Institute of Architecture of Application Systems
University of Stuttgart
UniversitatsstraBBe 38

D-70569 Stuttgart

Master Thesis No. 3671

Dynamic Deployment of Specialized
ESB instances in the Cloud

Roberto Jiménez Sanchez

Course of Study: Infotech (Non-Degree)

Examiner: Prof. Dr. Frank Leymann
Supervisors: Santiago Gomez Saez
Johannes Wettinger
Commenced: May 22, 2014
Completed: November 21, 2014

CR-Classification: C.2.4;D.2

Abstract

In the last years the interaction among heterogeneous applications within one or among mul-
tiple enterprises has considerably increased. This fact has arisen several challenges related
to how to enable the interaction among enterprises in an interoperable manner. Towards
addressing this problem, the Enterprise Service Bus (ESB) has been proposed as an integration
middleware capable of wiring all the components of an enterprise system in a transparent and
interoperable manner. Enterprise Service Buses are nowadays used to transparently establish
and handle interactions among the components within an application or with consumed exter-
nal services. There are several ESB solutions available in the market as a result of continuously
developing message-based approaches aiming at enabling interoperability among enterprise
applications. However, the configuration of an ESB is typically custom, and complex. More-
over, there is little support and guidance for developers related to how to efficiently customize
and configure the ESB with respect to their application requirements. Consequently, this fact
also increments notably the maintenance and operational costs for enterprises. Our target
is mainly to simplify the configuration tasks at the same time as provisioning customized
ESB instances to satisfy the application’s functional and non-functional requirements. Similar
works focus on optimizing existing ESB configurations based on runtime reconfiguration
rather than offering customized light-weight middleware components.

This Master thesis aims at providing the means to build customized and specialized ESB
instances following a reusable and light-weight approach. We propose the creation of a
framework capable of guiding the application developer in the tasks related to configuring,
provisioning, and executing specialized ESB instances in an automatic, dynamic, and reusable
manner. Specialized ESB instances are created automatically and provided to application
developers that can build an ESB instance with a specific configuration which may change over
time. The proposed framework also incorporates the necessary support for administering,
provisioning, and maintaining a clustered infrastructure hosting the specialized ESB instances
in an isolated manner.

Contents

1. Introduction

2. Fundamentals
21. CloudComputing
2.1.1. Historical Context & Trends
2.1.2. Essential Characteristics
2.1.3. Service DeliveryModels
2.1.4. DeploymentModels
2.2. Virtualization e
2.2.1. The Origin and Definition of Virtualization
2.2.2. Typesof Virtualization
2.2.3. VirtualizationLevels
2.3. Container Virtualization
23.1. Docker e e
232, CoreOS e e
24. Middleware e e
2.4.1. Enterprise ServiceBus o o0 oL
242, ApacheServiceMix
25. Monitoring
2.5.1. Desirable Cloud Monitoring Capabilities

3. Related Works
3.1. Kubernetes e e
3.2, Deis e e e e
3.3, GeMS . . e e e
3.4. DPRS. Dynamically Programmable and Reconfigurable Software
3.5. Automatic Middleware Deployment Planning on Clusters
3.6. Project Atomic
3.7. PanamaxX e e e e e e e e e
3.8. Google AppEngine L
3.9. AmazonBeanstalk

4. Concept and Specification
41. SystemRequirements L L.
4.1.1. Functional Requirements
41.2. Non-functional Requirements
4.1.3. Monitoring Requirements
42. UseCasesandRoles

O W W W

10
11
11
14
16
18
19
22
27
28
31
35
36

39
39
41
41
42
42
43
43
44
44

45
45
45
46
46
47

iii

Contents

42.1. AdministratorRoleo 47

422. DeveloperRole o . 47

423. UseCasesDescription 48

43. System Overview e 61

. Design 63
5.1. ESB Instances Characterization and Configuration 63
5.1.1. ESB Characterization 63

5.1.2. Characterized ESB Instance Creation Sequence 65

51.3. ESBImageBuilding 66

52. ESBlInstance e e 66
53. ImageStorage 67
5.4. Host Machines & Cluster Deployment 67
55. Registry 68
5.6. Controller e 71
5.6.1. Health e 71

56.2. Manager 72

5.6.3. Scheduler e 72

5.7. Monitor e e e e e e 74
5.8. RESTAPIL. e e e 74
5.8.1. Administrator RESTAPI. 76

5.82. Developer RESTAPI 83

5.9. Command LineInterface 90

. Implementation 95
6.1. ServiceMix Characterization 95
6.2. ServiceMix Images Generation 97
6.3. ImageStorage 99
6.4. Monitor e e e 99
6.5. Registry 100
6.6. Controller & Cluster Deployment 102
6.6.1. Health e 102

6.62. Manager e 104

6.6.3. Scheduler 105

6.6.4. Lifecycle & Deployment of ESB instances 106

6.7. Command LineInterface 108
6.8. REST APIL. e 109
6.9. Configuration of the Host Machines 109

. Validation 111
. Evaluation 121
8.1. EvaluationSetup 121
8.2. Description of the Scenarios 123

8.3. EvaluationResults 124

Contents

9. Conclusion and Future Work 129
A. Description of the Most Relevant Entities in the Registry 131
B. ServiceMix Features Taxonomy 141
C. Taxonomy Validation - Case Studies 151

C.1. Example: Using ESB to Deploy a Wordpress Application 151

C.2. Example: Using ESB to Deploy a Keystore]S Application 152
D. Implementation Details 155
E. System Configuration 161
Bibliography 165

Contents

vi

List of Figures

2.1.
2.2.
2.3.
24.
2.5.
2.6.
2.7.
2.8.
2.9.

2.10.

211

2.12.
2.13.
2.14.
2.15.
2.16.
2.17.
2.18.
2.19.
2.20.
2.21.
2.22.
2.23.
2.24.
2.25.
2.26.

3.1.
3.2

4.1.
4.2.

5.1.
52.
5.3.
54.
5.5.

Scenario withoutCloud
ScenariowithCloud
Value visibility toend users *
Cloud computing - Platform as a Service (PaaS) . . .
Cloud computing - Software as a Service (SaaS)

2

Java Virtual Machine in different platforms <
Full virtualization stack [1]
Paravirtualization stack [1]

3

Comparison VMs and Containers”
Application encapsulation in Docker
. Image storagein Docker
CoreOs host with Docker [2]

Failover situation with replication and shared storage [3]

Cluster of servers interconnected [3]
CoreOS cluster scheduling
CoreOS failure recovery
Service discovery witheted
Etcd autoregistration®
Middleware Layerstack

Public transport application with a point-to-point model
Public transport application with a centralized ESBmodel
Binding components, Service Engines and Normalized Message Router [4] . .

Services executing inside a Component Container [4]

Service Units and Service Assembly
Servicemix architecture

General Monitoring tool with Client-Server model [5]

Containers running insidepods
Pods organized by labels

Specialized ESB framework use cases
Specialized ESB framework architecture

ESB taxonomy main categories
The characterization process

Running several specialized ESB instances from an ESBimage

Running ESB instance components

Image storage with ESB images and ESB state images

O 0 U1 o~

10
12
15
15
19
20
21
23
24
24
25
25
26
27
28
29
31
32
34
34
35
36

40
40

48
61

64
65
66
67
67

vii

List of Figures

viii

5.6.
5.7.
5.8.
5.9.
5.10.
5.11.
5.12.
5.13.
5.14.

6.1.
6.2.
6.3.
6.4.
6.5.
6.6.
6.7.

7.1.

8.1.
8.2.
8.3.
8.4.
8.5.
8.6.
8.7.
8.8.

B.1.
B.2.
B.3.
B4.
B.5.

C.1
Cz2.
C.3.
C4.

Roles of machinesinthecluster 68
Agents and components installed in a host machine 69
Entity-Relationship diagram 69
Monitoring Entity-Relationship diagram according to the Chen’s notation . . 71
Controller structure L L 71
Scheduling of ESBinstances 72
Scheduling based on machinestates 73
Migration of ESB instances in case of machine overloaded 73
Migration of ESB Instance in case of machine overloaded 74
ServiceMix base image components 0 L. 97
Building a specialized ServiceMiximage 98
The health component pushing the machine information into ETCD 103
Relationship between the Health parameters with machine states 104
Implementation: Scheduling steps 106
Stack of components for a running ESB instance 107
ESBinstances lifecycle L. 108
Sequence of actions followed for validation 111
Evaluation - MediaWiki exposed though ServiceMix 122
Evaluation - Environment Scenariol 124
Evaluation- Environment Scenario2 124
Evaluation - Scenario 1 CPUresults. 125
Evaluation - Scenario 1 Memory results 125
Evaluation - Scenario2 CPUresults. 126
Evaluation - Scenario 2 Memory results 126
Evaluation - Thoughput comparison 127
ServiceMix features L 145
ServiceMix features L L L o 146
ServiceMix features 147
ServiceMix features Lo L L oo 148
ServiceMix features 149
Basic components of a WordPress application 151
Basic components of a Keystore]S application 152
Selection of features to deploy a Wordpress Application 153
Selection of features to deploy a Keystor]S Application 154

List of Tables

2.1.
2.2.

Problems and solutions by ESB
ServiceMix main concepts

4.1.
4.2.
4.3.
44.
4.5.
4.6.
4.7.

Description of Use Case:
Description of Use Case:
Description of Use Case:
Description of Use Case:
Description of Use Case:
Description of Use Case:
Description of Use Case:

Monitor Hosts . .

Run ESB Instance

Build Specialized ESBImage
Create ESB Instance
Get ESB Instance Information

4.8. Description of Use Case: Monitor ESB Instance
4.9. Description of Use Case: Migrate ESBInstance
4.10. Description of Use Case: Stop ESBInstance

4.11. Description of Use Case:
4.12. Description of Use Case:

51. REST APIsummary
5.2. Description of Administrator REST method:
5.3. Description of Administrator REST method:
5.4. Description of Administrator REST method:
5.5. Description of Administrator REST method:
5.6. Description of Administrator REST method:
5.7. Description of Administrator REST method:
5.8. Description of Administrator REST method:
5.9. Description of Administrator REST method:

5.10.
5.11.
5.12.
5.13.
5.14.
5.15.
5.16.
5.17.
5.18.
5.19.
5.20.
5.21.
5.22.

Download ESB Instance Image
Remove ESB Instance

Description of Administrator REST method:
Description of Administrator REST method:
Description of Administrator REST method:
Description of Administrator REST method:
Description of Administrator REST method:
Description of Administrator REST method:
Description of Administrator REST method:
Description of Administrator REST method:
Description of Administrator REST method:
Description of Administrator REST method:
Description of Administrator REST method:
Description of Developer REST method: List Features
Description of Developer REST method: Features Tree

Features Tree
List machines
Getmachine
Get machine monitoring info . .
Addnewuser.
Update user
Get user
ListUsers
Remove User
Build Image

Create New Instance
Getlnstance
List Instances
Start Instance
Get Instance Monitoring Info . .
Move Instance
Stop Instance

Delete Instance

ix

List of Tables

5.23.
5.24.
5.25.
5.26.
5.27.
5.28.
5.29.
5.30.
5.31.
5.32.
5.33.
5.34.
5.35.
5.36.
5.37.
5.38.
5.39.
5.40.
5.41.
5.42.
5.43.
5.44.
545.
5.46.
5.47.

Description of Developer REST method: Add New Configuration 85
Description of Developer REST method: Update Configuration 85
Description of Developer REST method: Get Configuration 85
Description of Developer REST method: List Configurations 86
Description of Developer REST method: Remove Configuration 86
Description of Developer REST method: Create New Instance 87
Description of Developer REST method: Get Instance 87
Description of Developer REST method: List Instances 87
Description of Developer REST method: Start Instance 88
Description of Developer REST method: Get Instance Monitoring Info 88
Description of Developer REST method: Stop Instance 89
Description of Developer REST method: Download Instance Image 89
Description of Developer REST method: Delete Instance 90
Description of CLI Command method: features 90
Description of CLI Command method: machines 90
Description of CLI Command method: users 91
Description of CLI Command method: build 91
Description of CLI Command method: create 91
Description of CLI Command method: start 92
Description of CLI Command method: inspect 92
Description of CLI Command method: instances 92
Description of CLI Command method: search. 93
Description of CLI Command method: move 93
Description of CLI Command method: stop 93
Description of CLI Command method: destroy 93
6.1. Description of the Registry structure based on ETCD 101
Evaluation - Summary of the scenarios 123

8.1.

List of Listings

6.1.
6.2.
6.3.
6.4.
6.5.
6.6.
6.7.
6.8.
6.9.

7.1.
7.2.
7.3.
7.4.
7.5.
7.6.
7.7.
7.8.
7.9.
7.10.

8.1.
8.2.
8.3.

Al
A2.
A3.
A4
Ab5.

D.1.
D.2.

E.1.

Minimal configuration file for and ServiceMix instance
Dockerfile template for specialized ServiceMix instances building
Running the Image Storage
Running the Monitor
Getdata fromcAdvisor. L oo
Getting the value of key in ETCD
Discovering the clusterleader
Creating a Fleet Unit for a Docker Container
Implementation: Scheduling to less loaded machines

Validation: Get the Machinesinthecluster
Validation: Addanewuser
Validation: The developer adds a new ESB configuration
Validation: The developer creates a new ESBinstance
Validation: The developer starts a stopped ESBInstance
Validation: The developer gets the information of a running ESB instance

Validation: The developer stops a running ESBinstance
Validation: The developer destroys an existing ESB Instance
Validation: The developer destroys the previously created configuration . . .
Validation: The administrator removes theuser

Evaluation - Configuration with default resource parameters
Evaluation - Configuration with more CPU capacity
Evaluation - Configuration with limited memory

Feature Entity JSON Schema
Machine Entity JSON Schema
Configuration Entity JSON Schema
ESB Instance Entity JSON Schema
ServiceMix Configuration JSON Schema

Implementation of and ESB instance skeleton
Implementing a CLIcommand

Template for the configuration of the framework inside CoreOS machines . .

122
122
123

131
132
133
135
136

155
158

161

xi

1. Introduction

In the last years, the expansion of computing and the number of different devices and
computing solutions have grown enormously. The number of components within enterprise
systems has become bigger and bigger with the addition of computing in the different areas of
the company in the chase for efficiency. With this rising, the heterogeneity of the systems has
grown considerably and developers must address new and increasing integration problems.
This brings a scenario, where a new integration solution must be created for each pair of
components in the system, and hence, the complexity of the system and the number of
solutions grows exponentially with the total number of components in the system. Moreover,
if one of the components in the system changes, all the components which communicate with
it must be modified in order to keep the system working. In this scenario is where a new
solution for these integration problem was proposed, the Enterprise Service Bus (ESB) [4].

An ESB provides a centralized architecture with a central middleware is used as a bus for
wiring all the components of enterprise system. The ESB comes with features to wire different
components and to support several protocols (i.e. HTTP/HTTPS, SQL, SOAP, etc.). It includes
also features to handle the exchanged messages between the components and to adapt its
shape (e.g. changing the message format from JSON to XML). A wiring solution must be
implemented inside of the ESB for each element in the system to connect it with the rest
of the components. However, once this wiring solution is implemented, multiple identical
components can use it. For example, if a server is deployed in the system, a wiring solution is
implemented to connect it to the ESB, but in case more of these servers must be connected
too, they would make use of the same solution. The other case that can be addressed with
the ESB model is when a determinate component changes. In this case, if an ESB is used,
only the wiring solution of the modified particular component must be updated, the rest of
components remain identical. For example, the component which initially sent the data in
a JSON object, now it sends it in XML. In this case, the ESB converts the incoming XML to
JSON format, and the rest of components do not notice this change.

During the last years, there has been a wide research conducted in the ESB field, and nowa-
days there are multiple projects which provide ESB solutions (i.e. ServiceMix, Mule, Fuse
ESB,etc.). Although these solutions are powerful and include many features, its configuration
must be performed manually and it can be considerably complex. Moreover, its posterior
reconfiguration may be as complicated or even more. On the other hand, we find that each
feature installed in an ESB consumes many system resources and normally if a feature is not
longer required in the system, it stays to avoid the probably time-consuming reconfiguration
process.

In this scenario is where we propose the creation of a platform to configure and launch ESB
instances in an automatic, dynamic and reusable way. Our target is enabling the creation of

1. Introduction

specialized ESB instances with all the necessary features and configuration in a reusable way
to provide automatically to multiple developers. In case the developer needs an ESB with
another configuration, he can remove the existing one and request a new one with the desired
configuration and features. Therefore, the developer does not waste time reconfiguring his
ESB instance.

In this document we discuss how such a platform could be designed and implemented.
We investigate how Cloud Computing and container virtualization could help to create the
desired system. In Chapter 2, these two important concepts plus other main concepts, ideas
and relevant information, are explained with detail in order to establish the background for
this work. Later in Chapter 3, some works related with this thesis and how they match with
our proposal are described. In Chapter 4, the requirements and use cases our platform must
achieve are shown. In Chapter 5, the system architecture we propose and its components are
described in detail. In Chapter 6 we can find a description of the prototype implemented
during our research. In Chapters 7 and 8 we expose a validation and evaluation of our system
implementation respectively. Finally in Chapter 9, we present our concluse and present future
lines of works.

2. Fundamentals

2.1. Cloud Computing

In the last few years, the development around Cloud Computing [6] has increased considerably.
The promise of a huge costs reduction, flexibility and scalability is drawing the attention
of companies, anxious to find something which helps them to deal with a really increasing
number of users, resources, or data processing in a world with high competitiveness. For this
work, Cloud Computing must necessarily the first idea to be presented because it is the origin
and final purpose of most of other concepts explained in this document and sets the basis of
the system we want to create.

2.1.1. Historical Context & Trends

Since the born of the informatics in the 60s with the launch of the first computers, the world
and specially this sector has suffered a complete revolution as big as the industrial revolution
in the beginning of the 20th century. These first systems were extremely costly and just few
companies could afford them. These vast prices force costumers to rent them during a limited
time in order to reduce the charge. Indeed, some companies which did business renting these
big computers were founded as Electronic Data Systems (EDS) that rented IBM computers
per hour. This concept was called Utility Computing [7]. In Utility Computing, all the physical
resources of a provider are used by different users during a certain amount of time and
subsequently the ownership and maintainance costs are reduced.

In the 90s and the beginning of 21th century, universities started to analyse the possibility
of resolving complex problems by big amounts of the standard hardware x86 and open
source software. This mechanism was used to find solution in multiple sectors, for example,
to solve engineering problems or 3D animation design. This was the born of the concept
Grid computing [7], which is not efficient for big computers because they can solve these big
problems themselves, but some of its ideas still remain inside Cloud Computing [8] like using
economic hardware and open source software to resolve complex problems and that way,
decrease the operational costs.

In the 90s the development of Internet networks and the increase of data rates enables the
burst of new Internet users and likewise the born of more efficient and bigger data centers
with thousands of computers in the same location. The speed development linked to the
increasing demand of data processing worldwide created a need to find something new and
revolutionary in this landscape to face these problems. And then it was when the Cloud
Computing appeared on the scene. Now we must take a look at a scenario without Cloud

2. Fundamentals

and a scenario running an application in the Cloud, and in that way, understanding why the
introduction of Cloud Computing is relevant nowadays.

Scenario without Cloud

In our initial scenario without using Cloud computing, a company must maintain its own
infrastructure where its applications run. These applications are normally permanently
allocated in the same server, because a manual configuration must be performed to install it
in another machine. This stability does not help with management and hence, it increases
highly the costs.

s

Application Application Application

Infrastructure

Figure 2.1.: Scenario without Cloud

On the other hand, the company must make an initial invest, normally huge, to create a new
system. Commonly a high availability is desired, and hence, duplicated location for this kind
of installation is necessary because physical security. For example, in case a building in one of
the locations is ablaze, the company could still use the system, because its traffic would be
redirected to another location (maybe working slower because of the overload).

Additionally, if we want to have different locations, we must pay the ground cost and
something really important is where the installations should be. Normally, they should be in
a cheap zone, and with an important communication node in order to get faster data transfer
rates. Another important aspect to take account is that processing units expend a lot of energy
and therefore, they create a big amount of heat too. Hence, as they cannot overheat, efficient
cooling systems must be installed in each one of the locations as well and therefore, costs
increase. Finally, we should remark that the servers are usually underutilized, and companies
have more capacity they require in significant time intervals, and if a way to make a efficient
use of their power is found, the costs decrease enormously.

2.1. Cloud Computing

Scenario with Cloud

Now we have taken a look in some of the problems companies must face in the initial scenario
we must know how a Cloud Computing infrastructure could help. Commonly this is called
Infrastructure as a Service (IaaS). Using the IaaS model organizations source additional
capacity over the web as a service, something faster than installing and configuring new
components in their private systems. This gives a flexibility not found previously, companies
can add or remove elements to their infrastructure rapidly. This flexibility may be really
important nowadays where predicting capacity requirements has become more and more
difficult with the increasing number of users. Services that one day have 200 users, next day
they may have 10000 thousand, and if these services are built over Cloud, they can react much
faster to these variations and without doing any new investment, only renting new additional
capacity. Otherwise, a service which was supposed to hold thousands of users, after a costly
setup of huge infrastructure and it is deployed, it used uonly by hundreds. Therefore, just a
small portion of the system is used and consecuently, its owner looses money. Consequently
as we can see, Cloud infrastructures scale better compared to traditional ones.

Application J.[Application MApplication

Cloud

Figure 2.2.: Scenario with Cloud

An idea present nowadays in all companies that offer Cloud environments is "pay as you go",
which means users pay just for the resources that they use during the time that they use them.
Therefore, users pay really for the processing capacity, memory or network resources that
their systems really need. In order to explain this scenario clearer we are going to make an
analogy with transport. When you want to buy your own car, you have to pay a big amount
of money initially, and later you can travel with it during some years until it breaks or gets
obsolete. However, you could not buy that car and use a taxi or public transport, and in that
way you would not be force to make such an initial investment to be able to travel, just you
would pay for the ticket. Besides, if you buy a car, you get it in days or weeks not when you
want to use it for first time. These things are what Cloud brings, users pay just for what they
use and when they need.

Then what we can see is the cost of Cloud computing is an operational expenditure, not a
capital expenditure, and the main advantage of operational expenditure is that making a
decision is much simpler that in a capital expenditure, because the risks are lower and usually
external funding is not necessary. For example, taking the decision of buying a car can take
weeks, months and even years because it is a big amount of money to be at least concerned.

2. Fundamentals

Besides, for many people is inevitable borrowing money from banks or their families, because
they do not have such money at the moment, but they can pay perfectly along the following 5
or 10 years. That is the reason why the companies prefer variable costs over fixed costs.

On the other hand, in the first scenario without Cloud, companies must take care of the
management of the underlying infrastructure, and additional fixed costs and unexpected
events may appear. But if the company uses an IaaS offering, the IaaS provider must manage
this infrastructure with its consequences (e.g. failures, maintenance, backups, availability,
etc.). This is like when you have a car, if it breaks, you must pay for its repair for cleaning it
every month. By contrast, if a train breaks, you do not have to take charge for it, the train
company does and there will be another train waiting for you on the station. Besides, if
your car breaks, you have to find another way to go wherever you want to go. So if you are
working with Cloud applications, you do not worry about management or availability of
your system, at least in a infrastucture level.

In a different case, imagine that the car has a design problem and the engine breaks regularly,
and after a few years of desperation, you decide to buy another new and gorgeous car. In
this case, the initial investment would have been totally wasted. Talking again about the
matter that concerns us, if the implementation of the system, where a big overlay has been
done, does not work properly and it is never used again after the first two years, the company
looses a huge amount of money. So a Cloud solution is long-term cheaper and less risky,
overall in the always changing IT world.

One important benefit is that if an update or change in the application is required, it must be
done just once and probably without end users aware. End users, who use Cloud applications,
do not have to worry about updates or patches, when the application is always ready to be
used. For example, if a train, which carries hundreds of people every day, is painted at night
when is out of its duties, and in the morning travellers use it as every day.

Also another important advantage beyond the cost is the added value in the Cloud applica-
tions. The new applications include not only functionalities, but also information or data that
conventionally the user should introduce himself. And that enables a platform to develop
a really complex and powerful system. For example, in Google Maps [9], users can find
lot of maps information, places, traffic data or routes, always up-to-date and ready to be
used that are not stored locally. Moreover, Google Maps can be integrated with third party
applications and therefore, new complex applications may appear making use of this relevant
information.

2.1.2. Essential Characteristics

The term Cloud Computing was first used by Prof. Kennenth K Chellepa in 1997 at the
Informs Conference in Dallas as "a computing paradigm where the boundaries of computing
will be determined by economic rationale rather than technical limits" [10]. This definition is
less specific than the definitions in circulation today.

2.1. Cloud Computing

The most accepted definition today is given by NIST that defines Cloud computing [8] as "a
model for enabling ubiquitous, convenient, on-demand network access to a shared pool of
configurable computing resources (e.g., networks, servers, storage, applications, and services)
that can be rapidly provisioned and released with minimal management effort or service
provider interaction. This cloud model of five essential characteristics (On-demand self-
service; Broad network access; Resource pooling; Rapid elasticity; Measured Service), three
service models (Cloud Software as a Service (SaaS), Cloud Platform as a Service (PaaS). Cloud
Infrastructure as a Service (IaaS) and four deployment models (Private Cloud; Community
Cloud; Public Cloud and Hybrid Cloud)". These services and deployment models are
explained further in the remaining of this section.

Cloud is not a new invention, but more of a “practical innovation”, combining several earlier
inventions into something new and compelling. It requires many of the modern available
technologies like high bandwidth networks, automation or virtualization, concept that will
be explained further in following sections. In fact, some years ago none would have though
about Cloud Computing because the networks were too slow and other technologies so
primitive. The main features [8] that describe Cloud Computing are:

o On-demand self-service. A consumer can unilaterally provision computing capabilities,
such as server time and network storage, as needed automatically without requiring
human interaction with each service provider.

e Broad network access. Capabilities are available over the network and accessed through
standard mechanisms that promote use by heterogeneous thin or thick client platforms
(e.g., mobile phones, tablets, laptops, and workstations).

e Resource pooling. Providers computing resources are pooled to serve multiple consumers
using a multi-tenant model, with different physical and virtual resources dynamically
assigned and reassigned according to consumer’s demand. There is a sense of location
independence where customers generally have no control or knowledge over the exact
location of the provided resources but may be able to specify location at a higher level of
abstraction (e.g., country, state, or data center). Examples of resources include storage,
processing, memory, and network bandwidth.

o Rapid elasticity. Capabilities can be elastically provisioned and released, in some cases
automatically, to scale rapidly outward and inward commensurate with demand. To
the consumer, the capabilities available for provisioning often appear to be unlimited
and can be appropriated in any quantity at any time.

o Measured service. Cloud systems automatically control and optimize resource use by
leveraging a metering capability at some level of abstraction appropriate to the type
of service (e.g., storage, processing, bandwidth, and active user accounts). Resource
usage can be monitored, controlled, and reported, providing transparency for both the
provider and consumer of the utilized service.

2. Fundamentals

2.1.3. Service Delivery Models

In Cloud Computing some more service models [8] [11] apart from IaaS are described. These
models are Software as a Service (SaaS) and Platform as a Service (PaaS). Each one of these
models is destined to different collectives, and in terms of its value to the end users there are
some differences. Figure 2.3 shows that the PaaS is the most valuable to the end users due to
it provides new functionalities and services the end user can use. In return, the IaaS systems
are more valuable for system architects than for end users.

I\ "/
SaaS

»G

@‘ Application
y— 1 Developers

End
User

D) Network
Architects

Figure 2.3.: Value visibility to end users !

Infrastructure as a Service

This is the simplest of the three models, it provides to the consumer the capability of pro-
cessing, storage, network broadcast, and other fundamental computing resources where
the consumer is able to deploy and run arbitrary software, which can include operating
systems and applications. The consumer does not manage or control the underlying Cloud
infrastructure but has control over virtual servers including their operating systems, storage
or deployed applications. Besides, consumers can restrict the network access to this kind of
systems to improve the security configuration. Examples of providers of this kind of services
are IBM (Softlayer [12]), Amazon EC2 [13] or Rackspace [14].

Platform as a Service

In comparison Paa$S is more sophisticated. It enables consumers to deploy their own appli-
cations over Cloud and as result, over a resilient platform. The consumer does not have to
worry about management or control over the underlying Cloud infrastructure. Things like
operating systems, hosts, servers, network, communication or storage, now are managed by
the Cloud provider, offering an additional and important abstraction level. The deployed
application adapts automatically to the number of users without human interaction and with

Ihttp://hrushikeshzadgaonkar.files.wordpress.com/2011/05/cloud_stack.gif

http://hrushikeshzadgaonkar.files.wordpress.com/2011/05/cloud_stack.gif

2.1. Cloud Computing

a more than acceptable Quality of Service (QoS). As a result, if the application is used by
a few people, a few money is paid, but if it is used by lot of them, the consumer must pay
an extra charge because of the resource usage. In this Cloud the developer only concerns
about his application and configuration settings for the application-hosting environment if it
is required. In this kind of platforms, the provider enables his own API, libraries and tools to
create the services and to communicate with the Cloud. These APIs usually support different
conventional programming languages like Python, Javascript, Java or PHP. Messaging and
database are also usually included in order to make easier the things to the programmers.
Hence, one important point is that if the developer wants to move his application to another
platform, infrastructure or Cloud, he will be forced to write most of the code again.

ﬁj“;“(’ End Users
[vl][Maps][lé?j?t%?]

PaaS Cloud

Developer

Application

Figure 2.4.: Cloud computing - PaaS

In this thesis we focus on this kind of model and how it can be provided in the most efficient
way possible at the moment. Here the provider is responsible of the whole middleware
platform which enables users to deploy their own applications. Consequently, providers
pursue to streamline their platforms and in that way serving more users and obtaining a
higher benefit. As we have already discussed, PaaS makes use of virtualization widely
and therefore the key to improve the efficiency of this pattern may be finding a lighter
and more flexible virtualization. in the following sections, we discuss about the different
virtualization alternatives at the moment in order to find the one which fits better with the
needs of the system we must implement. Some examples of PaaS are Google App Engine
[15] and Microsoft Azure [16], but IaaS can become also PaaS making use of an open source
platform as OpenStack [17].

Software as a Service

In SaaS the end users pay for using provider’s applications running on a Cloud infrastructure
instead of a software licence installed it in their own machine. Users pay just for the use of
the applications, usually monthly. The applications are accessible from various client devices
through either a thin client interface, such as a web browser or a program interface. The
consumer does not manage or control the stack below, he wants only to use the application
and he does so, anything else is running without his concern. SaaS is the most abstract of the

2. Fundamentals

three models, all the network, configuration, resource management, hosting, updates, failures
or storage are administered by the Cloud service provider with total transparency. Examples
of this kind of software are Google Docs [18], Lucidchart [19] or Babbel [20].

Project
communication

Email Document

storage
Image Maps &
storage I nte rn e Transport data
Social
networks Search News & Weather
engines
Translator
Laptop Desktop Mobile
devices

Figure 2.5.: Cloud computing - SaaS

2.1.4. Deployment Models

On the another hand, different kinds of Clouds related to location and ownership are available
to satisfy the needs of more diverse costumers. A brief introduction to the main ones is given
in the following sections.

Public Cloud

The Public Cloud [8] is the most important configuration at the moment because its flexibility,
scalability, simplicity and price. The Cloud platform is provided for the use of general public,
and it is managed, exploited and owned by a private or public company. With this kind of
Cloud users can choose the services model that fits better with their needs and the resources
required for the correct performance of their systems. In public Clouds the user pay for what
he use whatever it is: storage, services, network, servers, communication, application hosting,
etc. Also if an application does not require some capacity in a determinate moment, some of
the resources can be stopped immediately without any extra charge, or viceversa.

Community Cloud

A Community Cloud [8] is equal as a public cloud but for exclusive use by a specific com-
munity of consumers from organizations that have shared concerns (e.g., mission, security

10

2.2. Virtualization

requirements, policy, compliance considerations, etc). It may be supervised and operated by
one or more of the organizations in the community, a third party, or a combination of them.

Private Cloud

A Private Cloud [8] is created for exclusive use by a single organization comprising multiple
consumers. It may be owned, managed, and operated by the organization, a third party,
or some combination of them, and it may exist on or off premises. This kind of Cloud is
commonly used by big corporations, overall in the financial section because they want to
ensure their data privacy unbroken using really robust security tools [21]. Its cost is usually
high, and a big initial investment and experts are required. For that reason, the adoption of
this kind of technology is taking place slowly and gradually. However, the tend is changing
due to some hardware manufacturers like IBM or Oracle have started putting on the market
new integrated tools for easily management of small private networks destined to small and
medium-size companies that right now prefer public Clouds because their scalability and
price.

Hybrid Cloud

Finally, we find the Hybrid Cloud [8]. This Cloud may be made-up of more than two distinct
Cloud platforms (private, community or public clouds) whose autonomy remains invariable.
However, these Clouds are linked in their bounds to each other by standardized or proprietary
technologies for communication and integration.

A technique used in the last times is Cloud bursting, which combines internal resources with
public Cloud resources. This method was born as a response for some scenarios, when a
the demand of resources increases and the application must be moved to a public Cloud
which follows the model pay as you go. With the use of hybrid Clouds the organization
only must pay for the resources when are required and the application is able to deal with
peaks of traffic. This approach is recommended overall for applications which must achieve
high performance, high availability, failover recovery, and which do not handle sensitive
information.

2.2. Virtualization

2.2.1. The Origin and Definition of Virtualization

One of the most famous adages in computer science is that “any problem in computer science
can be solved by another level of indirection” said by David Wheeler [22]. Time has proved
this assertion unequivocally.

The virtualization despite it sounds as a modern concept, dates from 1960s and 1970s when
IBM developed the Control Program/Cambridge Monitor System (CP/CMS) [23] which led

11

2. Fundamentals

into VM/370 [24]. These computers run isolately from each other, but all inside a timeshared
computing environment.

The language virtualization was firstly introduced in 1980s to support application-level
portability and isolation. But one of these language which late to our days, appeared in the
1990s, the Java Virtual Machine (JVM) [25] . The JVM, which firstly was created to program
washing machines, offered developers an opportunity to add content to the Web in a portable
and secure manner (this Java components are called Java Applets). Besides, with Java [26]
the same application can run in a portable way between different platforms, for example in
Windows XP, Mac OS X, or any Linux. They used the slogan "write once, run everywhere",
something really attractive for headached developers.

Java Code (.java)

JAVAC
compiler

Byte Code (.class)

— —
JVM JVM JVM
Linux Windows Mac OS X

Figure 2.6.: Java Virtual Machine in different platforms 2

However, despite of the huge repercussion of virtualization, there was a gap between a
Virtual Machine (VM) for a programming language runtime and one for an entire Operating
System. In this scenario, the Stanford University appeared on the scene with its research
project Disco [27] that led to the present head of the virtualization, VMware [28].

In this thesis we focus on Cloud Computing and one of its building blocks is, of course, virtu-
alization. Virtualization is the basic pillar that enables a more efficient use of the resources.

In the 1974 article "Formal Requirements for Virtualizable Third Generation Architectures"
[29] Robert P.Goldberg proposed the “Hardware Virtualizer,” in which a virtual machine
would communicate directly with hardware instead of going through the host software. It
set the conditions sufficient for a computer architecture to support system virtualization
efficiently.

Zhttp://javapapers.files.wordpress.com/2011/11/java-program-execution2.png

12

http://javapapers.files.wordpress.com/2011/11/java-program-execution2.png

2.2. Virtualization

A virtual machine (VM) is an abstraction layer or environment between hardware components
and the end user. A host operating system can run many virtual machines and shares system
hardware components such as CPUs, controllers, disk, memory, and I/O among virtual
servers. In virtualization the user does not use the the physical resources, instead of that, he
uses a "virtual" one rather than the actual.

This key mechanism can be in different levels and shapes. For example we can find network,
storage, server, application or desktop virtualization. Increasingly, that level of indirection
takes the form of virtualization, in which a resource’s consumers are provided with a virtual
rather than physical version of that resource. This layer of indirection has helped address
myriad problems, including efficiency, security, high availability, elasticity, fault tolerant,
mobility, and scalability. Virtual servers generate hardware cost savings by a better utilization
of physical resources.

The guest software runs just as if it were installed on a stand-alone hardware platform.
Usually, many virtual machines run on a single physical machine; their number is limited by
the host hardware capability, such as core number, CPU power, RAM resources, etc. There is
no requirement for a guest operating system to be the same as the physical host one. The guest
system is able to access specific peripheral devices, exploiting interfaces to those devices, e.g.
hard disk drive, network interface card, graphic and audio card.

In these days virtualization is an area with intensely development and interest for companies
in order to reduce costs. One of the leader vendors of virtualization is VMWare [28] which
offers different virtualization products in multiple shapes and levels. However, the huge
data centers make use of the Xen Hypervisor [30], a paravirtualization solution that is re-
purposed at runtime to serve either as a host or guest Operating System and offers a good
performance.

Now we want to mention the principal aspects and motivations that nowadays has brought
virtualization into scene and which will lead to a huge expansion of this field in the next few
years.

Server Consolidation

One of the premises nowadays is avoiding not necessary replication or use of resources in
a efficiency chase. Following this premise, many small physical servers are substituted by
a larger one, which is able to run several virtual machines and by this way increasing the
utilization of the expensive hardware resources.

Simplified Management

A virtual machine can be more easily managed, configured and controlled from outside than
a physical one, and for example, it can include a snapshot system in order to restore quickly

13

2. Fundamentals

and easily a previous state of the Operating System (OS). Other advantage is the possibility
to switch on and off remotely the VM, something not possible with physical ones.

On the other hand, these days a huge number of servers with the same configuration are
deployed, and with virtualization only one must be configured. The other ones are launched
from the same VM image.

Virtual Machine Migration

Virtual machines can be moved with no trouble from a physical machine to another one. These
machines can be reallocated, cloned or launched in other host systems without any typical
additional configuration like hardware drivers might be. This aspects give a high mobility to
the VMs and with it they could be used in high availability and failover scenarios.

Cloud Computing Outbreak

The increment of the number of devices and the arrival of new kinds of devices or use cases
has force the developer community to find a solution to deal with this widespread growth
and keep providing QoS to the end users. The spectrum of these devices is wide, and many
of them cannot perform some tasks that might be interesting in some cases, and in this way,
this task should be realized somewhere else. In that scenario is where the ship of Cloud
Computing has appeared and, taking virtualization as one of his basic pillars, has lead to the
increase of VMs and new kinds of virtualization solutions.

Unlimited Compute Power

One of the most significant transformations that virtualization has led to is IaaS Cloud
computing. Users can access virtually unlimited computing power whenever they need it,
paying for only what they use. Producers can efficiently support many users while they are
isolated from each other. Consumers must not know about resource allocation or physical
capacity. For example, the VM can be moved to another physical or virtual machines or even
Clouds.

2.2.2. Types of Virtualization

Now we must talk about some different virtualization levels and types. In the following
sections you can find a short explanation of the most important ones.

14

2.2. Virtualization

Full Virtualization

In full virtualization [31], the virtual machine simulates enough hardware to allow an unmod-
ified guest operating system to run in isolation. This approach was pioneered in 1966 with
the IBM mainframes. Full virtualization fully abstracts the guest operating system from the
underlying hardware (completely decoupled). The guest operating system is not aware if it is
being virtualized and requires no modification. Full virtualization offers the best isolation
and security for virtual machines, and allows simple procedures for migration and portability
as the same guest operating system instance can run virtualized or on native hardware.

VM J[VM}[VM

Hypervisor
Host OS

Host Hardware

- J

Figure 2.7.: Full virtualization stack [1]

Paravirtualization

Paravirtualization [31] is a variant of full operating system virtualization. Paravirtualization
avoids “drawbacks of full virtualization by presenting a virtual machine abstraction that is
similar but not identical to the underlying hardware”

;VM][VM][VMN

Hypervisor

A

Y
A

Host Hardware

- J

Figure 2.8.: Paravirtualization stack [1]

In a paravirtualized architecture, a light software layer called Hypervisor runs directly over the
hardware. The Hypervisor is able to allocate the resources needed by the virtual machines.
A privileged operating system instance runs over the Hypervisor in order to manage all the
active virtual machines. Hypervisors have specialized management functions that allow
multiple VMs to coexist peacefully as they share real machine resources.

15

2. Fundamentals

Paravirtualization enables multiple isolated and secure virtualized servers running over the
same physical host. It also has a lower virtualization overhead. The performance can be
improved over full virtualization, but it can vary greatly depending on the workload. In
contrast to full virtualization, the host and guest operating systems must be modified in order
to replace the privileged operations with Hypervisor calls, and therefore, the guest is aware it
is being virtualized in comparison.

Shared Kernel

Shared kernel virtualization [32], also known as Operating system level virtualization, is a
virtualization method where the kernel of an operating system is used by multiple isolated
user-space instances, instead of just one. Such instances, called containers, may look like a
real server from the point of view of the end users. These containers can share also libraries
and Operating System with any kind of collision, also with the host physical machine.

In addition to isolation mechanisms, the kernel is able to provide resource management
features to limit the impact of one container’s activities on the other containers. In this
way multiple instances can run exactly as multiple physical servers. More details of shared
virtualization and containers are given in Section 2.3 where we also talk about the benefits
over other kinds of virtualizations.

2.2.3. Virtualization Levels

We have already introduced the most used types and techniques of virtualization in the
previous section, and we want to go into more detail with all the different levels where
virtualization can be present, from hardware virtualization to desktop virtualization.

Although virtualization is often associated with processors, there is virtualization in all the
tiers of the OSI model [33]. For example, virtualization is really important in networking
where Virtual Private Network (VPN) or Virtual Local Area Network (VLAN) have been use
for years in order to provide isolated virtual networks with the same physical structure.

In this thesis we take care of Cloud Computing, and the nowadays approach goes though
virtualization as a mean to enable the usage of resources by as many users as possible. The
virtualization in Cloud Computing can be present in all the levels and shapes as it helps
to achieve the desired systems efficiency. For instance, it is relevant in Cloud platforms
as Amazon EC2 where the user can rent a virtual server instead of a physical one that the
provider can allocate or free where, how or when he wants, otherwise a physical one should
be reserved per each user and the costs would grow.

16

2.2. Virtualization

Server Virtualization

Server virtualization industry is the most active segment nowadays. Each virtualized server
runs its own OS with its own virtual CPU, memory or peripheral devices in secure and
isolated way. Typically each server has only one job or function (i.e, database, mail, dns, etc.)
and it uses just a fraction of the total host machine capacity.

A mainstream tendency these days is the execution of multiple small virtual servers on a big
host one, and in this way, increasing the hardware exploitation and efficiency. Also server
virtualization contributes to streamline another aspects like performance, management or
security.

Desktop Virtualization

In this kind of virtualization a separate OS environment runs over the existing running OS on
the desktop. This enables for example the execution of non compatible programs like legacy
ones or others that must be executed in another OS. Two variants of desktop virtualization
are distinguished:

e Remote Desktop Virtualization. The operating environment runs in another location and
it is accessible across the network. The end users must only install a client application
in their machines that establish the communication with the remote host.

o Local Desktop Virtualization. In this variety, the operating environment runs locally in the
user’s physical computer. A middleware software must be installed in other to support
the execution of the new OS.

Likewise this virtualization approach enhances security, makes easier the management or
control tasks and end users have on-demand access to their virtual desktop anytime from
anywhere (i.e, from home, mobile phones, tablets, office, etc).

Storage Virtualization

In Storage virtualization a group of independent storage resources are combined in order
make believe they are just one single entity. Taking use of this, this collection can be centrally
managed as an unit and in this way increasing the flexibility and enabling the possibility of a
total storage expansion in a easy way.

Network Virtualization

Decoupling between the network infrastructure and service provisioning is the key of this
virtualization. The responsibility of the traditional Internet Service Provider (ISP) is divided
into: Infrastructure Provider (InP), who take care of the underlying physical infrastructure,
and the Service Provider (SP), who offers network services to the end users.

17

2. Fundamentals

With this decoupling more complex services can be created because SP can forget the underly-
ing infrastructure. It also enables that multiple VN (VN) use the same physical subrate with
isolation. A VN is composed of a set of virtual links and nodes, which can be considered as a
subset of the total network.

An example of Network virtualization is the VLAN where a collection of hosts with the same
interest can be logically connected as they would be in the same Local Area Network (LAN),
despite of they may be located in different buildings or floors.

Application Virtualization

Application virtualization provides specific applications to the end users that are virtualized
from the desktop OS and which are not installed as usual. The application is encapsulated
inside a container which interacts with the host system and can isolate it in order to avoid
undesirable interaction with other systems or application components.

2.3. Container Virtualization

Nowadays, hypervisor-based virtualization is the most popular virtualization technology
used in the main large datacenters of huge companies. It is flexible, works for almost any
guest operating system and, as we have already said, has several performance advantages
over full virtualization. However, the most modern approach shared kernel virtualization or
container virtualization can have more additional performance or flexibility benefits in some
cases [32].

A container is an operating system-level virtualizaton method for running multiple systems
on a single host. Normally, containers are constructed over the linux kernel and they are
commonly called Linux Container (LXC) [34]. The Linux kernel comprises cgroups for
resource isolation (CPU, memory, block I/0O, network, etc.) that does not require starting
any virtual machine or hardware emulation. Cgroups also provides namespace isolation to
completely isolate application’s view of the operating environment, including process trees,
network, user ids and mounted file systems.

The key drawback of virtualization is that it requires the system to run multiple copies of
the guest OS. The memory overhead used for that hits directly the performance of the whole
system. Containerization on the other hand shares a single host OS, and single kernel, but
creates containers inside that OS which include all of the software, environment and libraries
for a particular application. For example, in this kind of virtualization the hardware calls are
not duplicated and the host operating system is responsible of all the hardware management.
This property increases the performance of the system, which can hold more VMs [32] [35].

On the other hand, a challenge in this kind of virtualization is the isolation, despite there is
an isolation between containers is not complete and they still share memory and kernel, and

Shttp://msopentech.com/wp- content/uploads/Docker-containeraization. jpg

18

http://msopentech.com/wp-content/uploads/Docker-containeraization.jpg

2.3. Container Virtualization

App App App
Bins/Libs Bins/Libs Bins/Libs
VM A
Guest Guest Guest APP| |APP APP||APP| |APP| |ADP
oS oS oS Container:
Bin/Libs Bin/Libs
Hypervisor Container Engine
Host OS Host OS
Server Server

Figure 2.9.: Comparison VMs and Containers 3

cross application may be performed. For example, this can be dangerous in case of malware
attack in one of the containers, and in that case the attacker could have full access to all data
or running applications in the other containers.

One of the first container virtualization approaches was implemented by Sun some years ago,
but this LXC proposal did not have success because it was a really complex solution. In the
last years some new alternatives have appeared, but overall during the last year the open
source project Docker has hit the virtualization and Cloud computing environment. Docker
is the most attractive alternative at the moment and it has originated a lot of research projects
all around the world in both university departments and huge companies as IBM, Amazon or
Google. Some of the main features and interesting aspects of this relevant project are given
next.

2.3.1. Docker

In the previous sections the shared-kernel virtualization was presented. An open-source
project has change the way that community looks to this kind of virtualization, Docker.
Docker [36] is an open-source engine based LXC which try to automate the deployment of
any application in a lightweight, portable and self-sufficient way to run anywhere. Its first
stable version was released in April 2014 and with it a widely research and development in
Cloud Computing by a lot of different companies, organizations or universities. For example,
important companies like Google, IBM, Ebay or Spotify have started to integrate Docker in
their complex platforms in order to streamline them.

The automation of deployment is realized by containers which encapsulate any payload. They
already include all the application dependencies and therefore are ready to run anywhere
in anytime. This containers are basically LXCs that provide a high-level lightweight virtu-
alization that run processes in isolation. Moreover, this container virtualization framework

19

2. Fundamentals

enables automating packaging and deployment of application in many different famous
platforms as OpenStack, Amazon EC2, etc. In case you would like to use other alternatives to
Docker, these might be Chef [37], and Puppet [38]. Somo features which may be relevant for
developers are:

e Run Anything. All the application code can be moved inside a container and can be run

in any host with Docker installed and Linux kernel as the Figure 2.10 shows.

Container isolation. The containers run in isolation, and they are secure from outside
access. Besides, if one container goes down, the rest of the containers and therefore
applications are not affected.

Portability. Docker containers are simply directories, they can be compressed and copied
anywhere. That same docker container can run anywhere on any linux system on any
cloud without any change. It brings with it all required libraries, file versions and
environment variables needed. Therefore, they must be configured only once.

Fast and lightweight. Containers do not need much more resources than what each
application needs and the complete engine is though to save as many resources as
possible. For instance, the images, which hold all the necessary libraries the application
uses, are saved a differential storage, they only save the difference between the new
images and old ones.

Social sharing. Docker provides a repository community platform to share container
images in a public or private way, something that enables and encourages the devel-
opment in the platform. The images of the new containers can be based in other ones
built by other developers. For example, there are a lot of images with Ubuntu, Debian,
Python or Node.js already configured and ready to run a new application.

[R'E';Q’IT} [MAIL }
DOCKER WEB
DDBB
:> CONTAINER |

Tt 1

MONITORING
TOOL WEBPAGE

Figure 2.10.: Application encapsulation in Docker

Docker can be relevant overall in projects which include packaging and deployment of
applications automation, creation of lightweight PaaS environments, automated testing and

20

2.3. Container Virtualization

integration, scaling web apps deployments, databases and backend services. The Docker
engine runs a daemon service in the host machines that runs the containers and store the
images locally. The daemon can be used by a command line client tool or by a remote
API. Besides, other components of the docker engine are explained: Docker images, the
base images which contain the environment to launch containers, and Docker registries,
repositories where these images are stored.

Docker Images

As we have already said, Docker images are simply templates which contain everything
required by the application and from them, containers are launched. An image is a read-only
template and it could contain an Ubuntu operating system with a Database, Web server or
other kind of application application already installed. Docker images can be created, updated
or removed. Moreover, they can be stored locally or inside public or private repositories (
Docker registries), Figure 2.11. Besides images can be uploaded to these Docker registries
where also other people’s images can be downloaded and used. In another way we could
say that images must be built in order to hold applications, containers run from images, and
images can be stored in public or private Docker registries [39]. This structure is represented

in Figure 2.11.
[Container} [Container} [Containeq

A

2

Local image
registry

Docker Registry

Figure 2.11.: Image storage in Docker

Docker Containers

Docker containers are the main component in Docker and they basically more or less like
a directory which contains everything that it is required to run a determinate application.

21

2. Fundamentals

These containers are created from Docker images, which are the base templates where the
dependencies have been previously installed. They can be run, stopped, restarted or deleted
anytime and each one runs in isolation with the rest of containers. Moreover, containers has
a mechanism to share environment variables between two or more containers. They can be
linked and share these variables if it would be necessary.

The complete Docker engine is designed to spend as few resources as possible [32, 40]. For
instance, with a traditional VM, each application, each copy of an application, and each
slight modification of an application requires creating an entirely new VM, whereas all of the
containers share the same operating system, binaries and libraries, and do not need a new VM.
For example, if several copies of the same application must run on a host, the shared binaries
or OS must not be copied again, with a few megabytes a new VM is launched. In addition,
due to they utilize the host operating system, restarting a VM does not mean restarting or
rebooting an entire operating system. Hence, containers are much more portable and much
more efficient for many use cases, and they can be compressed and migrated to other hosts
rapidly.

Docker Registry

Docker registries are repositories where container images are stored. A registry can be public
or private and it allows the collaboration with the community or a team. Images can be
images which you have built by yourseft or you can make use of images that other people
have previously created. Once a Docker image is built, it can be pushed to a public or private
registry and then be searched, removed, updated, or be the base of other images.

Docker includes a huge Docker repository called Docker Hub [39]. Docker Hub provides both
public and private storage for images. Public storage is searchable and can be downloaded
by anyone. Private storage is excluded from search results and only authorized people can
pull images down and use them to run containers. This huge registry includes at the moment
thousands images created by the community with many different shapes and properties that
can be really useful for other developments.

2.3.2. CoreOS

CoreOS [2] is a minimal operating system based on Linux that enables the development of
resilient large-scale applications. This operating systems is designed to run thousands of
Docker containers which contain different kinds of applications in a cluster deployment(
i.e. databases, web servers, caching, auth, etc). This new OS allows companies like Google,
Facebook, Netflix and Twitter to run their services at high resilience.

After a service has been built inside a Docker container, as we have already mentioned in
Section 2.3.1, it can be launched with Fleet [41] within a cluster and connected with other
services by Etcd [42], which may store information about the already deployed services,
addresses, ports, etc.

22

2.3. Container Virtualization

0T contaiers
HEEE

OO0
ooy

[ETCDJ[FLEETJ [DOCKERJ

\. J

Figure 2.12.: CoreOs host with Docker [2]

In this OS the high availability can be also achieved by deploying services in different
machines or regions. This can be easily performed by Fleet [41] which includes many
interesting features for Cluster computing and management. It also includes a service
discovery feature based on Etcd [42], you can locate easily where services are running within
the cluster and be notified when something changes. Essential for a complex, highly dynamic
cluster.

CoreOS can run on a local machine or on most cloud providers or platforms including Vagrant
[43], Amazon EC2 [13], VMware [28] and OpenStack [17]. Clustering is platform independent
and it works across platforms. Hence, services may be moved easily and without any problem
from one machine or from a Cloud platform to another one. Before going into detail with
Fleet and Etcd, we want to introduce some previous concepts related to cluster deployments:
failover and cluster computing.

Failover

Failover [3] is the capacity of a complex system to adapt automatically in case of failures
or abnormal situations without human intervention. Load balancing and replication are
methods to get this and a continuous monitoring of the system components is required to
fault detection in hardware or software. Thanks to them in case of a failure is detected, the
system acts consequently and tries to fix such a problem automatically.

Figure 2.13 shows a failover scenario handled by a router, and two servers, a primary server,
which processes the requests in a normal situation, and a failover server, which processes
these requests in case of failure. Also a shared memory system is installed between the two
servers to make accessible the information to both of them. The router forwards the traffic
through the primary server, but if it detects that the link or this server are down, it redirects
the load through the failover server.

23

2. Fundamentals

ﬁ active normally

Shared Primary
=S o=
&

storage server
active in case of failure

]

Figure 2.13.: Failover situation with replication and shared storage [3]

=
-

Failover
server

Cluster Computing

A cluster [3] is a group of connected systems working together as a single entity. Each one of
the cluster members are called nodes. This is actually handy because it gives an abstraction
of where the things are been executed and you only need to know if there are running or
not. A cluster usually comes linked with the other concepts: replication, load balancing and
failover techniques. The aim of using all of these in conjunction is the development of high
availability systems.

Cluster

Internet
Gateway

Internet
Gateway

-/

Internet
Gateway

Figure 2.14.: Cluster of servers interconnected [3]

Fleet

Fleet provides the ability to launch and manage containers inside a cluster presented as a
single init system. In order to belong to the cluster, containers must run inside what is called
units. Units are just services based on Systemd [44] which specify the Docker containers

24

2.3. Container Virtualization

running configuration and other interesting parameters. More or less Fleet can be seen as an
extension of Systemd that operates at the cluster level instead of the machine level. Systemd
is a single machine init system whereas Fleet is a cluster init system.

Fleet receives the unit files and schedules them into machines running within the cluster, as
we can see in Figure 2.15. Inside of a unit file some rules can be declared, possible conflicts
or preferences about where units must be located. For example, you can specify in which
machine the unit must run or if a unit cannot run in the same machine than other one. With
this feature and others Fleet is able to deploy high availability services. For example, it can
achieve this by ensuring that some services are not located on the same machine, availability
zone or region.

Units D
(containers) D

Figure 2.15.: CoreOS cluster scheduling

Fleet has two parts: an engine and an agent. The engine is responsible for job scheduling and
bidding. It reacts to changes in cluster size. Scheduling logic is equally distributed between
many fleet engines within the cluster and in case of one of the machines fails or is rebooted,
the cluster keep going and it redistributes its units into the other nodes of the cluster. A
representation of that can be seen in Figure 2.16. As the agent runs on each CoreOS machine
and bids for jobs on behalf of the machine. Once a unit is assigned to the cluster, the agent
starts the unit file and continually relays the state reported by systemd into fleet.

OO e
OO

Host 1 Host 2 Host 3

Failure

OO0 | 00O
OO0l | o0

Host 2 Host 3

Figure 2.16.: CoreOS failure recovery

25

2. Fundamentals

We can see that Fleet is a powerful tool included in CoreOS. Fleet easies difficult tasks like
discovering the machines running within the cluster, re-scheduling on failure, distributing
the units as desired onto the cluster,etc.

Etcd

Etcd [42] is an open-source distributed key value store that enables the communication
between the services and machines along the whole cluster. Etcd runs in each machine on the
cluster and an endpoint is provided, which is used for service discovery or reading/writing
configuration values. In other words, Etcd can be used as the central registry of the cluster.
The key-value pairs are available by a simple JSON/HTTP API accesible from the host
machines or from inside the deployed containers.

Applications can read and write data into Etcd and therefore, they can share important
information for the cluster orchestration like database connection details, cache settings,
feature flags, ports, IP addresses, etc. For example, as it is show in Figure 2.17, a system with
a database and a frontend server are launched in a CoreOS cluster. The database registers
itself into Etcd and in that way, the frontend server is able to locate it checking its location via
Etcd. Besides, we can notice that both components are located in different machines.

Frontend Server

Database
(A (A)
Frontend Server Database
i\\ Service
N o registration unit
N, O’ 6 7
.

Figure 2.17.: Service discovery with etcd

Figure 2.17 shows an additional component which registers the database service in the Etcd
store. This is done in order to keep service registration logic outside of the main service. For

26

2.4. Middleware

example, sidekick units can run aside the main unit, which store all the necessary information
into Etcd. An application not only write or read an entry, it can listen if a the value of a key
has changed. With this possibility sophisticated orchestration can be performed by flags or
other mechanisms. The keys support also TTL (Time-to-Live) field, and hence, they can
expire after a while. Additionally, Etcd is used for coordination between engines and agents
as well.

A more advanced example can be service discovery for a proxy. Each container can announce
itself to Etcd after starting up as it is shown in Figure 2.18 and a proxy, which is listening
for changes, can adapt automatically to the new situation. The proxy reconfigures itself
automatically and it starts to send traffic to the new container. This example shows a small
proof of how scalable can be a system running on CoreOS.

ETCD

Register in ETCD

Service
stops

Service
starts

Withdrawl in ETCD

Figure 2.18.: Etcd autoregistration

2.4. Middleware

The terminology middleware alludes to an intermediate software layer between the operat-
ing systems and distributed applications whose communication is performed via network
interaction. The main aim of this model is facilitate the integration between different compo-
nents running on diverse platforms. This model appeared as a approach to solve enterprise
deployment’s problems. In this kind of deployments, where many different components,
protocols or OS are involved, communication and integration can be really difficult to achieve.
The middleware tier tries to mask the underlying networking complexity and heterogeneity
of the whole system and in that way, applications in the upper layer can be managed and
programmed easily.

For example, huge enterprises usually have more or less autonomous suborganizations,
which work independenly and provide different kinds of data sources and applications. The
integration between all of them can be really difficult because for instance, they have different
data formats or database sources. We could say that protocols are like languages, both
speakers must talk the same language, unless they can communicate properly. For example,
in large banks thousands of application subsystems must be integrated. The unstructured

4https://coreos.com/assets/images/media/container-lifecycle.png

27

https://coreos.com/assets/images/media/container-lifecycle.png

2. Fundamentals

Application 1] Application 2 [Application 3

Middleware

OS OS 0S

Hardware Hardware Hardware

Figure 2.19.: Middleware Layer stack

data can be obtained from internal or external information sources and communication with
another enterprises should be realized. In this scenario, a integration solution between every
pair of components must be potentially implemented. However, with a middleware solution,
just a interface for each one of the protocols is additionally implemented.

By this way, a middleware service is defined by the API and the supported protocols, that
gives it the possibility to interconnect different kinds of external services. The middlewares
are distributed systems, and they normally include a client and server parts. The client part
supports the service’s API running in the application’s address space, and the server part,
includes the the service’s main functionalities and typically runs in another different system.
In addition, middleware design includes another aspects, like QoS, information security or
intermediary functions which transform or adapt the exchanged data.

The concept of middleware exposed is a really general one, because nowadays its scope is
really broad. In the following section, Enterprise Service Bus (ESB), a middleware solution
which follows this philosophy, is explained with more detail,

2.4.1. Enterprise Service Bus

An ESB [4] is an architectural pattern created in order to approach integration challenges
in a more flexible and constructive way. Its principal functionalities are oriented specially
to aspects such routing, transformation, security and orchestration. The predecessor of the
ESB was the Enterprise Application Integration (EAI) [45] based on a hub-and-spoke model.
This model was a first approach to the problems presented in the point-to-point model. The
hub-and-spoke model is a centralized architecture, where the main component is a hub or
broker which process all the exchanged data. Unlike in this model, the ESB is a bus model
with a distributed architecture, in which each functionality can be implemented by several
physical separated functions. Another difference between EAI and ESB systems is the use of
open standards. EAI products like WebSphere Message Broker [46], TIBCO BusinessWorks
[47], and Sonic XQ were mainly based on proprietary technology to implement messaging

28

2.4. Middleware

functionality and transformation logic. ESB products are based on open standards, such as
Java Message Service (JMS), XML, and web services standards.

An ESB can be used as an integration platform that enables existing IT assets and applications
to be exposed as services, Service-oriented architecture (SOA). In order to understand well
the high-level benefits of a ESB, we are going to describe our initial scenario and its possible
problems.

This first scenario is a point-to-point model where every component must communicate with
the other components to get data. For instance, an application that provides information
of possible public transportation routes to the user. The user can access this data through a
Web browser or a smartphone. The application have a main logic component which must
communicate to a set of public transportation web services, the Google Maps service, a
database and user interfaces. This component must be able to establish this communication
with each one of these interfaces in order to provide or get the required information. Besides,
the user interfaces must communicate with this logic component. As we can see in Figure
2.20, to enable the communication between each pair of components, a new integration
solution must be implemented. In case of one of the interfaces or the system architecture
change, several modifications in the rest of the components must be done. Besides between
every pair of components the information must be transformed to a data format that both
can understand. Therefore, a custom integration solution must be both, developed and
maintained. The complexity and maintenance cost increase when a new component is added
to this application landscape. Hence, the main problem that we have to face is an integration
problem.

Bus
Metro
Company
2 Company
Bus
Company S\ ,4
1 \ J
. T Users
\\ DDBB
Gl\ﬁogle ; Server ——""/b
aps [@-—TTTTTTTEs)
Service Logic A
N ~____. Train
/ AN Company
I' \\
4
GUI .
Browser Mobile

Figure 2.20.: Public transport application with a point-to-point model

In this context is when we think in a centralized solution such as an ESB solution that
could increase the flexibility and simplicity of the final products. Another reason is that this
landscape is a really heterogeneous when it comes to technologies and protocols. When
you have to deal with many different protocols, like JMS, FTP, HTTP, SOAP, SMTP, and

29

2. Fundamentals

Problem Solution

Integration between application | Integration solutions can be time-consuming
and costly. With an ESB this integration is per-
formed just once with one of the different inter-
faces that it offers.

Heterogeneous environment An ESB can deal with a lot of different technolo-
gies and protocols in a centralized way.

Cost of ownership The maintenance and management costs are the
most important in software development and
with a central solution both could decrease no-
tably.

Table 2.1.: Problems and solutions by ESB

TCP, it is difficult to implement new integration solutions between applications. An ESB
provides protocol or technology adapters, which make it easy to deal with a heterogeneous
IT environment. Another important reason is the reduction of the total costs of the whole
application. In a point-to-point model, the management and maintenance of all the integration
points can be really time-consuming and therefore, expensive.

In a environment with the proposed ESB centralized model, all enterprise components are
connected to the ESB bus and communicate though it. Each component must implement at
the very beginning a solution to communicate to the bus. However, if afterwards another of
the components changes, the rest do not have to create a complete new integration solution.
E.g. the Google Maps changes the JSON response messages for a XML ones. In this case, the
ESB transforms the messages from XML to a JSON and the rest of the components of the
system do not notice the change.

In Section 2.4.2 we explain further an ESB implementation, ServiceMix [48] and cite some of
the most interesting alternatives nowadays of ESBs. However, after explaining some benefits
an ESB solution can provide, the most important aspects an ESB solution must include are
explained next:

o Location transparency. An ESB helps with decoupling the service consumer from the
service provider location. An ESB provides a central platform to communicate with any
necessary application without coupling the message sender to the message receiver.

e Transport protocol conversion. An ESB should be able to seamlessly integrate applications
with different transport protocols like HTTP /HTTPS to JMS or SMTP to TCP.

e Message transformation. An ESB provides functionality to transform messages from one
format to the other based on open standards like XSLT and XPath.

e Message routing. Determining the ultimate destination of an incoming message is an
important functionality of an ESB that is categorized as message routing.

30

2.4. Middleware

Bus Bus
Metro Users
Com1pany Company Company DDBB

g § g

(Enterprise Service Bus 0

3§ § g

=

<

Google .
GUI . Train
Maps Mobile
Service Browser Company

Figure 2.21.: Public transport application with a centralized ESB model

o Message enhancement. An ESB should provide functionality to add missing information
based on the data in the incoming message by using message enhancement.

e Security. Authentication, authorization, and encryption functionalities must be provided
by an ESB for securing incoming messages to prevent malicious use of the ESB as well as
securing outgoing messages to satisfy the security requirements of the service providers.

o Monitoring and management. A monitoring and management environment is necessary
to configure the ESB to be high-performing and reliable and also to monitor the runtime
execution of the message flows in the ESB.

2.4.2. Apache ServiceMix

Apache ServiceMix [48] is an open-source ESB project with all the desirable features for a
ESB such as routing, transformation, messaging, reliability, clustering, remoting, distributed
failover, etc. It combines the functionality of a Service Oriented Architecture (SOA) [49] and
modularity in order to enable the decoupling of applications and to reduce dependencies.
ServiceMix enables application wiring using different protocols without new integration
issues. It contains many powerful components including support to HTTP, JMX [50], CXF
[51], BPEL [52], SOAP [52], SSH, FTP, etc. This ESB also provides a simple way to create
your own components and services and to establish communication between them. Besides,
ServiceMix can be embedded into a JEE application server such as JBoss [53], Oracle Weblogic
[53] or IBM Websphere [54] .

As an ESB, ServiceMix is basically a bus which enables the communication between enterprise
applications, and its internal structure follows the same pattern. Essentially, there is a internal

31

2. Fundamentals

router or broker used as a communication mean between the different components or bundles.
In this ESB two different components are distinguished: Service Engine (SE) and Building
Component (BC). BCs are used overall to external communication and SEs to add new services
within the ESB. In Figure 2.22, this interaction between the different pieces of ServiceMix can
be perceived.

Service Engines

ESB <CAMEL> < Active >
ServiceMix

DC DC

() Normalized Message Router)

DC DC D

C ple
\—< HTTP >—< VFS SMTP FTP

Binding Components

Figure 2.22.: Binding components, Service Engines and Normalized Message Router [4]

Throughout the next sections, we introduce the fundamental concepts involved in ServiceMix,
its architecture and its most important components.

Binding Components and Service Engines

A Service Engine (SE) provides functionality to other components and can consume services
by other components. Hence, it is an internal component in the ESB architecture. In contrast,
a Building Component (BC) provides connectivity to existing applications and services that are
located outside the JBI environment. For instance, if you want to communicate with existing
applications, you must do that by using binding components. The same is true if you want to
integrate with non-Java-based protocols or communication protocols (e.g., HTTP/HTTPS).
Apart from providing access to external services, BCs can be used to expose internal JBI
services to the outside world.

Normalized Message Router

The JBI components (SE or BC) do not directly communicate with each other, they commu-
nicate through the NMR. The components do not connect directly to this NMR, but instead

32

2.4. Middleware

Concept Description

Binding component A JBI component used to consume and provide
services to services outside the JBI container.

Service engine A JBI component that can provide services to
other JBI components and can also consume ser-
vices provided by other JBI components.

Normalized Message Router | This component of a JBI environment takes part
in delivering a message from one component
to another component. This exchange always
follows one of the standard message exchange
patterns.

Delivery channel The delivery channel connects a JBI component
(a service engine or a binding component) to the
normalized message router.

Service unit This is an artifact that can be deployed into a
running service engine or binding component.

Service assembly A group of service units is called a service as-
sembly.

Table 2.2.: ServiceMix main concepts

they use a Delivery channel (DC). It is the NMR’s job to make sure that the messages are
exchanged correctly among the multiple components in the JBI environment.

Endpoint and Services

ServiceMix distinguishes like other SOA solutions between two roles, consumers and providers,
and each component can be a consumer or provider in a determinate moment if it makes use
of a service or provides it. In ServiceMix a service cannot be accessed directly, a endpoint
must be specified first. Each service must have at least one endpoint, but it can have many
more. So when you want to consume a service provided by a JBI component, you need to
know the name of the service and the name of the endpoint to invoke. This combination of a
service and a specific endpoint on that service is called a service endpoint.

Service Unit and Service Assembly

The whole ServiceMix ESB works as a container thanks to the Apache Karaf kernel [55], and
so the SE and BC do. They can be containers themselves to which resources can be deployed.
The resources that you can deploy to such a container are called service units (SU). If you
group these service units together, you can create a service assembly (SA). Figure 2.24 shows

33

2. Fundamentals

a service assembly can contain multiple service units. Once this service assembly is deployed
to a JBI container, each one of the service units is deployed to its specific SE or BC.

Service
2

Service Component Service
1 Container 4

Service
3

Figure 2.23.: Services executing inside a Component Container [4]

' 1
ServiceMix Component Container

Service Service
Assembly Assembly
-
Service Assembly
Service
Assembly XML XML
Schema Schema
Service XML XML
Assembly Schema Schema
-
J

Figure 2.24.: Service Units and Service Assembly

|

Architecture

Despite of the previous versions of Servicemix were based on JBI, the last version is built over
an OSGi-based architecture [56]. In Figure 2.25 we can see the main components that we are
going to explain:

o ServiceMix Kernel: This kernel is the basis of ServiceMix and which is based on the
Apache Karaf project [55] (an OSGi based runtime), handles the core features ServiceMix
provides, such as hot deployment, provisioning of libraries or applications, remote
access using ssh, JMX management, and more.

o ServiceMix NMR: This component, a normalized message router, handles all the routing
of messages within ServiceMix and is used by all the other components.

o ActiveMQ: ActiveMQ [57], another Apache project, is the message broker that is used to
exchange messages between components. Besides ActiveMQ can be used to create a
fully distributed ESB.

34

2.5. Monitoring

o Web component: enables to start ServiceMix 4.2 embedded in a Web application.

e |BI Support: as the previous version of ServiceMix was based on JBI, Servicemix has
compatibility with this components yet.

o Camel NMR: a couple of different ways for routing are given. You can use the endpoints
provided by the ServiceMix NMR, but you can also use more advanced routing engines.
One of those is the Camel NMR [58]. This component allows you to run Camel based
routes on ServiceMix.

e CXF NMR: Besides an NMR based on Camel, ServiceMix also provides an NMR based
on CXF [51]. You can use this NMR to expose and route to Java POJOs annotated with
JAX-WS annotations.

ActiveMQ JBl
Apache CAMEL NMR

Apache CXF

Activiti

Apache Karaf

Figure 2.25.: Servicemix architecture

2.5. Monitoring

The monitoring has been an important research field for long time in different systems and
levels. It has helped to improve systems with its ability to provide important information
that could lead to fault detection, performance measures or QoS agreements compliance. But
in the last years it has got a new dimension and challenges because of Cloud Computing rise.
Aspects of Cloud Computing business model require a deep data gathering and analysis. For
example, the process automation needs something to control the performed tasks, because
without human interaction if a problem occurs, it must be detected somehow. Besides, the
pay-as-you-go of Cloud Computing requires a resource usage measurement, because the
billing is based on the amount used resources per time or capacity. Therefore, the monitoring
is primordial for an efficient large-scale Cloud management and maintenance of the QoS and
not only important for providers, but also for consumers.

In the article [59] monitoring is defined from a capability perspective as "a process that fully
and precisely identifies the root cause of an event by capturing the correct information at the right
time and at the lowest cost in order to determine the state of a system and to surface the status in
a timely and meaningful manner.". As we can extract from this definition that monitoring of

35

2. Fundamentals

operational services should only impose a small performance overhead or workload and
it should be non-intrusive to the business logic, as far as possible. The monitoring tool
gathers information to make informed decisions, dynamical analysis and model calibration.
Monitoring can enable early detection of QoS problems, such as performance degradation,
and can deliver usage data for resource management. Such monitoring information is also
required to check the fulfillment of service level agreements (SLAs). Therefore, a system’s
runtime behavior should be monitored and analyzed continuously.

A wide spectrum of monitoring tools can be found from general-purpose infrastructure (i.e.
Nagios [38], Collectd [60] or Zabbix [61]) to cloud specific monitoring tools (i.e. the provider
independent Nimsoft [62] or the provider dependent Amazon Cloud Watch [63] or Azure
Watch [16]) and on all layers of a software system.

General purpose infrastructure monitoring tools typically follow a client-server model by in-
stalling an agent in every system to be monitored. Figure 2.26 shows this general architecture.
Monitoring agents measure metric values from monitored components and send them to
the monitoring server. The server stores the collected metrics into a database, analyses them,
and sends alerts as e-mail or SMS. It may generate graphs, trending reports and SLA reports
based on the monitored metrics retrieved from the database. Additionally some of them may
use a hierarchical structure, organizing the agents in different levels. The child nodes can
send their data to other parent node which stores or show them in a generated graph.

Graphs,
reports,
Frontend,...

9
HSEE

itoring
rver
Database

Monitoring
agent

Metrics
(CPU,
RAM.,..)

Figure 2.26.: General Monitoring tool with Client-Server model [5]

2.5.1. Desirable Cloud Monitoring Capabilities

In this thesis, we must find a monitoring tool which fits with the whole system environment
requirements. Hence, the main features [59], which must be present in a Cloud general

36

2.5. Monitoring

monitoring tool, should be cited in order to distinguish which exactly this projects requires.

o Scalability. In Cloud Computing thousands of nodes are usually deployed and in this
large-scale scenario a way to manage the resources and a tool which adapts automati-
cally to the grow of the system should be achieved. The monitoring tool must not only
be able to grow with the system, but it should be able to send the information as fast as
possible.

o Portability. Due to the heterogeneous nature of Cloud environments a monitoring tools
should be able to be moved from a platform to another different one.

o Non-intrusiveness. As we have already mentioned, the monitoring tool should not have
a big impact in the current system performance and should be not-intrusive to the
business logic, because overall the pay-per-use billing of Cloud.

e Robustness. The dynamical and changing environment of the Cloud infrastructure where
elements are added or removed continuously forces the monitoring tool to be able to
face these new situations and keep providing a reliable monitoring data.

e Multi-tenancy. One of the basics in Cloud Computing is multi-tenancy, where many
tenants access to the same virtual or physical resource. To support this, the monitoring
tools must include a mechanism to maintain the isolation and concurrency between
tenants. For instance, tenants only must be able to access the information that is
addressed to them, but the administrator must be able to access to the whole data.

e Interoperability. Nowadays, there are lot of different Cloud providers, and communica-
tion between independent and heterogeneous systems must be performed. Therefore,
the monitoring tool should be able to exchange information with different Cloud plat-
forms.

o Customizability. There are presently numerous Cloud service offerings and many
providers are seeking ways to deliver unique services to their customers by allow-
ing them high customization flexibility. Considering the large number of customers,
providers must be able to manage the service customisation of each customer, for exam-
ple, by granting customers the ability to choose the metrics to be monitored for their
service. Thus, to realize this goal, efficient monitoring tools should possess this capacity.

o Extensibility. With the rapid growth of Cloud computing, there are continuous changes
and extensions to technologies. Monitoring tools should be extensible and be able to
adapt to new environments or collect new metrics which could be interesting in the
future.

o Shared resource monitoring. Cloud computing make extensively use of virtualization, and
because of that, the monitoring tool should collect information from the virtual and the
physical resources or systems.

e Usability. A monitoring tool should be highly usable and facilitate deployment, mainte-
nance and human interaction.

37

2. Fundamentals

38

o Affordability. Due to Cloud Computing chases a reduction of the total costs, the monitor-
ing tool should not increase noticeably the costs. Here is where open source monitoring
tools and their positive impact in the final costs enter the scene.

o Archivability. The data should be stored in a persistent way for analysing and identifying
the origin of issues. Hence, the monitoring tool should be equipped with a permanent
database.

3. Related Works

In the following chapter, similar works related to the fundamental concepts involved in this
thesis are presented. However, we must first explain briefly the behaviour and features of the
system we aim to build.

Our system must be a framework to provision specialized middleware components. As
we want to enable the use of the framework by different users, multitenancy [64] must be
necessarily supported. Moreover, the ESB instances must run in isolation and in a lightweight
way. These instances must be preconfigured ESB instances encapsulated inside Docker
containers and must be accessible to be launched at anytime. Hence, they must include all
the required dependencies and libraries. In addition, they must be reusable to be used by
different users in order to enhance the performance of the whole system.

On the other hand, monitoring is important in order to ensure a specific QoS to the end users
and to control the performance in Cloud systems. Therefore, our framework must include a
monitoring tool able to collect the data from both, VMs and host machines. It must gather
data about the CPU usage, memory; etc.

In summary, we must take a further look in similar projects related to virtualization deploy-
ment (overall those related to container deployment), middleware deployment and charac-
terization, and cluster deployment of containers. Additionally, the main Cloud providers
and how they enable the container virtualization deployment in their infrastructures is pre-
sented. These platforms are Google App Engine (GAE) [15] and Amazon Elastic Beanstalk
[65], explained respectively in Sections 3.8 and 3.9.

3.1. Kubernetes

The first related project we want to introduce is Kubernetes [66]. This project is an open source
implementation of container cluster management and orchestration. It has been developed
by Google and it is a similar approach to Omega [67], the project used within Google but not
open source.

Kubernetes enables the deployment of Docker containers into a fleet of machines and provides
health management and replication capabilities. These features look interesting, but one that
has drawn our attention is the introduction of pods, a logical service composed of several
containers running in the same machine as a single entity (see Figure 3.1).

Another interesting feature is that the pods can be organized by labels or keys defined by the
user, and in that way a specific group of pods can be found. For example, if hundreds of pods

39

3. Related Works

HOST Containers

Figure 3.1.: Containers running inside pods

are running at the same time with different functionalities (i.e. Web server, databases, DNS,
etc.), the user could find the pods which include a database by their label type=database.

(N N \
Pod Pod Pod
{owner: Oliver, region:west, {owner: Bryan, region:east, {owner: Oliver, region:west,
type: database} type: dns} type: dns}
\ J U J \ J

Figure 3.2.: Pods organized by labels

As CoreOS does, Kubernetes leverages ETCD (see Section 2.3.2) to achieve an advanced
level of cluster orchestration. This distributed key-value store is used to coordinate all the
components present in its architecture. Despite of using ETCD, Kubernetes does not run over
CoreOS and it does not use Fleet (see Section 2.3.2) either. It contains another components to
do a similar job as Fleet for orchestration. Architecturally Kubernetes is also interesting. It is
built as a collection of pluggable components with different responsibilities (i.e. schedulers,
storage systems, load balancers, etc.) running within services as Fleet units in CoreOS.

This project is powerful enough to enable the Container deployment we want, but we think
that some small tasks must not be performed necessarily inside a container. For example, in
our approach explained later, a container with a preinstalled ESB instance has aside another
component to register all the important information about it in the cluster. With Kubernetes,
this would require another entire container running including its OS and dependencies.
Besides, the configuration and installation process on Kubernetes is more complex than
on CoreOS, which is used in our work in other to enable a quick deployment of new host
machines

40

3.2. Deis

3.2. Deis

Another interesting project is Deis [68], an open source lighweight PaaS able to deploy,
scale and manage applications on different servers. Deis packs, ships and runs applications
automatically inside Docker containers running within a CoreOS cluster. It can deploy any
language or framework using Docker, but it also includes Heroku [69] build packs for multiple
languages (i.e. Ruby, Python, Node.js, Java, Go, etc.). Besides, it can run on any system which
supports CoreOS including the user computer and public and private clouds of main Cloud
providers.

Deis is able to build and pack applications automatically into a Docker image, and it dis-
tributes them as Docker containers across the cluster. Besides, it enables to change the
environmental variables of the application. It also includes a routing and load balancing
component which routes the traffic into different Docker containers which hold the same
application. Something really useful for scaling an application automatically.

This project is really powerful and its philosophy fits with what we want. However, it seems
that Deis only allows to publish one port per container, and if we want to encapsulate our
ESB instances inside containers several ports are required. Besides, it seems that you cannot
specify in which host or aside which container it must be located, something that could be
important in some cases.

3.3. GeMS

GeMS [70] faces the problem about general-purpose specialization process. A general middle-
ware process may add excessive footprint, latency and resource usage in general. Therefore, a
specialization process of the middleware is crucial to deploy an efficient middleware instance.
This work focuses on identifying the components the application might require at the moment
and predicting which might use in the future, because the middleware configuration process
normally can be extremely tedious and complex. This project tries to discover the perfect
middleware specialization for an application and in that way, not being forced to create and
configure the middleware in the future.

In contrast with this project, the platform we want to implement skips this problem, because
our platform is able to build and provide any specialized middleware at anytime. In our
platform, the developer must only identify which components his application requires (i.e.
HTTP, SQL, etc.) and he gets automatically a middleware instance (ESB in our case) with
these component already installed. In case of his application changes, he must only ask for a
new instance with the features he needs.

On the other hand, in case of the middleware does not require a component anymore, the
middleware is not normally configured again because it can be really costly. But in our case,
this action can be perform quickly just removing the previous instance and creating a new
one without the component, and hence, it may save resources and run more efficiently.

41

3. Related Works

3.4. DPRS. Dynamically Programmable and Reconfigurable Software

The approach of this work [71] is based on what they refer as middleware externalization. The
externalization is a technique to explicitly externalize the state, logic and internal component
structure of middleware services. This is used to enhance the configurability, update ability,
and upgradeability of the middleware.

They have built a tool to control the middleware state, logic and add or remove component
even in runtime execution. They call these components Micro Building blocks (MBB), which
include the smallest functionally of the system and can be loaded dynamically too.

The idea about externalization is really interesting also for this thesis, because it might be
a first step in order to create the non-reconfigurable ESB instance. If we identified all the
variability points of the middleware, we could externalize them to create dynamically ESB
instances.

In the document [71] is also specified that despite the flexibility, a reconfiguraable middleware
offers equivalent performance to a non-reconfigurable middleware. Therefore, if we were
able to create a bunch of non-reconfigurable middleware instances, we could get a similar
performance.

3.5. Automatic Middleware Deployment Planning on Clusters

After the Cloud computing burst and the presence of computing in every corner of the world,
a way to adapt the middleware deployment to manage heterogeneous resources must be
found. The middleware must not only be mapped to existing resources , but it must offer the
required QoS in every moment through the entire system.

In the paper [72], they do not face this problem directly, the focus on how to carry out an
adapted deployment on a cluster with hundreds of nodes. An approach for automatically de-
termining an optimal deployment is presented. This solution is for hierarchically distributed
middleware services on clusters and its goal is to optimize steady-state request throughput.
Moreover, it is only valid for a homogeneous resource platforms with a given size, and it
tries to determine the optimal middleware deployment, how many nodes should be used
and in which hierarchical organization must be disposed in order to maximize a steady
throughput.

In contrast with this solution, our approach should be able to run in a heterogeneous platforms
and with a dynamic number of nodes, because at the present moment, two of the premises in
Cloud is the efficient usage of resources and the elasticity of the systems. For example, the
business model of Cloud computing is pay per use, and if some of the nodes of the system are
not used, the provider looses money.

On the other hand, their solution depends on a predicted workload, and after the initial
middleware deployment, the system cannot adapt to new scenarios. The solution we propose

42

3.6. Project Atomic

enables the deployment of new components in case the workload changes, or their removal if
additional resources are not longer required.

3.6. Project Atomic

Project Atomic [73] is another multi-host container deployment project similar to CoreOS
[2] released in April 2014 and based on a Operating System called Project Atomic Host. Its
core component is called Geard, an open-source project for installing and linking Docker
containers into Systemd, and for coordinating those Docker containers across hosts. The
most interesting function is that it is able to wire containers between hosts. GearD introduces
a ip-based container linking framework which allows the container to talk to a specific IP
address that is afterwards remapable. The IP addresses can be re-routed but they containers
remain wired.

As Deis [68] does, Geard allows developers to simply point at their application source
in a repository or a Docker image to get a newly built Docker container whichs runs the
application. Another interesting features is the OS updates, its updates are applied atomically
in one operation and it allows to rollback to older versions if necessary.

This projects looks really promising, but it is under high development and no-production
ready. However, it does not fit so well with what we want to do in our framework. For
example, wiring between ESB instance is not necessary for us by the moment and it does not
include any distributed registry to store our system state or image storage. In addition, Project
Atomic does not come with any component to schedule and reschedule the containers.

3.7. Panamax

Panamax [74] is an open source project which enables a entire container base application
deployment. It is based on CoreOS and its most interesting idea is what they called templates,
a group of linked Containers working together that can be organized by categories or tiers.
It contains a Web Ul to create and control these templates and it works jointly with the
Docker Hub. The user can search among all the images in the Docker Hub or in the Panamax
marketplace to launch new containers or create new applications. In this interface the user is
able to control container parameters such as environment variables or linked containers.

The target of this project is different to ours. Panamax tries to easy the whole application
deployment, but we only need to deploy individual ESB instances in a elastic way. Besides, it
does not include any of the additional components we need in our framework for the ESB
instance management (i.e. registry, controller, etc.). Moreover, this project is still only in a
Beta phase.

43

3. Related Works

3.8. Google App Engine

In the Gluecon conference, the senior staff software engineer, Joe Beda claimed :"Everything
at Google runs in a container. We start over two billion containers per week." [75]. Therefore,
it seems Google is working hard with container virtualization solutions. Some time later,
Google enabled the deployment of Docker images inside Google App Engine (GAE) [15].
This enables developers to package their application with all, including OS and dependencies
and run in its platform. A serial of VMs, which are only Debian images with a preinstalled
Docker, are used to host the container execution.

As we have said, Kubernetes in Section 3.1, is a project by Google, and it is optimized to
run in GAE. It is able to deploy containers into a fleet of machines, and to assure health and
replication capabilities in the cluster, and as well as allows containers to connect to another
one and the outside world.

Additionally, Google released another interesting open source project called cAdvisor [76].
This project enables detailed statistics, both instantaneous and historical, regarding resource
usage for containers and host machines. This can be really useful for this thesis, and in the
following sections we take a further look into cAdvisor in order to determine if it offers all
features the monitoring tool of our framework must contain.

3.9. Amazon Beanstalk

Amazon Elastic Beanstalk [65] now supports deployment of Docker containers. The applica-
tions inside Docker containers can be launched with all the features that Beanstalks enables
like scalability, load balancing, etc. These containers can be launched from existing images,
from the Docker Hub, or from new images built inside the Amazon platform. The developer
must just upload his code in a zip file with his application and the build file of the Docker
image, or in case of using an existing one, just a description file pointing to the desired image
and parameters.

44

4. Concept and Specification

For this work, we must develop a “framework which enables the creation, provisioning, and runtime
of light weight specialized ESB instances to fulfill a given set of application communication require-
ments”. Such a framework can be potentially used in PaaS offerings enabling the provisioning
of the necessary underlying communication infrastructure required by the application. The
requirements that should be achieved in this work for the proposed framework are detailed
next, and in the same way, the use cases that it must cover. Additionally, a system architecture
is proposed.

4.1. System Requirements

In this section we expose the different requirements the framework must fulfill. We distin-
guish between functional and non-functional requirements, and later we explain further the
requirements that the monitoring part of the framework must include.

4.1.1. Functional Requirements

e ESB instance configuration. The system must provide a way to run different ESB instances
with different configurations. The configuration must include parameters to define the
already installed components in the ESB and resource usage (i.e. maximal memory,
maximal CPU, or ports that the ESB instance could use).

o Coarse grained ESB instance configuration. The information about configuration, IP ad-
dresses, state of the ESB instance or ports should be accessible.

o ESB instance migration. The instance must be encapsulated, stored and relaunched
rapidly. This is also important for some data that must be persistent in case of a
posterior deployment.

o ESB instance based management. A mechanism to manage individually these instances
should be enabled.

o Wiring. The provisioned ESB must support the integration with the main communica-
tion technologies and protocols (i.e. Web Services, SQL, SMTP, etc.) in order to provide
a desirable platform for the application.

e Remote access and control. Remote management and usage of the framework must be also
enabled. The administrator must be able to control the deployed system with simple
but powerful tools.

45

4. Concept and Specification

o Administration interfaces. A REST API or Command Line Interface must be provided for
the system administrator.

e Global and coarse grained monitoring. As we must deploy several ESB instances inside
of containers running in a determinate host machine, the system must monitor in a
container level and in a host level by a light and non-intrusive way.

4.1.2. Non-functional Requirements

o Web scalability. The system must be able to scale and work with a dynamic number of
ESB instances and host machines.

o Failure resilient applications that isolate themselves from common failure scenarios. For exam-
ple if one of the hosts goes down, the system must be able to recover itself and adapt to
the new situation.

o Multitenancy. The must support multitenancy [64], defined in our case as “the sharing of
the platform at the same time by different tenants and their corresponding users without any
kind of collision and with the same QoS”.

e Isolation between ESB instances. The ESB instances should run in isolation in order to
ensure multi-tenancy.

e Easy installation. The software must be easily installed and configured in order to deploy
new host machines rapidly.

o Low resource intensity. Each component of the system should use the minimal necessary
resources (storage, network, CPU, memory, storage, etc.). This is important because
the new system must be able to have as many current users as possible and it might
be deployed in another Cloud provider like Amazon EC2 where the user pays for the
resources he uses.

o Built with well supported technologies. This feature must be included for future modifica-
tion or extensions of the source code.

4.1.3. Monitoring Requirements

On the other hand, we want to specify further the monitoring requirements that our monitor-
ing tool should fulfill. The monitoring tool we need in our system must gather the information
about both, host machines and deployed VMs. It must be lightweight and not-intrusive with
the rest of the framework and it must be able to collect and provide monitoring information
about all the machines and VMs deployed in the cluster. All the features that must be included
are the following:

e Operating system level monitoring. The monitoring will be present in the Operating
System level, and it must collect information about CPU, memory and network usage.

46

4.2. Use Cases and Roles

Monitoring host and guest. The monitoring tool must get information about the physical
hosts and about the virtual machines which encapsulate the ESB instances.

Scalability. The monitoring software must be able to add new machines rapidly without
disturbing the rest of the system.

Light monitoring. The monitoring overhead must not affect the performance of the whole
system.

Export monitoring data. It must be able to export in standard formats like JSON or XML.

4.2. Use Cases and Roles

In our system two kind of roles are defined, administrator and developer roles. The adminis-
trator is the provider of the platform and the developer is the one who specializes an ESB
instance based on the application requirements. This section first provides a description of
what each one of these roles can do within the platform. Finally, all the use cases that must be
covered in the framework are described in detail.

4.2.1. Administrator Role
The administrator makes use of the following functionalities with total power, no matter who
is the owner of the instance or image.

o Image control. The administrator must be able to create and remove the images which
contain the specialized ESB instances.

e Instance control. The administrator can remove, create, run or stop instances with no
restriction. Additionally, the administrator is able to migrate these instances to another
machines in the cluster.

o Information. The administrator can list all the running machines and ESB instances in
the cluster and their information. For example, he can see the location of machines and
instances. The monitoring information must be also included.

e User control. The administrator can remove an user and all his elements (i.e. instances,
configurations, etc.). He can add or update users in the system too.

4.2.2. Developer Role

The developer owns a set of ESB instances and configurations. He has complete control only
over his own instances and configurations, not over other user’s elements.

e Instance control. He can create, destroy, run or stop his own ESB instances.

47

4. Concept and Specification

o Backups download. The possibility of downloading the ESB instance data must also be

included.

e Information. The ESB instances data containing ports, addresses, configuration and other
parameters are given to the developer. The monitoring information about running ESB
instances must be also included.

e Remote access. A method to access remotely to the instances must be provided. Through
this remote access, the developer can manage his ESB instances.

4.2.3. Use Cases Description

From all the functional and non-functional requirements of the system in Section 4.1, we
extract the uses cases that our framework must support. Figure 4.1 depicts a use case diagram
and detailed information about each one of the referred use cases is given afterwards.

Developer

SYSTEM

Build
Specialized ESB
image

Migrate ESB
instance

Download ESB
instance image

Create ESB
instance

Stop ESB

Remove user

Remove ESB
instance

Get ESB
instance
information

Monitor ESB
instance

Run ESB
instance

Administrator

Figure 4.1.: Specialized ESB framework use cases

48

4.2. Use Cases and Roles

Name Add User
Goal The administrator wants to add an user to the system
Actor Administrator

Pre-Condition

The administrator must provide the user credentials

Post-Condition

A confirmation message is returned

Post-Condition
Special Case

in

The request is refused and no other users have been added

Normal Case

1. The system receives a request with new user credentials.
2. The system checks if the user already exists.

3. The system adds the new user to the database.

Special Cases

la. The user already exists.
a) The system shows an error message and aborts.

2a. The credentials are not correct.
a) The system shows an authentication error and aborts.

Table 4.1.: Description of Use Case Add User.

49

4. Concept and Specification

Name Remove User
Goal The administrator wants to remove an user from the system
Actor Administrator

Pre-Condition

The administrator must provide the user name

Post-Condition

A confirmation message is returned

Post-Condition
Special Case

in

The request is refused and the user has been removed

Normal Case

1. The system receives a request with the user name
2. The system checks if the user exists.

3. The user is removed.

Special Cases

la. The user does not exist.

a) The system shows an error message and aborts.

2a. The credentials are not correct.

a) The system shows an authentication error and aborts.

50

Table 4.2.: Description of Use Case Remove User.

4.2. Use Cases and Roles

Name Monitor Hosts

Goal The administrator wants to get the monitoring information of a running machine
(i.e. CPU usage, memory usage,etc)

Actor Developer or Administrator

Pre-Condition The administrator must provide the ID of the machine

Post-Condition A message with the monitoring information of the requested machine is returned
Post-Condition in The request has been refused and no information is returned

Special Case

Normal Case 1. A request with the machine ID is received.

2. The system checks if the machine exists and if the requester has permission
over it.

3. The system shows the monitoring information about the requested machine.

Special Cases la. The specified machine does not exist.

a) The system shows an error message and aborts.

2a. No correct credentials are introduced.
a) The system shows an authentication error and aborts.

Table 4.3.: Description of Use Case Monitor Hosts.

51

4. Concept and Specification

Name Build Specialized ESB Image
Goal The administrator wants to build an image with some preinstalled components.
Actor Administrator

Pre-Condition

The administrator must provide the desired configuration parameters

Post-Condition

A confirmation message is returned

Post-Condition
Special Case

in

The request has been refused and the ESB Image has not been created

Normal Case

. A request with the specified configuration

The system builds the image with the specified configuration

The system shows a confirmation message

Special Cases

la.

2a.

The configuration is not valid

a) The system shows an error message and aborts.

The credentials are not correct.

a) The system shows an authentication error and aborts.

52

Table 4.4.: Description of Use Case Build Specialized ESB Image.

4.2. Use Cases and Roles

Name Create ESB Instance

Goal The developer or administrator wants to create a specialized ESB instance in the
platform

Actor Developer or Administrator

Pre-Condition

If it is the developer, he must be already registered in the system. Otherwise, the
administrator should specify the user to associate to the new ESB instance. A
correct configuration for the new instance must be specified

Post-Condition

A new ESB specialized has been created in the system and associated to the
specified user.

Post-Condition
Special Case

in

The request has been refused and the system has not built or added any new ESB
instance

Normal Case

1. The developer or administrator request a new ESB instance with a specific
configuration.

2. The system checks if there is a already image built for this instance in the
whole system. In that case, it will associated one to user. Otherwise, the
system builds the image first.

3. The new image is stored.

4. A new ESB Instance is created from the image, stored and assigned to its
owner .

Special Cases

la. The configuration specified is not correct.
a) The system shows an error message and aborts.
2a. The requester does not have the necessary rights in the system or the
credentials introduced are incorrect

a) The system shows an authentication error and aborts.

Table 4.5.: Description of Use Case Create ESB Instance.

53

4. Concept and Specification

Name Get ESB Instance Information

Goal The developer or administrator wants to get the information of an existing ESB
instance (i.e. ports, IP address, configuration, etc.)

Actor Developer or Administrator

Pre-Condition

The requester must specify the ID of the ESB instance and he must have permis-
sion over it

Post-Condition

A message with the information of the requested ESB instance is returned

Post-Condition
Special Case

in

The request has been refused and the ESB instance is not built

Normal Case

1. A request with the ESB instance ID is received.

2. The system checks if the ESB instance exists and if the requester has permis-
sion over it.

3. The system shows the information about the requested ESB Instance.

Special Cases

la. The specified ESB instance does not exist.
a) The system shows an error message and aborts.
2a. The requester does not have the necessary rights in the system or the
credentials introduced are incorrect

a) The system shows an authentication error and aborts.

54

Table 4.6.: Description of Use Case Get ESB Instance Information.

4.2. Use Cases and Roles

Name Run ESB Instance

Goal The developer or administrator wants to run an existing ESB instance.

Actor Developer or Administrator

Pre-Condition The requester must specified the ID of the ESB instance and he must have

permission over it

Post-Condition The instance starts and it is ready to used on the system. The requester gets a
response with the execution parameters.

Post-Condition in The request has been refused and the ESB instance is not launched.

Special Case

Normal Case 1. A request with the ESB instance ID is received.

2. The system checks if the ESB exists and if the requester has permission to
launch it. In that case the instance starts.

Special Cases la. The specified ESB instance does not exist.

a) The system shows an error message and aborts.
2a. The requester does not have the necessary rights in the system or the
credentials introduced are incorrect.

a) The system shows an authentication error and aborts.

Table 4.7.: Description of Use Case Run ESB Instance.

55

4. Concept and Specification

Name Monitor ESB Instance

Goal The developer or administrator wants to get the monitoring information an
existing ESB instance (i.e. CPU usage, memory usage,etc.)

Actor Developer or Administrator

Pre-Condition The requester must specify the ID of the running ESB instance and he must have
permission over it

Post-Condition A message with the monitoring information of the requested ESB instance is
returned

Post-Condition in The request has been refused and no information is returned

Special Case

Normal Case 1. A request with the ESB instance ID is received.

2. The system checks if the ESB exists and if the requester has permission over
it.

3. The system shows the monitoring information about the requested ESB
instance.

Special Cases la. The specified ESB instance does not exist or it is not running.

a) The system shows an error message and aborts.
2a. The requester does not have the necessary rights in the system or the
credentials introduced are incorrect.

a) The system shows an authentication error and aborts.

Table 4.8.: Description of Use Case Monitor ESB Instance.

56

4.2. Use Cases and Roles

Name Migrate ESB Instance
Goal The administrator wants to move a running ESB instance to another machine.
Actor Administrator
Pre-Condition The administrator must provide ID of the running instance
Post-Condition A confirmation message is returned
Post-Condition in The request has been refused and the ESB instance is not migrated.
Special Case
Normal Case 1. The system receives a request with the ID of the instance and machine.
2. The system checks if the instance exists.
3. The system stops the running instance.
4. The instance state is saved.
5. The system chooses the new destination machine.
6. The instance is downloaded in the new machine.
7. The system starts the instance in the new machine.
Special Cases la. The ESB instance is not found.

a) The system shows an error message and aborts.

2a. The credentials are not correct.

a) The system shows an authentication error and aborts.

2b. The ESB instance is not running.

a) The system shows an error message and aborts.

Table 4.9.: Description of Use Case Migrate ESB Instance.

57

4. Concept and Specification

Name Stop ESB Instance
Goal The developer or administrator wants to stop a running ESB instance.
Actor Developer or Administrator

Pre-Condition

The requester must specify the ID of the ESB instance and he must have permis-
sion over it

Post-Condition

The instance is stopped.

Post-Condition in
Special Case

The request has been refused and the ESB instance is not stopped.

Normal Case

. A request with the ESB Instance ID is received.

The system checks if the ESB exists and if the requester has permission over
it, the instance state is saved.

The instance is stopped.

The system shows a confirmation message.

Special Cases

la.

2a.

2b.

The specified ESB instance does not exist.

a) The system shows an error message and aborts.
The requester does not have the necessary rights in the system or the
credentials introduced are incorrect

a) The system shows an authentication error and aborts.

The ESB instance is not running.

a) The system shows an error message and aborts.

58

Table 4.10.: Description of Use Case Stop ESB Instance.

4.2. Use Cases and Roles

Name Download ESB Instance Image

Goal The developer or administrator wants to download the image of an existing ESB
instance.

Actor Developer or Administrator

Pre-Condition The requester must specify the ID of the ESB instance and he must have permis-
sion over it

Post-Condition The instance is downloaded in a compressed file.

Post-Condition in The request has been refused and the ESB instance cannot be downloaded

Special Case

Normal Case 1. A request with the ESB instance ID is received.

2. The system checks if the ESB exists and if the requester has permission over
it. In that case the requester receives a file containing the instance.

Special Cases la. The specified ESB instance does not exist.

a) The system shows an error message and aborts.
2a. The requester does not have the necessary rights in the system or the
credentials introduced are incorrect

a) The system shows an authentication error and aborts.

Table 4.11.: Description of Use Case Download ESB Instance Image.

59

4. Concept and Specification

Name Remove ESB Instance

Goal The developer or administrator wants to remove an existing ESB instance.
Actor Developer or Administrator

Pre-Condition The requester must specify the ID of the ESB instance and he must have permis-

sion over it

Post-Condition The instance is removed.

Post-Condition in The request has been refused and the ESB instance is not removed.
Special Case

Normal Case 1. A request with the ESB instance ID is received.

2. The system checks if the ESB exists and if the requester has permission over
it.

3. The ESB instance is stopped if it is running.
4. The ESB instance and all its information in the cluster are deleted.

5. The system shows a confirmation message.

Special Cases la. The specified ESB instance does not exist.

a) The system shows an error message and aborts.
2a. The requester does not have the necessary rights in the system or the
credentials introduced are incorrect

a) The system shows an authentication error and aborts.

Table 4.12.: Description of Use Case Remove ESB Instance.

60

4.3. System Overview

4.3. System Overview

After describing all the desired use cases and requirements, we propose a system architecture
which aims at fulfilling all of them. The presented system is a framework able to deploy
multiple ESB instances with a determinate configuration for multiple tenants. The architecture
of this system is shown in Figure 4.2 and each one of its components are described in the
remaining of this section. A more detailed description is given in Chapter 5.

Registry
——

Monitor

Image
storage

Controller |4

ESB Intances Uao
o —_— configuration . :
Specialized ESB | ™ | 77T fmmmmmmmmmmemmms '{-_x
Cluster Developers

Figure 4.2.: Specialized ESB framework architecture

ESB Image

An ESB Image is the VM template which contains a preconfigured ESB package inside. These
images must be built first with a determinate configuration specified by a configuration
description file. After they are built, the ESB images include all the required ESB features or
components and other parameters regarding the resource usage. These images are ready to
be launched and they are used to launch new ESB instances.

ESB Instances

We refer as ESB Instance to the component able to contain the ESB package (i.e. ServiceMix)
and run in the system. Therefore, a ESB instance can contain several subcomponents inside
in order to be able to run in the cluster and handle some additional tasks. For example, it
can include a component to report if the ESB software is running or not or a component
to store the ESB instance data periodically. Besides, each ESB instance is launched from an
existing and preconfigured base image from the image storage component. A cluster of hosts
is deployed in other to enable resource scalability and adaptability to the system. The ESB
instances are distributed through the cluster and they can run in any machine.

61

4. Concept and Specification

Image Storage

The specialized ESB images are stored in an Image Storage registry, including base images
and images of running ESB instances. These images can be created, pulled or pushed from
each host of the cluster, and therefore, the image storage must be reachable from all the host
machines.

Registry

The Registry holds all the information about the system execution (existing ESB instances,
monitoring information, ESB images, etc.). The registry must be a synchronized distributed
system also reachable from all the hosts in the cluster.

Controller

The Controller component coordinates the cluster deployment. It distributes the ESB instances
through the different nodes of the cluster, and it migrates the running instances in case a
machine shutdowns to the remaining machines in the cluster. The main function of this
component is the ESB instance scheduling and rescheduling. However, it controls also that
each a specific ESB instance is actually running or not and its launch and removal from the
system.

Monitor

The Monitor gathers all the information about the resource usage of the running ESB instances
and the hosts in the cluster (i.e. CPU, memory, etc.). It makes this information available to the
rest of the components.

REST API

The REST API is the interface to interact with the system. It must provide methods to get
information and to interact with the monitor, image storage and controller. Through this
interface the administrator and developers must be able to manage all the ESB instances
in the cluster (i.e. building, creation, removal, etc.). It is the interaction point between the
administrator and the developer with the system.

62

5. Design

This work adopts and uses as its basis a container virtualization approach proposed in [32].
The reason is that all the containers we deploy are ESB instances which have the same OS
and libraries (i.e. Java, Maven, etc.) and with container virtualization libraries and OS are
shared between different VMs. Hence, they are shared between all the ESB instances in a
machine and consequently, the provisioning overhead (and therefore the resource usage due
to provisioning tasks) is much lower. Another reason to select container virtualization is that
containers usually can start and stop faster than other traditional virtualization technologies,
something relevant for our work where plenty of ESB instances must be started and stopped
continuously and rapidly. Moreover, a rapid migration of ESB instances is necessary in our
system. Containers can be migrated and run in other machines in an easier and lighter way
than other kinds of virtualization such as hypervisor-based virtualization or full virtualization.
For instance, as containers share libraries and OS, in their migration, libraries and OS must be
moved only once, no each time a container is migrated.

In the remaining of this section we depict the components present in the system architecture,
and how they must work to achieve our objectives. We start from the ESB characterization,
going though all the artifacts to deploy ESB instances in a reusable and efficient way, and we
finish presenting the tools to interact with the system.

5.1. ESB Instances Characterization and Configuration

ESB solutions are not typically shipped as light weight packages, as they are constituted by
multiple components or features that are plugged to the middleware container. However, each
one of these components increments the overhead and the resource usage of the whole system.
Therefore, the provisioning overhead of a non-characterized ESB is directly proportional to
the number of components that constitute such a middleware and using only the required
components is a important aspect for the system efficiency. Therefore, during this section
we focus on ESB characterization and later we enable the means to configure rapidly ESB
Instances.

5.1.1. ESB Characterization

In the first part of this work we aim to investigate the means to simplify the process of
building specialized ESB instances. The number of artifacts included can be huge and the task
of identifying the ESB components that an application really requires can be a really complex
process. For this purpose, we first build a taxonomy for each one of the supported ESBs. The

63

5. Design

Figure 5.1 depicts the main categories that after our analysis we propose to be the first step
in the ESB features classification. Additionally, we want to give a brief description of each
one of these general categories:

Validation: includes all the components related to validation of the exchanged data (i.e.
JSON Schema, XML schema, etc.).

Management & Orchestration: contains all the features associated with the ESB manage-
ment and orchestration of its different components.

Message handlers: includes components to control the exchanged messages inside of the
ESB.

Communication: is the widest category, it includes components destined to allow the
communication based on different protocols or shapes (i.e. Email, Jabber, HTTP/HTTPS,
etc).

Message transformers: holds components to change the shape of the exchanged messages
(e.g. JSON to XML marshal).

Storage: involves all the features related to the storage management (i.e. SQL, NoSQL,
Cache, etc.).

Routing: features destined to route messages or requests are contained here (i.e. Apache
Camel, NMR, etc.).

Security: all the features related to security aspects must be located in this category (i.e.
signatures, cryptography, etc.).

Message Handlers
Routing

Validation

ESB Features

Communication

Security

Message Transformers

& Orct ion

Figure 5.1.: ESB taxonomy main categories

The amount of potential components within an ESB is unlimited with all the already included
in the package and the ones created by the users, and it is completely necessary to assist
developers in the task of selecting which concrete components are needed for their appli-
cations. Therefore, this previous classification is a crucial aspect to simplify the task of ESB
configuration.

64

5.1. ESB Instances Characterization and Configuration

5.1.2. Characterized ESB Instance Creation Sequence

This section shows how a specialized ESB instance can be created and configured. We propose
a sequence of steps to perform such configuration. We distinguish several aspects to configure
an ESB as already installed components, parameters related to resource usage or network
access options. The steps we propose are detailed next:

1.

Identify the system requirements. The developer must investigate which components and
communication protocols are present in his application. Additionally, there may be
some resource limitation in his system he should identify.

. ESB software. The second step is selecting the base ESB software that it will be used

between all the supported ones in the platform (e.g. ServiceMix, Mule, Fuse ESB, ect.).

. Features configuration. Each instance can start up with a series of preinstalled ESB features

or components. They must be installed during the image building. For example, an ESB
can contain features to support SQL or HTTP.

. Custom components configuration. The user can install also components created by himself

in the base images. These components must be only accessible by their owner.

. Resources configuration. Some properties about resource usage can be configured usually

in configuration files (i.e. JVM memory usage, features repositories, etc.).

. Labels. The labels are only a list of tags for the ESB instance in order to identify the

ESB instances rapidly. For example, a ESB instance could be tagged as "region=west,
department=sales".

. Network access configuration. The exposed container ports of the instance can be defined

also by the user. All the ports the developers wants to use must be first registered
to be able to use them. These ports are mapped with host ports when the instance is
running. The user must check this mapping in order to discover which container ports
are associated with which host ports. A new IP address is assigned to ESB instance
when it starts.

Requirements

Identification of the Idenfication of the
required components of [| resources requirements
the system (optional)

/

Custom
selection selection (soiﬁgtr:gg (optional) (optional) parameters

-

Figure 5.2.: The characterization process

65

5. Design

5.1.3. ESB Image Building

After the configuration identification process, an image is built from a configuration and
stored in the image storage. The definition of ESB image is given in Section 4.3. After they
are built, developers can launch as many ESB instances from these images as they want. In
Figure 5.3 we can see how the image is created from a specific configuration and used to
launch several containers with the ESB package already installed and configured.

Configuration

<ESB>
Labels ()
Ports
Features ESB
Resources container

——
&)
ESB
ESB Image container

~—
'S

ESB
container

ESB package

os

—
'S

ESB
container

—

Figure 5.3.: Running several specialized ESB instances from an ESB image

5.2. ESB Instance

An ESB instance described in Section 4.3 has two states: stopped and running. When an ESB
instance is stopped, it is only stored as an ESB image in the image storage, otherwise it is
constituted by two different components, a container and a minion. The container runs in the
first launch as a copy of an ESB base image in the image storage, and when it is stopped, its
state is committed and pushed to the image storage again (see Figure 5.5). The state of an
ESB instances must be stored after it is stopped in order to launch it again in same conditions.
Besides, its state must be stored during its execution to avoid data lost in case of failure.

On the other hand, we have the minion component. The minion component has been created
in order to manage all the tasks to run the ESB instance in a system with a cluster deployment.
It performs tasks such as ESB instance registration, network data publication, or periodically
committing the state of the running container which holds the ESB package. The minion is an
internal component of the system and it is totally invisible to the developer.

66

5.3. Image Storage

()

Running ESB Instance

ESB Container

ESB Package
(OF]

minion

- J

Figure 5.4.: Running ESB instance components
5.3. Image Storage

The Image Storage holds all the ESB images, both base images and images of existing ESB
instances state. These images can be created, pulled or pushed from the each host of the
cluster, and it works as a repository storing only the difference between images to avoid
the transference of duplicated data. The image storage must be aside of the rest of the
components, or in a remote location, but it must be reachable from all the machines in the
cluster.

e —

Image
Storage

©
s

Base
ESB ESB
image state

Figure 5.5.: Image storage with ESB images and ESB state images

5.4. Host Machines & Cluster Deployment

The host machines are organized in a cluster which must be deployed in order to enable
resource scalability and adaptability of the system. A machine can host multiple ESB instances,
which can be migrated from one machine to another in the cluster. The cluster is constituted
by a leader machine and follower machines. Commonly the term master is used for what we

67

5. Design

call leader, and slaves for the followers. The leader is the one which performs the management
tasks (i.e. scheduling, service control, etc.). A new leader is selected periodically between
all the running machines in order to avoid the overload of one of them. The idea is that
all the machines should be identical to enable the elasticity of the system. They have the
same configuration and responsibility in the cluster. If new machines are added into the
cluster, they are also selectable to be the next leader. In case the leader machine shutdowns,
a new leader is selected and the system keeps working without any problem. In addition,
there is not a dedicated machine for orchestration, all the machines in the cluster run ESB
instances and perform such orchestration and have the same responsibility to ensure the
good performance of the system. For example, all the machines perform scheduling and
rescheduling tasks when they are the leader. In contrast, if a centralized-solution would be
used, we should find new means to face the failure of the master machine, which would be
reserved for orchestration tasks and which should be known for the rest of the nodes in the
cluster.

]

Leader

Figure 5.6.: Roles of machines in the cluster

On the other hand, to allow the fast deployment and plugging of new machines into the
cluster, all the cluster management components of the system are deployed as distributed
applications running in each one of the machines. Each one of these artifacts running in the
machine are called agents. Each machine of the cluster has different agents installed to interact
with the distributed components. Agents to interact with each one of the components of
the system (i.e. Controller, Monitor, Registry, etc) are included. These agents can be seen in
Figure 5.7. Additionally, the REST APl is installed and runs in all the hosts.

5.5. Registry

The Registry is a distributed key-value stored which contains all the information related to
the entire system. It is accessible and synchronized through the whole cluster. It includes the
information about existing ESB instances, ESB images, machines, etc. The relationship and
attributes of these entities can be seen in Figure 5.8.

An ESB instance, as it is shown in Figure 5.8, is the central component also of the data model
which represents our system. It has some properties as its creation time or state. The state of

68

5.5. Registry

HOST MACHINE
REST API

Registry Agent

Controller Agent

Monitoring Agent

Virtualization Agent

| J

Figure 5.7.: Agents and components installed in a host machine

Property

N

User

N
0 Parameter
ESB
Software
Component Base
Custom Image
Component

Description
Feature

@ Cathegory

Figure 5.8.: Entity-Relationship diagram

one ESB instance only admits the following values: stopped, starting, running and stopping.

69

5. Design

An ESB instance can be tagged with several Labels, defined by their key and value. For
example, an ESB instance can be tagged as "country=spain" or "department=sales". An ESB
instance is created from an ESB Configuration, which can be assigned to many instances. In
addition, a ESB instance contains a collection of Port Bindings, which contain two attributes:
a Container Port, and a Host Port. A container port defines the port designated to the ESB
instance running inside a container. In contrast, the host port is the port assigned to this
container port in the running host machine.

An ESB Configuration is defined by the User, and exclusively belongs to him. It includes a
set of parameters and a field to identify the base ESB image which is used when a new ESB
instance is created. An ESB configuration also includes a set of components, which are the
features that are installed in the base image of the ESB instance by default. A Component can
be shipped by the ESB software provider, or can be developed and customized by an user.
A Custom Component belongs to a specific user and it must include name and description to
be identified unequivocally by its owner. Additionally, its content must be saved inside of
the registry component to include it in the new ESB images. For its part, a Feature belongs
to the ESB software provider, it is defined by its name, category, properties and description.
The Features must be installed in the base image building. Their category and properties
are defined by the ESB taxonomy, as we mention in Section 5.1.1. They must also include a
description to facilitate their selection in the configuration process.

Regarding the machines running in the cluster, all the running ESB instances are located
in one machine and can be migrated to other one at any time. A Machine is defined by its
IP address and role. It belong to a Cluster. A cluster has a leader machine and the other
machine are its followers. This leader/follower relationship defines the attribute role in the
machine entity and it can be used for cluster orchestration, where the leader can manage the
rest of the machines to assure a good system performance. A User is determined by its user
ID, password and other parameters (i.e. email, city, country, etc.). It also owns a set of ESB
configurations, custom components and ESB instances.

In summary, an user owns a set of ESB configuration and custom components, which are used
to build and launch new ESB instances. The ESB instances, which include all the necessary
components and parameters, run in a specific machine. Finally, the machines are organized in
a cluster where one of them is the leader, which can perform orchestration tasks. A description
of the most relevant entities in the ER Diagram, Figure 5.8, is given in form of JSON schemas
in Appendix A.

Figure 5.9 depicts the registry which persists the monitoring information. The Monitoring
Data defined by its timestamp includes a set of Parameters related with monitoring data
(i.e. CPU, memory, network,etc.). This monitoring information comes from a running ESB
instance or a host machine.

70

5.6. Controller

zZ

Data | has Parameter

-

Figure 5.9.: Monitoring Entity-Relationship diagram according to the Chen’s notation

{Monitoring) N i J
S

5.6. Controller

The Controller is the most complex component in the system, it performs different tasks such
as scheduling or service management, and it interacts with the other components in the
system. It contains three different components to achieve these tasks: Scheduler, Manager and
Health. These components are shown in Figure 5.10 and their behavior is explained in the
following sections.

Controller

Scheduler

Manager

Health

Figure 5.10.: Controller structure

5.6.1. Health

The Health component is responsible for analyzing machine monitoring information retrieved
from the monitoring component (see Section 5.7) and communicating the machine state.
This component decides in which state is the machine based on data about CPU, memory or
network usage, and it broadcasts the machine state to the manager and scheduler components.
The health component identifies four different states for a machine:

e Idle: the usage of the machine is low, and therefore the usage of the underlying cluster
resources is not maximized. If a machine is in this state, it should be shutdown to
streamline the use of resources and hence, the costs.

e Normal: this state appears when a machine uses a correct amount of resources, but it
can hold more ESB instances.

71

5. Design

e Busy: a machine is busy when it has enough spare resources for the currently running
ESB instances but can not hold any more.

o Critical: this state appears when the machine cannot assure the QoS of the running ESB
instances. This state could be used to perform tasks as rescheduling, migrations or
machine provisioning.

The health component must update machine state periodically, and in that way, the scheduling
and management components can make use of that information to do their corresponding
tasks. Additionally, the health component also updates the information about if the host
machine is the leader or not.

5.6.2. Manager

The Manager component is responsible for the supervision of the ESB instances state. It
supervises if they are actually running or if any kind of problem appears. For instance, if
there is problem with the ESB instance and it stops, the manager component restarts it again.
Other case is when the host machine fails, then the Manager relaunch the ESB instance in
other machine in the cluster. Besides, it handles the restart or permanent removal of ESB
instances. Additionally, the manager component interacts with other artifacts in the system.
For example, it removes an ESB image if it is not longer required from the image storage.

5.6.3. Scheduler

— (‘iueued \ E
ESB .

Instances
D Queue

VA

Machine Machine

Machine

Figure 5.11.: Scheduling of ESB instances

The Scheduler component handles the distribution of the ESB instances through the different
machines which constitute the cluster. The scheduling algorithm is a combination of different
criteria. In order to select the destination machine, the scheduler component decides which
of the machine is the least loaded as it is shown in Figure 5.11 where the first instance is
assigned to the second machine because it has less ESB instances running. In Figure 5.11, we

72

5.6. Controller

can also observe that if there are not enough available resources to allocate an ESB instance,
this is queued and launched later when the situation changes. The queue is potentially infinite
and if this situation appears new VMs resources might be created. However, our system does
not address this situation, but it enables the inclusion of such a solution in the future. The
scheduling choice is performed in two phases:

(idle) (normal) (busy) (critical)

machine machine machine machine

Figure 5.12.: Scheduling based on machine states

1. The scheduler component checks the state of the machines, as we defined in Section
5.6.1, and in case there are machines with resources to launch a new ESB instance
(machines in state idle or normal) the instances are allocated in one of these machines
(see Figure 5.12). Otherwise, if all the machines are in busy or critical states, the instance
is queued until one of the machine is again available, Figure 5.11.

2. The scheduler component chooses between all the available machines the one with
more free resources. This one would be the one with the most relaxed state, and if
there are more than one with this state, the one which has less ESB instances already
deployed as it is shown in Figure 5.11.

OO0 TN
N

Machine Machine Machine

AN

ESB Instances I | I | I | I

L]

Machine Machine

Figure 5.13.: Migration of ESB instances in case of machine overloaded

The scheduler component can react in some problematic cases rescheduling the running ESB

73

5. Design

instances. Two different cases are addressed, when failure or when a machine runs out of
resources. In case of a machine shutdowns or fails, the running ESB instances are scheduled
to the other machines in the cluster, as we can see in Figure 5.13. The other case when the
instances are migrated, it is when a machine is out of resources, in a “critical” state as we have
defined (see Figure 5.14).

O
Instances

Machine Machine Machine

Figure 5.14.: Migration of ESB Instance in case of machine overloaded

5.7. Monitor

The Monitor gathers resource usage information (CPU, memory, network, etc.) from running
containers which host ESB instances and from host machines. The monitor component is
installed in each one of the machines and the collected data is stored in a local database inside
of them. The recorded information is provided through a REST API and in that way, other
components can use it as the health and manager components.

There is not a central database with all the monitoring information of the machines. In
contrast the information must be aggregated by the components which want to use it. For
example, the Health component, as we have already mentioned, collects data from each one
of the hosts, and processes it to discover the state of the machines in the cluster.

5.8. REST API

The REST API makes possible the control of the whole system by remote HTTP requests.
There are two different REST APIs, one for the administrator and other one for the developers.
A summary of the supported operations in the REST API is shown in Figure 5.1.

Name User Description

List Features Administrator This outputs a list of available features.
and Developer

Features Tree Administrator Search through the feature characterization
and Developer tree.

List Machines Administrator This outputs a list with all the running ma-

chines in the system.
Get Machine Administrator This outputs the machine information.

74

5.8. REST API

Get Machine Monitor- | Administrator This outputs the machine monitoring infor-

ing Info mation.

Add New User Administrator This creates a new user in the system.

Update User Administrator This updates the properties of an existing
user.

Get User Administrator This outputs the information of the user.

List Users Administrator This outputs a list with all the users in the
system.

Remove User Administrator This removes an existing user and all his be-
longings.

Build Image Administrator Builds an image with a specialized ESB in-
stance.

Add New Configura- | Developer This creates a new configuration associated

tion with the developer.

Update Configuration | Developer This updates the properties of an existing
configuration.

Get Configuration Developer This outputs a configuration.

List Configurations Developer This outputs a list with all the configuration
of the developer.

Remove Configuration | Developer This removes an existing configuration.

Create New Instance | Administrator This creates a new instance with the specified

and Developer

configuration associated with the specified
Developer.

Get Instance Administrator This outputs the information of the ESB in-
and Developer stance.

List Instances Administrator This outputs a list with all the ESB instances
and Developer of the user or the system.

Start Instance Administrator This starts an existing instance.

and Developer

Get Instance Monitor-
ing Info

Administrator
and Developer

This outputs the monitoring information of
the ESB instance.

Move Instance Administrator Moves a running instance to another machine
with more resources.
Stop Instance Administrator This stops a running instance.
and Developer
Download Instance Developer With this method a tar file with the instance
image can be downloaded.
Delete Instance Administrator This removes an existing ESB instance.

and Developer

Table 5.1.: REST API summary

75

5. Design

5.8.1. Administrator REST API

Method List features

Authorized users Administrator

Description This outputs a list with the available features
HTTP Request GET /admin/feature

URI params -

Query params e value: value to search

o criteria: specifies which attribute of the feature must be checked. If not
criteria is defined, the search takes a look along all the attributes.

Post params -

Response Array with the matching features

Error responses e 500 Internal Server Error

Table 5.2.: Description of REST method List features for Administrator.

Method Features Tree

Authorized users Administrator

Description Search though the feature characterization tree
HTTP Request GET /admin/feature

URI params -

Query params e node: name of the tree node

Post params -

Response Array with the children of the node

Error responses e 404 Not Found

o 500 Internal Server Error

Table 5.3.: Description of REST method Features Tree for Administrator.

Method List machines

Authorized users Administrator

Description This outputs a list with all the running machines in the system
HTTP Request GET /admin/machine

76

5.8. REST API

URI params -

Query params -

Post params -

Response Array with all the machines in the cluster

Error responses o 500 Internal Server Error

Table 5.4.: Description of REST method List machines for Administrator.

Method Get machine

Authorized users Administrator

Description This outputs the machine information
HTTP Request GET /admin/instance/{id}

URI params

e id : identification of the requested machine

Query params -

Post params -

Response Returns machine object

Error responses e 500 Internal Server Error

e 404 Not Found

Table 5.5.: Description of REST method Get machine for Administrator.

Method Get machine monitoring info

Authorized users Administrator

Description This outputs the machine monitoring information
HTTP Request GET /admin/machine/{id}/stats

URI params e id : identification of the machine

Query params -

Post params -

Response Returns monitoring data

Error responses e 500 Internal Server Error

e 404 Not Found

77

5. Design

Table 5.6.: Description of REST method Get machine monitoring info for Administrator.

Method

Add new user

Authorized users

Administrator

Description This creates a new user in the system.
HTTP Request POST /admin/user

URI params -

Query params -

Post params

User object

Response

201 Created

Error responses

o 500 Internal Server Error

e 400 Bad Request

Table 5.7.: Description of REST method Add new user for Administrator.

Method

Update user

Authorized users

Administrator

Description This updates the properties of an existing user
HTTP Request PUT /admin/user/{id}

URI params e name : identification of the user

Query params -

Post params

User object

Response

200 OK

Error responses

e 500 Internal Server Error
e 404 Not Found
o 400 Bad Request

Table 5.8.: Description of REST method Update user for Administrator.

Method

Get user

Authorized users

Administrator

Description

This outputs the information of the user

78

5.8. REST API

HTTP Request GET /admin/user/{name}
URI params e name : identification of the user
Query params -

Post params

Response

Returns an user object

Error responses

o 500 Internal Server Error

e 404 Not Found

Table 5.9.: Description of REST method Get user for Administrator.

Method

List Users

Authorized users

Administrator

Description This outputs a list with all the users in the system
HTTP Request GET /admin/user

URI params -

Query params -

Post params

Response

Array with all the users

Error responses

o 500 Internal Server Error

Table 5.10.: Description of REST method List Users for Administrator.

Method

Remove User

Authorized users

Administrator

Description This removes an existing user and all his belongings.
HTTP Request DELETE /admin/user/{name}

URI params e name : identifier of the user.

Query params -

Post params

Response

200 OK

79

5. Design

Error responses

o 500 Internal Server Error
e 404 Not Found
o 400 Bad Request

Table 5.11.: Description of REST method Remove User for Administrator.

Method Build Image

Authorized users Administrator

Description Builds an image with a specialized ESB instance
HTTP Request POST /admin/image

URI params -

Query params -

Post params

Configuration object

Response

Returns a confirmation response with the ID of the new image and 200 OK

Error responses

e 500 Internal Server Error

o 400 Bad Request

Table 5.12.: Description of REST method Build Image for Administrator.

Method Create New Instance

Authorized users Administrator

Description This creates a new instance with the specified configuration associated with the
specified Developer

HTTP Request POST /admin/action/new/instance

URI params -

Query params e owner : user name to be the owner of the instance

Post params

Configuration object

Response

Returns a new instance object

Error responses

o 500 Internal Server Error

o 400 Bad Request

80

Table 5.13.: Description of REST method Create New Instance for Administrator.

5.8. REST API

Method Get Instance

Authorized users Administrator

Description This outputs the information of the ESB instance
HTTP Request GET /admin/instance/{id}

URI params

e id : identification of the requested instance

Query params -

Post params -

Response Returns an ESB instance object

Error responses e 500 Internal Server Error

e 404 Not Found

Table 5.14.: Description of REST method Get Instance for Administrator.

Method List Instances

Authorized users Administrator

Description This outputs a list with all the ESB instances in the system

HTTP Request GET /admin/instance

URI params -

Query params -

Post params A query with the user labels can be specified in order to filter the search
Response Array with all the intances objects of the user

Error responses e 500 Internal Server Error

Table 5.15.: Description of REST method List Instances for Administrator.

Method Start Instance

Authorized users Administrator

Description This starts an existing instance
HTTP Request PUT /admin/instance/{id}/start
URI params

o id : identification of the requested instance

Query params -

Post params -

81

5. Design

Response 200 OK

Error responses e 500 Internal Server Error

e 404 Not Found

Table 5.16.: Description of REST method Start Instance for Administrator.

Method Get Instance Monitoring Info

Authorized users Administrator

Description This outputs the monitoring information of the ESB instance
HTTP Request GET /admin/instance/{id}/stats

URI params

e id : identification of the requested instance

Query params -

Post params -

Response Returns monitoring data

Error responses e 500 Internal Server Error

e 404 Not Found
e 400 Bad Request

Table 5.17.: Description of REST method Get Instance Monitoring Info for Administrator.

Method Move Instance

Authorized users Administrator

Description Moves a running instance to another machine with more resources
HTTP Request PUT /admin/instance/{id}/move

URI params o id : identification of the requested instance

Query params -

Post params -

Response 200 OK

Error responses o 500 Internal Server Error

e 404 Not Found

Table 5.18.: Description of REST method Move Instance for Administrator.

82

5.8. REST API

Method Stop Instance

Authorized users Administrator

Description This stops a running instance

HTTP Request PUT /admin/instance/{id}/stop

URI params e id : identification of the requested instance
Query params -

Post params -

Response 200 OK

Error responses o 500 Internal Server Error

e 404 Not Found

Table 5.19.: Description of REST method Stop Instance for Administrator.

Method Delete Instance

Authorized users Administrator

Description This removes an existing instance

HTTP Request DELETE /admin/instance/{id}

URI params e id : identification of the requested instance
Query params -

Post params -

Response 200 OK

Error responses o 500 Internal Server Error

e 404 Not Found

Table 5.20.: Description of REST method Delete Instance for Administrator.

5.8.2. Developer REST API

Method List Features

Authorized users Developer

Description This outputs a list of available features.
HTTP Request GET /feature

83

5. Design

URI params

Query params

e value: value to search

o criteria: specifies which attribute of the feature must be checked. If no
criteria is defined, the search takes a look along all the attributes.

Post params

Response

Array with the matching features

Error responses

o 500 Internal Server Error

Table 5.21.: Description of REST method List Features for Developer.

Method Features Tree

Authorized users Developer

Description Searchs through the feature characterization tree.
HTTP Request GET /feature/tree

URI params -

Query params e node: name of the tree node

Post params

Response

Array with the children of the node

Error responses

e 404 Not Found

o 500 Internal Server Error

Table 5.22.: Description of REST method Features Tree for Developer.

Method

Add New Configuration

Authorized users

Developer

Description This creates a new configuration associated with the developer
HTTP Request POST /configuration

URI params -

Query params -

Post params

Configuration object

Response

201 Created

84

5.8. REST API

Error responses o 500 Internal Server Error

o 400 Bad Request

Table 5.23.: Description of REST method Add New Configuration for Developer.

Method Update Configuration

Authorized users Developer

Description This updates the properties of an existing configutation
HTTP Request PUT /configuration/{id}

URI params

e name : name of the configuration.

Query params -

Post params Configuration object

Response 200 OK

Error responses e 500 Internal Server Error

o 404 Not Found
o 400 Bad Request

Table 5.24.: Description of REST method Update Configuration for Developer.

Method Get Configuration
Authorized users Developer

Description This outputs a configuration
HTTP Request GET /configuration/{name}
URI params

e name : name of the configuration

Query params -

Post params -

Response Returns a Configuration object

Error responses e 500 Internal Server Error

e 404 Not Found

Table 5.25.: Description of REST method Get Configuration for Developer.

5. Design

Method List Configurations

Authorized users Developer

Description This outputs a list with all the configuration of the developer
HTTP Request GET /admin/user

URI params -

Query params

Post params

Response

List with all the configurations

Error responses

o 500 Internal Server Error

Table 5.26.: Description of REST method List Configurations for Developer.

Method Remove Configuration

Authorized users Developer

Description This removes an existing configuration
HTTP Request DELETE /configuration/{name}

URI params

e name : name of the configuration.

Query params

Post params

Response

200 OK

Error responses

o 500 Internal Server Error
e 404 Not Found
o 400 Bad Request

Table 5.27.:

Description of REST method Remove Configuration for Developer.

Method

Create New Instance

Authorized users

Developer

Description This creates a new instance with the specified configuration
HTTP Request POST /instance
URI params

o configuration: name of the configuration

Query params

86

5.8. REST API

Post params

Response

Returns a new ESB instance object

Error responses

o 500 Internal Server Error

e 400 Bad Request

Table 5.28.: Description of REST method Create New Instance for Developer.

Method

Get Instance

Authorized users

Developer

Description This outputs the information of the ESB instance
HTTP Request GET /instance/{id}

URI params e id : identification of the requested instance
Query params -

Post params

Response

Returns an ESB instance object

Error responses

e 500 Internal Server Error

e 404 Not Found

Table 5.29.: Description of REST method Get Instance for Developer.

Method List Instances

Authorized users Developer

Description This outputs a list with all the ESB instances of the user

HTTP Request GET /instance

URI params A query with the user labels can be specified in order to filter the search

Query params

Post params

Response

Array with all the instances objects of the user

Error responses

o 500 Internal Server Error

Table 5.30.: Description of REST method List Instances for Developer.

87

5. Design

Method

Start Instance

Authorized users

Developer

Description This starts an existing instance
HTTP Request PUT /instance/{id}/start
URI params

o id : identification of the requested instance

Query params

Post params

Response

200 OK

Error responses

o 500 Internal Server Error
e 404 Not Found
e 400 Bad Request

Table 5.31.: Description of REST method Start Instance for Developer.

Method Get Instance Monitoring Info

Authorized users Developer

Description This outputs the monitoring information of an ESB instance
HTTP Request GET /instance/{id}/stats

URI params e id : identification of the requested instance

Query params -

Post params

Response

Returns monitoring data

Error responses

o 500 Internal Server Error
e 404 Not Found
e 400 Bad request

Table 5.32.: Description of REST method Get Instance Monitoring Info for Developer.

Method

Stop Instance

Authorized users

Developer

Description

This stops a running instance

HTTP Request

PUT /instance/{id}/stop

88

5.8. REST API

URI params

o id : identification of the requested instance

Query params

Post params

Response

200 OK

Error responses

e 500 Internal Server Error
e 404 Not Found
o 400 Bad Request

Table 5.33.: Description of REST method Stop Instance for Developer.

Method

Download Instance Image

Authorized users

Developer

Description With this method a tar file with the instance image can be downloaded.
HTTP Request GET /instance/{id}/download
URI params

e id : identification of the requested instance

Query params

Post params

Response

Returns a tar file with the instance image.

Error responses

o 500 Internal Server Error

e 404 Not Found

Table 5.34.: Description of REST method Download Instance Image for Developer.

Method

Delete Instance

Authorized users Developer

Description This removes an existing instance
HTTP Request DELETE /instance/{id}

URI params

e id : identification of the requested instance

Query params

Post params

Response

200 OK

89

5. Design

Error responses o 500 Internal Server Error

e 404 Not Found
o 400 Bad Request

Table 5.35.: Description of REST method Delete Instance for Developer.

5.9. Command Line Interface

A Command Line Interface (CLI) is installed in all the machines in the cluster and it can be
used by the administrator to manage the system instead of doing it though the REST API. All
the commands and options are described in the following tables.

Command features
Description List of features
Command esb features
Options

e j: output in a JSON format

q : search by a query beetween all atributes the features

n : search features by their name

p : search feature by their category path. Ex: esb features -p communica-
tion/email

o Default: return the complete list.

Params e query: value to be search along the features.
Response List of requested elements
Table 5.36.: Description of CLI command features.
Command machines
Description This returns a list with the running machines in the cluster
Command esb machines
Options e j: output in a JSON format
Params -
Response List of requested elements

Table 5.37.: Description of CLI command machines.

90

5.9. Command Line Interface

Command users
Description List of users in the system. Add or remove users.
Command esb features
Options e add: creates a new user in the system.

e del : removes an user from the system.

o update : updates the properties of an user.

o Default: returns the complete list of users.
Params o —add user password: user and password for the new user.

o —del user: name of the user.

e —update user password: user and password of a existing user.
Response

Table 5.38.: Description of CLI command users.
Command build
Description This builds a specialized ESB image with the specified configuration
Command esb build {filename}
Options
Params e filename : path to the configuration file
Response Id of the created image
Table 5.39.: Description of CLI command build.

Command create
Description This creates a specialized ESB Instance with the specified configuration
Command esb create -u {username} {filename}
Options e -u: Owner of the new instance
Params o filename : path to the configuration file
Response Id of the created ESB instance

Table 5.40.: Description of CLI command create.

91

5. Design

Command start

Description This starts a stopped ESB instance
Command esb start {id}

Options -

Params

e id : Id of the stopped ESB instance

Response Id of the starting ESB instance

Table 5.41.: Description of CLI command start.

Command inspect

Description This returns the information of an existing ESB instance
Command esb inspect {id}

Options -

Params

e id: Id of the existing ESB instance

Response ESB instance information

Table 5.42.: Description of CLI command inspect.

Command instances
Description This returns the list of ESB instances
Command esb machines
Options e j: output in a JSON format
Params -
Response List of requested elements
Table 5.43.: Description of CLI command instances.
Command search
Description Return a list of elements which match with the labels conditions
Command esb search {label}={value}
Options -

92

5.9. Command Line Interface

Params e label: label name
o value: expected value for the specified label.
Response List of requested elements
Table 5.44.: Description of CLI command search.
Command move
Description This migrates a running ESB instance to another machine with more resources.
Command esb move {id}
Options -
Params e id : Id of the existing ESB instance
Response Id of the moved ESB instance
Table 5.45.: Description of CLI command move.
Command stop
Description This stops a running ESB Instance
Command esb stop {id}
Options -
Params e id : Id of the running ESB instance
Response Id of the stopped ESB instance
Table 5.46.: Description of CLI command stop.
Command destroy
Description This destroys an existing ESB instance
Command esb destroy {id}
Options -
Params e id: Id of the existing ESB instance
Response Id of the destroyed ESB instance

Table 5.47.: Description of CLI command destroy.

93

5. Design

94

6. Implementation

The first step in our implementation must be deciding which Enterprise Service Bus project
we should use. For this prototype we offer support for the ESB solution ServiceMix (see
Section 2.4.2). ServiceMix includes not only support for many communication technologies
and protocols (HTTP/HTTPS, SQL, SOAP, etc.), but it also enables to create and plug new
components to the existing ESB solution. They are what we previously defined as Features and
Custom Components, respectively. It has been used in multiple investigations because of these
and more properties as it is shown in the articles [64] and [4]. Moreover, the expertise gained
during the last years by using and extending ServiceMix in several projects has contributed
to deciding among which ESB solution to use in this thesis.

However, before starting with the ServiceMix characterization we should also decide the
virtualization technology involved in our work. As previously discussed, our approach is
based on container virtualization. Regarding our prototypical implementation, the virtualiza-
tion technology selected for its features has been Docker (see Section 2.3.1). Docker is a well
known and emerging container virtualization project with a simpler and lighter solution than
previous approaches (see Section 2.3). The resource usage of Docker containers is efficient
and their management is also simple. Docker v1.2 allows us to deploy multiple ESB instances
in the same machine which share OS and libraries in a efficient way.

6.1. ServiceMix Characterization

As we said previously, a taxonomy and characterization of the supported ESBs must be
performed from the beginning to facilitate the use of the platform to the developers. Therefore,
the ServiceMix features must be revised and classified starting from the general categories
we propose in Section 5.1.1. The information about our classification with the most relevant
ServiceMix features can be found in Appendix B. The developer should use the taxonomy
tree to find better which features may support a determinate protocol or tool he needs and
afterwards, check its properties and description in the features table in Figure B to make a
good decision.

The other aspect linked with the ServiceMix selection is the resource configuration. Each ESB
solution has a different set of parameters that can be configured to limit the resource usage
of the instance. In ServiceMix, we have identified the parameters that can be configured
and what should be included in a particularization of the ESB configuration schema that we
present later. All the configuration points in ServiceMix are included in configuration files in
the /etc folder of the ServiceMix package.

95

6. Implementation

Another aspect which depends on our ESB selection is how the developer can manage each
instance. In ServiceMix, there are two ways that might be sufficient for developers:

o Karaf console. The developer can connect to the Karaf console via SSH to manage the
ServiceMix instance. This console enables a CLI interface to manage the instance and
also a SSH server to copy files into the deploy folder.

e Webconsole. ServiceMix includes a Web interface for management where developers can
install or uninstalls features and bundles or other components.

After extracting the parameters dependent on ServiceMix, the ESB instance configuration
tile can therefore be described. The description of the complete ESB configuration is based
on a JSON file, and it includes all the aspects described in Section 5.1.2 plus the properties
identified after the ServiceMix analysis. The JSON schema of a ServiceMix is shown in Figure
A.5. There we can see the fields related to the "labels", container ports, features installed
and access credentials to the ServiceMix instance. It includes also parameters to control the
CPU and memory usage of the container which holds the ServiceMix instance and other
parameters related to the resource usage.

Despite of the fact that the ServiceMix J[SON schema contains a big amount of parameters to
be defined, many of them are optional. In Listing 6.1, a basic ServiceMix configuration file
can be seen. It includes some arbitrary ports and features to make the example clearer.

{
"Name":"system-configuration",
"Configuration":{

"ESB":"servicemix",

"Ports":{
"mycomponentl":4444,
"mycomponent2":5555

3,

"Features": [
"camel -sql",
"camel-http"

]

}
X

Listing 6.1: Minimal configuration file for and ServiceMix instance

We want to mention that for our prototype, the Custom Components installation in the building
process is not supported, but the developers can include their own components afterwards in
the existing ServiceMix instances though the webconsole or the Karaf console.

96

6.2. ServiceMix Images Generation

6.2. ServiceMix Images Generation

Before describing the generation of the ServiceMix images, we must mention that with Docker
some of the parameters can be externalized and specified during both building and running
phases of the image and container, respectively. Hence, we must check which parameters
specified in our ServiceMix configuration can be externalized. Normally, this includes all
the parameters which describe variable values that can be modified from configuration files
(i.e. JVM memory, number of threads, credentials, etc.). The ones that cannot be externalized
are the installed features and custom components, because they are heavy files which must
be downloaded and added to the middleware. As we want to launch ESB instance rapidly,
the features and custom components must be directly included in the ServiceMix images to
avoid a slow ESB instance launch. Otherwise these components would be downloaded in the
very first start. The remaining ones can be introduced afterwards when the container starts as
environmental variables.

In our implementation, each specialized ServiceMix is based on what we called ServiceMix
base image. The ServiceMix base image includes all the libraries, dependencies and Operating
System required to run ServiceMix. The reason to create such a base image, is because of how
Docker handles the image building and storage. In Docker, the images are build in steps,
and in each step a new image is created storing only the difference with the previous one.
This enables that other images can be based on others without wasting additional disk space.
This is useful and profitable for migrations, where only the difference between the migrated
container and the existing ones in the destination machine is transferred. For example, if we
have the same base image in all the machines which hold ServiceMix instances, the migrated
data contains only the additional components and other files related to the execution of the
particular instances. Moreover, if the destination machine contains the specialized ServiceMix
image of the transferred ESB instance, only the execution data is transferred.

The creation of new images in Docker is based on what is called Dockerfiles. The Dockerfiles
are the building files which include all the steps to create a new image and to configure it. In
this file, we can be specified that the new image is based on other one.

o ServiceMix
Ubuntu 12.04| [3 | ServiceMix Image

Java Maven

Other
dependencies

Figure 6.1.: ServiceMix base image components

For the prototypical implementation in this thesis, the ServiceMix base image is created from
Ubuntu 12.04 image, because it is the verified and compatible version with ServiceMix 4.5 we

97

6. Implementation

have used in the implementation. After the selection of the base image, the dependencies
must be installed. In our case it includes Java, Maven and some tools and files to handle the
configuration of the parameters when a container is launched. For example, we have included
a tool called envtpl 1 which renders templates with environmental variables, which can be
specified when a container starts. For the creation of our base image, we have included two
more additional files, installer.sh and run.sh. The installer.sh file is used in the image building
to install the ServiceMix features that developers needs. For its part, the run.sh file contains
all the logic to configure the externalized parameters and run the ServiceMix instance inside
of the container. All the components included in the ServiceMix base image can be observed
in Figure 6.1.

‘ Bundle ’ ‘ Featurel
| Bundle I ‘ Feature ’
‘ Bundle ’ ‘ Featurel

v

installer.sh

ServiceMix s Specialized

Image ESB Image

Figure 6.2.: Building a specialized ServiceMix image

The ServiceMix base image includes a minimal installation of the ServiceMix instance with
only the necessary basic components but nothing else. Hence, this package includes the
lightest configuration for ServiceMix. Later to create specialized ServiceMix images new
components and features are installed in this image. After the installation of features the
resource usage grows. However, the ServiceMix instance in this case holds only the required
additional components and the base installation. No unnecessary components for the final
application are included and therefore, no resources are wasted.

In order to create the specialized ServiceMix image our prototype generates a new Dockerfile
which installs the features in the ServiceMix instance already included in the image using the
ServiceMix base image as a basis. The features are installed by the installer.sh file. It receives
an environmental variable with the list of the desired features and adds them to ServiceMix
(see Figure 6.2). The Dockerfile template for the specialized images can be observed in Listing
6.2. A new Dockerfile is generated each time a new image must be created.

FROM totemteleko/servicemix
MAINTAINER totemteleko totemteleko@gmail.com

ENV features {{.Features}} # List of features list separated by
comas. Ex: camel-sql,camel-http

Ihttps://github.com/andreasjansson/envtpl

98

https://github.com/andreasjansson/envtpl

1

6.3. Image Storage

RUN /bin/sh -c¢ /esb/installer.sh

Listing 6.2: Dockerfile template for specialized ServiceMix instances building

6.3. Image Storage

After creating the ESB images, these need to be persisted in the Image Storage registry. For
our image storage implementation, we use an already built container with a Docker Registry
inside, whose configuration and deployment are explained with more detail later. A Docker
registry works as a repository and it stores the images and its previous versions. The images
can be pushed and pulled from that Docker registry.

The command to run our image storage component on any Linux distribution with Docker
installed is shown in Listing 6.3. The port binding is also specified in this command, 5000:5000,
and the folder in the host machine where the images are stored , /registry.

$ docker run -p 5000:5000 -v /registry:/tmp/registry --name
registry registry

Listing 6.3: Running the Image Storage

Images can be pushed and pulled from any machine which has a Docker agent installed. The
image storage does not include any kind of authentication, hence it must be internal to the
system, not accessible from outside. This component can be any Docker Registry running
anywhere, so if the system administrator has an existing Docker registry in a remote location,
he must only set the system to point to the registry. This particular configuration is explained
further in the following sections.

6.4. Monitor

The implementation of the monitor component is based on the Google project cAdvisor.
cAdvisor is a single-host monitoring tool which collects the information about CPU, memory
and network in a container and host levels. It includes a REST API to expose the data in a
JSON format and a web interface which provides a graphical view of the resource usage of
the host machine and its running containers. Both are exposed though the port 8080 of the
container. The command to run cAdvisor is shown in Listing 6.4.

$ docker run -t --volume=/var/run:/var/run:rw --volume=/sys:/sys:
ro --volume=/var/lib/docker/:/var/lib/docker:ro --publish
=8080:8080 --name=monitor google/cadvisor:latest

99

6. Implementation

Listing 6.4: Running the Monitor

As cAdvisor is a single-host monitoring tool, it must be installed and launched in any machine
of the cluster we must deploy. Its information is used by other components to take decisions.
To request information the component must perform a HTTP GET request to the cAdvisor
REST API to an address with the structure shown in Listing 6.5. The JSON output format
must be checked in the cAdvisor website 2. However, in our system administrator and
developers must get this information through REST API using their credentials. Only the
system components can access the monitoring information without the REST APIL

GET http://<hostname>:<port>/api/<version>/<request>

Ex:
GET http://localhost:8080/api/v1.0/containers/foo

Listing 6.5: Get data from cAdvisor

6.5. Registry

In our prototype, we make use of CoreOS [2], further explained in Section 2.3.2. CoreOS
comes with a distributed key-store called ETCD (see Section 2.3.2). ETCD is present in all the
machines in the cluster, and synchronized between all of them. In case a machine is added
to the cluster, it has immediately access to the information stored inside. On the other hand,
when a machine leaves the cluster there is no loss of information. This is relevant for the
dynamism of the cluster we seek. New machines can join to the cluster or leave any moment,
and the cluster still works perfectly. For example, if the running machines are overloaded,
the cluster could grow and hold more ESB instances. In contrast, if the existing machines in
the cluster do not use their full power, they could be shutdown.

ETCD stores the objects by their keys, but it can also create folders to store collection of keys
with similar properties. All the keys in the registry are accessible by a REST API, where a
path can be specified to store a key. For example the key "foo" can be stored with the path
"/system/documents/personal/foo", where "documents" and "personal" are folders which
can store more keys. In addition, we want to mention that the keys can contain any string
value, in our case we store everything in JSON objects. Listing 6.6 shows an example of how
a HTTP request gets the key "mykey".

GET http://127.0.0.1:4001/v2/keys/mykey -d value="this is my key"

Listing 6.6: Getting the value of key in ETCD

Zhttps://github.com/google/cadvisor

100

https://github.com/google/cadvisor

6.5. Registry

As ETCD is a non-relational database, the relations between the data in our prototype are
handled in the business logic of the system. In our prototype, we have created three big
folders: image, user, and machine. In the image folder we can find all the names and keys of the
already built ESB images to identify them from a new configuration file and not building them
again. In the machine folder the information about the machines is stored, each machine with
an own key and JSON object with the schema described in Listing A.2. The other directory,
users, is the most complex of the them, it contains a set of folders which each one belongs to
one user. These folders contain a key with the information of the user, and two additional
subfolders that contain the user configurations and ESB instances objects with the schemas
defined in Listings A.4 and A.3 respectively. The structure of the registry can be observed
better in Table 6.1.

Path Description

/_esb/

This folder is the general folder where all our data inside
ETCD is stored. It is an invisible directory, in ETCD the

"non

invisible directory names start with the character "_

/_esb/scheduler

This folder contains all the instances that must be sched-
uled because the machines in the cluster can hold them.
This folder works as a queue, and the scheduler compo-
nent pushes and pops instances to be launched during the
runtime.

/_esb/image/

Here we can find all the names and keys of the already built
ESB images to identify them from a new configuration file
and not building them again.

/_esb/machine/

In this folder the information about machines is stored. Each
machine is stored in a JSON format with a new key in this
folder.

/_esbl/user/

This folder holds all the information about users and their
entities. A new folder is created for each new user.

/_esb/user/{id}/info

This key contains the information about an user in JSON
format. It contains his name, password and other properties.

/_esb/user/{id}/instance/

Here all the created ESB instances of the user are stored.

/_esb/user/{id}/configuration/

This folder contains all the configurations added to system
by the user

Table 6.1.: Description of the Registry structure based on ETCD

In addition in Table 6.1, a key called scheduler is displayed. It is a folder which contains all
the instances that must be scheduled later because the machines in the cluster cannot hold
them currently. This folder works as a queue, and the scheduler component pushes and pops
ESB instances to be launched during the runtime. More details are given in Section 6.6.3

101

6. Implementation

6.6. Controller & Cluster Deployment

For the cluster deployment of the ESB instances, we have chosen CoreOS [2], explained in
Section 2.3.2. The reason of this selection is that CoreOS matches with some aspects of our
design. Apart from the already mentioned ETCD, it comes with Fleet (see Section 2.3.2),
which enables the deployment of Docker containers though different machines ensuring
their correct performance and migration from one machine to another. However, CoreOS
cannot cover all the aspects of our design. Therefore, we have used CoreOS as a basis for
our platform, not only using some of its features in the different components of our design,
but also extending its functionalities to face other problems. More information about our
implementation based on CoreOS for each particular component in our design is given in the
the remaining of this section.

We want to point out that all the components included in the controller component, the REST
API and the Command Line Tool have been developed using the Go programming language
[77]. There are several reasons for choosing Go as the programming language in our platform.
For instance, the Go source code can be compiled into different platforms, Linux, Windows or
Mac OS X, and, of course, to work in CoreOS. Fleet and ETCD have been written in Go and
there are some libraries that can be used to work directly with them instead of making use of
their REST APIs. In addition, Go provides a lot of different libraries and contains libraries to
develop easily Command Line Tools, REST APIs or to marshall and unmarshall JSON objects.
For our prototype, we have developed a Go library which includes all the functions to control
the entire platform. The controller component, REST API and CLI use such library and in
that way, we reduce the amount of generated code.

6.6.1. Health

The health component is a complete new component we have added to CoreOS in order to
make monitoring of each one of the machines more accessible, and to provide some additional
information. It is installed in each one of the machines and collects the host machine date from
the monitor component to determine the state of the machine, as it is defined in Section 5.6.1.
It also publishes the role of the host machine, whose election is already performed by Fleet.
Fleets selects a new leader periodically and the health component gathers this information.
All the host information is stored in the system registry as a machine object with the schema
shown in Listing A.2.

The health component gathers the information periodically from the monitor component.
Later it calculates the average of the CPU and memory during this interval. The interval can
be defined in the cloud configuration file as we explain later. After calculating the average
values, it decides in which state the machine is based on different thresholds, checks if the
host machine is the leader and publishes the data and some more properties as the host IP
address into ETCD (see Figure 6.3). It performs these tasks periodically, how often as the
parameter which defines the interval specifies.

102

6.6. Controller & Cluster Deployment

Registry
ETCD
/machine/

()

machine machine machine

Figure 6.3.: The health component pushing the machine information into ETCD

We want to mention how the health component gets the role of the host machine. In CoreOS
the leader is selected periodically between all the machines in the cluster by the Raft consensus
algorithm [78]. All the machines bid to be the leader, until they get an agreement of which
one must be. This process takes some time, and the information about who is the leader is not
available during this time. The health component implementation waits until the new leader
is selected if when it updates the status information the leader election is being done. Who is
the leader of the cluster is stored in ETCD and Listing 6.7 shows where this information can
be found.

GET http://127.0.0.1:4001/v2/keys/_coreos.com/fleet/lease/engine-
leader

Listing 6.7: Discovering the cluster leader

The different parameters to configure the interval and thresholds of the different states of the
machines are detailed next:

e HEALTH_INTERVAL: defines the periodicity of the information updates.

e HEALTH MIN_CPU: describes the threshold between the idle and normal states based
on the CPU usage.

e HEALTH_MIN_CPU_BUSY: determines the threshold between the normal and busy
states based on the CPU usage.

e HEALTH_MAX_CPU: sets the threshold between the busy and critical states based on
the CPU usage.

e HEALTH MIN_MEM: describes the threshold between the idle and normal states based
on the memory usage.

e HEALTH_MIN_MEM_BUSY: determines the threshold between the normal and busy
states based on the memory usage.

103

6. Implementation

e HEALTH_MAX_MEM: defines the threshold between the busy and critical states based
on the memory usage.

Figure 6.4 shows the relationship between these parameters and the states of the machines.
How to set up these parameters is shown in Section 6.9.

HEALTH_MAX_CPU 4» Critical 4 HEALTH_MAX_MEM
HEALTH_MIN_CPU_BUSY BUSY HEALTH_MIN_MEM_BUSY
Normal
HEALTH_MIN_CPU HEALTH_MEM_MEM

| Idle
CPU usage Memory usage

Figure 6.4.: Relationship between the Health parameters with machine states

In addition, the health component must update the metadata of the CoreOS machine with the
field "health={newstate}". This information is used by the scheduler component, something
that is explained with more detail in Section 6.6.3.

6.6.2. Manager

The manager component, defined in Section 5.6.2, controls if ESB instances are running or
not and their behavior when they start or stop. To take care about these tasks, CoreOS uses
Fleet, an extension of Systemd [44]. Systemd is a system management daemon which controls
a collection of services or processes and how they behave. For its part, Fleet relies on Systemd
to run such services in a cluster.

In order to make use of this aspect, our ESB instance must be encapsulated inside a Fleet Unit,
which includes a Systemd service inside. Some properties and behavior of the unit can be
specified. For example, we can set that when an unit stops, some task must be performed (i.e.
removing something from a database, sending a notification, etc.). An example file of how we
can run an ESB instance inside one of these units is shown in Listing 6.8, where some of the
options of the docker command of the final description file have been excluded for brevity.
In that listing, we can also see that some commands can be specified when the unit starts or
stops and before starting or after stopping.

[Unit]

Description=Launcher for the Instance: myinstance
Requires=docker.service

104

1

2

6.6. Controller & Cluster Deployment

[Service]

ExecStartPre=/bin/bash -c "/usr/bin/docker pull esbimage "

ExecStart=/bin/bash -c¢ "/usr/bin/docker run -t -P --name
myinstance esbimage

ExecStop=/bin/bash -c "/usr/bin/docker stop myinstance "

ExecStopPost=/bin/bash -c¢ "/usr/bin/docker rm myinstance "

Listing 6.8: Creating a Fleet Unit for a Docker Container

6.6.3. Scheduler

The scheduler component is the most complex of the components in our framework. For its
implementation we make use of CoreOS and Fleet. Fleet covers some of the aspects described
in Section 5.6.3 such as the failure recovery and a basic scheduling of the Fleet Units. However,
its scheduler is really simple. Fleet scheduling algorithm is only based on which machine has
less units deployed. In contrast, in our design we establish that the scheduling must also be
based somehow on the amount of resources in use in the host machines. This can be relevant,
because the ESB instances consume different amount of resources depending on the installed
components, and the processed traffic. Therefore, in our implementation an extension of the
default Fleet scheduler has been done. We explain this extension in three parts: scheduling,
rescheduling in case of machine is out of resources, and rescheduling in case of failure.

For the scheduling part, we use the default Fleet scheduler but adding two layers before. The
first step of our scheduler is checking if there are machines which resources to hold more ESB
instances. To achieve this, the scheduler component uses the data provided by the health
component. Depending on the state of the machines (see Section 5.6.1), the scheduler sends
it to the next layer or enqueues it in a waiting list until there are available machines. The
scheduler component enqueues the new ESB instance, if there is no machine in the cluster in
"idle" or "normal" state. This tier of the scheduler checks periodically if it can send the ESB
instances to the next step of the scheduling.

In the next step, the scheduler component decides which machine may be less loaded, using
the information from the health component and Fleet. It assigns the units first to the machines
with idle state, after in normal and between the machines with the same state, the one with
less running ESB instances. Consequently, the corresponding units for the ESB instances are
sent to the Fleet default scheduler. All this procedure can be seen in Figure 6.5. In addition,
we want to mention that the second step of this process is done using the metadata of the
CoreOS machines. As we said, the health component updates this metadata periodically and
a preference order can be specified to select the machine where Fleet sends the units. This can
be done using additional parameters in the Fleet Unit as we can see in Listing 6.9.

[X-Fleet]
MachineMetadata=health=idle

105

3

4

6. Implementation

]
Waiting =
Queue -

NO

Machines
available?

Run ESB
Instance
request

Which may
machine be Fleet Scheduler
less loaded?

Figure 6.5.: Implementation: Scheduling steps

MachineMetadata=health=normal
MachineMetadata=health=busy

Listing 6.9: Implementation: Scheduling to less loaded machines

The implemented scheduler supports rescheduling in case of machine out of resources as it is
defined in Section 5.6.3. It is a complete new feature for the Fleet scheduler. It uses also the
information provided by the health component to check the state of machines periodically
and to detect if the ESB instances of a determinate machine must be migrated to another
one. This component is installed in all the machines, an each machine decides if its own ESB
instances must relocated or not. The scheduler agent present in the machine, if a state critical
is detected, stops and sends its instances to the scheduler component again. Hence, these
instances can stay waiting until another one of machines can hold them.

The last part of the scheduler component covers the recovery of the units in case of failure.
These functionality is supported fully by Fleet, so in our implementation we only make use
of it. Fleet detects if a machines fails, and in that case, migrates all the instances that where
running in that machine to the rest of the machines in the cluster.

Despite of describing the scheduler implementation, and how it migrates the ESB instances
in specific cases, we have not mentioned how the platform deals with these situation and the
data stored in the instances during its execution. These and other aspects are explained in
Section 6.6.4.

6.6.4. Lifecycle & Deployment of ESB instances

After describing such amount of different components and implementations, we want to
explain how an ESB instance really works in our prototype. What we define in Section 5.2 as
ESB instance has a more or less complex behavior and structure. In contrast with what is said
in that section, in our implementation there are two main states, stopped and running, and two

106

6.6. Controller & Cluster Deployment

intermediate states to do some tasks in the transition from stopped to running and viceversa.
We call these two new states stopping and starting.

The ESB instance definition and management in our implementation require a combination of
different components and engines. Firstly, the ESB package is encapsulated inside a Docker
container which runs in a CoreOS machine. Then for the container management we have
three different components integrated in the controller component, as we represent in Figure
6.6. In this feature we can see also the components of the controller and the components used
by it for the implementation part.

(Controller
'd \
Scheduler
. J
'd \
Manager I Fleet
. J
'd N J
Health l Systemd
. N ~ J J
ServiceMix ServiceMix
Ubuntu Ubuntu
§ Docker Container || Docker Container)
CoreOS

Figure 6.6.: Stack of components for a running ESB instance

Now we want to explain the lifecycle of the ESB instances in the system and its behaviour
in all the states and transitions. When an ESB instance is created, a new ESB image is stored
in the image storage, in a stopped state. When its owner wants to run it, the ESB instance is
sent to the scheduler component which can enqueued or launch it in one of the machines.
During the time the ESB instance is in the waiting queue, its state is called starting. Once
the scheduler component decides to run this instance in one of the machines, the machine
starts pulling its image. When the pull finishes, the ESB instance starts in the machine, state
called running. In this state, it is when the ESB instance receives an IP address and its ports
are bind to host ports. The owner can access in this moment to the instance for management
proposes or for using it in his system. During this state is when the minion component appears.
The minion in our implementation has two main tasks, updating the information about the
running ESB instance (IP address, ports, state, etc.) and committing the execution state into
the image storage. When a ESB instance is running, the minion has a mechanism to deal with
a possible failure of the host machine. It commits the ESB instance state periodically to assure
the data protection. The information the minion publishes of the instance expires in some
seconds, and in that way;, if a failure appears, the developer do not see the instance in running
state when it is not really running. When the developer requests to stop an ESB instance,
this goes into stopping state. In this state, the container information is pushed and saved in

107

6. Implementation

the image storage again to be able to restart the ESB instance in the same conditions in the
future. When this procedure ends, the ESB Instance is again in a stopped state, when it can
be removed or restarted again. All this information about the lifecycle of the ESB instance is
shown in Figure 6.7.

Scheduled

Fleet Unit

Stop

ESB
Container

™ minion
(]

Figure 6.7.: ESB instances lifecycle

The implementation of all that behavior has been done by creating three different Fleet Units
for the ESB instance. One includes the Docker container start and stop actions, other one the
information updates, and other one to store periodically the ESB instance state. The three
files are generated for each one of the ESB instance when these are created. The Fleet files are
immutable during its existence. A skeleton of these three Fleet units is given in Listing D.1 in
order to give a general idea about how this can be done.

6.7. Command Line Interface

The Command Line Interface provided for the system administrator has been fully developed
in Go, and includes all the commands as defined in Section 5.9. It makes uses of the Go
library we mentioned previously, and therefore, its code covers aspects related to CLI input
and output. The functions which include the action to manage the platform are in the library,
and in the CLI implementation are only called. For implementing the commands, we use a
Go library cli® which has helped us enormously because it facilitates several aspects such as
options and arguments handling. Listing D.2 shows an example of how a new command can
be created for the CLI

Shttps://github.com/codegangsta/cli

108

https://github.com/codegangsta/cli

6.8. REST API

6.8. REST API

For its part, the REST API has been developed in Go as well, and it handles all the requests
described in Section 5.8. As the CLI, it uses our Go library, and therefore it only deals with
the routing and the input/output messages and requests. Another Go library rest 4 has been
used to implement the REST API in our prototype.

Finally, as we said previously the REST API and the CLI are installed in all the machines by
default in order to work with all of them in the same conditions. If the REST APl is deployed
in all the host machines, machines can be removed without problems. This implementation
follows our distributed arquitecture where all the machines are identical. Moreover, this also
enables the distribution of requests from the developers through all the machines overall the
requests which may produce a new image building and in that way, avoiding that machines
may go out of resource because of system tasks.

6.9. Configuration of the Host Machines

One of the thing we seek in our design and implementation is a easy installation of the
framework in order to enable a rapid deployment of new machines in the cluster. In our
implementation this is done by the Cloud init file of CoreOS. In this file the behaviour of the
CoreOS machine when it starts (for installing things, running services, etc.) can be specified.
For our implementation we have created one of these files to configure the machines. This
file is the same for all the machines in the cluster, and new machines only must be launched
with the same file to join into the cluster, including all its components (registry, controller,
monitor, etc.). In this file, some parameters can be configured. For example, the ports where
the monitor and the REST API run or the defining parameters for the health state detection.
A template of this file is shown in Listing E.1, where all the components of our platform are
configured and launched. Finally we want to mention that our framework can run in all the
platforms that offer support for CoreOS including Vagrant [43], Amazon EC2 [13], VMware
[28] and OpenStack [17].

“https://github.com/antOine/go- json-rest/rest

109

https://github.com/ant0ine/go-json-rest/rest

6. Implementation

110

1

2

7. Validation

In order to validate our prototype, we are going to follow a sequence of actions that emulates
the system administrator and developer behavior when using the proposed framework. This
sequence is shown in Figure 7.1.

In terms of environmental setup, we test our prototype launching a cluster of three CoreOS
machines on Amazon EC2, and a separate machine running the image storage. After the
cluster starts, the administrator checks the running machines in the cluster and starts adding
new users who can use the platform. Along this chapter, we perform all the commands though
the REST API], including the administrator commands which can also be done by the CLI
instead of using the REST API. In addition, we want to mention that all the requests require
basic authentication and in case of administrator request the default user and password are
admin and admin respectively.

Developer Developer

Administrator

Administrator "John" "John"
List Machines ac'i'jihuns"er adds ESB creates New
Configuration ESB Instance

Deje:]oper Dgxg#c;}eer DexeLoper
" John" " John"
getthe ESB
stops the ESB Instance starts the new
Instance ESB Instance

information

Developer

Dﬁjg:]%eer "John" Administrator
removes the remove
Configuration

Figure 7.1.: Sequence of actions followed for validation

GET /admin/machine HTTP/1.1

111

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

7. Validation

Host: 54.172.183.241:4000
Authorization: Basic YWRtaW46YWRtaW4d=
Cache-Control: no-cache

Response:

Status: 200 0K

Content -Length: 1145

Content -Type: application/json
Date: Fri, 17 0Oct 2014 12:56:19 GMT
X-Powered-By: go-json-rest

[
{
"ID": "b8645b9d2f354c8c810fe43137£8d2c2",
"Ip": "172.31.20.193",
"Role": "leader",
"Status": {
"State": "normal",
"Cpu_usage": 4.2119918938728285,
"Mem_usage": 39.67685397466127
}
},
{
"ID": "2d270a222cda41e5b9192222528d598f",
"Ip": "172.31.20.194",
"Role": "follower",
"Status": {
"State": "normal",
"Cpu_usage": 1.507448974349744,
"Mem_usage": 49.74393475245864
}
},
{
"ID": "55dbd07081laed55ab2e5977c287edbc3",
"Ip": "172.31.20.195",
"Role": "follower",
"Status": {
"State": "normal",
"Cpu_usage": 1.4300149192578373,
"Mem_usage": 52.16419876463377
}
}

112

47

Listing 7.1: Validation: Get the Machines in the cluster

After the administrator checks that the machines are working as expected (there is one leader,
all machines are in a normal or idle state, etc), he creates a new user called "John".

POST /admin/user HTTP/1.1

Host: 54.172.183.241:4000
Authorization: Basic YWRtaW46YWRtaW4=
Cache-Control: no-cache

{"Name":" john", "Password":"passwOrd"}
Response:

Status: 201 Created

Content -Length: 24

Content -Type: application/json
Date: Fri, 17 0Oct 2014 12:57:13 GMT
X-Powered-By: go-json-rest

{

"Value": "Created"

Listing 7.2: Validation: Add a new user

Now that the developer John has access to the system, he can start creating new specialized
ESB instances. However, the first thing he must do is adding the configuration of the ESB
instance he want to create in the system.

POST /configuration HTTP/1.1

Host: 54.172.183.241:4000

Authorization: Basic am9objpwYXNzdzByZA==
Cache-Control: no-cache

{ "Name":"myconfig", "Configuration":{"ESB":"servicemix", "Ports
":{ "endpointl":4444,"endpoint2": 5555 }, "Features":["camel-
sql", "camel-http"] } }

Response

Status: 201 Created

113

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

7. Validation

Content -Length: 24

Content -Type: application/json
Date: Fri, 17 Oct 2014 12:58:54 GMT
X-Powered-By: go-json-rest

Listing 7.3: Validation: The developer adds a new ESB configuration

The developer creates a new ServiceMix instance in the system making a request with the
name of the already added configuration.

POST /instance?configuration=myconfig HTTP/1.1
Host: 54.172.183.241:4000

Authorization: Basic am9objpwYXNzdzByZA==
Cache-Control: no-cache

Response:

Status: 201 Created

Content -Length: 1066

Content -Type: application/json
Date: Fri, 17 0Oct 2014 13:01:02 GMT
X-Powered-By: go-json-rest

"ID": "e-19747eac-f5eb-4053-9091-8306",
"Labels": {
"owner": "john"
},
"Created": "Sunday, 19-0ct-14 02:04:05 UTC",
"State": "stopped",
"Host": "",
"Configuration": {
"CPU_SHARED": "",
"ESB": "servicemix",
"Features": [
"camel-http",
"camel -sql"
1,
"ID": "i-7d03dda3-39c3-43a2-8d25-7ebb",
"JBI_allowCoreThreadTimeOut": "true",
"JBI_corePoolSize": "4",
"JBI_keepAliveTime": "60000",
"JBI _maximumPoolSize": "-1",
"JBI_queueSize": "1024",

114

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

} 3

"JBI_shutdownTimeout": "O0",
"JVM_MAX_MEM": ""|
"JVM_MAX_PERM_MEM": ""|
"JVM_MIN_MEM": "",
"JVM_PERM_MEM": "",
"MAX_MEM": "",

"NMR_allowCoreThreadTimeQOut":

"NMR_corePoolSize": "4",

"NMR_keepAliveTime": "60000",

"NMR_maximumPoolSize": "-1",
"NMR_queueSize": "1024",
"NMR_shutdownTimeout": "O0",
"Name": "myconfig",
"Ports": {
"endpointl":4444,
"endpoint2":5555
+,

"SERVICEMIX_PASSWORD": "smx",

"SERVICEMIX_USER": "smx"

"Ports": {

ll4444ll: llll,
ll5555ll: llll’
ll8101ll: llll’
11818111: nn

"true",

Listing 7.4: Validation: The developer creates a new ESB instance

Once the ESB instance has been created, the developer receives a response with the data of
the new instance. He must check the ID field of the new component in order to manage it.
After its creation the ESB instance is launched specifying its ID.

Host:
Authorization:

Status:
Content -Length: 26

Response:

200 OK

PUT /instance/e-19747eac-f5eb-4053-9091-8306/start HTTP/1.1
54.172.183.241:4000
Basic am9objpwYXNzdzByZA==
Cache-Control: no-cache

115

20

21

22

23

24

25

26

27

28

29

30

31

32

7. Validation

Content -Type: application/json
Date: Fri, 17 0Oct 2014 13:02:57 GMT
X-Powered-By: go-json-rest

Listing 7.5: Validation: The developer starts a stopped ESB Instance

The next step is checking the running attributes of the ESB instance. The developer John
checks the IP address where it is running and the port bindings to use and manage it. Now
he can connect to the ServiceMix instance and install new bundles though the host ports
assigned to the ports, 8101 (Karaf console) and 8181 (webconsole), which are respectively the
ports, 49155 and 49156.

GET /instance/e-19747eac-f5eb-4053-9091-8306 HTTP/1.1
Host: 54.172.183.241:4000

Authorization: Basic amO9objpwYXNzdzByZA==
Cache-Control: no-cache

Response:
Response:

Status: 200 0K

Content -Length: 1262

Content -Type: application/json
Date: Fri, 17 0Oct 2014 13:05:30 GMT
X-Powered-By: go-json-rest

{ "Name":"myconfig",
"ID": "e-19747eac-f5eb-4053-9091-8306",
"Labels": {
"owner": "john"
3,
"Created": "Friday, 17-0ct-14 23:05:04 UTC",
"State": "running",
"Host": "54.172.183.241",
"Configuration": {
"CPU_SHARED": "",
"ESB": "servicemix",
"Features": [
"camel-sql",
"camel -http
1,
"ID": "i-124691ed-f613-4eab-ab6b-05c7",

116

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

T,

"JBI_allowCoreThreadTimeQOut":
"JBI_corePoolSize": "4",
"JBI_keepAliveTime": "60000",
"JBI_maximumPoolSize": "-1",
"JBI_queueSize": "1024",
"JBI_shutdownTimeout": "O",
"JVM_MAX_MEM": "",
"JVM_MAX_PERM_MEM": "",
"JVM_MIN_MEM": "",
"JVM_PERM_MEM": "",
"MAX_MEM":. ""|
"NMR_allowCoreThreadTimeQOut":
"NMR_corePoolSize": "4",
"NMR_keepAliveTime": "60000",
"NMR_maximumPoolSize": "-1",
"NMR_queueSize": "1024",
"NMR_shutdownTimeout": "O0O",
"Name": "myconfig",
"Ports": {

"endpointl":4444,

"endpoint2":55565

T,

"SERVICEMIX_PASSWORD": "smx",
"SERVICEMIX_USER": "smx"

"Ports": {

"4444"
"5555" ;
"8101":
"8181" :

"49153"
"49154"
"49155"
"49156"

"true",

"true",

Listing 7.6: Validation: The developer gets the information of a running ESB instance

After using it, the developer proceeds to stop it to restart in the future or to destroy it as it is
done in Listing 7.8.

PUT /instance/e-19747eac-f5eb-4053-9091-8306/stop HTTP/1.1
Host: 54.172.183.241:4000

Authorization: Basic am9objpwYXNzdzByZA==

Cache-Control: no-cache

Response:

117

7. Validation

Status: 200 0K

Content -Length: 24

Content -Type: application/json
Date: Fri, 17 0Oct 2014 13:07:14 GMT
X-Powered-By: go-json-rest

Listing 7.7: Validation: The developer stops a running ESB instance

DELETE /instance/e-19747eac-f5eb-4053-9091-8306 HTTP/1.1
Host: 54.172.183.241:4000

Authorization: Basic am9objpwYXNzdzByZA==

Cache-Control: no-cache

Response:

Status: 200 0K

Content -Length: 26

Content -Type: application/json
Date: Fri, 17 QOct 2014 13:09:12 GMT
X-Powered-By: go-json-rest

Listing 7.8: Validation: The developer destroys an existing ESB Instance

After making use of the configuration for launching so many ServiceMix instances as he
wants, the developer removes this configuration from the system.

DELETE /admin/user/john HTTP/1.1

Host: 54.172.101.91:4000

Authorization: Basic am9objpwYXNzdzByZA=
Cache-Control: no-cache

Response

Status: 200 0K

Content -Length: 24

Content -Type: application/json

Date: Fri, 17 0Oct 2014 13:011:14 GMT
X-Powered-By: go-json-rest

Listing 7.9: Validation: The developer destroys the previously created configuration

118

Finally, the administrator removes the user "John" from the system when he does not need

longer the platform.

DELETE /admin/user/john HTTP/1.1
Host: 54.172.183.241:4000
Authorization: Basic YWRtaW46YWRtaW4=
Cache-Control: no-cache

Response

Status: 200 0K

Content -Length: 24

Content -Type: application/json
Date: Fri, 17 0Oct 2014 13:16:57 GMT
X-Powered-By: go-json-rest

Listing 7.10: Validation: The administrator removes the user

119

7. Validation

120

8. Evaluation

In the ESB configuration some parameters about resource usage can be specified. For this
evaluation we have deployed different ESB instances setting maximal values for CPU and
memory. Therefore, we focus on how different parameters can affect to the resources usage
for different ESB instances running in our deployed system and how the increment of the
number of ESB instances running in the same machine can affect. In this chapter, we describe
first the environment to run all the scenarios, and afterwards, the two scenario to be tested.
Finally, the results of the experiment are shown and some conclusions from this results are
exposed.

8.1. Evaluation Setup

For the evaluation, we have tested two different scenarios using Amazon EC2 platform for the
deployment of a cluster of CoreOS machines and JMeter [79] for workload generation. The
JMeter is deployed in our local workstation and it generates the HTTP traffic for a MediaWiki
server which go though the ServiceMix instances, as we can see in Figure 8.1. For both
scenarios, we have deployed a CoreOS cluster with three machines in the platform Amazon
EC2. The machines are three t2.micro instances with 600mb of memory and one vCPU.
The configuration of each one of the machines and therefore, the cluster configuration, is
performed by a cloud init file. A template for this configuration can be found in Appendix
E. Moreover, all the ESB instances are used to route HTTP requests to a backend MediaWiki
Application running in an external machine (m3.xlarge instance in Amazon EC2). The HTTP
endpoint to route the traffic through ServiceMix has been created by a Camel route using the
feature camel-jetty. This feature is one the several alternatives we could have used, which can
be found through the REST APL

The different ESB configurations for all the deployed ESB instance contain the same features
and ports. However, we have deployed three different ESB instances depending on the
resource usage. The first one contains the default resource parameters (we do not need
to specify them), the second one uses more CPU resources (8 threads instead of 4 for the
ServiceMix Instance) and the third one sets a maximal value for the memory of 256mb. The
configuration files to create such instances are shown in Listings 8.1, 8.2 and 8.3.

The measurements for this evaluation are retrieved from the health component and JMeter.
The health component gathers every 10 seconds information about the memory and CPU
usage in the host machines in order to compare them in different cases, and JMeters collects
the thoughput values in both scenarios.

121

8. Evaluation

Requests

v

ESB - ServiceMix

Camel Jetty Endpoint

MediaWiki

Figure 8.1.: Evaluation - MediaWiki exposed though ServiceMix

"Name" :"mediawiki-esb",
"Configuration":{
"ESB":"servicemix",
"Ports":{
"mediawiki": 8150
},
"Features": [
"servicemix -camel",

"camel - jetty",
"servicemix-http"

Listing 8.1: Evaluation - Configuration with default resource parameters

"Name" :"mediawiki-esb_cpu",

"Configuration":{

122

"ESB":"servicemix",

"Ports":{
"mediawiki": 8150

},

"Features": [
"servicemix -camel",

8.2. Description of the Scenarios

"camel - jetty",

"servicemix-http"

1,

"JBI_corePoolSize":
"NMR_corePoolSize":

ll8|| ,
||8||

Listing 8.2: Evaluation - Configuration with more CPU capacity

"Name"

"Configuration":{

"ESB":"servicemix",
"Ports":
"mediawiki":

} b

{

"Features": [

8150

:"mediawiki-esb_mem",

"servicemix -camel",

"camel - jetty",

"servicemix -http"

1,

"MAX_MEM":

"256M"

Listing 8.3: Evaluation - Configuration with limited memory

8.2. Description of the Scenarios

In our first scenario, we have deployed three different ESB instances for a single developer as
Figure 8.2 shows. Each one of the three instance has a different configuration, configurations
described in previous listings. The workload generated by JMeter has been 100000 thousand
requests between 10 users going though all the ESB instances. The target of this scenario is
the deployment of ESB with different configurations to analyse the different use of resources
in the three cases.

Scenario | Hosts | ESBs | ESBs/host | Users/ESB | Requests | Requests/User
Scenario 1 3 3 1 10 100000 3333
Scenario 2 3 6 2 10 100000 1666

Table 8.1.: Evaluation - Summary of the scenarios

123

8. Evaluation

For the second scenario, shown in Figure 8.3, we have deployed three different ESB instances
for two different developers each one of the configuration shown previously. In total, six ESB
instances are deployed, three per each developer. The workload generated by JMeter has

been 100000 requests between 10 end users going though all the ESB instances. The target of

this scenario is evaluating the increase of the use of resources with multiple instances running

on the same machine. A summary with the specific values in both scenarios is shown in Table
8.1.

Apache
\ JMeter

e VM1 M2
ServiceMix ServiceMix ServiceMix
Normal CPU Memory
Instance Instance Instance

\
A
T
1 /
\ /
\
N,
'
i
|
i
I
i
i

%

MediaWiki

Apache
JMeter _—

/ \ . \‘\
l’ ‘\ N N
y / \ \ \
/ / / 4 Y 4
i / 1 | \)
/ VM1 J i VM2 i H VM3 i
| 2 » v v v L 2
ServiceMix ServiceMix ServiceMix ServiceMix ServiceMix || ServiceMix
Normal Normal CPU CPU Memory Memory
Instance Instance Instance Instance Instance Instance
User1 User2 User1 User2 User1 User2
3 L3 x 3 % 1
'
i
\
\
‘\

MediaWiki

Figure 8.3.: Evaluation- Environment Scenario 2

8.3. Evaluation Results

For each scenario we have collected average throughput shown by all the ESB instances and
measurements about CPU and memory usage on the host machines. In both scenarios as

124

8.3. Evaluation Results

we can see in Figures 8.4 and 8.6, CPU usage is slightly superior for the machine which
holds ESB instances with more threads than for the other two machine. We want to point that
ServiceMix with the components we have used during this work uses few CPU resources,
and that’s the reason because difference between the machines is not bigger.

On the other hand, in Figures 8.5 and 8.7 we can appreciate that memory usage is almost
the same for the three machines despite of one holds limited memory ESB instances. The
reason is that the memory usage is stable when comparing instances with the same installed
components which receive the same traffic. Another reason is is that the selected maximal
value 256mb was enough for a normal performance of the ServiceMix instance which was
executed in a machine with only 600mb.

Scenario 1 - CPU

= Normal
= more CPU
Limited memory

CPU (%)

2,5

time

Figure 8.4.: Evaluation - Scenario 1 CPU results

Scenario 1 - Memory
80

:77—/‘#__#"’_‘1;

60

— Normal
40 — more CPU
Limited memory

Memory (%)

20

time

Figure 8.5.: Evaluation - Scenario 1 Memory results

125

8. Evaluation

If we compare the figure of both scenarios, we can see that the resource usage with two
ESB instances running on the same machines has grown slighty taking into account that
ServiceMix uses a considerable amount of memory by default. Therefore, we could say that
adding new ESB instances to a machine with an already running ServiceMix instance does not
require so many resources as launching an initial one because of the virtualization technology
used, Docker.

Scenario 2 - CPU

15

11,25

é — Normal
o 75 — more CPU
o Limited Memory
(&)
3,75
0
time
Figure 8.6.: Evaluation - Scenario 2 CPU results
Scenario 2 - Memory
87
85,25
X
N
— Normal
g 83,5 — More CPU
E H Limited memory
o
=
81,75

80

time

Figure 8.7.: Evaluation - Scenario 2 Memory results

Figure 8.8 depicts the average throughput shown in our two scenarios by all the ServiMix
instances. We can see that the throughput has decreased for the second scenario where we
had six Servicemix instances running comparing with the first one where we had only three
instances. We can conclude that the number of ServiceMix instances running in the same
machine can affect slightly the performance of the ServiceMix instances.

126

8.3. Evaluation Results

85

6,375

4,25

2,125

Throughput (requests/s)

Scenario 1 Scenario 2

Figure 8.8.: Evaluation - Thoughput comparison

127

8. Evaluation

128

9. Conclusion and Future Work

The characterization and creation of light-weight ESB components significantly reduces the
overall resources consumption in an infrastructure. However, the characterization of these
ESB instances is commonly a complex process the developers must face. In this thesis we
focus on providing the means to assist application developers in the tasks related to the
characterization of a customized ESB that satisfies the application requirements. We started
by analysing the ESB software in order to identify its variability points. After identifying the
variability points, a taxonomy of the features or components in the ESB was performed. The
number of features in an ESB is vast and the developer may face challenges in finding out
which features are the most appropriate to use for his application.

Chapter 2 exposes main ideas in this work to set the necessary background. The origin of
terms such as Cloud Computing and virtualization is explained in more detail. Additionally,
more information regarding some relevant projects and tools this work relies on are given
(i.e. Docker, CoreOS, ServiceMix, etc.). Chapter 3 presents some similar works related to
containers deployment and middleware characterization and deployment. In these works
we found that the configuration of an ESB can become a time constraint for the application
developer. Moreover, these projects claim that a posterior reconfiguration of the ESB may be
even more complex that the initial configuration. Therefore, a characterization of the ESB
must be performed to streamline the resource usage. Further investigations showed that a
reconfigurable ESB does not offer any advance over a non-reconfigurable ESB. Hence, we
focus in this thesis on the characterization of an ESB to provide customized and reusable ESB
instances. In the projects related to container deployment we saw aspects related to how our
ESB instances can be dynamically provisioned and managed. The proposed solution includes
only the deployment of ESB instances inside using a container virtualization approach.
Containers share the same OS, libraries and kernel and therefore, memory, CPU and disk
usage with this solution can be much more efficient than with other virtualization technologies.
Besides, we analysed how we can deploy the ESB instances within a cluster in order to
improve the scalability of the entire system.

In Chapter 4 we firstly derived the functional and non-functional requirements of such
a framework. After analysing them, we proposed the creation of a framework to create
and deploy specialized ESB instances. The proposed framework incorporates a system
where all the ESB instances are deployed in a clustered manner and constituted by four
main components to handle the different phases of the ESB life-cycle:image creation, storage,
provisioning, execution, and monitoring.

In Chapter 5 proposes an architectural design aiming at fulfilling the requirements proposed
in Chapter 4. All of the system components are built in a distributed manner in order
to enable the addition or removal of new machines in the cluster. The cluster is based on

129

9. Conclusion and Future Work

provisioning and administrating pre-configured virtual machines which can be increased
based on current and future demands. We defined a system which can face also some difficult
situations. For instance, the system can relocate the running ESB instance to other machines
in case of a machine fails or it is out of resources.

The prototypical implementation fulfilling the architectural design is proposed in Chapter
6. We used Docker to encapsulate ESB instances into containers and CoreOS was used to
run such containers within a cluster. Some new components have been fully implemented to
fulfil all the functional and non-functional requirements described in Chapter 4. On the other
hand, we used cAdvisor to monitor host machines and containers running ESB instances. The
prototype supports ServiceMix ESB as an example of how a characterization, taxonomy and
provisioning could be performed for other ESB solutions.

The validation and evaluation of our approach is presented in chapters 7 and 8, respectively.
The former consists of validating our framework using a realistic application as a case study.
On the other hand, the latter consists of empirically evaluating the performance under
different scenarios.In the results we could confirm that the launch of new ESB instances in
the same host machine requires much less resources as launching the first ESB instance. In
that chapter we could also see that the number of running ESB instances affects slightly the
performance shown by the ESB instances.

Despite of our solution shows a good performance and makes more easier the use of ESBs
by the developers, the implementation of our approach is based on a concrete ESB solution.
Our system is an initial solution to enable the deployment of specialized ESB instances, and
in future works it could be improved in several aspects. For example, one of the lacks in
our proposal is that if the ESB instance is moved to another machine, the developer must
reconfigurate his system to point to the new instance’s location. Therefore, it would be
necessary to abstract the physical location of the ESB by enhancing our system with logical
routing or load balancing. Another feature that could be added would be the reconfiguration
of a stopped ESB instance. In our solution, if the developer needs a new component in
an instance or a new port, a new instance must be created. Further future works could
consider ESB images sharing and configurations among different developers. However,
we recommend as next step for this work, the design and realization of a higher layer to
dynamically provision and horizontally scale an ESB instance constituted by a group of wired
instances running as a single entity. Finally, we want to mention that our prototype does not
support the default installation of components created by developers. However, this feature
is included in our design because it can enhance the flexibility of the framework.

130

20

21

22

23

24

25

26

27

Appendix A.

Description of the Most Relevant Entities in the Registry

A description of the most relevant entities of the registry are shown in the ER Diagram, Figure
5.9, is given in form of JSON schemas next.

"title":"Feature",
"description":"describes a component of the ESB software to
perform a determinate task.",
"type":"object",
"$schema":"http://json-schema.org/draft-03/schema",
"properties":{
"Name " : {
"type":"string",
"description":"tag of the configuration. Normally is
defined by the user to identify it easily. "
T,
"Category":{
"type":"string",

"description":"general category the features belongs to"
T,
"Engine":{
"type":"string",
"description":"contains the engine necessary for running
the feature"
},

"Description":{
"type":"string",

"description":"gives an overview of the feature"
+,
"Path":{
"type":"string",
"description":"path to find the feature in the taxonomy
graph which includes all the categories it belongs."
s

"Properties":{

131

28

29

30

31

32

33

34

35

36

37

38

39

40

41

20

21

22

23

Appendix A. Description of the Most Relevant Entities in the Registry

"type":"string",

"description":"Description of the attributes and
functionalities of the feature"
¥
T,
"required": [
"Name" ,
"Category",
"Engine",
"Path" ,
"Description",
n P at h n
"Properties"
]
X
Listing A.1: Feature Entity JSON Schema
{
"title":"Machine",
"description":"Describes an host machine in the cluster",

"type":"object",
"$schema":"http://json-schema.org/draft-03/schema",
"properties":{
"ID":{
"type":"string"

+,
"Ip":{
"type":"string",
"description":"This IP addess would be the public one
case of a public and private IP address exist."
T,
"Role":{
"type":"string",
"description":"this property describes if the machine
the leader of the cluster or not'",
"enum": [
"leader",
"follower"
]
+,
"Status":{

"type":"object",

132

in

is

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

"description":"describes the state of the machine based
on resource parameters",
"properties":{

"State":{
"type":"string",
"description":"describes the situation of the
machine to host ESB instances",
"enum": [
"idle",
"normal",
"busy",
"critical"
]
},
"Cpu_usage":{
"type":"number",
"description":"CPU usage average during a certain
interval of time"
3,
"Mem_usage":{
"type":"number",
"description":"CPU usage average during a certain
interval of time"
}
}
},
"required": [
nIp"
"Ip":
"Role",
"Status"
]

Listing A.2: Machine Entity JSON Schema

"title":"ESB Configuration',

"description":"Includes all the parameters for configuring and
ESB Instance",

"type":"object",

"$schema":"http://json-schema.org/draft-03/schema",

"properties":{

133

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

Appendix A. Description of the Most Relevant Entities in the Registry

134

"ID":{
"type":"string"
+,
"Name " : {
"type":"string",
"description":"tag of the configuration. Normally is
defined by the user to identify it easily. "
T,
"ESB":{
"type":"string",
"description":"contains the ESB Software use for the
instance."
+,

"Features":{
"type":"array",
"description":"List with the features of the ESB which
must be already installed in the ESB Image",
"items":{
"type":"string"

+,
"CustomComponents":{

"type":"array",

"description":"List with the components created by the
developer which must be already installed in the ESB
Image",

"items":{

"type":"string"

T,
"Ports":{

"type":"array",

"description":"List of the ports of the container that
will be publish and mapping to ports in the host
machine",

"items":{

"type":"object"

"required": [

n ID n s
n ESB " R
n Name n

] b

"additionalProperties":true

Listing A.3: Configuration Entity JSON Schema

"title":"ESB Instance",

"description":"contains the information of an existing ESB in
the system",

"type":"object",

"$schema":"http://json-schema.org/draft-03/schema",

"properties":{

21

22

23

24

25

26

27

28

29

30

31

32

"Configuration":{
"$ref":"ESB Config"
},
"Created":{
"type":"string",
"description":"timestamp when the instance was created"
+,
"Error":{
"type":"string",

"description":"Displays a error message if it’s the case
T,
"Host":{

"type":"string",

"description":"IP Address of the ESB Instance when is
running. This property is empty when the instance is
not running."

+,
"ID":{

"type":"string"

},
"Labels":{

"type":"array",

"description":"1list of tags for the instance to classify

and recognize it better. Pairs of key values can be
defined.",

"items":{

"type":"object"

b

T,

"PortBindings":{

135

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

Appendix A. Description of the Most Relevant Entities in the Registry

"type":"array",

"description":"list of the port bindings with the
container and host port.",

"items":{
"type":"object"

T,
"UserAccess":{

"type":"array",

"description":"Includes information related to how the
developer can access to the ESB Instance when it’s
running",

"items":{

"type":"object"

},
"State":{
"type":"string",
"description":"describes the state where the instance is
in its lifecycle",
"enum": [
"stopped",
"starting",
"running",
"stopping"

},

"required": [
"ID",
"State",
"Configuration",
"Created"

1,

"additionalProperties":false

Listing A.4: ESB Instance Entity JSON Schema

"title":"ESB Configuration",

"description":"Includes all the parameters for configuring and
ESB Instance",

"type":"object",

136

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

"$schema":"http://json-schema.org/draft-03/schema",
"properties":{

"ID":{
"type":"string"
},
"Name " : {
"type":"string",
"description":"tag of the configuration. Normally is
defined by the user to identify it easily. "
+,
"ESB":{
"type":"string",
"description":"contains the ESB Software use for the
instance.",
"value":"servicemix"
T,

"Features":{
"type":"array",
"description":"List with the features of the ESB which
must be already installed in the ESB Image",
"items":{
"type":"string"

+,
"CustomComponents":{

"type":"array",

"description":"List with the components created by the
developer which must be already installed in the ESB
Image",

"items":{

"type":"string"

}

T,
"Ports":{

"type":"array",

"description":"List of the ports of the container that
will be publish and mapping to ports in the host
machine",

"items":{

"type":"object"

3

+,
"CPU_SHARED":{

"type":"number",

137

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

Appendix A. Description of the Most Relevant Entities in the Registry

138

"description":"maximum percentage of the total cycles of
the host used by the container "

+,

"MAX_MEM":{

"type":"number",
"description":"maximum memory capacity of the host
machine used by the container "

T,

"JBI_allowCoreThreadTimeOut":{
"type":"boolean",
"default":"true"

T,

"JBI_corePoolSize":{
"type":"integer",
"default":"4"

T,

"JBI_keepAliveTime":{
"type":"integer",
"default":"60000"

+,

"JBI_maximumPoolSize":{
"type":"integer",
"default":"-1"

+,

"JBI_queueSize":{
"type":"integer",
"default":"1024"

+,

"JBI_shutdownTimeout":{
"type":"integer",
"default":"0"

+,

"JVM_MAX_MEM":{
"type":"integer"

+,

"JVM_MAX_PERM_MEM":{
"type":"integer"

+,

"JVM_MIN_MEM":{
"type":"integer"

},

"JVM_PERM_MEM" :{
"type":"integer"

T,

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

"NMR_allowCoreThreadTimeOut":{

"type":"boolean",
"default":"true"

T,

"NMR_corePoolSize":{
"type":"integer",
"default":"4"

T,

"NMR_keepAliveTime":{
"type":"integer",
"default":"60000"

T,

"NMR_maximumPoolSize":{
"type":"integer",
"default":"-1"

},

"NMR_queueSize":{
"type":"integer",
"default":"1024"

3,

"NMR_shutdownTimeout":{
"type":"integer",
"default":"0"

+,

"SERVICEMIX_USER":{
"type":"string",

"description":"username for the interaction with the

ServiceMix Instance",
"default":"smx"
},
"SERVICEMIX_PASSWORD":{
"type":"string",

"description":"password for the interaction with the

ServiceMix Instance",
"default":"smx"
}
1,
"required": [
"ID",
"ESB",
"Name"
1,

"additionalProperties":true

139

Appendix A. Description of the Most Relevant Entities in the Registry

Listing A.5: ServiceMix Configuration JSON Schema

140

Appendix B.

ServiceMix Features Taxonomy

141

Name Category Type Engine Description Properties
webconsole Management & BC ServiceMix |The Karaf web console provides a install and uninstall features
Orchestration graphical overview of the runtime. start, stop, install bundles
create child instances
configure Karaf
view logging informations
ssh Management & BC ServiceMix |SSH server to enable the SSH -
Orchestration connection to the Karaf instance
servicemix-exec Management & SE ServiceMix |The ServiceMix Exec component is Commands: executables, binaries, shell
Orchestration used to invoke commands commands, shell scripts, etc
camel-exec Management & SE Camel The exec component can be used to |[commands: executables, binaries, shell
Orchestration execute system commands. commands, shell scripts, etc
servicemix-osworkflow |Management & SE ServiceMix |The ServiceMix OSWorkflow You can specify one or more workflows and it's
Orchestration component provides workflow processing will start when a valid message is
functionality to the ESB. received.
servicemix-scripting |Management &| SE ServiceMix |The ServiceMix Scripting component [Groovy (1.5.6)
Orchestration provides support for processing scripts |JRuby (1.1.2)
using JSR-223 compliant scripting Rhino JavaScript (1.7R1)
languages.
servicemix-cxf-se Management & SE ServiceMix |ServiceMix CXF SE component is a It uses Apache CXF internally to perform service
Orchestration JBI Service Engine exposing invocations and xml marshaling. Features: jsr181
(annotated) POJO as services on the |annotations, jaxb2/aegis/xmlbeans
JBI Bus. databinding,wsdl auto generation, java proxy
support, MTOM / attachments support.
camel-quartz2 Message SE Camel It provides a scheduled delivery of Quartz Scheduler 2.x . Each endpoint represents
Handlers messages. a different timer (in Quartz terms, a Trigger and
JobDetail).
camel-quartz Message SE Camel It provides a scheduled delivery of Quartz Scheduler 1.x . Each endpoint represents
Handlers messages. a different timer (in Quartz terms, a Trigger and
JobDetail).
servicemix-quartz Message SE ServiceMix [The servicemix-quartz component is a | Quartz Scheduler 1.x . Each endpoint represents
Handlers standard JBI Service Engine able to |a different timer (in Quartz terms, a Trigger and
schedule and trigger jobs using the JobDetail).
great Quartz scheduler.
exf-nmr Routing SE ServiceMix |Base broker in ServiceMix -
servicemix-camel Routing SE ServiceMix |The servicemix-camel component It provides a full set of Enterprise Integration
provides support for using Apache Patterns and flexible routing and transformation in
Camel both Java code or Spring XML to route services
on the Normalized Message Router.
camel-nmr Routing SE Camel The nmr component is an adapter to |You can exchange objects with NMR and not only|
the Normalized Message Router XML like this is the case with the JB
(NMRY) in ServiceMix, which is specification. The interest of this component is
intended for use by Camel applications|that you can interconnect camel routes deployed
deployed directly into the OSGi in different OSGI bundles.
container.
servicemix-drools Routing SE ServiceMix |This Service Engine can be used to |-
deploy a rules set that will implement a
router or an actual service.
camel-fop Message SE Camel The FOP component allows you to Supported formats: pdf, ps, pcl, png, jpeg, svg,
Transformers render a message into different output |xml, mif, rtf, txt, etc.
formats using Apache FOP
camel-avro Message SE Camel This component provides a dataformat | It provides support for Apache Avro's rpc, by
Transformers for avro, which allows serialization and |providing producers and consumers endpoint for
deserialization of messages using using avro over netty or http.
Apache Avro's binary dataformat.
servicemix-saxon Message SE ServiceMix |The servicemix-saxon component is a |This component is based on Saxon and supports
Transformers standard JBI Service Engine for XSLT [XSLT 2.0 and XPath 2.0, and XQuery 1.0.
/ XQuery.
camel-xmlbean Message SE Camel |[XmiBeans is a Data Format which -
Transformers uses the XmiIBeans library to
unmarshal an XML payload into Java
objects or to marshal Java objects into
an XML payload.
camel-xmlijson Message SE Camel This data format provides the -
Transformers capability to convert from XML to
JSON and viceversa directly, without
stepping through intermediate POJOs.
servicemix-validation Validation SE ServiceMix | The ServiceMix Validation component -
provides schema validation of
documents using JAXP 1.3 and
XMLSchema or RelaxNG.
camel-xmisecurity Security SE Camel Validate XML signatures as described |Supports Apache Santuario and the JDK provider
in the W3C standard XML Signature [for JSR 105
Syntax and Processing or as described
in the successor version 1.1.
camel-crypto Security SE Camel The Crypto Data Format integrates the |[Encryption algorithms: DES, CBC and

Java Cryptographic Extension into
Camel, allowing simple and flexible
encryption and decryption of
messages using Camel's familiar
marshall and unmarshal formatting
mechanism.

PKCS5Padding. Message Authentication Code.

camel-cache Storage SE Camel The cache component enables you to |This component supports producer and event
perform caching operations using based consumer endpoints.
EHCache as the Cache
Implementation
camel-sql Storage SE Camel This component allows you to work -
with databases using JDBC queries.
camel-jdbc Storage SE Camel The jdbc component enables you to | This component uses the standard JDBC API.
access databases through JDBC,
where SQL queries and operations are
sent in the message body.
camel-mongodb Storage SE Camel The camel-mongodb component -
integrates Camel with MongoDB
allowing you to interact with MongoDB
collections both as a producer
(performing operations on the
collection) and as a consumer
(consuming documents from a
MongoDB collection).
camel-couchdb Storage SE Camel The couchdb: component allows you to|As a consumer, monitors couch changesets for
treat CouchDB instances as a inserts, updates and deletes and publishes these
producer or consumer of messages. |as messages into camel routes.
As a producer, can save or update documents
into couch.
Can support as many endpoints as required, eg
for multiple databases across multiple instances.
Ability to have events trigger for only deletes, only|
inserts/updates or all (default).
Headers set for sequenceld, document revision,
document id, and HTTP method type.
camel-krati Storage SE Camel This component allows the use krati |-
datastores and datasets inside Camel
camel-jclouds Communication| SE Camel This component allows interaction with |-
cloud provider key-value engines
(blobstores) and compute services.
camel-aws Communication| SE Camel This component provides connectivity [Support for: SQS, SNS, S3, SES, SimpleDB,
to AWS from Camel DynamoDB, CloudWatch and Simple Workfrow.
camel-gae Communication| SE Camel It provides connectivity to GAE's cloud|Url fetch service, Task queueing service, Mail
computing services. service, Memcache service, XMPP service,
Images service, Datastore service, Accounts
service, etc.
camel-mail Communication| SE Camel The mail component provides access [SMTP, SMTPS, POP3, POP3S, IMAP, IMAPS
to Email via Spring's Mail support and
the underlying JavaMail system.
servicemix-email Communication| BC ServiceMix | The ServiceMix Mail component POP3, IMAP, SMTP
provides support for receiving and
sending mails via the enterprise
service bus.
servicemix-fip Communication| BC ServiceMix [The ServiceMix FTP component It can be used to read & write files over FTP or to
provides JBI integration to the FTP periodically poll directories for new files.
servers.
camel-fip Communication| SE Camel This component provides access to FTP, SFTP, FTPS.
remote file systems over the FTP and
SFTP protocols.
servicemix-vfs Communication| BC ServiceMix |The ServiceMix VFS component -
provides support for reading from and
writing to virtual file systems via the
enterprise service bus by using the
Apache commons-vfs library.
camel-jsch Communication| SE Camel The camel-jsch component supports -
the SCP protocol using the Client API
of the Jsch project
camel-facebook Communication| SE Camel The Facebook component provides It allows producing messages to retrieve, add,
access to all of the Facebook APIs and delete posts, likes, comments, photos,
accessible using Facebook4J. albums, videos, photos, checkins, locations, links,
etc. It also supports APIs that allow polling for
posts, users, checkins, groups, locations, etc.
camel-twitter Communication| SE Camel The Twitter component enables the It allows direct, polling, or event-driven
most useful features of the Twitter API [consumption of timelines, users, trends, and
by encapsulating Twitter4J. direct messages. Also, it supports producing
messages as status updates or direct messages.
camel-xmpp Communication| SE Camel The xmpp: component implements an | The component supports both room based and
XMPP (Jabber) transport. private person-person conversations.
servicemix-xmpp Communication| BC ServiceMix |The ServiceMix XMPP componentis |The component supports both room based and
used to communicate with XMPP private person-person conversations.
(Jabber) servers through the JBI bus.
camel-rss Communication| SE Camel The rss: component is used for polling -
RSS feeds.
camel-irc Communication| SE Camel You can hang out on IRC with other -
Camel developers and users.
camel-activemq Communication| SE Camel The ActiveMQ component allows -

messages to be sent to a JMS Queue
or Topic or messages to be consumed
from a JMS Queue or Topic using

Apache ActiveMQ.

cameljms Communication| SE Camel The JMS component allows messages -
to be sent to (or consumed from) a
JMS Queue or Topic.
servicemix-jms Communication| BC ServiceMix |The JMS component allows messages [JBI compliant Binding Component
to be sent to (or consumed from) a Usable in a lightweight mode in servicemix.xml
JMS Queue or Topic. configuration files
SOAP 1.1 and 1.2 support
MIME attachments
WS-Addressing support
WSDL based and XBean based deployments
Support for all MEPs as consumers or providers
servicemix-cxf-bc Communication| BC ServiceMix |A JBI compliant HTTP/SOAP or JBI compliant Binding Component
JMS/SOAP binding component named |Usable in a lightweight mode in servicemix.xml
servicemix-cxf-bc which use apache |configuration files
cxf internally. SOAP 1.1 and 1.2 support
MIME attachments
Support for all MEPs as consumers or providers
SSL support
WS-Security support
WS-Policy support
WS-RM support
WS-Addressing support
camel-rmi Communication| SE Camel The rmi: component binds Exchanges -
to the RMI protocol (JRMP).
camel-http Communication| SE Camel The http: component provides HTTP [HTTP, HTTPS
based endpoints for consuming
external HTTP resources (as a client to|
call external servers using HTTP).
camel-http4 Communication| SE Camel The http4: component provides HTTP [HTTP, HTTPS
based endpoints for calling external
HTTP resources (as a client to call
external servers using HTTP).
servicemix-cxf-bc Communication| BC ServiceMix |A JBI compliant HTTP/SOAP or JBI compliant Binding Component
JMS/SOAP binding component named |Usable in a lightweight mode in servicemix.xml
servicemix-cxf-bc which use apache |configuration files
cxf internally. SOAP 1.1 and 1.2 support
MIME attachments
Support for all MEPs as consumers or providers
SSL support
WS-Security support
WS-Policy support
WS-RM support
WS-Addressing support
servicemix-http Communication| BC ServiceMix |ServiceMix ships with a JBI compliant [JBI compliant Binding Component
HTTP/SOAP binding component Usable in a lightweight mode in servicemix.xml
named servicemix-http. configuration files
Integrated HTTP server based on Jetty 6
gTTP Client using Jakarta Commons HTTP
lient
Highly performant and scalable using Jetty 6
continuations
SOAP 1.1 and 1.2 support
MIME attachments
WS-Addressing support
WSDL based and XBean based deployments
Support for all MEPs as consumers or providers
SSL support
WS-Security support
camel-websocket Communication| SE Camel The websocket component provides It supports the protocols ws:// and wss://.
websocket endpoints for
communicating with clients using
websocket.
camel-printer Communication| SE Camel The printer component provides a way | This component only supports a camel producer
to direct payloads on a route to a endpoint.
printer.
camel-apns Communication| SE Camel The apns component is used for The component supports sending notifications to

sending notifications to iOS devices.

Apple Push Notification Servers (APNS) and
consuming feedback from the servers.

S9INJeJ XTPIIAISG T 2InS1]

uone)sayaIQ B Juswabeuepy

ﬁ uosfjux-jawed i Jawe)
UOXES-XIWIIIAIDS
ﬁ ueaq|ux-jawed I_wEmo E

ﬁ doy-jawes i lawe) wl@lﬁ az|g abessa|y I slauliojsuel) abessapy
UOXES-XIW3JIAIDS
ﬁ OJAe-|oWed i Jawe) a

ﬁ doy-jawes i swed a a

TINX 0} NOST

uoniesiunwwod

abeio)g

fKunoag

sainjead XINIIIAIDS

uonepieA

uonezijelag

s19|pueH abessajy

145

servicemix-camel ServiceMix NMR

g

omSm_.n:»ANN
Content Based
Message Scheduler Camel
Message Handlers E
e Schema Validation I

Validation

servicemix-validation

camel-xmlsecurity Camel e
cameleypto a a

Process Message e servicemix-quartz
Camel camel-exec

servicemix-exec

Cryptography

Message Transformers

g ServiceMix Features

System Commands e

Appendix B. ServiceMix Features Taxonomy

WS-Security

servicemix-ws-security

webconsole
camel-cache a a B ServiceMix Control a
- . e

saL E n servicemix-osworkflow
camel-jdbc E
camel-mongodb a e MongoDB
Communication
camel-couchdb e e CouchDB NosQL

R N servicemix-scripting
Service Orchestation

Web Services : "
R servicemix-cxf-se
Implementations

Figure B.2.: ServiceMix features

146

S9INJedJ XIAPIIAISG g g dInSL]

JuswoBeueyy
seoanosay pnojy

uoRe}say2iQ g JusweBeue

g

souniojsues obessol

SaInjead XINeOINIES

uopesUNWWO)

a

uonepliepn

siojpueH oBessaly

9G-JX0-X|WADIAIBS

s00qeoe)-jswes

147

Appendix B. ServiceMix Features Taxonomy

E

Remote Object Interface u

camel-http

camel-http4

servicemix-cxf-bc

Message Handlers

E

Validation

servicemix-http

E

servicemix-cxf-bc

Security

Communication

servicemix-http

Websocket e Omsw_i camel-websocket u
Peripherics ivq_z.oqmémoNBm_i nm_sm_._uz:.o_‘w
e a Notifications e ONEm_i omam_.m:_nuu

Cloud Resources

ServiceMix Features

Message Transformers

a

Management

Figure B.4.: ServiceMix features

148

spnojof-jawes a a au103sqolg

SaInjeaJ XIASIIAISG

g'q an3rg

hmu:e_uai JUSWIAUB PROIO-BINI

spnojof-jawes

a a JE—
(e (s o]
a a a $821AI0S SHUN02OY
()]

(e ()) (e
() () () s

(o) o) ())
a ggoweuig
(=)

aujbu3z ddy ajboog

Sme-|awed

lowed ggeiduis

S30IAI9G M UoZRWY

SMme-jawe |owen

Sme-jawes lowey

SMe-jowed

Juawoabeuep

$301n0SaY PNojy

uone}say2IQ @ Juswabeuejy

angqon

g

ojoads-1apInod

siawojsuel) abessay
S30IAIBS QIM

S3INjead XINIIAIS

mmm i
1IN03g

uonepijeA

20B}3U| 393[qO Sjoway

sia|pueH abessaly

Bujbessap

149

Appendix B. ServiceMix Features Taxonomy

150

Appendix C.

Taxonomy Validation - Case Studies

C.1. Example: Using ESB to Deploy a Wordpress Application

The first step in this case is identifying which components are included in our Wordpress
application. After taking a look in the Wordpress documentation, we can come up with the
following main components in a simple Wordpress installation:

e Server with Wordpress. The communication with this service is perform through
HTTP/HTTPS requests.

e MySQL database. The Wordpress server gets the data making SQL queries to this
database.

e Browser (client). It processes the graphical interface obtained from the server by

HTTP/HTTPS requests.
Browser
s
| HTTPHTTPS
Enterprise Service Bus
HTTP/HTTPS:.:":: saL

/saL

“a

]

Wordpress MySQL
service database

Figure C.1.: Basic components of a WordPress application

The second step is selecting which ESB features we need for the communication of these
components. For that, we must make use of our features map. At least we need to find two
features: one which supports HTTP/HTTPS, and other one for SQL support. As we can
see in Figure C.3, there are different alternatives for HTTP/HTTPS support: camel-http,
camel-http4, servicemix-cxf-bc and servicemix-http. For SQL we have also two options:
camel-sql and camel-jdbc.

151

Appendix C. Taxonomy Validation - Case Studies

C.2. Example: Using ESB to Deploy a KeystoreJS Application

As in the other configuration, the first step is identifying which components are included in a
typical Keystore]S deployment. After taking a look in the Keystore]S documentation, we can
come up with the following main components in a simple Keystore]S installation:

e Server with Keystore]S. It includes a dashboard and a server accessible through HTTP/HTTPS
requests. Besides it includes a MongoDB.

e Browser (client). It processes the graphical interface with data obtained from the server
by HTTP/HTTPS requests.

e Mobile devices (client). They processes the graphical interface with data obtained from
the server by HTTP /HTTPS requests.

Browser

. Mobile
devices

4

HTTP/HTTPS i HTTP/HTTPS
> v

Enterprise Service Bus

HTTP/HTTPS / :
with SSL :.-’:MongoDB

Amazon
S3
(Storage)

KeystoreJS
Figure C.2.: Basic components of a KeystoreJS application

The second step is selecting which ESB features we need for the communication of these
components. For that, we should make use of our features map. At least we need three
features: one which supports HITP/HTTPS, one for MongoDB and other one for Amazon
S3. As we can see in Figure C.4, there are different alternatives for HTTP /HTTPS support:
camel-http, camel-http4, servicemix-cxf-bc and servicemix-http. For MongoDB we have only
one options: camel-mongodb. Finally, for communication with Amazon S3, we need the
feature : camel-aws.

152

C.2. Example: Using ESB to Deploy a Keystore]S Application

dpy-xiwasialas

90-JX9-XIWDIAIIS

ydny-lpwed

uonyeorjddy ssaxdpiop e Aojdep 03 sanjesy jo uonosag °¢:) Sy

jJuswabeuep
$92IN0Say pNo|y
souayduad

FENELELEITY

dVOS/dLl1H

S92IAI9S g3M
SdLlLH/dLLH @

adepaju| 393[qQ ajoway

Buibessapy

1910 8 1L

@

TOSON

a os
a

oqpl-|]awes

aa

siawloysuel] abessapy

Sainjead XiN3dIAIBS

uonepieA

s1a|pueH abessapy

153

Appendix C. Taxonomy Validation - Case Studies

Manag:

Message Handlers

Message Transformers

camat-mongods e e MongoDs

Messaging

Remote Object Interface

camel-http

camel-http4.

ement & Orchestation

HTTP/HTTPS

servicemix-cxf-bc

Web Services

HTTP/SOAP
%

Websocket |
Validation
Ci icati
‘Amazon Web Services
E

servicemix-http

]
@

Peripherics

saL
a Cloud Resources

Management

Google App Engine

CouchDB NosaQL
Multi-Cloud Manement

Figure C.4.: Selection of features to deploy a Keystor]S Application

SimpleDB

DynamoDB

Simple Workflow

camel-aws

154

Appendix D.

Implementation Details

In order to create a new ESB Instance in the system, three Fleet units must be defined:

e Launcher: contains the command to start and stop an ESB instance. It also saves the
ESB instance state when it exits. It contains also some fields (X-Fleet fields) to select a
machine preference during the scheduling process.

e Minion: publishes the information of the running ESB instance into the registry (ETCD).
It publishes the IP address and binding ports of such instance and provides the infor-
mation to access to the instance. It includes also a field MachineOf to be located aside
the launcher.

o Committer: commits periodically the state of the running ESB instance and pushes it to
the image storage. It includes also a field MachineOf to be located aside the launcher.

A skeleton of these three components can be seen in Listing D.1.

LAUNCHER UNIT

[Unit]

Description=Launcher for ESB Instance {{ IntanceID }}.

Requires=docker.service

[Service]

TimeoutSec=0

Pull the ESB image

ExecStartPre=/bin/bash -c "/usr/bin/docker pull {{ Instancelmage
o

ExecStart=/bin/bash -c¢ "/usr/bin/docker run -t -P --name {{
InstanceID}} {{ConfigurationParameters}} {{Instancelmagel}} "

155

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

Appendix D. Implementation Details

Execute to stop the container with the ESB Instance
ExecStop=/bin/bash -c "/usr/bin/docker stop {{.Instance.ID}} "
Sets the stopping state in the registry.

ExecStopPost=/usr/bin/etcdctl set /_esb/user/{{.0wner}}/instance
/{{.Service}} "{{.StoppingInstancel}}"

Push the state of the ESB instance into the Image Storage

ExecStopPost=/bin/bash -c "/usr/bin/docker commit <{{InstanceID}}
{{InstanceImagel}} ; /usr/bin/docker push {{InstanceImagel}}"

Sets the stopping state in the registry.

ExecStopPost=/usr/bin/etcdctl set /_esb/user/{{0Owner}}/instance
/{{InstanceID}} "{{StoppedInstanceJSON}}"

Removes the container from the machine
ExecStopPost=/bin/bash -c¢ "/usr/bin/docker rm {{InstanceID}} "
Parameters for scheduling preferences.

[X-Fleet]

MachineMetadata=health=idle

MachineMetadata=health=normal
MachineMetadata=health=busy

INFO UNIT

[Unit]

Description=Info {{InstanceID}} ESB Instance
Run after the Launcher unit.

After={{InstanceID}}.service
Requires={{InstanceID}}.service

156

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

[Service]
EnvironmentFile=/etc/environment

Periodically sets the running state for the instance with a TTL
value.

ExecStart=/bin/sh -c "while true; do ; /usr/bin/sleep 3; etcdctl
set /_esb/user/{{0Owner}}/instance/{{InstanceID}} \"{{
RunningInstance}}\" --ttl 90; /usr/bin/sleep 30; done"

This field tells the scheduler to run this unit aside the
Launcher unit.

[X-Fleet]
MachineOf={{InstanceID}}.service

COMMITTER UNIT

[Unit]

Description=Commit state {{InstanceID}} ESB Instance into a
Docker Registry

After={{InstanceID}}.service

Requires={{InstanceID}}.service

[Service]
EnvironmentFile=/etc/environment

Periodically push the state of the running instance into the
Image Storage.

ExecStart=/bin/sh -c "while true; do /usr/bin/sleep 300; /usr/bin
/docker commit --pause=false {{InstanceID}} {{ImageNamel}} ; /
usr/bin/docker push {{ImageNamel}} ; done"

This field tells the scheduler to run this unit aside the
Launcher unit.

[X-Fleet]
MachineOf={{.Servicel}}.service

Listing D.1: Implementation of and ESB instance skeleton

157

20

21

22

23

24

25

26

27

28

29

30

Appendix D. Implementation Details

In Listing D.2 we can see a skeleton of how a command for the CLI can be done in Golang
using the cited library.

package command

import (
"errors"
"github.com/coreos/etcdctl/third_party/github.com/codegangsta/
cli"
esb "github.com/totemteleko/goesb"
"ogt

// Creates command example

func CreateCommand () cli.Command {
return cli.Command{
Name : "create",
Usage: "create ESB_instancesyin,the,cluster fromya,;JSON
config file",
// These flags specified the options of the command line tool
Flags: []lcli.Flag{
cli.StringFlag{"user, u", "admin", "Owner of, the_ new ESB
instance"},

} 3

Action: func(c *cli.Context) {
// Calls the handler function.
handler (c)

T,

func handler(c *cli.Context) {
// Checks if the number of arguments is correct.

if len(c.Args()) == 0 {
printError (errors.New("Config, file required") .Error())
os.Exit (2)
}
// Client which includes of the functions to use the platform.
Initialization of the Client has been ommitted for brevity.

158

44

45

46

47

48

49

50

51

52

53

54

client, _ := localESBClient ()
// Loop
for _, arg := range c.Args() {
// here a function of the ESB client is called with the
argument .

// In case of error, print it.

if err != nil {
println ("ERROR:," + err.Error())
os.Exit (2)

} else {
println("success")

Listing D.2: Implementing a CLI command

159

Appendix D. Implementation Details

160

20

21

22

23

24

25

Appendix E.

System Configuration

In order to configure each one of the machines in the cluster, only one file is required. This
file is a configuration file which is used when a machine is provision in the supported
infrastructures. This file contains the same information and values for all the machines in
the system and hence, a configuration must be performed just once. A template is given in
Listing E.1.

#cloud-config

coreos:
etcd:
generate a new token for each unique cluster from https://
discovery.etcd.io/new
discovery: https://discovery.etcd.io/<token>
multi-region and multi-cloud deployments need to use
$public_ipv4
addr: $private_ipv4:4001
peer-addr: $private_ipv4:7001
units:
- name: etcd.service
command: start
- name: fleet.service
command: start

This unit run the Monitor in the specified port of the
machine
- name: monitor.service
command: start
content: |
[Unit]
Description=Monitor for Core(OS host
After=docker.service
Requires=docker.service

[Servicel]

161

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

Appendix E. System Configuration

162

Restart=always

ExecStartPre=/bin/bash -c "/usr/bin/docker pull google/
cadvisor"

ExecStart=/usr/bin/docker run -t --volume=/var/run:/var
/run:rw --volume=/sys:/sys:ro --volume=/var/lib/
docker/:/var/lib/docker:ro --publish=<MONITOR_PORT
>:8080 --name=monitor google/cadvisor:latest

ExecStop=/bin/bash -c¢ "/usr/bin/docker stop monitor"

ExecStopPost=/bin/bash -c "/usr/bin/docker rm monitor"

This unit install some of the required files for the

deployment.

name : esb.service

command: start

content: |
[Unit]
After=docker.service
After=fleet.service
After=etcd.service
Description=Download ESB Binaries
Documentation=https://github.com/totemteleko/esb
Requires=docker.service
Requires=fleet.service
Requires=etcd.service

[Service]
Environment="DOCKER_USER=<ADMIN_NAME>"
Environment="MAINTAINER=<ADMIN_EMAIL>"
Environment="public_ipv4=$public_ipv4"
Environment="private_ipv4=$private_ipv4"
Environment="ESB_PORT=<ESB_PORT>"
Environment="MONITOR_PORT=<MONITOR_PORT>"
Environment="IMAGE_STORAGE=<
IMAGE_STORAGE_LOCATION>"
ExecStartPre=/usr/bin/docker pull totemteleko/
servicemix
ExecStart=/usr/bin/wget -P /home/core/ https://
bitbucket.org/totemteleko/esb/downloads/esb-
setup.sh
ExecStart=/usr/bin/sh /home/core/esb-setup.sh
ExecStart=/usr/bin/rm /home/core/esb-setup.sh

Type=oneshot

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

This unit runs the REST API

name

command :
content:

name

command :
content:

esb-rest.service
start

I

[Unit]

After=esb.service
After=docker.service
After=fleet.service
After=etcd.service
Description=Rest API for ESB
Documentation=https://github
Requires=docker.service
Requires=fleet.service
Requires=etcd.service

[Service]

cloud
.com/totemteleko/esb

EnvironmentFile=/etc/esb-environment

ExecStart=/opt/bin/esb-rest
Restart=always

esb-controller.service
start

I
[Unit]
After=monitor.service
After=esb.service
After=docker.service
After=fleet.service
After=etcd.service
After=monitor.service

Description=Rest API for ESB
Documentation=https://github
Requires=monitor.service
Requires=docker.service
Requires=fleet.service
Requires=etcd.service
Requires=monitor.service

[Service]

cloud
.com/totemteleko/esb

EnvironmentFile=/etc/environment

EnvironmentFile=/etc/esb-environment
Environment="TEMPLATE_PATH=/var/templates/fleet.

163

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

Appendix E. System Configuration

conf"
Environment="FLEET_CONFIG=/etc/fleet/fleet.conf"
Environment="HEALTH_INTERVAL=<HEALTH_INTERVAL>"
Environment="HEALTH_MIN_CPU=<HEALTH_MIN_CPU>"
Environment="HEALTH_MAX_CPU=<HEALTH_MAX_CPU>"
Environment="HEALTH_MIN_CPU_BUSY=<

HEALTH_MIN_CPU_BUSY>"
Environment="HEALTH_MIN_MEM=<HEALTH_MIN_MEM>"
Environment="HEALTH_MAX_MEM=<HEALTH_MAX_MEM>"
Environment="HEALTH_MIN_MEM_BUSY=<

HEALTH_MIN_MEM_BUSY>"
ExecStart=/opt/bin/esb-controller
Restart=always

This create a file to update the metadata of the machine when

the Controller starts

write_files:

path: /etc/fleet/fleet.conf

content: |
public_ip="$private_ipv4"
metadata="health=unknown"

164

Listing E.1: Template for the configuration of the framework inside CoreOS machines

Bibliography

[1] R.P. Padhy, “Virtualization techniques & technologies: state-of-the-art,” Journal of Global
research in Computer science, vol. 2, no. 12, pp. 29-43, 2012.

[2] CoreOS,Inc., “CoreOS. Minimal operating system for massive server deployments,” 2014.
https://coreos.com/.

[3] F. Calzolari, “High availability using virtualization,” CoRR, vol. abs/0910.1719, 2009.

[4] T. Rademakers and J. Dirksen, Open-Source ESBs in Action: Example Implementations in
Mule and ServiceMix. Greenwich, CT; London: Manning, 2009.

[5] K. E. Kjeer, “A survey of context-aware middleware,” in Proceedings of the 25th Conference
on IASTED International Multi-Conference: Software Engineering, SE’'07, (Anaheim, CA,
USA), pp. 148-155, ACTA Press, 2007.

[6] E. Chong and G. Carraro, “Architecture strategies for catching the long tail,” MSDN
Library, Microsoft Corporation, pp. 9-10, 2006.

[7] C.S. Yeo, M. D. de Assungdo, J. Yu, A. Sulistio, S. Venugopal, M. Placek, and R. Buyya,
“Utility computing and global grids,” CoRR, vol. abs/cs/0605056, 2006.

[8] P. Mell and T. Grance, “The NIST Definition of Cloud Computing,” Tech. Rep. 800-145,
National Institute of Standards and Technology (NIST), Gaithersburg,, September 2011.

[9] M. Purvis, J. Sambells, and C. Turner, Beginning Google maps applications with PHP and
Ajax. Springer, 2006.

[10] R. Chellappa, “Intermediaries in Cloud-computing: A new computing paradigm,” in
INFORMS Annual Meeting, Dallas, 1997.

[11] G. Petri, “Shedding light on Cloud computing,” The Cloud Academy, 2010.
[12] IBM, “IBM Softlayer,” 2005. http://www.softlayer.com.

[13] E. Amazon, “Amazon Elastic Compute Cloud (Amazon EC2),” Amazon Elastic Compute
Cloud (Amazon EC2), 2010.

[14] R. Cloud, “Cloud Sites—The Power of Cloud Computing & Cloud Hosting by
Rackspace,” retrieved on Aug, vol. 11, 2009.

[15] A. Zahariev, “Google App Engine,” Helsinki University of Technology, 2009.
[16] B. Wilder, Cloud Architecture Patterns: Using Microsoft Azure. " O'Reilly Media, Inc.", 2012.
[17] K. Pepple, Deploying OpenStack. " O'Reilly Media, Inc.", 2011.

165

https://coreos.com/
http://www.softlayer.com

Bibliography

18] Google,Inc., “Google docs,” 2005. https://docs.google.com/.

[18]

[19] Lucid Software, Inc., “Lucidchart,” 2012. https://www.lucidchart. com.

[20] Lesson Nine GmbH, “Babbel,” 2011. https://www.babbel.com/.

[21] Z. Wang, “Security and privacy issues within the Cloud Computing,” in Computational
and Information Sciences (ICCIS), 2011 International Conference on, pp. 175-178, IEEE, 2011.

[22] D. Spinellis, “Another level of indirection,” in Beautiful Code: Leading Programmers Explain
How They Think (A. Oram and G. Wilson, eds.), ch. 17, pp. 279-291, Sebastopol, CA:
O'Reilly and Associates, 2007.

[23] E. W. Pugh, L. R. Johnson, and J. H. Palmer, IBM's 360 and Early 370 Systems. MIT Press,
1991.

[24] R.]. Creasy, “The Origin of the VM /370 Time-sharing System,” IBM]. Res. Dev., vol. 25,
pp- 483490, Sept. 1981.

[25] T. Lindholm, E. Yellin, G. Bracha, and A. Buckley, The Java virtual machine specification.
Pearson Education, 2014.

[26] B.Joy, G. L. Steele Jr, J. Gosling, and G. Bracha, “The java language specification,” 1998.

[27] E. Bugnion, S. Devine, K. Govil, and M. Rosenblum, “Disco: Running commodity
operating systems on scalable multiprocessors,” ACM Transactions on Computer Systems
(TOCS), vol. 15, no. 4, pp. 412447, 1997.

[28] M. Rosenblum, “Vmware’s virtual platform™,” in Proceedings of hot chips, vol. 1999,

pp. 185-196, 1999.

[29] G.]. Popek and R. P. Goldberg, “Formal requirements for virtualizable third generation
architectures,” Communications of the ACM, vol. 17, no. 7, pp. 412-421, 1974.

[30] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer, I. Pratt, and
A. Warfield, “Xen and the art of virtualization,” ACM SIGOPS Operating Systems Review,
vol. 37, no. 5, pp. 164-177, 2003.

[31] “Understanding Full Virtualization, Paravirtualization, and Hardware Assist,” VMuware
White Paper.

[32] S. Soltesz, H. Potzl, M. E. Fiuczynski, A. Bavier, and L. Peterson, “Container-based
operating system virtualization: A scalable, high-performance alternative to hypervisors,”
SIGOPS Oper. Syst. Rev., vol. 41, pp. 275-287, Mar. 2007.

[33] L ISO and I. Standard, “7498-1,” Information Technology—Open Systems Interconnection—
Basic reference model, 1994.

[34] M.-C. Hsiao, “The Study of a Linux Container-Based Cloud Operating System for
Platform as a Service,” July 24 2014.

[35] M. J. Scheepers, “Virtualization and containerization of application infrastructure: A
comparison,” 2014.

166

https://docs.google.com/
https://www.lucidchart.com
https://www.babbel.com/

Bibliography

[36] J. Turnbull, The Docker Book: Containerization is the new virtualization. James Turnbull,
2014.

[37] M. Marschall, Chef Infrastructure Automation Cookbook. Packt Publishing Ltd, 2013.

[38] A.Kosmin, “Puppet and nagios: a roadmap to advanced configuration,” Linux Journal,
vol. 2012, pp. 3:1-3:??, Apr. 2012.

[39] Docker, Inc., “Docker Hub. Docker public community repository,” 2014. https://hub.
docker.com/.

[40] A.S.Kumar, Virtualizing Intelligent River R: A Comparative Study of Alternative Virtualiza-
tion Technologies. PhD thesis, Clemson University, 2013.

[41] CoreOS, Inc., “Fleet. A distributed init system,” 2014. https://github.com/coreos/
fleet.

[42] CoreOS, Inc., “ETCD. Service discovery,” 2014. https://github.com/coreos/etcd.
[43]]. Palat, “Introducing Vagrant,” Linux Journal, vol. 2012, no. 220, p. 2, 2012.

[44] Free Software Foundation, “Systemd,” 2010. http://www.freedesktop.org/wiki/
Software/systemd/.

[45] D.S. Linthicum, Enterprise application integration. Addison-Wesley Professional, 2000.

[46] S. Davies, L. Cowen, C. Giddings, and H. Parker, WebSphere Message Broker Basics. IBM,
International Technical Support Organization, 2005.

[47] P. C. Brown, TIBCO Architecture Fundamentals. Addison-Wesley, 2011.

[48] A. ServiceMix, “The agile open source ESB,” The Apache software foundation.

]
]
[49] T. Erl, SOA: principles of service design, vol. 1. Prentice Hall Upper Saddle River, 2008.
[50] J. Perry, Java Management Extensions. " O’'Reilly Media, Inc.", 2002.

]

[561] N. Balani and R. Hathi, Apache CXF web service development: Develop and deploy SOAP and
RESTful web services. Packt Publishing Ltd, 2009.

[52] S. Weerawarana, F. Curbera, F. Leymann, T. Storey, and D. F. Ferguson, Web services plat-
form architecture: SOAP, WSDL, WS-policy, WS-addressing, WS-BPEL, WS-reliable messaging
and more. Prentice Hall PTR, 2005.

[53] M. Fleury and F. Reverbel, “The JBoss extensible server,” in Proceedings of the ACM/I-
FIP/USENIX 2003 International Conference on Middleware, pp. 344-373, Springer-Verlag
New York, Inc., 2003.

[54] J. Chamberlain, C. Blanchard, S. Burlingame, S. Chandramohan, E. Forestier, G. Griffith,
M. Mazzara, S. Musti, S. Son, G. Stump, et al., IBM Websphere RFID handbook: A solution
guide. IBM, International Technical Support Organization, 2006.

[55] A. Nierbeck, J. Goodyear, J. Edstrom, and H. Kesler, Apache Karaf Cookbook. Packt
Publishing Ltd, 2014.

167

https://hub.docker.com/
https://hub.docker.com/
https://github.com/coreos/fleet
https://github.com/coreos/fleet
https://github.com/coreos/etcd
http://www.freedesktop.org/wiki/Software/systemd/
http://www.freedesktop.org/wiki/Software/systemd/

Bibliography

[56] O. Alliance, “OSGi-the dynamic module system for Java,” accessed, May, vol. 25, 2009.
[57] B. Snyder, D. Bosnanac, and R. Davies, ActiveMQ in action. Manning, 2011.
[58] C.Ibsen and J. Anstey, Camel in action. Manning Publications Co., 2010.

[59] K. Fatema, V. C. Emeakaroha, P. D. Healy, J. P. Morrison, and T. Lynn, “A survey of
Cloud monitoring tools: Taxonomy, capabilities and objectives ,” Journal of Parallel and
Distributed Computing, vol. 74, no. 10, pp. 2918 — 2933, 2014.

[60] R. Garcia-Carmona, F. Cuadrado, A. Navas, A. Celorio, and J. C. Duenas, “A multi-level
monitoring approach for the dynamic management of private iaas platforms,” Journal of
Internet Technology, Accepted for publication, 2013.

[61] A. Vladishev, “Open Source Enterprise Monitoring with Zabbix,” in Open Source Data
Center Conference, Nurnberg, vol. 60, 2009.

[62] G. Aceto, A. Botta, W. De Donato, and A. Pescape, “Cloud monitoring: A survey,”
Computer Networks, vol. 57, no. 9, pp. 2093-2115, 2013.

[63] J. Varia, “Best practices in architecting Cloud applications in the AWS cloud,” Cloud
Computing: Principles and Paradigms, pp. 459-490, 2011.

[64] S. Strauch, V. Andrikopoulos, S. G. Sdez, and F. Leymann, “ESB™: A multi-tenant
aware enterprise service bus,” International Journal of Next-Generation Computing, vol. 4,
pp- 230-249, November 2013.

[65]]J. Van Vliet, F. Paganelli, S. van Wel, and D. Dowd, Elastic Beanstalk. " O’Reilly Media,
Inc.", 2011.

[66] Google Inc, “Kubernetes. Container orchestration manager,” 2014. https://github.
com/GoogleCloudPlatform/kubernetes.

[67] M. Schwarzkopf, A. Konwinski, M. Abd-El-Malek, and]J. Wilkes, “Omega: flexible,
scalable schedulers for large compute clusters,” in Proceedings of the 8th ACM European
Conference on Computer Systems, pp. 351-364, ACM, 2013.

[68] OpDemand, “Deis. Open Source Application Platform for public and private Clouds,”
2014. http://deis.io.

[69] N. Middleton, R. Schneeman, et al., Heroku: Up and Running. " O’Reilly Media, Inc.",
2013.

[70] A. Dabholkar and A. Gokhale, “A generative middleware specialization process for
distributed real-time and embedded systems,” in Object/Component/Service-Oriented
Real-Time Distributed Computing (ISORC), 2011 14th IEEE International Symposium on,
pp. 197-204, IEEE, 2011.

[71] M. Roman and N. Islam, “Dynamically programmable and reconfigurable middleware
services,” in Proceedings of the 5th ACM/IFIP/USENIX international conference on Middle-
ware, pp. 372-396, Springer-Verlag New York, Inc., 2004.

168

https://github.com/GoogleCloudPlatform/kubernetes
https://github.com/GoogleCloudPlatform/kubernetes
http://deis.io

Bibliography

[72] P. K. Chouhan, H. Dail, E. Caron, and F. Vivien, “Automatic middleware deployment
planning on clusters,” International Journal of High Performance Computing Applications,
vol. 20, no. 4, pp. 517-530, 2006.

[73] Red Hat, “Project Atomic. A cross-host Container deployment,” 2014. http://wuw.
) ploy
projectatomic.ioc.

[74] CenturyLink, “Panamax,” 2014. http://www.panamax. io.
[75]]. Beda, “Containers at scale,” 2014.

[76] Google, Inc., “cAdvisor. Cloud Application Platform,” 2014. https://github.com/
google/cadvisor.

[77] R. Pike, “The Go Programming Language,” Talk given at Google’s Tech Talks, 2009.

[78] D. Ongaro and]J. Ousterhout, “In search of an understandable consensus algorithm,”
Draft of October, vol. 7, 2013.

[79] E. H. Halili, Apache JMeter: A practical beginner’s guide to automated testing and performance
measurement for your websites. Packt Publishing Ltd, 2008.

All links were last followed on November 19, 2014

169

http://www.projectatomic.ioc
http://www.projectatomic.ioc
http://www.panamax.io
https://github.com/google/cadvisor
https://github.com/google/cadvisor

Declaration

I hereby declare that the work presented in this thesis is entirely
my own. I did not use any other sources and references that
the listed ones. I have marked all direct or indirect statements
from other sources contained therein as quotations. Neither this
work nor significant parts of it were part of another examination
procedure. I have not published this work in whole or in part
before. The electronic copy is consistent with all submitted copies.

Stuttgart, November 19, 2014
(Name)

	Introduction
	Fundamentals
	Cloud Computing
	Historical Context & Trends
	Essential Characteristics
	Service Delivery Models
	Deployment Models

	Virtualization
	The Origin and Definition of Virtualization
	Types of Virtualization
	Virtualization Levels

	Container Virtualization
	Docker
	CoreOS

	Middleware
	Enterprise Service Bus
	Apache ServiceMix

	Monitoring
	Desirable Cloud Monitoring Capabilities

	Related Works
	Kubernetes
	Deis
	GeMS
	DPRS. Dynamically Programmable and Reconfigurable Software
	Automatic Middleware Deployment Planning on Clusters
	Project Atomic
	Panamax
	Google App Engine
	Amazon Beanstalk

	Concept and Specification
	System Requirements
	Functional Requirements
	Non-functional Requirements
	Monitoring Requirements

	Use Cases and Roles
	Administrator Role
	Developer Role
	Use Cases Description

	System Overview

	Design
	ESB Instances Characterization and Configuration
	ESB Characterization
	Characterized ESB Instance Creation Sequence
	ESB Image Building

	ESB Instance
	Image Storage
	Host Machines & Cluster Deployment
	Registry
	Controller
	Health
	Manager
	Scheduler

	Monitor
	REST API
	Administrator REST API
	Developer REST API

	Command Line Interface

	Implementation
	ServiceMix Characterization
	ServiceMix Images Generation
	Image Storage
	Monitor
	Registry
	Controller & Cluster Deployment
	Health
	Manager
	Scheduler
	Lifecycle & Deployment of ESB instances

	Command Line Interface
	REST API
	Configuration of the Host Machines

	Validation
	Evaluation
	Evaluation Setup
	Description of the Scenarios
	Evaluation Results

	Conclusion and Future Work
	Description of the Most Relevant Entities in the Registry
	ServiceMix Features Taxonomy
	Taxonomy Validation - Case Studies
	Example: Using ESB to Deploy a Wordpress Application
	Example: Using ESB to Deploy a KeystoreJS Application

	Implementation Details
	System Configuration
	Bibliography

