in Earth’s
centre of mass). However, one also has to keep in mind how the values are stored in memory to
compute the correct index into the different arrays for retrieving the needed values. Some more
minor computation tricks done are not mentioned, as they should be standard knowledge of a
programmer.

3.3 Normal equations system setup

Equation 2.13 shows that the normal equations system dominates the required amount of mem-
ory as it has to be kept in the memory as a whole. The normal equations matrix of a linear

22 Chapter 3 Computational optimization

system of equations is symmetric, therefore one could expect that only one triangle of the ma-
trix needs to be computed and kept in memory. However, the BLAS functions require that the
space for the whole matrix has to be allocated. Still only one triangle is computed, not needed
elements of the memory contain arbitrary values.

The size of the design matrix as a whole gets too large, so completely putting it into the mem-
ory is out of question. Instead we assembled the normal equations matrix by splitting the
observations into j blocks. The size of one of these blocks is chosen to be negligible in terms of
memory requirements. The assembling of the normal equations matrix N and vector b works
as follows

N = ATA = A1
TA1 + . . . + Aj

TAj =
j

∑
i=1

Ai
TAi =

j

∑
i=1

Ni , (3.2)

b = ATy = A1
Ty1 + . . . + Aj

Tyj =
j

∑
i=1

Ai
Tyi =

j

∑
i=1

bi . (3.3)

A graphic impression is given in figure 3.2.

A NAT

=· =⇒

A NAT

=·

Figure 3.2: The computation of the normal equations system is done by working on A linewise.

In a first implementation we chose the dimension k of the single blocks first, afterwards we
calculated the number of blocks j so that n = k j holds true. Hence, the number of observations
had to be an integer multiple of k and j. It was uncomfortable to handle how to read a specific
amount of datasets with this implementation, so some improvements have been done.

With the improved implementation it is possible to read an arbitrary number of datasets. There
is still the number of blocks j. But now this number as well as the size of a block k is computed
by the program considering a specific memory size for the design matrix which is the only
information to be provided by the user. Also the dimension of the last block is allowed to be
smaller than k.

In the initial implementation the BLAS function DGEMM was used for matrix-matrix multiplica-
tion and summation

Ni = Ai
TAi + Ni−1 , with N0 = 0 .

We replaced this function by DSYRK which only computes one triangle of the symmetrical
normal equations matrix and therefore is much more efficient, DSYRK is specially made for
multiplying a matrix with its transposed (or the other way round).

The function DGEMV is used for the matrix-vector multiplication and summation

bi = Ai
Tyi + bi−1 , with b0 = 0 .

The allocated memory for N respective b has to be initialized with zeros beforehand, which
can be easily achieved with using the function callocwhich overwrites the allocated memory
with zeroes (instead of the function malloc which would just allocate the memory).

3.3 Normal equations system setup 23

3.3.1 BLAS function calls

Different versions of BLAS are implemented for different computer architectures to put the
special features of the hardware to full potential. Originally, BLAS was programmed in Fortran,
but meanwhile an interface for C followed. This C interface was used for the shared memory
version of the program. Here, the double precicion function calls we used in our program are
presented (please refer to the Netlib Repository (2010) for a list of all function calls).

DGEMM C← αATB + βC
cblas_dgemm(CblasRowMajor, CblasTrans, CblasNoTrans,

m, n, k, α, A, lda, B, ldb, β, C, ldc);

with

α, β scalars
m, n, k integers, representing matrix dimensions
A k × m matrix
lda integer, leading dimension of A
B k × n matrix
ldb integer, leading dimension of B
C m × n matrix
ldc integer, leading dimension of C

DSYRK C← αATA + βC
cblas_dsyrk(CblasRowMajor, CblasUpper, CblasTrans,

n, k, α, A, lda, β, C, ldc);

with

α, β scalars
n, k integers, matrix dimensions
A k × n matrix
lda integer, leading dimension of A
C n × n symmetric matrix
ldc integer, leading dimension of C

DGEMV y← αATx + βy
cblas_dgemv(CblasRowMajor, CblasTrans,

m, n, α, A, lda, x, incx, β, y, incy);

with

α, β scalars
m, n integers, matrix dimensions
A m × n matrix
lda integer, leading dimension of A
x vector of length m
incx increment to reach the address of the next element of vector x
y vector of length n
incy increment to reach the address of the next element of vector y

24 Chapter 3 Computational optimization

3.4 Normal equations system solution

The normal equations system is symmetric positive definite. Hence it can be solved using the
LAPACK routine DPOSV which computes the solution of a linear system of equations Ax = b
(Netlib Repository, 2010). As the normal equations matrix is symmetric, the function only needs
the upper or lower triangular part of that matrix.

There are different implementations of LAPACK installed on the different used computer sys-
tems. Unfortunately the name of the DPOSV function and also the function call is different on
each system.

Local computer: a version of CLAPACK is installed, the function call is similar to the CBLAS
function calls.

DPOSV solve a normal equations system
clapack_dposv(CblasRowMajor, CblasUpper, n, nrhs, A, lda, b, ldb);

with
n integer, the number of linear equations
nrhs the number of right hand sides
A symmetric n × n matrix, holds the upper triangular part of that matrix
lda integer, leading dimension of A
b n × nrhs matrix (can hold multiple right hand side vectors), holds the results on re-

turn!
ldb integer, leading dimenasion of b

Frontends, NEC SX systems: the call must be made to the Fortran LAPACK library.

On the frontends the function call is DPOSV(uplo, n, nrhs, A, lda, b, ldb, info),
however on the SX systems the name is changed to dposv_ while the parameters remain the
same.

All parameter must be pointers. When the parameter CblasUpper was used with the BLAS
functions to assemble the normal equations system, the variable uplo has to contain the letter
"L" for the function to work in the same way. The parameter info gives back the status
information of the finished function call.

3.5 Makefile

For speeding up the development process it is very helpful to have a capable makefile at hand.
A makefile contains the parameters for the program make. The parameters tell make how to
compile and link a program, but can also control other tasks like copying data or running the
program with commandline options.

Especially a makefile is handy because the options for compiling and linking a program often
are lengthy. For example, the commandlines to compile, link and execute the program on the
local computer would look like this:

3.6 Commandline options 25

compiling: gcc -c main.c parser.c functions.c performance.c,
linking: gcc -o main main.o parser.o functions.o performance.o -lrt

-lm -L/usr/local/ATLAS/lib/Linux_HAMMER64SSE_2 -llapack
-lcblas -latlas

and running: ./main.

With a makefile it is possible to congregate different tasks within one so-called target. This
makes it easy to port a program to different hardware architectures, maybe with the use of
different programming libraries which depend on the specific hardware architecture. Within
the target all necessary information to build the program like compiler, linker, parameters,
libraries etc. is gathered.

As an example the makefile for the shared memory version of the program is explained here
(see section A.3). In the appendix also the makefiles for the other program versions are pro-
vided.

In the file seven targets are included (main, run, asama, asama_run, sx8, data and clean).
The target main is the default target. If the program make is called without further options, this
target will be built. In our case the program will be compiled and linked for the local computer.
It is also possible to call make main which would do the same. One can also list more than one
target, e. g. call make clean run which first removes all object files and executables, next the
program is compiled and linked and finally is executed.

Very practical is the possibility to declare variables which hold often used phrases. For example
it is possible to specify the used compiler in a variable at a location, easy to find on top of the
makefile, and refer to this variable later on. For example we use gcc as compiler on the local
computer, therefore we assign it to the variable CC_LOCAL and refer to it with $(CC_LOCAL)
later in the file. This also helps to prevent mistakes when a specific option should be changed at
a later time. Now the option needs to be changed only once and changes take place globally.

The target .PHONY is not callable. It lists all the other targets which should be executed every-
time. For example within the target clean no file called clean is created, hence such a file
will never exist. Therefore this target will be executed evertime someone calls make clean.
However, if somehow a file with this name comes to reside in the directory of the makefile,
make will consider this file as up-to-date and the target would not be executed. To avoid this
problem, the specific target can be put on the list of the target .PHONY.

3.6 Commandline options

To test different sets of parameters, commandline options can be called necessary for a pro-
gram. Commandline options make it possible to change parameters of the program quickly
without the need to recompile the program. Also for the NEC SX systems this is quite impor-
tant as the access is in batch mode and the programs get executed at a later time specified by
the scheduler. If one would change the program and recompile it, this new version would get
executed instead. Also for making several consecutive tests in a row, every set of parameters
would need one special version of the program which holds those parameters. To avoid getting
things confused, a commandline parser was implemented.

26 Chapter 3 Computational optimization

For systems of the x86 architecture the library getopt is available. This library makes parsing
the commandline easy. Unfortunately this library is not available for the SX systems, so we
had to use a simpler version which does not allow long names of the parameters. The possible
parameters for the pragram are shown in table 3.5. Now it is possible to compile the program
once and register different jobs at the schedulers of the SX systems which only differ in their
commandline paramters. This makes testing an easier task.

parameters description

--sstfile, -a <file> SST file; default:
../data/sc7/sc7_sst_coord_localsph

--sggfile, -b <file> SGG file; default:
../data/sc7/sc7_tensor_inv_localsph

--maxlm, -c <max> spectral resolution, maximum degree and order;
default: 50

--lines, -d <n> number of datasets to read; 0 = all, default: 100 000
--outfile, -o <file> the file in which the estimated coefficients will be

written; default: ./test.koeff

Table 3.5: Commandline parameters. For the SX systems only the short version is availabe.

3.7 Runtime measurement routines

For testing purposes it is necessary to know how a program performs its different tasks. With
this knowledge it is possible to detect the parts of the program which takes much of the overall
runtime. These parts should be addressed first for speed-up considerations.

There exist several possibilities to gain knowledge to a certain degree about runtimes of a pro-
gram. The most simple time measuring tool is the program time which is distributed with
Linux and other UNIX-like operating systems. During a program run it measures the real time
(which is the time that can be measured with a stop watch from the start to the end of the
program), the user time (which is the projected runtime of the program to one busy processor)
and the system time (which is the time that the operating system took for its processes, also
projected to one processor).

Another possibility would be the use of a profiler program. Here special preparations are nec-
essary as the program needs to be compiled with special options. For the different computers
we used, different profiler programs are available. The results of these different profilers would
be not directly comparable. Hence they were not used.

To achieve the goal – measuring the runtimes of different parts of the program – it was decided
to write a small collection of functions which would use the system clock of a computer and at
the same time make it possible to reset, start and stop several timers as well as taking a interim
time. Also it should be possible to stop a running timer and start it again while continuing to
count the runtime starting at the last stop.

On systems like the local computer or the frontends which are built with standard proces-
sors and are using Linux as an operating system, the system clock is read with the function

3.8 Optimization results 27

clock_gettime. The time is given back with a resolution of nanoseconds. However the NEC
SX systems use their special processors and have SUPER-UX as operating system. Here a func-
tion gettimeofday is available which returns the time with a microsecond resolution (which
still is sufficient for the purpose of measuring the runtime).

For example, to measure the time it takes for assembling the design matrix A, the start and
stop commands are placed before respectively behind the part of the program where this is
done. The same is done before and behind the part where the normal equations matrix N is
computed. Like this the runtime of all the parts of interest can be measured without having a
major effect on the runtime itself as the function calls to read the system clock are fast. A small
code snippet can be found in code 3.2. The timer functions themselves can be found in the files
performance.h and performance.c which are provided in the appendix, section A.5.

Ttimer T1;

reset_timer(&T1);
for (i = 0; i < 1000; i++) {
start_timer(&T1);
do_something();
stopp_timer(&T1);
do_other_things();

}
printf(" Time for ’do_something()’ : %1.4d s\n", totaltime_timer(&T1);

Code 3.2: Example for the function calls to measure the runtime of program parts.

3.8 Optimization results

Tests of the optimization were made continuously to see the efficency of the changes to the
program immediately. Here only three special versions are picked out.

• The first version is a very early one where no optimizations were done yet. The data is
read from ASCII-files, also still the routine DGEMM was used for adding up the normal
equations matrix.

• The second version switched to the faster routine DSYRK and also the Legendre functions
are computed with pre-evaluated values, though still ASCII data were used.

• Lastly, the third version is the actual version (also provided in the appendix) which incor-
porates all the optimizations mentioned within this chapter, in particular, the optimized
Legendre functions with rearranged summations, binary data input and use of DSYRK.

The runtime results are shown in table 3.6. A speed-up of 1 would mean, that the program runs
at the same speed as the basic version.

A large speed-up especially for the assembly of the design matrix could be achieved. Although
a big part of the overall speed-up is clearly due to the use of DSYRK, the use of the routine
DGEMM earlier can be counted as a beginner’s mistake. The runtime measurements show that
the time is dominated by the routine DSYRK, but as this routine is part of the BLAS library, it
cannot be optimized by the user easily. The only possibility to gain more speed is a paralleliza-
tion of the program, that more than one processor can participate in the computations. This
topic will be covered by the next chapters.

28 Chapter 3 Computational optimization

program features:

version input A N

1 ASCII not optimized DGEMM
2 ASCII pre-evaluation DSYRK
3 binary pre-evaluation,

reordered summations
DSYRK

parameters: lmax = 20, n = 100 000

version input [s] A [s] N [s] overall [s] speed-up

1 1.83 11.36 27.91 41.11 1
2 1.79 2.83 5.91 10.55 3.90
3 0.77 0.60 5.95 6.63 6.20

parameters: lmax = 30, n = 100 000

version input [s] A [s] N [s] overall [s] speed-up

1 1.83 25.67 156.91 184.20 1
2 2.06 6.83 25.35 33.77 5.45
3 0.88 1.07 25.52 27.59 6.68

Table 3.6: Runtime results for three different program versions and different spectral resolutions lmax (tested on
the local computer).

29

Chapter 4

Parallelization with OpenMP

In the previous chapter, parts of the program were optimized to gain the most speed and com-
putational efficiency while running the program on a single processor. With this effort a limit
is reached where not much progress can be expected anymore. Or in other terms, it would cost
too much effort to even get a small gain in the program’s efficiency.

Hence, the idea of parallel computing is considered. OpenMP, the method introduced by this
chapter, is useful for computers with shared memory architecture and at the same time quite
easy to use.

4.1 Open Multi-Processing (OpenMP)

OpenMP is a programming interface which is developed together by different producers of
hardware and compilers (e. g. AMD, Intel, IBM, HP, NEC) starting in the year 1997 (OpenMP –
Wikipedia, 2010)1.

OpenMP was developed to get an easy possibility to program multi-processor systems with
a shared memory architecture. Nowadays, most of the commonly used compilers for C, C++
and Fortran (for example the GNU compiler collection) are equipped with this interface. This
is also due to the growing spread of multi-processor (or rather multi-core) systems in office and
home use.

Parallelization with OpenMP is taking place on a thread or loop level. With OpenMP, special
compiler directives, called pragmas, are defined. Those directives instruct the compiler to build
machine code which can run in parallel for those parts of the program which are enclosed by
the directives. The pragmas are constructed in such a way that they look like regular comments
to compilers which cannot handle them. Hence, a program can still be compiled by such a
compiler, but in this case, it will only be able to run on a single processor.

Programming with OpenMP is quite a simple task, as the pragmas just need to be inserted into
an already existing program source code. There is usually no more need for further changes in
the source code.

In code 4.1, an OpenMP version of the well known “hello world”-example is given. In this
example the parameters omp parallel instruct the compiler to build a parallel program. The
program (in this context also called “master thread”) forks at this point into several threads
which run in parallel. Without further instructions the program forks into as many threads as

1This Wikipedia-article is recommended by the official OpenMP website, see (OpenMP, 2010)

30 Chapter 4 Parallelization with OpenMP

processors are available. This means for this example that the phrase “Hello world!” is printed
once by each processor.

int main(int argc, char* argv[]) {
#pragma omp parallel
printf("Hello world!\n");
return 0;

}

Code 4.1: OpenMP parallelized “Hello world!”-example

The next example, see code 4.2, demonstrates the parallelization of a for-loop. It just prints a
text on the screen. The parameters omp parallel for instruct the program to split the loop
into several parts and distribute these parts to several threads. The loop is executed only once
in total. This is a good method to initialize an array. Another example is the computation of
several values in a loop, although a precondition is that those values are indepentend to each
other. They cannot base on an earlier computation within this loop.

int main(int argc, char *argv[]) {
int i;
#pragma omp parallel for
for (i = 0; i < 1000; i++) {

printf("Hello this is no. %d\n", i);
}
return 0;

}

Code 4.2: Mit OpenMP parallelisiertes for-Schleife

There exist many more parameters for OpenMP which are only covered as far as needed in
the following. For a deeper study on the possibilities of OpenMP, please refer to appropriate
technical literature or to the manifold tutorials on the Internet.

4.2 Program adaption

As OpenMP is easy to use, the adaption of the program also went quite easy. Actually there
were only a few things necessary to change the program from its single-threaded version to the
OpenMP multi-threaded one.

A flowchart for the shared memory version of the program is displayed in figure 4.1. The
flowchart shows no differences to the single threaded version of the program. Nonetheless a
few differences exist in the two program versions:

• At first the OpenMP header files have to be included into the program by inserting the
line #include <omp.h>.

• All variables are shared between the threads by default. This produces a problem when
one variable is a pointer to some memory area. Eventually this variable becomes over-
written and therefore the memory area inaccessible. Such variables have to be private
for each thread. They have to be defined globally and become thread private just af-
ter their definition with the pragma omp threadprivate(). In code 4.3, for exam-
ple, the variables a and b should be private for each thread. The pragma becomes omp
threadprivate(a, b). Later, the memory allocation is done in a parallel part of the
program.

4.2 Program adaption 31

data input

initialize Legendre

DGEMV / DSYRK

DPOSV

output

block of A filled?

more data?

no

yes

no

yes

compute
Legendre / line of A

Figure 4.1: Flowchart of the OpenMP-parallelized version of the program.

#include <omp.h>

static double *a = NULL; *b = NULL;
#pragma omp threadprivate(a, b)

int main(int argc, char *argv[]) {

#pragma omp parallel
{

a = (double*)malloc(sizeof(double) * 10);
b = (double*)malloc(sizeof(double) * 20);

}

return 0;
}

Code 4.3: OpenMP thread private memory allocation.

• The part of the program which is to be executed in parallel is also surronded by the
appropriate pragma. In case of the program, the design matrix is built within a for-
loop, hence, omp parallel for schedule(guided) is used. The schedule(...)
tells the compiler to build the program with a certain schedule algorithm for distributing
parts of the loop. The guided algorithm breaks the loop into large chunks of contiguous
iterations which are assigned to the threads. In direction to the end of the loop the chunk
size decreases. As we deal with a huge amount of data, this algorithm is the most efficient
one.

• While compiling, it is crucial to link the parallelized BLAS libraries to the program. Oth-
erwise only the design matrix part of the program will be executed in parallel and the
computing-intensive multiplying of the design matrix blocks with their transposed ver-
sions will be executed in a single thread. This would be a waste of ressources.

32 Chapter 4 Parallelization with OpenMP

4.3 Parallelization results

Amdahl’s law (Amdahl, 1967) states that every parallelized program also includes some parts
which run sequentially. Hence, if k times the amount of processors are used, the program will
not run k times as fast, usually. The time tk which a parallelized program needs for its execution
can be calculated from the time which is needed for the sequential part ts and the time which
is needed for the parallel part tp as follows:

tk = ts +
tp

k
,

or in another representation:

speed-up =
1

rs + rp/k

where rs + rp = 1 and rs represents the ratio of the sequential part of the program. Still, Am-
dahl’s law is only a rough description of the situation as overhead is not considered which is
produced by the required communication of the processes.

For the OpenMP version of the program, the timer functions introduced in section 3.7 were
used to measure the time for loading the data, the time for assembling the design matrix, the
time for setting up the normal equations system as well as the overall time required by the
program (also often called wallclock time, the time which can be measured with a wall clock).

4.3.1 Local computer and frontend

On the local computer the testing of the shared memory version could only be performed with
maximally two processors. Therefore the local computer was used for small and quick tests
during the development. More elaborate testing was done at the frontend Asama which con-
sists of 32 processors. As some of the processors are occupied by other processes (management
of the SX systems, other users testing their programs) a maximum of 21 processors was used
by our program.

5 10 15 20
0

500

1000

1500

2000

CPUs

ti
m

e
[s

]

5 10 15 20

5

10

15

20

CPUs

sp
ee

d
−

u
p

Figure 4.2: Shared memory version with OpenMP on the frontend Asama, left: time for design matrix assembly
(blue); time for normal equations system setup (red); overall time (black); right: ideal speed-up (black); achieved
speed-up (red). Parameters for the test: lmax = 70, n = 500 000.

4.3 Parallelization results 33

Figure 4.2 illustates the results of the runtime measuremant and the speed-up. Both graphs
show that the program scales well, but at a certain point no gain in speed can be achieved
anymore with incorporationg more CPUs. This can be seen in the graph on the right hand
side of the figure. The gap between the ideal speed-up and the true speed-up grows the more
CPUs are used. At a certain point, the speed-up is completely used up for the communication
overhead. Usually in computer engineering, resources are handled in powers of two. Hence,
for the frontend Asama this point can be set at 16 CPUs. But one could also discuss if this point
should be set earlier (e. g. at 8 CPUs).

4.3.2 SX systems

Further runtime results were gathered on both NEC SX systems, SX-8 and SX-9. The results are
displayed in figures 4.3 and 4.4. For a job exactly the same number of processors was requested
from the scheduler as there would be processes. The scheduler of the SX systems also provides
some time measurements, which are the real time (the same as overall time or wallclock time),
the user time (sum of the time used on all processors), the vector time (sum of the time used
in the vector unit of all processors) and the system time (the time which the operating system
needs for its tasks and which is negligible short usually). These time measurements give infor-
mation about the overall efficiency of the program. The efficiency of a program can be seen in
the user time or the speed-up. Ideal would be a straight line parallel to the x-axis for the user
time or a speed-up factor close to the number of used processors.

2 4 6 8
0

50

100

150

200

CPUs

ti
m

e
[s

]

2 4 6 8
0

100

200

300

CPUs

ti
m

e
[s

]

2 4 6 8

2

4

6

8

CPUs

sp
ee

d
−

u
p

2 4 6 8
0

100

200

300

400

CPUs

ti
m

e
[s

]

2 4 6 8
0

200

400

600

CPUs

ti
m

e
[s

]

2 4 6 8

2

4

6

8

CPUs

sp
ee

d
−

u
p

Figure 4.3: Shared memory version with OpenMP on the SX-8. Left: time for design matrix assembly (blue); time
for normal equations system setup (red); overall time (black). Middle: user time (red); vector time (blue); real
time (black). Right: ideal speed-up (black); true speed-up (red). The top graphics use n = 250 000 lines of data,
the bottom graphics n = 500 000, in both cases lmax = 50. Single dot: exclusive use of a single node.

34 Chapter 4 Parallelization with OpenMP

5 10 15
0

20

40

60

CPUs

ti
m

e
[s

]

5 10 15
0

20

40

60

80

CPUs

ti
m

e
[s

]

5 10 15

5

10

15

CPUs

sp
ee

d
−

u
p

5 10 15
0

20

40

60

80

100

120

CPUs

ti
m

e
[s

]

5 10 15
0

50

100

150

CPUs

ti
m

e
[s

]

5 10 15

5

10

15

CPUs

sp
ee

d
−

u
p

Figure 4.4: As in figure 4.3, but for the SX-9.

The SX-8 shows a weird behaviour the more processors are used. An explanation can be found
in the way the scheduler for the SX-8 works. There exist two different types of jobs: parallel and
single/multi ones. Parallel jobs are used if not a complete node is needed. Several other jobs
are allowed to run on the same node then. In contrast, a single job obtains the exclusive access
to a complete node, respectively a multi job to two and more nodes. In the parallel job mode
the scheduler executes up to twelve processes on one node which only has eight processors.
Hence, the processes block each other with high probability. The probability that a owned
process gets hindered by foreign ones decreases if fewer owned processes are started. This can
be nicely seen in figure 4.3, as up to four processors the SX-8 shows an expected behaviour.

For the program test with eight CPUs, a node was also requested in the single job mode. Here,
the situation differs completely as the program has an exclusive access to the ressources of one
node. The SX-8 scales very well in the single job mode, which can be seen in the speed-up
which is close to ideal.

The SX-9 shows a near idealistic behaviour. The nodes of the SX-9 consists of 16 processors
which are also shared by a maximum of 16 processes. Because of the weird behaviour of the
SX-8, the time measurements obtained from the SX-9 are more meaningful. The user time is
slowly rising, in a linear fashion though. This indicates that the parallelization scales well. The
point where the usage of more processors would be giving no more benefit to the parallelization
cannot be reached at the SX-systems as the SX-8 has only 8 CPUs per node and the SX-9 only
16 CPUs per node.

As a last test of the program, the behaviour for different L = lmax was analyzed. As expected
the program shows an exponentially increasing run-time for increasing lmax, as can be seen in
figure 4.5.

4.3 Parallelization results 35

50 100 150 200
0

5

10

15

 L
 max

ti
m

e
 [

m
in

]

50 100 150 200
0

100

200

300

 L
 max

ti
m

e
 [

m
in

]

Figure 4.5: Shared memory version with OpenMP on the SX-9. Left: time for design matrix assembly (blue); time
for normal equations system setup (red); overall time (black). Right: user time (red); vector time(blue); real time
(black). Parameters were: 16 CPUs, n = 500 000 lines of data.

4.3.3 Numerical precision of the computations

Just to be sure that the numerical precision is within acceptable range, the resolved spherical
harmonic coefficients are compared to those of the EGM962 which are the input parameters of
the simulated GOCE data used in this study.

Two different approaches are chosen. First, the degree-error root mean squares (DE-RMS) cu-
mulate the error of each degree l:

DE-RMSl =

√√√√√ l
∑

m=−l
(vref

lm − v̂lm)2

2l + 1
,

with vref
lm = c̄ref

lm for l ≥ 0 and vref
lm = s̄ref

lm for l < 0 beeing the reference coefficients of the EGM96.
Analogously, the v̂lm which assemble the estimated geopotential parameters. Secondly, the
relative empirical errors read

erel
vlm

=

∥∥∥∥∥vref
lm − v̂lm

vref
lm

∥∥∥∥∥ .

They show the precision of each coefficient. Because of the GOCE orbit inclination of 96.7 ◦

there exist polar gaps. These are the areas over the poles of the Earth where the satellite cannot
pass by. Because of the polar gaps the coefficients with low order cannot be estimated with
high presicion. Hence, there is a wedge visible along the vertical axis of the graphic on the
right hand side of figure 4.6. For this reason, coefficients up to order m = 20 were neglected for
the calculation of the DE-RMS values.

It can be verified that the numerical precision is within acceptable range (see figure 4.6). Hence,
the conclusion can be drawn that the OpenMP version of the program produces good results
in terms of spherical harmonic coefficient recovery.

2EGM96 = Earth Gravitational Model 1996

36 Chapter 4 Parallelization with OpenMP

0 50 100 150 200
10

−14

10
−12

10
−10

10
−8

degree l

D
E

−
R

M
S

 l

−200 −100 0 100 200
0

50

100

150

200

← s
lm

 order m c
lm

 →

d
eg

re
e

 l

0

0.2

0.4

0.6

0.8

> 1

Figure 4.6: OpenMP version of the program, degree and order L = lmax = 200. Left: EGM96 signal (blue),
DE-RMS values (red). Right: Relative empirical errors.

37

Chapter 5

Parallelization with MPI

The last chapter showed how to parallelize the program at a shared memory architecture with
OpenMP. This approach already accelerated the program considerably. However, it is only
possible to incorporate one computing node into the computations with the shared memory
version of the program. With the goal to speed up the program further, a new program version
was implemented which makes it possible to use several computing nodes at the same time.

For this distributed version of the program it is necessary to establish a communication be-
tween the single processes as each process has only access to its own memory area. For the
communication the library MPI is used which is introduced in this chapter. Fortunately with
PBLAS1 and ScaLAPACK2 further libraries exist which provide similar functions as BLAS and
LAPACK. Though the difference is that these functions aim for the processing of vectors and
matrices which are distributed over the processes.

Programming now gets considerably more complex as the programmer has to tell the processes
which of them hold which part of a matrix or a vector. Also the communication has to be
programmed and the matrices and vectors have to be distributed. A method how this can be
achieved is also described in this chapter.

5.1 Introduction

5.1.1 Message Passing Interface (MPI)

The MPI standard has been developed since 1992 by a group of several companies (e. g. IBM,
Intel, Cray etc.), laboratories and universities. The project is hosted at the Argonne National
Laboratory, Illinois, USA. There exist a variety of implementations for different hardware ar-
chitectures. At the moment the MPI standard is available in version 2 (MPI, 2010).

MPI is one of several methods of parallelizing programs on distributed memory systems (it
works also on shared memory systems though). In contrary to OpenMP it needs much more
programming work to be done. Another difference is that the program will not run by a direct
call anymore. It has to be called via the program mpirun3. A direct comparison to OpenMP
shows the complexity of MPI clearly. While an existing program is parallelized with OpenMP

1PBLAS = Parallel Basic Linear Algebra Subprograms.
2ScaLAPACK = Scalable Linear Algebra PACKage.
3There exist other aliases for it like orterun.

38 Chapter 5 Parallelization with MPI

very easily just by entering some adequate pragma directives, the parallelization with MPI
often needs a restructuring of the program code and several additions to it.

A minimal outline of a MPI program is shown in code 5.1. To use MPI, the header file of the
MPI library has to be included. In the program flow first MPI must be initialized. Then it is
useful to retrieve the number of all processes as well as the rank of the actual process. At the
end of the program MPI has to be finalized.

#include "mpi.h"

int main(int argc, char* argv[]) {
int procs, myid; // number of processes, process rank

/* Start MPI */
MPI_Init(&argc, &argv);

/* get number of processes and rank/name of this process*/
MPI_Comm_size(MPI_COMM_WORLD, &procs);
MPI_Comm_rank(MPI_COMM_WORLD, &myid);

printf("Hello from process %d of %d\n", myid, procs);

/* Shut down MPI */
MPI_Finalize();

return 0;
}

Code 5.1: Minimal outline of a MPI program.

5.1.2 Scalable Linear Algebra PACKage (ScaLAPACK)

The devolpment of ScaLAPACK started in the mid-1990’s with the first version released in 1995
(Blackford et al., 1996). ScaLAPACK, together with PBLAS, provides a subset of BLAS and
LAPACK routines which are redesigned for distributed memory computers. In figure 5.1 the
hierarchy of the needed libraries is depicted. MPI can be exchanged by other communication
libraries, depending on the architecture of the computer and network infrastructure.

ScaLAPACK

LAPACK

PBLAS

BLAS

BLACS

MPI

global

local

Figure 5.1: ScaLAPACK software hierarchy.

BLAS, LAPACK and MPI were already introduced. Together with BLACS4 those libraries are
running locally on the same process. BLACS bundles some of the functions of the underlying
communication library (here MPI) to provide a more convenient communication interface for

4BLACS = Basic Linear Algebra Communication Subprograms.

5.1 Introduction 39

the needs of PBLAS and ScaLAPACK, also to make it easier to port a program to different
hardware architectures.

ScaLAPACK and PBLAS handle linear algebra computations globally. They break the problem
down to smaller portions which are solved by the single processes locally using LAPACK and
BLAS. Here, communication is necessary as different parts of matrices and vectors are stored
in the memory area of different processes.

The usage of ScaLAPACK needs more initialization to be done before the computations can
start. In code 5.2, a minimal example of a ScaLAPACK program is given (Petersen and Arbenz,
2004). Again, MPI has to be initialized first. Then a so-called BLACS context has to be requested.
After that a processing grid has to be set up. Here it is ideal to have a quadratic grid, however
this is not possible every time. So the program calculates the grid size to be close to quadratic
with the given number of processes. The grid setup is finished by initializing it. Usually,
the coordinates of the process in the processing grid should be retrieved afterwards, as those
coordinates will be used during the setup and distribution of the matrices and vectors, which
is shown later in detail. For finishing the program, in reverse order first the processing grid is
released and afterwards MPI is finalized.

#include <stdlib.h>
#include <stdio.h>
#include <string.h>

#include "cblas.h"
#include "mpi.h"

int main(int argc, char* argv[]) {
/* MPI and BLACS stuff */
int procs, myid; // number of processes, process rank
int ctxt, prow, pcol, myrow, mycol; // BLACS stuff

MPI_Init(&argc, &argv); // Start MPI

MPI_Comm_size(MPI_COMM_WORLD, &procs); // get number of processes
MPI_Comm_rank(MPI_COMM_WORLD, &myid); // get process id

Cblacs_get(0, 0, &ctxt); // get BLACS context

/* Initialize "optimal" 2D processing grid (so that prow <= pcol) */
pcol = sqrt(procs);
while (procs % pcol != 0) {

pcol--;
}
prow = procs / pcol;
if (prow > pcol) {

pcol = prow; prow = procs / pcol;
}

/* Initialize the prow x pcol process grid */
Cblacs_gridinit(&ctxt, "Row-major", prow, pcol);
Cblacs_pcoord(ctxt, myid, &myrow, &mycol);

if (myid == 0) { // only the main process does this
printf(" --> %d processes used in a %d x %d grid\n", procs, prow, pcol);

}

/*
... COMPUTATIONS ...

*/

Cblacs_gridexit(ctxt); // release process grid

40 Chapter 5 Parallelization with MPI

MPI_Finalize(); // shut down MPI

return 0;
}

Code 5.2: Minimal example for a ScaLAPACK program with automatical calculation of the processing grid size.

5.1.3 Block-cyclic distribution

ScaLAPACK demands a special arrangment of the matrices and vectors in the memory of the
computing nodes in the processing grid. The matrices and vectors are split into blocks which
are distributed over the single processes. The distribution scheme is called block-cyclic (Black-
ford et al., 1997).

The block-cyclic scheme can be explained the best with an example. The following matrix shall
be distributed.

1 2 3 4 5 6 7

8 9 10 11 12 13 14

15 16 17 18 19 20 21

22 23 24 25 26 27 28

29 30 31 32 33 34 35

36 37 38 39 40 41 42

43 44 45 46 47 48 49

m

n

LAPACK was programmed in Fortran, hence, the organization of array elements in the mem-
ory is different to programs which are written in C. While the matrices in a C-program are
stored line-by-line, matrices are organized column-by-column by Fortran-programs. Hence,
this has also to be considered for our program. The matrix in this examples resides column-by-
column in the memory. The single elements are ordered like this in the memory:

1 2 38 9 1015 16 ...22 2329 3036 3743 44

In this example, the matrix is split into blocks of the size 2× 2 and distributed to the processes.
The first line of blocks of the matrix is distributed over the first line of the processes in the
processing grid by sending the first block to process 0 of this line, the second block is sent to
process 1 and so forth. If there are no further processes in this line but still blocks of the matrix
left, one starts at process 0 again.

The second line of blocks of the matrix is distributed over the second line of the processes in
the processing grid in the same fashion. If there are no further lines in the processing grid but
still lines of blocks of the matrix left, one starts over at the first line of the processing grid.

In this example a processing grid of size 2 × 3 is chosen. Hence the matrix is split into the
following blocks, coloured to show the affiliation to the different processes:

5.1 Introduction 41

44

16

23

15

22

30

37

29

36

43

2

98

1 3 4

10 11

17 18

24 25

31 32

38 39

45 46

5 6

12 13

19 20

26 27

33 34

40 41

47 48

7

14

21

28

35

42

49

Those blocks are distributed to the processes and stored into local matrices as follows:

30

37

29

36

2

98

1 7

14

35

42

(0, 0)

3 4

10 11

31 32

38 39

(0, 1)

5 6

12 13

33 34

40 41

(0, 2)

44

16

23

15

22

43

21

28

49

(1, 0)

17 18

24 25

45 46

(1, 1)

19 20

26 27

47 48

(1, 2)

Again, it is of importance to consider the different storing schemes of Fortran- and C-programs.
The data is organized in the local memory as follows:

30 3729 36 2 981 7 14 35 42

3 410 1131 3238 39

5 612 1333 3440 41

4416 2315 22 43 21 28 49

17 1824 2545 46

19 2026 2747 48

(0, 1)

(0, 2)

(1, 0)

(1, 1)

(1, 2)

(0, 0)

There exists a function numroc_ which calculates the size of a local matrix. It is important to
know this size during memory allocation as there should not be allocated less memory than
required. It would lead to a faulty program. On the other hand, it would be a waste of memory
to allocate more memory than necessary.

The source code A.1 in the appendix reproduces this example. The distribution scheme of a
vector is similar; a standing vector is distributed to only one column in the processing grid, a
lying vector is distributed to a row accordingly.

42 Chapter 5 Parallelization with MPI

5.2 Cluster installation

5.2.1 The GIS-Cluster

Handling with the high performance computers at the HLRS showed some huge drawbacks.
As the SX-8, and even more the SX-9, are high-efficient systems, many users want to execute
their computations on them. Therefore, the job queues are long which implies usually a long
waiting time until the job is executed. This is a huge problem when one is in the programming
or testing stage where constant feedback is necessary to see if a function works well or if there
are still some bugs left.

On these systems, it is not possible to watch how a job is performing at runtime. Instead,
when the program finishes, some statistics are returned. Those statistics are mean values and
sometimes can be a bit difficult to interprete. On a local computer it is possible to observe
the processes during runtime, for example with the program top which returns some process
values like processor load, memory usage etc. in real-time. This makes the process more trans-
parent to the user, as it can be seen how the load of the ressources changes while the program is
running. It is also easier to learn in detail how a cluster computer works and how the processes
and software components depend on each other.

Hence, it was decided to build a cluster computer for testing purposes. There exist several
Linux distributions which are specially built for cluster computing. The Linux distribution
Rocks Clusters of the University of California (Rocks Clusters, 2010) proved to be very beginner
friendly and makes installing and running a computing cluster quite easy. For a test, all what
is needed are some PCs with a network card, sufficient memory and a hard disk drive, then of
course the Rocks Clusters software and some networking hardware (a switch or hub) as well
as one additional network card for the frontend node to connect the cluster to the university
network. Eventually there is also the need of a net boot CD5 if the PCs are not able to boot over
the network by themselves.

The general layout of the cluster is illustrated in figure 5.2. In the end, it was decided that a
minimal cluster is sufficient for the intended use (only testing, no real workload). Thus, the
GIS-cluster consists only of two disused PCs from the institute. The hardware specifications
of those PCs are listed in table 5.1. For the cluster interconnecting network an old 10BaseT
Ethernet hub was used. The additional network card for the frontend node got “rescued” from
the electronic scrap of the university.

name CPU RAM HDD network cards

frontend cluster Intel Pentium IV, 3.4 GHz 1 GB 70 GB 2
node compute-0-0 Intel Pentium IV, 3.0 GHz 1 GB 30 GB 1

Table 5.1: Hardware used for the cluster nodes.

5e. g. from http://etherboot.org/

5.2 Cluster installation 43

university
network

desktop
computer

eth 1

n
et

w
o

rk
 s

w
it

ch

computing
node

computing
node

computing
node

.

.

.

eth 0

eth 0

eth 0

frontend
node

eth 0

Figure 5.2: General layout of the GIS-cluster.

5.2.2 Brief installation guide for a Rocks Cluster

This short guide references to version 5.3 of the Rocks Clusters Linux distribution. It is rec-
ommended to have a look at the much more detailed official documentation before installing a
cluster. The guide given here covers mainly the purpose to document what was done to install
our cluster. But it might become useful if someone wants to build a computing cluster.

Installation of the frontend node. The software comes in several packages – called rolls by
the makers of Rocks Clusters. There exist two versions of the software, one supports the i386 ar-
chitecture (e. g. Athlon, Pentium and Xeon CPUs) which was also used for the GIS-Cluster, the
other one supports the x86_64 architecture. At least four CDs are needed which hold the nec-
essary rolls to install the frontend node: Kernel/Boot-Roll, Core-Roll, OS-Roll disk 1 and 2.

Some more important notes should be made before the installation is started: When the instal-
lation progresses all the data on the hard disk drive are erased! There where some problems
during the installation at PCs with Intel CPU with HyperThreading enabled, so this should be
disabled in the BIOS.

The installation itself is fairly easy – first, the BIOS options should be set so that the first boot
device of the frontend node is the CD drive. Then the computer is booted from the Kernel/Boot
Roll CD. When the splash screen appears, the option build has to be entered to install the
cluster software. After booting, the rolls which should be installed have to be registered. For
a computing cluster, the rolls according to table 5.2 should be installed. For the registering
process, the CDs are changed and the rolls chosen accordingly.

Roll on CD

kernel Kernel/Boot-Roll
base, ganglia, hpc, web-server Core-Roll
os OS-Roll – disk 1
os OS-Roll – disk 2

Table 5.2: Mandatory rolls for installing a computing cluster.

44 Chapter 5 Parallelization with MPI

Then, some more questions are asked, e. g. which network address the frontend should show
to the outside network (address for the device eth1). The network address can also be ob-
tained through dhcp, but only during installing, afterwards this adress will be fixed! At this
stage of installing, the CDs are requested again to copy the chosen rolls to the hard disk drive.
Afterwards, the installation runs completely automatically.

Installation of the computing nodes. When the frontend node is installed and rebooted, one
has to log in as root and start the program insert-ethers then select the option Compute.
Afterwards, the first computing node, which will get its boot image over the network, is
switched on and will install itself. When the installation has finished at this node, the next
node is switched on etc. If there is no option in the PC’s BIOS to boot over network, a net
boot CD can be used. The cluster’s growth can be watched over the network with the help of
the ganglia tool. This can be done by entering the IP address of the frontend with an added
/ganglia in a web browser, for example http://192.168.6.25/ganglia.

5.2.3 Numerical libraries installation

BLAS and LAPACK (respectively PBLAS and ScaLAPACK) functions are used for the program.
Accordingly, we need to compile them also for our cluster. All these libraries are available at
the Netlib Repository6. Although most of the libraries are not optimized for a specific hardware
architecture, these reference implementations work for our purpose sufficiently.

BLAS, LAPACK, BLACS, SCALAPACK. Netlib provides an installer for ScaLAPACK
(version 0.96) which makes downloading and compiling of the underlying libraries very
easy. For an installation on the Rocks Cluster the archive has to be downloaded, the contents
extracted and the setup script executed with the command line ./setup.py -downblas
-downblacs -downlapack -f90=gfortran. With these parameters the setup script
downloads and compiles BLAS, BLACS and LAPACK. After this is done, ScaLAPACK will
be compiled. The parameter -f90=... is needed to tell the script which Fortran compiler to
use. Instead of downloading the reference implementations also optimized implementations
can be used. Such optimized libraries are able to bring out more performance of the installed
hardware. As our cluster is only a test environment for the programs and no productive
computations are done, we decided against the trouble of installing optimized libraries.

After the compiling is finished, the libraries can be found in the subdirectory lib. For an
easier usage, the libraries are copied to a new directory LIBS, e. g. in the home folder, and are
renamed according to table 5.3. The renaming is necessary to link the libraries to the program
easily later on.

CBLAS. Our program is written with the language C, so also CBLAS, the C-interface to the
BLAS library, is necessary. It can be downloaded from Netlib as well. After extracting the files
there is a bit of editing to be done.

6http://www.netlib.org/

5.3 Program adaption 45

after compiling −→ renamed

blacs.a libblacs.a
blacsC.a libblasCinit.a
blacsF77.a libblasF77init.a
librefblas.a libblas.a
libreflapack.a liblapack.a
libscalapack.a libscalapack.a

cblas_LINUX.a libcblas.a

Table 5.3: Renaming scheme for BLAS, LAPACK & Co.

First, in the directory of CBLAS a link, named Makefile.in, to the architecture dependent
makefile should be created. In our case, the command line was ln -s Makefile.LINUX
Makefile.in. Afterwards, some parameters in the file Makefile.in have to be edited:
CBDIR should point to the base directory of the CBLAS installation files, BLLIB should
point to the earlier compiled BLAS library and FC should name the Fortran compiler (again
gfortran).

After this is completed, make alllib is called to compile CBLAS. The compiled library can
be found in the subdirectory lib/LINUX. It is copied to the same directory LIBS as before and
renamed according to table 5.3. Also the header file cblas.h needs to be copied to the same
directory. This file can be found within the CBLAS source code folder.

5.3 Program adaption

A flowchart of the distributed memory version of the program is given in figure 5.3. It can
easily be seen that this program version is more complex. The distributed memory version
of the program needs several initializations to be done before a communication between the
processes is established (a skeletal structure for initializing MPI and a processing grid was
shown in code 5.2). Beside those initializations (and finalizations at the end of the program),
several other steps get necessary.

5.3.1 Data input and distribution.

In general, the data input works in the same manner as for the shared memory version. Due
to performance reasons, only one process reads the data from the hard disk drive. After the
data are read, they will be sent to all the other processes with the help of the MPI function
MPI_Bcast.

Starting with version 2 of MPI there exists a parallelized file input routine named
MPI_File_read which reads the file in a parallelized manner, giving the data line by
line to alternating processes. But this idea was discarded as it would need major changes in
the structure of the program, also, after the ASCII to binary conversion, reading the data and
distributing them is not time critical anymore and the memory usage for storing all the data
with each process is not that high.

46 Chapter 5 Parallelization with MPI

data input

initialize Legendre

initialize MPI

init processing grid

distribute data

compute
Legendre / line of A

PDGEMV / PDSYRK

block of A filled?

more data?

no

yes

yes

distribute block of A

PDPOSV

output

finalize processing grid

gather results,
PDGEMR2D

finalize MPI

no

Figure 5.3: Flowchart of the MPI-parallelized version of the program.

5.3.2 Initializing a distributed matrix

One point not shown in the flowchart of the distributed memory version is the initialization
necessary for the distributed matrices and vectors. There exist two handy functions named
numroc_ which returns the size of a local matrix and descinit_ which does the initializing
of the distributed matrix.

First the size of the matrix part stored at the process is calculated. This is done by two calls of
the function numroc_, one call for each matrix dimension. After the local size of the matrix
is obtained, the second step becomes possible and the proper amount of memory can be allo-
cated. The last step is to tell ScaLAPACK how the matrix will be distributed with the routine
descinit_.

NUMROC compute local size of matrix
loc_n = numroc_(n, nb, iproc, isrcproc, nprocs);

with
loc_n output: number of rows/columns of the local part of the matrix
n the number of rows/columns of the distributed matrix
nb size of the blocks the distributed matrix is split into
iproc coordinate of the process whose local array row or column is to be determinded
isrcproc coordinate of the process that possesses the first row or column of the distributed

data
nprocs total number of processes in the row or column over which the matrix is dis-

tributed

All variables are pointers to integer numbers.

DESCINIT initialize array descriptor of distributed matrix

descinit_(desc, m, n, mb, nb, irsrc, icsrc, ictxt, lld, info);

with

5.3 Program adaption 47

desc output: pointer to an array of integer of the length 9, the array descriptor for the
distributed matrix.

m number of rows in the distributed matrix
n number of columns in the distributed matrix
mb number of rows in one block of the matrix
nb number of columns in one block of the matrix
irsrc first row in processing grid which holds the first block of the matrix
icsrc first column in processing grid which holds the first block of the matrix
ictxt the BLACS context handle determined at the initialization of the processing grid
lld leading dimension of the local array storing the local blocks of the distributed matrix
info output: status information.

All variables are pointers to integer numbers.

5.3.3 Design matrix assembly and redistribution

For the OpenMP version of the program we made great efforts to optimize the computations.
We found that the version which computes one line of the design matrix per process runs
fastest, because part of the computations are the same for each matrix entry of one line. This
effort done there should not go to waste so it was decided to reuse that part in the MPI version
of the program. But here the situation differs. All the processes are not computing one block
of lines together but every process computes a block, which does not contain full lines, for
itself as the memory is not shared. Also the blocks of the matrix are expected to be block-cyclic
distributed for the PBLAS- and ScaLAPACK-routines. With this new situation new problems
occur. These problems have to be seen from the viewpoint of a process in the processing grid:

• on which data should I work,
• which of the blocks I computed have to be sent to other processes,
• which blocks do I receive from other processes,
• to which process should I send a specific matrix block,
• from which process do I receive a specific block?

An example solution of these problems is illustrated in figure 5.4.

At first, each process computes one block-line of matrix A. Then, for each block, the global
coordinates are computed. From the global coordinates, in turn, the new local coordinates in
the process grid are computed. With this the process can find out if the block can be kept or has
to be sent to another process and from which process a block will be received instead. For this
approach, the network traffic will be the higher the more processes are involved. Because, the
more processes are used the more blocks have to be exchanged over the network. In conclusion
this approach implies a fast network connection for the computing nodes to transfer this large
quantity of data.

The coordinates of a local block are depending on the respective process grid. In our case the
local coordinates have to be transformed from one processing grid to another. The grid in which
we compute the matrix entries line-by-line is also just a line of processes. The grid in which we
compute the matrix-matrix multiplications and also solve the linear system of equations may
be two dimensional.

48 Chapter 5 Parallelization with MPI

[0,0] [0,2] [0,4] [0,6]

[2,0] [2,2] [2,4] [2,6]

[4,0] [4,2] [4,4] [4,6]

[6,0] [6,2] [6,4] [6,6](0,0)

(1,0)

(2,0)

[0,0] [0,2] [0,4] [0,6]

[0,0] [0,2] [0,4] [0,6]

[0,0] [0,2] [0,4] [0,6]

[0,0] [0,2] [0,4] [0,6](3,0)

[0,0] [0,2]

[2,0] [2,2]

(0,0)

[0,2] [0,2]

[2,0] [2,2]

(0,1)

[0,0] [0,2]

[2,0] [2,2]

(1,0)

[0,2] [0,2]

[2,0] [2,2]

(1,1)

local
(computation)

global

new local
(block-cyclic distributed)

Figure 5.4: Distribution scheme of a block of the design matrix A: from local over global to local coordinates of a
2× 2 processing grid.

Starting from the global coordinates of a block, it is easy to calculate its local coordinates.
The same applies the other way round. As the calculation is the same for both dimensions,
functions are only implemented for one dimension and are called twice by a 2D wrap around
function. The one-dimensional function glob2loc calculates the local coordinate of a block
from its global coordinate. The function loc2glob reverses this calculation and computes the
global coordinate of a local block. The sorce code to the one-dimensional functions and their
according 2D wrappers can be found in the files distribute.h and distribute.c which
are provided in the appendix, section A.4.

The BLACS library provides functions to send and receive a matrix block. For these functions it
is necessary to specify at the sending process which is the receiving process and the other way
round. The functions are called DGESD2D for sending, respectively DGERV2D for receiving. But
the receiving process knows the sending process by its number only, not by its processing grid
coordinates. Hence, the BLACS function BLACS_PCOORD is needed to calculate the coordinates
of this process first before calling the function for receiving.

And again, the fact has to be considered that Fortran-programs organize the elements of a
matrix row-by-row in the memory and C-programs do it line-by-line. Hence, the elements of a
block have to be reorganized according to the Fortran scheme during the redistribution task to
achieve a block-cyclic distribution of the matrix.

DGESD2D point to point send
Cdgesd2d(ctxt, m, n, A, ldA, rdest, cdest);

with
ctxt array of integer, BLACS context
m, n integer, number of matrix rows/columns to be operated on
A pointer to the first element of the submatrix to be sent
ldA integer, distance of two elements in a matrix row
rdest, cdest integer, row/column of the receiving process

5.3 Program adaption 49

DGERV2D point to point receive

Cdgerv2d(ctxt, m, n, A, ldA, rsrc, csrc);

with
ctxt array of integer, BLACS context
m, n integer, number of matrix rows/columns to be operated on
A pointer to the first element of the array to receive the incomming matrix into
ldA integer, distance of two elements in a matrix row
rsrc, csrc integer, row/column of the sending process

BLACS_PCOORD calculates the grid coordinates of a process
Cblacs_pcoord(ctxt, pnum, prow, pcol);

with
ctxt array of integer, BLACS context
pnum integer, number of the process
prow, pcol pointer to an integer, row/column of the process in the processing grid

5.3.4 Normal equations system setup

For setting up the normal equations system, the PBLAS library contains the equivalents of
the functions of the BLAS library for distributed computing. The function PDGEMV is used to
compute the vector b and the function PDSYRK to compute the normal equations matrix N.
Both function expect the matrices and vectors to be block-cyclic distributed. This was handled
in the previous section.

Although both functions work similar to their BLAS pendants, the function calls need more
parameters to describe how the matrices and vectors are distributed over the processing grid.
Again, the descriptions of the functions are reduced to the case needed in the program.

PDSYRK C← αATA + βC
pdsyrk_("L", "T", n, k, α, locA, iA, jA, descA,

β, locC, iC, jC, descC);

with
α, β scalars
n, k integers, dimensions of the distributed matrices (global)
locA local part of distributed matrix A (matrix A is of size k × n)
iA, jA integer, first row/column of the distributed matrix A in the processing grid
descA the array descriptor of the distributed matrix A
locC local part of distributed matrix C (matrix C is of size n × n)
iC, jC integer, first row/column of the distributed matrix C in the processing grid
descC the array descriptor of the distributed matrix C

All parameters are pointers.

PDGEMV y← αATx + βy
pdgemv_("T", m, n, α, locA, iA, jA, descA,

locx, ix, jx, descx, incx, β, locy, iy, jy, descy, incy);

with
α, β scalars

50 Chapter 5 Parallelization with MPI

m, n integers, matrix dimensions
locA local part of distributed matrix A (matrix A is of size m × n)
iA, jA integer, first row/column of the distributed matrix A in the processing grid
descA the array descriptor of the distributed matrix A
locx local part of distributed vector x (vector x is of size m × 1)
ix, jx integer, first row/column of the distributed vector x in the processing grid
descx the array descriptor of the distributed vector x
incx integer, increment to reach the address of the next element of vector x
locy local part of distributed vector y (vector y is of size n × 1)
iy, jy integer, first row/column of the distributed vector y in the processing grid
descy the array descriptor of the distributed vector y
incy integer, increment to reach the address of the next element of vector y

All parameters are pointers.

5.3.5 Normal equations system solution

The normal equations system is solved by PDPOSV which is the ScaLAPACK pendant to the
LAPACK routine DPOSV. Again, the distributed function needs more parameters to describe
how the matrix and vector are distributed.

After solving the normal equations system, also the vector containing the estimated coefficients
is found to be distributed over the processing grid. To output the results, it is the best to gather
them at one process first, and then writing the results to a file. The gathering can be done
with the routine PDGEMR2D which is used to redistribute a matrix from one processing grid to
another.

PDPOSV solve a normal equations system

pdposv_("L", n, nrhs, locN, iN, jN, descN,
locb, ib, jb, descb, info);

with
n integer, the number of linear equations
nrhs the number of right hand sides in b
locA local part of the lower triangular part of the symmetric distributed matrix A (matrix A

is of size n × n)
iA, jA integer, first row/column of the distributed matrix A in the processing grid
descA the array descriptor of the distributed matrix A
locb local part of the distributed matrix b (matrix b is of size n × nrhs and can hold

mutiple right hand side vectors), holds the results on return!
ib, jb integer, first row/column of the distributed matrix b in the processing grid
descb the array descriptor of the distributed matrix b
info returns status information

All parameters are pointers.

PDGEMR2D redistribute a matrix to a different processing grid
pdgemr2d_(m, n, locA, iA, jA, descA, locB, iB, jB, descB, ctxt);

with
m, n integer, the number of rows/columns od the distributed matrix

5.4 Further considerations 51

locA local part of the distributed matrix A (matrix A is of size m × n)
iA, jA integer, first row/column of the distributed matrix A in the processing grid
descA the array descriptor of the distributed matrix A
locB local part of the distributed matrix B (matrix B is also of size m × n)
iB, jB integer, first row/column of the distributed matrix B in the processing grid
descB the array descriptor of the distributed matrix B
ctxt the BLACS context enfolding at least all processors included in either A context or B

context.

All parameters are pointers.

5.4 Further considerations

5.4.1 Block size of a distributed matrix

The size of the blocks, into which a distributed matrix is split, also matters. For each transferred
block exists some head information for communication purposes. When the block size is cho-
sen too small, many blocks have to be transferred. With such a setting, the communication
overhead will be high which in turn results in higher runtime of the program. On the other
hand, when the block size is chosen too big, during the transfer of one block other communi-
cation gets blocked eventually. This results in also slowing down the program.

After testing it was found that a blocksize between 48× 48 and 104× 104 results in significantly
lower runtime with a slight optimum at a size of 88× 88. This also is shown in figure 5.5. For
the graph on the left hand side a more coarse stepping was used for the blocksize (multiples of
2) with some refinements in between. The right hand side shows the part where the runtime is
optimal with further refinement steps.

200 400 600 800 1000
0

10

20

30

40

50

60

70

block size [b × b]

ti
m

e
 [

m
in

]

40 60 80 100
0

1

2

3

4

5

6

block size [b × b]

ti
m

e
 [

m
in

]

Figure 5.5: Runtime depending on the block size of the distributed matrices (black: real time; red: vector time;
blue: user time).

The tests were done on the SX-8 only but on a complete node in exclusive use. It is still to test,
if for the SX-9 another block size would be better suited. Nonetheless, it was decided to split
the distributed matrices in blocks of the size 88× 88 on both SX systems.

52 Chapter 5 Parallelization with MPI

5.4.2 Linking a program which includes ScaLAPACK

In the appendix, the makefiles for the program versions are provided. Especially the makefile
for the MPI version of the program needs some further comments.

After compiling a program, it is linked with the necessary libraries in order to produce an ex-
ecutable file. The C-compiler is usually capable to link a program (for linking a library the
parameter -l is available). Usually, the order in which the libraries are specified to the linker
does not matter. But for the ScaLAPACK library with its adjacent libraries like BLACS, LA-
PACK and BLAS a specific order has to be followed.

On the GIS-Cluster the order would be as follows:
-lscalapack -lblacs -lblacsCinit -lblacsF77init -lblacs -llapack -lcblas -lblas -lgfortran

Please note that -lblacs appears twice! Linking for the SX systems is similar but the names
differ: -lblacsF77init is exchanged with -lblacsF90init and the Fortran library
-lgfortran is exchanged with -f90lib. The other libraries are named equally.

5.5 Runtime results

The local computer and the frontends do not run MPI and the 10BaseT Ethernet network of the
GIS-Cluster is just too slow. Hence it is not possible to get reasonable results on that cluster.
The tests to get MPI runtime results were done at the SX systems. Because of the long queues
on the SX systems, it was not possible to execute all the prepared tests.

5.5.1 Varying number of CPUs

The tests were started with two processes which are the minimum for a program which uses
MPI. The single processor result from the OpenMP version is used here as a reference. With
MPI it is possible to use several nodes of the SX systems. Hence on both systems up to 32 CPUs
were used. This equals four nodes on the SX-8 and two nodes at the SX-9.

Figures 5.6 and 5.7 displey the results of the time measurements. For the MPI version a new
timer is introduced which measures the duration of the design matrix distribution. The seem-
ingly weird behaviour in the figures for up to eight CPUs is due to the processing grid layout.
For the SX-8 this is overlayed by the usual problem with the parallel job mode. In both fig-
ures the measured time is low when the prosessing grid is more quadratic. For odd numbers
the processing grid is linear (e. g. 1× 7 for seven CPUs) which is inefficient for the routines
of PBLAS and ScaLAPACK. The design matrix assembly is still following the expected be-
haviour.

Compared to the SX-9, the MPI version of the program runs on the SX-8 with a higher efficiency
for more CPUs. The SX-9 seems to have a problem here. A comparison with the OpenMP
results shows that the MPI version needs around four to five times as long as the OpenMP
version, which is not acceptable.

5.5 Runtime results 53

10 20 30
0

2

4

6

CPUs

ti
m

e
[m

in
]

10 20 30
0

5

10

15

20

CPUs

ti
m

e
[m

in
]

10 20 30
0

10

20

30

CPUs

sp
ee

d
−

u
p

10 20 30
0

5

10

CPUs

ti
m

e
[m

in
]

10 20 30
0

10

20

30

40

CPUs

ti
m

e
[m

in
]

10 20 30
0

10

20

30

CPUs

sp
ee

d
−

u
p

Figure 5.6: Distributed memory version with MPI on the SX-8. Left: design matrix assembly (blue); distribution
of the design matrix (green); normal equations system setup (red); overall time (black). Middle: user time (red);
vector time(blue); real time (black). Right: ideal speed-up (black); true speed-up (red). Parameters: lmax = 50,
top: n = 250 000, bottom: n = 500 000. Please note the gap in the graphs; here the job mode is switched to
exclusive use.

5.5.2 Large-scale problems

The previous test was repeated for a higher degree and order of lmax = 200 and n = 500 000
lines of data to analyze if the results depend on a specific degree and order. The test were done
on the SX-9. The results are depicted in figure 5.8.

Another test was done to analyze if the program’s efficiency gets better for higher lmax. Like
the OpenMP version, the MPI version was tested up to a degree and order of lmax = 200 on
the SX-9, the results are shown in figure 5.9. Now the situation differs. For lmax = 200 the MPI
version is about 10 % faster than the OpenMP version. It seems that the MPI version is better
suited for large scale problems. A test for L = 250 was launched for the MPI and the OpenMP
version to analyze this further, but due to problems of the scheduler after a waiting time of two
days the queue was reset, hence those jobs were not executed.

This better performance can also be seen in table 5.4 where a direct comparison of OpenMP
and MPI is possible. The results show that MPI is more efficient than OpenMP for large-scale
problems and the other way round for lower-scale problems. The turning point is between a
problem size of lmax = 150, . . . , 200.

A further test was conducted on the SX-8, starting with one complete node (8 CPUs) up to
four nodes (32 CPUs in total). The intension of this test was to analyze how the efficiency
of the program will be for different lmax and a different number of nodes. It can be seen in
the graph for the real time in figure 5.10 that – like expected – the more nodes are used the
faster the computation is done. For computations which run in parallel, also the user time

54 Chapter 5 Parallelization with MPI

10 20 30
0

0.5

1

1.5

2

CPUs

ti
m

e
[m

in
]

10 20 30
0

2

4

6

CPUs

ti
m

e
[m

in
]

10 20 30
0

10

20

30

CPUs

sp
ee

d
−

u
p

10 20 30
0

1

2

3

4

CPUs

ti
m

e
[m

in
]

10 20 30
0

5

10

CPUs

ti
m

e
[m

in
]

10 20 30
0

10

20

30

CPUs

sp
ee

d
−

u
p

Figure 5.7: As in figure 5.6, but for the SX-9.

10 20 30
0

10

20

30

CPUs

ti
m

e
 [

m
in

]

10 20 30
0

100

200

300

CPUs

ti
m

e
 [

m
in

]

Figure 5.8: As in figure 5.6, but for the SX-9 and with lmax = 200.

(accumulated time over all used processors) is important. For the computation to be at an equal
efficiency with a variing number of processors the user time should be equal. A comparison
of the user times reveals, that this matches for one and two nodes only. For three respectively
four nodes the user time increases. In terms of efficiency the computation should be done
incorporationg only two nodes at maximum of the SX-8. The increasing user time is mostly
due to the increasing communication between the processes.

5.5.3 Numerical precision of the computation

Once again, it is verified that the numerical precision is within acceptable range. The results are
displayed in figure 5.11. The graphics are visually identical to the previous test with OpenMP
(see section 4.3.3). Hence, also the same conclusions can be drawn that the program produces
good results in terms of spherical harmonic coefficients recovery.

5.5 Runtime results 55

50 100 150 200
0

5

10

15

 L
 max

ti
m

e
 [

m
in

]

50 100 150 200
0

100

200

300

 L
 max

ti
m

e
 [

m
in

]

Figure 5.9: Distributed memory version with MPI on the SX-9. Colors are according to figure 5.6, fixed parame-
ters: 16 CPUs, n = 500 000.

lmax — OpenMP — — MPI — speed-up
real time [s] user time [s] real time [s] user time [s] (OpenMP : MPI)

50 10 142 50 791 0.20
100 81 1272 151 2414 0.54
150 352 5596 504 8055 0.70
200 1070 17081 955 15278 1.12

Table 5.4: Comparison of the parallelization between OpenMP and MPI, SX-9, n = 500 000, 16 CPUs.

50 100 150 200
0

20

40

60

Real time

 L
 max

ti
m

e
 [

m
in

]

50 100 150 200
0

200

400

600

800
User time

 L
 max

ti
m

e
 [

m
in

]

Figure 5.10: SX-8: runtime depending on maximum degree and order lmax for a different number of whole nodes.
One node (black); two nodes (red); three nodes (green); four nodes (blue); fixed parameters: n = 256 000.

56 Chapter 5 Parallelization with MPI

0 50 100 150 200
10

−14

10
−12

10
−10

10
−8

degree l

D
E

−
R

M
S

 l

−200 −100 0 100 200
0

50

100

150

200

← s
lm

 order m c
lm

 →

d
eg

re
e

 l

0

0.2

0.4

0.6

0.8

> 1

Figure 5.11: MPI version, L = lmax = 200. Left: EGM96 signal (blue), DE-RMS values (red). Right: Relative
empirical errors.

57

Chapter 6

Conclusions and outlook

Several achievements could be made. First, the program was optimized, which offered a huge
gain in efficiency. The biggest speed-up was achieved by rearranging the algorithm to com-
pute the Legendre function which also involved changing the procedure for setting up the de-
sign matrix. Some minor improvement like converting the data from ASCII to binary became
necessary because of the different computer architectures. After the possibilities for further
optimization got very small, the program was changed to incorporate parallel computations
for a further speed-up of the BLAS/LAPACK part of the program. This was done with two
techniques.

The first technique used was OpenMP which is mostly a extension to the compiler. After compi-
lation, the program can be executed on shared memory systems. A clear advantage of OpenMP
is its simplicity. It is easy to use in an existing program, also the compiled program can be
called like any other program from the command line. The disadvantages are that the program
is limited to one computing node with shared memory and that the computing node needs a
sufficient amount of memory to hold the normal equations matrix.

The second technique used was MPI which is more complex to use, as communication is not
done automatically as with OpenMP. An advantage of MPI is that it is possible to use both,
shared memory and distributed memory systems. Opposed to OpenMP, it is possible to use
more than one computing node with a large number of processors. Also it got possible to
distribute the normal equations matrix over all the used nodes. Each of those nodes needs
only to hold part of the matrix. Because of that, the memory demand per node is divided by
the number of used nodes. A disadvantage is that the program has to be run with a tool like
mpirun which provides the necessary interface to the communication network.

For the distributed memory version of the program it became necessary to include ScaLAPACK
with its associated libraries. Here MPI and a computing grid were initialized, an optimal block-
size for distributing the matrices was found and also an algorithm to distribute the matrix was
developed.

The effort done for optimization and parallelization helped to improve the efficiency of the
program considerably. Also attention was paid to make the program as modular as possible,
so that future changes and extensions can be implemented easily. The program source code is
provided in the appendix.

A comparison between the OpenMP and MPI versions indicated that the OpenMP version
is better suited for lower lmax while the MPI version shows better efficiency for higher lmax.
This leads to an idea to combine both concepts and have OpenMP doing the intra-node work
and MPI the inter-node communication. Maybe this could improve the speed even further,

58 Chapter 6 Conclusions and outlook

especially if even more nodes get involved with the computations. This could be the next step
on this project.

Some further improvement might be done for the MPI version at the design matrix setup.
Here, it would be possible to save the matrix elements already in the Fortran scheme. This
would need a new computing scheme for the indices, but on the other hand, the reordering
step which is necessary at the moment could be skipped. It remains to be tested if this would
lead to a gain in speed. Another possibility would be to completely eliminate the step of the
design matrix distribution and to compute the values at the process which also stores this part
of the matrix. Maybe this could also lead to a gain in speed. On the other hand, this would
mean to rewrite a bigger part of the program.

XIII

Appendix A

Source code

A.1 Block-cyclic distribution – an example

The following code demonstrates the example of the block-cyclic distribution of section 5.1.3.

bsp_block-cyclic.c

#include <stdio.h>
#include <stdlib.h>

void glob2loc(int glob, int b, int prowcol, int *loc, int *mrowcol) {
// INPUT:
// glob global row/column coordinate of matrix element
// b row/column size of block matrix
// prowcol ... row/column size of process grid
// OUTPUT:
// loc local row/column coordinate of matrix element
// mrowcol ... row/column coordinate of process which holds the data

int tmp;

*mrowcol = (glob / b) % prowcol;
tmp = glob / (b * prowcol);

*loc = tmp * b + glob % b;
}

void glob2loc2D(int mglob, int nglob, int mb, int nb, int prow, int pcol,
int *mloc, int *nloc, int *mrow, int *mcol) {

// INPUT:
// mglob, nglob ... global coordinates of matrix element
// mb, nb size of block matrix
// prow, pcol size of process grid
// OUTPUT:
// mloc, nloc local coordinates of matrix element
// mrow, mcol coordinates of process which holds the data

glob2loc(mglob, mb, prow, mloc, mrow);
glob2loc(nglob, nb, pcol, nloc, mcol);

}

int main(int argc, char *argv[]) {
int m = 8, n = 5; // 7 x 7 matrix
int prow = 2, pcol = 2; // 2 x 3 process grid
int mb = 2, nb = 2; // 2 x 2 matrix block
int myrow, mycol, mrow, mcol; // coordinates of process on processing grid
int mglob, nglob, mloc, nloc; // global/local coordinates of matrix element

int *A = NULL;
int i;

A = (int*)malloc(m * n * sizeof(int)); // allocate memory for matrix

XIV Appendix A Source code

for (i = 0; i < (m * n); i++) { // initialize matrix
A[i] = i;

}

printf("matrix size %d x %d\n", m, n);
printf("process grid %d x %d\n", prow, pcol);
printf("block size %d x %d\n", mb, nb);

for (mglob = 0; mglob < m; mglob += mb) { // run over global matrix elements
for (nglob = 0; nglob < n; nglob += nb) { // increase for one block

for (myrow = 0; myrow < prow; myrow++) { // simulate processing grid
for (mycol = 0; mycol < pcol; mycol++) {

glob2loc2D(mglob, nglob, mb, nb, prow, pcol, // compute local coordinates
&mloc, &nloc, &mrow, &mcol);

// if the computed process coordinates are the same as "this" process:
if ((myrow == mrow) && (mycol == mcol)) {

printf("process (%d, %d) : global [%d, %d] => local [%d, %d]\n",
mrow, mcol, mglob, nglob, mloc, nloc);

}
}

}
}

}
return 0;

}

A.2 Conversion of ASCII to binary data

makefile

data conversion ASCII --> binary (local computer)
main:

gcc -o ASCII2bin ASCII2bin.c dataio.c commandline.c

ascii2bin.c

#include <stdio.h>
#include <string.h>

#define ASCII2BIN

#include "dataio.h"
#include "commandline.h"

char out_sst_fil[][10] = {"sst_time", "x1", "x2", "x3", "x1p", "x2p", "x3p",
"x1pp", "x2pp", "x3pp", "lambda", "phi", "r"};

char out_sgg_fil[][10] = {"sgg_time", "Txx", "Txy", "Txz", "Tyy", "Tyz", "Tzz", "I1", "I2"
, "I3"};

///
int main(int argc, char* argv[]) {

// commandline parameters
struct t_cmd_line cmd_parameters;

// data input parameters

A.2 Conversion of ASCII to binary data XV

double *time_sst = NULL, // sst-file

*x1 = NULL, *x2 = NULL, *x3 = NULL,

*x1p = NULL, *x2p = NULL, *x3p = NULL,

*x1pp = NULL, *x2pp = NULL, *x3pp = NULL,

*r = NULL, *phi = NULL, *lambda = NULL;
double *time_sgg = NULL, // sgg-file

*Txx = NULL, *Txy = NULL, *Txz = NULL,

*Tyy = NULL, *Tyz = NULL, *Tzz = NULL,

*I1 = NULL, *I2 = NULL, *I3 = NULL;
double *sst_tmp[13] = {NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,

NULL, NULL};
double *sgg_tmp[13] = {NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL};

// dimension parameters
int N = 0; // read all lines of data
int M = 1; // number of initial memory cells
int numread; // number of read lines of data

FILE *sst_fil, *sgg_fil, *fil;
int sst_chunksiz, sgg_chunksiz;
int i, j;
double tmp[20];
char filname[200];

///// INTERPRET COMMANDLINE PARAMETERS /////
cmd_parameters = interprete_commandline(argc, argv);
printf(" --> command line parameters\n");
printf(" SST file %s\n", cmd_parameters.in_sst_filename);
printf(" SGG file %s\n", cmd_parameters.in_sgg_filename);

// EINLESEN DER DATEN
printf(" --> input data\n");
printf(" SST data: %s\n", cmd_parameters.in_sst_filename);
printf(" SGG data: %s\n", cmd_parameters.in_sgg_filename);
if ((numread = input_sst_sgg(N, M,

cmd_parameters.in_sst_filename, &sst_tmp[0], &sst_tmp[1], &
sst_tmp[2],

&sst_tmp[3], &sst_tmp[4], &sst_tmp[5], &sst_tmp[6],
&sst_tmp[7], &sst_tmp[8], &sst_tmp[9], &sst_tmp[10],
&sst_tmp[11], &sst_tmp[12],
cmd_parameters.in_sgg_filename, &sgg_tmp[0], &sgg_tmp[1], &

sgg_tmp[2],
&sgg_tmp[3], &sgg_tmp[4], &sgg_tmp[5], &sgg_tmp[6],
&sgg_tmp[7], &sgg_tmp[8], &sgg_tmp[9])) <= 0) {

return -1; // something went wrong
}
printf(" # requested: %d -- # read: %d\n", N, numread);

N = numread;
printf(" --> maximal usable data entries n = %d\n", N);

// WRITING OF DATA
printf(" --> writing data ...\n", N);

for (j = 0; j < 13; j++) {
sprintf(filname, "%s.bin_%s", cmd_parameters.in_sst_filename, out_sst_fil[j]);
printf(" - %s\n", filname);

fil = fopen(filname, "wb");
for (i = 0; i < N; i++) {
tmp[0] = swapEndian_double(sst_tmp[j][i]);
fwrite(&tmp, sizeof(double), 1, fil);

}
fclose(fil);

}

XVI Appendix A Source code

for (j = 0; j < 10; j++) {
sprintf(filname, "%s.bin_%s", cmd_parameters.in_sgg_filename, out_sgg_fil[j]);
printf(" - %s\n", filname);

fil = fopen(filname, "wb");
for (i = 0; i < N; i++) {
tmp[0] = swapEndian_double(sgg_tmp[j][i]);
fwrite(&tmp, sizeof(double), 1, fil);

}
fclose(fil);

}

printf(" ... done.\n", N);

return 0;
}

A.3 Shared memory version – OpenMP

makefile

CC_LOCAL = gcc # local computer
CC_ASAMA = icc # ASAMA
CC_SX8 = sxcc # SX8

FIL_SX8 = main.c commandline.c dataio.c legendre.c compute.c performance.c
OBJ = main.o commandline.o dataio.o legendre.o compute.o performance.o
BIN = main main_asama main_sx8 main_sx9

LIB_LOCAL = -lrt -lm -L/usr/local/ATLAS/lib/Linux_HAMMER64SSE2_2 -llapack -lptcblas -
latlas # for parallel computing: -lptcblas instead of -lcblas

LIB_ASAMA = -lrt -lm -L/opt/MathKeisan/MKL/lib/64 -lmkl_lapack -lmkl_ipf
LIB_SX8 = -lcblas -llapack -lparblas -f90lib # for parallel computing: -lparblas

instead of -lblas

CMP_LOCAL = -O3 -fopenmp -DOpenMP
CMP_ASAMA = -O2 -openmp -I/opt/MathKeisan/MKL/include -DOpenMP
CMP_SX8 = -Popenmp -size_t64 -w none -DOpenMP

INC_SX8 = -I/SX/opt/mathkeisan/inst/include

local computer
main:

$(CC_LOCAL) $(CMP_LOCAL) -c $(patsubst %.o, %.c, $(OBJ))
$(CC_LOCAL) $(CMP_LOCAL) -o main $(OBJ) $(LIB_LOCAL)

run: main
time ./main --maxlm=10 --lines=10000

ASAMA
asama:

$(CC_ASAMA) $(CMP_ASAMA) -c $(patsubst %.o, %.c, $(OBJ)) -DASAMA
$(CC_ASAMA) $(CMP_ASAMA) -o main_asama $(OBJ) $(LIB_ASAMA)

asama_run: asama
time ./main_asama --maxlm=10 --lines=10000

SX8
sx8:

$(CC_SX8) $(CMP_SX8) $(INC_SX8) -c $(FIL_SX8) -DSX8
$(CC_SX8) $(CMP_SX8) -o main_sx8 $(OBJ) $(LIB_SX8)

SX9

A.3 Shared memory version – OpenMP XVII

sx9:
$(CC_SX8) $(CMP_SX8) $(INC_SX8) -c $(FIL_SX8) -DSX8
$(CC_SX8) $(CMP_SX8) -o main_sx9 $(OBJ) $(LIB_SX8)

#miscellaneous
clean:

rm -f $(BIN) $(OBJ)

.PHONY: main run asama asama_run sx8 sx9 clean

main.c

#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <math.h>

#if defined(OpenMP)
#include <omp.h>

#endif

#if defined(SX8)
#include <cblas.h>

#elif defined(ASAMA) // ASAMA / A1:
#include <mkl_types.h>
#include <mkl_cblas.h>
#include <mkl_lapack64.h>
#include <getopt.h>

#else // LOCAL:
#include "/usr/local/ATLAS/include/atlas_enum.h"
#include "/usr/local/ATLAS/include/cblas.h"
#include "/usr/local/ATLAS/include/clapack.h"
#include <getopt.h>

#endif

#include "commandline.h"
#include "dataio.h"
#include "legendre.h"
#include "performance.h"

const double pi = 3.1415926535897932384626433832795028841971693993751058;

const double R = 6378137.0; // mean earth radius
const double GM = 3.986004418e+14; // geocentric constant

static double *Bl = NULL;
static double *Wmm = NULL, *Wml_1 = NULL, *Wml_2 = NULL; // for initial values of Legendre

function
static double *nL = NULL;
#ifdef OpenMP

#pragma omp threadprivate(nL, Bl)
#endif

/**
MAIN FUNCTION

**/

int main(int argc, char* argv[]) {

// commandline parameters
struct t_cmd_line cmd_parameters;

FILE* fil; // output
double clm, slm;

// data storage
double *time_sst = NULL, // sst-file

XVIII Appendix A Source code

*x1 = NULL, *x2 = NULL, *x3 = NULL,

*x1p = NULL, *x2p = NULL, *x3p = NULL,

*x1pp = NULL, *x2pp = NULL, *x3pp = NULL,

*r = NULL, *phi = NULL, *lambda = NULL;
double *time_sgg = NULL, // sgg-file

*Txx = NULL, *Txy = NULL, *Txz = NULL,

*Tyy = NULL, *Tyz = NULL, *Tzz = NULL,

*I1 = NULL, *I2 = NULL, *I3 = NULL;

// dimension parameters
int A_siz = 16; // memory size (in MiB) for block of design matrix to build normal

equations matrix

int numread; // number of read lines of data
int numlp, cpus;

int i, l, m, idx; // counter

int koeffs, N_siz, A_blk_siz; // number of coefficients, sizes of normal
equations matrix and design matrix block

int blk, blk_cnt, b;
double *A_row = NULL; // block of design mtrix
double *N_mat = NULL, *x_vec = NULL; // normal equations matrix and vector of

obeservations/coefficients

double GMRRR;

#if defined(ASAMA) || defined(SX8)
char uplo = ’L’;
int nrhs = 1, info;

#endif

// performance monitoring
Ttimer timer_data, timer_ALL, timer_A, timer_N;

///// INTERPRET COMMANDLINE PARAMETERS /////
cmd_parameters = interprete_commandline(argc, argv);
printf(" --> command line parameters\n");
printf(" SST file %s\n", cmd_parameters.in_sst_filename);
printf(" SGG file %s\n", cmd_parameters.in_sgg_filename);
printf(" max lm %d\n", cmd_parameters.max_lm);
printf(" lines %d\n", cmd_parameters.N);
printf(" out file %s\n", cmd_parameters.out_filename);
printf(" local matrix block size . %d\n", cmd_parameters.block_m);

// here we start performance monitoring
reset_timer(&timer_ALL); start_timer(&timer_ALL);
reset_timer(&timer_data);
reset_timer(&timer_A);
reset_timer(&timer_N);

//// DATA INPUT ////
start_timer(&timer_data);
printf(" --> input data\n");
printf(" SST data: %s\n", cmd_parameters.in_sst_filename);
printf(" SGG data: %s\n", cmd_parameters.in_sgg_filename);
if ((numread = input_sst_sgg_bin(cmd_parameters.N, cmd_parameters.block_m,

cmd_parameters.in_sst_filename, &time_sst, &x1, &x2, &
x3, &x1p, &x2p, &x3p, &x1pp, &x2pp, &x3pp, &lambda,
&phi, &r,

cmd_parameters.in_sgg_filename, &time_sgg, &Txx, &Txy,
&Txz, &Tyy, &Tyz, &Tzz, &I1, &I2, &I3)) <= 0) {

return -1; // something went wrong
}

printf(" # requested: %d -- # read: %d\n", cmd_parameters.N, numread);

A.3 Shared memory version – OpenMP XIX

cmd_parameters.N = numread; // update the count of datalines with the correct value
printf(" --> maximal usable data entries n = %d\n", cmd_parameters.N);
stop_timer(&timer_data);

//// INITIALIZING COMPUTATIONS ////
// set up of normal equations matrix N and vector A’y
koeffs = (cmd_parameters.max_lm + 1) * (cmd_parameters.max_lm + 1) - 3; // c_1m, s_1m

are not estimated
N_siz = koeffs * koeffs; // size of normal equations matrix
A_blk_siz = (A_siz * 1024 * 1024) / (koeffs * sizeof(double)); // block size for

setting up normal equations system
if (A_blk_siz > cmd_parameters.N) {

A_blk_siz = cmd_parameters.N;
}

printf(" --> making N-Matrix, A’y-Vektor\n");
printf(" size A-Block : %8d * double = %6.2f MiB (%d lines)\n", A_blk_siz *

koeffs, 1.0 * A_blk_siz * koeffs * sizeof(double) / 1024 / 1024, A_blk_siz);
printf(" size A’y : %8d * double = %6.2f MiB (max. degree/order: %d) \n",

koeffs, 1.0 * koeffs * sizeof(double) / 1024 / 1024, cmd_parameters.max_lm);
printf(" size N : %8d * double = %6.2f MiB\n", N_siz, 1.0 * N_siz * sizeof(

double) / 1024 / 1024);

A_row = (double*)calloc(koeffs * A_blk_siz, sizeof(double));
N_mat = (double*)calloc(N_siz, sizeof(double));
x_vec = (double*)calloc(koeffs, sizeof(double));

#ifdef OpenMP
#pragma omp parallel
{

cpus = omp_get_num_threads();
}
printf(" --> threads used: %d\n", cpus);

#endif

printf(" --> blocks to compute: %d\n", (int)ceil((double)cmd_parameters.N / (double)
A_blk_siz));

blk = A_blk_siz; blk_cnt = 0;
numlp = (cmd_parameters.max_lm + 1) * cmd_parameters.max_lm / 2 + cmd_parameters.max_lm

+ 1;

#ifdef OpenMP
#pragma omp parallel

#endif
{

nL = (double*)malloc(sizeof(double) * numlp);
Bl = (double*)malloc(sizeof(double) * cmd_parameters.max_lm);

}

Wmm = (double*)malloc(sizeof(double) * cmd_parameters.max_lm); // initialize Legendre
functions (beforehand calculations)

Wml_1 = (double*)malloc(sizeof(double) * cmd_parameters.max_lm * (cmd_parameters.max_lm
+ 1) / 2);

Wml_2 = (double*)malloc(sizeof(double) * cmd_parameters.max_lm * (cmd_parameters.max_lm
- 1) / 2);

init_legendre1kind(cmd_parameters.max_lm, Wmm, Wml_1, Wml_2);

GMRRR = GM / (R*R*R);

for (i = 0; i < cmd_parameters.N; i += blk) {
if (cmd_parameters.N - i >= A_blk_siz) { // calculate actual block size
blk = A_blk_siz;

} else {
blk = cmd_parameters.N - i;

}

XX Appendix A Source code

printf("Block #%3d - size: %8d %8d", blk_cnt, blk, i);
if ((laptime_timer(&timer_ALL) > 10.0) && (i != 0))

printf(" -- time: %1.0fs / ~%1.0fs\n", laptime_timer(&timer_ALL),
laptime_timer(&timer_ALL) * (cmd_parameters.N - i) / i);

else
printf("\n");

start_timer(&timer_A);

{
#ifdef OpenMP
#pragma omp parallel for schedule(guided)

#endif
for (b = 0; b < blk; b++) {
compute_A_line(&(A_row[b * koeffs]), cmd_parameters.max_lm, cmd_parameters.N,

koeffs,
i, b,
GMRRR, GM, R,
lambda, phi, r,
Bl, nL, Wmm, Wml_1, Wml_2);

}

} // end pragma omp parallel

stop_timer(&timer_A);
start_timer(&timer_N);

// successive building of vector x_vec = A_mat * Tzz
cblas_dgemv(CblasRowMajor, CblasTrans, blk, koeffs, 1.0, A_row, koeffs, Tzz+i, 1, 1.0,

x_vec, 1);

// successive building of normal equations matrix N = A’ * A
// cblas_dgemm(CblasRowMajor, CblasTrans, CblasNoTrans, koeffs, koeffs, blk, 1.0,

A_row, koeffs, A_row, koeffs, 1.0, N_mat, koeffs); // slow
cblas_dsyrk(CblasRowMajor, CblasUpper, CblasTrans, koeffs, blk, 1.0, A_row, koeffs,

1.0, N_mat, koeffs); // fast (only triangular matrix)

stop_timer(&timer_N);

blk_cnt++;
}

// solve "\hat{x} = (\transp{A} * A)^{-1} \transp{A} y"
// x_vec(new) = N_mat * x_vec(old)
printf(" --> computing: x_solve = (N_mat)^(-1) * x_vec\n");

#if defined(SX8)
dposv_(&uplo, &koeffs, &nrhs, N_mat, &koeffs, x_vec, &koeffs, &info);

#elif defined(ASAMA)
DPOSV(&uplo, &koeffs, &nrhs, N_mat, &koeffs, x_vec, &koeffs, &info);

#else
clapack_dposv(CblasRowMajor, CblasUpper, koeffs, 1, N_mat, koeffs, x_vec, koeffs);

#endif

// OUTPUT
printf(" --> some coefficients:\n");

fil = fopen(cmd_parameters.out_filename, "w");

i = 0;
for (l = 0; l <= cmd_parameters.max_lm; l++) {

for (m = 0; m <= l; m++) {

if (l == 0) {
clm = x_vec[0]; slm = 0.0;

} else if (l == 1) {

A.4 Distributed memory version – MPI XXI

clm = 0.0; slm = 0.0;
} else if (m == 0) {
clm = x_vec[l - 1]; slm = 0.0;

} else {
idx = 2 * (m * (cmd_parameters.max_lm + 1) - m * (m - 1) / 2 + l - m) -

cmd_parameters.max_lm - 4;
clm = x_vec[idx]; slm = x_vec[idx + 1];

}

fprintf(fil, "%3d %3d %24.16e %24.16e\n", l, m, clm, slm);
if (i <= 10) {

printf("%3d %3d %24.16e %24.16e\n", l, m, clm, slm);
}
i++;

}
}
fclose(fil);

stop_timer(&timer_ALL);

// performance results
printf(" --> used CPU time:\n");
printf(" reading data : %8.4f s\n", totaltime_timer(&timer_data));
printf(" computing of A : %8.4f s\n", totaltime_timer(&timer_A));
printf(" computing of N : %8.4f s\n", totaltime_timer(&timer_N));
printf(" OVERALL TIME : %8.4f s\n", totaltime_timer(&timer_ALL));

return 0;
}

A.4 Distributed memory version – MPI

makefile

CC = mpicc
CC_SX8 = sxmpicc

OBJ = main.o commandline.o dataio.o legendre.o compute.o performance.o distribute.o
SRC_SX8 = main.c commandline.c dataio.c legendre.c compute.c performance.c distribute.c
BIN = mpi_test mpi_sx8 mpi_sx9

LIB = -lrt -L /home/rothms/LIBS -lscalapack -lblacs -lblacsCinit -lblacsF77init -lblacs -
llapack -lcblas -lblas -lgfortran

LIB_SX8 = -lscalapack -lblacs -lblacsCinit -lblacsF90init -lblacs -llapack -lcblas -lblas
-f90lib

CMP = -O3
CMP_SX8 = -size_t64 -w none

INC_SX8 = -I /SX/opt/mathkeisan/inst/include

DEF = -DCLUSTER -DMPI
DEF_SX8 = -DSX8 -DMPI

GIS cluster
main:

$(CC) $(CMP) -c $(patsubst %.o, %.c, $(OBJ)) $(DEF)
$(CC) $(CMP) -o mpi_test $(OBJ) $(LIB)

run2: main
time mpirun -np 2 -machinefile ../machines2 ./mpi_test --maxlm 10 --lines=10000

XXII Appendix A Source code

run4: main
time mpirun -np 4 -machinefile ../machines2 ./mpi_test --maxlm 10 --lines=10000

SX systems
sx8:

$(CC_SX8) $(CMP_SX8) $(INC_SX8) -c $(SRC_SX8) $(DEF_SX8)
$(CC_SX8) $(CMP_SX8) -o mpi_sx8 $(OBJ) $(LIB_SX8)

sx9:
$(CC_SX8) $(CMP_SX8) $(INC_SX8) -c $(SRC_SX8) $(DEF_SX8)
$(CC_SX8) $(CMP_SX8) -o mpi_sx9 $(OBJ) $(LIB_SX8)

miscellaneous
clean:

rm -f $(BIN) $(OBJ)

.PHONY: main run2 run4 sx8 sx9 clean

distribute.h

void glob2loc(int glob, int b, int prowcol, int *loc, int *mrowcol);
// INPUT:
// glob global row/column coordinate of matrix element
// b row/column size of block matrix
// prowcol ... row/column size of process grid
// OUTPUT:
// loc local row/column coordinate of matrix element
// mrowcol ... row/column coordinate of process which holds the data

void glob2loc2D(int mglob, int nglob, int mb, int nb, int prow, int pcol,
int *mloc, int *nloc, int *mrow, int *mcol);

// INPUT:
// mglob, nglob ... global coordinates of matrix element
// mb, nb size of block matrix
// prow, pcol size of process grid
// OUTPUT:
// mloc, nloc local coordinates of matrix element
// mrow, mcol coordinates of process which holds the data

void loc2glob(int loc, int mrowcol, int b, int prowcol,
int *glob);

// INPUT:
// loc local row/column coordinate of matrix element
// mrowcol ... row/column coordinate of process which holds the data
// b row/column size of block matrix
// prowcol ... row/column size of process grid
// OUTPUT:
// glob global row/column coordinate of matrix element

void loc2glob2D(int mloc, int nloc, int mrow, int mcol,
int mb, int nb, int prow, int pcol,
int *mglob, int *nglob);

// INPUT:
// mloc, nloc local coordinates of matrix element
// mrow, mcol coordinates of process which holds the data
// mb, nb size of block matrix
// prow, pcol size of process grid
// OUTPUT:
// mglob, nglob ... global coordinates of matrix element

distribute.c

void glob2loc(int glob, int b, int prowcol, int *loc, int *mrowcol) {
int tmp;

*mrowcol = (glob / b) % prowcol;

A.4 Distributed memory version – MPI XXIII

tmp = glob / (b * prowcol);

*loc = tmp * b + glob % b;
}

void glob2loc2D(int mglob, int nglob, int mb, int nb, int prow, int pcol,
int *mloc, int *nloc, int *mrow, int *mcol) {

glob2loc(mglob, mb, prow, mloc, mrow);
glob2loc(nglob, nb, pcol, nloc, mcol);

}

void loc2glob(int loc, int mrowcol, int b, int prowcol,
int *glob) {

*glob = loc * prowcol + mrowcol * b;
}

void loc2glob2D(int mloc, int nloc, int mrow, int mcol,
int mb, int nb, int prow, int pcol,
int *mglob, int *nglob) {

loc2glob(mloc, mrow, mb, prow, mglob);
loc2glob(nloc, mcol, nb, pcol, nglob);

}

main.c

#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <math.h>

#if defined(CLUSTER)
#include <getopt.h>
#include "../LIBS/cblas.h"

#endif

#if defined(SX8)
#include <cblas.h>

#endif

#include "mpi.h"

#include "commandline.h"
#include "compute.h"
#include "dataio.h"
#include "legendre.h"
#include "performance.h"
#include "distribute.h"

const double pi = 3.1415926535897932384626433832795028841971693993751058;

const double R = 6378137.0; // mean earth radius
const double GM = 3.986004418e+14; // geocentric constant

/**
MAIN FUNCTION

**/

int main(int argc, char* argv[]) {

// commandline parameters
struct t_cmd_line cmd_parameters;

FILE* fil; // Ausgabe
double clm, slm;

// MPI and BLACS stuff
int procs, myid; // number of processes, process rank

XXIV Appendix A Source code

int ctxt, prow, pcol, myrow, mycol; // BLACS stuff
int info;
MPI_Status status;

int ZERO = 0, ONE = 1;

// data storage
double *time_sst = NULL, // sst-file

*x1 = NULL, *x2 = NULL, *x3 = NULL,

*x1p = NULL, *x2p = NULL, *x3p = NULL,

*x1pp = NULL, *x2pp = NULL, *x3pp = NULL,

*r = NULL, *phi = NULL, *lambda = NULL;
double *time_sgg = NULL, // sgg-file

*Txx = NULL, *Txy = NULL, *Txz = NULL,

*Tyy = NULL, *Tyz = NULL, *Tzz = NULL,

*I1 = NULL, *I2 = NULL, *I3 = NULL;

int numread;

double GMRRR;

// Legendre functions
int numlp;
double *nL = NULL, *Bl = NULL;
double *Wmm = NULL, *Wml_1 = NULL, *Wml_2 = NULL; // pre-evaluated values

// matrix stuff
int koeffs, N_siz, A_blk_siz, blk_cnt;
double *A_row = NULL, *N_mat = NULL, *A_line = NULL, *x_vec = NULL, *x_out = NULL;
double alpha = 1.0, beta = 1.0;

int locA_m, locA_n, locN_m, locN_n; // local sizes
int descA[9], descN[9], // array descriptors

descx_vec[9], descTzz[9],
descAl[9], desc_out[9];

// other stuff
int i, b, bb, j, l, m, idx; // counter
double t;
double *buf = NULL; // buffer for sending data
int ii, jj, il, jl, procid, mglob, nglob, // calculation of block coordinates

mloc_o, nloc_o, mloc_n, nloc_n,
mrow, mcol, mrow_o, mcol_o;

// performance monitoring
Ttimer timer_data, timer_ALL, timer_A, timer_N, timer_dist, timer_solv;

printf("Starting MPI...\n");
// Start MPI
MPI_Init(&argc, &argv);

// get number of processes and rank/name of this process
MPI_Comm_size(MPI_COMM_WORLD, &procs);
if (procs < 2) {

printf("ATTENTION! Please use at least two processes to run this program!\n");
MPI_Finalize();
return -1;

}

MPI_Comm_rank(MPI_COMM_WORLD, &myid);

// get BLACS context
Cblacs_get(0, 0, &ctxt);

// Initialize "optimal" 2D processing grid (so that prow <= pcol)

A.4 Distributed memory version – MPI XXV

pcol = sqrt(procs);
while (procs % pcol != 0) {

pcol--;
}
prow = procs / pcol;
if (prow > pcol) {

pcol = prow; prow = procs / pcol;
}

// Initialize the prow x pcol process grid
Cblacs_gridinit(&ctxt, "Row-major", prow, pcol);
Cblacs_pcoord(ctxt, myid, &myrow, &mycol);

if (myid == 0) { // only the main process does this
printf(" --> %d processes used in a %d x %d grid\n", procs, prow, pcol);

}

///// INTERPRET COMMANDLINE PARAMETERS /////
if (myid == 0) { // only the main process does this
cmd_parameters = interprete_commandline(argc, argv);
printf(" --> command line parameters\n");
printf(" SST file %s\n", cmd_parameters.in_sst_filename);
printf(" SGG file %s\n", cmd_parameters.in_sgg_filename);
printf(" max lm %d\n", cmd_parameters.max_lm);
printf(" lines %d\n", cmd_parameters.N);
printf(" out file %s\n", cmd_parameters.out_filename);
printf(" local matrix block size . %d x %d\n", cmd_parameters.block_m,

cmd_parameters.block_n);
}
// send commandline parameters to the other processes
MPI_Bcast(&cmd_parameters, sizeof(cmd_parameters), MPI_BYTE, 0, MPI_COMM_WORLD);

// Here we start performance monitoring (only process 0!)
if (myid == 0) {

reset_timer(&timer_ALL); start_timer(&timer_ALL);
reset_timer(&timer_data);
reset_timer(&timer_A);
reset_timer(&timer_N);
reset_timer(&timer_dist);
reset_timer(&timer_solv);

}

///// READ DATA /////
if (myid == 0) { // only the main process does this

start_timer(&timer_data);
printf(" --> input data\n");
printf(" SST data: %s\n", cmd_parameters.in_sst_filename);
printf(" SGG data: %s\n", cmd_parameters.in_sgg_filename);
if ((numread = input_sst_sgg_bin(cmd_parameters.N, cmd_parameters.block_m * procs,

cmd_parameters.in_sst_filename, &time_sst, &x1, &x2,
&x3, &x1p, &x2p, &x3p, &x1pp, &x2pp, &x3pp, &
lambda, &phi, &r,

cmd_parameters.in_sgg_filename, &time_sgg, &Txx, &Txy
, &Txz, &Tyy, &Tyz, &Tzz, &I1, &I2, &I3)) <= 0) {

return -1; // something went wrong
}
printf(" # requested: %d -- # read: %d\n", cmd_parameters.N, numread);
cmd_parameters.N = numread; // update the count of datalines with the correct value
printf(" --> maximal usable data entries n = %d\n", cmd_parameters.N);

}

if (myid == 0) {
printf(" --> distributing data ...\n");

}

XXVI Appendix A Source code

BCast_Data(cmd_parameters.N, cmd_parameters.block_m,
&time_sst,
&x1, &x2, &x3, &x1p, &x2p, &x3p, &x1pp, &x2pp, &x3pp, &lambda, &phi, &r,
&time_sgg,
&Txx, &Txy, &Txz, &Tyy, &Tyz, &Tzz, &I1, &I2, &I3);

printf(" process [%d, %d] finished.\n", myrow, mycol);
MPI_Barrier(MPI_COMM_WORLD);
if (myid == 0) {

stop_timer(&timer_data);
}

///// INITIALIZING COMPUTATIONS /////
koeffs = (cmd_parameters.max_lm + 1) * (cmd_parameters.max_lm + 1) - 3; // c_1m,

s_1m are not estimated
N_siz = koeffs * koeffs; // size of

the normal equations matrix
A_blk_siz = cmd_parameters.block_m * procs; // block

size for building normal equations matrix

if (myid == 0) {
printf(" --> size A_row %d x %d (= %0.2f MiB)\n",

A_blk_siz, koeffs, (double)A_blk_siz * (double)koeffs * sizeof(double) / 1024 /
1024);

}
MPI_Barrier(MPI_COMM_WORLD);
locA_m = numroc_(&A_blk_siz, &cmd_parameters.block_m, &myrow, &ZERO, &prow);
locA_n = numroc_(&koeffs, &cmd_parameters.block_n, &mycol, &ZERO, &pcol);
printf(" local size (process [%d, %d]) ... %d x %d (= %0.2f MiB)\n",

myrow, mycol, locA_m, locA_n, (double)locA_m * (double)locA_n * sizeof(double) /
1024 / 1024);

MPI_Barrier(MPI_COMM_WORLD);

if (myid == 0) {
printf(" --> size N %d x %d (= %0.2f MiB)\n",

koeffs, koeffs, (double)N_siz * sizeof(double) / 1024 / 1024);
}
MPI_Barrier(MPI_COMM_WORLD);
locN_m = numroc_(&koeffs, &cmd_parameters.block_m, &myrow, &ZERO, &prow);
locN_n = numroc_(&koeffs, &cmd_parameters.block_n, &mycol, &ZERO, &pcol);
printf(" local size (process [%d, %d]) ... %d x %d (= %0.2f MiB)\n",

myrow, mycol, locN_m, locN_n, (double)locN_m * (double)locN_n * sizeof(double) /
1024 / 1024);

MPI_Barrier(MPI_COMM_WORLD);

// allocate local matrices
A_row = (double*)calloc(locA_m * locA_n, sizeof(double));
N_mat = (double*)calloc(locN_m * locN_n, sizeof(double));
x_vec = (double*)calloc(koeffs, sizeof(double));
x_out = (double*)calloc(koeffs, sizeof(double));

// define array descriptors
descinit_(descA, &A_blk_siz, &koeffs, &cmd_parameters.block_m, &cmd_parameters.block_n,

&ZERO, &ZERO, &ctxt, &locA_m, &info);
descinit_(descN, &koeffs, &koeffs, &cmd_parameters.block_m, &cmd_parameters.block_n, &

ZERO, &ZERO, &ctxt, &locN_m, &info);

descinit_(descTzz, &cmd_parameters.N, &ONE, &cmd_parameters.N, &ONE, &ZERO, &ZERO, &ctxt
, &cmd_parameters.N, &info);

descinit_(descx_vec, &koeffs, &ONE, &cmd_parameters.block_m, &ONE, &ZERO, &ZERO, &ctxt,
&locN_m, &info);

descinit_(desc_out, &koeffs, &ONE, &koeffs, &ONE, &ZERO, &ZERO, &ctxt, &koeffs, &info);
// to gather x_vec to one process after solving

if (myid == 0) {

A.4 Distributed memory version – MPI XXVII

printf("\n --> blocks to compute: %d\n", (int)ceil((double)cmd_parameters.N / (double
)A_blk_siz));

}

// initialize Legendre functions
numlp = (cmd_parameters.max_lm + 1) * cmd_parameters.max_lm / 2 + cmd_parameters.max_lm

+ 1 + 1;

nL = (double*)malloc(sizeof(double) * numlp);
Bl = (double*)malloc(sizeof(double) * cmd_parameters.max_lm);

Wmm = (double*)malloc(sizeof(double) * cmd_parameters.max_lm); // initialize Legendre
functions

Wml_1 = (double*)malloc(sizeof(double) * cmd_parameters.max_lm * (cmd_parameters.max_lm
+ 1) / 2);

Wml_2 = (double*)malloc(sizeof(double) * cmd_parameters.max_lm * (cmd_parameters.max_lm
- 1) / 2);

init_legendre1kind(cmd_parameters.max_lm, Wmm, Wml_1, Wml_2);

MPI_Barrier(MPI_COMM_WORLD);

///// COMPUTATIONS /////
A_line = (double*)calloc(A_blk_siz * koeffs, sizeof(double)); // for computing A
buf = (double*)calloc(cmd_parameters.block_m * cmd_parameters.block_n, sizeof(double)

);
blk_cnt = 0;
GMRRR = GM / (R * R * R);

for (i = 0; i < cmd_parameters.N; i += A_blk_siz) {

// define A-matrix array descriptor (can change from block to block)
locA_m = numroc_(&A_blk_siz, &cmd_parameters.block_m, &myrow, &ZERO, &prow);
locA_n = numroc_(&koeffs, &cmd_parameters.block_n, &mycol, &ZERO, &pcol);
descinit_(descA, &A_blk_siz, &koeffs, &cmd_parameters.block_m, &cmd_parameters.block_n

, &ZERO, &ZERO, &ctxt, &locA_m, &info);

// computation of A
if ((myrow == 0) && (mycol == 0) && ((blk_cnt % 10) == 0)) {

printf(" block #%4d - size: %8d %8d\n", blk_cnt, A_blk_siz, i);
}

if (myid == 0) {
start_timer(&timer_A);

}

for (b = 0; b < cmd_parameters.block_m; b++) {
compute_A_line(&(A_line[b * koeffs]), cmd_parameters.max_lm, cmd_parameters.N,

koeffs,
i + cmd_parameters.block_m * myid, b,
GMRRR, GM, R,
lambda, phi, r,
Bl, nL, Wmm, Wml_1, Wml_2);

}
MPI_Barrier(MPI_COMM_WORLD);
if (myid == 0) {

stop_timer(&timer_A);
start_timer(&timer_dist);

}

// distribute the design matrix A
for (procid = 0; procid < procs; procid++) {

for (mloc_o = 0; mloc_o < cmd_parameters.block_m; mloc_o += cmd_parameters.block_m)
{ // run over local A matrix elements

for (nloc_o = 0; nloc_o < koeffs; nloc_o += cmd_parameters.block_n) {
// increase for one block

XXVIII Appendix A Source code

loc2glob2D(mloc_o, nloc_o, procid, 0,
cmd_parameters.block_m, cmd_parameters.block_n, procs, 1,
&mglob, &nglob);

glob2loc2D(mglob, nglob, cmd_parameters.block_m, cmd_parameters.block_n, prow,
pcol, // compute local coordinates

&mloc_n, &nloc_n, &mrow, &mcol);

ii = min(cmd_parameters.block_m, cmd_parameters.block_m - mloc_o);
jj = min(cmd_parameters.block_n, koeffs - nloc_o);

if (procid == myid) {
if ((myrow == mrow) && (mycol == mcol)) { // block stays with this process

for (il = 0; il < ii; il++) {
for (jl = 0; jl < jj; jl++) {
A_row[(nloc_n + jl) * locA_m + (mloc_n + il)] = A_line[(mloc_o + il) *

koeffs + (nloc_o + jl)];
}

}

} else { // block is sent to another process

Cdgesd2d(ctxt, jj, ii, &(A_line[mloc_o * koeffs + nloc_o]), koeffs, mrow,
mcol);

}
} else if ((myrow == mrow) && (mycol == mcol)) { // block is received from

another process

Cblacs_pcoord(ctxt, procid, &mrow_o, &mcol_o); // get the grid coordiantes of
the sending process

Cdgerv2d(ctxt, jj, ii, buf, 1, mrow_o, mcol_o);
for (il = 0; il < ii; il++) {

for (jl = 0; jl < jj; jl++) {
A_row[(nloc_n + jl) * locA_m + (mloc_n + il)] = buf[il * jj + jl];

}
}

}
}

}
}
MPI_Barrier(MPI_COMM_WORLD);
if (myid == 0) {

stop_timer(&timer_dist);
start_timer(&timer_N);

}

pdsyrk_("L", "T", &koeffs, &A_blk_siz, &alpha, A_row, &ONE, &ONE, descA, &beta, N_mat,
&ONE, &ONE, descN); // N(i) = N(i-1) + A(i)’ * A(i)

pdgemv_("T", &A_blk_siz, &koeffs, &alpha, A_row, &ONE, &ONE, descA, Tzz+i, &ONE, &ONE,
descTzz, &ONE, &beta, x_vec, &ONE, &ONE, descx_vec, &ONE);

if (myid == 0) {
stop_timer(&timer_N);

}

blk_cnt++;
}
MPI_Barrier(MPI_COMM_WORLD);

// solve the system of equations
if (myid == 0) {

start_timer(&timer_solv);

A.4 Distributed memory version – MPI XXIX

printf("DPOSV\n");
}
pdposv_("L", &koeffs, &ONE, N_mat, &ONE, &ONE, descN, x_vec, &ONE, &ONE, descx_vec, &

info);

// retrieve the coefficients’ vector from the other processes
pdgemr2d_(&koeffs, &ONE, x_vec, &ONE, &ONE, descx_vec, x_out, &ONE, &ONE, desc_out, &

ctxt, &info);

if (myid == 0) {
stop_timer(&timer_solv);

// OUTPUT
printf(" --> some coefficients (output is written to ’%s’)\n", cmd_parameters.

out_filename);
fil = fopen(cmd_parameters.out_filename, "w");

i = 0;
for (l = 0; l <= cmd_parameters.max_lm; l++) {
for (m = 0; m <= l; m++) {

if (l == 0) {
clm = x_out[0]; slm = 0.0;

} else if (l == 1) {
clm = 0.0; slm = 0.0;

} else if (m == 0) {
clm = x_out[l - 1]; slm = 0.0;

} else {
idx = 2 * (m * (cmd_parameters.max_lm + 1) - m * (m - 1) / 2 + l - m) -

cmd_parameters.max_lm - 4;
clm = x_out[idx]; slm = x_out[idx + 1];

}

fprintf(fil, "%3d %3d %24.16e %24.16e\n", l, m, clm, slm);
if (i <= 10) {

printf("%3d %3d %24.16e %24.16e\n", l, m, clm, slm);
}
i++;

}
}
fclose(fil);

// performance results
stop_timer(&timer_ALL);
printf(" --> performance results:\n");
printf(" reading data : %8.4f s\n", totaltime_timer(&

timer_data));
printf(" computing of A : %8.4f s\n", totaltime_timer(&timer_A))

;
printf(" distributing A : %8.4f s\n", totaltime_timer(&

timer_dist));
printf(" computing of N : %8.4f s\n", totaltime_timer(&timer_N))

;
printf(" solving equations system : %8.4f s\n", totaltime_timer(&

timer_solv));
printf(" OVERALL TIME : %8.4f s\n", totaltime_timer(&timer_ALL

));
}

ENDE:

// wait for all processes to reach this point
MPI_Barrier(MPI_COMM_WORLD);

// release process grid
Cblacs_gridexit(ctxt);

XXX Appendix A Source code

// Shut down MPI
MPI_Finalize();

return 0;
}

// helper: return the minimum of two values
int min(int x, int y) {

if (x < y)
return x;

else
return y;

}

A.5 Commonly used files

commandline.h

struct t_cmd_line {
char in_sst_filename[200];
char in_sgg_filename[200];

#ifndef ASCII2BIN
char out_filename[200];
int max_lm;
int N;
int block_m;
int block_n;

#endif
};

struct t_cmd_line interprete_commandline(int argc, char* argv[]);

commandline.c

#if defined(SX8) // SX-8/9
#elif defined(ASAMA) // ASAMA und A1
#include <getopt.h>

#else // LOCAL
#include <getopt.h>

#endif

#include <stdlib.h>
#include <string.h>
#include <stdio.h>

#include "commandline.h"

struct t_cmd_line interprete_commandline(int argc, char* argv[]) {

// default values
struct t_cmd_line cmdpar = {"../data/sc7/sc7_sst_coord_localsph", // SST file

"../data/sc7/sc7_tensor_inv_localsph", // SGG file
#ifndef ASCII2BIN

"./test.koeff", // output file
20, // maximum degree and order
64000, // number of lines of data to read (0: all)
64, 64 // size of matrix block (m x n), ATTENTION: pdposv

needs quadratic blocks!
#endif

};

A.5 Commonly used files XXXI

#ifndef SX8
// commandline parameters
static struct option long_options[] = {
{"sstfile", required_argument, 0, ’a’},
{"sggfile", required_argument, 0, ’b’},

#ifndef ASCII2BIN
{"maxlm", required_argument, 0, ’c’},
{"lines", required_argument, 0, ’d’},
{"outfile", required_argument, 0, ’o’},
{"block_m", required_argument, 0, ’m’},
{"block_n", required_argument, 0, ’n’},

#endif
{0, 0, 0, 0}

};
int option_index = 0;

#endif
int command;

// interprete commandline parameters
#ifdef SX8
#ifdef ASCII2BIN

while ((command = getopt(argc, argv, "a:b:")) != -1) {
#else

while ((command = getopt(argc, argv, "a:b:c:d:o:m:n:")) != -1) {
#endif

switch (command) {
case ’a’:
strncpy(cmdpar.in_sst_filename, optarg, 200);
break;

case ’b’:
strncpy(cmdpar.in_sgg_filename, optarg, 200);
break;

#ifndef ASCII2BIN
case ’c’:
sscanf(optarg, "%d", &cmdpar.max_lm);
break;

case ’d’:
sscanf(optarg, "%d", &cmdpar.N);
break;

case ’o’:
strncpy(cmdpar.out_filename, optarg, 200);
break;

case ’m’:
sscanf(optarg, "%d", &cmdpar.block_m);
break;

case ’n’:
sscanf(optarg, "%d", &cmdpar.block_n);
break;

#endif
default:

break;
}

}
#else // on ASAMA and locally "getopt.h" is available (long names for commandline options)
#ifdef ASCII2BIN

while ((command = getopt_long(argc, argv, "a:b:", long_options, &option_index)) != -1) {
#else

while ((command = getopt_long(argc, argv, "a:b:c:d:o:m:n:", long_options, &option_index)
) != -1) {

#endif
switch (command) {
case 0 :
break;

case ’a’ :
strncpy(cmdpar.in_sst_filename, optarg, 200);
break;

XXXII Appendix A Source code

case ’b’ :
strncpy(cmdpar.in_sgg_filename, optarg, 200);
break;

#ifndef ASCII2BIN
case ’c’ :
sscanf(optarg, "%d", &cmdpar.max_lm);
break;

case ’d’ :
sscanf(optarg, "%d", &cmdpar.N);
break;

case ’o’:
strncpy(cmdpar.out_filename, optarg, 200);
break;

case ’m’ :
sscanf(optarg, "%d", &cmdpar.block_m);
break;

case ’n’ :
sscanf(optarg, "%d", &cmdpar.block_n);
break;

#endif
default:

break;
}

}
#endif

return cmdpar;
}

compute.h

// computes one line of matrix A
void compute_A_line(double *A_line, int max_lm, int N, int koeffs, int i, int b,

double GMRRR, double GM, double R,
double *lambda, double *phi, double *r,
double *Bl, double *nL, double *Wmm, double *Wml_1, double *Wml_2);

compute.c

#include "legendre.h"
#include <math.h>

void compute_A_line(double *A_line, int max_lm, int N, int koeffs, int i, int b,
double GMRRR, double GM, double R,
double *lambda, double *phi, double *r,
double *Bl, double *nL, double *Wmm, double *Wml_1, double *Wml_2) {

int ib, m, l, idx_0, idx_nL, idx;
double lambda_ib, phi_ib, r_ib, R_rib, m_lambda_ib,

BlP, cosml, sinml;

ib = i + b;
if (ib >= N) {

for (idx_0 = 0; idx_0 < koeffs; idx_0++) {
A_line[idx_0] = 0.0;

}
} else {

lambda_ib = lambda[ib];
phi_ib = phi[ib];
r_ib = r[ib];
R_rib = R / r_ib;

legendre1kind(max_lm, phi_ib, nL, Wmm, Wml_1, Wml_2);
// output of Legendre functions is in order:
// nL: 00,10,20,30,...,11,21,31,...,22,32,...

A.5 Commonly used files XXXIII

idx_0 = 0;
A_line[idx_0] = 2.0 * GM / pow(r_ib, 3); // c_(0,0)

BlP = pow(R_rib, 5);
for (l = 2; l <= max_lm; l++) { // c_(2,0) ... c_(max_lm,0)
Bl[l - 2] = GMRRR * BlP * (l+2) * (l+1); // GMRRR * pow(R / r_ib, l+3) * (l+2)

* (l+1); save for later
BlP *= R_rib; // pow(R / r_ib, l+3);
A_line[idx_0 + l - 1] = Bl[l - 2] * nL[l];

}

idx_0 -= (max_lm + 4); // further down: idx = b * koeffs + 2 * idx_nL -
max_lm - 4;

for (m = 1; m <= max_lm; m++) { // c_(2,1), s_(2,1) ... c_(max_lm,max_lm), s_(
max_lm,max_lm)

m_lambda_ib = m * lambda_ib;
cosml = cos(m_lambda_ib);
sinml = sin(m_lambda_ib);

for (l = m; l <= max_lm; l++) {
if (l == 1)

continue;

idx_nL = (m * (max_lm + 1) - m * (m - 1) / 2 + l - m);
idx = idx_0 + 2 * idx_nL;

BlP = Bl[l - 2] * nL[idx_nL];

A_line[idx] = BlP * cosml;
A_line[idx + 1] = BlP * sinml;

}
}

}
}

dataio.h

// data input routines

// ASCII data (non-synchronized)
int input_sst_sgg(int n, int memchunksize,

char *sst_in_filename,
double **sst_time,
double **x1, double **x2, double **x3,
double **x1p, double **x2p, double **x3p,
double **x1pp, double **x2pp, double **x3pp,
double **lambda, double **phi, double **r,
char *sgg_in_filename,
double **sgg_time,
double **Txx, double **Txy, double **Txz,
double **Tyy, double **Tyz, double **Tzz,
double **I1, double **I2, double **I3);

// binary data (already synchronized!) in big-endian format
double swapEndian_double(double in);

int input_sst_sgg_bin(int n, int memchunksize,
char *sst_in_filename,
double **sst_time,
double **x1, double **x2, double **x3,
double **x1p, double **x2p, double **x3p,
double **x1pp, double **x2pp, double **x3pp,
double **lambda, double **phi, double **r,
char *sgg_in_filename,
double **sgg_time,
double **Txx, double **Txy, double **Txz,

XXXIV Appendix A Source code

double **Tyy, double **Tyz, double **Tzz,
double **I1, double **I2, double **I3);

// distribute the data to the processes (MPI version only)
#ifdef MPI
void BCast_Data(int n, int memchunksize,

double **time_sst,
double **x1, double **x2, double **x3,
double **x1p, double **x2p, double **x3p,
double **x1pp, double **x2pp, double **x3pp,
double **lambda, double **phi, double **r,
double **time_sgg,
double **Txx, double **Txy, double **Txz,
double **Tyy, double **Tyz, double **Tzz,
double **I1, double **I2, double **I3);

#endif

dataio.c

#include <stdlib.h>
#include <string.h>
#include <stdio.h>

#ifdef MPI
#include "mpi.h"

#endif

/**
function for combined sst and sgg data input (NON-SYNCHRONIZED ASCII DATA)

input: data file, lenght of sequences, size of memory-step, sst data arrays
output: sst data
return: number of read data lines (> 0)

if error: < 0
-1 : can’t open file
-2 : can’t reallocate memory
-3 : timestamps could not be synchronized

**/
int input_sst_sgg(int n, int memchunksize,

char *sst_in_filename,
double **sst_time,
double **x1, double **x2, double **x3,
double **x1p, double **x2p, double **x3p,
double **x1pp, double **x2pp, double **x3pp,
double **lambda, double **phi, double **r,
char *sgg_in_filename,
double **sgg_time,
double **Txx, double **Txy, double **Txz,
double **Tyy, double **Tyz, double **Tzz,
double **I1, double **I2, double **I3) {

FILE *sst_in_fil, *sgg_in_fil;
int N = 0,

corr_sst = 0,
corr_sgg = 0,
M = memchunksize,
i = 0;

// do files exist?
if ((sst_in_fil = fopen(sst_in_filename, "r")) == NULL) {

return -1; // Can’t open file "sst_in_filename"
}
if ((sgg_in_fil = fopen(sgg_in_filename, "r")) == NULL) {

return -1; // Can’t open file "sgg_in_filename"
}

// allocate memory - sst data

A.5 Commonly used files XXXV

*sst_time = (double *)malloc(sizeof(double) * M);

*x1 = (double *)malloc(sizeof(double) * M);

*x2 = (double *)malloc(sizeof(double) * M);

*x3 = (double *)malloc(sizeof(double) * M);

*x1p = (double *)malloc(sizeof(double) * M);

*x2p = (double *)malloc(sizeof(double) * M);

*x3p = (double *)malloc(sizeof(double) * M);

*x1pp = (double *)malloc(sizeof(double) * M);

*x2pp = (double *)malloc(sizeof(double) * M);

*x3pp = (double *)malloc(sizeof(double) * M);

*lambda = (double *)malloc(sizeof(double) * M);

*phi = (double *)malloc(sizeof(double) * M);

*r = (double *)malloc(sizeof(double) * M);
// allocate memory - sgg data

*sgg_time = (double *)malloc(sizeof(double) * M);

*Txx = (double *)malloc(sizeof(double) * M);

*Txy = (double *)malloc(sizeof(double) * M);

*Txz = (double *)malloc(sizeof(double) * M);

*Tyy = (double *)malloc(sizeof(double) * M);

*Tyz = (double *)malloc(sizeof(double) * M);

*Tzz = (double *)malloc(sizeof(double) * M);

*I1 = (double *)malloc(sizeof(double) * M);

*I2 = (double *)malloc(sizeof(double) * M);

*I3 = (double *)malloc(sizeof(double) * M);

while (1) {

if (N + 1 >= M) { // enlarge memory area if necessary
M += memchunksize;
// sst data
if ((*sst_time = (double *)realloc(*sst_time, sizeof(double) * M)) == NULL) { return

-2; } // Can’t reallocate
if ((*x1 = (double *)realloc(*x1, sizeof(double) * M)) == NULL) { return

-2; } // ...
if ((*x2 = (double *)realloc(*x2, sizeof(double) * M)) == NULL) { return

-2; }
if ((*x3 = (double *)realloc(*x3, sizeof(double) * M)) == NULL) { return

-2; }
if ((*x1p = (double *)realloc(*x1p, sizeof(double) * M)) == NULL) { return

-2; }
if ((*x2p = (double *)realloc(*x2p, sizeof(double) * M)) == NULL) { return

-2; }
if ((*x3p = (double *)realloc(*x3p, sizeof(double) * M)) == NULL) { return

-2; }
if ((*x1pp = (double *)realloc(*x1pp, sizeof(double) * M)) == NULL) { return

-2; }
if ((*x2pp = (double *)realloc(*x2pp, sizeof(double) * M)) == NULL) { return

-2; }
if ((*x3pp = (double *)realloc(*x3pp, sizeof(double) * M)) == NULL) { return

-2; }
if ((*lambda = (double *)realloc(*lambda, sizeof(double) * M)) == NULL) { return

-2; }
if ((*phi = (double *)realloc(*phi, sizeof(double) * M)) == NULL) { return

-2; }
if ((*r = (double *)realloc(*r, sizeof(double) * M)) == NULL) { return

-2; }
// sgg data
if ((*sgg_time = (double *)realloc(*sgg_time, sizeof(double) * M)) == NULL) { return

-2; } // Can’t reallocate
if ((*Txx = (double *)realloc(*Txx, sizeof(double) * M)) == NULL) { return

-2; } // ...
if ((*Txy = (double *)realloc(*Txy, sizeof(double) * M)) == NULL) { return

-2; }
if ((*Txz = (double *)realloc(*Txz, sizeof(double) * M)) == NULL) { return

-2; }
if ((*Tyy = (double *)realloc(*Tyy, sizeof(double) * M)) == NULL) { return

-2; }

XXXVI Appendix A Source code

if ((*Tyz = (double *)realloc(*Tyz, sizeof(double) * M)) == NULL) { return
-2; }

if ((*Tzz = (double *)realloc(*Tzz, sizeof(double) * M)) == NULL) { return
-2; }

if ((*I1 = (double *)realloc(*I1, sizeof(double) * M)) == NULL) { return
-2; }

if ((*I2 = (double *)realloc(*I2, sizeof(double) * M)) == NULL) { return
-2; }

if ((*I3 = (double *)realloc(*I3, sizeof(double) * M)) == NULL) { return
-2; }

}

if ((corr_sst == 0) && (corr_sgg == 0)) { // if both "corr" = 0:

if (fscanf(sst_in_fil, " %lf %lf %lf %lf %lf %lf %lf %lf %lf %lf %lf %lf %lf",
&(*sst_time)[N],
&(*x1)[N], &(*x2)[N], &(*x3)[N],
&(*x1p)[N], &(*x2p)[N], &(*x3p)[N],
&(*x1pp)[N], &(*x2pp)[N], &(*x3pp)[N],
&(*lambda)[N], &(*phi)[N], &(*r)[N]) <= 0) { // ERROR while reading sst-

file
printf(" eof sst!\n");
break;

}
if (fscanf(sgg_in_fil, " %lf %lf %lf %lf %lf %lf %lf %lf %lf %lf",

&(*sgg_time)[N],
&(*Txx)[N], &(*Txy)[N], &(*Txz)[N],
&(*Tyy)[N], &(*Tyz)[N], &(*Tzz)[N],
&(*I1)[N], &(*I2)[N], &(*I3)[N]) <= 0) { // ERROR while reading sgg-

file
printf(" eof sgg!\n");
break;

}
} else if (corr_sst != 0) { // if corr_sst != 0, only read sst and set corr_sst = 0;

don’t inc N
if (fscanf(sst_in_fil, " %lf %lf %lf %lf %lf %lf %lf %lf %lf %lf %lf %lf %lf",

&(*sst_time)[N - 1],
&(*x1)[N - 1], &(*x2)[N - 1], &(*x3)[N - 1],
&(*x1p)[N - 1], &(*x2p)[N - 1], &(*x3p)[N - 1],
&(*x1pp)[N - 1], &(*x2pp)[N - 1], &(*x3pp)[N - 1],
&(*lambda)[N - 1], &(*phi)[N - 1], &(*r)[N - 1]) <= 0) {

printf(" eof sst!\n");
break;

}
corr_sst = 0; N--;

} else if (corr_sgg != 0) { // if corr_sgg > 0, only read sgg and set corr_sgg = 0;
don’t inc N

if (fscanf(sgg_in_fil, " %lf %lf %lf %lf %lf %lf %lf %lf %lf %lf",
&(*sgg_time)[N - 1],
&(*Txx)[N - 1], &(*Txy)[N - 1], &(*Txz)[N - 1],
&(*Tyy)[N - 1], &(*Tyz)[N - 1], &(*Tzz)[N - 1],
&(*I1)[N - 1], &(*I2)[N - 1], &(*I3)[N - 1]) <= 0) {

printf(" eof sgg!\n");
break;

}
corr_sgg = 0; N--;

}

if ((*sst_time)[N] != (*sgg_time)[N]) {
printf(" no synch: N = %2d --> sst_time = %6.6f sgg_time = %6.6f\n",

N, (*sst_time)[N], (*sgg_time)[N]);
if ((*sst_time)[N] > (*sgg_time)[N]) {
if (corr_sst != 0)
return -3; // dates can’t be synchronized

corr_sgg = 1;
} else if ((*sst_time)[N] > (*sgg_time)[N]) {

A.5 Commonly used files XXXVII

if (corr_sgg != 0)
return -3; // dates can’t be synchronized

corr_sst = 1;
}

}

N++;

#ifdef SX8
if (N % 1000 == 0) {

printf(" %d Datenzeilen gelesen\n", N);
}

#endif

if ((N >= n) && (n != 0)) // break if n lines of data are read
break;

} // while
fclose(sst_in_fil);
fclose(sgg_in_fil);

for (i = 0; i < N; i++) { // adapt the units
(*Txx)[i] = (*Txx)[i] * 1e-9;
(*Txy)[i] = (*Txy)[i] * 1e-9;
(*Txz)[i] = (*Txz)[i] * 1e-9;
(*Tyy)[i] = (*Tyy)[i] * 1e-9;
(*Tyz)[i] = (*Tyz)[i] * 1e-9;
(*Tzz)[i] = (*Tzz)[i] * 1e-9;
(*I1)[i] = (*I1)[i] * 1e-9;
(*I2)[i] = (*I2)[i] * 1e-9;
(*I3)[i] = (*I3)[i] * 1e-9;

}

return N;
}

/**
Binary data is stored in big endian (as SX-8/SX-9 needs this format).
For x86-architecture it has to be converted to little endian.
This function does the conversion little --> big AND big --> little.

**/
double swapEndian_double(double in) {

int siz = sizeof(double);
double tmp;
char *tmp_ptr, *in_ptr;
int i;
in_ptr = (char*)∈
tmp_ptr = (char*)&tmp;
for (i = 0; i < siz; i++) {
tmp_ptr[i] = in_ptr[siz - 1 - i];

}
return tmp;

}

/**
function for combined sst and sgg data input -- already SYNCHRONIZED BINARY DATA

(data files must have the ending ".bin_*", don’t specify the ending in *_in_filename!)
Also no need for normalizing Txx, Txy, ... as it is done already
The user has to take care that all data files contains the same amount of data!

input: data file, lenght of sequences, size of memory-step, sst data arrays
output: sst, sgg data
return: number of read data lines (> 0)

if error: < 0
-1 : can’t open file

XXXVIII Appendix A Source code

-2 : can’t reallocate memory
-3 : timestamps could not be synchronized

**/
int input_sst_sgg_bin(int n, int memchunksize,

char *sst_in_filename,
double **sst_time,
double **x1, double **x2, double **x3,
double **x1p, double **x2p, double **x3p,
double **x1pp, double **x2pp, double **x3pp,
double **lambda, double **phi, double **r,
char *sgg_in_filename,
double **sgg_time,
double **Txx, double **Txy, double **Txz,
double **Tyy, double **Tyz, double **Tzz,
double **I1, double **I2, double **I3) {

FILE *fil;
int N, m, M = 0;

double *tmp = NULL;
int i, j;
char filname[200];
char out_sst_fil[][10] = {"sst_time", "x1", "x2", "x3", "x1p", "x2p", "x3p", "x1pp", "

x2pp", "x3pp", "lambda", "phi", "r"};
char out_sgg_fil[][10] = {"sgg_time", "Txx", "Txy", "Txz", "Tyy", "Tyz", "Tzz", "I1", "

I2", "I3"};
char *buf = NULL;

N = n; m = n;
while (m % memchunksize != 0) {

m++;
}

printf(" --> changing memory allocation from %d to %d entries (chunk size: %d)\n", n, m
, memchunksize);

// SST-DATEN
for (j = 0; j < 13; j++) {

sprintf(filname, "%s.bin_%s", sst_in_filename, out_sst_fil[j]);
printf(" - %s\n", filname);

if ((fil = fopen(filname, "rb")) == NULL) { // file exists?
return -1; // Can’t open file "filname"

}

if ((tmp = (double *)calloc(m, sizeof(double))) == NULL) { return -2; }; // allocate
memory, if not enough: ERROR

setvbuf(fil, buf, _IOFBF, 4 * 1024 * 1024); // full buffering of input files

if ((M = fread(&(*tmp), sizeof(double), N, fil)) <= 0) { // ERROR while reading file
printf(" eof!\n");
return -1;// break;

}

for (i = N; i < m; i++) { // fill the allocated memory with zeroes
tmp[i] = 0.0;

}

#ifndef SX8
for (i = 0; i < N; i++) {
tmp[i] = swapEndian_double(tmp[i]);

}
#endif

switch (j) {
case 0: *sst_time = tmp; break;
case 1: *x1 = tmp; break;
case 2: *x2 = tmp; break;
case 3: *x3 = tmp; break;

A.5 Commonly used files XXXIX

case 4: *x1p = tmp; break;
case 5: *x2p = tmp; break;
case 6: *x3p = tmp; break;
case 7: *x1pp = tmp; break;
case 8: *x2pp = tmp; break;
case 19: *x3pp = tmp; break;
case 10: *lambda = tmp; break;
case 11: *phi = tmp; break;
case 12: *r = tmp; break;
}

fclose(fil);
}

// SGG-DATEN
for (j = 0; j < 10; j++) {
sprintf(filname, "%s.bin_%s", sgg_in_filename, out_sgg_fil[j]);
printf(" - %s\n", filname);

if ((fil = fopen(filname, "rb")) == NULL) { // file exists?
return -1; // Can’t open file "filname"

}

tmp = (double *)calloc(n, sizeof(double)); // allocate memoty and fill with zeroes

setvbuf(fil, buf, _IOFBF, 4 * 1024 * 1024); // full buffering of input files

if ((M = fread(&(*tmp), sizeof(double), N, fil)) <= 0) { // ERROR while reading file
printf(" eof!\n");
return -1;// break;

}

#ifndef SX8
for (i = 0; i < N; i++) {
tmp[i] = swapEndian_double(tmp[i]);

}
#endif

switch (j) {
case 0: *sgg_time = tmp; break;
case 1: *Txx = tmp; break;
case 2: *Txy = tmp; break;
case 3: *Txz = tmp; break;
case 4: *Tyy = tmp; break;
case 5: *Tyz = tmp; break;
case 6: *Tzz = tmp; break;
case 7: *I1 = tmp; break;
case 8: *I2 = tmp; break;
case 9: *I3 = tmp; break;
}

fclose(fil);
}

return N;
}

/***
Distribute the read data to the other processes

***/
#ifdef MPI
void BCast_Data(int n, int memchunksize,

double **time_sst,
double **x1, double **x2, double **x3,
double **x1p, double **x2p, double **x3p,
double **x1pp, double **x2pp, double **x3pp,
double **lambda, double **phi, double **r,

XL Appendix A Source code

double **time_sgg,
double **Txx, double **Txy, double **Txz,
double **Tyy, double **Tyz, double **Tzz,
double **I1, double **I2, double **I3) {

int m;
m = n;
while (m % memchunksize != 0) {

m++;
}

// send zero-filled datalength to the other processes
MPI_Bcast(&m, 1, MPI_INT, 0, MPI_COMM_WORLD);
MPI_Barrier(MPI_COMM_WORLD);

// allocate memory - sst data
if (*time_sst == NULL) { *time_sst = (double *)malloc(sizeof(double) * m); }
if (*x1 == NULL) { *x1 = (double *)malloc(sizeof(double) * m); }
if (*x2 == NULL) { *x2 = (double *)malloc(sizeof(double) * m); }
if (*x3 == NULL) { *x3 = (double *)malloc(sizeof(double) * m); }
if (*x1p == NULL) { *x1p = (double *)malloc(sizeof(double) * m); }
if (*x2p == NULL) { *x2p = (double *)malloc(sizeof(double) * m); }
if (*x3p == NULL) { *x3p = (double *)malloc(sizeof(double) * m); }
if (*x1pp == NULL) { *x1pp = (double *)malloc(sizeof(double) * m); }
if (*x2pp == NULL) { *x2pp = (double *)malloc(sizeof(double) * m); }
if (*x3pp == NULL) { *x3pp = (double *)malloc(sizeof(double) * m); }
if (*lambda == NULL) { *lambda = (double *)malloc(sizeof(double) * m); }
if (*phi == NULL) { *phi = (double *)malloc(sizeof(double) * m); }
if (*r == NULL) { *r = (double *)malloc(sizeof(double) * m); }
// allocate memory - sgg data
if (*time_sgg == NULL) { *time_sgg = (double *)malloc(sizeof(double) * m); }
if (*Txx == NULL) { *Txx = (double *)malloc(sizeof(double) * m); }
if (*Txy == NULL) { *Txy = (double *)malloc(sizeof(double) * m); }
if (*Txz == NULL) { *Txz = (double *)malloc(sizeof(double) * m); }
if (*Tyy == NULL) { *Tyy = (double *)malloc(sizeof(double) * m); }
if (*Tyz == NULL) { *Tyz = (double *)malloc(sizeof(double) * m); }
if (*Tzz == NULL) { *Tzz = (double *)malloc(sizeof(double) * m); }
if (*I1 == NULL) { *I1 = (double *)malloc(sizeof(double) * m); }
if (*I2 == NULL) { *I2 = (double *)malloc(sizeof(double) * m); }
if (*I3 == NULL) { *I3 = (double *)malloc(sizeof(double) * m); }

// send the read data to the all nodes
MPI_Bcast((*time_sst), m, MPI_DOUBLE, 0, MPI_COMM_WORLD);
MPI_Bcast((*x1) , m, MPI_DOUBLE, 0, MPI_COMM_WORLD);
MPI_Bcast((*x2) , m, MPI_DOUBLE, 0, MPI_COMM_WORLD);
MPI_Bcast((*x3) , m, MPI_DOUBLE, 0, MPI_COMM_WORLD);
MPI_Bcast((*x1p) , m, MPI_DOUBLE, 0, MPI_COMM_WORLD);
MPI_Bcast((*x2p) , m, MPI_DOUBLE, 0, MPI_COMM_WORLD);
MPI_Bcast((*x3p) , m, MPI_DOUBLE, 0, MPI_COMM_WORLD);
MPI_Bcast((*x1pp) , m, MPI_DOUBLE, 0, MPI_COMM_WORLD);
MPI_Bcast((*x2pp) , m, MPI_DOUBLE, 0, MPI_COMM_WORLD);
MPI_Bcast((*x3pp) , m, MPI_DOUBLE, 0, MPI_COMM_WORLD);
MPI_Bcast((*lambda) , m, MPI_DOUBLE, 0, MPI_COMM_WORLD);
MPI_Bcast((*phi) , m, MPI_DOUBLE, 0, MPI_COMM_WORLD);
MPI_Bcast((*r) , m, MPI_DOUBLE, 0, MPI_COMM_WORLD);
MPI_Bcast((*time_sgg), m, MPI_DOUBLE, 0, MPI_COMM_WORLD);
MPI_Bcast((*Txx) , m, MPI_DOUBLE, 0, MPI_COMM_WORLD);
MPI_Bcast((*Txy) , m, MPI_DOUBLE, 0, MPI_COMM_WORLD);
MPI_Bcast((*Txz) , m, MPI_DOUBLE, 0, MPI_COMM_WORLD);
MPI_Bcast((*Tyy) , m, MPI_DOUBLE, 0, MPI_COMM_WORLD);
MPI_Bcast((*Tyz) , m, MPI_DOUBLE, 0, MPI_COMM_WORLD);
MPI_Bcast((*Tzz) , m, MPI_DOUBLE, 0, MPI_COMM_WORLD);
MPI_Bcast((*I1) , m, MPI_DOUBLE, 0, MPI_COMM_WORLD);
MPI_Bcast((*I2) , m, MPI_DOUBLE, 0, MPI_COMM_WORLD);
MPI_Bcast((*I3) , m, MPI_DOUBLE, 0, MPI_COMM_WORLD);

MPI_Barrier(MPI_COMM_WORLD); // Wait for all processes to finish

A.5 Commonly used files XLI

}
#endif

legendre.h

// Legendre functions

void init_legendre1kind(int kmax, double *Wmm, double *Wlm_1, double *Wlm_2);

void legendre1kind(int kmax, double lat, double *nL, double *Wmm, double *Wlm_1, double *
Wlm_2);

legendre.c

#include <stdlib.h>
#include <stdio.h>
#include <math.h>

#include "legendre.h"

extern double pi;

/***
function for computing the normalized LEGENDRE functions of the first kind
as well as its first derivatives

input: degree/order of computation, argument for calculation (latitude phi)

output: normalized LEGENDRE functions nL
// not used at the moment:
// normalized LEGENDRE functions - first derivatives dnL
// normalized LEGENDRE functions - second derivatives ddnL

*** */

/* void legendre1kind(int kmax, double lat, double *nL, double *dnL, double *ddnL) {
int l, m, k;
double ff1, ff2, fk;
double f1[2], f2[2];
double eta, sigma, tau, ny;
double sinlat, coslat, sinpilat, cospilat;

sinlat = sin(lat);
coslat = cos(lat);
sinpilat = sin(pi/2 - lat);
cospilat = cos(pi/2 - lat);

// invariant coefficients
f1[0] = sqrt(3.);
f2[0] = sqrt(5.);
f1[1] = sqrt(15.);
f2[1] = f1[1] / 2.;

// starting values
nL[0] = 1.;
nL[1] = f1[0] * sinlat;
nL[2] = f1[0] * coslat;
nL[3] = f2[0] * (1.5 * sinlat * sinlat - 0.5);
nL[4] = f1[1] * sinlat * coslat;
nL[5] = f2[1] * coslat * coslat;

// normalized legendre function of the first kind; tested and right (second possibility)
for (l = 3; l <= kmax; l++) {

for(m = 0; m <= (l-2); m++) {
ff1 = sqrt(4.*l * l - 1.) / sqrt(l*l - m*m);
ff2 = sqrt((2.*l + 1.) * (l + m - 1.) * (l - m - 1.)) / sqrt((l*l - m*m)*(2.*l - 3.)

);

XLII Appendix A Source code

nL[(l+1) * l/2 + m] = ff1 * sinlat * nL[l * (l-1)/2 + m] - ff2 * nL[(l-1) * (l-2)/2
+ m];

}

for (k = 1; k <= 2; k++) {
fk = sqrt(2*l + 1.) / sqrt(2. * (l-k+1.));

nL[l * (l+1)/2 + l + 1 - k] = fk * coslat * nL[l * (l-1)/2 + l - k];
}

}

// normalized legendre function of the first kind - 1st derivative; tested and right (
second possibility)

dnL[0] = 0;
dnL[1] = sqrt(3) * sinpilat;
dnL[2] = -sqrt(3) * cospilat;

for (l = 2; l <= kmax; l++) {
tau = sqrt(2*l + 1);
ny = sqrt((2*l + 1) / (2.0*l));

for (m = 0; m <= l - 2; m++) {
eta = sqrt(((2*l + 1) * (2*l - 1)) / ((l + m) * (l - m) * 1.0));
sigma = sqrt(((2*l + 1) * (l + m - 1) * (l - m - 1)) / ((2*l - 3) * (l+m) * (l-m) *

1.0));

dnL[(l+1)*l/2+m] = eta * (cospilat * dnL[l * (l-1)/2 + m] + sinpilat * nL[l * (l-1)
/2 + m]) - sigma * dnL[(l-1) * (l-2)/2 + m];

}
dnL[(l+1)*l/2+l-1] = -tau * (-cospilat * dnL[l * (l-1)/2 + l - 1] - sinpilat * nL[l *

(l-1)/2 + l - 1]);
dnL[(l+1)*l/2+l] = -ny * (-sinpilat * dnL[l * (l-1)/2 + l - 1] + cospilat * nL[l * (

l-1)/2 + l - 1]);
}

// normalized legendre function of the first kind - 2nd derivative; tested and right (
single examples)

for (l = 0; l <= kmax; l++) {
for (m = 0; m <= l; m++) {

ddnL[(l+1)*l/2+m] = tan(lat) * dnL[(l+1) * l/2 + m] - (l * (l+1) - (m*m) / pow(cos(
lat),2)) * nL[(l+1) * l/2 + m];

}
}

}

*/

void init_legendre1kind(int kmax, double *Wmm, double *Wlm_1, double *Wlm_2) {
int l, m;
int id_mm = 0, id_lm_1 = 0, id_lm_2 = 0;

for (m = 0; m <= kmax; m++) {
if (m != 0) {

if (m == 1) {
Wmm[id_mm++] = sqrt(3.0);

} else {
Wmm[id_mm++] = sqrt((2.0 * m + 1.0) / (2.0 * m));

}
}

if ((m + 1) <= kmax) {
Wlm_1[id_lm_1++] = sqrt((4.0 * (m + 1.0) * (m + 1.0) - 1.0) / ((m + 1.0) * (m + 1.0)

- m * m));
}

for (l = m + 2; l <= kmax; l++) {

A.5 Commonly used files XLIII

Wlm_1[id_lm_1++] = sqrt((4.0 * l * l - 1.0) / (l * l - m * m));
Wlm_2[id_lm_2++] = sqrt(((2.0 * l + 1.0) * (l - 1.0 + m) * (l - 1.0 - m)) / ((l * l

- m * m) * (2.0 * l - 3.0)));
}

}
}

void legendre1kind(int kmax, double lat, double *nL, double *Wmm, double *Wlm_1, double *
Wlm_2) {

// coefficients: 00, 10, 20, 30, ... 11, 21, 31, ... 22, 32, ...
int l, m;
int idx = 0, id_mm = 0, id_lm_1 = 0, id_lm_2 = 0;

double sinlat, coslat;
double tmp, tmp0, tmp1, tmp2;

coslat = cos(lat);
sinlat = sin(lat);

// tested and right
for (m = 0; m <= kmax; m++) {
if (m == 0) {

tmp = tmp0 = 1.0;
} else {

tmp = tmp0 = Wmm[id_mm++] * coslat * tmp;
}

if ((m + 1) <= kmax) {
tmp1 = Wlm_1[id_lm_1++] * sinlat * tmp0;

}

for (l = m + 2; l <= kmax; l++) {
tmp2 = Wlm_1[id_lm_1++] * sinlat * tmp1 - Wlm_2[id_lm_2++] * tmp0;

nL[idx] = tmp0; tmp0 = tmp1; tmp1 = tmp2; idx++;
}
nL[idx] = tmp0; idx++;
nL[idx] = tmp1; idx++;

}
}

performance.h

// Allows to create severat timer for part of the code.
// Multiple start and stop is possible, time is counted again from the last stop.
//

#ifdef SX8
#include <sys/time.h>

#else
#include <time.h>

#endif

typedef struct {
double total_time;

#ifdef SX8
struct timeval start, stop;

#else
struct timespec start, stop;

#endif
int started;

} Ttimer;

void reset_timer(Ttimer *timer);

void start_timer(Ttimer *timer);

XLIV Appendix A Source code

void stop_timer(Ttimer *timer);

// return laptime
double laptime_timer(Ttimer *timer);

// return total time
double totaltime_timer(Ttimer *timer);

performance.c

#include "performance.h"

void reset_timer(Ttimer *timer) {
(*timer).total_time = 0.0;
(*timer).start.tv_sec = 0;
(*timer).stop.tv_sec = 0;

#ifdef SX8
(*timer).start.tv_usec = 0;
(*timer).stop.tv_usec = 0;

#else
(*timer).start.tv_nsec = 0;
(*timer).stop.tv_nsec = 0;

#endif
(*timer).started = 0;

}

void start_timer(Ttimer *timer) {
if ((*timer).started == 0) {

#ifdef SX8
gettimeofday(&(*timer).start, NULL);

#else
clock_gettime(CLOCK_REALTIME, &(*timer).start);

#endif
}
(*timer).started = 1;

}

void stop_timer(Ttimer *timer) {
if ((*timer).started == 1) {

#ifdef SX8
gettimeofday(&(*timer).stop, NULL);

#else
clock_gettime(CLOCK_REALTIME, &(*timer).stop);

#endif
}

#ifdef SX8
(*timer).total_time += (double)((*timer).stop.tv_sec - (*timer).start.tv_sec) +

(double)((*timer).stop.tv_usec - (*timer).start.tv_usec) * 1e-6;
(*timer).start.tv_usec = 0;
(*timer).stop.tv_usec = 0;

#else
(*timer).total_time += (double)((*timer).stop.tv_sec - (*timer).start.tv_sec) +

(double)((*timer).stop.tv_nsec - (*timer).start.tv_nsec) * 1e-9;
(*timer).start.tv_nsec = 0;
(*timer).stop.tv_nsec = 0;

#endif
(*timer).start.tv_sec = 0;
(*timer).stop.tv_sec = 0;
(*timer).started = 0;

}

double laptime_timer(Ttimer *timer) {
#ifdef SX8
gettimeofday(&(*timer).stop, NULL);
return (*timer).total_time + (double)((*timer).stop.tv_sec - (*timer).start.tv_sec) +

(double)((*timer).stop.tv_usec - (*timer).start.tv_usec) * 1e-6;
#else

A.5 Commonly used files XLV

clock_gettime(CLOCK_REALTIME, &(*timer).stop);
return (*timer).total_time + (double)((*timer).stop.tv_sec - (*timer).start.tv_sec) +

(double)((*timer).stop.tv_nsec - (*timer).start.tv_nsec) * 1e-9;
#endif
}

double totaltime_timer(Ttimer *timer) {
return (double)(*timer).total_time;// / (double)CLOCKS_PER_SEC;

}

XLVII

Bibliography

Amdahl, G. M. (1967), Validity of the single processor approach to achieving large-scale com-
puting capabilities, in ‘AFIPS Conference Proceedings’, pp. 483–485.

Baur, O. (2007), Die Invariantendarstellung in der Satellitengradiometrie – Theoretische
Betrachtungen und numerische Realisierung anhand der Fallstudie GOCE, Deutsche
Geodätische Kommission, Series C 609, Munich, 101pp.

Blackford, L. S., Choi, J., Cleary, A., D’Azevedo, E., Demmel, J., Dhillon, I., Dongarra, J., Ham-
marling, S., Henry, G., Petitet, A., Stanley, K., Walker, D. and Whaley, R. C. (1997), ‘Scala-
pack users’ guide’.
URL: http://www.netlib.org/scalapack/slug/

Blackford, L. S., Choi, J., Cleary, A., Demmel, J., Dhillon, I., Dongarra, J., Hammarling, S.,
Henry, G., Petitet, A., Stanley, K., Walker, D. and Whaley, R. C. (1996), ‘Scalapack: A
portable linear algebra library for distributed memory computers – design issuses and
performance (technical paper)’.

EGG-C, The European GOCE Gravity Consortium (2009), GOCE Level 2 Product Data Handbook,
GO-MA-HPF-GS-0110, 75pp.

ESA SP-1233 (1999), The four candidate Earth explorer core missions – gravity field and steady
state ocean circulation mission, European Space Agency Report SP-1233(1), Granada.

European Space Agency (2010).
URL: http://www.esa.int/esaLP/LPgoce.html

Heiskanen, W. and Moritz, H. (1967), Physical Geodesy, H. W. Freeman and Company San
Francisco.

Meuer, H., Strohmaier, E., Dongarra, J. and Simon, H. (2010), ‘TOP500 Supercomputer Sites’.
URL: http://www.top500.org [May 2010]

MPI (2010).
URL: http://www.mcs.anl.gov/research/projects/mpi/

Netlib Repository (2010).
URL: http://www.netlib.org

OpenMP (2010).
URL: http://openmp.org

OpenMP – Wikipedia (2010).
URL: http://en.wikipedia.org/wiki/OpenMP (recommended by OpenMP (2010)) [July 2010]

Petersen, W. P. and Arbenz, P. (2004), Introduction to Parallel Computing, Oxford University
Press.

XLVIII Bibliography

Rocks Clusters (2010).
URL: http://www.rocksclusters.org

Tanenbaum, A. S. (2001), Modern Operating Systems, Second Edition, Pearson Education, Inc.

XLIX

Acknowledgement

I thank the High Performance Computing Center Stuttgart (HLRS) that I got the opportunity to
use their computing facilities. Furthermore, I thank the staff members of the HLRS who gave
me technical support which was very helpful.

