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Abstract—The results of an automatic static analysis run
can be overwhelming, especially for beginners. The overflow of
information and the resulting need for many decisions is mentally
tiring and can cause stress symptoms. There are several models
in health care which are designed to fight stress. One of these
is the salutogenesis model created by Aaron Antonovsky. In this
paper, we will present an idea on how to transfer this model into
a triage and recommendation model for static analysis tools and
give an example of how this can be implemented in FindBugs, a
static analysis tool for Java.

I. INTRODUCTION

Modern tools for automatic static analysis can provide a

huge amount of information to the user (e.g. shown by Ruthruff
et al. [15]). In most cases this information can be filtered
and modified by various options provided by the tool. The
vast amount of options is hard to handle for beginners and
even discouraging. Moreover, cutting through this jungle of
findings and options of the tool costs a lot of time and cognitive
performance.
As Schwartz [16] explains, more options also mean more
possible regret about the options not taken. So, I am never
sure if T have chosen the best option until I have explored
all possibilities by trial and error. This is not feasible for a
large set of options, especially if the decision on one option
unfolds another layer of options to choose from. As we know
that, we accept a selection at some point in time. To avoid
cognitive dissonance, a theory formulated by Festinger [4], we
might adapt our desire to match our selected options instead
the actual best fit to our needs.

1) Problem Statement: To enable a better interaction be-
tween the user and the tool, the initial hurdle needs to be
lowered and the amount of information besieging the user
needs to be reduced. But how can we achieve this without
frustrating the user? It is crucial to leave some control with
the user. Whitworth [23] calls this “being polite”. Otherwise,
the tool might trigger the learned helplessness effect described
by Maier and Seligman [11]: Learned helplessness is caused by
uncontrollable or seemingly uncontrollable events which could
cause organisms to remain passive, like the rabbit caught in
the headlights of a car. If situations like this are encountered
repeatedly, organisms stop acting even if responding to the
situation would be effective. In our case, if the worst comes
to the worst, this would lead the user either to not thinking
about the results presented or avoiding the tool at all.

2) Objective: Therefore, our goal is to create an interaction
model which helps the users of static analysis tools to triage
the findings effectively and without stress. Additionally, we
aim at continuously increasing the knowledge on the issues
triaged and, thereby, improving future triage runs.

3) Contribution: In this paper, we propose such an in-
teraction model which reduces the information overload and
stress indicators with the aim to create a positive emotional
connection with the tool. For that, we transfer the salutogenesis
model, first introduced by Antonovsky [1], to the area of static
analysis tools as a way to focus their finding. We describe
how this model can be used on the results of a static analysis
tool and give a concrete example for the implementation with
FindBugs.!

II. THE MODEL

The original salutogenesis model was introduced by
Antonovsky in the 1970s. We will lean on Lindstrom and
Erikson [10] in the following description of the original model.
In contrast to the prevailing approach of understanding what
makes people ill (pathogenesis), Antonovsky wanted to know
what factors have an influence on people staying healthy. He
does not define health as a binary state (healthy or ill) but as a
continuum ranging from ill health (dis-ease) to total health
(ease). The “ease” is influenced by the person’s ability to
comprehend the situation he or she is in which is described
in more detail by the abilities to assess, understand and find
meaning in the person’s living situation. Antonovsky called
the state of mind created by these three abilities “’the sense of
coherence”. So, if a person cannot understand, assess or find
meaning in his or her living conditions, he or she will have a
low sense of coherence or, in other words, is stressed, and so
will be more likely to get ill. He or she will be diseased.

Antonovsky did not talk about individual abilities but
circumstances that influence his model. While it may not be
possible to change a person’s abilities, the circumstances of a
situation may well be changed. So he speaks of comprehensi-
bility in a situation where the ability to understand the situation
is needed. Often adding information is the key. For example,
explaining to a child why something is dangerous increases
the comprehensibility for the child. Antonovsky speaks of
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manageability when the assessment of a situation is needed.
For example, if there is too much work for a given time,
prioritization would increase manageability. Meaningfulness
is necessary when finding meaning in the situation is needed.
For example, if people feel a lack of meaning in their working
life and might be depressed (diseased), it might help them to
plan what future goals they want to reach or why their work
is important to increase meaningfulness.

III. RELATED WORK

4) Work Influencing Manageability: Increasing manage-
ability means reducing the amount of information we need to
process and being able to better focus our limited resources.
Heckman [6] proposed a model based on code locality and
developer information and Ruthruff et al. [15] use logic
regression models to find actionable warnings. Both contribute
to manageability.

Time management is another aspect of manageability. Also
for that aspect, there is work like that by Weiss et al. [22] who
use existing reports in an issue tracking system to find similar
tasks and use their average duration as a prediction, or by
Giger et al. [5] who used decision tree analysis to predict the
effort and time to fix a bug.

Additionally, this aspect is influenced by HCI research
with contributions like the work of Shneiderman [17] or
Nielson [13]. They cover topics like the optimal UI design
for reducing information overload.

5) Work Influencing Meaningfulness: Increasing meaning-
fulness means adding information that puts the object lacking
meaningfulness into perspective. While dealing with the results
of static analysis tools this can be reached to some degree
by the explanations given by the tools themselves. Yet, these
explanations can be more confusing than helpful. Johnson et
al. [8] found in their study that “19 out of 20 participants felt
that many static analysis tools do not present their results in
a way that gives enough information for them to assess what
the problem is.”

Another way to add meaning is by using a detailed quality
model like Quamoco [20] which explicitly connects the results
of static analysis to quality attributes.

6) Work Influencing Comprehensibility: To increase com-
prehensibility usually means adding context to the finding. This
aspect of salutogenesis is mostly neglected in research apart
from Stack Overflow mining for which the work of Bacchelli et
al. [2] is an example. They integrated information from Stack
Overflow into the the Eclipse IDE enabling the developer to
seamlessly interact with the platform as well as add comments
and links to the source code.

7) Summary: All this research aims at only one aspect of
the salutogenesis model. In our opinion, this is not enough,
because only the combination of all the aspects can lead to an
ease of handling the findings of static analysis. Our proposal is
not as detailed in each aspect as the work described above. We
aim to seamlessly combine all three aspects, however, to reach
a broad spectrum of users by adapting to the personal analysis
needs of each user. Also, we believe synergies between the
aspects can be utilised to generate new knowledge about the
findings.

IV. TRANSFER OF THE MODEL TO STATIC ANALYSIS

To work successfully with a static analysis tool requires
very similar abilities as those described in the salutogenesis
model. When triaging the findings of a tool run, the user
also has to understand, assess or find meaning in the results
provided. It is easy to find examples where these steps are
not reached: The description of a finding can be misleading,
it is hard to tell how much time it will consume to fix a
finding or the prediction of what influence a specific finding
will have is hard. Thus, the salutogenesis model can help us
here. To transfer the model from the medical view to the world
of findings of static analysis tools, we have to define what
corresponds to the aspects comprehensibility, manageability
and meaningfulness.

Manageability describes the feeling towards the resources
available to a person to meet the needs raised by external
stimuli. The resources we use in the case of static analysis tools
and their findings are time, attention? and decision making
capacity. For decision making capacity, Vohs et al. [19] show
in six experiments that choosing drains a psychological re-
source that is also needed for self-control and taking initiative.
So, making many decisions makes us passive and less self-
controlled. Also the probability of making mistakes increases
with the cognitive exhaustion of a person as shown by Boksem,
Meijman and Lorist [3]. They had people perform a visual task
for 3 hours without a break. Using an EEG measurement, they
were able to show that mental fatigue results in a reduction in
goal-directed attention.

The amount of findings and options also influences this
resource as more choices do not lead to more joy after a
certain threshold is reached. In fact, it can have a negative
impact going to the extent that the person confronted with
these choices refuses to choose at all [7].

To save resources, we can reduce the information the user
is confronted with and, so, effectively decrease the number of
choices and the attention needed. The challenge is to achieve
this without reducing comprehensibility and meaningfulness.
Manageability could also be increased if we could provide an
estimated time needed to fix a certain finding of the static
analysis tool, as this will enable users to plan their resource
usage better.

Comprehensibility describes the extent to which external
stimuli can be processed by a person meaning that the informa-
tion is ordered, consistent, structured and clear. This principle
applied to static analysis aims at the presentation of the results
of an analysis as well as the description of the findings and
possible solution examples. Solutions from other developers
or a community would also increase comprehensibility, as the
user can lean on similar solutions when searching for a solution
to his or her problem.

Meaningfulness describes a person’s understanding of the
worth of investing energy in something and to see a problem
rather as a challenge than a burden. We can apply this principle
to the tools for static analysis and their findings by adding
context to the findings, such as comments or information

2 Attention can be treacherous: For example, Simons and Chabris [18]
describe how obvious information can get completely lost, if we concentrate
too much on something else.



about human-detected false positives, but also by making the
tool’s ranking of the findings more understandable or giving
the findings a ranking at all. The importance and seriousness
of each finding of static analysis tools varies for each user.
Some might just accept the rather arbitrary classification of the
tool, but in our experience® the more advanced user tends to
ignore this classification. This classification should be editable
to represent the users state of mind and make the salutogenesis
model more fitting the user.

The context added can be extra data provided by other
tools. Quality metrics can provide part of this context. It would
create additional meaning if we were able to show how a
metric develops while removing findings of the static analysis
tool. For example, it would be interesting to know, if and how
coupling and cohesion are affected by certain findings or if
some findings are more likely to be connected to complexity
then others.

Researchers have worked on quality models for several
decades to better capture what software quality is. This resulted
in a large number of available quality models [9]. Quality
models could, in principle, constitute a valuable source for
providing meaning to static analysis findings in the form of
the effect on quality. In many existing standard quality models,
however, there is a gap between the high-level quality attributes
and concrete quality measurement [21]. Modern quality models
bridge that gap. For example, Squale [12] and Quamoco [20]
are operationalised quality models that provide a clear rationale
for the impact of static analysis findings on quality attributes.
Therefore, we can extract that information for the developer
to create meaning.

V. INTEGRATION OF THE MODEL INTO FINDBUGS

In the following, we will show how the transfer discussed
above can be implemented in a real tool. We choose FindBugs,
because it is well known and includes complex findings which
are hard to explain and present. We are working on an
implementation of this model for FindBugs with the working
title "HaST” (History and Suggestion Tool).

A. Comprehensibility

The aim of comprehensibility is to ease the processing of
external stimuli. We interpret it here as everything that helps
to understand the current finding.

Comments of colleagues or other developers can help to
understand the core of the finding presented by FindBugs.
Building a repository of comments to the findings of Find-
Bugs* can help the user understand what the addressed prob-
lem is, especially with intricate findings like multi-threading
issues. These comments could also include standard solution
approaches or solutions for fixing this finding by other people
in other contexts. The tab for the comments (Fig. 1 on the
left) includes a text field so the user can add his or her
own comment. The tab for the solutions (Fig. 1 on the right)
includes two buttons for rating the example. This way, we
can ensure a minimal quality of the examples. Moreover, the
example with the most positive votes should be listed first

3e.g. made in the experiment described in [14]
“http://findbugs.sourceforge.net/bugDescriptions.html
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Fig. 1. Comments and solutions as tabs in FindBugs

and examples with only negative votes can be removed after a
certain time. The comments and solutions will be stored at a
central server which spreads the information to the connected
clients. The information could be entered anonymously or
connected to a user ID. One could extend this by exploiting
existing work on Stack Overflow mining [2] to get related
comments and rankings.

The rearrangement of the findings also adds to comprehen-
sibility, but we decided to put this into the manageability part
of the model. Our focus here is on the reduction of information,
and we see the increase in comprehensibility as a pleasant side
effect and benefit of using the model.

B. Meaningfulness

By increasing the meaningfulness, we show why it is
important to work on a finding. We propose three functions,
partly based on observations and personal experience, which
we will present in the following.

One way to increase the meaningfulness of distinct findings
is by connecting them with metrics. To provide meaning, the
metrics themselves should be meaningful for a developer. We
would expect that established metrics such as coupling and
cohesion are good candidates. The metrics are gathered by
HaST over time with each new FindBugs analysis, and with
a significant amount of data it should be possible to predict
the impact of the removal of a finding, but also which findings
you should work on to improve a certain metric.

FindBugs already defines severity and confidence of the
finding, but this is not visible enough. Here we propose
a clearer colour scheme. The colour for the severity rank
of a finding is shown prominently in the tree view. The
level of confidence is represented by the transparency of the
colour, from opaque for high confidence to just shaded for
low confidence. False positives will have a colour not to be
confused with severity or confidence. We need to find out by
an experiment if we want the false positives to have a colour
that stands out to remind the user, that he or she chose to mark
this as a false positive and might reconsider, or if we want the
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Fig. 2. Context menu for removing false positives

false positives to nearly vanish by colouring them grey for
example.

C. Manageability

In our model the increase in manageability is mainly
achieved by the reduction of the information that is needed
to be processed in a particular moment. We use information
levels because we expect them to be convenient and easy to
understand for the users. At the moment we have designed 5
levels because we have found 5 reasonable ways to reduce the
information. With increasing level number we cut away more
and more information and focus on the most pressing issues.
Level 0 is the original representation of FindBugs.

On level 1 we remove findings marked as false positives
from the view. Marking false positives is possible at this level
by an added context menu (see Fig. 2). The finding marked
as a false positive is now half-transparent. The marking of the
false positives needs to be reliable to be of use. We extended
the mechanism already used by FindBugs to store its findings
per project in Eclipse.

Activation of level 2 will rearrange the list of findings (see
Fig. 3a for an example of the default sorting) by severity and
confidence (Fig. 3b), so that the findings with the highest rank
and the highest confidence are now sorted top-most and the
rest is listed in descending order (highest rank/mediocre confi-
dence, highest rank/low confidence and mediocre rank/highest
confidence).

On level 3, we reduce the amount of findings based on the
confidence of the finding (e.g. starting from Fig. 3b to Fig. 3c).
A combo box is available to select the level of confidence.

On level 4 we reduce the amount of findings based on the
severity of the finding (e.g. starting from Fig. 3c to Fig. 3d).
A slider is available for adjusting the confidence level.

The functionality used at levels 2, 3 and 4 is already inte-
grated in FindBugs, but not as accessible — the controls for this
are originally buried deep in the preferences — and integrated
in a self-contained model as in HaST which combines many
different information sources.

At level 5, we reduce the amount of results shown to a
maximal amount of 8 findings from the pool of findings defined
by levels 4 and 3. If there are not enough findings in this pool
to fill the 8 slots, we loosen the restrictions first to level 4 and
then to level 3 until we can deliver 8 findings or there are no
more findings left, even after the relaxation of all levels. The
best amount of findings shown at level 5 has to be evaluated

Bug Explorer 2 | B B 5 B = A
- Bug B | | 3 % | -

a # Scariest (8)
a ¥ High confidence (8)
{2 Call to equals() comparing different types (1)
. #& 32 bitint shifted by an amount not in the range -31.31 (1)
{% Suspicious reference comparison (6)

Fig. 4. Reduction of findings to a minimal amount

by experiments as well as whether the 5 levels are enough. For
example, we could imagine a level 6 where only one finding is
picked at random from the same pool of findings as for level 5.

The severity of single findings should be editable for the
users, as they may perceive the severity of findings differently
than the tool, because they know their code in depth. Some
developers might acknowledge the presence of a finding but
with their knowledge of the code, they do not think it is that
severe. So they have the possibility to rank it down and deal
with it later. This will help manage the workflow.

To predict the time needed to fix a certain class of findings,
we will give the user the opportunity to enter a fix time for
each resolved finding after an analysis. This has to be done
as non-intrusive as possible. For example, we can trigger a
reanalysis on the file that has been worked on at every saving
of the file and extract the time of now solved issues. This
information will be stored anonymously on the central server
so it can be combined with the information from other sources
and developers, but cannot be used to assess the performance
of single individuals. As the database grows, the prediction will
be getting precise enough for estimates within an acceptable
uncertainty range (+20 minutes).

D. Application of the Model Features

The user should decide how much control he or she wants
to grant the model. Thus, we see the need for user feedback.
In the following, we describe how this feedback can drive the
use of the model’s features.

1) Full Support Start: The idea is to start with all the
features at maximum. The user then loosens the restraints of
the model on the findings, until he or she reaches a convenient
level.

2) No Support Start: The “No Support Start” starts with
the plain old FindBugs and no features of the model activated.
A quick tutorial shows the user how to start and he or she will
then enable more and more features until a convenient level is
reached.

3) Learning as you go: The basic idea here is that the
model will apply a feature and then detect if this application
has changed the user’s interaction for the better.

We recommend levels, were applicable, and switches to
control every aspect of the model’s influence on the original
presentation, but also delivering suggested pre-configured steps
for convenient use.

VI. EVALUATION

To evaluate the model we plan an experiment. The par-
ticipants will get a task to work on a given code base which
contains several issues reportable by FindBugs. One group of
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Fig. 3. Different stages of sorting of FindBugs findings

participants will get FindBugs with HaST; a control group
will only have access to the standard FindBugs. Then we
can compare the amount of issues fixed by both groups in
a fixed amount of time. The main hypothesis is that the group
supported by our new model will fix more issues in the same
amount of time than the group without the support by the
model.

VII. CONCLUSION AND FUTURE WORK

It is possible to transfer the medical-psychological model
of salutogenesis into a model for the triage of results of
static analysis. In contrast to other approaches it does not
treat the three aspects comprehensibility, meaningfulness and
manageability separately but in combination. Isolated consid-
eration of these aspects can have disadvantages. E.g., if only
meaningfulness is considered, the meaningful findings can get
lost in the effort or if only meaningfulness is considered,
the result might be unmanageable. The aspects are closely
connected and each person has a different need for each aspect.
We give the user full control over these three aspects. By this,
we hope to achieve a positive, stress-free, individual working
environment which should lead to higher quality work, faster.
As a side effect we will be able to better understand the
connections between the findings of FindBugs and other meta
information such as metrics.

Future work will include empirical studies on the different
aspects of the model. The results of this should help us decide
how the different aspects should be integrated and might bring
new ideas and extensions to the model.
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