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Kurzfassung

Workflow Technologien werden aktuell verstärkt eingesetzt in der Hoffnung, hierdurch kom-
plexe wissenschaftliche Simulationsabläufe einfacher umsetzen zu können. Das Thema dieser
Arbeit ist ein existierender Workflow, der eine multiskalare Simulation des Massenflusses
im porösen menschlichen Knochenmaterial umsetzt. Diese Simulation besteht aus getren-
nten systembiologischen und biomechanischen Berechnungen, die durch weitere Datenverar-
beitungsschritte miteinander verbunden sind. Der Workflow weist ein erhebliches Potenzial zur
Parallelisierung auf, welches allerdings nur geringfügig genutzt wird. Wir untersuchen daher,
inwieweit sich “Big Data”-Konzepte wie etwa MapReduce oder NoSQL-Datenbanksysteme auf
den Workflow übertragen lassen.

Ein Prototyp des Workflows wird mithilfe des Apache Hadoop-Ökosystems zur Parallelisierung
der Simulation entwickelt und mit einem von Hand parallelisierten zweiten Prototyp in Bezug
auf Effizienz und Skalierbarkeit verglichen. NoSQL-Konzepte zum Speichern von Eingaben und
Resultaten werden angewendet, hierbei liegt der Fokus auf HDFS, dem Hadoop File System, als
schemalosem, verteiltem Dateisystem und MySQL Cluster als einem Hybriden aus klassischem
Datenbanksystem und einem NoSQL-Ansatz.

Zuletzt wird der MapReduce-basierte Prototyp in die Workflow-Beschreibungssprache WS-
BPEL übertragen, wobei das SIMPL-Rahmenwerk[RRS+11] und ein spezieller Web Service zur
Anbindung an Hadoop zum Einsatz kommen. Wir zeigen die Einfachkeit des resultierenden
Workflows und halten fest, dass der gewählte Ansatz nicht nur den Implementierungsaufwand
für Workflows verringert, sondern es auch einfacher macht, sich größerem Datenaufkommen
anzupassen.

Abstract

Recently, workflow technology has fostered the hope of the scientific community in that they
could help complex scientific simulations to become easier to implement and maintain. The
subject of this thesis is an existing workflow for a multi-scalar simulation which calculates the
flux of porous mass in human bones. The simulation consists of separate systems-biological
and bio-mechanical simulation steps coupled through additional data processing steps. The
workflow exhibits a high potential for parallelism which is only used to a marginal degree. Thus
we investigate whether “Big Data” concepts such as MapReduce or NoSQL can be integrated
into the workflow.

A prototype of the workflow is developed using the Apache Hadoop ecosystem to parallelize
the simulation and this prototype compared against a hand-parallelized baseline prototype
in terms of performance and scalability. NoSQL concepts for storing inputs and results are
utilized with an emphasis on HDFS, the Hadoop File System, as a schemaless distributed file
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system and MySQL Cluster as an intermediary between a classic database system and a NoSQL
system.

Lastly, the MapReduce-based prototype is implemented in the WS-BPEL workflow language
using the SIMPL[RRS+11] framework and a custom Web Service to access Hadoop functionality.
We show the simplicity of the resulting workflow model and argue that the approach greatly
decreases implementation effort and at the same time enables simulations to scale to very
large data volumes at ease.
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1 Introduction

Scientific simulations have grown in scale and now oftentimes require massive computational
resources and complex software provisioning to produce and consume large volumes of
data. This makes it harder to achieve reproducible, data-driven research, which is the classic
goal of empirical science. Workflow technology is an industry-proven approach to structure
sequences or flows of activities using high-level descriptions [LR00]. In the scientific community,
workflow technology is increasingly used to make simulations easier to formulate and maintain
[TDGS06].

The (very broad) term Big Data refers to technologies that enable highly parallel processing
and storage of large volumes of data. An example is the MapReduce paradigm, which formu-
lates computations such that they can be automatically distributed on clusters of commodity
hardware[DG08]. Another example is the NoSQL paradigm, which emphasizes data stores
that endow their data with less structure and provide weaker guarantees than classic SQL-
based systems, but instead possess the ability to scale to dynamic workloads and to be highly
fault-resilient.

1.1 Task and Motivation

In the scope of this thesis, the applicability of various Big Data concepts and tools to scientific
workflows and scientific simulations is discussed. The presentation and evaluation is based
on a specific example of a complex scientific workflow that has been subject of previous
publications by the University of Stuttgart’s Institute for Parallel and Distributed Systems,
such as presented by Reimann et al. [RSM14b], [RSM14a]. This workflow simulates the
flux of mass within the pourous material of human bones during habitual daily activity and
consists of complex simulation and data transformation steps. The two key components are a
relatively coarse-grained bio-mechnical simulation (which is carried out using the University of
Stuttgart’s Pandas FEM solver[pan]) and a more fine-grained, systems-biological simulation
(which is implemented via GNU Octave[oct]). Both simulations are integrated together in a
so-called coupling workflow.

However, this simulation exhibits a large amount of parallelism which is difficult to utilize from
the used workflow language, at least not without increasing the complexity of the workflow
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1 Introduction

models. Also, the volume of the data processed during the workflow is large such that NoSQL
approaches should be considered to store data.

A motivation behind this thesis is to develop a mechanism through which Apache Hadoop, an
ecosystem that enables large-scale parallel calculations and data storage, can be utilized from
within a scientific workflow. A goal is to develop such a binding and to evaluate its performance
with respect to more classic approaches to parallelize the bone simulation. More importantly
however, this thesis investigates whether such a system can reduce the complexity and cost
of maintenance and increase flexibility of the resulting scientific workflows with respect to
growing demands.

While using Apache Hadoop is the focus of the thesis, different models, such as PACT, are
briefly contrasted with Hadoop[AHM+10].

Structure

This thesis is structured as follows:

Chapter 2 – Foundations: This chapter describes relevant foundations for this thesis. This
includes a look at MapReduce as a paradigm, and its implementation in Apache Hadoop.
The bone simulation that this thesis is centered around is briefly described.

Chapter 3 – Cluster Setup: This chapter describes how we create and monitor Hadoop clus-
ters. It also defines the overall computing environment used for this thesis.

Chapter 4 – Concept: This chapter describes a concept for how the entire Coupling Workflow,
encompassing both the systems-biological and the bio-mechnical simulation, is mapped
to the MapReduce paradigm.

Chapter 5 – Implementation: This chapter describes the specific prototypical implementation
of the concept. It describes important challenges faced during implementation, as well
as shortcomings of the resulting Java prototype. We also describe how a second, baseline
prototype that does not rely on any MapReduce concepts is built.

Chapter 6 – Evaluation: This chapter describes the setting and results of the evaluation of the
prototype in comparison with the baseline version. Criteria of interest are performance
and scalability in comparison to the baseline.

Chapter 8 – Conclusion Sums up the work done, emphasizes key results and concludes with
an outlook into potential further work.
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2 Foundations

This chapter aims at giving a brief overview of topics that are relevant for this thesis. In
particular, the concept of a Service-oriented architecture (SOA) is introduced as well as the
Workflow technology that gives rise to the topic in the first place. The bone simulation as a
concrete example of a complex simulation workflow is characterized and previous work is
summarized. Furthermore, the MapReduce and “NoSQL” paradigms are explained.

2.1 Service-oriented Architecture

A Service-oriented architecture (SOA) is a software architecture style that emphasizes the use
of loosely coupled, self-contained services that offer functionality to applications.

There are many possible definitions of the term SOA. As [CSF06] puts it, SOA ..

... describes how service consumers and service providers can be decoupled via
discovery mechanisms resulting in loosely coupled systems [..] Implementing a
service-oriented architecture means to deal with heterogeneity and interoperability
concerns.

Figure 2.1: SOA Triangle
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2 Foundations

Loosely coupled means in this context that an application is not dependent upon a particular
set of services or service vendors. Any service can be easily exchanged against another service
that offers the same public API. The so-called SOA triangle in Figure 2.1 is used to classify
different roles in a SOA: If a party offers a service, they act as a service provider and publish an
abstract description of their service to a service registry. If an application requires a certains
service, it acts as a service consumer. It first asks the service registry for a service or list of
services that best match its requirements (i. e., kind of service offered, SLA, price & billing).
The consumer then requests a description of the chosen service from the the service provider
that offers it. This description enables the consumer to invoke the service offered.

2.1.1 Web Services

Web Services are a common, standardized implementation of a SOA. A Web Service can be
described by an interface description formulated in WSDL, the Web Service Definition Language1.
To exchange messages between the consumer of a Web Service and a Web Service, SOAP, the
Simple Object Access Protocol2, is used. Both WSDL and SOAP are XML-based.

Web Services are governed by a family of interrelated standards that are usually prefixed by
WS-. Standards that are relevant to this thesis are

• WS-Adressing3, which allows consumers and services to associate a conversation context
(session) with all messages they exchange, and

• WS-BPEL4 for describing workflows. WS-BPEL is further described in section 2.2.1.

In Java, the JAX-WS5 framework provides a reference implementation of Web Services as part
of the Java Standard Edition (since 1.6) and the Java Enterprise Edition (since 1.5).

2.2 Workflows

A Workflow is a set of activities in well-defined order. By grouping activities in workflows,
they can easily be re-used as part of larger workflows (Composability). Workflows technology
has been advanced by IBM, Microsoft and others (for example through the aforementioned
WS-BPEL [OAS07]), for formulating compless business processes. In the research community,
workflow technology fosters the hope of making scientific simulations more reproducible, more
reliable to execute and easier to maintain [GSK+11].

1http://www.w3.org/TR/wsdl20/
2http://www.w3.org/TR/soap/
3http://www.w3.org/Submission/ws-addressing/
4http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
5https://jax-ws.java.net/
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2.2 Workflows

2.2.1 WS-BPEL

The WS-Business Process Execution Language (WS-BPEL) is a language to describe workflows
while integrating Web Services technology. WS-BPEL is standardized by OASIS6 in multiple
versions, 2.0 being the latest as of 2014 [OAS07]. Workflows that are formulated in WS-BPEL
can invoke Web Services as embedded activies, and the entire workflow itself becomes a Web
Service for use by others.

WS-BPEL pre-defines a variety of activity types that resemble classical programming language
constructs, including activities for flow controls (conditional execution, forEach activity to han-
dle looping and a flow activity to execute workflow sub-activities in parallel) and a mechanism
to declare and assign variables for maintaining state during the workflow. Additionally, the
borrowed concept of a Scope provides isolation and fault-handling to parts of a Workflow.

Figure 2.2 shows a simple sample WS-BPEL workflow displayed in the graphical Eclipse BPEL
Designer7. The workflow first waits to be invoked (Receive). It then uses a ForEach-activity to
run several iterations of an embedded activity (Invoke). Upon completion, it sends a Reply to
the original requestor.

Figure 2.2: Sample WS-BPEL workflow displayed in a graphical designer

6Organization for the Advancement of Structured Information Standards, https://www.oasis-open.org/
7http://www.eclipse.org/bpel/
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2.2.2 SIMPL

The SIMPL framework has been presented by Reimann et al. in [RRS+11] as a pattern-based
approach to simplify data provisioning for scientific simulation workflows. The authors describe
the problem they set to solve as follows:

Today, data exchange with and between simulation applications is mainly accom-
plished in a file-style manner. These files show proprietary formats and have to
be transformed according to the specific needs of simulation applications. Lots of
effort has to be spent to find appropriate data sources and to specify and implement
data transformations.

As a foundation, the SIMPL framework extends BPEL with activity types for data management
operations. An example is the IssueCommand activity, which encapsulates a target-specific com-
mand (i.e, a SQL query or a shell command) and the RetrieveData respectively WriteDataBack
activities which provide read/write access to a data source (such as a SQL-based database table
or a file).

Furthermore, SIMPL provides abstract “template” activities, called patterns. The patterns are
then transformed into the correct workflow activities depending on metadata and the context
where the pattern is used, substituting any necessary data transformations. SIMPL organizes
its patterns in a hierarchy with increasing abstraction and information density. An important
pattern at the second-highest level of abstraction is the so-called Simulation-oriented Data
Provisioning Pattern which allows scientists to bind inputs to workflow steps using concepts
and terminology they are familiar with from simulation models. Specifically, an ontology
describes the mathematical variables in a simulation and inputs are then referred to by their
(mathematical) variable name [Boh14]. During pattern transformation, the ontology is used to
substitute the correct data transfer and transformation pattern as a lower level of abstraction.

An example of such data transfer and transformation pattern is the Join pattern which rep-
resents the joining of two data sources on a specific key [RRS+11]. The concrete workflow
activities in which an occurence of the pattern is transformed depends on the type and location
of its operands and outputs. For example if both operands are SQL tables within the same
database, a simple SQL JOIN is used to implement the pattern. If both operands refer to
external data sources, separate activities to retrieve the data sources, join them and then
potentially write the results into the destination data sink are generated.

2.3 Bone Simulation

The use case for this thesis is a simulation of changes to the structure of bones under the
influence of external forces that occur habitually during daily activity of the relevant person.
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2.3 Bone Simulation

Figure 2.3: Workflow overview from Reimann et al.[RSM14a]

The scientific importance of this simulation is for example to better understand and improve
healing processes after bone fractures [KSR+11]. The simulation is carried out in two steps.

1. On a bio-mechanical level, mass exchange between porous materials and liquids in
the tissue of the bone is simulated. For this, the PANDAS framework, which has been
developed at the University of Stuttgart, is used [pan].

2. On a systems-biological level, tissue changes on a cellular level are simulated using GNU
Octave [oct].

The simulation always operates on a single bone.

Figure 2.3 gives a very high-level overview of the entire simulation based on Reiman et al.
[RSM14a]. To model the forces that affect a bone during a day, multiple Motion Sequences,
patterns of human activity that are characterized by their typical distribution of external forces
on the bone, are identified. Examples of such Motion Sequences include Walking, Sleeping,
Driving or Office Work. The bio-mechanical simulation (PANDAS) generates a characteristic
solution to the distribution of forces inside a bone under each activity. The systems-biological
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Octave simulation then puts these results together according to a Daily Routine and uses them
to simulate tissue changes inside the bone over the course of one day. The system is designed
to run over multiple, possibly different Daily Routines: the output of the Octave simulation for
one Daily Routine produces new initial conditions for simulating the next bio-mechnical cycle
with PANDAS. Initial conditions are pre-defined for the first cycle.

Both simulations have been presented as separate workflows that are coupled together by
Reimann et al.[RSM14b]. Several other works by students at the University of Stuttgart have
also worked on this topic area. Andreas Bohrn developed and presented implementations of
the two workflows [Boh14]. The bio-mechnical simulation using PANDAS has already been
abstracted into a JAX-WS-based Web Service by Raymond Dormien as part of his thesis [Dor11].
Lastly, Victor Riempp has engineered the Coupling Workflow, which encompasses the entire
simulation [Rie14]. All workflows are based on the Workflow Patterns provided by the SIMPL
framework (see Section 2.2.2).

The focus of this thesis is less on the actual simulation, than on exemplifying how a complex,
large simulation can be parallelized using MapReduce and how this results in less effort
than with manually implemented parallelization. This thesis is also not too bothered with
the workflow technology per se: if our solutions utilize SOA principles, they can be easily
integrated into any existing workflow and in particular into the SIMPL framework.

2.4 MapReduce and Apache Hadoop

This section gives a brief overview of the MapReduce paradigm and one of its most popular
Open Source implementations, the Apache Hadoop framework. The MapReduce programs
developed for this thesis will run on Hadoop.

2.4.1 The MapReduce paradigm

MapReduce is a programming paradigm introduced by Google in 2004 for performing large-
scale, highly parallel batch computations on clusters [DG08]. Instead of burdening the pro-
grammer with having to manually parallelize their code, MapReduce formulates computations
such that they can be automatically parallelized.

Conceptually, a set of input (key, value) pairs is transformed into a set of output (key, value)
pairs. A MapReduce program consists of two stages, the Map first and the Reduce stage second.
The programmer specifies a user-defined function for each of the stages. Each function is
required to have no side effects and to only depend on its own inputs.

The Map stage independently takes each input (key, value) pair and maps it to zero or more
(key, value) pairs using the user-defined mapper function. The MapReduce framework then
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2.4 MapReduce and Apache Hadoop

collects all pairs with the same key and groups them together. This intermediate step is known
as Shuffling. For each group of pairs with the same key, the Reduce stage independently
invokes the user-defined reducer function. The reducer function emits a new set of key-value
pairs for the group.

Each stage allows for parallelization at a granularity down to each invocation of the mapper
respectively reducer function. If a computation does not need a certain stage, it can supply the
identity function to effectively disable it.

In Google’s original paper, their implementation is able to distribute the workload across
thousands of machines running in a computing cluster on commodity hardware [DG08]. The
inputs and outputs for a MapReduce program often spread across thousands of files, called
shards, that are stored in GFS, the company’s distributed file system. Alternatively, databases
such as BigTable are in use [CDG+08].

More recently, FlumeJava has been developed as a higher-level approach, using MapReduce as
building block [CRP+10].

2.4.2 Apache Hadoop

The Apache Hadoop framework8 is an Open Source implementation of various large-scale data
processing tools, one of which is MapReduce. Now a top-level Apache Foundation project, it
was founded by Yahoo! engineers in 2006, building on top of their previous work on Apache
Lucene9, a scalable full-text search engine, and the Nutch project10. It runs on clusters with
commodity hardware and scales up to thousands of machines. Hadoop is in active use by many
companies11, including Yahoo! and Facebook. It has also become the preferred environment for
academic work on large-scale data analysis, and it also forms the foundation for this thesis.

Hadoop is almost entirely based on the Java platform. It has three architectural layers as
shown in Figure 2.4.

8http://hadoop.apache.org/
9http://lucene.apache.org/core/

10http://nutch.apache.org/
11https://wiki.apache.org/hadoop/PoweredBy
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2 Foundations

Figure 2.4: Hadoop Architecture (adapted from Hortonworks12)

• HDFS13, the Hadoop Distributed File System, is modelled after Google’s GFS [GGL03]. It
distributes files across available resources and offers fault-tolerance by storing multiple
replicas of the data.

• YARN14, or Yet Another Resource Negotiator, is a scheduling system for cluster resources.
YARN keeps track of available resources (CPU cores, local storage, HDFS storage, RAM)
in the cluster and allocates them to users. This allows a single Hadoop cluster to be used
by multiple computations. In analogy to a single PC, YARN is the Operating System on
which user code is executed.

• At a library/application level there are realizations of different data processing paradigms
(i. e., MapReduce vs. realtime stream processing), which can all co-exist in a cluster.

Hadoop has grown into a large ecosystem and it integrates well with other Apache projects,
such as Apache Cassandra (a column-oriented NoSQL database)15 or Apache HBase (a BigTable-
inspired distributed database)16.

2.4.3 MapReduce on Hadoop

MapReduce on Hadoop closely follows Google’s original paper [DG08].

Mapper and reducer function are normally written in Java, but there is also a special Streaming
Mode in which an arbitrary program (i. e., a Python script or a C++ binary) is executed on
each input record, using STDIN and STDOUT for IO [Apa13].

12http://hortonworks.com/hadoop/yarn/
13http://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
14http://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html
15http://cassandra.apache.org/
16http://hbase.apache.org/
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2.4 MapReduce and Apache Hadoop

As a concrete non-trivial example, consider we are given a list of words and we want to remove
as few words as possible such that the output list contains no anagrams. A simple rule is that
for any pair of words that are anagrams of each other, one must be removed (which one does
not matter and the solution is not unique).

Suitable Streaming Mode mapper and reducer scripts formulated in Python are shown in
Listing 2.1 and 2.2. Some extra complexity to the otherwise easy Java-based MapReduce
implementation is that Streaming Mode reducers get a continuous stream of (key, value) pairs
sorted by key; so they have to detect when the key changes and act accordingly. In Python in
particular, the itertools.groupby library function greatly simplifies this task and will be used
in the remainder of this thesis.

Listing 2.1 AnagramFilter mapper script
#!/usr/bin/env python

import sys

# Map a sorted version of each word to the word itself.

# i.e., an input of "ananas" becomes ("aaanns", "ananas")

for line in sys.stdin:

for word in line.strip().split():

sorted_word = ’’.join(sorted(word))

print ’%s\t%s’ % (sorted_word, word)

Listing 2.2 AnagramFilter reducer script
#!/usr/bin/env python

import sys

last_sorted_word = None

# For each key emit the first value and skip all others.

# A more Pythonic approach uses itertools.groupby()

for line in sys.stdin:

sorted_word, word = line.split(’\t’, 1)

if sorted_word == last_sorted_word:

continue

last_sorted_word = sorted_word

print word

For example, say the input to the MapReduce job is the following words in a text file, each
word on its own line:

ananas

coconut
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anasan

asanan

Then the output of the mapper stage is the following pairs, in no particular order:

aaanns ananas

aaanns anasan

ccnootu coconut

aaanns asanan

Note that the result would be the same if instead of invoking the mapper script once on the
entire input, multiple instances of it were run on subsets of the input and results merged. More
than four mapper script instances cannot run in this example since there are only four input
words. After shuffling, the input to the reducer stage is the following list of pairs, which is now
ordered by key (not by value though):

aaanns ananas

aaanns asanan

aaanns anasan

ccnootu coconut

Since ananas, anasan, asanan are all anagrams of each other, the two latter are discarded by
the reducer script. Thus only two words are printed:

ananas

coconut

Note that the result would be the same if instead of invoking the reducer script once on all
the pairs, two instances of the reducer script would be invoked on (aaanns ananas, aaanns

anasan, aaanns asanan) and (ccnootu coconut) respectively and results merged. More than
two reducer script instances cannot run in this example since there are only two unique keys
emitted by the map stage.

Historically, Hadoop’s initial MapReduce implementation (dubbed mapred) had been imple-
mented on Hadoop directly. With Hadoop 0.23 (released in 201317), the current implementa-
tion of MapReduce (dubbed mapreduce2) now runs on top of YARN where it takes advantage of
its advanced scheduling and resource management18.

17http://hadoop.apache.org/docs/r0.23.10/
18http://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html
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2.4.4 MapReduce Fault Tolerance

One property of the MapReduce paradigm is that it allows for Fault Tolerance: mapper and
reducer functions are idempotent by design, they can be re-executed without affecting the
result.

Hardware failure is a normal, every-day scenario in a cluster that consists of hundreds or
thousands of nodes. Hadoop detects node failures and re-executes the corresponding tasks on
other nodes. If very few partitions of the input take significantly longer to process than all other
partitions, the workers corresponding to these partitions are called Stragglers, a term coined as
early as in the original Google paper [DG08]. As Zaharia et al. point out, Stragglers can be
non-permanent: it could simply be a node in a heterogenous cluster that is faster than other
nodes [ZKJ+08]. To mitigate such effects, Hadoop employs techniques such as Speculative
Execution that re-start the same task on multiple nodes if one node is suspected to be slow.
Once the first node finishes, all other replicas of the task are discarded19.

2.4.5 Other data processing tools on top of Hadoop

Other data processing tools that run on Hadoop’s YARN layer are:

• Apache Spark20 is an in-memory execution engine for computations that are represented
as a Directed Acyclic Graph (DAG), but also supports certain iterative (cyclic) flows. This
makes Spark great for Machine Learning, where oftentimes models are iteratively trained
before they are used for making predictions.

• Apache Storm21 is for processing streams of data in realtime.

There is also a variety of higher-level (query) tools that build on top of MapReduce, giving
users more expressive languages for analyzing large amounts of data, in particular for ad-hoc
tasks.

• Apache Pig features a declarative high-level language, called Pig Latin. PigLatin is trans-
parently compiled into lower-level MapReduce programs. Pig was originally developed
by Yahoo![GNC+09].

• Apache Hive is an interactive query system that supports SQL-like queries on structured
data stored in HDFS. To enable such queries, a secondary data store (usually a RDBMS)
holds a relational schema describing the structure of the data that is stored in HDFS.

19https://developer.yahoo.com/hadoop/tutorial/module4.html#tolerence
20http://spark.apache.org/
21http://storm.apache.org/
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Queries are compiled to run as MapReduce jobs. Hive was originally developed by
Facebook [TSJ+10] to enpower ad-hoc queries by engineers and data analysts.

2.5 NoSQL

This section aims at providing a brief overview over NoSQL database technology. NoSQL
technology is important for this thesis because the classic RDBMS-based way of holding data is
not sufficient to achieve the level of parallelism and throughput which we would like to use for
the bone simulation as an example of a complex scientific simulation.

Two different ways of exchanging data between NoSQL and classic RDBMS systems are
described. Lastly, MySQL Cluster as a (perhaps surprising) example of an essentially NoSQL-
based system is presented.

2.5.1 Definition and Context

A scientific simulation naturally reads input data and produces output data. It therefore
requires a suitable database or at least a file system to hold data. An important consideration is
how a database can scale, i. e., increase its storage capacity or query throughput given different
simulation demands. Modes of scaling are

• Vertical: means to add more resources (i. e., CPU, disk, RAM) to a single database node.

• Horizontal: means to add more nodes to a (distributed) database.

Classical approaches to storing large amounts of structured data use Relational Database
Management Systems (RDBMS), such as MySQL or PostgreSQL. These systems typically scale
only vertically. More recently, so called NoSQL systems have become increasingly popular to
store and query very large amounts of data. Examples of NoSQL systems include BigTable
[CDG+08], Spanner [CDE+12] or Apache Dynamo. It is important to note that NoSQL refers
less to the absence of SQL than to the absence of a relational structure [Str10]. Additionally,
NoSQL systems typically possess the ability to scale horizontally.

In the context of this thesis, a RDBMS is used to persist and exchange simulation data, but
data-intensive, distributed computations must be carried out in a NoSQL environment. The
structure of relational databases is good for certain applications: RDBMS represent data as rows
in tables that enforce a pre-defined data schema. The scheme enables very strong guarantees
on how data is modified (ACID) and allows for tables to refer to each other (foreign keys).
However, such systems tend to be slow at handling very large volumes of parallel accesses.
This easily makes them the bottleneck during highly parallel computations, such as ours. Also,
given dynamically changing loads they do not scale horizontally: a master node must holds
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all data and replicate all of it to one or more slaves. Vertical scaling is easy, but inherently
limited.

NoSQL databases use simpler data structures to represent their data. Many are key-value
stores, similar to Distributed Hash Tables (i. e, Apache Dynamo, Apache HBase, Redis), or
column-oriented (Apache Cassandra). They typically do not impose any structure on the data
stored therein. The flexibility they gain from this allows them to be fully distributed and to
easily scale horizontally to adapt to changing workloads. While early NoSQL databases did not,
newer implementations, such as Google Spanner do provide ACID-like guarantees for some
operations [CDE+12].

HDFS, and any other distributed file system, is in some sense also a (very simple) NoSQL
database.

2.5.2 RDBMS-to-NoSQL bridges

In a scenario such as ours where not only SQL technologies are in use, a suitable bridge
between the two worlds is needed. This means, there should be a way of importing data from
an RDBMS to a NoSQL environment and also one to export it again.

Looking only at the import side, there are two possible approaches.

• Push: The RDBMS replicates any changes to certain tables automatically to the NoSQL
system. This makes writes immediately available and allows for data streaming and
incremental updates.

• Pull: Once data is required to be available in the NoSQL environment, all affected
rows are fetched from RDBMS. This is useful to efficiently bulk load data, but makes
incremental updates and data streaming hard.

For this thesis we decided to focus on Apache Sqoop, which uses the Pull approach.

MySQL Hadoop Applier

The MySQL Hadoop Applier is part of the MySQL project. It uses the MySQL transaction log
(binary log) to instantly replicate any writes into MySQL to HDFS [MK13]. This is essentially
the same mechanism through which MySQL replicates changes from master to slave nodes.

The Hadoop applier is currently (July 2014) experimental and available through MySQL
Labs22.

22http://dev.mysql.com/tech-resources/articles/mysql-hadoop-applier.html
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Apache Sqoop

Apache Sqoop23 uses MapReduce to pull rows from an external RDBMS into any NoSQL data
store that MapReduces can directly write to i. e., HDFS or Apache HBase.

Sqoop allows a user-defined SELECT statement to filter input data. For example,

SELECT t.foo, t.bar FROM t where t.foo = 2;

imports only two columns from all rows matching the predicate. How the data is represented
in the destination store depends on the destination store, but generally all relational structure
is lost. For example when importing to HDFS, each row in the input becomes a line in a text
file (other, more space-efficient import formats exist).

To parallelize the import, Sqoop first determines the total range of a user-defined split column
in the source table. It then spawns a MapReduce job, assigning to each mapper a subset of the
selected rows, using the range of the split column to partition the input. By default, the range
is determined using a query like

SELECT MIN(t.a), MAX(t.a) FROM t

where t is the result of the SELECT statement that the caller invokes Sqoop with. a is the
column whose range is to be determined (if necessary, this query can be overridden using the
--boundary-query argument).

To achieve good import performance, the split column should be uniformly distributed within
its range. However to avoid overlading the source RDBMS, Sqoop by default imports with a
parallelism of 4.

MySQL Cluster

MySQL Cluster24 is a variant of MySQL that distributes MySQL database tables across multiple
data nodes. Unlike the regular MySQL server, data and indexes are held by the data nodes
in main memory, allowing very low-latency access. MySQL cluster is designed as a High
Availability (HA) system: groups of data nodes can be configured to be replicas of each other.
This means a (rolling) restart of the cluster is possible without any downtime and the cluster
survives failure of a fraction of its nodes.

23http://sqoop.apache.org/
24http://www.mysql.com/products/cluster/
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By default, MySQL cluster still saves a log of all operations to disk such that tables can be
mostly restored in the event of a full loss of the cluster (i. e., a power outage affecting the
entire data center in which the cluster runs). It is, however, possible to configure the cluster
to run in Diskless mode, in which case no logs are created. MySQL Cluster administrators
can also initiate regular backups which include a full copy of all rows. Backups are useful
because re-starting a MySQL Cluster instance from operation logs only is very expensive since
all operations must be replayed.

The standard storage engine of MySQL cluster is called NDB.

While MySQL Cluster provides the full query functionality of a traditional MySQL server and is
obviously a “SQL”-based RDBMS, its distributed nature also allows it to be labeled as a “NoSQL”
system. Most importantly:

• It supports Horizontal Scaling since nodes can be added and removed at runtime, without
affecting cluster availability.

• The distributed storage system on which the server’s NDB storage engine is based is in fact
a NoSQL system offering distributed row storage and limited query/scan functionality
very similar to other key-value stores such as BigTable. This storage system is accessible
independently from SQL through a lower-level C++ API25.

A MySQL cluster consists of the following three kinds of services, all of which are typically
placed on dedicated (virtual) machines:

• Management nodes (MGM) act as master nodes for the cluster. They keep track of all
nodes participating in the cluster and coordinate backups, replication and re-balancing
of tables when data nodes are added or removed from the cluster.

• Data nodes hold a a partition of a database table’s rows in main memory.

• SQL nodes allow users to connect to the cluster and submit SQL queries. SQL nodes
behave like a regular MySQL service. Upon receiving a query, SQL nodes compile an
execution plan and execute it, utilizing the data nodes to fetch and scan rows in parallel.
Data nodes are accessed using the aforementioned NDB low level API. A mechanism
called AQL sometimes ships simple joins to the data nodes, in which case the SQL node
only merges the results. This is advertised to yield significant speedups for joins26. SQL
nodes operate independently of each other. If a cluster has multiple SQL nodes, an
additional load balancer may be required to distribute the query load between them.

To conclude, MySQL can perhaps best be described as a blend of a classic RDBMS in terms
of table structure and query expressiveness, and a NoSQL approach in terms of storing data
and scaling resources. An important limitation is that while data can be accessed via multiple

25http://dev.mysql.com/doc/ndbapi/en/ndbapi.html
26http://dev.mysql.com/tech-resources/articles/mysql-cluster-7.2-ga.html

25



2 Foundations

queries with very high throughput, one single query is mostly executed on a single SQL node.
In comparison, MapReduce and HDFS distribute both data and computations.
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In this chapter, Computing Clusters are defined and a brief introduction to recent advances in
the field is given, followed by an overview of the infrastructure used for the bone simulation
that this thesis focuses on.

3.1 Computing Clusters: Overview

The term Computing Cluster generally refers to a set of interconnected computers that execute
distributed, compute-heavy applications. Such clusters vary greatly in size, with CPU counts
ranging from tens to hundred-thousands and storage capacity up to Petabytes and more. Very
large clusters usually occupy entire data centers (i. e., facilities devoted to hosting large number
of computers) and thus form the backbone of companies such as Amazon, Facebook, Google or
Microsoft [BCH13]. In the context of this thesis, a (very small) computing cluster is used to
run the Bone simulation described in Section 2.3.

Clusters can be broadly categorized into two major classes.

• Heterogenous: Underlying computers span a wide range of hardware configurations and
architectures. This also covers mixed CPU-GPU clusters where Graphics Processing Units
(GPUs) provide part of the computational resources available to the cluster. Heterogenous
clusters naturally occur if older and newer hardware are used together.

• Homogenous: All underlying computers have the same or very similar hardware and
system architecture. Such clusters are therefore easier to reason about and to maintain.

Independent of this distinction, a cluster can be built either upon specialized hardware to
maximize energy efficiency and performance in the cluster, or on so-called commodity hardware
that is cheaper to buy and uses components not different than in systems that are sold to
end-users.

Recent advances in datacenter design go as far as to make the analogy that a whole cluster is
to be seen as a single computer in the classical sense. Hoelzle et al. write
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The software running on these systems, such as Gmail or Web search services,
execute at a scale far beyond a single machine or a single rack: they run on
no smaller a unit than clusters of hundreds to thousands of individual servers.
Therefore, the machine, the computer, is this large cluster or aggregation of servers
itself and needs to be considered as a single computing unit [BCH13].

This paradigm shift goes along with the development of toolchains that enable developers
to program systems at scale, slowly abstracting the underlying systems away. Virtualization
plays a key role in this: similar to how processes in a classical operating system are separated
from each other through the use of virtual memory, Virtual Machines (VMs) are isolated from
each other, and do not need to know about the physical hardware they run on. Similarly,
Software-defined Networking (SDN) abstracts physical network topology.

If networking, storage or computing infrastructure can be provisioned, configured and deleted
by use of a software service or API, it is referred to as Infrastructure as a Service (IaaS).

3.2 OpenStack

OpenStack1 is an Open Source Infrastructure as a Service solution that is jointly developed by
companies such as Dell, Cisco, AT&T, IBM and others, as well as by individual contributors. It
provides tools to manage and provision resources (i. e., computing, storage) in a data center,
in particular using virtualization technology. The infrastructure of the University of Stuttgart’s
Institute of Parallel and Distributed Systems, in which work for this thesis took place, is an
OpenStack environment.

3.3 Apache Ambari

Apache Ambari2 is a tool that helps with creating and operating Hadoop clusters. In our work
for this thesis, Ambari is used to reliably setup Hadoop clusters.

Ambari automates the process of setting up and configuring a Hadoop cluster. It supports
all major tools and services in the Apache Hadoop ecosystem, including Sqoop, Hive, Pig,
Spark and Storm. Some of them (i. e., Sqoop) are client programs only, others require daemon
services to be installed and configured on all or some nodes of the cluster. Some even have
“Master” daemons that control cluster-wide operation (i. e., HDFS NameNode). A challenge
is to distribute all daemons sensibly across the cluster as to avoid starvation and unevenly

1http://www.openstack.org/
2http://ambari.apache.org/
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distributed loads. For this purpose, Ambari provides a default configuration that can be tailored
to ones needs.

A second important use case of Ambari is to track cluster usage and health after the initial setup
has been completed. Most services in the Hadoop ecosystem host simple HTML status pages on
each node on which they run (usually a slightly more detailed report is available on the master
node for each service respectively). However, these status pages are all independent of each
other. To track the overall status and health of the cluster, one therefore has to look at a HDFS,
a YARN and a MapReduce status page (or even more, depending on which services are of
relevance), all spread across different hosts and with port numbers that are hard to remember.
Luckily, Ambari provides a web dashboard (see Figure 3.1 and Figure 3.2) through which it
makes aggregated statistics for all of the services available. Such an overview is immensely
useful as otherwise a complete picture is not available.

Figure 3.1: Ambari Status Dashboard (by default on port 8080)
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Figure 3.2: Ambari YARN Metrics Dashboard

3.4 Setup

In our setup, we create a Hadoop cluster that consists of multiple nodes. Another node, referred
to as Ambari, hosts an Apache Ambari instance for monitoring and deployment. Additionally, a
node that is referred to as Admin, hosts a Windows Server 2012 instance. This node is used to
execute our prototypes of the simulation workflows. Lastly, a MySQL Cluster instance built
from multiple nodes is set up.

A detailed description of the resources and topology available to the cluster is given in
Section 6.4. This also includes a description of the physical hardware underlying the virtualized
environment, which is of relevance to the evaluation.

A schematic overview of all nodes in the cluster is found in Figure 3.3, the details of those
nodes are explained in the following sections.
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3.4.1 Network

All nodes are within a single virtual network that is connected to the outside world via a
Gateway switch. Since all nodes are within the same virtual network, they can all talk to
each other. Edges in the diagram between nodes thus refer to how they actually communicate
during normal cluster usage.

Figure 3.3: Cluster Topology
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3.4.2 Admin Node

The Admin node hosts our development environment and an instance of the Apache ODE
Workflow Engine3, which is capable of executing WS-BPEL workflows. Furthermore, the node
hosts an Apache Tomcat 7.0 instance4, which supports JSP/EJB hosting (i. e., for Java-based
Web Services).

The Admin node is not part of the Hadoop cluster, to start MapReduce jobs it must use SSH to
issue commands on a Hadoop node.

3.4.3 Ambari Node

The Ambari node hosts an instance of Ambari. It is used for monitoring health and utilization
of the Hadoop cluster.

3.4.4 Hadoop Cluster

Each of the Hadoop nodes has the same (virtualized) hardware available to it, i. e., the Hadoop
cluster is a homogenous cluster as per Section 3.1.

In MapReduce/YARN terminology, each node hosts a NodeManager, which manages abstract
Containers that occupy resources such as RAM, CPU cores or storage. When a MapReduce
job is started, a container is launched on one of the nodes. This container hosts a MapReduce
Application Master, which starts more containers for Map and Reduce tasks on all nodes
connected to the cluster (depending on configuration and the anticipated workload) and keeps
track of the overall MapReduce status.

To submit jobs (MapReduce jobs, sqoop imports/exports) to the cluster, one can use yarn,
hadoop and sqoop binaries with parameters. Submitting jobs is equally possible from any of the
Hadoop nodes, since these binaries are installed everywhere. Submitting jobs is also possible
from the outside, for example from the Admin node.

3.4.5 Distributed Storage via HDFS

HDFS has two major components: DataNodes hold blocks of data and a NameNode maps file
names to block ids and to the DataNodes that hold replicas of them.

3http://ode.apache.org/
4http://tomcat.apache.org/
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In our setup, each of the Hadoop nodes holds a HDFS DataNode. One (arbitrarily picked) node
also holds a NameNode.

Each DataNode stores blocks on the local disk storage of the respective node. Thus, the available
HDFS storage across a cluster is less than or equal to the sum of all local disk storage available
across the cluster.

3.4.6 MySQL Cluster

The MySQL Cluster instance consists of multiple data nodes, SQL nodes and one management
node as described in Section 2.5.2. Each of the data nodes has the same (virtualized) hardware
available to it. SQL nodes and management nodes have different needs than the data nodes
and therefore run with different hardware resources.
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In this chapter, the data flow of the current implementation of the Coupling Workflow
[RSM14b] to run the combined bone simulation introduced in Section 2.3 is analyzed. In
addition, common MapReduce pitfalls are explained. Then, a concept for a possible MapReduce
implementation of the Octave part of the workflow is presented.

4.1 Data Flow of the Coupling Workflow

Figure 4.1 shows both data and control flow of the current Coupling Workflow based on
Reimann et al.[RSM14b]. However, since the prototype and design of the workflow have
evolved, the following description of the data flow is based not only on the conceptual outline
in the aforementioned publication, but also on careful analysis of the existing implementation.
The description is up to date as of December 2014.

At the top-level, the workflow loops over multiple Daily Routines. Each Daily Routine defines a
schedule of Motion Sequences for one daily cycle, as outlined in Section 2.3.

Figure 4.1: Data and control flow of the original coupling workflow [RSM14b]

35



4 Concept

The first part of each cycle is to run the PANDAS-based bio-mechnical simulation (Step 1 in
Figure 4.1) for each Motion Sequence. This part is implemented through the PANDAS Workflow,
which the Coupling Workflow invokes [Boh14]. The PANDAS Workflow then provisions two
PANDAS instances and uses the PANDAS-WSI (Web Service Interface) to let both PANDAS
instances jointly perform a Finite Element (FE) simulation for the bone. One PANDAS instance
focuses on bio-mechanical simulation, whereas the second instance computes a bio-chemical
simulation, which forms a rough approximation to the systems-biological simulation to be
carried out using Octave). The instances use a MySQL database to exchange intermediate
results.

A bone has pre-defined FE Elements. Each element consists of 8 predefined Gaussian Points for
numerical integration. FE boundary conditions are given as additional input and depend on
the particular Motion Sequence.

As output of a particular Motion Sequence, 22 mathematical variables for each Gaussian Point
and timestep are written to a MySQL table in a key-value structure that allows the two PANDAS
instances to write their results independent of each other. The schema of this output table is
shown in Listing 4.1.

Listing 4.1 SQL schema of the PANDAS output table
CREATE TABLE pandas_output(

-- Unique ID of this Motion Sequence

motionid INT,

-- ID of the Timestep

timestep INT,

-- ID of the FE Element Point

elementid INT,

-- ID of the Gaussian Point

gaussid INT,

-- Name of the mathematical variable

name VARCHAR(10),

PRIMARY KEY(motionid, timestep, elementid, gaussid, name)

-- Output variable value

value DOUBLE

);

Of all variables outputted for a single (motionid, timestep, elementid, gaussid) key tuple,
only the variables named NS0, SIG_V and CNUF are later used. Furthermore, to simplify the
load on the Octave simulation, the average (mean) value of these variables across all timesteps
(timestep column) is calculated and used instead (for each Motion Sequence).

In a SQL formulation this corresponds to Listing 4.2, where CURMOTIONSEQ indicates the current
Motion Sequence ID (motionid). Note that the query is unoptimized.
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Listing 4.2 SQL query to calculate aggregate variable values from pandas_output

SET @CURMOTIONSEQ = /* <motion sequence to be processed> */;

SELECT A.elementid, A.gaussid, NSTS_avg, SIG_V_avg , CNUF_avg

FROM

( SELECT elementid, gaussid, AVG(value) as NSTS_avg

FROM pandas_output

WHERE motionid = @CURMOTIONSEQ AND name = ’NSTS’

GROUP BY elementid, gaussid

) AS A,

( SELECT elementid, gaussid, AVG(value) as SIG_V_avg

FROM pandas_output

WHERE motionid = @CURMOTIONSEQ AND name = ’SIG_V’

GROUP BY elementid, gaussid

) AS B,

( SELECT elementid, gaussid, AVG(value) as CNUF_avg

FROM pandas_output

WHERE motionid = @CURMOTIONSEQ AND name = ’CNUF’

GROUP BY elementid, gaussid

) AS C

WHERE A.elementid = B.elementid AND A.gaussid = B.gaussid

AND B.elementid = C.elementid AND B.gaussid = C.gaussid

For each Motion Sequence, (elementid, gaussid, NS0_avg, SIG_V_avg, CNUF_avg) tuples
are exported to separate CSV files (Step 3 in Figure 4.1). The Coupling Workflow then invokes
the Octave Workflow which lets Octave perform the systems-biological bone simulation for
each (elementid, gaussid) tuple during the day (Step 4 in Figure 4.1) [Boh14].

The schedule for an entire day of activity is put together according to the current Daily Routine
(see again Figure 2.3). For example if the available Motion Sequences are Sleeping, Walking,
Working and Watching TV then a possible schedule for a 24 hour day is

6 hours Sleeping

1 hours Walking

11 hours Working

1 hours Walking

4 hours Watching TV

1 hours Sleeping

Accordingly, the Octave simulation processes each (elementid, gaussid) tuple by fetching
the variable values for this tuple from the individual CSV files in the order of the schedule (this
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means, some variable values are used multiple times as a Motion Sequence can occur multiple
times during a day; the length of an activity also affects the simulation). For each (elementid,

gaussid) tuple, Octave produces two output variables, NSTS and HCF.

This result is written into another MySQL table, the scheme of which is found in Listing 4.3
(This corresponds to the Temporary Table in Step 5 of Figure 4.1).

Listing 4.3 SQL schema of the Octave output table
CREATE TABLE octave_output(

-- ID of the FE Element Point

elementid INT,

-- ID of the Gaussian Point

gaussid INT,

PRIMARY KEY(elementid, gaussid)

-- Output variables

NSTS DOUBLE,

HCF DOUBLE,

);

The NSTS and HCF variables serve as input constants to PANDAS for the next Daily Routine. For
this, they are re-imported into the data store that holds inputs to PANDAS.

This completes the data flow for one cycle of the Coupling Workflow.

4.2 Data Size

To properly analyze the workflow, it is relevant to have an estimate of the magnitudes of the
data involved. With respect to the pandas_output table from Listing 4.1, the range of values
for each column of the table is shown below.

motionid 1-100
elementid 1000-10000
gaussid 8
timestep 10-1000
name 22

This means pandas_output contains between 1.7 million and 176 billion rows. This is 13.42
MiB to 1.28 TiB of data in the value column.
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A maximum estimate for the entire table’s storage size is about 3.52 TiB1 if the following
assumptions are met:

1. Instead of the illustratory INT, the smallest possible integer types based on the estimate
are used for the id columns, i. e., TINYINT for motionid, SMALLINT for elementid, TINYINT
for gaussid, SMALLINT for timestep.

2. No alignment or padding occurs.

3. (Most) variable names have length 5.

4. There is no further storage optimization (e. g, compression)

This amount could be further decreased by hard-coding output variables as columns instead of
using the name column, which however is the preferred output format for PANDAS.

It should also be noted that this is still only for the simulation of exactly one bone.

4.3 Appropriate Use of MapReduce

To be able to efficiently formulate parts of the given simulation using the MapReduce paradigm,
it is important to first understand what makes MapReduce fast. Some computations simply do
not map well to MapReduce, other do so trivially and others can be re-formulated to work.

The goal of this section is to identify reasons why a specific part of the workflow does not map
well to the MapReduce paradigm and should be parallelized using other means, if at all.

4.3.1 Under-utilization

In both the mapper and reducer stage, input data for the relevant stage is partitioned across all
available worker slots.

The number of worker slots is usually configured to be the number of cores in the cluster. For
efficiency, Hadoop defines a minimum amount of input data that a worker slot must process
during the map stage (referred to as input split size). The heuristic makes sense: the cost of
setting up a distributed job is very high, it involves the cost of scheduling as welll as copying
mapper and reducer binaries. However, if the input data is less than the input split size times
the number of available workers, some worker slots are idle during the map stage. This can be
a problem if the input size is very small even though the computation time per input key is
high. The problem can be mitigated by tweaking the Hadoop configuration.

1http://dev.mysql.com/doc/refman/5.0/en/storage-requirements.html
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For the reduce stage all the unique keys emitted by the map stage are partitioned across all
available worker slots. Thus, if the map stage emits less unique keys than there are worker
slots, some worker slots will be idle during reducing! This can be hard to overcome and is a
sign that the task in question does not exhibit sufficient parallelism.

4.3.2 Bad partitioning

The partition of the inputs across all available worker slots is closely related to hashing keys
to buckets in a hash table: ideally, each worker slot would be assigned a share of the input
that requires equal computation effort to process, but in practice the distribution of said effort
is not known a priori. This occurs frequently at the reduce stage when a few input keys
have significantly more values than others and therefore take longer to reduce than others.
To make this distribution more uniform, one can manually tweak Hadoop’s Partitioner

function, which controls the mapping from keys to worker slots (i. e., the hash function in
analogy) as to ensure that the “slow” keys are spread out uniformly across all worker slots.
A good example where this occurs is the classic WordCount example uncannily often found
in most MapReduce introductions: since the distribution of words in most natural languages
approximately follow Zipf’s Law2, few words account for a large proportion of all words in
a source text. Luckily, there are enough words, so most choices of Partitioners should do
reasonably well at distributing the work along reducers. It is likely though that some of those
reducers take much longer than the average.

4.3.3 Large amount of intermediate storage

If the mapper stage emits more or larger records than it reads, a large amount of intermediate
data is produced on each mapper, where it is periodically sorted and eventually queued up on
disk (spilled in Hadoop terminology). As part of the Shuffling stage, this potentially requires a
costly on-disk merge step on both mapper and reducer worker slots3.

This easily happens if complex SQL-like Extraction/Transform/Load (ETL) statements are
“converted” to MapReduce. As an example, consider you have as input a set of email address
books, each of which lists multiple email addresses. An additional input is a list of pairs of
email addresses and the desired output is a subset of this list containing only the email address
pairs that co-occur in at least one address book. A possible MapReduce implementation could
use one mapper function to emit ((address, address), address-book-id) pairs for each pair of
addresses in the input address books and a second mapper function to emit ((address, address),
NIL) pairs for each pair of email addresses in the input email address pair list (it is possible to

2http://en.wikipedia.org/wiki/Zipf’s_law
3http://de.slideshare.net/cloudera/mr-perf

40



4.4 Parallelization of the Workflow using MapReduce

specify different mapper functions for different parts of the input). The reducer function then
could check if, for each pair of email addresses, at least one address-book-id and exactly one
NIL value is found. Clearly, the intermediate output required by this implementation would
grow quadratically.

Sometimes such problems can be avoided by using a sequence of MapReduces instead of a single
MapReduce. In this example, a first MapReduce job could generate an inverted index from
email addresses to address books that contain them. A second MapReduce could then intersect
the address book lists for all email addresses. The two-stage solution requires only Θ(n)
intermediate storage. The differences in intermediate storage does not even have to be
asymptotical in order to be problematic: even a 5-fold consumption of intermediate storage
with respect to input size can easily become a performance problem, not to mention the amount
of spare HDFS capacity it requires.

4.3.4 Use of external Web Services and Files

In a service-oriented Architecture (SOA), even simple computations often depend on a multi-
tude of external Web Services. With MapReduce, this can be problematic: any services that
are being accessed from within a mapper or a reducer need to be highly replicated as to cope
with the enormous query rate that a Hadoop cluster of only few nodes can generate. Such
behaviour also greatly increases the complexity of the entire system, for example network
bandwidth and congestion can become a concern. Similarly, if jobs fetch additional, shared
data from HDFS upon starting work on an input partition, the read capacity of the file system
is quickly exhausted. Increasing HDFS replication can help, but does not solve it altogether.

As a rule of thumb, MapReduce jobs should not require any inputs besides their primary inputs
and they should not talk to Web Services in case the implementation of the Web Services is not
at least as scalable as the Hadoop cluster.

4.4 Parallelization of the Workflow using MapReduce

To make any given part of the coupled simulation workflow a viable candidate for a MapReduce-
based implementation, two requirements must be met:

1. Its data flow makes for an efficient mapping to MapReduce as per Section 4.3.

2. All its dependencies can easily be made available on the Hadoop cluster. For example,
running an Octave script requires a local Octave installation on each node in the cluster.
In this thesis such dependencies are considered a prerequisite and their installation
(Platform Provisioning) is not covered. However, dependencies that are expectedly hard
to fullfil do not make good candidates for a MapReduce-based implementation.
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The following is an analysis of the data flow in the workflow with respect to these requirements,
in the order of the steps in Figure 4.1 (step number in parentheses).

1. At a very top-level: multiple bones in a skeleton could be simulated independently. This
is outside the scope of the Coupling Workflow though, which performs the simulation for
one bone only. Therefore, this is not considered part of this work. However, a possible
area of further inquiry is to run a “global” MapReduce that runs the entire simulation
for each bone in a mapper, and uses the reduce step to generate results such as average
bone density across the entire skeleton.

2. (Step 1) The bio-mechanical PANDAS simulation runs data-independent for each Motion
Sequence. Parallelizing it could yield speedup linear in the number of Motion Sequences,
but requires both PANDAS-WSI and PANDAS itself to be deployed across the cluster as
part of Platform Provisioning, along with all static input data required for the simulation
(i. e., Gaussian Points). The way how two PANDAS instances interact during the bio-
mechnical simulation of one Motion Sequence is complex and heavily depends on
MySQL. Several ways to avoid this can be imagined: PANDAS could be rewritten to use a
column-oriented, key-value store that scales horizontally, such as Apache Cassandra (if
its eventual consistency can be coped with), or HDFS directly. MySQL instances could
be deployed locally on each node of the Hadoop cluster, and final results merged into
a central instance afterwards. An alternative is to use a sufficiently powerful MySQL
cluster instance. All of these approaches require a major re-engineering of the PANDAS
simulation and have complex platform demands. Even then, the result does not map
well to MapReduce for the reasons given in Section 4.3.4.

Parallelizing an instance of the PANDAS simulation in itself is not feasible because the
simulation involves solving a complex field equation with complex data dependencies.

3. (Step 3) Averaging PANDAS output over all timesteps. This is done independently for
each (motionid, elementid, gaussid, name) primary key tuple. A mapper function
can collect all values to be averaged for each primary key tuple. A reducer function
then calculates the mean of all collected values. To maximize Reduce worker utilization,
the number of timesteps should be the same for all primary keys. Different Motion
Sequences can have different length and thus different number of timesteps though,
causing potentially bad partitioning (see Section 4.3.2). However, for a a large number of
Motion Sequences this will be negligible, and for a small numbers of Motion Sequences
it is the largest Motion Sequence that dictates the worst case runtime.

A disadvantage is that plain MapReduce for this task involves producing a full copy of
all data to be averaged as intermediate mapper output (see Section 4.3.3). However,
this can be alleviated by using a Combiner that partially reduces the data at each mapper
worker.
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4. (Step 4) Running the Octave simulation. This part has perhaps the highest potential for
speedup: The number of (motionid, elementid, gaussid) tuples to be processed is
significantly larger than the number of available MapReduce worker slots. The process of
dropping the motionid and generating a sequence of tuples in the order of the activity
schedule corresponding to the Daily Routine maps directly to a single MapReduce step:
the mapper emits tuples along with the time of day (index of hour) at which they occur
as an extra key (multiple copies of each tuple if they occur multiple times during a day).
The reducer then sorts the sequence of values by time of day and proceeds to reduce it
in the correct order. Automatic sorting by such a secondary key can also be achieved
using a special sorting trick referred to as Secondary Sort4, which involves using custom
comparer and partitioner implementations to Hadoop. Also, since the Octave simulation
consists of pure arithmetic without branches, its runtime depends only on the input
length, which would be constant for each (elementid, gaussid) pair.

5. (Step 5) Data merge. In this step, data is merged and written back into the table holding
future inputs. Since the destination is a single relational database and the task involves
no computation, the MapReduce paradigm is not applicable here.

From this the following execution plan for the entire Coupling Workflow follows.

1. Run the PANDAS simulation as usual, write results into the pandas_output table (Listing
4.1).

2. Import relevant parts of the pandas_output table into HDFS.

3. MapReduce1: A first MapReduce job reduces the timestep column and calculates
average values.

4. MapReduce2: A second MapReduce job reduces the motionid column as per the Daily
Routine and calculates outputs using Octave.

5. Export the result back into a MySQL table octave_output (Listing 4.3).

The execution plan is summarized in Figure 4.2, which shows both data and control flow. The
first stage, running the PANDAS simulation, is omitted under the assumption that the output of
PANDAS is pre-existent in the pandas_output table.

4.5 MapReduce as a Service

One goal of this thesis is to explore how MapReduce computations can seamlessly integrate
into simulation workflows. Workflow authors would like to focus on the actual logic and

4http://www.quora.com/What-is-secondary-sort-in-Hadoop-and-how-does-it-work
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Figure 4.2: Data and Control Flow of the MapReduce prototype
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not be bothered with too much implementation detail. The MapReduce version of the bone
simulation, as outlined in the previous section, should be simple. Thus the question is how
MapReduce jobs and HDFS imports and exports are executed from within a workflow.

The SIMPL framework provides the IssueCommand executable data management operation
to invoke arbitrary shell commands as part of a workflow (see Section 2.2.2). This would
be a very straightforward way to run our MapReduce jobs if the necessary Hadoop binaries
were available on the node that executes the Simulation Workflow. In our setup though, and
from a more general perspective, it cannot be assumed that this is the case. Running remote
MapReduces is still possible with a shell command, but requires ssh and potentially scp to
a remote Hadoop node (however, the SIMPL framework already offers the functionality to
issue shell commands over SSH interfaces, but it still requires workflow authors to specify the
relevant shell command). To hide these complications from workflow authors, the concept for
this thesis is to wrap basic MapReduce functionality in a Web Service that seamlessly integrates
into workflows. The service can also provide HDFS import and export functionality.

Furthermore, the whole process of writing mapper and reducer functions as Java classes and
packaging them up in a JAR to deploy them across the Hadoop cluster is tedious: many real-
world mapper and reducer functions are surprisingly simple so the ratio between boilerplate
code and actual logic is oftentimes high. For our MapReduce service, the concept is to use
Hadoop Streaming mode. This allows workflow authors to formulate their mapper and reducer
functions in a lightweight scripting language that does not require compilation (i. e, Python).
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This chapter describes the implementation of a prototype for the parallelization concept
outlined in the previous chapter. First MapReduce-WSI is described, which enables running
MapReduce jobs with very little effort. Then, the implementation of the MapReduce prototype,
which builds on MapReduce-WSI is presented. Lastly, the baseline prototype, which represents
a manual approach to parallelizing the Octave simulation to multiple nodes, is discussed. In
Chapter 6, the MapReduce prototype will be compared against the baseline prototype.

5.1 MapReduce-WSI

MapReduce-WSI implements a simple Web Service frontend to MapReduce on a Hadoop cluster.
The Web Service allows users to easily import data from a JDBC-based RDBMS into HDFS, run
custom MapReduce jobs and eventually export the results back into the RDBMS. Written as
part of this thesis, it has been released as Open Source and its source code is freely available
on Github1. MapReduce-WSI builds on top of the JAX-WS API that is part of Java SE 1.6. There
are no dependencies other than Hadoop and the SSHXCUTE2 framework, which however is
bundled in the source code repository.

In our environment (see Section 3.4), an instance of MapReduce-WSI runs on the Admin
node.

The Web Service has been kept stateless as to avoid requiring client support for WS-Adressing
or HTTP Sessions. However, a logical state is introduced by the so-called scope-id, which
identifies an isolated environment for individual users.

The typical workflow when using MapReduce-WSI is as follows:

1. First call the createScope API, which allocates a new scope-id and returns it to the client.
All further service invocations receive this scope-id as their first parameter in order to
properly identify the isolated environment to be used for the invocation.

2. Import zero or more tables from a RDBMS into HDFS using the importIntoHDFS API.

1https://github.com/acgessler/mapreduce-wsi
2https://code.google.com/p/sshxcute/
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3. Run zero or more MapReduce jobs on the imported data. There are two APIs for this:
runMapReduce exposes the full Hadoop MapReduce functionality but requires more work
to use (since mapper and reducer have to be compiled into a JAR archive) whereas
runStreamingMapReduce offers a simple way of specifying mappers and reducers. Both
options are further explained in the next sections.

4. Export the output from HDFS to a RDBMS using the exportFromHDFS API.

5. Use deleteScope to permanently delete all resources on the Hadoop cluster that were
associated with the scope-id.

The full WSDL document for MapReduce-WSI can be found in Appendix A.

5.1.1 Isolation

Being a WebService, MapReduce-WSI can be used by multiple clients at the same time and it is
critical to isolate them from each other. To achieve a basic level of isolation, we use the scope-id
to identify an unique environment. For each scope-id, a new HDFS folder is maintained. In
the current implementation, scope-ids are drawn from a random number generator (RNG),
which ensures uniqueness with sufficient probability. Therefore there is no database that
stores active scope-ids and when allocating a scope-id, the corresponding folder is created. All
HDFS file paths used by the user with the scope are rewritten to use this folder as root. This
happens completely transparent to the user and avoids accidental data conflicts. However, the
system is (at least in the current prototype) not secure: there is no path normalization and
the user-defined JAR archives that runMapReduce deploys to the cluster run with full HDFS
privileges and can theoretically access other user’s data.

It is important to understand that, while different scope-ids enjoy said weak file system
isolation, the computational resources in the cluster are limited and simultaneously running
jobs do affect each other’s runtime. While YARN’s scheduling mitigates some of those effects,
care must be taken not to over-load the cluster, in particular with respect to filesystem use.

5.1.2 runMapReduce

runMapReduce deploys a JAR archive from the local machine onto the cluster and executes it
using the command yarn jar. The JAR archive must contain the mapper and reducer classes
as well as a main() method that contains the standard MapReduceV2 bootstrap code, using
whichever configuration the client wants. An example can be found in the repository3.

3https://github.com/acgessler/mapreduce-wsi/tree/master/test
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The API allows forwarding arbitrary arguments to the remote processes. Additionally, as very
first argument the JAR is provided with the HDFS root folder of the current scope-id (such that
it can locate its inputs).

5.1.3 runStreamingMapReduce

runStreamingMapReduce uses Streaming Mode to run a MapReduce job. The source code for
a mapper and reducer script are specified as strings. The scripts can be formulated in any
language, provided the interpreter for said language is available on all nodes in the cluster. In
addition, a valid UNIX Shebang4 must be present to make the scripts shell-executable. For a
valid example, see again Listing 2.1 and Listing 2.2.

Since the source code for the scripts is transmitted as a parameter to the service, it is not
recommended to use this method for long scripts. Another shortcoming is that scripts that
references to other files (e. g., Python or Octave module imports) are not supported.

HDFS data source and destination are specified directly in the API call. The user has no further
control over the MapReduce configuration (i. e., parallelism or sharding): if such level of
control is needed, runMapReduce should be the API of choice.

5.1.4 importIntoHDFS

importIntoHDFS uses Apache Sqoop (see Section 2.5.2) for bulk importing. The user specifies
a JDBC database source with credentials, a HDFS destination location, a SELECT statement
(user query) and split column as described.

The implementation5 avoids a current shortcoming of Sqoop: The way how Sqoop derives the
default boundary query on the split column fails if the split column itself is not selected by the
user query. In the context of this thesis, this would cause trouble multiple times during the
simulation.

For example, in a table with three columns named a, b and c, a possible user query could be

SELECT b, c

FROM X

WHERE Y

;

4http://en.wikipedia.org/wiki/Shebang_(Unix)
5https://github.com/acgessler/mapreduce-wsi/blob/master/src/de/uni_stuttgart/ipvs_as/MapReduceWSIImpl.java#L221
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However, if in this case a (which is not selected!) is specified as split column, then the incorrect
boundary query generated by Sqoop is

SELECT MIN(t.a), MAX(t.a) FROM (SELECT b, c

FROM X

WHERE Y

) t;

The implementation of importIntoHDFS, however, correctly detects this case and emits a
boundary query that rewrites the original SELECT statement to include the split column a while
leaving the query used for selection untouched:

SELECT MIN(t.a), MAX(t.a) FROM (SELECT a, b, c

FROM X

WHERE Y

) t;

5.1.5 exportToRDBMS

The exportToRDBMS API is the complement to importIntoHDFS. It also uses Apache Sqoop and
exports tuples from a HDFS path to a given relational database table, mapping each source
line to a row and each element within a line to a column (left to right). The destination is
again specified as a JDBC URI with credentials. Unlike importIntoHDFS no filtering on the data
is supported and the destination table’s key constraints must allow for the source data to be
inserted individually.

For example, if the HDFS source path contained the following tuples:

0 24215

1 991

0 241

And the destination table schema is:

CREATE TABLE t(

a INT,

b INT

);

Then exportToRDBMS is equivalent to the following SQL statement
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INSERT INTO t(a, b) VALUES (0, 24215), (1, 991), (0, 241);

However, exporting would fail if t puts a primary key constraint on a, because the values
inserted into this column are not unique.

5.2 MapReduce Prototype

This section describes the implementation of the MapReduce prototype, which is later evaluated
against a baseline prototype (see Section 5.3). The prototype is implemented in Java and
only covers the Data aggregation Octave part of the Coupling Workflow. PANDAS-WSI is not
invoked because the concept does not plan parallelizing it, so it is seen as a constant. The
prototype reads its input from the pandas_output table as shown in Listing 4.1. This table can
either be populated by manually running PANDAS, or by artificially generating test data.

The prototype closely follows the concept outlined in Chapter 4, in particular the control and
data flow found in Figure 4.2.

5.2.1 Import into HDFS

Only a subset of the PANDAS output table needs to be imported into HDFS. Since the Octave
simulation only requires 3 out of the 22 double mathematical variables that the PANDAS
simulation calculates, most of the input can be discarded. The SELECT statement that is passed
to importIntoHDFS becomes simply

Listing 5.1 Sqoop import statement
SELECT motionid, elementid, gaussid, timestep, name, value

FROM pandas_output

WHERE (name = ’NS0’ OR name = ’SIG_V’ OR name = ’CNUF’)

As split column (see again section 2.5.2), the elementid column is used: it contains integer
IDs that are uniformly distributed and has enough distinct values (see Section 4.2) to allow
partitioning in as many approximately equal parts as mapper slots used by Sqoop.

This produces multiple HDFS text files that contain 6-tuples on each line. The number of
individual files depends on the number of workers that Sqoop uses to import the data (4 by
default). This is not of relevance to further steps though: if the size of the input data exceeds
the input split size (see Section 4.3), MapReduce workers will be assigned to subsets of an
input file.
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5.2.2 Averaging timesteps

This stage is relatively straightforward: given (motionid, elementid, gaussid, timestep,

name, value) 6-tuples, compute for each (motionid, elementid, gaussid, name) 4-tuple
the average (mean) of the value column across all time steps. The calculation happens only
for the 3 variables of interest. In the MapReduce formulation, the mapper function discards
the time step and emits all values for which to calculate the mean under the same key. The
reducer function performs the actual calculation and emits the mean values of the 3 variables
as output columns in a single row.

A problem with a naive calculation of the mean (i. e., sum all values up and divide by the
number of values) is that the sum is prone to overflows. To avoid, we utilize an algorithm
for calculating the mean iteratively. This avoids any overflows, and is numerically stable
[Knu97].

As an additional optimization to save intermediate space and string processing time, the names
of the variables processed are compressed into numeric indexes.

The full implementation of the Python scripts of the mapper and reducer functions for this
stage can be found in Listing 5.2 and 5.3.

A shortcoming is that the current implementation does not use a combiner function to partially
reduce data at each mapper slot because MapReduce-WSI does not support combiner functions
(yet). This could significantly decrease the amount of intermediate storage required.
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Listing 5.2 AverageTimesteps mapper script
#!/usr/bin/env python

# Input:

# (motionid, elementid, gaussid, timestep, name, value)

#

# Output:

# (motionid_elementid_gaussid, nameid, value)

import sys

# This table maps variable names to a simple numeric index

namemap = {

’NS0’ : 0,

’SIG_V’ : 1,

’CNUF’ : 2

}

for line in sys.stdin:

tuple = line.strip().split(’,’)

assert len(tuple) == 6

# Replace the variable name with a numeric index

# to reduce the size of intermediate HDFS storage.

nameid = namemap[tuple[4]]

# Emit the concatenation of the primary key 3-tuple as key

# using _ to separate the parts. This has the effect that

# values with the same primary key are mapped to the

# same Reducer shard while we can still reconstruct the

# original key later.

key = ’_’.join(tuple[:3])

print ’%s\t%i\t%s’ % (key, nameid, tuple[5])
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Listing 5.3 AverageTimesteps reducer script
#!/usr/bin/env python

# Input:

# (motionid_elementid_gaussid, nameid, value)

#

# Output:

# (motionid, elementid, gaussid, mean(NS0), mean(SIG_V), mean(CNUF))

import sys

import itertools

mean = [0] * 3

lines = (line.split() for line in sys.stdin)

for key, values in itertools.groupby(lines, lambda x : x[0]):

# Iterative mean calculation

# See The Art of Computer Programming, Volume 2, section 4.2.2 [Knu97]

mean[0] = mean[1] = mean[2] = 0.0

for index, value in enumerate(values):

assert len(value) == 3

nameid = int(value[1])

mean[nameid] += (float(value[2]) - mean[nameid]) / (index + 1)

# Emit the average values with the original (split) key

print ’%s\t%s\t%s\t%f\t%f\t%f’ % tuple(key.split(’_’) + mean)

The result is written to HDFS and directly re-used for the next stage.

5.2.3 Octave Parallelization

The second Mapreduce stage also involves a separate mapper and a reducer written in Python,
however the reducer script is paired with an Octave instance to perform the actual calcu-
lation. Given the (motionid, elementid, gaussid, mean(NS0), mean(SIG_V), mean(CNUF))

6-tuples generated by the previous Mapreduce stage, the Python mapper and reducer together
generate for each unique pair of (elementid, gaussid) a sequence of all variable values (means
of NS0, SIG_V and CNUF) ordered over the course of a Daily Routine of 24 hours. The algorithm
is that the mapper emits tuples together with an additional index that represents the hour. If a
Motion Sequence is active during multiple hours of the day, the same values are emitted multi-
ple times using different hour indexes. The reducer then sees all the values for a (elementid,
gaussid) key tuple and sorts them by the hour indexes, thus achieving a reconstruction of the
Daily Routine with respect to the variables under simulation.
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In the prototype, the mapping from hours of day to the corresponding Motion Sequence is
directly embedded into the mapper script. The resulting sequence is then forwarded to an
Octave instance which runs in parallel to other Octave instances and calculates the final result
of the simulation with respect to the (elementid, gaussid) pair and the Daily Routine. This
coupling step also happens as part of the reducer script. The Python reducer script collects the
result from Octave and writes them to HDFS.

Note that every reducer script instance starts its own instance of Octave. Also, the entire
reducer could be implemented in Octave alone, yet Python makes it easier to formulate the
sorting logic wheras Octave’s strength is to perform the actual calculation.

The Octave script used with the prototype is not the original simulation because it requires to
read several sources of configuration to get simulation constants. The simulation script for this
thesis was designed to mimick the computational effort of the original as closely as possible
and uses Octave’s lsode library function6 to solve an Ordinary Differential Equation (ODE)
defined on a function of the input vectors.

The implementation of the Python scripts of the mapper and reducer functions for performing
the Octave simulation is found in Listing 5.4 and 5.5. The reducer is partly given in pseudo-
code, the details of the communication with Octave using Python’s subprocess module and a
two-way pipe to redirect stdin and stdout of the Octave process are omitted for brevity.

6https://www.gnu.org/software/octave/doc/interpreter/Ordinary-Differential-Equations.html
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Listing 5.4 OctaveCalc mapper script
#!/usr/bin/env python

# Input:

# (motionid, elementid, gaussid, mean(NS0), mean(SIG_V), mean(CNUF))

#

# Output:

# (elementid_gaussid, hour, mean(NS0), mean(SIG_V), mean(CNUF))

import sys

# This table contains 24 entries corresponding to 24 hours in a day.

# For each hour, it specifies the index of the motion sequence

# that describes the activity during the hour.

hour_motionids = [

0,0,0,1,1,1,0,1,

0,0,0,2,2,1,0,1,

0,0,0,1,1,1,0,1

]

for line in sys.stdin:

tuple = line.strip().split()

assert len(tuple) == 6

motionid = int(tuple[0])

# Again, emit a composite key to enable reduction on pairs of

# elementid, gaussid. Each time the motionid is used during

# the day, a new entry is emitted using the number of the

# hour as additional tuple element.

key = tuple[1] + ’_’ + tuple[2]

for hour, hour_motionid in enumerate(hour_motionids):

if hour_motionid != motionid:

continue

print ’%s\t%i\t%s\t%s\t%s’ % (key, hour, tuple[3], tuple[4], tuple[5])
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Listing 5.5 OctaveCalc reducer script
#!/usr/bin/env python

# Input:

# (elementid_gaussid, hour, mean(NS0), mean(SIG_V), mean(CNUF))

#

# Output:

# (elementid, gaussid, NSTS, HCF)

import sys

import itertools

<START OCTAVE INSTANCE>

# Incoming elements are grouped by elementid_gaussid, but

# not ordered with respect to the hour column. Thus, sort

# first. This is sometimes referred to as a "Secondary Sort"

# and can outside streaming mode also be achieved by using a

# combination of a custom Hadoop partitioner with a custom

# equality predicate.

lines = line.split() for line in sys.stdin

for key, values in itertools.groupby(lines, lambda x : x[0]):

ordered_values = sorted(values, key=lambda x : int(x[1]))

for value in ordered_values:

<PIPE value INTO OCTAVE>

elementid, gaussid = key.split(’_’)

nsts, hcf = <OBTAIN RESULT FROM OCTAVE>

# Emit the result with elementid and gaussid split again

print "%s\t%s\t%s\t%s" % (elementid, gaussid, nsts, hcf)

<TERMINATE OCTAVE INSTANCE>

5.2.4 Export to MySQL

To export the results back to MySQL, the exportToRDBMS API provided by MapReduce-WSI is
used. No further processing is needed since the resulting tuples already match the format of
the destination octave_output table (Listing 4.3).

Afterwards, the MapReduce-WSI scope-id is freed and thus all HDFS resources reclaimed.
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5.2.5 Logging and Verification

An advantage of Hadoop is that it keeps track of current and previous jobs and exposes web
frontends and status pages through which jobs can be examined. Apache Ambari further
streamlines the process in that it provides a concurrent view on all the service layers of the
Hadoop cluster and their respective status pages.

In our case, running an instance of the MapReduce prototype involves four subsequent MapRe-
duce jobs (two explicitly created, two created by Sqoop). Figure 5.1 shows the Applications
Web UI provided by YARN after the prototype completed running. The log files and timings for
each stage are still accessible.

Figure 5.1: YARN Applications Web UI

Figure 5.2 shows the progress Web UI provided by Hadoop’s MapReduce framework during
the runtime of the simulation.
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Figure 5.2: MapReduce progress Web UI running the first MR stage

5.3 Baseline Prototype

This section briefly describes the implementation of the baseline prototype against which
the MapReduce prototype (Section 5.2) is evaluated. The baseline prototype is a parallel,
distributed version of a previous Java prototype written by Reimann et al.[RSM14a]. It takes
the same inputs and produces the same outputs as the MapReduce prototype, furthermore
it uses the exact same Octave script internally. The difference is that it does not rely on any
Hadoop functionality (MapReduce, HDFS) at all. Instead, the prototype manually assigns
subsets of work to compute nodes, using each node’s local disk to store intermediate results.
It also utilizes SQL to filter and aggregate input data directly in the MySQL Cluster database
system.

The prototype consists of two different Java programs, referred to as a SimRunner and Worker.
The Worker program runs on the nodes in the Hadoop cluster (without using Hadoop function-
ality or HDFS storage!). Each Worker instance runs the simulation on a subset of the input
data respectively. The SimRunner executes on the Admin node and controls the schedule and
allocation of parts of the simulation to the workers.

The algorithm used by the baseline prototype consists of multiple steps, which correspond to
the respective steps in the MapReduce prototype.

1. The SimRunner determines the size of the input data using a SQL query that retrieves
the minimum and maximum FE Element ID and assigns each compute node a subset
(specified as a range of FE Element IDs) to process. This is conceptually very similar to
the input partitioning performed by Sqoop in the MapReduce prototype.
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2. The SimRunner uses the scp command to copy a JAR archive containing the Worker
binaries to all compute nodes. It then uses the ssh command to run one or more Worker
instances on each of the compute nodes. In the MapReduce prototype, this corresponds
to the MapReduce-WSI functionality to deploy binaries and scripts to the cluster.

3. Each Worker uses the SQL query from Listing 5.6 multiple times to fetch input data. This
query is a variant of the query shown previously in Listing 4.2. The query is executed once
for each Motion Sequence (CURMOTIONSEQ) and is restricted to the subset of FE Element
IDs that is assigned to the worker node (BEGIN, END). An ORDER BY clause is used to sort
the result set by (elementid, gaussid). In the MapReduce prototype, this corresponds
to the initial data import using Sqoop (Section 5.2.1) as well as to the first Mapreduce
stage, which performs the calculation of the mean variables (Section 5.2.2).

Listing 5.6 Query to extract a worker’s subset of the input data
SET @CURMOTIONSEQ = /* <motion sequence to be processed> */;

SELECT A.elementid, A.gaussid, NSTS_avg, SIG_V_avg , CNUF_avg

FROM

( SELECT elementid, gaussid, AVG(value) as NSTS_avg

FROM pandas_output

WHERE motionid = @CURMOTIONSEQ AND name = ’NSTS’

AND elementid > @BEGIN AND elementid <= @END

GROUP BY elementid, gaussid

) AS A,

( SELECT elementid, gaussid, AVG(value) as SIG_V_avg

FROM pandas_output

WHERE motionid = @CURMOTIONSEQ AND name = ’SIG_V’

AND elementid > @BEGIN AND elementid <= @END

GROUP BY elementid, gaussid

) AS B,

( SELECT elementid, gaussid, AVG(value) as CNUF_avg

FROM pandas_output

WHERE motionid = @CURMOTIONSEQ AND name = ’CNUF’

AND elementid > @BEGIN AND elementid <= @END

GROUP BY elementid, gaussid

) AS C

WHERE A.elementid = B.elementid AND A.gaussid = B.gaussid

AND B.elementid = C.elementid AND B.gaussid = C.gaussid

ORDER BY A.elementid, A.gaussid;

For each Motion Sequence, a CSV file with the result rows is written. Due to the ordering
by (elementid, gaussid), the rows in each of the individual CSV files correspond to
each other (recall that each Motion Sequence uses the same FE Elements and Gaussian
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Points!). The Worker then does a sequential scan through all CSV files in parallel and
joins the lines. This split-sort-and-merge approach is required since the CSV files do not
necessarily all fit into main memory. The Worker then uses the mapping from hours-of-
day to Motion Sequence IDs to generate an ordered list of values over the course of a
Daily Activity of 24 hours. This list is then forwarded to an instance of Octave that runs
in parallel and computes the final results. This stage corresponds closely to the second
Mapreduce stage of the MapReduce prototype (Section 5.2.3). CSV files are afterwards
deleted.

4. Each Worker emits a SQL update to write their results back into the pandas_output

table. This corresponds to the final data export from HDFS to MySQL in the MapReduce
prototype (Section 5.2.4).

5. The Runner waits until all of the Workers have completed their work.
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This chapter evaluates the performance of the MapReduce prototype against the baseline
prototype presented earlier. As a preliminary, challenges for evaluating a system as complex
as the bone simulation in the context of a Hadoop cluster are presented and discussed.
Furthermore, the cluster topology outlined in Chapter 3 is augmented with the exact physical
resources available to the simulation.

6.1 Generating Test Data

The input to the simulation is given as a database table with a scheme as presented in Listing
4.1 (pandas_output table). The contents of this table can either be generated by running the
PANDAS simulation on real-world input data, or by using artificially generated test data. For
this thesis, the latter approach was chosen.

To be able to measure the performance of the simulation, artificial test data needs to be
generated such that the runtime of the simulation with artificial inputs accurately reflects
the time it would take to run on actual data. Luckily, the part of the simulation that is to be
brought onto MapReduce only involves arithmetic operations. Its runtime does not depend on
any characteristics of the input values, nor are there any dependencies or requirements for
these values. Thus, the contents of the pandas_output table (i. e., the value) column) can be
drawn from a random number generator.

The full Java code to generate test data is found in Appendix C. Since the size of the input is a
variable during evaluation, it is left configurable. The corresponding MySQL table uses the
InnoDB storage format with the server defaults.

6.1.1 Defining standard test data sets

For the evaluation, three different input test sets are defined and generated once:

1. Small: For this data set, the input table is populated with the following cardinalities (see
Section 4.2)
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motionid 1
elementid 1000
gaussid 8
timestep 100
name 22

In total, these are 17.6 million rows. The size of the database as reported by MySQL
(counting both data and index/key size) is 1141 MiB.

2. Medium: For this data set, the input table is populated with the following cardinalities
(see Section 4.2)

motionid 2
elementid 2000
gaussid 8
timestep 200
name 22

In total, these are 140.8 million rows. The size of the database as reported by MySQL
(counting both data and index/key size) is 9138 MiB.

3. Large: For this data set, the input table is populated with the following cardinalities (see
Section 4.2)

motionid 3
elementid 3000
gaussid 8
timestep 300
name 22

In total, these area 475.2 million rows. The size of the database as reported by MySQL
(counting both data and index/key size) is 30806 MiB.

The tables use no compression, but an optimized storage format using smallest-possible integer
types (see Section 4.2).

6.2 Challenges with Hadoop

The fault-resistant, self-optimizing architecture of the Hadoop ecosystem makes it easy to acci-
dentally produce skewed measurements. The following scenarios would all cause performance
degration or incorrect measurements:
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• HDFS operation close to total storage capacity: This affects the number of times new files
are replicated across HDFS DataNodes. If the same data is accessed from multiple nodes,
read/write performance is sensitive to the number of times each block is replicated across
the filesystem. If single nodes becomes overloaded, unexpected side-effects may occur, in
particular if HDFS and YARN run on the same nodes (which is the case in our setup).

• Worker failure: Due to the fault-tolerant architecture of Hadoop, worker failure easily
goes unnoticed since the part of the task that is allocated to the node which failed gets
transparently re-allocated to the remaining nodes. This re-execution incurs significantly
increased computation cost (unless the effect is negligible due to sheer cluster size), but
does not affect the correctness of the result.

• Insufficient scale: Generally, YARN and MapReduce do not distribute workloads unless
the size of the task exceeds a certain threshold. This makes sense: the constant cost
of setting of slots across the cluster is very high and involves coordination, copying
mapper and reducer binaries and other working data associated with the MapReduce
task. Furthermore, Shuffling and merging of reduced results incurs even more network
overhead. Unfortunately, the default heuristic to decide is the size of the input data,
which is not necessarily a measure of the size of the task.

6.3 Challenges due to Virtualization

Virtualization of computation resources makes it harder to accurately measure performance
metrics since an inconvenient mapping from virtual to physical resources can become a
bottleneck. Possible problems include:

• Over-allocation of underlying resources. It is economical in virtualized environments,
in particular in commercial clouds which charge their users money for their services,
to over-allocate resources based on the observation that most usage patterns include a
relatively low average usage with occasional spikes (i .e, Web Services). This can become
a problem if the computation intends to fully utilize the resources it is is allocated to.

In particular, a single physical host can be over-allocated in several ways, including but
not limited to:

1. CPU: If fully utilized virtual CPU cores (“vCore” in OpenStack terminology) across
multiple VMs map to a smaller number of physical CPU cores, the hypervisor’s pro-
cess scheduler will time-slice the physical CPU cores between the virtual CPU cores,
effectively throttling each VM. Additionally, CPUs that support Hyper-Threading
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or related technologies1 do “virtualize” their cores on a lower level in that they
advertise two full cores for each physical CPU core to the hypervisor operating
system, switching back and forth between two execution contexts when one of the
two stalls on a memory access. While this increases performance, it is not as fast as
two real CPU cores, thus making CPU cores and even more virtualized CPU cores
a generally unreliable metric for computation power. However, many real-world
workloads are not CPU bound. MapReduce in particular trades increased IO (since
intermediate output between map and reduce stage is written to disk) for the ability
to parallelize workloads easily.

2. Network: Commodity network interfaces provide 1 Gigabit/s (full-duplex) bandwith,
which amounts to an effective bandwith of 100 MB/s after TCP/IP packaging
overhead is subtracted. Since many Network Storage solutions are able to serve a
single file with such rates (in particular the threefold replication that HDFS defaults
to is easily able to achieve a 100 MB/s reading rate, even if the data comes from
5400 RPM disks), it follows that multiple VMs on the same physical host network
interface can exceed the available incoming or outgoing bandwith. The degree to
which this is a concern depends on the IO pattern observed by the computation, as
well as on the performance of the network storage solution that is deployed in the
cluster.

• Non-realistic network latency if the majority of virtualized nodes reside on the same
physical server. In this case, nodes communicate via regular TCP/IP through the virtual
Ethernet network that connects them, but the VM hypervisor recognizes the traffic
as local and passes it through the local loopback interface, or an even more efficient
IPC mechanism. This makes network communication (i. e., RPCs) seem more efficient
that it would be in a truly physically distributed environment. While this is good for
performance, it affects how well results generalize to (larger) clusters with a different
topology.

6.4 Virtual Cluster Configuration

This section describes the configuration of the virtual cluster in which the evaluation thas
taken place. There were two major considerations that drove the decisioning on cluster
configuration:

1. We want to scale the physical resources that are available for this thesis close to their
maximum extent and perform measurements at peak capacity.

1http://www.intel.com/content/www/us/en/architecture-and-technology/hyper-threading/hyper-threading-
technology.html
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2. We want to avoid the challenges and problems outlined in previous sections 6.3 and 6.2.
In particular, we need to achieve a near one-to-one mapping from virtualized to physical
resources with no or very little over-allocation, using multiple physically separated hosts
while ensuring that sufficient spare capacity is available both for monitoring and for file
system operation.

The virtual cluster contains 8 Hadoop nodes.

6.4.1 Physical Hardware

The entire virtual cluster runs on a computing cluster with 8 interconnected hosts, each of
which provides the following hardware:

• 2 x Intel Xeon E5-2630 2,3GHz (12 Cores, 24 with HyperThreading)

• 16 x 16 GiB RAM (256 GiB)

• 10 Gbs Ethernet Controller

Two such hosts were exclusively available for the work on this thesis. Three other hosts were
available for use, but shared with other users of the cluster (but not under heavy load or
close to capacity). The three remaining hosts were unavailable. When creating a VM in the
OpenStack UI, one can specify an availability group for it. Since availability groups can be
restricted to specific physical hosts, this allows “locking” VMs to specific hosts. In this work,
three availability groups are used for this purpose: Host7 and Host8, which refer to the hosts
which were used exclusively and Host3_4_5, which spans the three shared hosts.

Reliable storage is accessible via a StorWize V7000 Storage Attached Network (SAN), a separated
network providing access to disk arrays which are mapped to appear as if they were locally
attached devices. The total SAN storage capacity is about 9 TiB of redundant storage. For the
work on this thesis, about 5 TiB were available. The SAN is connected to the computing cluster
through a 8 Gb/s Fiber Channel connection, however the total bandwith to the SAN may be
lower due to various implementation details.

6.4.2 Mapping the Virtual Cluster to Physical Resources

This section describes the mapping from virtual cluster components to physical cluster resources.
For comparison, refer to the (logical) topology of the virtual cluster back in Figure 3.3.

Each of the two physical hosts that we use exclusively (i .e, Host7 and Host8) host 4 identical
Hadoop nodes for a total of 8 Hadoop nodes. Furthermore, our MySQL cluster instance utilizes
4 VMs as data nodes, 2 placed on Host7 and 2 placed on Host8. Each of the dedicated physical
hosts also runs a MySQL cluster SQL node. The Apache Ambari management node Ambari and
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Figure 6.1: Physical Topology of the Virtual Cluster

the Windows Server 2012 node Admin run in the (shared) Host3_4_5 availability zone. This
zone also hosts the MySQL cluster management node. All of the services in this zone are not
under heavy load during the simulation, so having them in a shared environment should not
affect results.

The entire setup is visualized in Figure 6.1. Note that each colored box refers to a full VM and
not only a service instance. Each VM offers all the services required for their role in the cluster,
for example a Hadoop node hosts services specific to YARN, MapReduce and HDFS as well as
instrumentation and measurement services that are used by Ambari to collect cluster health
data (see Section 3.4.4).
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6.4.3 Hadoop Cluster Nodes

The virtual hardware allocated to each of the 8 nodes in the Hadoop cluster is shown in the
following table:

Operating System CentOS 6.5
VCores 4
RAM 8 GiB
Local Disk 20 GiB
Network Disk (SAN) 120 GiB

Because Host7 and Host8 each hold 4 of those nodes, the total resource allocation for each of
these physical hosts is:

VCores 16
RAM 32 GiB
Local Disk 80 GiB

This achieves a one-to-one mapping of virtual CPU cores to (advertised) physical CPU cores.
The amount of RAM allocated is less than a fourth of the available 256 GiB, however this was
deliberately chosen to ensure that the working set of the simulation does not fit into main
memory, which could skew results.

HDFS Sizing

Each Hadoop worker node hosts a HDFS DataNode which is allowed to use up to 100 GiB of
the attached storage device (reserving about 20 GiB for other purposes, e.g. local spill space,
file system overhead). With 8 nodes, this amounts to 800 GiB of raw HDFS space across the
Hadoop cluster. Since HDFS is configured to use three-way replication for storing files, only a
third of the 800 GiB are effectively available.

6.4.4 MySQL Cluster Data Nodes

The virtual hardware allocated to each of the 4 data nodes in the MySQL cluster is shown in
the following table:
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Operating System CentOS 6.5
VCores 8
RAM 64 GiB
Local Disk 20 GiB
Network Disk (SAN) 0 GiB

A network disk storage quota was not required since the cluster operates on Diskless mode,
i. e., it holds the database tables and indexes in main memory only. The local disk storage is
required to run the operating system.

The MySQL Cluster data nodes and the Hadoop nodes do share CPU resources, however the
main purpose of the MySQL cluster data nodes is to hold table rows in memory and to retrieve
them upon request of a SQL node. This means the CPU requirements are relatively low and
the effect of “stealing” CPU cores from the Hadoop nodes should be negligible. During heavy
query load, we never saw the CPU load of any of the data nodes exceed 5%.

Configuration

Our MySQL Cluster’s performance was found to be very sensitive to configuration. To make
our results reproducible, the following is a commented version of the ndbmtd configuration we
ended up using:
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Listing 6.1 MySQL Cluster configuration (ndbmtd)
# Each data node uses 30 GiB for data storage.

DataMemory=30G

# Each data node uses 8 GiB to store indexes.

IndexMemory=8G

# 2 replicas, this means 2 of the 4 data nodes

# hold copies of the other pair.

#

# Thus the effective storage is 60 GiB of data

# and 16 GiB of indexes.

NoOfReplicas=2

# Number of concurrent operations (i.e., row modifications)

# Our cluster is able to handle high numbers since each

# data node has 8 vCPUs. However, each operation record

# consumes ~100 KiB main memory.

MaxNoOfConcurrentOperations=500000

MaxNoOfLocalOperations=550000

# Use at maximum 8 threads to serve data requests. This

# fits the 8 vCPUs allocated to the VM.

MaxNoOfExecutionThreads=8

# Run from main memory only.

Diskless=1

# Locking pages in memory (using the POSIX mlock() API)

# prevents them from being accidentally swapped out

# to disk, which could be another source of unexpected

# slowdown or side effects.

LockPagesInMainMemory=1

All database tables were further created with the ndb_table_no_logging property turned on
because MySQL Cluster with the Diskless=1 flag still writes operation logs to disk unless the
aforementioned property is set. To test the setup, we measured global disk IO across the cluster
(using the SAN’s storage console) and verified that SQL updates and queries do not hit the
disks.
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6.4.5 Testing the Hadoop Cluster

To verify that the functionality of the Hadoop cluster is all in place, we ran the terasort
benchmark2 on a data set which was randomly generated using the teragen tool. Results were
then verified using the teravalidate program.

We found the benchmark working properly. However we measured that the combined write
throughput of the SAN while running the benchmark is only in the range of 50 MiB/s while CPU
utilization in the cluster is consistently below 100%. This likely indicates that disk input/output
will be the bottleneck for many real-world scenarios.

6.5 Optimizing MySQL Performance

Both prototypes rely on executing SQL statements. The baseline prototype performs the entire
data aggregation step using SQL and the MapReduce prototype uses Sqoop to run parallel SQL
queries from MapReduce mappers. It is not the purpose of this thesis to squeeze the maximum
possible performance out of these queries, however insufficiently optimized SQL queries can
easily run a magnitude slower than optimized queries. A difference in magnitude is enough to
skew results for the entire simulation. Thus to achieve realistic measurements, all queries were
briefly investigated and optimized. It should be noted that we only exploited straightforward
and widely applicable optimization strategies requiring no expert knowledge.

All relevant queries in the simulation operate on the pandas_output table. This table uses
a composite primary key, which means the natural storage order of the rows provides an
index which spans all columns of the composite primary key. This index is used for queries
involving a predicate (WHERE-clause) on all the columns in the composite primary key (with
some restrictions on ordering relations such as less-than or greater-than). The index also
matches any predicate on a left prefix of the columns, for example a query that only restricts the
motionid and the timestep column.

6.5.1 Optimizing Baseline Query

The baseline prototype as described in Section 5.3 relies on a variant of the SQL query in
Listing 5.6. This query does not utilize this default index because the timestep column is not
part of the predicate (elementid and gaussid are however implicitly part of the predicate since
they are referenced from the GROUP BY clause3). This is confirmed by using the EXPLAIN SQL
statement with the query.

2https://hadoop.apache.org/docs/current/api/org/apache/hadoop/examples/terasort/package-summary.html
3http://dev.mysql.com/doc/refman/5.0/en/group-by-optimization.html
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Our hypothesis was that changing the order of the columns such that timestep comes last
increases performance of the query. This is because the predicate then becomes a left prefix of
the composite key and the default index can be used. The same effect could be achieved by
creating an additional index on the table that omits the timestep column, however this would
significantly increase storage requirements (table size is already dominated by the size of the
keys, so indexes become large as well).

To verify the hypothesis, we used the Small test data set as described in Section 6.1.1. We
then ran the query from Listing 5.6 with a LIMIT of 20 against a local instance of MySQL and
measured the execution time of the query as reported by MySQL itself. We averaged the results
of three runs. The results of the experiment are shown in the following table:

Column Order Query time (s)
motionid, timestep, elementid, gaussid, name 173.29
motionid, elementid, gaussid, name, timestep 123.5

Confirming the hypothesis, a measurable speedup is achieved by putting the timestep column
last. Furthermore, using EXPLAIN on the queries verifies that the faster query indeed uses the
index. All further evaluations were carried out using this modified column order.

Column vs. Row Store

This dependence on column order to match indexes such that columns can be efficiently
selected and then aggregated raises the question whether a column store could be the preferred
storage format for the data. While open for future evaluation, several arguments weight in
favour of row-based storage systems:

• Of the 6 columns in the database, 3 (elementid, gaussid, value) are selected. Using a
column store thus reduces the amount of data that must be fetched by 50% at maximum.

• While not part of this thesis, the pandas_output table is populated by the PANDAS Web
Service, which itself is a complex system that is not easy to migrate to a different data
storage system (by comparison, creating additional indexes or changing column order
is a modification that is easy to incorporate). Further PANDAS naturally consumes
and produces data in rows, which rather argues for a row-based storage than for a
column-based one.
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6.5.2 Optimizing Sqoop Import Query

The MapReduce prototype uses the Sqoop query from Listing 5.1 to import data into HDFS,
specifying the elementid column as split column along which data is partitioned. The query
itself only places a predicate on the name column. However, Sqoop transparently inserts a
second predicate on the elementid column to select the subset of the input data assigned to
each worker. This means, the query does not utilize the default index either since the motionid

and gaussid columns are not part of the predicate. Reordering columns again would certainy
help, however putting motionid first is partly motivated by the way how the previous PANDAS
simulation is parallelized and putting gaussid after elementid is required to efficiently evaluate
the GROUP BY clause in the query from Listing 5.6. Thus, we decided to add an index on the
elementid and name columns only. Since this index only contains two columns, its storage
requirements are less severe than for the default index. Our hypothesis was that this increases
Sqoop import performance.

To verify the hypothesis we used the Medium test data set as described in Section 6.1.1. We
then ran the MapReduce prototype and measured Sqoop import time only using 8 Sqoop
mappers. We averaged the results of three runs. The results of the experiment are shown in
the following table:

Schema Query time (s)
Default index only 303.6
Index on (elementid, name) 99.4

Further, we measured a peak network throughput of 344 Mb/s on the SQL node of the cluster
with the additional index as compared to 72 Mb/s without the index (measured using the
iftop program). Confirming the hypothesis, a 3x speedup is achieved by adding the index
on the elementid and name columns. All further evaluations were thus carried out using this
index.

6.5.3 Optimizing Sqoop Boundary Query

As described in Section 2.5.2, Sqoop initially queries the MySQL database to determine the
minimum and maximum values along the split column in order to partition the input data
among worker slots. Since this query is auto-generated by default (and tweaked by MapReduce-
WSI as needed), it is not necessarily optimal. In the case of the import query from Listing 5.1,
it requires a full table scan since the MySQL query optimizer does not know that the range of
FE Element IDs does not depend on the name column.

However, the simplest possible query to get the intended result is
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SELECT MIN(elementid), MAX(elementid) FROM pandas_output

Note that this query is able to utilize the index on the (elementid, name) columns that was
added as a result of the measurements in the previous Section 6.5.2. Without this extra index,
the same theoretical effect on the performance of the query can be achieved by fixing the first
column (e.g. motionid=0). This would not affect the result because the range of FE Element
IDs is the same for each Motion Sequence. Adding this predicate, the default index would
match.

Our hypothesis was that using this custom boundary query increases Sqoop import performance
drastically since the result is directly available from the index and no full table scan is required.
To verify the hypothesis we used the Medium test data set as described in Section 6.1.1, having
added the index on (elementid, name). We then ran the MapReduce prototype and measured
Sqoop import time only using 8 Sqoop mappers. We averaged the results of three runs. The
results of the experiment are shown in the following table:

Boundary Query Query time (s)
Default 99.4
Improved query 61.0

Confirming the hypothesis, a 30% speedup to the entire Sqoop import is achieved by using the
optimized boundary query. Note that the boundary query itself is now in the magnitude of a
second or less since it is directly answered from the index. All further evaluations were thus
carried out using the optimized boundary query.

6.6 Measuring MapReduce vs. Baseline

In this experiment, we measured the performance of the MapReduce implementation against
the baseline implementation. Input and output data are stored in the MySQL Cluster instance.

Independent variables (variables varied) for this experiment were:

• Size of the input data. We tested with three different artificial data sets generated as
described in Section 6.1.1.

• Number of nodes and jobs per node participating in distributed Octave computations. The
number of nodes and jobs per node multiplied together gives the total level of parallelism
for running the simulation. We tested with three different levels of parallelism. For the
baseline implementation this we directly controlled the number of worker nodes being
used and also for each node how many instances of the Worker program are run on it
in parallel. For the MapReduce implementation we configured the number of map and
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reduce jobs that are launched and how many resources (CPU, RAM) each job consumes.
Putting restraints on the resources is a simple (yet indirect) way of limiting the number
of concurrent mapper or reducer jobs running on the same node. It is important to note
that this is only an upper bound though. The exact number of jobs that are launched can
be lower and is at YARN’s discretion. Also, there is no control about how many nodes are
effectively used in parallel since YARN factors the size of the input data into account. In
our setup we empirically verified that our Hadoop settings resulted in the correct number
of concurrent jobs (+-1) being launched. The follow shows for each of our configurations
also the configuration parameters we passed to Hadoop.

1. Parallelism #8 (4 Nodes, 2 job each)

mapreduce.job.maps=8

mapreduce.job.reduces=8

mapreduce.map.memory.mb=4000

mapreduce.reduce.memory.mb=4000

2. Parallelism #16 (8 Nodes, 2 jobs each)

mapreduce.job.maps=16

mapreduce.job.reduces=16

mapreduce.map.memory.mb=2200

mapreduce.reduce.memory.mb=2200

3. Parallelism #32 (8 Nodes, 4 jobs each) (Assigns one job to each CPU in the cluster)

mapreduce.job.maps=32

mapreduce.job.reduces=32

mapreduce.map.memory.mb=1100

mapreduce.reduce.memory.mb=1100

Dependent variables (variables measured) were:

• aggregation_time: Time taken for aggregating (averaging) inputs. This includes importing
inputs from the pandas_output table in the MySQL Cluster. It also includes any setup
costs (i. e., copying binaries or mapper/reducer scripts).

• octave_time: Time taken for performing the Octave simulation. This includes exporting
results into the octave_output table in the MySQL Cluster. It also includes any setup
costs (i. e., copying binaries or mapper/reducer scripts).

• total_time: Total simulation runtime, which is simply the sum of the two previous
variables.
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Time measurements are taken by the Admin node. For the baseline prototype, the ratio between
the aggregation_time and octave_time variables is self-reported by each Worker node, applied
to the total_time measured by the Admin node and then the maximum reported time of all the
Worker instances is taken.

6.6.1 Hypotheses

Our hypotheses for this experiment were:

1. The MapReduce prototype has constant additional initial cost for setting up and schedul-
ing MapReduce jobs on the cluster. The baseline implementation has very little setup cost
by comparison, since it only copies a (very small) binary to all the distributed workers
and launches it there.

2. Both implementations scale linearly with respect to the level of parallelism. This means
we expect that jobs runs twice as fast if the level of parallelism is doubled, all other
settings fixed.

3. Both implementations scale at least linear (i.e, linear or better) with respect to input
data size given a fixed level of parallelism. Linear scaling means that we expect that
processing a data set of twice the size of the previous data set takes no more than twice
the original time to run. In terms of raw row count, the Medium data set is 8x the size
of the Small data set and the Large data set is 27x the size of the Small data set, so we
would expect 8x respectively 27x the runtime of the Small data set. However, this is only
a upper bound because each of the stages of the simulation reduces one dimension of the
input, thus significantly reducing the size of the working set as the workflow progresses.
After the data aggregation stage, the timestep column is reduced and after the first part
of the Octave calculation the motionid column is reduced as well. The runtime of the
numeric Octave simulation itself and the size of the final octave_output table then only
depend on the cardinality of the elementid column!

Thus, due to the reducing nature of the simulation we expect the effective scalability in
the total_time variable with respect to input data size and a fixed level of parallelism to
be significantly better than the upper bound we gave.

We expect the octave_time variable to be dominated by the numeric Octave simulation
and thus to scale linearly with the elementid column. We expect the aggregation_time
variable to be dominated by the cost of fetching input rows and thus to scale linearly
with the size of the data set.
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6.6.2 Results

The following tables show the results for each of the dependent variables. The first value
in each cell refers to the MapReduce prototype and the second value refers to the baseline
prototype respectively. All measurements were taken using the average of three iterations.

* #8 #16 #32
Small 64.14 / 29.07 62.33 / 21.12 66.62 / 16.48
Medium 158.21 / 216.39 117.71 / 141.38 110.24 / 117.62
Large 472.96 / 733.19 295.51 / 491.99 243.86 / 400.20

Table 6.1: Measurements: aggregation_time (seconds)

* #8 #16 #32
Small 169.49 / 27.73 77.18 / 16.09 72.77 / 12.51
Medium 156.67 / 56.87 102.20 / 30.46 86.35 / 26.63
Large 209.62 / 83.80 124.59 / 45.19 102.64 / 35.94

Table 6.2: Measurements: octave_time (seconds)

* #8 #16 #32
Small 207.86 / 56.81 139.51 / 37.21 139.40 / 29.00
Medium 314.89 / 273.26 219.91 / 171.84 196.60 / 144.25
Large 682.58 / 816.99 420.10 / 537.18 346.50 / 436.15

Table 6.3: Measurements: total_time (seconds)

The following diagram shows the total_time variable with respect to different levels of paral-
lelism (left-to-right) and different input data sizes (front-to-back).
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Figure 6.2: MapReduce vs. Baseline Prototype Evaluation Results

The following diagram shows the aggregation_time and octave_time variables with respect to
input size, both prototypes run with a fixed level of parallelism of 32.

Figure 6.3: Results with Respect to Input Data Size, Parallelism #32

The following diagram compares the two prototypes directly.
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Figure 6.4: Comparison of the Prototypes, Parallelism #32

The following diagram shows the same variables, but both are normalized by the actual input
size of each stage. Normalization is relative to input size with the Small data set. This makes
it easier to reason about scalability: if a prototype has negligible constant cost and scales
linearly with respect to the metric by which the diagram is normalized, all bars should be of
approximately the same height.

In this case, the aggregation_time variable for the Medium data set is divided by 8 since it input
size is 8x as large as the input for the same stage in the Small data set (2x the number of FE
Elements, 2x the number of Motion Sequences, 2x the number of timesteps). The octave_time
variable for the Medium data is however only divided by 4 since the timesteps have already
been reduced at this stage.

Figure 6.5: Results with Respect to Input Data Size (Normalized), Parallelism #32

The following diagram is similar but normalizes by the actual output size of each stage. As an
example, the aggregation_time variable for the Medium data set is divided by 4 since its output
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size is 4x as large as the output for the same stage in the Small data set (2x the number of FE
Elements, 2x the number of Motion Sequences). The octave_time variable for the Medium data
is however only divided by 2 since the Motion Sequences are reduced during this stage.

Figure 6.6: Results with Respect to Output Data Size (Normalized), Parallelism #32

6.6.3 Discussion of Results

With respect to the original hypothesis, our findings were:

1. Figure 6.2 supports the argument since all towers in the left diagram (MapReduce
prototype) have a constant socket as compared to the right diagram (baseline prototype).
Figure 6.5 and Figure 6.6 also suggest that this hypothesis is correct: The fact that the
MapReduce prototype is inefficient running the Small data set in comparison to both the
larger data sets and the results obtained by the baseline prototype can be explained by a
high setup cost for MapReduce jobs, which amortizes as the size of the data increases. It
would be important to measure with larger data sets to further solidify the hypothesis.

2. The prototypes do scale with increasing level of parallelism in the cluster, but the
measured scalability is in both cases worse than linear. This can be seen by calculating
the difference between the total_time for the different levels of parallelism (data size:
Large). This has the advantage that constant cost is factored out.

* #8 - #16 #16 - #32
MapReduce 262.48 73.6
Baseline 279.81 101.03

With linear scalability, the increase in the second column should be half the value of the
first column. As the table shows, this is not the case, thus scalability of the prototypes is
worse than linear.
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3. We find our upper bound hypothesis confirmed in that both implementations show
better-than-linear scalability in the total_time with respect to total input data size. This
can be seen in Figure 6.3 (the increase in runtime is less than 8- respectively 27-fold).

Figure 6.6 shows that the octave_time of the baseline prototype is indeed linear with
respect to the cardinality of the elementid columns, hinting that the runtime of the
Octave simulation dominates the runtime of the split-sort-and-merge algorithm where
the motionid column is reduced. The same can be observed for the MapReduce prototype
if the setup cost is subtracted.

Figure 6.5 shows that the aggregation_time of the baseline prototype is indeed linear with
respect to input size. This makes sense since data aggregation is naturally dominated by
the cost of fetching input data. The MapReduce prototype shows the same behaviour.
This can be seen in the left half of Figure 6.4, where both graphs triple their slope at the
mid-point.

Independent of our original hypothesis, several other key observations can reasonably be
drawn from the measurements:

1. The left side of Figure 6.4 shows that data aggregation in the baseline prototype has an
overhead of about 3x compared to the MapReduce prototype. A possible explanation for
this deficiency of the baseline prototype is found in the natural limitations of aggregating
data in MySQL Cluster (see Section 2.5.2). While the data nodes are able to achieve
high parallel throughput, the calculation of the mean effectively happens on a single
SQL node which can easily become overloaded and suffer from congestion effects. The
MapReduce implementation of the data aggregation by comparison has no dependence
between the nodes after the initial data import.

2. There is a difference in octave_time per FE Element of the MapReduce prototype and
the baseline prototype with otherwise identical settings. This can be seen as a slightly
different slope of the graphs in the right half of Figure 6.4. However, both prototypes
execute the exact same Octave calculation. There are three possible explanations as to
what the cause of this is:

• The overhead of using HDFS as compared to the local file system in the baseline
split-sort-and-merge approach. While the former necessarily includes disk writes
and network traffic, it is likely that the latter never hits any disk since the size of
the input data at this stage of the simulation is small enough to fit the respective
VM’s page cache. If true, the effect should be mitigated with a larger data size.

• The cost of exchanging lines of data between the prototype and the Octave in-
stance. Both prototypes implement this coupling through the same mechanism (a
bi-directional pipe). However, the baseline prototype accesses the pipe from Java
while the MapReduce prototype uses Python. Preliminary measurements running
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only the coupled Octave simulation on 1000 elements showed that Python’s IO
handling is indeed slower than Java’s so this likely contributes to the effect we saw.

• YARN’s scheduling decisions and the fact that we were not able to configure the
mapping from jobs to nodes as well as we were able to do for the baseline prototype.
Looking at the MapReduce logs we found that in some cases the reduce time
increased because the ApplicationMaster MapReduce master job takes up enough
resources in the cluster such that YARN does not schedule all the reducers at the
same time. The remaining reducers (usually one or two) then run sequentially
after all reducers in the first batch have finished. It is possible that this affected
some of the measurements taken for the MapReduce prototype. Figure 6.7 shows
the CPU usage across the entire cluster when running the MapReduce prototype
on the Medium data set using a level of parallelism of 32. Cluster CPU usage is
measured and visualized by Ambari. During most of the time, the cluster is almost
fully utilized. However, at about two thirds, CPU usage drops. This is when only
one or two reducers continue to run while the rest of the work is already done. It
should be noted that this problem can be coped with by tweaking the configuration
of the MapReduce job, most easily by using more and smaller mapper and reducer
jobs.

Figure 6.7: Cluster CPU Usage with Sub-optimal reducer Scheduling

To conclude, both prototypes scale to our expectations with respect to input size. However,
both prototypes show worse-than-linear scalability with respect to the level of parallelism in
the cluster. The MapReduce prototype has large constant cost but finally outperforms the
baseline prototype for the Large data size (346.50s vs. 436s with a level of parallelism of
32). As our result shows, this is because the data aggregation step performs better with the
MapReduce prototype than with the baseline prototype.
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7 Workflow Integration

While the MapReduce and the baseline prototype have been developed in Java, both are only
surrogates for an implementation in a workflow language such as WS-BPEL. In this Chapter a
concept for implementing the MapReduce prototype in WS-BPEL using the utilities provided
by the SIMPL framework (see Section 2.2.2) is outlined.

7.1 Formulating the MapReduce prototype using WS-BPEL

For reference, the source code of the Java-based MapReduce prototype can be found in
Appendix B. If all measurement-specific logic is ignored, the prototype executes the following
steps in fullfilment of Section 4.4:

• (Re-)create the octave_output table to hold results.

• Load mapper and reducer Python scripts from disk.

• Allocate a MapReduce-WSI scope-id.

• Submit 4 jobs to the cluster: Sqoop import, first Mapreduce stage, second Mapreduce
stage and eventually data export.

• Free the MapReduce-WSI scope-id.

This sequence of steps directly maps to WS-BPEL activities (Assign activities to set arguments
omitted):

• The SIMPL IssueCommand data management activity provisions the octave_output table.

• mapper and reducer scripts are either embedded into the workflow or fetched from disk
using SIMPL’s RetrieveData data management activity.

• An Invoke activity is used to call the MapReduce-WSI createScope API.

• For each of the jobs another Invoke activity is used to call a MapReduce-WSI API.

• An Invoke activity is used to call the MapReduce-WSI deleteScope API.
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8 Conclusion

In the early chapters of this thesis, key topics were presented. This included a brief overview
of Web Service and workflow technology in general. Furthermore, the multi-scalar bone
simulation as the main subject of this thesis has been introduced. Important Big Data con-
cepts, in particular the MapReduce paradigm, its implementation as part of Apache Hadoop
and NoSQL systems in comparison with classic database systems were explained. We also
briefly described current advances in computing cluster design, in particular the role which
virtualization plays.

In Section 4 we derived the exact control and data flow of the coupling workflow from previ-
ously published work by Reimann et al.[RSM14b] as well as from the existing implementations
to capture recent evolution of the system. The data flow of the coupling workflow has then
been analyzed with respect to its potential for parallelization. We found that all stages of the
workflow can be parallelized, most of them even with respect to multiple input dimensions.
Then typical usage scenarios of the MapReduce paradigm and possible pitfalls that can prevent
efficient use of this technology have been presented. Based on these findings, we described
how the data aggregation and Octave parts of the workflow do indeed lend themselves very
well to a MapReduce-based implementation. We also concluded that the first, PANDAS-based
part is not suited for a MapReduce-based parallelization. We therefore limited our scope to the
second part of the workflow and developed a detailed concept (see again Figure 4.2 for the
resulting data and control flow). We also devised a concept of how MapReduce functionality
can be exposed to workflows through a Web Service Interface (WSI).

In Section 5 we developed the aforementioned concept into an executable, Java-based proto-
type of the workflow. The prototype uses mapper and reducer scripts written in Python. Part
of the prototype is also a simple implementation of the MapReduce Web Service (which we
call MapReduce-WSI). This Web Service is able to import data from a RDBMS to HDFS, run
MapReduce jobs (using either pre-compiled JAR archive or Streaming Mode scripts) and export
the results while providing basic isolation between concurrent users of the service. In addition
to the MapReduce prototype we developed a so-called baseline prototype, which represents a
manual approach to parallelizing the simulation workflow across the cluster.

In Section 6 we evaluated the performance of the MapReduce and the baseline prototype. We
varied both the size of the input data and the level of parallelism within the cluster. We showed
that both prototypes scale to our expectations with respect to the input data size. We also
confirmed our hypothesis that the MapReduce prototype has some overhead for scheduling and
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setting up jobs on the cluster. However, the MapReduce prototype outperforms the baseline
prototype with our largest test data set. Furthermore we observed some additional effects for
which we presented theories. Larger data sets and more measurements would be required to
draw more conclusions.

Lastly in Section 7, we showed that our Java-based MapReduce prototype can be easily
converted into an equivalent and very straightforward workflow written in WS-BPEL. With
respect to the initial goal, this shows that the integration of Big Data concepts into workflow
technology is possible. The resulting workflow posesses the ability to scale to larger data sizes
without any changes to the workflow itself. Also, aspects of monitoring and scheduling become
available “for free” as natural part of the Hadoop ecosystem. With more classic approaches,
such an infrastructure needs to be engineered, possibly cluttering the workflow itself.

While this is all very motivating, work on this thesis has also outlined some disadvantages:

• As they use the MapReduce-WSI from their workflows, workflow designers still need to
write MapReduce scripts. This can be inconvenient since MapReduce design is oftentimes
othogonal to classic, relational understanding of data. SQL queries are easier to write,to
maintain and they are significantly more concise. Sometimes the structure of an algorithm
can necessitate using multiple levels of mappers and reducers for relatively simple tasks.
Also there is currently no other way of bundling dependencies and configuration than to
embed them into the source code of the mapper and reducer scripts.

• The initial effort required to setup a functioning Hadoop cluster is high. Also, Hadoop is
a complex system in which small configuration tweaks can have a huge impact on the
performance of e.g, MapReduce or HDFS. Optimizing the configuration requires expert
knowledge of a multi-layered stack of services as well as significant systems knowledge.
Thus, using MapReduce-WSI or MapReduce in general will rarely be fully efficient with
respect to computational resources. This has become clear in the Straggler effect we
observed during measurements.

8.1 Future Work

With respect to the bone simulation, there is a variety of aspects to be further explored. The data
aggregation and Octace part of the bone simulation has been successfully parallelized, however
the PANDAS-based FEM simulation is still sequential even though it allows for parallelism
at the granularity of a Motion Sequence. The MapReduce paradigm does not easily map to
calculations that depend on complex Web Services which themselves require complex data
provisioning and have side effects. A different parallelization concept will have to be developed
to cover these cases. However, using MySQL Cluster as a scalable in-memory data store is
promising since it would work directly with the existing PANDAS Web Service. Using MySQL
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Cluster or similar technology, final results can be persisted and more intermediate data be kept
in memory only.

An important part of this work has been to evaluate the flexibility of the resulting workflow
prototypes. While the simplicity of the MapReduce prototype implementation is convincing, five
major directions remain open for investigation which will be briefly covered in the following
sections.

8.1.1 Alternatives to MapReduce: PACT

The disadvantages we noted are related to MapReduce as a paradigm and possibly Hadoop as
a platform. Therefore other toolchains supporting large-scale parallel computations should
be considered as a potential alternative. Based on our experience parallelizing the bone
simulation, we can define two basic traits that are desirable in such a system:

• Ability to execute user-defined functions, i.e., run arbitrary simulation code on the cluster.
A pure query system is not sufficient.

• The system can formulate chains of computations in a single batch as opposed to having
to use multiple sequential jobs, as it is the case with MapReduce.

Possible candidates within the Apache Hadoop ecosystem include Apache Hive (which supports
embedding user-defined mapper and reducer functions inside its SQL-like query language) and
Apache Spark. Both have been briefly presented in Section 2.4.5.

The PACT framework has been proposed by Alexandrov et al. and Battré et al. in 2010
[AHM+10][BEH+10]. It further abstracts the MapReduce model into so-called Parallelization
Contracts (i.e., PACTs). A Parallelization Contract is a second-order function that takes an
user-defined function and a set of input data sets to perform a parallel operation, applying the
user-defined function to subsets of the inputs. The Map and Reduce second-order functions in
the MapReduce programing model are examples of PACTs. However, the system is extensible
and more second-order functions can be added.

A PACT program is created by constructing an flow graph of separate PACTs. Such a flow graph
is then processed by the PACT Compiler, which produces an optimized Directed Acyclic Graph
(DAG) representation. This DAG is then executed across the cluster by the Nephele Execution
Engine, which handles all runtime aspects [WK09].

To conclude, PACT is naturally taylored towards expressing complex data flows and therefore
matches the above traits very well. It may be able to overcome some of the weaknesses of the
current MapReduce-based approach and should thus be further evaluated.
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8.1.2 Scaling to Larger Data Sets

Due to technical constraints the simulation has not been scaled to input data volumes larger
than 30 GiB. It might be interesting to scale further, up into the Terabyte range. Using MySQL
Cluster as an in-memory store may become infeasible at this point and a multi-tier storage
solution may be required, the complexity of which will have to be hidden from the workflow in
order to keep things simple. Also, this would further confirm the hypothesis we evaluated in
Section 6 and help address some of our open theories.

8.1.3 Holistic Parallelization of the Bone Simulation

The entire simulation is designed only with respect to a single bone. It might be interesting to
learn how the workflow can be adapted or re-use to simulate an entire skeleton consisting of
hundreds or at least douzens of bones. Possible approaches include i) extending the simulation
to include a Bone ID or ii) running a top-level simulation which then launches nested instances
of the current simulation (one for each bone), possibly exchanging boundary information.
While the second approach seems far cleaner from the perspective of a workflow designer, it
may be significantly less efficient. A more detailed look into scheduling of jobs on computing
clusters and possibly alternatives to MapReduce will be required.

8.1.4 Further Integration with SIMPL

To ease integration, a more generic way of accessing large-scale computing systems (of which
Hadoop is only one, yet very popular representative) could be integrated into the SIMPL
framework by Reimann et al.[RRS+11] which has been briefly described in Section 2.2.2.
The framework provides abstract patterns for data access and transformation which decouple
scientists and workflow designers from the details of how parallelization is achieved. When
patterns are transformed into executable workflow fragments, use of Big Data concepts could
be substituted based on heuristics. For example the complexity of moving data between a
RDBMS and a NoSQL storage systems (such as HBase or raw HDFS) could be hidden entirely.

8.1.5 Other Simulation Models

While the results of this discussion allow for the conclusion that to introduce Big Data concepts
into scientific workflow technology is worthwhile further pursuing, more research is required.
This thesis has been focused on a very specific example of a simulation workflow, different case
studies will be required to further generalize the results.
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A Appendix A - WSDL for MapReduce-WSI

This is the WSDL diagram (generated using Eclipse’s WSDL editor) to the MapReduce-WSI
Web Service presented in Section 5.1. The full implementation can be found on Github1.

Figure A.1: WSDL Interface Description for MapReduce-WSI

1https://github.com/acgessler/mapreduce-wsi
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MapReduce prototype

package de.uni_stuttgart.ipvs_as.eval.mapreduce;

import java.io.File;

import java.io.IOException;

import java.net.URL;

import java.sql.Connection;

import java.sql.DriverManager;

import java.sql.SQLException;

import java.sql.Statement;

import java.util.Scanner;

import javax.xml.namespace.QName;

import javax.xml.ws.Service;

import de.uni_stuttgart.ipvs_as.MapReduceWSI;

import de.uni_stuttgart.ipvs_as.MapReduceWSIException;

// Simulation runner for the MapReduce prototype

public class Runner {

// MapReduce-WSI binding

public static final String WSDL_PATH = "http://localhost:8080/mapreduce-wsi/mapreduce?wsdl";

public static final String SERVICE_SCOPE = "http://ipvs_as.uni_stuttgart.de/";

public static final String SERVICE_NAME = "MapReduceWSIImplService";

// Database name determines which data size the simulation runs on

public static final String DB_NAME = "acg_eval_large";

// This URI is accessed from within the cluster so localhost does not work

public static String DB_URI = "jdbc:mysql://acg-mysql-1-1:3306/" + DB_NAME;

public static final String DB_USER = "root";

public static final String DB_PW = "root";

public static final String DB_INPUT_TABLE_NAME = "mapreduce4sum_input";

public static final String DB_OUTPUT_TABLE_NAME = "octave_output";

public static final String HDFS_MR0_INPUT_NAME = "mr_input0";

public static final String HDFS_MR0_OUTPUT_NAME = "mr_intermediate_0";

public static final String HDFS_MR1_INPUT_NAME = "mr_intermediate_0";
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public static final String HDFS_MR1_OUTPUT_NAME = "mr_output1";

public static final int ITERATIONS = 3;

public static final String SQOOP_PARTITION_COLUMN =

DB_INPUT_TABLE_NAME + ".elementid";

public static final String SQOOP_IMPORT_QUERY =

"SELECT motionid, elementid, gaussid, timestep, name, value " +

"FROM " + DB_INPUT_TABLE_NAME +

" WHERE (name = \"NS0\" OR name = \"SIG_V\" OR name = \"CNUF\")";

public static final String DB_OUTPUT_SCHEMA = "CREATE TABLE " +

DB_OUTPUT_TABLE_NAME + "(\n" +

"-- ID of the FE Element Point\n" +

"elementid INT,\n" +

"-- ID of the Gaussian Point\n" +

"gaussid INT,\n" +

"\n" +

"-- Output variables,\n" +

"NSTS FLOAT,\n" +

"HCF FLOAT\n" +

") ENGINE=NDBCLUSTER;";

public static final String MR0_MAPPER_FILE = "aggregate_mapper.py";

public static final String MR0_REDUCER_FILE = "aggregate_reducer.py";

public static final String MR1_MAPPER_FILE = "octave_mapper.py";

public static final String MR1_REDUCER_FILE = "octave_reducer.py";

public static final String OCTAVE_CALC_FILE = "octave_calc.m";

private static String readFile(String path) throws IOException {

return new Scanner(new File(path)).useDelimiter("\\Z")

.next().replace("\r\n", "\n");

}

private static Connection openDBConnection() throws SQLException {

return DriverManager.getConnection(DB_URI, DB_USER, DB_PW);

}

private static void createOutputTable() throws SQLException {

final Connection conn = openDBConnection();

final Statement stat = conn.createStatement();

// Clear output table and re-create it using the newest schema

stat.execute(String.format("DROP TABLE IF EXISTS %s;", DB_OUTPUT_TABLE_NAME));

stat.execute(DB_OUTPUT_SCHEMA);

stat.close();

conn.close();
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}

public static void main(String[] arguments) throws IOException, SQLException {

// Dynamically connect to the MapReduce-WSI service instance

URL url = new URL(WSDL_PATH);

QName qname = new QName(SERVICE_SCOPE, SERVICE_NAME);

Service service = Service.create(url, qname);

MapReduceWSI port = service.getPort(MapReduceWSI.class);

// Read mapper/reducer scripts

final String mr0Mapper = readFile(MR0_MAPPER_FILE);

final String mr0Reducer = readFile(MR0_REDUCER_FILE);

final String mr1Mapper = readFile(MR1_MAPPER_FILE);

final String mr1Reducer = readFile(MR1_REDUCER_FILE).replace(

"OCTAVE_SOURCE_CODE_INSERT",

// String escaping done right - twice!

"\"" + readFile(OCTAVE_CALC_FILE)

.replace("\\n", "\\\\n")

.replace("\n", "\\n")

.replace("\"", "\\\"")

.replace("\’", "\\\’") +

"\"");

long delta0 = 0;

long delta1 = 0;

for (int i = 0; i < ITERATIONS; ++i) {

System.out.println("Iteration: " + i);

// Create output database table first

createOutputTable();

long time0 = System.nanoTime();

long scope;

try {

// Create a new MapReduce-WSI scope

scope = port.createScope();

// Export data to HDFS

port.importIntoHDFS(scope, DB_URI, DB_USER, DB_PW,

SQOOP_IMPORT_QUERY,

SQOOP_PARTITION_COLUMN,

HDFS_MR0_INPUT_NAME);

// Run MR0: data aggregation

port.runStreamingMapReduce(scope, mr0Mapper, mr0Reducer,

HDFS_MR0_INPUT_NAME,

HDFS_MR0_OUTPUT_NAME);

long time1 = System.nanoTime();

// Run MR1: octave
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port.runStreamingMapReduce(scope, mr1Mapper, mr1Reducer,

HDFS_MR1_INPUT_NAME,

HDFS_MR1_OUTPUT_NAME);

// Re-import results into SQL

port.exportToRDBMS(scope, DB_URI, DB_USER, DB_PW,

DB_OUTPUT_TABLE_NAME, HDFS_MR1_OUTPUT_NAME);

// Free the HDFS scope

port.deleteScope(scope);

long time2 = System.nanoTime();

delta0 += (time1 - time0);

delta1 += (time2 - time1);

} catch (MapReduceWSIException e) {

e.printStackTrace();

}

}

delta0 /= ITERATIONS;

delta1 /= ITERATIONS;

final double scaleToSeconds = 1 / 1000000000.0;

System.out.println("aggregation_time: " + delta0 * scaleToSeconds);

System.out.println("octave_time: " + delta1 * scaleToSeconds);

System.out.println("total_time: " + (delta0 + delta1) * scaleToSeconds);

}

}

Listing B.1: MapReduce Prototype Runner
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C Appendix C - Code to Generate Artificial Test
Data

This is to illustrate how the test database containing artificial pandas output data is generated.
The code as given below works for MySQL, minor adjustments to SQL syntax are needed for
use with PostgreSQL. To control the size of the database generated, the COUNT_xxx constants
can be tweaked.
package de.uni_stuttgart.ipvs_as.eval;

import java.sql.Connection;

import java.sql.DriverManager;

import java.sql.SQLException;

import java.sql.Statement;

import java.util.Locale;

public class PandasDummyDataGen {

public static final String DB_USER = "root";

public static final String DB_PW = "root";

public static final String DB_NAME = "acg_eval_small";

public static final String DB_INPUT_TABLE_NAME = "mapreduce4sum_input";

public static String DB_URI = "jdbc:mysql://acg-mysql-1-1:3306/" + DB_NAME;

public static final String SCHEMA = "CREATE TABLE " + DB_INPUT_TABLE_NAME + "(\n" +

"-- Unique ID of this Motion Sequence \n" +

"motionid TINYINT,\n" +

"-- ID of the FE Element Point\n" +

"elementid SMALLINT,\n" +

"-- ID of the Gaussian Point\n" +

"gaussid TINYINT,\n" +

"-- Name of the mathematical variable\n" +

"name VARCHAR(5),\n" +

"-- ID of the Timestep\n" +

"timestep SMALLINT,\n" +

"PRIMARY KEY(motionid, elementid, gaussid, name, timestep),\n" +

"INDEX elemid_name_index(elementid, name),\n" +

"-- Output variable value\n" +

"value DOUBLE PRECISION\n" +

") ENGINE=NDBCLUSTER;";

public static final int ROW_MEM_USAGE_ESTIMATE = 20;
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C Appendix C - Code to Generate Artificial Test Data

// Variable names emitted by Pandas

public static final String[] VAR_NAMES = new String[] {

// Pandas instance #1

"NS0",

"NS",

"TSEG",

"WFL1",

"WFL2",

"WFL3",

"SIG11",

"SIG22",

"SIG33",

"SIG12",

"SIG23",

"SIG_V",

"WRKEL",

"KF",

"SIGS",

"GROW",

"NUT",

"NSTS",

// Pandas instance #2

"WNU1",

"WNU2",

"WNU3",

"CNUF"

};

// Tweakable count of motions, elements etc.

public static final int COUNT_MOTION = 1;

public static final int COUNT_TIMESTEP = 100;

public static final int COUNT_ELEMENT = 1000;

public static final int COUNT_GAUSS = 8;

public static final long COUNT_TOTAL = (long)COUNT_MOTION * COUNT_TIMESTEP *
COUNT_ELEMENT * COUNT_GAUSS * VAR_NAMES.length;

// Lower bound for output table size in MiB, assuming no compression

public static final long TOTAL_MEM_ESTIMATE_MIB = ROW_MEM_USAGE_ESTIMATE *
COUNT_TOTAL / (1024 * 1024);

// Number of threads to use for populating the database

public static final int CONCURRENCY = 25;

public Connection openDBConnection() throws SQLException {

return DriverManager.getConnection(DB_URI, DB_USER, DB_PW);

}

// Utility to collect inserted tuples, once a threshold is reached,

// the query is submitted to the database. This avoids hitting
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// the maximum package size accepted by the server and keeps the

// number of queries sent small.

private class BatchInserter {

private Statement stat;

private Connection conn;

private StringBuilder query;

private int count = 0;

// Row threshold at which to submit a batch to the server

public static final int THRESHOLD = 25000;

public BatchInserter() throws SQLException {

rewind();

}

public void add(String tuple) throws SQLException {

if (count > 0) {

query.append(",");

}

query.append(tuple);

if (++count > THRESHOLD) {

submit();

rewind();

}

}

public void finish() throws SQLException {

if (count > 0) {

submit();

}

conn.close();

stat.close();

}

private void submit() throws SQLException {

query.append(";");

for (int i = 0; ; ++i) {

try {

stat.executeUpdate(query.toString());

} catch(SQLException ex) {

System.out.println("Mysql error, retrying. " + ex.toString());

conn.close();

stat.close();

conn = openDBConnection();

stat = conn.createStatement();
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C Appendix C - Code to Generate Artificial Test Data

try {

Thread.sleep(1000 * Math.min(10, (i + 1)));

} catch (InterruptedException e) {

e.printStackTrace();

}

continue;

}

break;

}

}

private void rewind() throws SQLException {

conn = openDBConnection();

stat = conn.createStatement();

query = new StringBuilder();

query.append("INSERT INTO ");

query.append(DB_INPUT_TABLE_NAME);

query.append("(motionid, elementid, gaussid, name, timestep, value) VALUES");

count = 0;

}

};

// Populate with data for a range of FE elements

private void populateDataPartition(int partitionId, int beginElem, int endElem)

throws SQLException

{

final BatchInserter inserter = new BatchInserter();

final long percentStep = COUNT_TOTAL / (100 * CONCURRENCY);

long valInserted = 0;

for (int mid = 0; mid < COUNT_MOTION; ++mid) {

for (int feid = beginElem; feid < endElem; ++feid) {

for (int gaussid = 0; gaussid < COUNT_GAUSS; ++gaussid) {

for (int tid = 0; tid < COUNT_TIMESTEP; ++tid) {

for (String name : VAR_NAMES) {

inserter.add(String.format(Locale.US,

"(%d, %d, %d, \’%s\’, %d, %f)",

mid, feid, gaussid, name, tid,

Math.random()));

if (valInserted++ % percentStep == 0) {

final long pct = CONCURRENCY * 100

* valInserted / COUNT_TOTAL;

final long estimate = CONCURRENCY

* TOTAL_MEM_ESTIMATE_MIB * valInserted

/ COUNT_TOTAL;

final String s = String.format(
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"Thread #%d inserted %d rows, ~%d%%

of total, ~%d MiB",

partitionId,

valInserted, pct,

estimate);

System.out.println(s);

System.out.flush();

}

}

}

}

}

}

inserter.finish();

}

public void initDBContents() throws SQLException {

final Connection conn = this.openDBConnection();

final Statement stat = conn.createStatement();

// Clear input table

try {

stat.execute(String.format("DROP TABLE %s;", DB_INPUT_TABLE_NAME));

} catch (SQLException e) {

// Fine for the first time.

e.printStackTrace();

System.out.println("This can be ignored if the generator is is run"

+ " for the first time or the DB has been cleared.");

}

// Set schema for input table

// http://johanandersson.blogspot.de/2010/04/tuning-your-cluster-with-ndbinfo-71.html

stat.execute("set ndb_table_no_logging=1;");

stat.execute(SCHEMA);

stat.execute("set ndb_table_no_logging=0;");

// Populate the input table in larger batches using multiple threads

final int partitionSize = COUNT_ELEMENT / CONCURRENCY;

for (int partition = 0; partition < CONCURRENCY; ++partition) {

final int threadPartition = partition;

new Thread() {

public void run() {

try {

int beginElem = threadPartition * partitionSize;

int endElem = beginElem + partitionSize;

if (COUNT_ELEMENT - endElem < partitionSize) {

endElem = COUNT_ELEMENT;

}

populateDataPartition(threadPartition, beginElem, endElem);
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C Appendix C - Code to Generate Artificial Test Data

} catch (SQLException e) {

e.printStackTrace();

}

}

}.start();

}

stat.close();

conn.close();

}

/**

* @param args

*/

public static void main(String[] args) {

try {

(new PandasDummyDataGen()).initDBContents();

} catch (SQLException e) {

System.out.println("Error, check SQL commands and DB settings");

e.printStackTrace();

}

}

}

Listing C.1: Java Code to Populate the pandas_output Table
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