
Assessing Iterative Practical Software Engineering
Courses with Play Money

Kai Mindermann, Jan-Peter Ostberg and Stefan Wagner
University of Stuttgart

Institute of Software Technology
{kai.mindermann|jan-peter.ostberg|stefan.wagner}@informatik.uni-stuttgart.de

ABSTRACT
Changing our practical software engineering course from the
previous waterfall model to a more agile and iterative ap-
proach created more severe assessment challenges. To cope
with them we added an assessment concept based on play
money. The concept not only includes weekly expenses to
simulate real running costs but also investments, which cor-
respond to assessment results of the submissions. This con-
cept simulates a startup-like working environment and its fi-
nancing in an university course. Our early evaluation shows
that the combination of the iterative approach and the play
money investments is motivating for many students. At this
point we think that the combined approach has advantages
from both the supervising and the students point of view.
We planned more evaluations to better understand all its
effects.

CCS Concepts
•Social and professional topics → Software engineer-
ing education; Student assessment; •Software and its
engineering → Agile software development; Programming
teams;

Keywords
Practical course, play money, finance, iterative

1. INTRODUCTION
Teaching software engineering includes theoretical and

practical parts. The practical parts give students the possi-
bility to apply their recently gained knowledge of software
engineering aspects in mostly artificial tasks.
The practical software engineering course is then often

the first course that forces the students to work on a real-
world problem in a team.

In our case, the bachelor degree study path at the Uni-
versity of Stuttgart, the practical course has diverse goals.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ICSE ’16 May 14-22, 2016, Austin, TX, USA
c⃝ 2016 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-4205-6/16/05. . . $15.00

DOI: http://dx.doi.org/10.1145/2889160.2892660

First it is meant to let the students engineer a new applica-
tion from the beginning, starting with requirements analysis
through design, implementation and test, to a final customer
acceptance test. Second it is meant to let them experience
and cope with team dynamics and the problems that come
inherently with that.

2. GENERAL CONDITIONS
The task in each years practical course is to engineer an

application defined by a customer which itself is often a
(changing) local company. The students work in teams of
3. Each team works independently on the same task and
gets assessed by an assigned tutor individually. The teams
have approximately 13 weeks to complete all required mile-
stones and deliver a final product.

The practical course was previously organized as a water-
fall model. For every phase the students had to submit cor-
responding artifacts. That approach gave them the ability
to experience a full life cycle of software development. But
the non-flexible waterfall model made it hard to cope with
different paces of the developer teams and milestones had
to be rescheduled for many teams individually. That also
required very flexible tutors and it increased the effort for
the supervisors, who had to grant each rescheduling. Also
it was difficult to determine and communicate when a team
has failed to satisfy the requirements to pass the practical
course.

Also, due to the distinct transition of more and more com-
panies and teaching to agile software development methods,
we wanted to address that in the practical course as well. A
change with comparable results was done by Bruegge et al.
with a much more complex environment [1] based on earlier
experiences with a comparable course size and goals [2].

3. CHANGES
The changes resulting from the reorganization do not only

concern the software development method but also some sur-
rounding conditions as well. We replaced the strictly pre-
defined phases of the waterfall model with an iterative ap-
proach and added a play money based realistic assessment
model.

3.1 Iterative Development
The previous waterfall model was replaced by a 1-month

long initial requirements and software design phase, two 4-
week long iterations and one final week for a customer accep-
tance test. The initial idea was to offer three 1-month long

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Publikationen der Universität Stuttgart

https://core.ac.uk/display/147543361?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

iterations in which the students could do requirements anal-
ysis, design and implementation unsupervised. The problem
is, as this is the first time for the most students to do a whole
project, they lack experience. Previous practical courses
have shown that students need guidance in the design phase
to be able to successfully develop a fitting application. So
we decided to have only 2 iterations and an explicit setup
phase before the first iteration.
We suggested that the iterations consist of a short plan-

ning phase and then the implementation. But during the
iteration the students were free to organize themselves and
work as they seem fit. Only the final submission after each
iteration had to be fully tested and implemented features
with corresponding test coverage reports.

Additionally we defined 7 milestones. The most mile-
stones define fixed dates at which the teams have to sub-
mit their current results. The milestone 3 is after the setup
phase, milestone 4 after the first iteration and milestone 5
after the second iteration. The milestones 0 and 2 require
only attendance and milestone 6, the customer acceptance
test, requires both attendance and a final submission. An
important thing is that milestones can not be postponed.
If a team can not deliver the required artifacts it can only
deliver them at one of the following milestones under the
conditions of the following play money based assessment.

3.2 Play Money Based Assessment
To make the course more realistic and inspired by real-

world startup company financing, each team gets a virtual
play money account with an initial investment of 15,000 e
(5,000 e for each developer). During the course each team
has weekly running expenses based on their teams size.
1,000 e labor costs per developer and 1000 e fixed costs
which together usually make 4,000 e per team per week.
At most milestones the submissions are assessed by a tu-
tor. They decide, based on that assessment, how much play
money will be invested in that team. A team can only con-
tinue the practical course, if it has a neutral or positive
balance after a milestone.
Due to the initial investment almost every team can sur-

vive up to milestone 3 without doing anything, so the pres-
sure is not as high as the running expenses suggest.
The virtual play money account is represented by wiki

page in the used social coding platform GitLab1. It shows
detailed consecutive bank statements for the team.

We have 3 general categories for which the tutors can in-
vest money:

1) Documentation: The documentation consists at least
of the product backlog with its user stories and the software
design draft.
2) Critical Features: Implemented, tested and working

functionality which was specified as critical by the supervi-
sors and the customer.
3) Additional features: Implemented, tested and working

functionality which improves or extends upon the critical
features in some useful way.
We also have a predefined range for the amount for each

investment. We carefully simulated different possibilities
for the team performance and the corresponding investment.
These simulations let us adjust the range of the investments.
For example: We may invest between 0 e for no or insuffi-
cient, 4,000 e for bad and up to 20,000 e for outstanding

1https://about.gitlab.com Accessed 2016-01-12

documents. This fine-tuning was needed to distinguish be-
tween good and bad team performance after the assessment
of the last milestone simply through their final play money
balance.

For the correct calculation and compliance with the pre-
defined investment amounts we implemented a spreadsheet
which is used by the tutors during the assessment. The su-
pervisors keep an overview through an online spreadsheet
that contains the closing balance for each team at each mile-
stone. It is updated by the tutors.

4. EVALUATION AND EXPERIENCES
We expected some teams to delay working on the tasks

until the first iteration because of the rather big initial in-
vestment. But we observed none. What we observed was
that some could not comply with the submission format re-
quirements, which was simply a pushed git-tag that marks
a specific version of their repository as submission. Those
teams got no investment, as was known from the documen-
tation, at milestone 3. But most of those teams did it right
the next time and got the investment for their whole work
at milestone 4.

After the first iteration but before releasing the assessment
of that iteration, we gave every participant of the practical
course a detailed questionnaire2. 75 of 104 completed it.
The questions were mostly matrix-questions with 5 options
ranging from very applicable to not applicable and some free
text questions. The most distinct and interesting answers
are the following:

Approximately 60 % considered the play money assess-
ment concept understandable and approximately 50 % con-
sidered the play money assessment concept realistic and
gained additional motivation from it.

The intended separation between the critical features im-
plementation in the first iteration and the implementation
of additional features in the second iteration was accepted as
reasonable by approximately 70 %. Also approximately 70
% agreed with the selection of the critical features through
the supervisors and the customer.

5. CONCLUSIONS
The new process for the practical course not only makes

supervision easier and frees up time for tutors and supervi-
sors, which can be invested in deeper running support, but
also it is more realistic. Moreover, as the first evaluation
shows, it is motivating for the students.

As the practical course is in progress during the writing,
we plan a second evaluation at the end to get even more
insight into our approach to teaching iterative software de-
velopment and assessing it.

6. REFERENCES
[1] B. Bruegge, S. Krusche, and L. Alperowitz. Software

engineering project courses with industrial clients.
Trans. Comput. Educ., 15(4):17:1–17:31, Dec. 2015.

[2] B. Bruegge, H. Stangl, and M. Reiss. An experiment in
teaching innovation in software engineering: Video
presentation. In Companion to the 23rd ACM
SIGPLAN OOPSLA, 2008.

2http://dx.doi.org/10.5281/zenodo.45967

