
Institute for Parallel and Distributed Systems
Machine Learning and Robotics Lab

University of Stuttgart
Universitätsstraße 38
D–70569 Stuttgart

Bachelorarbeit No. 0158

Policy Search for Imitation
Learning

Andreas Doerr

Course of Study: Computer Science B.Sc.

Examiner: Prof. Dr. rer. nat. Marc Toussaint

Supervisor: Ph.D. Nathan Ratliff

Commenced: July 9, 2014

Completed: January 9, 2015

CR-Classification: G.1.6, I.2.6, I.2.9

Abstract

Efficient motion planning and possibilities for non-experts to teach new motion primitives
are key components for a new generation of robotic systems. In order to be applicable
beyond the well-defined context of laboratories and the fixed settings of industrial fac-
tories, those machines have to be easily programmable, adapt to dynamic environments
and learn and acquire new skills autonomously.

Reinforcement learning in principle solves those learning issues but suffers from the curse
of dimensionality. When dealing with complex environments and highly agile hardware
platforms like humanoid robots in large or possibly continuous state and action spaces,
the reinforcement framework becomes computationally infeasible. In recent publications,
parametrized policies have been employed to face this problem. One of them, Policy
Improvement with Path Integrals (PI2), has been derived from the transformation of
the Hamilton-Jacobi-Bellman (HJB) equation of stochastic optimal control into a path
integral using the Feynmann Kac theorem. Applications of PI2 are so far limited to
Dynamic Movement Primitives (DMP) to parametrize the motion policy. Another policy
parametrization, the formulation of motion primitives as solution of an optimization-
based planner has been widely used in other fields (e.g. inverse optimal control) and
offers compelling possibilities to formulate characteristic parts of a motion in an abstract
sense without specifying too much problem-specific geometry.

Imitation learning or learning from demonstration can be seen as a way to bootstrap
the acquisition of new behavior and as an efficient way to guide the policy search into a
desired direction. Nevertheless, due to imperfect demonstrations, which might be incom-
plete or contradictory and also due to noise, the learned behavior might be insufficient.
As observed in the animal kingdom, a final trial-and-error phase guided by the cost and
reward of a specific behavior is necessary to obtain a successful behavior. Interestingly,
the reinforcement learning framework might offer the tools to govern both learning meth-
ods at the same time. Imitation learning can be reformulated as reinforcement learning
under a specific reward function, allowing the combination of both learning methods.

In this work, the concept of probability-weighted averaging of policy roll-outs as seen in
PI2 is combined with an optimization-based policy representation. The reinforcement
learning toolbox and direct policy search is utilized in a way that allows both imitation

i

learning based on arbitrary demonstration types and the imposition of additional objec-
tives on the learned behavior. A black box evolutionary algorithm, Covariance Matrix
Adaptation Evolutionary Strategy (CMA-ES), which can be shown to be closely related
to the approach in PI2 is leveraged to explore the parameter space. This work will ex-
perimentally evaluate the suitability of this algorithm for learning motion behavior on
a humanoid upper body robotic system. We will focus on learning from different types
of demonstrations. The formulation of the reward function for reinforcement learning
will be depicted and multiple test scenarios in 2D and 3D will be presented. Finally, the
capability of this approach to learn and improve motion primitives is demonstrated on
a real robotic system within an obstacle test scenario.

ii

Contents

List of Figures iv

List of Tables v

1 Introduction 1
1.1 Motivation . 1
1.2 Goals . 2
1.3 Organization of this Thesis . 4

2 Background and Related Work 5
2.1 Dynamic Movement Primitives . 6
2.2 Optimal Control for Motor Primitives . 6

3 Theoretical Foundations 9
3.1 Representation of the Motion Policy . 9

3.1.1 Motion Objective Cost Features 10
3.1.2 Workspace Representation . 14
3.1.3 Motion Objective Constraints . 15

3.2 Policy Search Reinforcement Learning . 16
3.2.1 Formulation of the Loss Function 16
3.2.2 Covariance Matrix Adaptation Optimization 20
3.2.3 BiPop CMA-ES . 23

4 Experimental Setup 25
4.1 Apollo Humanoid Robot Platform . 25
4.2 Motion Objective Optimization . 26
4.3 CMA Optimizer . 28

4.3.1 Termination Criteria . 28
4.3.2 Boundaries and Constraints . 28

5 Experimental Results 31
5.1 2D Point Experiment . 31

5.1.1 Synthetic Noisefree Demonstrations 32

iii

Contents

5.1.2 Synthetic Noisy Demonstrations 33
5.1.3 Learning from Multiple Demonstrations 34
5.1.4 Performance and Test Summary 35

5.2 Full Joint State Demonstrations . 37
5.2.1 Task Space vs. Joint Space Optimality 37
5.2.2 Predominant Joints . 37

5.3 Sketched End-Effector Demonstrations . 39
5.4 Imposing Additional Objectives . 41
5.5 Effects of Optimizer Settings . 44

6 Conclusion 47
6.1 Future Work . 47

6.1.1 Trajectory Roll-Outs . 47
6.1.2 Combination with Geometric Motion Representation 48

Bibliography 49

iv

List of Figures

1.1 CHIMP is an example for an anthropomorphic robot. 2
1.2 Apollo, a humanoid upper body robot. 3

3.1 Schematic view of the motion policy representation. 10
3.2 Schematic view of the policy search framework. 17
3.3 Visualization of CMA-ES generations on a two-dimensional problem. . . . 24

4.1 Close up of Apollo’s right arm and hand as used for the experiments. . . . 26

5.1 Setting and results, learning from a single noisefree demonstration. 33
5.2 Policy learning from a single noisy demonstrations. 33
5.3 2D policy learned from 6 noisefree demonstration trajectories. 34
5.4 2D policy learned from 6 noisy demonstration trajectories. 35
5.5 Demonstrations and learned policy for straight end-effector motions. . . . 38
5.6 Demonstrations and learned policy for forearm motions. 39
5.7 Four demonstrations and the learned policy for shoulder motions. 40
5.8 Set of hand drawn end-effector trajectories avoiding an obstacle. 41
5.9 Set of hand drawn end-effector trajectories ignoring an obstacle. 42
5.10 Cross-validation of policies trained for different obstacle avoidance. 43
5.11 Policy performance cross-validation for single and combined objectives. . . 44
5.12 Effects of domain size/problem dimensionality on optimization speed. . . 45

List of Tables

4.1 Cost feature term summary. 27

5.1 Test scenario for the 2D experiments. 31

v

List of Tables

5.2 Motion policy’s cost features for the 2D experiments. 32
5.3 Summary of test setups and optimizer performances for 2D experiments. . 36
5.4 Comparison of optimization performance for given distance metrics 36

vi

1 Introduction

1.1 Motivation

Today’s demand to automatize perseverative or possibly dangerous tasks has lead to an
ongoing development of complex machinery and robotics hardware geared to operate
in environments originally shaped for human interaction. One of those systems, the
CMU1 Highly Intelligent Mobile Platform (CHIMP), which is designed to accomplish
tasks within dangerous and degraded environments of disaster scenarios is shown in
figure 1.1. Due to their high Degree of Freedom (DoF), the programming of these
anthropomorphic or humanoid robotic systems can become tedious or even impossible.
So far, the programming of complex motor skills, allowing these machines to act and
interact within a dynamic environment, has been mostly accomplished by human experts.
This lead to fixed and therefore highly specialized behavior only suitable for very specific
problems and required exhaustive manual parameter tuning. To keep track with the
hardware development and modern robotic systems, it would be desirable to facilitate
the development of new systems by enabling them to learn new skills from demonstrated
behavior and to improve those skills autonomously, e.g. by trial-and-error.

When looking into the animal kingdom, two methods to acquire new skills can be dis-
tinguished. Learning is achieved by either imitating behavior observed from some other
subject or by maximizing some sort of reward when randomly exploring possible ac-
tions. Both concepts are known in the robotics community and translate into Learn-
ing from Demonstration (LfD) [Argall et al., 2009] and Reinforcement Learning (RL)
[Sutton and Barto, 1998], respectively.

LfD can be seen as supervised learning. An external teacher offers demonstrations which
can be used as training examples in an off-line learning process. The demonstrations may
shorten the learning time by guiding the process into a specific direction. At the same
time, demonstrations may not provide a complete picture of the skill to be learned. Ad-
ditionally, the sensor values upon which the observation of the behavior is based may be
noisy and the demonstrations themselves might contain noise and uncertainty. Because
of all those sources of uncertainty and as the environment itself is non-deterministic,

1Carnegie Mellon University

1

1 Introduction

Figure 1.1: The CMU Highly Intelligent Mobile Platform (CHIMP), an anthropomorphic
robot, has been built to compete in the DARPA Robotics Challenge. Because
of its form factor, strength and dexterity, it can execute human-level tasks
in dangerous and degraded environments2.

skills learned solely from demonstrations are most likely not sufficient without further
adaptations. Moreover, LfD requires the learner to generalize from the restricted set of
observed behavior, i.e. to learn the characteristics of a motion.

For reinforcement learning, the learner has to explore a huge space of possible solutions
when dealing with high DoF systems and continuous state/action spaces. While the
optimal solution is somewhere in this space, the current solution and the reward will
not necessarily guide the learning process into the globally optimal direction. A more
detailed analysis of recent developments within the field of reinforcement learning and
the combination of both learning techniques will be given in the next chapter 2.

1.2 Goals

This work will propose a novel and robust algorithm for learning motion policies from ar-
bitrary demonstrations on continuous state/action space and high DoF robotic systems.
At the same time this method exposes only few open learning parameters and should
be easily applicable to different types of motion problems and demonstration types. A
probability-weighted averaging similar to PI2 is used but augmented by the improved
covariance matrix update rule from CMA-ES. In order to incorporate the PI2-CMA

2Credit: Nick Letwin, http://thetartan.org/2014/1/20/scitech/chimp

2

1.2 Goals

approach as proposed by [Stulp and Sigaud, 2012], an optimization-based policy repre-
sentation will be used. This allows to define more abstract and less geometry-oriented
motion characteristics within the optimal control objective. A high-level objective func-
tion will be formulated to leverage reinforcement learning for imitation learning based on
one or multiple demonstrations. The stochastic evolutionary strategy as introduced by
PI2 and CMA-ES at the same time allows almost arbitrary formulations for this objec-
tive function. No derivative information will be necessary and no derivative information
will be estimated.

Figure 1.2: The humanoid robot Apollo is used in this work as a real-world testbed for
reinforcement learning of motion primitives.

The humanoid upper body robot Apollo, as shown in figure 1.2 is used as a running
example. This robot is made of two 7 DoF KUKA lightweight arms, two 4 DoF Barrett
hands and a SARCOS humanoid head. The algorithm will be used to teach the robot
several pointing and reaching motions in order to demonstrate the method’s ability to
generalize a motion policy from different types of demonstrated behavior and to further
improve this policy.

3

1 Introduction

1.3 Organization of this Thesis

Following this short introduction into the methods and reasons for learning motor prim-
itives and the possibilities to facilitate the programming of modern robotic systems, a
short non-comprehensive presentation of related work in the field of motion learning and
representation is given in chapter 2. The recent developments in reinforcement learning
for continuous state/action spaces and the two most common motion policy represen-
tations are outlined. One of these frameworks, the optimal control inspired motion
control, is utilized in this work as the underlying policy representation for the reinforce-
ment policy search and consecutively to imitate and improve demonstrated behavior.
The theoretical foundations of this concept are laid out in chapter 3. In order to moti-
vate the use of this approach and to evaluate its performance, several experiments are
conducted, ranging from 2D simulations to motion tasks executed on a real humanoid
robotic system within an environment containing multiple obstacles. The experimental
setup is explained in chapter 4. From the experimental results, as presented in chapter
5, the applicability of the approach to imitation learning of motor policies and also to
shape the motion in a way to fulfill additional objectives can be shown, even on the
high-dimensional continuous space of this problem formulation. This work is concluded
in chapter 6 by summarizing the capabilities of the presented algorithm and by pointing
out potential future work not addressed by this thesis.

4

2 Background and Related Work

In recent work, new methods have been developed within the reinforcement learning
framework to deal with continuous state/action spaces. The most common of these
algorithms are based on direct policy search. In contrast to the classic value-function
approximation, direct policy search is better scalable to high-dimensional problems and
many of those algorithms require fewer open hyperparameters. All of those methods
utilize some sort of parametrized policy representation. The search space of possible
policies is therefore reduced by more or less implicit assumptions contained in the policy
representation.

Gradient-based methods like Inverse Optimal Control (IOC) [Ratliff et al., 2009], RE-
INFORCE [Williams, 1992] and Natural Actor-Critic (NAC) [Peters and Schaal, 2008a]
aim at iteratively updating a parametrized policy by estimating a gradient in parameter
space. Based on the original work by [Kappen, 2007] a new approach has been pub-
lished recently which evolved from value-function approximation and stochastic optimal
control. It has been shown that policy improvement can be turned into the estima-
tion of a path integral with no tuning parameters except for exploration noise. This
method, called Policy Improvement with Path Integrals (PI2), is based on the stochastic
Hamilton-Jacobi-Bellmann (HJB) equation and has been shown to be numerically robust
due to the lack of matrix inversions or gradient approximations. At the same time this
method has been empirically tested and shown to perform better than gradient-based
methods even on complex real-world robotic scenarios [Theodorou et al., 2010].

In [Stulp and Sigaud, 2012] a comparison of Policy Improvement with Path Integrals
(PI2), Cross-Entropy Methods (CEM) [Kobilarov, 2012] and Covariance Matrix Adap-
tation - Evolutionary Strategy (CMA-ES) [Hansen, 2005] revealed the similarity of those
algorithms. Despite being derived from different ideas and principles they all uti-
lize a very similar probability-weighted averaging to update the policy parameters.
As a combination of PI2 and CMA-ES, the new algorithm PI2-CMA is proposed by
[Stulp and Sigaud, 2012]. The main advantage over the original PI2 is the automatic
adaptation of the exploration noise magnitude in CMA-ES.

Policy learning has been successfully applied to many real-world applications. Machine
learning has been used to learn policies to fly helicopters [Bagnell and Schneider, 2001]

5

2 Background and Related Work

[Kim et al., 2003], for quadrupedal locomotion [Kohl and Stone, 2004] and also biped
robots.

The underlying representation of the parametrized policy is of great importance since
many implicit assumptions are incorporated in the specific representation, thus reducing
the number of representable policies. The two most common approaches representing
the policy as Dynamic Movement Primitives and as the solution of an optimal control
problem are described in detail in the next sections.

2.1 Dynamic Movement Primitives

Dynamic Movement Primitives (DMP) have been proposed by [Ijspeert et al., 2002] to
express parametrized motion policies while maintaining certain robustness and stability
criteria. Dynamic systems are used to express a spring-damper system which follows an
attractor landscape given by a second dynamic system. The attractor surface is usually
learned from some given motions by e.g. locally weighted regression. Single strokes but
also rhythmic tasks can be formulated using DMPs.

Basic stability properties are inherent to the first dynamic system. The entire policy
can be formulated to be linear in its parameters and can be rescaled in time, goal and
amplitude. This concept has been used in multiple applications including T-ball bat-
ting [Ijspeert et al., 2002], tennis swings [Peters and Schaal, 2008b], constrained reach-
ing tasks [Guenter et al., 2007] and also industrial applications.

The concept is mainly focused on learning by imitation but can be adopted to subsequent
self-improvement and also dynamic re-planing, e.g. to react to dynamic obstacles cf.
[Guenter and Billard, 2007]. Due to the representation of the basic motion shape as an
attractor landscape, the learned policy is centered around a specific geometric version of a
motion primitive defined in the 3D euclidean space. No relation between the geometric
and the characteristic aspect causing especially this type of behavior is given in this
problem formulation. While this formulation might be sufficient for small and restricted
motion problems (e.g. tennis swing), a policy representation expressing the necessity for
different characteristics within the motion might be more useful for other problems.

2.2 Optimal Control for Motor Primitives

One possibility to link the typical aspects of a desired motion and the corresponding
control outputs ut of a system is given by the optimal control framework. Optimal
control is based on the idea to compute the control outputs for a given system such

6

2.2 Optimal Control for Motor Primitives

that a given cost or objective function ct at time step t is minimized. The objective
function can be formulated in a way that explicitly expresses desired characteristics of a
behavior such as smoothness, obstacle avoidance, acceleration and velocity limits and so
on. Therefore, the objective function is made of (possibly time-dependent) intermediate
cost terms and a terminal cost term. Abstractly, this can be formulated as

min
u0:T ,s0:T

T−1∑
t=1

ct(st,ut) + cT (sT) (2.1)

s.t. st+1 = f(st,ut) . (2.2)

In this discrete version, the manipulation of the system’s state st is described by a
trajectory ξ = {(s0,u0), . . . , (sT ,uT)} which is a sequence of T + 1 state-action pairs.
This trajectory is the solution of an optimization problem over the space of all feasible
trajectories denoted by Ξ(γ) under the system dynamics st+1 = f(st,ut). Most times,
the desired behavior is shaped by multiple influences which can be expressed as sum
over l intermediate and m terminal cost features. Since each feature may incorporate
context dependencies and free hyperparameters, the individual features are modeled as
functions of the current context γ and a hyperparameter vector θ. The context may
be some representation of the environment surrounding the robot (e.g. obstacles) as well
as problem-dependent parameters (e.g. start and goal configurations). Therefore, the
optimal control problem can be reformulated as

min
ξ∈Ξ(γ)

T−1∑
t=1

(
l∑

i=1
c

(i)
t (st,ut,γ,θ)

)
+

m∑
i=1

c
(i)
T (sT ,γ,θ) . (2.3)

While previous approaches such as IOC [Kalman, 1964] have been centered around linear
combinations of fixed feature terms, a more general approach allows arbitrary hyperpa-
rameters also within each feature formulation. The major drawback of this formulation
is the complexity of finding an appropriate composition of the objective function. Even
if the characteristic parts and therefore the cost features of a motion are easy to identify,
there may be many parameters to tune in order to adapt the objective function in a
way to really express the desired behavior. This process used to be solved manually by
tuning all free parameters to achieve an acceptable behavior of the system.

For linear combinations of features, this problem has been shown to be reducible to
an extremely large-scale multiclass classification problem [Ratliff et al., 2009]. In this
work a framework will be developed (cf. section 3) and tested (cf. section 5) to face this
problem in its general formulation for arbitrary, non-linear parametrization.

7

8

3 Theoretical Foundations

In most cases we have an intuitive understanding of what is a desirable motion for
some manipulation task. We can instinctively specify characteristic parts of this mo-
tion. These characteristic parts can be direct restrictions to the configuration, speed or
acceleration of the manipulator or requirements with respect to its position within the
surrounding environment. Typically, a certain smoothness of the motion or the avoid-
ance of obstacles within a certain radius is required. These claims can be formulated as
cost features within an objective function. This concept of optimal control, as formulated
in section 2.2, is widely used to represent motion policies. The individual motion, in
most cases represented by a discrete-time trajectory, is generated by solving the optimal
control problem, which means minimizing the objective function for a given scenario.

3.1 Representation of the Motion Policy

The representation of motion policies in the form described above offers a high degree
of freedom to the user not only with respect to the composition of the objective func-
tion of all kinds of different cost features, but also by the possibility to individually
weight each cost term and to tune additional parameters within the cost terms. The
problem of selecting a sufficient number and the correct type of cost features will not
be addressed by this work. In most cases, the required motion type directly relates to
an obvious set of features which specifies the typical parts of this motion. The second
part, namely weighting the features appropriately and selecting the hyperparameters in
a goal-oriented way will be addressed in this chapter from a theoretical point of view.
First of all, some possible feature representations are discussed, followed by the descrip-
tion of an optimization framework that allows to automatically tune these parameters
to imitate demonstrated behavior and to subsequently improve the motion with respect
to additional goals.

A schematic description of the motion policy representation is shown in figure 3.1. Ac-
cording to a set of parameters θ and the current context γ, a unique, discrete trajectory
ξ = (q0,q1, . . . ,qT) is computed. The variable qi denotes the full state of the robotic
system at the discrete time step i. In practice, it usually consists of all current joint

9

3 Theoretical Foundations

Figure 3.1: Components of the optimization-based representation of the parametrized
motion policy.

positions. The control command ui needed to proceed from state qi to qi+1 is implicitly
given by the actions necessary to achieve this next configuration within one time step.
Usually an underlying low-level control is employed to execute the discrete trajectory.

The trajectory is generated by solving the optimization problem given by the objective
function. Additional constraints can be imposed that represent joint or acceleration
limits. In this work, the augmented Lagrangian method is used to transform the con-
strained optimization problem into an unconstrained one, which is then solved using a
Newton Trust Region optimizer. The entire optimizer setup and implementation is part
of a preset framework and will be considered as a black box policy representation except
for the cost function formulation which will be explained in the following.

The optimization problem underlying the motion policy representation can be solved
numerically in an efficient and fast manner since gradient and also second derivative
information can be computed analytically for all cost feature terms used in this work.
Depending on the cost features and the problem setting, the average computation time
for one trajectory is around 100ms to 2,000ms. In the following the cost features as
used in the experimental part of this work are explained.

3.1.1 Motion Objective Cost Features

If not denoted otherwise, all cost features employed in this work are constant over time.
The features are defined over the 3 ·n dimensional space of the current state q (q ∈ Rn)
and its first (q̇) and second (q̈) time derivative. Kinematic maps φ(q) of the robotic
system are employed to pull back cost terms defined over euclidean key-points on the
robot (e.g. the end-effector position) into this configuration space. The first and second
order derivatives are pulled back through these maps as well. The complete policy

10

3.1 Representation of the Motion Policy

parametrization is given by a parameter vector θ composed of scalar parameters which
are in the following individually identified by their indices (e.g. θjoint_deriv).

Penalties for Task and Joint Space Derivatives

The fundamental requirement for every motion policy must be to avoid erratic and jerky
behavior. One possibility to achieve smooth motions is to penalize high velocities and
accelerations. The velocities and accelerations in joint space are computed using finite
differencing such that a cost term can be formulated as follows:

Penalty for Joint Space Derivatives The penalty factors for velocity and acceleration
have been set to αvel = 1.0 and αacc = 100.0. This joint space derivative penalty has been
incorporated for all intermediate time steps and a modified version (αvel = 300, 000.0
and αacc = 100.0) has been chosen for t = 0 to achieve an initial velocity close to zero.
All joint space derivative terms are multiplied by the policy parameter θjoint_deriv. The
internal parameters αvel and αacc are currently not part of the policy parametrization.

cjoint_deriv(q̇, q̈) = θjoint_deriv ·
(
αvel‖q̇‖2 + αacc‖q̈‖2

)
(3.1)

Penalty for Task Space Derivatives On Apollo’s robot arm, a smooth motion in joint
space results in curved end-effector motions in the euclidean workspace since all joints
are revolute ones. A penalty term for the second derivative is therefore introduced which
affects the task space velocity of points on the robot. From the robot’s kinematic map,
the function φend−effector mapping from configuration q ∈ Rn to euclidean task space
position x ∈ R3 is given. A similar cost feature as discussed above is used to penalize
end-effector velocities in the euclidean task space. The policy parameter θtask_deriv is
used to weight this term. Increasing the task space penalty encourages straight-line
motions of the end-effector.

Individual Joint Velocity Penalties It may be reasonable in some robotic applications
to favor the use of some degrees of freedom over others. Humans for example tend to use
the fingers to play piano or type on a keyboard rather than moving the entire arm simply
because this is more convenient in terms of mass distribution, energy consumption and

11

3 Theoretical Foundations

precision. To express this kind of preference, a third velocity penalty term in joint space
is introduced to penalize velocities of every joint individually.

cindiv_joint_deriv(q̇) = 1
2

n∑
i=1

θindiv_deriv_i · ‖q̇i‖2 (3.2)

In case of Apollo’s robot arm used in the experimental section, a total of 8 additional
parameters is employed to penalize motions of every joint individually.

Default Configuration Potential

The default configuration potential introduces a heuristic bias which tends to move
the robot arm to a predefined default configuration qdefault. Due to the high degree of
freedom, the robot may move into twisted and unfavorable positions while navigating the
end-effector to a specific target position. Certain arm configurations may offer a much
higher level of manipulability, which means a greater variety of possible configurations
for consecutive motions.

cdefault_config(q) = θdefault_q ·
1
2‖q − qdefault‖2 (3.3)

One or more quadratic potentials can be added to emphasis some ’natural’ positions
that offer a high level of manipulability. In order to not restrict the overall goal of the
motion, the influence of this potential can be decreased over time by linearly decreasing
its weight parameter θdefault_q.

Joint Limit Penalty

Due to the structure of the motion policy, the optimizer is constrained to respect the
robot’s joint limits. Still, the behavior when approaching the joint limits may be different
between the joints and between different types of motions. The joint limit penalty is
used to model this behavior. For joint positions above and below the upper and lower
thresholds ui and li a quadratic penalty term is added to the cost function. The penalty
term for each joint i may be weighted individually by αi and the thresholds may be set
individually within qmini ≤ li ≤ ui ≤ qmaxi for each joint qi ∈ [qmini , qmaxi] and its physical
joint limits.

cjoint_limit(q) = θjoint_limit ·
n∑
i=1

fi(qi) (3.4)

12

3.1 Representation of the Motion Policy

fi(qi) =

(qi − li)2 if qi < li

(ui − qi)2 if qi > ui

0 otherwise
(3.5)

In this work, the upper and lower thresholds have been set to the upper and lower third
of the entire joint range. All joints have been equally weighted (αi = 1) and only the
overall weighting factor θjoint_limit is part of the motion policy parametrization. As
shown at the example of individually weighted joint velocities, it should also be possible
to learn those joint limit specific parameters if required by some special type of motion.

Terminal Velocity Penalty

As it has been described previously, the initial velocity of the system is forced to be closed
to zero by the choice of the joint space derivative penalty at time step zero. Similarly, the
velocity should decelerate smoothly at the end of the motion. In order to achieve that,
a quadratic terminal cost feature is added to penalize high velocities. The smoothness
property of the entire motion consequently ramps up and down the velocity.

cT (q̇) = θterminal_velocity ·
1
2‖q̇‖

2 (3.6)

Postural Potentials

For certain manipulations and grasping movements, a distinct posture of the manipulator
is necessary. For example, a hand should be held horizontally to carry a full glass of
water. A quadratic potential is used to pull the axis of joint i which is given by the
forward kinematic map φi : Rn → R3 into the direction of a normal vector n.

corientation(q) = θorientation ·
1
2‖n− φi(q)‖2 (3.7)

The normal vector n is currently set to a fixed value, e.g. to the upward z-axis in order
to maintain a horizontal hand posture by aligning the finger knuckle’s joint axis.

13

3 Theoretical Foundations

Surface Potential

The surface potential is a linear term which is proportional to the distance from a given
surface. In its simplest form, the normal vector n and a point on a surface p are given
to describe a flat surface (e.g. a tabletop). Given a kinematic map φ(q), this potential
can be applied to any point on the robot. In this work, a potential is utilized to force
the end-effector onto the table surface or to push it away from the table. The normal
and position vector are not learned and set to a fixed value. Only the weight of this
potential is exposed to the optimization.

A similar quadratic term has been introduced for cylindrical obstacles. This term forms
a barrier function when approaching the obstacle in radial direction and thus pushes
the end-effector away from the obstacle. Both terms became obsolete when switching
to the Riemannian workspace representation as described in 3.1.2 and could be replaced
by independently-weighted velocity penalties within the influence spheres of each obsta-
cle.

3.1.2 Workspace Representation

Previous cost features centered around the configuration of the robotic system itself
and around its derivatives as well as around attractors and potentials either in the
configuration/joint space Rn or in the ambient euclidean workspace R3. Not only these
robot specific features are important to express motion policies but also the relation
to the surrounding environment and the behavior with respect to obstacles must be
expressed.

So far, no potential has been introduced which guides the motion towards the goal
position. The simplest possibility is to use a euclidean metric as a goal attractor in joint
space or in task space. In an empty workspace, the straight-line motion resulting from
the euclidean distance metric could be the right choice. But moving from one side of a
cylindrical obstacle to the other, this metric will pull the end-effector straight into the
obstacle. Additional potential fields can be utilized to push the trajectory away from
obstacles. This approach has been tested for the 2D experiments, where a linear potential
is applied for a flat surface and a radial potential is used to push the end-effector away
from a point obstacle.

Ideally, the goal attractor itself would guide the motion into feasible trajectories. There-
fore, a new workspace representation based on differential geometry is used to formulate
the goal attractor potential. When minimizing the difference between current and goal

14

3.1 Representation of the Motion Policy

position in this new space, the motion translated to the actual 3D workspace automat-
ically avoids obstacles. Details about the workspace representation using Riemannian
geometry can be found in [Ratliff, 2015].

The higher dimensional space representing the surrounding workspace can be thought
of as a combination of multiple coordinate systems each of which represents one ba-
sic geometric object within the workspace e.g. a cylindrical obstacle. These coordinate
systems are blended together for each position of the three-dimensional workspace and
weighted according to the distance to the individual object. In this work, an ambient
euclidean system is composed with cylindrical coordinate systems for each cylindrical ob-
stacle. The influence of the cylindrical system decreases exponentially with the distance
from the obstacle and vanishes at a certain radius around the obstacle. This workspace
representation has been used in all 3D experiments involving obstacles.

Additionally to the goal attractor defined in the higher dimensional space of the Rieman-
nian geometry, velocity penalties can be added to every dimension. This way, different
motion types around the obstacles can be realized. Four additional velocity penalties
have been introduced. Three of them penalize the velocities within the cylindrical sys-
tem and one of them is used to penalize motion in any direction within the ambient
euclidean system.

3.1.3 Motion Objective Constraints

In the general formulation of a constrained optimization program, equality and inequality
constraints can be given:

min c(x)
s.t. gi(x) = 0 for i = 1, . . . , k Equality constraints

hj(x) ≥ 0 for j = 1, . . . , l Inequality constraints
(3.8)

Those hard constraints are used to express requirements which must be fulfilled in order
to operate the robotic system safely. The two hard constraints employed in this work
are surface and joint limit constraints.

The distance between any point within the workspace and the obstacle is given as an
analytic function since every object is represented as a geometric primitive. In this
work, constant offset thresholds to the obstacle’s surface are given for the finger and
wrist joints. Those offsets are part of the policy parametrization.

The joint limit constraints are defined by the physical joint limits and are not part of
the policy parametrization.

15

3 Theoretical Foundations

3.2 Policy Search Reinforcement Learning

Following the discussions in previous sections, a parametrized policy is now available
which outputs a solution trajectory ξ(θ,γ) depending on the problem’s context γ and
the parameter vector θ. Direct policy search is an iterative method to find the policy that
maximizes the expected reward or minimizes the expected loss in contrast to indirect
policy search methods which compute the policy by estimating the value function.

In this work, a loss function L(ξ(θ,γ)) is formulated (also called a fitness function in
the following). The optimal policy, represented by the optimal parameter vector θ∗, is
obtained by solving the following optimization problem:

θ∗ = arg min
θ

E[L(ξ(θ,γ))] (3.9)

In general, the expected loss is minimized, since both the system’s state/action transi-
tions and the policy itself are probabilistic. For the specific problems presented in this
work, both components are assumed to be deterministic. The policy is fully defined by
the parameter vector θ and the problem context γ. The computed trajectory ξ(θ,γ) de-
terministically defines the actions to be taken for every state. Furthermore, the system is
assumed to precisely follow the given trajectory such that all state/action transitions are
deterministically defined as well. Generally, it is not valid to assume a perfect response
of the system, but because of Apollo’s fast low-level control, we can suppose that it is
the case for our first experiments (cf. section 6.1.1).

This section describes the two main components of the optimization program that is
used in this work. First, different ways to formulate the loss function are presented
3.2.1. They aim at either mimicking demonstrated behavior or complying with additional
requirements. The optimizer suitable for this problem will be depicted in section 3.2.2.

A schematic view of the reinforcement policy search framework is shown in figure 3.2.
The underlying optimization-based policy representation has been designed according
to 3.1.

3.2.1 Formulation of the Loss Function

The loss function L must be selected carefully in order to properly represent the re-
inforcement learning goals. The subsequent sections present formulations suitable to
imitate behavior respectively to improve a given policy.

16

3.2 Policy Search Reinforcement Learning

Figure 3.2: Components of the high-level optimization setup for reinforcement policy
search.

Imitation Learning

In a first step, the reinforcement framework should be leveraged to imitate demonstrated
behavior. This behavior is described by a set D = {(γi, ξi)}ki=1 containing k pairs where
the first component is the problem context γi and the second component is the corre-
sponding discrete demonstration trajectory ξi. Each demonstration may be composed
of arbitrarily many discrete configurations: ξi = (q0, . . . ,qT (i)

demo

).

For each problem context, the solution trajectory ξgen can be generated according to the
current set of policy parameters. The number of configurations of the solution can be
chosen freely. In this work, T = 10 is usually chosen for the 2D experiments and T = 30
for 3D experiments.

To optimize the similarity between the observed behavior D and the motions generated
by the current policy, different loss functions are possible. We assume that the data
available for each demonstration describes the full state of the robotic system. Addi-
tionally, we assume that demonstration and solution trajectory have the same length
such that for every time step, the solution configuration can be directly compared to the
according demonstration configuration. For this scenario, three distance metrics have
been evaluated in the 2D experiments.

Average euclidean distance in joint space

dAvgEucl(ξgen, ξdemo) = 1
T + 1

T∑
t=0
‖q(t)

demo − q(t)
gen‖ (3.10)

17

3 Theoretical Foundations

Maximal euclidean distance in joint space

dMaxEucl(ξgen, ξdemo) = max
(
‖q(t)

demo − q(t)
gen‖

)T
t=0

(3.11)

Combined objective to reach the motion’s goal point and imitate the demonstra-
tion

dCombined(ξgen, ξdemo) = 1
Tgen + 1

Tgen∑
tgen=0

min
(
‖q(tdemo)

demo − q(tgen)
gen ‖

)Tdemo

tdemo=0

+ wgoal · ‖q(T)
demo − q(T)

gen‖ (3.12)

In most cases, the generated trajectories are restricted to a small number of steps (T �
100), to allow for efficient and fast computation. The demonstration in contrast may
encompass many more discrete configurations e.g. arising from sampling the state of a
manually moved robotic system at a high rate. A demonstration that is given by a human
teacher usually incorporates jerky behavior which is not characteristic for the desired
movement but originates from the hurdles of manually moving the robot arm. The
same applies for sketched end-effector paths or other types of manually taught motions.
The velocity and acceleration profiles of such demonstrations must not be taken as a
reference since intermediate stops or slow-downs may be necessary to reposture the arm
but may not be part of the desired behavior. To get rid of these artifacts, only the path
in joint or task space is taken into account. We abstract away from the actual velocity
and acceleration profile by subsampling a trajectory of configurations having constant
euclidean distance (thus representing a motion at constant speed) from the observed
trajectory. The resulting trajectory is further down-sampled to the size of the generated
trajectory by selecting Tgen configurations from the demonstration in an equidistant
fashion.

ξdemo = (q(t)
demo)

Tgen

t=0 s.t. ‖qt − qt+1‖ = const. ∀t ∈ [0, . . . , Tgen − 1] (3.13)

As both trajectories now have an equal number of steps, they can be compared using
the distance metrics explained above. Alternatively, these metrics can be applied to the
euclidean distance of given key-points on the robotic system in task space. In this case,
the forward kinematic map φ(q)keypoint is employed to map a configuration q at time
step t to the vector x containing the task space coordinates of the specified key-point. In
case of Apollo’s arm, a total of 10 key-points at the center of each revolute joint is taken
into account leading to a 3 · 10 = 30 dimensional output vector for the entire kinematic
map.

18

3.2 Policy Search Reinforcement Learning

Whereas the first two distance metrics (cf. equations 3.10 and 3.11) are only applicable
to demonstrations and generated trajectories of equal length (Tdemo = Tgen), the third
metric can also be applied in case Tdemo 6= Tgen. This last objective expresses two
requirements. First of all, the generated motion has to reach the goal point (i.e. the
distance between q(T)

demo and q(T)
gen needs to be minimized). Secondly, the distance between

each configuration of the generated solution and any demonstrated configuration must be
minimized. This formulation might help to detect the compliance of a generated solution
with jerky demonstration behavior because it considers compliant behavior outside the
jerky regions. All three objectives have been evaluated on different problems to assess
their applicability to real-world problems (cf. chapter 5).

In general, the policy should be learned from multiple demonstrations ξki=0 in order
to avoid adaptation to specific characteristics of a single, maybe deficient, demonstra-
tion. The loss function is therefore given by the average distance between the generated
trajectory and all demonstrations. This way, the influence of dominant characteristics
persistent within the given set of demonstrations is further increased.

Limitation(ξgen, ξki=0) = 1
k

k∑
i=0

(d(ξgen, ξi)) (3.14)

Imposing Additional Requirements

Especially in scenarios where only a part of the system is constrained by the demon-
strated behavior, additional requirements can be formulated to resolve the redundancy
arising for the rest of the system and to support a specific behavior. Two examples are
given below and evaluated in the experimental section.

Elbow Criteria When the demonstration only incorporates the end-effector’s position
(which is the trajectory of the left fingertip in the given examples), the complex kinematic
of the 8 DoF system offers many redundant ways to fit this demonstration. For example,
the position of the elbow can be changed arbitrarily without affecting the end-effector’s
position at all. As it was observed that a low positioning of the elbow leads to arm poses
that offer greater flexibility, this redundancy is resolved by penalizing movements of the
elbow to an upper position. In order to achieve this, a new term Lelbow is added to the
loss function which consists of a downward potential that favors low elbow positions.

19

3 Theoretical Foundations

The elbow height with respect to a horizontal plane is summed over all time steps. The
plane is specified by a point on its surface p and the normal vector n.

Lelbow(ξgen) =
Tgen∑
t=0

(φelbow(q(t)
gen)− p) · n (3.15)

Smoothness Criteria By exposing all parameters of the underlying objective function
to the policy search step, the optimizer can run into policies that generate jerky and
non-smooth trajectories. This can be the case for jerky or complex demonstrations
as well as for scenarios that are not easily representable by the specific formulation of
the optimal control problem. But the smoothness of the trajectory is crucial for its
successful execution on real hardware. To achieve smooth trajectories, an additional
term is incorporated in the loss function

The non-smoothness is measured by the average acceleration that arises when execut-
ing the trajectory. Central differencing is used to compute the acceleration for each
intermediate step of the trajectory. The penalty term is the average over those single
accelerations (cf. equation 3.17).

at = ‖qt−1 − 2qt + qt+1‖ (3.16)

Lsmoothness(ξgen) = 1
Tgen + 1

Tgen∑
t=0

a2
t (3.17)

3.2.2 Covariance Matrix Adaptation Optimization

To express similarity to a set of demonstrations and to measure the fulfillment of addi-
tional requirements, arbitrary formulations for loss functions are possible. Usually the
analytic formulation of the gradient or second derivative information is not available for
all of these formulations. Therefore a black box optimizer should be employed for this
type of problem in order to optimize with respect to the policy parametrization. Black
box optimization refers to the scenario where only function evaluations are possible and
no gradient information is available. The performance or cost of such an optimizer is
usually measured in the number of function evaluations that are necessary to to meet a
certain termination criterion.

Since the underlying policy is fully characterized by its parametrization θ ∈ Rn and
the representation of the environment γ, the policy search reinforcement learning can be
easily formulated as a standard black box optimization problem L : Rn → R,θ 7→ L(θ)

20

3.2 Policy Search Reinforcement Learning

The Covariance Matrix Adaptation Evolutionary Strategy (CMA-ES) is a stochastic and
derivative-free optimization method proposed by [Hansen, 2005]. Their publication also
contains an instructional tutorial for the algorithm. The method is applicable for non-
linear, non-convex problems on a continuous real-valued domain. Whereas the CMA-ES
algorithm is a local optimizer in its original formulation, special adaptations can be made
to turn it into a global optimizer (cf. section 3.2.3).

Inspired by evolution in nature, evolutionary algorithms strive to optimize certain char-
acteristics of a population by evolving it over multiple generations. Each generation
arises from the fittest members of the preceding generation; this way, the fitness crite-
rion improves over time. In the following, the main steps of one iteration of the CMA-ES
algorithm are listed:

Sampling:
θi=1,...,λ ∼ N (θ, σ2Σ) (3.18)

Evaluation:
Li = L(θi) (3.19)

Sorting:
θi=1,...,λ ← sortθi=1,...,λw.r.tLi=1,...,λ (3.20)

Update:

θnew = updateθ (3.21)
Σnew = updateΣ (3.22)

In the sample step, λ parent points are drawn from a multivariate Gaussian distribution.
The distribution is given by a mean θ and a covariance matrix which is split into a
scalar step size σ2 and a matrix Σ defining the distribution’s shape. This way, shape
and magnitude of the Gaussian can be modified independently. The automatic adaption
of the exploration noise (which is defined by the step size σ) is one big advantage of
CMA-ES over other approaches (e.g. CEM, PI2). The loss function is evaluated at every
parent point and the µ best offsprings (called elite samples) from each generation are
used to update the distribution parameters.

As pointed out in [Stulp and Sigaud, 2012], the update steps are the crucial component
of the CMA-ES method which sets it apart from CEM and PI2. A probability-weighted

21

3 Theoretical Foundations

averaging of all offspring sample points is used to determine the new distribution mean.
Any arbitrary choice of probabilities Pi=1,...,µ for the elite samples is possible as long as∑µ
i=1 Pi = 1 and P1 ≥ · · · ≥ Pµ. The default choice given by equation 3.23 as suggested

by [Hansen, 2005] is used in this work. The update of θ is therefore given by:

Pi = ln(0.5(λ+ 1))− ln(i) ∀i ∈ {1, . . . µ} (3.23)

θnew =
µ∑
i=1

Piθi (3.24)

To compute the new covariance matrix of the underlying distribution, both step-size (σ)
and shape (Σ) are updated separately. The ’evolutionary path’ for both parameters (pσ
and pΣ) maintains information about the history of θ from previous generations. This
way, CMA-ES can exploit trends like several consecutive changes in the same direction
by increasing the step size.

Step Size Update:

pσ ← (1− cσ)pσ +
√
cσ(2− cσ)µeffΣ−1θ

new − θ
σ

(3.25)

σnew = σ · exp
(
cσ
dσ

(‖pσ‖
E‖N (0, I)‖ − 1

))
(3.26)

Distribution Shape Update:

pΣ ← (1− cΣ)pΣ + hσ

√
cΣ(2− cΣ)µp

θnew − θ
σ

(3.27)

Σnew = (1− c1 − cµ)Σ + c1(pΣp
T
Σ + δ(hσ)Σ)

+ cµ

Ke∑
k=1

Pk(θk − θ)(θk − θ)T (3.28)

There are some open learning parameters in CMA-ES which are chosen according to the
default values as suggested by Hansen. The algorithm was designed to work robustly on
a large set of problems given these default parameters. It has been extensively tested
amongst others in the course of the Black Box Optimization Benchmarking workshop
which revealed the algorithm’s applicability to a large variety of both noisefree and noisy
test problems [Hansen, 2009]. The learning parameters and general settings as used in
this work are given below in accordance to [Hansen, 2005]:

22

3.2 Policy Search Reinforcement Learning

Selection and Recombination:

λ = 4 + b3 lnnc, µ = bλ2 c (3.29)

Step-size control:

cσ = µeff + 2
n+ 4 + 2µeff/n

, dσ = 1 + 2 max
(

0,
√
µeff − 1
n+ 1 − 1

)
+ cσ (3.30)

Covariance matrix adaptation:

cc = 4 + µeff/n

n+ 4 + 2µeff/n
(3.31)

c1 = 2
(n+ 1.3)2 + µeff

(3.32)

cµ = min

(
1− c1, αµ

µeff − 2 + 1/µeff
(n+ 2)2 + αµµeff/2

)
withαµ = 2 (3.33)

A sample run of CMA-ES on a simple two-dimensional quadratic problem is shown
in figure 3.3 to illustrate the distribution’s development over several iterations of the
algorithm. A larger population size is chosen to clearly visualize the sample points
(black dots) drawn in each generation. The shape and size of the current distribution is
visualized by the 2σ border (given as orange dotted line). Lines of constant loss function
value are used together with a color gradient to visualize the spherical optimization
problem. The evolution of the population over the course of six generations clearly
shows the fast convergence of the distribution towards the problem’s optimum.

3.2.3 BiPop CMA-ES

The original CMA-ES implementation can be seen as a local optimizer refining the
initial guess. CMA-ES does not depend overly strongly on the initial step size. This
has been proven in [Stulp and Sigaud, 2012] and it is also visible in figure 3.3 where the
inappropriate initial step size is modified considerably between generation one and three.
The algorithm automatically adapts to sensitivity differences between the search space
dimensions and also to errors in the initial guess as long as they do not exceed one to two
magnitudes. To solve even more global optimization problems, different concepts can
be applied. Global search can be achieved by increasing the population size as shown

1http://upload.wikimedia.org/wikipedia/en/d/d8/Concept_of_directional_optimization_in_
CMA-ES_algorithm.png

23

http://upload.wikimedia.org/wikipedia/en/d/d8/Concept_of_directional_optimization_in_CMA-ES_algorithm.png
http://upload.wikimedia.org/wikipedia/en/d/d8/Concept_of_directional_optimization_in_CMA-ES_algorithm.png

3 Theoretical Foundations

Figure 3.3: Visualization of multiple CMA-ES generations (black dots) on a two-
dimensional spherical problem 1.

in [Hansen and Kern, 2004]. A modified version of CMA-ES was proposed to further
increase applicability to global optimization problems. BiPop CMA-ES as proposed
by [Auger and Hansen, 2005], implements a two population restart scheme based on
independent CMA-ES runs. The first restart regime utilizes a growing population size
to achieve greater coverage of the parameter space while the other regime is limited to
a small number of samples for faster convergence.

The BiPop CMA-ES has been implemented in this work to evaluate whether global
optimization approaches are necessary for the given problem setup. Details about the
practical application of both optimizers, especially parameter encoding and normaliza-
tion as well as boundary and domain space handling, are given in chapter 4.3.

24

4 Experimental Setup

Even for an autonomous policy search algorithm as presented in the last chapter, certain
arrangements are necessary to learn and operate successfully on a real robotic system. In
this chapter, Apollo, the robotic platform used in this work for more complex real-world
test scenarios, is introduced. Thereafter, some practical hints are given for the use of
the motion objective formulation and finally the configuration of the CMA-ES optimizer
is explained.

The software framework used for the experimental evaluation is written in C++ based
on the underlying optimization framework written by Nathan Ratliff. The biggest part
of the newly developed code is formed by the representation of the reinforcement ob-
jective function, the high-level optimizers (CMA-ES and BiPop CMA-ES) and helper
classes to store demonstration and context data. The Robot Operating System (ROS) is
mainly used for visualization (RViz) and as an interface to the real-time operating sys-
tem running the Simulation Laboratory (SL) software to control the actual robot. The
loss function evaluation for each sample point of the current optimization generation has
been parallelized using OpenMP to speed up the optimization on multi-core systems.

4.1 Apollo Humanoid Robot Platform

This work focuses on reaching and pointing motions executed by a humanoid robot arm.
The actual experimental platform is a humanoid upper body, called Apollo. The robot
is equipped with two KUKA lightweight robot arms and attached Barret manipulator
hands. Each KUKA arm offers 7 DoF which allows manipulability similar to a human
arm but its joint positioning is slightly different (cf. figure [4.1]). The joint centers are
referred to as key-points within this thesis.

The Barrett hand is equipped with three fingers each one having two joints. Additionally,
the spread between the thumb and the other fingers can be varied. For the experiments
presented in this thesis, both finger joints have been coupled to be controllable as one
joint and the finger spread has been set to a fixed value. Only the left finger is used as
shown in image 4.1 to allow the robot to point to goal positions.

25

4 Experimental Setup

Figure 4.1: Close up of Apollo’s right arm and hand as used for the experiments.

4.2 Motion Objective Optimization

In table 4.1, a summary of all currently implemented cost features is given. A total of 25
parameters can be used to parametrize motion policies. For each motion experiment, the
actually employed features are marked. Some features may be unnecessary to express a
specific motion and can be excluded or set to a fixed value.

Apparently, the set of features exhibits some redundancy: there are different features
which can be used interchangeably to express a certain characteristic of a motion. There-
fore, two distinct policies may lead to similar resulting motions. The following pairs
describe some redundancies that have not been resolved in this work:

• Derivative penalty (joint space) – Individual joint velocity penalty
• Upper wrist (finger) posture – Lower wrist (finger) posture
• Derivative penalty (task space) – Euclidean velocity (euclidean system)

From the experimental results as presented in chapter 5, no faulty behavior was ob-
served due to those redundancies. The policy optimizer turns out to be robust against
redundant parametrization and is capable to automatically spread out contributions to
a specific motion characteristic over multiple redundant terms. For example in the case
of upper and lower wrist posture, this may lead to the use of only one of the terms to po-
sition the hand. Since both wrist positions are close to each other, this still results in the
desired motion. Nevertheless, certain scenarios and motion problems could require the
usage of both terms. Learning from additional demonstrations for these situations might
therefore prioritize the other wrist term and automatically resolve this redundancy.

26

4.2 Motion Objective Optimization

#
C
os
t
fe
at
ur
e

N
or
m
al
iz
at
io
n

D
ef
au

lt
1

2
3

4
5

6

1
D
er
iv
at
iv
e
pe

na
lty

(j
oi
nt

sp
ac
e)

0.
01

1
x

x
x

x
x

x
2

D
er
iv
at
iv
e
pe

na
lty

(t
as
k
sp
ac
e)

10
0

2
x

x
x

x
x

3
Jo

in
t
po

te
nt
ia
l

0.
1

1
x

x
x

x
x

x
4

D
ef
au

lt
co
nfi

gu
ra
tio

n
10

3
x

x
x

x
x

x
5

Ta
bl
e
po

te
nt
ia
l

1
0

x
x

6
C
yl
in
de

r
po

te
nt
ia
l

1
0

(x
)

(x
)

7
Te

rm
in
al

po
sit

io
n

10
,0
00

10
x

x
x

x
x

x
8

Te
rm

in
al

ve
lo
ci
ty

1,
00

0
3

x
x

x
x

x
9

U
pp

er
w
ris

t
po

st
ur
e

0.
1

1.
7

x
x

x
x

10
Lo

w
er

w
ris

t
po

st
ur
e

0.
1

1.
4

x
x

x
x

11
U
pp

er
fin

ge
r
po

st
ur
e

0.
1

0.
6

x
x

12
Lo

w
er

fin
ge
r
po

st
ur
e

0.
1

0.
1

x
x

13
H
an

d
or
ie
nt
at
io
n

1
0

x
14

R
ad

ia
lv

el
oc
ity

(c
yl
in
dr
ic
al

sy
st
em

)
1

10
x

x
15

C
irc

um
fe
re
nt
ia
lv

el
oc
ity

(c
yl
in
dr
ic
al

sy
st
em

)
1

0
x

x
16

z-
ve
lo
ci
ty

(c
yl
in
dr
ic
al

sy
st
em

)
1

0
x

x
17

Eu
cl
id
ea
n
ve
lo
ci
ty

(e
uc

lid
ea
n
sy
st
em

)
1

1
x

x
18

Jo
in
t
ve
lo
ci
ty

(J
oi
nt

1)
1

0
x

x
x

19
Jo

in
t
ve
lo
ci
ty

(J
oi
nt

2)
1

0
x

x
x

20
Jo

in
t
ve
lo
ci
ty

(J
oi
nt

3)
1

0
x

x
x

21
Jo

in
t
ve
lo
ci
ty

(J
oi
nt

4)
1

0
x

x
x

22
Jo

in
t
ve
lo
ci
ty

(J
oi
nt

5)
1

0
x

x
x

23
Jo

in
t
ve
lo
ci
ty

(J
oi
nt

6)
1

0
x

x
x

24
Jo

in
t
ve
lo
ci
ty

(J
oi
nt

7)
1

0
x

x
x

25
Jo

in
t
ve
lo
ci
ty

(J
oi
nt

8)
1

0
x

x
x

26
Po

in
t
ob

st
ac
le

po
te
nt
ia
l

1
5

x

Ta
bl
e
4.
1:

Su
m
m
ar
y
of

al
l
co
st

fe
at
ur
e
te
rm

s
us
ed

in
th
is

w
or
k.

A
no

rm
al
iz
at
io
n
fa
ct
or

an
d
th
e
de

fa
ul
t
va
lu
e
ar
e
gi
ve
n.

Fo
r
ea
ch

pr
es
en
te
d

ex
pe

rim
en
t,

th
e
co
m
po

sit
io
n

of
th
e
ob

je
ct
iv
e
fu
nc

tio
n

is
in
di
ca
te
d.

1=
2D

Ex
pe

rim
en
ts
,

2=
Ta

sk
/J

oi
nt

sp
ac
e,

3=
Pr

ed
om

in
an

t
jo
in
ts
,
4=

O
bs
ta
cl
e
av
oi
da

nc
e,

5=
O
bs
ta
cl
e
av
oi
da

nc
e
+

El
bo

w
,
6=

H
an

d
or
ie
nt
at
io
n

27

4 Experimental Setup

4.3 CMA Optimizer

All parameters of the CMA-ES algorithm have been set according to Hansen’s default
implementation (cf. section 3.2.2). The only parameters of the optimizer that need to
be chosen in a problem-specific way are the initial solution point θ0 ∈ Rd and a scalar
initial step size σ0. Moreover, some assumptions about the underlying search space
and the sensitivity of individual dimensions as well as specific termination criteria are
necessary to adapt the algorithm to our problem. The choices made for the experimental
evaluations presented in chapter 5 are described in the following.

4.3.1 Termination Criteria

Several termination criteria as proposed by [Hansen, 2005] have been implemented in the
policy search optimization. With a combination of two among those (fitness tolerance
termination and fitness history termination), reasonable termination can be guaranteed
for all problem formulations used in this work. The first criterion terminates optimiza-
tion as soon as the fitness level reaches a certain threshold. But only in case of the
noisefree 2D experiments, it has been possible to precisely reproduce the policy of the
demonstration and thus to reduce the loss to zero. In all other cases, a reasonable
threshold for terminating the optimization can not be known a priori. The fitness his-
tory termination criteria is therefore employed in those scenarios: In case the fitness
level stagnates for at least 30 generations, the optimization will terminate.

The thresholds for both termination criteria have been set to 0.01 for all experimental
evaluations. No significant improvement of the policy’s fitness was observable when using
stricter termination criteria, especially not in the experiments on the real system.

4.3.2 Boundaries and Constraints

To achieve the optimal search performance, all parameters (i.e. all search dimensions)
should have similar sensitivity. The raw parameter values as defined in section 3.1.1 cover
more than six magnitudes. To achieve a reasonable parameter encoding, the dimensions
have been rescaled to the range [0, 10]. The normalization factors as used in this work
are listed together with all cost features and some default values1 in table 4.1. The
normalization factors have been determined experimentally by manually weighting the
cost features in order to achieve a smooth motion in unobstructed space.

1Default values are given after normalization.

28

4.3 CMA Optimizer

The motion policy as given in section 3.1 is only defined on positive parameters but the
CMA-ES default implementation is originally meant to operate on Rd. To get around
the need to actively constrain the search space to the non-negative hemisphere, the
objective function is evaluated on the absolute parameter, i.e. c(θ) = c(−θ). Other
methods to constrain the search space by a lower and/or upper bound (e.g. quadratic or
exponential replacement) have been proposed in [Hansen, 2005] but performed poorly
for the problems investigated in this work.

The initial solution point is chosen randomly from the assumed parameter range: θ0 ∼
U(0, 10)d. In [Stulp and Sigaud, 2012], CMA-ES has been shown to successfully adapt
the individual exploration noise of each dimension to explore up to several magnitudes
from the initial starting point. In accordance to [Hansen, 2005], the initial step size is
set to a fifth of the domain size. Tests with different domain sizes, population sizes and
initial step sizes σ have been conducted in this work to verify the adequateness of the
normalization and the selected search space.

Active box constraints have been tested to limit the search space. Outside of the search
domain, a quadratic penalty proportional to the distance to the legal search space was
added to focus search on the chosen domain. The experiments revealed no significant
improvement as a result of applying active box constraints, neither in convergence speed
nor in the fitness of the objective function. The chosen step size already suffices to limit
the search space to an area of the size of two magnitudes around the initial guess.

29

30

5 Experimental Results

The proposed reinforcement policy search algorithm has been experimentally evaluated
on multiple problems. An excerpt of the conducted experiments will be presented in this
chapter to flesh out the algorithm’s suitability for direct policy search, imitation learning
and subsequent policy improvement. In detail, several capabilities that are unique to
this approach, especially in contrast to the recently developed DMP-based policy search
approaches, are of interest:

1. Feasibility of direct policy search on optimization-based policy representations.
2. Imitating demonstrated behavior, independent of the concrete problem’s geometry.

a) Learning characteristic concepts from demonstrated motion primitives.
b) Generalizing to untrained scenarios (including new environments).
c) Learning from incomplete or noisy demonstrations.
d) Learning from demonstrations that only focus on some aspects of the desired

motion.

3. Imposing additional requirements to the learned behavior.

5.1 2D Point Experiment

This experiment has been conducted to gain first insights into the applicability and
performance of the new method. Therefore, the problem has been reduced to a two-
dimensional state space which can be easily visualized. A test context is given by start
and goal position and one of the obstacle positions as summarized in table 5.1.

Start position (0, 0)
Goal position (2, 0)
Default position (0, 1)
Obstacle positions {(0.5, 0.5), (1, 0.5), (1.5, 0.5), (0.5, 0.1), (1, 0.1), (1.5, 0.1)}

Table 5.1: Test scenario for the 2D experiments.

31

5 Experimental Results

In order to come up with demonstrations for the imitation learning, trajectories have
been generated from a manually tuned policy. The objective function is a linear combi-
nation of five terms (cf. section 3.1.1), each of them being weighted by its own parameter.
The cost features used in the 2D experiments and the manually selected weights are listed
in table 5.2. By using the same policy representation to generate demonstrations and to
learn the policy, we make sure that the desired policy is within the span of all possible
policies. Therefore, the algorithm is expected to learn a parametrization that replicates
the demonstrated behavior precisely. In the best case, the algorithm should learn the
exact parametrization of the policy used for demonstration. In this case, the approach
would not only replicate the precise trajectory for the demonstration scenarios but would
have generalized from the shown demonstration to the correct policy underlying those
demonstrations.

Cost feature ci(ξ,γ) Form Demonstrated policy

Terminal configuration potential quadratic 10
Derivative penalty quadratic 0.1
Default configuration potential quadratic 0.1
Upward potential linear 1
Obstacle potential exponential 5

Table 5.2: Motion policy’s cost features for the 2D experiments.

The parameters used to generate the demonstrations have been selected to achieve a
smooth motion from start to goal point and a slight obstacle avoidance. The default
configuration is almost neglected. A linear potential is pushing the trajectory upwards
(i.e. pushing the end-effector away from a tabletop).

5.1.1 Synthetic Noisefree Demonstrations

The setting and results of the first experiment are shown in figure 5.1. The reinforce-
ment, high-level objective, is formulated to imitate the observed behavior. Since both
demonstration and solution trajectory are generated from the same class of policies and
both are composed of an identical number of discrete configurations (T = 10), the imi-
tation objective can directly compute the distance between demonstration and solution
trajectory for each time step.

On the left-hand side of figure 5.1, the resulting average euclidean distance between
demonstration and solution trajectory (which is used as loss function in this case) is
shown in the course of the CMA-ES-generations. The policy search was terminated

32

5.1 2D Point Experiment

0.5 0.3 0.1 0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9 2.1 2.3 2.5
x [m]

0.5

0.3

0.1

0.1

0.3

0.5

0.7

y
[m

]

Start Goal

Obstacle
Original
Solution

Figure 5.1: Setting and results of the first 2D experiment. The policy is learned from a
single noisefree demonstration trajectory.

when a change in fitness ≤ 0.001 was observed. For this simple example, the proposed
framework has been able to exactly derive the policy parametrization from one demon-
stration trajectory up to a constant factor1.

5.1.2 Synthetic Noisy Demonstrations

The same setting as described for the first experiment has been utilized for the sec-
ond test. Additionally, Gaussian noise (∆x,∆y ∼ N (0, 0.05)) has been added to all
demonstrated configurations except for the start and goal position. The results of this
experiment are shown in figure 5.2. The noisy trajectory is shown in green.

0.5 0.3 0.1 0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9 2.1 2.3 2.5
x [m]

0.5

0.3

0.1

0.1

0.3

0.5

0.7

y
[m

]

Start Goal

Obstacle
Original
Noised
Solution

Figure 5.2: 2D policy learned from a single noisy demonstration trajectory. Gaussian
noise was added to every intermediate trajectory point.

The solution trajectory (red dashed line) for this problem setting as produced by the
learned policy clearly shows the basic characteristics of the demonstrated motion. The
slight deviation of the solution trajectory from the noisefree one reflects the divergence

1Rescaling of the parameter vector does not change the policy since the objective function is a linear
weighted composition of constant (with respect to the parametrization) cost features.

33

5 Experimental Results

of the noisy demonstration from the noisefree original. The loss function can not be
minimized as far as seen for the first example. This is because the noisy demonstration
with its jerks and non-smooth behavior can not be exactly represented by this class of
policies.

5.1.3 Learning from Multiple Demonstrations

Generally, the deviation of the learned policy from the original demonstration trajectory
and the underlying policy due to noisy demonstrations as seen in the last experiment (cf.
section 5.1.2) should diminish when taking into account a larger set of demonstrations.
The same experiments as outlined before have been repeated for a set of six demonstra-
tions each of them having a different obstacle position and therefore a different shape.
Three obstacle positions and the corresponding demonstration trajectories are shown in
figure 5.3.

Figure 5.3: 2D policy learned from 6 noisefree demonstration trajectories.

In case of noisefree demonstrations, the results as shown in figure 5.3 are very similar to
the ones obtained when learning from a single noisefree demonstration. The difference
between solution and demonstration is successfully minimized and the solution policy
produces trajectories which align with the given demonstrations. The learned policy
parametrization again matches the manually picked values up to a constant factor.

Gaussian noise is now added to every intermediate point of every trajectory to simulate
a noisy demonstration. Three out of six noisy demonstrations (green dashed lines) are
shown together with their corresponding noisefree original demonstrations (blue lines)
and the trajectories produced by the learned optimal policy (red dashed line) in figure
5.4. Comparing the solution trajectories with the ones produced after learning from a
single noisy demonstration, it is most obvious that the former ones match the original

34

5.1 2D Point Experiment

Figure 5.4: 2D policy learned from 6 noisy demonstration trajectories.

(noisefree) trajectories almost perfectly despite the policy being learned from the noisy
demonstrations.

The learned policy parametrization matches the manually selected parameters up to a
constant factor. As seen in the second experiment presented in section 5.2, the improve-
ment between the loss of the initial policy and the loss of the optimized policy is less
pronounced than in case of learning from noisefree demonstrations. Nevertheless, the
proposed method is capable to identify the original policy parametrization.

5.1.4 Performance and Test Summary

In table 5.3, the conducted 2D experiments are summarized together with main perfor-
mance figures to compare the algorithm’s performance on those problems. The results
and their sample-based standard deviation σ are computed from 5 independent runs.
The magnitude of necessary function evaluations (∼ 103) to achieve termination seems
to be constant over all experiments independent of the noise or the number of given
demonstrations. A slight tendency to faster convergence for learning from single demon-
strations is noticeable. The time consumption in contrast is visibly influenced by the
number of given demonstrations. On a single core system without parallelization, the
evaluation time is almost proportional to the number of samples. The time required for
CMA-ES computations (sampling, sorting and update) can be neglected compared to
the time needed for the evaluation of the objective function.

To asses the performance of different distance metrics as presented in section 3.2.1, the
number of generations up to termination and the fitness of the resulting solution policy
have been statistically analyzed. The 2D experiments, namely learning from noisefree as
well as noisy demonstrations and learning from a single demonstration as well as from

35

5 Experimental Results

Test case 1 2 3 4

of demonstrations 1 1 6 6
Gaussian noise - x - x
Cost features 5 5 5 5
Population size λ 8 8 8 8
Trajectory size T 10 10 10 10
of generations [-] (σ) 122 (18) 102 (17) 160 (27) 135 (21)
Best fitness [mm] (σ) 2.4 (1.3) 36.9 (2.3) 0.5 (0.2) 43.2 (6.0)
Time per generation [ms] (σ) 262 (66) 246 (41) 1824 (362) 1762 (283)

Table 5.3: Summary of test setups and optimizer performances for 2D experiments.

multiple demonstrations have been used benchmarks. From five independent runs, the
average results and standard deviations σ have been computed as given in table 5.4. The
fitness of the resulting policy is measured by the average euclidean distance, independent
of the distance metric used to learn the policy.

Noise AvgEucl MaxEucl Combined

1
- # of generations [-] (σ) 101 (3) 138 (20) 460 (209)

Best fitness [mm] (σ) 4.12 (1.27) 3.64 (2.88) 3.32 (4.76)

x # of generations [-] (σ) 108 (28) 131 (13) 193 (43)
Best fitness [mm] (σ) 52.40 (8.23) 58.93 (7.44) 56.29 (18.1)

6
- # of generations [-] (σ) 135 (19) 154 (17) 149 (12)

Best fitness [mm] (σ) 2.35 (2.35) 0.35 (0.17) 0.035 (0.014)

x # of generations [-] (σ) 128 (17) 148 (32) 196 (30)
Best fitness [mm] (σ) 50.00 (7.37) 45.05 (5.32) 42.19 (5.01)

Table 5.4: The optimization performance (average number of generations) and quality
(average euclidean distance) is compared for three different distance metrics.
Policies are learned from all combinations of noisy and noisefree as well as
single and multiple 2D demonstrations.

The distance metric employed in the learning process has no significant effect on the
fitness of the learned policy. The convergence speed in contrast varies. Consistent
throughout all test cases, the average euclidean distance metric leads to the fastest
convergence, followed by the maximum distance metric and the combined distance met-
ric. Therefore, the average euclidean distance metric will be the default metric for all
upcoming experiments.

36

5.2 Full Joint State Demonstrations

In the 2D experiments, based on the motion of a point in 2D space, there was no joint
space since the motion is fully described by the point’s position. Switching to the real-
world robot arm experiments, joint space and task space must be distinguished. A small
deviation in one of the robot arm’s shoulder joints results in a much stronger deviation
of the finger tip position. The average euclidean distance metric will therefore be applied
to the task space deviations computed for the 10 key-point positions on the robot arm.

5.2 Full Joint State Demonstrations

In the following, the results from experiments on the actual robot are presented. The
demonstrations have been recorded by manually moving the robot arm. In its gravity
assist mode, the arm can be moved freely. The joint angles have been recorded as soon
as a motion in joint space above a certain threshold distance drec has been recognized
(‖∆q‖2 ≥ drec). The resulting demonstration has been downsampled to match the size
of the generated solution trajectory. A trajectory size T = 30 has been selected for all
examples in this section. The full joint state has been taken into account to measure the
distance between demonstration and solution at every time step as discussed in section
3.2.1.

5.2.1 Task Space vs. Joint Space Optimality

Demonstrations are given for pointing motions on a tabletop in front of the robot. In
this experiment, a policy should be learned that replicates straight motions in task space
and slides the end-effector on the table surface as shown in all demonstrations. The arm
has been moved close to its default configuration for all demonstrations to emphasize
this ’natural’ position.

As it is visualized in figure 5.5 for one demonstrated scenario, the learned policy matches
the given demonstrations very well. The characteristic parts of the motion have been
successfully generalized and are represented by this policy. Straight end-effector motions
are incorporated in the ratio of task and joint space derivative and the linear potential
field is pulling the end-effector towards the table.

5.2.2 Predominant Joints

Due to the high degree of freedom of Apollo’s robot arm system, a certain motion within
an obstacle-free space can be executed in different ways. In this example, demonstrations

37

5 Experimental Results

Figure 5.5: Visualization of demonstrations and learned policy for straight end-effector
motions.

are given that make mostly use of a subset of the degrees of freedom. Sets of demonstra-
tions are given for pointing movements between two points on the table where mostly
the shoulder, elbow or wrist joints are used. To allow the policy to represent this kind
of characteristics, the standard objective function, as detailed above, is augmented by
individual velocity penalties for each joint.

The reinforcement policy search is expected to penalize those weights that have not
been used in the demonstrations in order to prioritize movements of the remaining
joints. The results from two experiments are shown in figure 5.6 and figure 5.7. The
RViz visualization of the robot is shown together with all demonstrations (only the end-
effector position is visualized as a green line) and the solution, produced from the learned
policy for one of the demonstrated problems.

In figure 5.6, mainly the forearm is moved to reach the goal point. As it can be seen from
the four superimposed intermediate robot positions from the solution execution, both
the upper arm and the shoulder are mostly fixed. Additionally, the policy incorporates
the demonstrated hand and wrist posture in order to touch the table with its fingertip
but not to penetrate the table any further. The end-effector also remains on the table
surface at all times. This behavior is not only valid for one of the given demonstration
scenarios but fully represented by the policy parametrization as given in table 5.6. The
offset between the upper respectively lower wrist and the table which has been learned
from the demonstrations makes sure that the end-effector does not penetrate the table.
The velocity penalties for the individual joints are chosen in a way that favors the elbow
joints.

38

5.3 Sketched End-Effector Demonstrations

Learned parameters
Velocity penalty θjoint_i [-]

Joint 1 (shoulder) 16.06
Joint 2 7.33
Joint 3 0.02
Joint 4 7.05
Joint 5 0.03
Joint 6 7.98
Joint 7 3.96
Joint 8 (finger) 4.03

Figure 5.6: Four demonstrations (green) of pointing movements on the tabletop and the
learned optimal policy executed by the Apollo robot arm (red). The predom-
inant rotation of the elbow joints has been learned from the demonstrations.
The predominant joints identified by low velocity penalties are highlighted.

Similar results have been achieved in case of motions produced by shoulder rotations
as shown in figure 5.7. Again, four demonstrations are given and the corresponding
end-effector traces are shown as green lines. The learned optimal policy generates a
motion based on a shoulder rotation. This behavior is clearly visible for the generated
solution as shown by the superimposed arm configurations but also in the resulting policy
parametrization as listed in table 5.7.

5.3 Sketched End-Effector Demonstrations

Demonstrating precisely the desired behavior on the entire robotic system is usually
impossible due to several reasons. Most times the kinematic of the robotic system is not
compatible with our human kinematic and we can not manipulate all joints simultane-
ously. Additionally, human motions guiding the demonstrations tend to be imprecise.
Moreover, they might not be smooth because repositioning might become necessary
during the demonstration in order to grip a different part of the robot.

The following experiment will explore the ability of this approach to learn from con-
sciously incomplete demonstrations that focus on some special aspect of a motion. In
the given example, the behavior of the end-effector when approaching and operating
around obstacles should be learned. To define a desired motion, we sketch end-effector
trajectories as shown in figure 5.8 and figure 5.9. In this experiment, the robot is taught

39

5 Experimental Results

Learned parameters
Velocity penalty θjoint_i [-]

Joint 1 (shoulder) 3.12
Joint 2 0.16
Joint 3 31.14
Joint 4 0.01
Joint 5 2.18
Joint 6 33.49
Joint 7 4.60
Joint 8 (finger) 6.26

Figure 5.7: Four demonstrations (green) of pointing movements on the tabletop and the
learned optimal policy executed by Apollo’s robot arm (red). The predomi-
nant rotation of the shoulder joints has been learned from the demonstration.
The predominant joints identified by low velocity penalties are highlighted.

two different ways to approach a cylindrical obstacle from those sketched demonstrations.
The first set of trajectories has in common that the end-effector avoids the obstacle as
long as possible and approaches it in a perpendicular way, whereas in the second set
of trajectories, the end-effector describes a straight line towards a goal point on the
obstacle’s surfaces.

For both motion types, 24 sketched end-effector demonstrations are given, partitioned
into a training set of size six and a test set of size 18 to cross-validate the resulting
optimal policy. The optimal policy is learned from all training demonstrations by using
the averaged distance between the end-effector’s trace and the sketched trajectory as
loss function.

As shown in figure 5.8 and figure 5.9, the Riemannian representation of the workspace
geometry for those scenarios consists of a superposition of the ambient euclidean system
and the cylindrical system surrounding the cylinder obstacle. Both systems are blended
into each other where the influence of the latter one vanishes at a certain distance from
the cylinder. For this experiment, velocity penalty parameters are introduced for each
coordinate system and each coordinate individually. Therefore, motions around the
cylinder can be penalized differently than motions approaching the cylinder.

The average fitness for both learned motion policies and one initial random policy eval-
uated for all 24 demonstrated scenarios is shown in figure 5.10. Both learned policies
clearly outperform the initial random policy by a factor of four. The learned policy
does not only perform well on its training examples but shows similar fitness on the test

40

5.4 Imposing Additional Objectives

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
x [m]

0.2

0.3

0.4

0.5

0.6

0.7

0.8

y
[m

]

Training Set
Test Set

Figure 5.8: Training and test demonstrations of pointing movements towards a cylinder
with high obstacle avoidance. Only the end-effector positions are shown as
hand-drawn trajectories.

problems. The learned behavior generalizes from training examples to similar test cases.
Comparing the policy learned for low obstacle avoidance and the one for high obstacle
avoidance reveals that each of them performs clearly better for its own problem type and
worse on the other one. The chosen fitness function is therefore appropriate to separate
both types of behavior.

5.4 Imposing Additional Objectives

As discussed earlier, the given demonstrations may not be sufficient to fully define the
motion or to achieve a certain objective on the real system. To resolve redundancy, an
additional objective can be introduced. This objective can affect arbitrary aspects of
the motion since only the evaluation of the objective function and no additional gradient
information for a given trajectory and context is relevant for the optimizer. The loss
function of reinforcement learning, previously formulated to imitate a demonstration, is
therefore augmented by an additional term as discussed in section 3.2.1. In this example,
the average height of the elbow should be minimized in order to maintain a ’natural’
arm position.

Since only the end-effector position in workspace coordinates is available from observed
behavior, the average euclidean distance of the current policy’s solution to this point is
employed. The forward kinematic map of the robotic system is given by φ.

41

5 Experimental Results

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
x [m]

0.2

0.3

0.4

0.5

0.6

0.7

0.8

y
[m

]

Training Set
Test Set

Figure 5.9: Training and test demonstrations of pointing movements towards a cylinder
with almost no obstacle avoidance. Only the end-effector positions are shown
as hand-drawn trajectories.

L(ξgen, ξki=0) = 1
k

k∑
i=0

(dAvgEucl(ξgen, ξi) + Lelbow(ξgen, ξi)) (5.1)

= 1
k

k∑
i=0

 1
Tgen + 1

Tgen∑
t=0
‖φend(q(t)

i)− φend(q(t)
gen)‖+ (φelbow(q(t)

gen)− p) · n

(5.2)

The same scenario as presented in the last experiment (cf. section 5.3) is used here.
Sketched end-effector trajectories are employed to demonstrate two types of motions
when approaching a cylindrical obstacle. The set of demonstrations is again split into
6 training demonstrations and 18 test demonstrations. For each motion type, a policy
is learned from the pure loss function as presented in the last experiment and from the
combined loss function which additionally contains the contribution of the elbow loss
term.

For all possible combinations of two motion types and two loss functions, a total of four
policies is learned whose fitness is visualized in figure 5.11. Additionally, the fitness of an
initial random policy (orange) is shown for comparison. For each policy, the contribution
of the end-effector distance (yellow) between demonstration and solution trajectory as
well as the contribution of the elbow loss term (red) to the overall loss function is plotted.
The resulting elbow loss is also displayed for the policies that have been learned using
the pure loss function which does not consider the elbow height (for these policies, the
elbow loss is shown in light red).

42

5.4 Imposing Additional Objectives

Training 1 Test 1 Training 2 Test 20

1

2

3

4

5

Po
lic

y
Fi

tn
es

s

Initial Policy
Optimal Policy 1
Optimal Policy 2

Figure 5.10: Comparison of policy fitness for two motion types cross-validated on train-
ing and test data.

The proposed policy search algorithm PI2 CMA-ES demonstrates in this experiment
several capabilities that we discussed at the beginning of this chapter:

Imitation of Observed Behavior A policy learned on a given set of training demon-
strations is able to reproduce the observed behavior. On the same set of problems, the
optimal policy clearly outperforms the initial random policy but also the policy which
learned a different type of motion. This is true for both the policy learned using the
pure loss function (as seen in the previous example) and the policy learned using the
combined combined loss function.

Generalization to Similar Scenarios Concerning the fitness of the learned policies on
the corresponding test problems, the policy learned for this type of motion clearly per-
forms better than the random policy and the policies learned for the other motion type.
This is especially the case for the policies learned for motion type 2 which perform sig-
nificantly better on their own test set compared to the performance of the motion type
1 policies on this test set.

Optimizing Additional Objectives The policies learned using the combined loss func-
tions can be directly compared to the ones which have been learned using the pure loss
functions as they are plotted next to each other. The algorithm was capable to utilize
the system’s redundancies in case the combined loss function has been used. The policies

43

5 Experimental Results

Training
Set 1

Test
Set 1

Training
Set 2

Test
Set 2

0

1

2

3

4

5

6

7

8

Po
lic

y
Fi

tn
es

s

Po
lic

y
tr

ai
ne

d
on

 1
 (d

is
t)

Po
lic

y
tr

ai
ne

d
on

 1
 (d

is
t +

 e
lb

ow
)

Po
lic

y
tr

ai
ne

d
on

 2
 (d

is
t)

Po
lic

y
tr

ai
ne

d
on

 2
 (d

is
t +

 e
lb

ow
)

Initial Random Policy
Elbow Height
End-Effector Distance

Figure 5.11: Cross-validation of the fitness of policies trained for two types of motions
(high and low obstacle avoidance when pointing to a cylindrical obstacle)
under two different loss functions (with and without consideration of the
elbow height).

learned with the help of the combined loss function outperform the ones learned with
the help of the pure imitation loss in terms of combined loss. In particular, the contribu-
tion of the elbow loss is significantly reduced for policies learned from the combined loss
formulation. This result is not only visible in the fitness of the policies on the training
set but it also generalizes to the policies’ application to the according test set.

5.5 Effects of Optimizer Settings

The effects of the domain size on the optimizer’s performance (e.g. in terms of conver-
gence and best fitness, cf. section 4.3.2) have been evaluated on four learning problems.
From the experiments on the real robotic system as presented above, the following mo-
tion types have been learned:

1. Task 1: Pointing to a cylinder (high obstacle avoidance); section 5.3
2. Task 2: Pointing to a cylinder (high obstacle avoidance) + additional minimization

of the elbow height; section 5.4
3. Task 3: Motions with predominant elbow joint (forearm motion); section 5.2.2
4. Task 4: Straight pointing motions on the table; section 5.2.1

44

5.5 Effects of Optimizer Settings

The range of the domain has been varied for all those experiments from [0, 1] and [0, 5]
up to [0, 10]. No active constraints have been put on the domain’s limits. Instead, the
initial guess θ0 has been chosen randomly within the domain and the initial step size
has been set to σ0 = (max−min)/5.

The results of evaluating the performance for those experiments are shown in figure 5.12.
For each task, the optimal policy is computed based on the three different domain ranges.
For each task, the bars represent from left to right the results of the experiment carried
out for increasing domain ranges. The results are averages over at least 4 independent
runs. The error bars display the 1σ standard deviation.

Task 1
Pointing to Cylinder

Task 2
Pointing to Cylinder

Elbow criteria

Task 3
Elbow movements

Task 4
Straight movements

in taskspace

0

1000

2000

3000

4000

5000

6000

#
 F

un
ct

io
n

Ev
al

ua
tio

ns

0

1

2

3

4

5

6

7

Fi
tn

es
s

Figure 5.12: Effects of domain size and problem dimensionality on the optimization speed
and quality. The average number of necessary function evaluations and
the resulting fitness is evaluated on four motion problems. Three different
initial configurations (step size and initial parametrization) are shown for
each task.

Neither the number of function evaluations (shown in green) nor the resulting fitness
(shown in blue) is significantly influenced by the initial domain size. The PI2-CMA turns
out to be robust against slightly inappropriate initial configurations. The automatic
adaptation of exploration direction and magnitude is capable to find a similar solution
in all evaluated cases.

Similar results have been achieved by employing the BiPop CMA-ES optimization method.
No evident improvement of the global fitness could be achieved. In case of a reasonable
parameter encoding as described in section 4.3.2, the pure CMA-ES setup is sufficient
to explore the required parameter space.

45

46

6 Conclusion

In this work, a novel learning algorithm for motion policies has been presented and
evaluated on synthetic and real-world experiments. The reinforcement toolbox has been
successfully leveraged to represent the imitation learning problem for motor primitives
as well as the consecutive improvement of the learned motion policy with respect to
additional requirements. The underlying representation of a motion policy as the solution
of an optimal control problem was utilized to parametrize a class of movements in a
naturally understandable way. A derivative-free optimizer, CMA-ES, was employed
to learn the optimal policy, in this case the optimal parametrization, in order to fit the
demonstrated behavior and to resolve redundancies within the system by optimizing with
regard to additional desired motion characteristics. The usage of probability-weighted
averaging of policy roll-outs as an optimization method was motivated by previous work
within the field of stochastic optimal control.

The algorithm proved its capability to learn motion policies which can not only imitate
behavior within the specific setting of the given demonstrations but also to generalize
from observed behavior. Cross-evaluations based on different types of demonstrated
behavior demonstrated the reproducibility of learned motion characteristics also on new
and unseen test scenarios.

6.1 Future Work

6.1.1 Trajectory Roll-Outs

The execution of computed discrete trajectories on the actual robot but also on the
Apollo simulator as provided by SL revealed significant discrepancies between the com-
puted configurations and the real motion. The real system’s response is is limited by the
performance of the underlying low-level controllers. Additional noise on torque and angle
sensors decreases the precision. The trajectory is not executed as a continuous stream
of configurations by one controller per joint but as a discrete set of configurations.

47

6 Conclusion

To improve the performance of the solution trajectory generated by the learned policy, a
slight modification to the presented policy search should be analyzed. By evaluating the
high-level objective function on the simulated trajectory roll-outs (e.g. on the SL Apollo
simulator), the learned policy is expected to avoid commands that are infeasible on the
real system and would lead to a poor imitation performance.

6.1.2 Combination with Geometric Motion Representation

Several motion primitives encountered even in the simplest problems are hard or even
impossible to express as the result of an optimization procedure. As an example, the
fosbury flop, nowadays the standard motion in high jump, may or may not be the ’best’
solution to this motion problem. However, the formulation of the underlying physical
motivation for precisely this motion based on the conservation of energy or other basic
principles seems to be almost impossible. For certain parts of motion policies, it would be
more favorable to combine the presented approach with concepts with concepts geared
to learning motion primitives in a geometric context. Specialized shapes may be easier to
address by learning and improving in a geometric space as shown in DMP approaches.

48

Bibliography

[Argall et al., 2009] Argall, B. D., Chernova, S., Veloso, M., and Browning, B. (2009).
A survey of robot learning from demonstration. Robotics and autonomous systems,
57(5):469–483.

[Auger and Hansen, 2005] Auger, A. and Hansen, N. (2005). A restart CMA evolu-
tion strategy with increasing population size. In McKay, B. et al., editors, The
2005 IEEE International Congress on Evolutionary Computation (CEC’05), volume 2,
pages 1769–1776.

[Bagnell and Schneider, 2001] Bagnell, J. A. and Schneider, J. G. (2001). Autonomous
helicopter control using reinforcement learning policy search methods. In Robotics
and Automation, 2001. Proceedings 2001 ICRA. IEEE International Conference on,
volume 2, pages 1615–1620. IEEE.

[Guenter and Billard, 2007] Guenter, F. and Billard, A. G. (2007). Using reinforcement
learning to adapt an imitation task. In Intelligent Robots and Systems, 2007. IROS
2007. IEEE/RSJ International Conference on, pages 1022–1027. IEEE.

[Guenter et al., 2007] Guenter, F., Hersch, M., Calinon, S., and Billard, A. (2007). Rein-
forcement learning for imitating constrained reaching movements. Advanced Robotics,
21(13):1521–1544.

[Hansen, 2005] Hansen, N. (2005). The cma evolution strategy: A tutorial. Vu le, 29.

[Hansen, 2009] Hansen, N. (2009). Benchmarking a BI-population CMA-ES on the
BBOB-2009 function testbed. In Workshop Proceedings of the GECCO Genetic and
Evolutionary Computation Conference, pages 2389–2395. ACM.

[Hansen and Kern, 2004] Hansen, N. and Kern, S. (2004). Evaluating the cma evolution
strategy on multimodal test functions. In Parallel Problem Solving from Nature-PPSN
VIII, pages 282–291. Springer.

[Ijspeert et al., 2002] Ijspeert, A., Nakanishi, J., and Schaal, S. (2002). Movement im-
itation with nonlinear dynamical systems in humanoid robots. In Robotics and Au-
tomation, 2002. Proceedings. ICRA ’02. IEEE International Conference on, volume 2,
pages 1398–1403.

49

Bibliography

[Kalman, 1964] Kalman, R. E. (1964). When is a linear control system optimal? Journal
of Fluids Engineering, 86(1):51–60.

[Kappen, 2007] Kappen, B. (2007). An introduction to stochastic control theory, path
integrals and reinforcement learning.

[Kim et al., 2003] Kim, H., Jordan, M. I., Sastry, S., and Ng, A. Y. (2003). Autonomous
helicopter flight via reinforcement learning. In Advances in neural information pro-
cessing systems, page None.

[Kobilarov, 2012] Kobilarov, M. (2012). Cross-entropy motion planning. The Interna-
tional Journal of Robotics Research, 31(7):855–871.

[Kohl and Stone, 2004] Kohl, N. and Stone, P. (2004). Policy gradient reinforcement
learning for fast quadrupedal locomotion. In Robotics and Automation, 2004. Proceed-
ings. ICRA’04. 2004 IEEE International Conference on, volume 3, pages 2619–2624.
IEEE.

[Peters and Schaal, 2008a] Peters, J. and Schaal, S. (2008a). Natural actor-critic. Neu-
rocomputing, 71(7):1180–1190.

[Peters and Schaal, 2008b] Peters, J. and Schaal, S. (2008b). Reinforcement learning of
motor skills with policy gradients. Neural Networks, 21(4):682 – 697. Robotics and
Neuroscience.

[Ratliff, 2015] Ratliff, N. D. (2015). Understanding the geometry of workspace obsta-
cles in motion optimization. Technical report, Max-Planck-Institute for Intelligent
Systems, Autonomous Motion Department.

[Ratliff et al., 2009] Ratliff, N. D., Kuffner, J., and Ng, A. (2009). Learning to search:
structured prediction techniques for imitation learning.

[Stulp and Sigaud, 2012] Stulp, F. and Sigaud, O. (2012). Path integral policy improve-
ment with covariance matrix adaptation. arXiv preprint arXiv:1206.4621.

[Sutton and Barto, 1998] Sutton, R. and Barto, A. (1998). Reinforcement Learning: An
Introduction. A Bradford book. MIT Press.

[Theodorou et al., 2010] Theodorou, E., Buchli, J., and Schaal, S. (2010). Reinforcement
learning of motor skills in high dimensions: A path integral approach. In Robotics
and Automation (ICRA), 2010 IEEE International Conference on, pages 2397–2403.
IEEE.

[Williams, 1992] Williams, R. J. (1992). Simple statistical gradient-following algorithms
for connectionist reinforcement learning. Machine learning, 8(3-4):229–256.

50

Bibliography

Declaration

I hereby declare that the work presented in this thesis is
entirely my own and that I did not use any other sources and
references than the listed ones. I have marked all direct or
indirect statements from other sources contained therein as
quotations. Neither this work nor significant parts of it were
part of another examination procedure. I have not published
this work in whole or in part before. The electronic copy is
consistent with all submitted copies.

place, date, signature

51

	List of Figures
	List of Tables
	Introduction
	Motivation
	Goals
	Organization of this Thesis

	Background and Related Work
	Dynamic Movement Primitives
	Optimal Control for Motor Primitives

	Theoretical Foundations
	Representation of the Motion Policy
	Motion Objective Cost Features
	Workspace Representation
	Motion Objective Constraints

	Policy Search Reinforcement Learning
	Formulation of the Loss Function
	Covariance Matrix Adaptation Optimization
	BiPop CMA-ES

	Experimental Setup
	Apollo Humanoid Robot Platform
	Motion Objective Optimization
	CMA Optimizer
	Termination Criteria
	Boundaries and Constraints

	Experimental Results
	2D Point Experiment
	Synthetic Noisefree Demonstrations
	Synthetic Noisy Demonstrations
	Learning from Multiple Demonstrations
	Performance and Test Summary

	Full Joint State Demonstrations
	Task Space vs. Joint Space Optimality
	Predominant Joints

	Sketched End-Effector Demonstrations
	Imposing Additional Objectives
	Effects of Optimizer Settings

	Conclusion
	Future Work
	Trajectory Roll-Outs
	Combination with Geometric Motion Representation

	Bibliography

