
Institute of Architecture of Application Systems
University of Stuttgart
Universitätsstraße 38

D-70569 Stuttgart

Diplomarbeit Nr. 3618

Development of a Pattern Library and a
Decision Support System for Building

Applications in the Domain of
Scientific Workflows for e-Science

Stephan Passow

Course of Study: Informatik

Examiner: Jun.-Prof. Dr.-Ing. Dimka Karastoyanova
Supervisor: Dipl.-Inf. Michael Hahn
Commenced: Februar 4, 2014
Completed: August 1, 2014

CR-Classification: D.2.11, H.4.1, H.4.2, I.5.0, I.6.3, I.6.7

Abstract

Karastoyanova et al. created eScienceSWaT (eScience SoftWare Engineering Technique), that
targets at providing a user-friendly and systematic approach for creating applications for
scientific experiments in the domain of e-Science. Even though eScienceSWaT is used, still
many choices about the scientific experiment model, IT experiment model and infrastructure
have to be made. Therefore, a collection of best practices for building scientific experiments
is required. Additionally, these best practice need to be connected and organized. Finally,
a Decision Support System (DSS) that is based on the best practices and enables decisions
about the various choices for e-Science solutions, needs to be developed. Hence, various
e-Science applications are examined in this thesis. Best practices are recognised by abstracting
from the identified problem-solution pairs in the e-Science applications. Knowledge and
best practices from natural science, computer science and software engineering are stored
in patterns. Furthermore, relationship types among patterns are worked out. Afterwards,
relationships among the patterns are defined and the patterns are organized in a pattern
library. In addition, the concept for a DSS that provisions the patterns and its prototypical
implementation are presented.

Contents

1. Introduction 1
1.1. Problem Statement . 1
1.2. Motivating Scenario . 2
1.3. Scope of Work . 3
1.4. Outline . 4
1.5. Definitions and Conventions . 5

2. Background 7
2.1. Patterns . 7

2.1.1. Christoph Alexander . 7
2.1.2. Gang of Four . 9
2.1.3. Patterns at Institute of Architecture of Application Systems (IAAS) . . 11

2.2. e-Science . 14
2.2.1. Application Domains . 16
2.2.2. Modelling Approaches . 17
2.2.3. Technologies . 18
2.2.4. Infrastructures . 18
2.2.5. Further Complexity and Challenges . 20

2.3. e-Science at IAAS . 21
2.3.1. e-Science Life Cycle . 21
2.3.2. Rationale behind eScience SoftWare Engineering Technique (eScienceSWaT) 22
2.3.3. eScienceSWaT . 23

2.4. Scientific Workflows . 26

3. Related Work 29
3.1. Decision Support Systems for Choosing Design Patterns 29

3.1.1. Case Based Reasoning . 29
3.1.2. Simple Recommender System for Design Patterns 30
3.1.3. Design Pattern Recommender . 30
3.1.4. Design Pattern Recommendation System 32
3.1.5. Systems for Implicit Culture Support 33
3.1.6. Design Pattern Selection, A Solution Strategy Method 34
3.1.7. Patterns 2.0: a Service for Searching Patterns 35

3.2. Relationships Among Patterns . 36
3.2.1. Classification of Relationships . 36
3.2.2. Relationships in the Domain of Patterns 36

iii

Contents

4. e-Science Pattern Catalogue 39
4.1. Development Approach . 39

4.1.1. Information Collection . 39
4.1.2. Pattern Generation . 42

4.2. Pattern Format and Relationships . 43
4.2.1. Pattern Format . 43
4.2.2. Pattern Relationships . 44
4.2.3. Structure Elements . 45

4.3. Scientific Experiment Model . 46
4.3.1. Natural Way of Doing Research . 46
4.3.2. Data . 51
4.3.3. Improve Collaboration . 54
4.3.4. Non-functional Properties . 56

4.4. IT Experiment Model . 58
4.4.1. Simple Scripts & Control Functionality 58
4.4.2. Application Plug-ins . 59
4.4.3. Workflows . 59
4.4.4. Data . 64
4.4.5. Resource Management . 72
4.4.6. Access and Interfaces . 73
4.4.7. Miscellaneous . 75

4.5. Infrastructure . 77
4.5.1. Concrete Infrastructure . 77
4.5.2. Workflow Management Systems . 79

5. Decision Support System 83
5.1. Functionality . 83

5.1.1. Basic Pattern Selection Support . 83
5.1.2. Decision Chains . 84

5.2. Architecture . 85
5.3. Prototype . 86

5.3.1. Model . 86
5.3.2. Graphical User Interface . 86
5.3.3. Use Case . 89

6. Conclusion and Future Work 91
6.1. Conclusion . 91
6.2. Future Work . 91

6.2.1. Pattern Awareness for Artefacts . 92
6.2.2. Extended Pattern Selection Support . 92
6.2.3. Case Based Reasoning for Pattern Selection 93
6.2.4. Pattern Status Conflicts . 94
6.2.5. Global and Local Views on eExperiments 95

A. e-Science Catalogue Overview 97

iv

Contents

B. Decision Support System 103

Bibliography 105

v

Contents

vi

List of Figures

1. Overview Scope of Work . 4

2. Pattern Language Overview . 8
3. Pattern Abstraction and Concretization . 12
4. Pattern Format . 13
5. Cloud Computing Pattern Map . 14
6. e-Science Overview . 15
7. e-Science Life Cycle Phases . 21
8. eExperiment Life Cycle and eExperiment Application Model 23
9. eScienceSWaT Decision Making Process Example 25

10. Adapter Pattern in Design Pattern Recommender 31

11. e-Science Pattern Catalogue Development . 40
12. e-Science Pattern Relationship Type Example 44
13. e-Science Catalogue Structure Element . 45
14. e-Science Scientific Experiment Model Patterns 46
15. e-Science Scientific Experiment Model Natural Research Patterns 46
16. e-Science Scientific Experiment Model Data Patterns 51
17. e-Science Scientific Experiment Model Improve Collaboration Patterns 54
18. e-Science Scientific Experiment Model Non-Functional Properties Patterns . . 56
19. e-Science IT Experiment Model Patterns . 58
20. e-Science IT Experiment Model Workflow Patterns 60
21. e-Science IT Experiment Model Data Patterns 65
22. e-Science IT Experiment Model Resource Management Patterns 72
23. e-Science IT Experiment Model Access and Interfaces Patterns 73
24. e-Science IT Experiment Model Miscellaneous Patterns 75
25. e-Science Infrastructure Patterns . 77
26. e-Science Concrete Infrastructure Patterns . 77
27. e-Science Workflow Management System Patterns 79

28. Basic Pattern Selection Support . 83
29. Decision Chain . 84
30. Model-View-Controller . 85
31. Decision Support System Prototype Development Process 87
32. Decision Support System Prototype Graphical User Interface Screenshot . . . 88

33. Extended Pattern Selection Support . 93

vii

List of Figures

34. e-Science Pattern Status Conflict . 94

35. e-Science Pattern Catalogue Top Layers . 97
36. e-Science Scientific Experiment Model Patterns 98
37. e-Science IT Experiment Model Patterns (1/2) 99
38. e-Science IT Experiment Model Patterns (2/3) 100
39. e-Science IT Experiment Model Patterns (3/3) 101
40. e-Science Infrastructure Patterns . 102

viii

List of Tables

1. Reused Pattern Relationships . 37
2. Not Used Pattern Relationships . 38

3. e-Science Pattern Format . 44

ix

1. Introduction

The field of e-Science has the goal to provide comprehensive IT support for scientists through-
out the life cycle of scientific experiments [56]. Several supporting systems, initiatives and
literature are proof for the rapid increase of e-Science [47, 108]. Furthermore, e-Science aims
at shortening the time to new discoveries by providing software tools and infrastructures
to natural scientists from different fields [56]. Typical for e-Science is large scale science
that is carried out through distributed global collaborations enabled by the Internet [67].
Further characteristics are very large data sets, large scale computing resources and high
performance visualization [67]. In addition, projects in e-Science often involve the interdis-
ciplinary cooperation of many different research groups [67]. All these characteristics lead
to a high complexity. Thus, this thesis focuses on the identification and collection of best
practices in building applications in the domain of e-Science. These best practices are stored
in patterns, connected to each other and organized in a pattern catalogue. Furthermore, this
thesis provides the concept of a DSS and its prototypical implementation for provisioning
the patterns. The DSS enables decisions about the various choices that can be made for an
e-Science solution. The following sections provide the problem statement and a motivating
scenario, which the thesis is based on. Furthermore, the scope of work is presented.

1.1. Problem Statement

Natural scientists that are not experts in the fields of computer science and software en-
gineering create systems for e-Science, which are not reusable and lack interoperability
[57]. Additionally, anti patterns are implemented and only a few available technologies and
concepts are considered when developing code for their experiments [57]. The e-Science
community realizes that IT support is required for all phases of a scientific experiment, e.g.
the phases capturing and validating data, curation, processing and analysis and permanent archiving.
Karastoyanova et al. detect, that a lot of research is done for the e-Science processing and analy-
sis phase [56]. However, the analysed systems have limitations like outdated IT techniques
and technologies, domain-specific concepts covering only some scientific domains or a mini-
mal degree of experiment automation. For this reason they identified the necessity for focused
fundamental research in the data processing and analysis phase. As stated by Karastoyanova et
al., there is currently "no unified software engineering methodology and corresponding body
of knowledge to support the development and execution of eExperiments in a generic manner
that meets the requirements of natural scientists towards the experiments themselves and the
IT infrastructure" [56]. Hence, they developed the eScienceSWaT, a methodology that helps to
develop and execute scientific experiments. However, they identified challenges related to the

1

1. Introduction

realization of future systems supporting eScienceSWaT [56]. First of all, many choices can be
made, when creating an application for the processing and analysis phase. Questions about how
to build the scientific experiment, which IT techniques, technologies and infrastructures to
choose arise. Therefore, best practices need to be collected that help to answer these questions
and that can be used as recommendations. Decisions for the scientific experiment influence
the decisions for the IT technique. Then again decisions about the IT technique influence the
decisions about technologies. Furthermore, the decisions about technologies influence the
decisions for infrastructures. Therefore, the best practices need to be connected to each other
and decision chains need to be captured as well. Certainly, it is not clear which abstraction
levels are useful for storing the best practices [56]. In addition, people from different domains
build an e-Science application together. If they use their domain-specific language, when
talking to people from other domains, this can bring additional challenges.

Thus, this thesis focuses on the development of an e-Science pattern catalogue. We use
the terms pattern catalogue and pattern library interchangeably. The library comprises
knowledge and best practices from natural science, software engineering and computer
science. One advantage of using patterns is, that they have a common structure and people
from all domains can understand patterns. Furthermore, this thesis introduces a DSS, which
provides these patterns to the people that want to develop an application in the domain of
e-Science. In doing so, the DSS enables decisions about how to build a scientific experiment
model, IT experiment model and which infrastructures to choose [56].

1.2. Motivating Scenario

Several natural scientists want to conduct a scientific experiment in the domain of e-Science.
They require an IT solution that is able to analyse the massive data stream from an instrument
that collects data all the time without breaks. Past projects show, that the self-made IT
solutions are not reliable and also have difficulties to process large amounts of data. Therefore,
they decide to use a software engineering technique, which enables the separation of natural
science tasks from IT tasks like eScienceSWaT [56]. If there is a clear separation of tasks,
each stakeholder only works in his domain of expertise. For example, an IT professional can
perform the IT specific tasks and does not have to work on the scientific experiment model.
This methodology comprises the phases experiment modelling, creation of software artefacts,
deployment on IT execution environment and execution [56]. Decisions in one phase influence the
decisions in a later phase. For instance, decisions made in the experiment modelling phase
influence the decisions for software artefacts. In the first phase of this software engineering
technique, the natural scientists have to model the scientific experiment. However, they
have many choices for creating the scientific experiment model. They would benefit from
a collection of best practices for modelling the scientific experiment. In the second phase,
software artefacts are created for the scientific experiment. Hence, an IT solution has to be
developed. The natural scientists have hard times to explain to the IT professionals what
kind of IT solution they require. The natural scientists and IT professionals speak in their
domain languages and this is why they talk at cross purposes. Since the IT professionals
have many choices for the IT solution, it takes them weeks to narrow down the amount of

2

1.3. Scope of Work

possible solutions. Finally, they come up with four different concepts for the IT solution.
In a workshop, the natural scientists should choose the solution which fits their needs best
However, none of the IT solutions provides a web based graphical user interface, although
this is the preferred interaction style of the natural scientists. In addition, two of the four
concepts are not applicable at all, because the IT professionals misunderstood the natural
scientists. With a few months delay, natural scientists and IT professionals agree on the
concept for the IT solution. Meanwhile, most of the project budget is spent already and
phases three and four of the software engineering technique are still missing. Hence, the
project leader decides to terminate the project, because the costs are too high and the project
is delayed too much.

We can identify the need for a collection of best practices and communication issues in the
above scenario . Therefore, we see the clear necessity to develop an e-Science pattern catalogue.
The patterns comprise knowledge and best practices from natural science, computer science
and software engineering. These patterns build the language that both the natural scientists
and IT professionals can use. This helps them to communicate more efficiently and get the
requirements right. Furthermore, both the natural scientist and the IT professionals have
many possibilities to create the scientific experiment model and the IT solution. As soon as
an e-Science pattern catalogue is available, that comprises many patterns and even more
relationships among them, all stakeholders require decision support for choosing the most
suitable patterns. A DSS can handle a big amount of patterns and the relationships among
them. Therefore, we see the need for developing a DSS that provisions these patterns. By
doing so, the DSS supports both the natural scientists and IT professionals in decision making.
Furthermore, the decisions of natural scientists can directly be used for making proposals for
IT solutions to the IT professionals.

1.3. Scope of Work

A simplified approach for developing the e-Science pattern library and the DSS is presented
in Figure 1. We can identify the following steps:

1. First of all we analyse various e-Science solutions. We focus on systems for data
processing and analysis in the domain of scientific workflows for e-Science.

2. We collect information about various systems and transform this information into
problem-solution pairs.

3. By abstracting from these problem-solution pairs, we generate the e-Science patterns.
These patterns contain the abstract problem and the abstract solution among others.

4. Then we organize the patterns. Additionally, we define the relationships among them.

5. Finally, we create a DSS that uses the patterns of the e-Science pattern library.

3

1. Introduction

2. Collection of information
and transformation into
problem-solution pairs

3. Generation of patterns by
abstraction from problem-
solution pairs

4. Organization of the
patterns and definition of
relationships among them

1. Analysis of various
e-Science solutions

e-Science
pattern library

Decision Support System

?

5. Creation of a DSS that
provisions the patterns

Figure 1.: This is an overview of the steps performed for the creation of the e-Science
pattern library and the DSS.

1.4. Outline

In order to accomplish the given goals and to draft future tasks on the topic, the work is
structured as followed:

• Chapter 2 – Background: This chapter gives an overview about patterns and e-Science
in general. Furthermore, eScienceSWaT and scientific workflows are introduced.

• Chapter 3 – Related Work: Existing approaches and state of the art in the fields of
patterns and DSSs are presented. Additionally, we analyse various relationships among
patterns and position our research to each related work.

• Chapter 4 – e-Science Pattern Catalogue: This chapter contains the core deliverable of
this thesis – the e-Science pattern catalogue. First of all, we present our approach for
developing the e-Science pattern catalogue. In addition, the resulting pattern format and
the pattern relationships are presented. Finally, the patterns for the scientific experiment
model, IT experiment model and infrastructure are introduced.

4

1.5. Definitions and Conventions

• Chapter 5 – Decision Support System: At the beginning, our concept for the DSS
is inducted. Furthermore, we present a general architecture for the DSS, which is
prototypically implemented in the context of this thesis.

• Chapter 6 – Conclusion and Future Work: The last chapter summarizes the outcomes
of this work. Additionally, suggestions for extensions of the pattern catalogue and the
DSS are provided.

1.5. Definitions and Conventions

This section contains a list of abbreviations used in this diploma thesis.

CBR Case-Based Reasoning

DoE Design of Experiments

DPR Design Pattern Recommender

DPRS Design Pattern Recommendation System

DSS Decision Support System

eScienceSWaT eScience SoftWare Engineering Technique

FEM Finite Element Method

GMF Graphical Modeling Framework

GUI Graphical User Interface

HPC High Performance Computing

HTC High Throughput Computing

IaaS Infrastructure-as-a-Service

IAAS Institute of Architecture of Application Systems

IC Implicit Culture

MVC Model-View-Controller

MPI Message Passing Interface

NIST National Institute of Standards and Technology

OFAT one-factor-at-a-time

GQM Goal-Question-Metric

PaaS Platform-as-a-Service

SaaS Software-as-a-Service

SICS Systems for Implicit Culture Support

5

1. Introduction

SQL Structured Query Language

UML Unified Modeling Language

VSM Vector Space Model

WfMS Workflow Management System

XML eXtensible Markup Language

6

2. Background

This chapter gives relevant background information that is required to understand the
concepts presented in this thesis. Section 2.1 comprises different approaches to patterns. In
Section 2.2, we introduce the term e-Science with different definitions and present thesis
relevant e-Science dimensions. After that we present e-Science research results from the
University of Stuttgart. This also contains the eScienceSWaT methodology. Finally, in Section
2.4, we expound scientific workflows.

2.1. Patterns

We introduce the concepts of patterns here, because the identification of patterns in e-Science
solutions is one major deliverable of our thesis. To be more exact, we identify patterns in
computer science, software engineering and in natural science that play a role in e-Science
solutions. The requirement to base the DSS on patterns originates from the task description
of this diploma thesis. However, there are reasons for using patterns and we want to work
out the benefits of storing best practices in patterns within this section. In addition, we want
to give different examples of pattern related research to underline the wide applicability of
patterns in general. We also cover the core elements of a pattern in this section. Different
pattern formats are introduced and we show possible ways to connect the patterns to each
other. Usually, experienced experts of a domain store the best practices in patterns. We
have experiences with patterns and software architecture, but do not have many years of
experience in the domain of e-Science. This is why we examine different pattern approaches.
We expect that this improves our ability to detect patterns for e-Science. Later in this thesis,
we define a pattern format for the e-Science patterns (see Section 4.2.1).

2.1.1. Christoph Alexander

Christoph Alexander can be seen as the father of design patterns [61, 74]. During his work as an
architect, he recognized that he had to solve certain problems in a different context again and
again. Out of this observation he defined a pattern as follows [3]:

„Each pattern describes a problem that occurs over and over again in our environment,
and then describes the core of the solution to that problem, in such a way that you can use
this solution a million times over, without ever doing it the same way twice."

7

2. Background

A pattern here is the entity. Together these entities build the pattern language. The structure
of Alexander’s pattern is shown in Figure 2. In addition, the connection to other patterns is
visualized. Alexander’s pattern language is structured hierarchical. Patterns on a lower level
are needed to fill out/complete the patterns on the higher level. Alexander was an architect
and his patterns comprise best practices for architecture. He starts with patterns for regions.
The patterns for regions are filled/completed by patterns for towns. Patterns for towns are
filled with patterns for neighbourhoods. Neighbourhood patterns are filled with patterns for
clusters of buildings and buildings. Going further down, there are patterns for rooms and alcoves.
The patterns on the lowest level comprise details of construction.

1. Identifier
2. Name
3. Picture
4. Introductory paragraph
5. Essence of the problem
6. Detailed problem

description
7. Solution of the pattern
8. Diagram of the solution

…

9. Connection
to other
patterns

are needed to
complete/fill out
the pattern on
the higher level

…
…

e.g. pattern for
regions

e.g. pattern for
buildings

e.g.
patterns
for rooms

e.g. pattern
for a building

e.g. pattern
for a region

Figure 2.: Graphical representation of the pattern language introduced by Alexander in [3].

Alexander used the same structure for each and every pattern he defined. This was done for
convenience and clarity reasons. A pattern consists of text and images. Contentwise a pattern
can be divided into 9 segments. The segments are also shown in Figure 2. We explain the
different segments in the following:

8

2.1. Patterns

1. Identifier: A unique number for each pattern is used.

2. Name: The name of the pattern.

3. Picture: The picture shows an archetypal example of the pattern.

4. Introductory paragraph: The context for the pattern is set. It is explained how this
pattern helps to complete larger patterns.

5. Essence of the problem: In a short summary of two or three sentences, the problem is
described.

6. Detailed problem description: Here, the empirical background and the evidence for
its validity are described. Additionally, different ways of using the pattern in certain
contexts are described.

7. Solution of the pattern: This is the heart of the pattern. It comprises the solution to the
problem in the given context. The solution is given in the form of an instruction. This
helps the user of the pattern to execute the required steps.

8. Diagram of the solution: Here the solution is shown in a diagram. Labels indicate the
main components of the solution.

9. Connection to other patterns: Due to the hierarchical structure there can be patterns on
a lower level that help to complete the current pattern. The connection to these patterns
build the last segment. The connection is achieved by a text that refers to the pattern
and its unique number.

In another book, The Timeless Way Of Building [2], Alexander describes the theory behind the
pattern language and gives instructions for using the pattern language. Within this book he
describes the core elements of a pattern:

„Each pattern is a three part rule, which express a relation between a certain context, a
problem, and a solution."

Furthermore, a pattern can be seen from two angles. Firstly, it can be seen as a rule or process.
If the rule is followed, the thing which is described within the pattern is created. Secondly, a
pattern is a thing that exists in the world. A thing that is alive. This means that a pattern can
be created from real things. Since patterns are abstract, the problem and solution in the real
world can be transformed to a pattern with the help of abstraction. In addition, Alexander
points out that "patterns can exist at all scales" [2].

2.1.2. Gang of Four

The book Design Patterns: Elements of Reusable Object-Oriented Software [37], written by Gamma
et al., is one of the foundations for design patterns in object-oriented development. The
authors describe it as "book of design patterns that describes simple and elegant solutions
to specific problems" [37]. In their opinion, the solutions captured in design patterns have
evolved and developed over time. The solution is special, because the architect would not

9

2. Background

have chosen this solution at first. The goal of the book is to give design insights and inspiration
to the reader. Gamma et al. work out the characteristics of a good pattern. The authors see a
graphical notation for the pattern as an important component but not sufficient enough since
it only captures the end product of the design process. Besides, it is also essential that the
reader understands the decisions that led to the pattern. Possible alternatives and trade-offs
should also be captured within the pattern. In order to make the solution more tangible to
the reader, a concrete example is required [37].

In order to make the patterns reusable, comparable and easy to learn, a consistent pattern
format needs to be defined. Gamma et al. use the following format [37]:

• Pattern name: The pattern name will become part of the design vocabulary. Therefore,
a name that describes the pattern should be used.

• Classification: There needs to be a schema that organises the different patterns. Hence,
a classification that shows the position within the pattern scheme is required.

• Intent: Here the design problem is shortly described.

• Also known as: If there exist synonyms for the pattern, their names can be placed here.

• Motivation: Description of a scenario that makes the design problem more tangible to
the reader.

• Applicability: Gives the reader insights, in which cases he can use the pattern.

• Structure: The authors use a notation based on the Object Modeling Technique (OMT)
and interaction diagrams [15, 53].

• Participants: The patterns are about object-oriented design. Here, the participating
objects and classes with their responsibilities are described.

• Collaborations: The participants have certain responsibilities. In order to achieve their
goals, they need to collaborate with other objects. The collaboration is described here.

• Consequences: Here, possible trade-offs that are coming with the usage of the patterns
can be discussed.

• Implementation: This section keeps best practices for implementing the pattern (e.g.
language specific issues).

• Sample code: They used C++ or Smalltalk code for illustration purposes.

• Known uses: This section comprises real world examples, in which the pattern can be
identified. This makes the pattern more tangible.

• Related patterns: Patterns that are closely related should be named here. Also patterns
that should be used in combination with the current pattern.

10

2.1. Patterns

Gamma et al. identify, that patterns can exist on different abstraction levels. In addition,
patterns vary in granularity. Therefore, a classification that is organizing the patterns is
required. This helps the user to find the patterns easier that can solve his problem. The
authors use two criteria for the classification of the patterns. The criterion purpose reflects
what the pattern is doing. Purpose can take three values: creational, structural or behavioural.
Scope is the second criterion. It specifies the application area of the pattern. Possible values
are object or class.

2.1.3. Patterns at IAAS

Patterns are used in many research projects of the IAAS1 at the University of Stuttgart. In
order to underline the applicability of patterns, we present a selection of research projects that
involve patterns in the following. In addition, we present a book, which is a collaboration
result between the IAAS and the Daimler AG2. This shows, that both the academic researchers
and the real world architects do benefit from patterns. Furthermore, we extract thesis relevant
background information out of the research from IAAS.

The following projects from IAAS are related to patterns. We choose the categorization of the
research projects. Another grouping is also possible.

Cloud related patterns:

• Cloud Data Patterns for Confidentiality [113]

• Capturing Cloud Computing Knowledge and Experience in Patterns [30]

• Non-Functional Data Layer Patterns for Cloud Applications [111]

• Using Patterns to Move the Application Data Layer to the Cloud [112]

• Pattern-based Runtime Management of Composite Cloud Applications [17]

Processes related patterns:

• Process Viewing Patterns [102]

• Applicability of Process Viewing Patterns in Business Process Management [100]

• Pattern-driven Green Adaptation of Process-based Applications and their Runtime
Infrastructure [78]

• Green Business Process Patterns - Part II [79]

1http://www.iaas.uni-stuttgart.de/
2http://www.daimler.com/

11

http://www.iaas.uni-stuttgart.de/
http://www.daimler.com/

2. Background

Costumes in films related patterns:

• A Pattern Language for Costumes in Films [101]

Leymann et al. give an example of the relationship between a concrete costume and costume
patterns in [101]. We used this example as a basis for Figure 3 that shows the abstract approach
for the interrelation between patterns and concrete problem-solution pairs. Concrete solutions
for problems are the basis for patterns. By means of abstraction, commonalities in reoccurring
problem-solution pairs can be filtered out. This leads to an abstract problem-solution pair:
the pattern. The pattern again refers via the attribute Known use to the problem-solutions
pairs that build the basis. It is also shown that a problem can be solved by applying and
concretizing a pattern which contains the abstract solution.

Concrete Solutions for Problems

Patterns

Result of Using a Pattern / Solution based on
a Pattern for a certain Problem

Known UseAbstraction

Applying and
Concretization

Figure 3.: Pattern abstraction and concretization based on [101].

The recent cooperation of the University of Stuttgart with the Daimler AG in the area of Cloud
computing led to the book Cloud Computing Patterns: Fundamentals to Design, Build, and Manage
Cloud Applications [32]. This proves, that storing best-practices in a pattern format is not only
valuable for research projects, but also valuable for real world application architecture. The
quotation of Dr. Michael Gorriz, the Chief Information Officer (CIO) of the Daimler AG, about
the book underlines the benefits from using patterns:

„During our collaborative research with the University of Stuttgart, we identified a
vendor-neutral and structured approach to describe properties of Cloud offerings and
requirements on Cloud environments. The resulting Cloud Computing Patterns have
profoundly impacted our corporate IT strategy regarding the adoption of Cloud computing.
They help our architects, project managers and developers in the refinement of architec-
tural guidelines and communicate requirements to our integration partners and software
suppliers." 3

3http://www.amazon.de/Cloud-Computing-Patterns-Fundamentals-Applications/dp/3709115671

12

http://www.amazon.de/Cloud-Computing-Patterns-Fundamentals-Applications/dp/3709115671

2.1. Patterns

Previously, we have shown that the usage of patterns adds value and that this researchers are
experts in their field. The overview of pattern related research underlines the experience with
patterns. Now we want to extract some valuable information out of the research projects, that
we can reuse for the thesis.

Leymann and Fehling use the following general definition of a pattern [31]:

„Patterns are structured text describing abstract problem-solution pairs."

In a concrete domain like Cloud computing, they refine their general definition to the below
[31]:

„The Cloud Computing Patterns describe abstract solutions to recurring problems
in the domain of cloud computing to capture timeless knowledge that is independent
of concrete providers, products, programming languages etc."

Furthermore, Fehling et al. also present a format for patterns. Their approach is shown in
Figure 4. A pattern map that visualizes pattern groups and connections among patterns is
shown in Figure 5. This pattern map is used to provide an overview about patterns. The
number in brackets represents the starting page of the pattern within the book and therefore
helps the reader to access a specific pattern faster.

Pattern Format

32 Cloud Computing Patterns – Introduction ©Fehling, Leymann

Name

Intent

Driving Question

Context

Solution

Result

Variations

Related Patterns

Known Uses

Sketch

Unique identifier.
Followed by „(page number)“ in book.

Summarizes the purpose of the pattern.

Identifies pattern and is used in diagrams /
sketches of other patterns.

Captures the problem answered by the pattern.

Setting in which the pattern can be applied.

Brief statement how the problem is solved
supported by a sketch.

Detailed discussion of the solution and new
challenges.

Alternative ways to apply the pattern.

Patterns that are used together, used instead etc.

Discussion where the pattern has been applied.

Figure 4.: This is a possible pattern format [31].

13

2. Background

Cloud Environments

Processing
Offerings Storage Offerings

Communication
Offerings

Elastic Infrastructure (87)

Node-based Availability (95)

Evironment-based Availability (98)

Elastic Platform (91)

Block Storage (110)

Blob Storage (112)

Relational Database (115)

Key-value Storage (119)

Strict Consistency (123)

Eventual Consistency (126)

 Virtual
Networking
(132)

Message-oriented
Middleware (136)

Exactly-once
Delivery (141)

At-least-once
Delivery (144)

Transaction-based
Delivery (146)

Timeout-based
Delivery (149)

Hypervisor (101)

Map
Reduce (106)

Execution
Environment
(104)

Figure 5.: This shows a Cloud computing pattern map based on [32].

2.2. e-Science

In common literature different notations like e-Science or eScience are used. We will use e-
Science in the context of this thesis. The UK e-Science Programme began in 2001. One part of it
was the e-Science Core Programme that should support the development of generic technologies
to enable different resources to work together seamlessly across networks and to create
computing Grids [90]. A good overview of the UK e-Science Core Programme can be found
in [48]. We will not focus on the history of e-Science and predecessors within this thesis.
An overview of the different components that enable e-Science is shown in Figure 6. Laws and
theories are the research results of theoretical scientists. The experimental scientists’ research
in laboratories leads to scientific data. Within simulations the computational scientists
can make use of both the theories and laws and the scientific data. At the same time the
computational scientist can give feedback to theoretical scientists and experimental scientists
regarding their research. Scientists from different fields work in new kinds of collaboration in
key areas of science. These scientists are called e-Scientists. The e-Scientists share hardware,

14

2.2. e-Science

data, resources as well as approaches and knowledge. Their research is enabled by next
generation infrastructures and advanced tools and devices [92].

theoretical
scientist

theories &
laws

experimental
scientist

computational
scientist

scientific
data

Theory Simulations Experiments

use &
prove

use &
prove

e-Scientists

advanced
tools & devices

three
fundamental
pillars of
e-Science

e-Science
infrastructures

enhanced
Science

(e-Science)

Next Generation Infrastructures
(Data + KnowHow + Resource Sharing

+ well interconnected resources)

e-Science:
multi-disciplinary and

new kinds of
collaboration

in key areas of science

Figure 6.: An e-Science Overview based on [92].

Dr. John Taylor, Director of Research Councils in the Office of Science and Technology (UK),
introduced the term e-Science with the two following statements [119]:

„e-Science is about global collaboration in key areas of science and the next generation of
infrastructure that will enable it."

„e-Science will change the dynamic of the way science is undertaken."

A widely accepted definition of e-Science is "e-Science is the shared usage of information
and resources for computing and data intensive experiments of geographically distributed
researches" [45]. Karastoyanova et al. put the focus more on the scientists with their e-Science
definition. They define that "e-Science is the field trying to provide IT support to scientists
throughout the life cycle of scientific experiments" [57]. In addition, they describe the major
focus of e-Science on shortening the time to new discoveries and revealing knowledge about
natural phenomena by providing software systems for different scientific tasks and for many
domains. Hay et al. consider e-Science as a new paradigm for science, the so called fourth
paradigm or data-intensive science, which unifies theory, experiments and simulation for data
exploration with the goal of scientific discovery [47, 57]. The goal of this thesis is to build a

15

2. Background

DSS for scientists. Therefore, we find the definition of Karastoyanova et al. most suitable,
because this definition contains the support of the scientists explicitly. Since we will analyse
various e-Science solutions in the context of this thesis, a holistic understanding of e-Science
solutions is required. Therefore, we want to look at e-Science solutions in more detail from
various angles. Pursuant to [57], e-Science solutions differ in application domains, modelling
approaches, technologies used to implement experiments and underlying infrastructures. In the
following we will have a closer look on the different aspects of an e-Science solution.

2.2.1. Application Domains

E-Science solutions can be found in many different domains. In each domain there exists
domain specific knowledge. Scientists within a domain use special terms and vocabulary to
describe their research and the objects of interest. In addition, their research is characterized
by specific tasks. Many e-Science solutions are targeted at a specific domain [56]. We just
name a few domains to highlight the widespread use of e-Science solutions: astronomy,
biology, biodiversity informatics, bioinformatics, medicine, chemistry, environmental studies,
geology, healthcare, physics, materials science, manufacturing engineering [47, 54, 56]. To
illustrate differences between domains we take the example of biodiversity informatics and
bioinformatics, which was introduced by Jones in [54].
Biodiversity informatics differs from bioinformatics in the data being used and the typical tasks
to be performed. Within biodiversity, research is more collaboratively and simultaneously.
Scientists use data from wet lab experiments and other sources in complex analysis. One
definition of biodiversity is: "variability among living organisms from all sources [...] and the
ecological complexes of which they are part; this includes diversity within species, between
species and of ecosystems" [23]. Therefore, the scientists need to have access to many different
kinds of data like species catalogues, species information sources, geographical data or climate
data. Since the data is coming from many sources and the data format was specified based on
the requirements of the original user, the data formats are not standardized [54].
The National Institutes of Health (NIH) Biomedical Information Science and Technology
Initiative (BISTI) Consortium defined bioinformatics in [50] as follows:

„Research, development, or application of computational tools and approaches for expand-
ing the use of biological, medical, behavioral or health data, including those to acquire,
store, organize, archive, analyze, or visualize such data."

Typical activities within bioinformatics include sequence similarity searching, functional
motif searching or the search for non-coding Deoxyribonucleic Acid (DNA) [110]. Significant
standardization efforts have led to standards for representing data within bioinformatics [54].
An example for data standards in bioinformatics is data from European Nucleotide Archive
(ENA)4, where a comprehensive record of the world’s nucleotide sequencing information
can be accessed. The data standards also incorporate the efforts to standardize meta-data.
The Gene Ontology (GO)5 project provides for instance an audited vocabulary of terms for

4http://www.ebi.ac.uk/ena/
5http://www.geneontology.org/

16

http://www.ebi.ac.uk/ena/
http://www.geneontology.org/

2.2. e-Science

describing gene product characteristics. Moreover, tools to access and process this data are
provided.
With this comparison of bioinformatics and biodiversity we showed that there exist differences
between application domains. In this comparison it was the typical tasks that are performed
by scientists, different data and the different levels of data standardization.

2.2.2. Modelling Approaches

Scientists start with the modelling of the experiment as a first step. In different domains,
different models for creating experiments are used by scientists. Experimental design, another
expression for experimental modelling, is described as follows [99]:

„Experimental design is the process of planning a study to meet specified objectives.
Planning an experiment properly is very important in order to ensure that the right type of
data and a sufficient sample size and power are available to answer the research questions
of interest as clearly and efficiently as possible."

According to [99], the design of an experiment starts with the definition of the problem
and the questions to be addressed. In addition, scientists have to define the non-functional
properties that are required within the modelling phase [99, 56]. Examples for non-functional
properties are the processing time or the costs of the experiment. Every experiment requires
the definition of input parameters. Additionally, the scientists define which parameters take
which values and in which order the parameters are changed. In keeping with Giger, there
exist several ways of modelling an experiment with respect to the input parameters [40]. Trial
and error circumscribes changing of several parameters at the same time. In contrast to trial
and error stands one-factor-at-a-time (OFAT). In OFAT one input parameter is modified and
the output is analysed. The configuration of the input parameter, that leads to the best result,
is stored. After that the next input parameter is modified. OFAT is easy to implement, but
it is not a systematic approach and an optimum is only discovered by accident. Design of
Experiments (DoE) is a method for planning and statistical analysis of experiments and tries
to overcome the obstacles of trial and error and OFAT. Giger describes the goal of DoE to
understand dependencies between input parameters and outputs with minimal effort. One
way of modelling an experiment within DoE is full factorial designs. For each input parameter
different levels are defined. In full factorial designs, all possible configurations of the different
input parameters with their levels are tested. In fractional factorial designs only a subset of all
levels of input parameters is used [40].

Karastoyanova et al. point out, that even within the same domain the modelling approach
for an experiment can differ [56]. As an example they bring in a solid body simulation. A
solid body simulation can be modelled using a simulation that is based on the Finite Element
Method (FEM). Herein, simulation scales can be represented by a single mathematical model
[89], or by separate simulations for each scale that communicate by exchanging relevant data
[105].

17

2. Background

2.2.3. Technologies

In [57], the authors picture that scientists typically choose the technology by themselves .
Their decision is influenced by organizational policies, financial means, available technology,
software and skills at the research organization or other factors [57]. In general, scientists can
choose from a wide variety of technologies for the e-Science solutions. Possible approaches
for e-Science are simple scripts, application plug-ins or complex workflows [94]. But even if the
scientist decides to use a specific technology (e.g. workflow technology), he can choose from
many different systems, which support the selected technology. A few well known systems
that support the workflow technology are Taverna6, Triana,7 Pegasus8 and Kepler9.

2.2.4. Infrastructures

Finally, concrete infrastructure like storage, network resources or computing power has to
be chosen. Based on our literature research, the most important infrastructures are Cloud
computing platforms, clusters, Grids, High Performance Computing (HPC) infrastructures or
High Throughput Computing (HTC) infrastructures [56, 92]. There exist overlaps between
theses concepts. Our goal is not to give a detailed distinction between the different concepts,
but more providing an overview of the main characteristics. We also provide literature
references, so that the reader can dive deeper in the respective areas. For example a more
detailed comparison of Cloud computing, Grids and clusters can be found in [21]. The
following sections comprise the concepts of the formerly introduced infrastructures for
e-Science.

Cloud Computing

The most common definition of Cloud computing was developed by National Institute of
Standards and Technology (NIST) [73]. Pursuant to NIST, the main characteristics of Cloud
computing are on-demand self-service, broad network access, resource pooling, rapid elasticity and
measured service. Furthermore, three different service models within Cloud computing can be
distinguished:

• Infrastructure-as-a-Service (IaaS) provides the user with computing power, network
resources and data storage. Since we focus on infrastructures for e-Science, this is the
most important service for us.

• Platform-as-a-Service (PaaS) provides the user with programming languages and li-
braries to build own applications.

• Software-as-a-Service (SaaS) provides applications that are running in the infrastructure
of the provider to the user.

6http://www.taverna.org.uk/
7http://www.trianacode.org/
8http://pegasus.isi.edu/
9https://kepler-project.org/

18

http://www.taverna.org.uk/
http://www.trianacode.org/
http://pegasus.isi.edu/
https://kepler-project.org/

2.2. e-Science

Another way to segment Cloud computing is the distinction in four different deployment
models: private Cloud, community Cloud, public Cloud and hybrid Cloud. A good overview of
Cloud computing can be found in [4]. An example for an e-Science solution based on Cloud
technologies is presented by Lezzi et al. in [66]. Well known Cloud infrastructure hosting
providers are Amazon Web Services10, Microsoft Azure11 or Computer Sciences Corporation
(CSC)12. Leong et al. compare different Cloud infrastructure providers in [65].

Grids

Grid computing is a special form of distributed computing. The Grid problem was defined by
Foster et al. as "flexible, secure, coordinated resource sharing among dynamic collections of
individuals, institutions and resources” [36]. They see the dynamic collections of individuals,
institutions and resources as virtual organizations. According to Leymann and Karastoyanova,
a virtual organization "can comprise different groups of scientists working on a common
goal but can as well be different companies that join forces or are in a supplier-requester
relationship in order to reach a certain (mostly computing intensive) business goal" [58].
Another definition for a Grid was given by Foster et al. back in 1998. In [35], they define a
Grid as the following: “A computational Grid is a hardware and software infrastructure that
provides dependable, consistent, pervasive, and inexpensive access to high-end computa-
tional capabilities.” This is not the only definition for a Grid and therefore, Foster reviewed
different definitions for Grids in [34]. As a result he presents three essential characteristics for
Grids:

• Coordination of resources that are not subject to centralized control.

• Use of standard, open, general-purpose protocols and interfaces.

• Delivery of non-trivial qualities of service.

Clusters

Based on the work in [116] and [86], Buyya et al. define that "a cluster is a type of parallel and
distributed system, which consists of a collection of inter-connected stand-alone computers
working together as a single integrated computing resource" [21]. This means, that the whole
system with all nodes behaves like a single system and all resources are managed by a
centralized resource manager. A cluster is more a tightly coupled system with a single system
image and a centralized job management and scheduling system [55].

10http://aws.amazon.com/de/
11http://azure.microsoft.com/de-de/
12http://www.csc.com/cloud

19

http://aws.amazon.com/de/
http://azure.microsoft.com/de-de/
http://www.csc.com/cloud

2. Background

High Performance Computing and High Throughput Computing

Riedel defines that "a HPC-driven e-Science Infrastructure is based on computing resources
that enable the efficient use of parallel computing techniques through specific support with
dedicated hardware such as high performance Central Processing Unit (CPU)/core intercon-
nections" whereas "a HTC-driven e-Science infrastructure is based on commonly available
computing resources such as commodity Personal Computers (PCs) and small clusters that
enable the execution of farming jobs without providing a high performance interconnection
between the CPU/cores" [92]. He sees the major difference between HPC and HTC in the
quality of the connection between the resources. HPC resources like supercomputers or
large clusters provide a better interconnection of CPUs/cores whereas HTC resources like PC
pools do not [92]. Boisseau defines the goal of HTC to integrate multiple computing systems.
This makes it possible to schedule lots of jobs. If a resource is available, it can perform the
scheduled job. In HPC computers or processors are aggregated and the work is divided so
parallel computing at large scale is possible [14]. Ahronowitz points out that HPC resources
are tightly coupled. This influences the software that is written for HPC machines. In many
cases this leads to code that is bad with regards to portability. HPC code incorporates often
Message Passing Interface (MPI) and Graphics Processing Unit (GPU) libraries. In many cases
these libraries have library specific components or even machine specific components. This
specifics need to be considered when migrating code from one HPC infrastructure to another
[1]. Examples for HTC are the European Grid Infrastructure (EGI)13 or the Open Science
Grid(OSG)14. The Distributed European Infrastructure for Supercomputing Applications
(DEISA)15, the Partnership for Advanced Computing in Europe (PRACE)16 and the Extreme
Science and Engineering Discovery Environment (XSEDE)17 are examples for HPC projects.

2.2.5. Further Complexity and Challenges

In the previous sections we described different dimensions in e-Science solutions. Certainly,
we think we need to point out further challenges and complexity that come across IT solutions
for e-Science. First of all, there is heterogeneous data involved in e-Science solutions. This
data might be distributed across several data sources (e.g. databases or file systems) in
heterogeneous formats and different sizes. In addition, some systems work with live data
from sensors which add additional complexity, e.g. how to make changes to a system which
should process data all the time. Ultimately, the e-Science solution should support the natural
scientist in discovering new knowledge. When designing IT solutions, the scientist with
his competencies needs to be considered. In general, natural scientists are no experts in
computer science or software engineering. Normally, they are also no experts when it comes
to programming and therefore, the creation of scientific experiments within an e-Science
solution should not require programming of the scientist. Rather than programming, the

13https://www.egi.eu/about/egi-inspire/
14http://www.opensciencegrid.org/
15http://www.deisa.eu/
16http://www.prace-ri.eu/?lang=en
17https://www.xsede.org/

20

https://www.egi.eu/about/egi-inspire/
http://www.opensciencegrid.org/
http://www.deisa.eu/
http://www.prace-ri.eu/?lang=en
https://www.xsede.org/

2.3. e-Science at IAAS

scientist should be able to model the experiment in his domain language [57]. At the same
time, the massive (distributed) data and the heterogeneity of distributed systems adds a lot
of complexity. This is a major challenge in e-Science solutions: providing an interface to the
scientist, that he can handle and which supports him in his way of doing research, but at the
same time handling the complexity of e-Science in the background.

2.3. e-Science at IAAS

In the previous section we presented the dimensions application domains, modelling approaches,
technologies and infrastructures of e-Science. This showed the variance in e-Science solutions
and that many choices are possible in each dimension. After this overview we want to outline
now the thesis relevant e-Science research of the IAAS. This helps to understand where the
tasks for this thesis originate. Firstly, the e-Science life cycle is introduced. The e-Science life
cycle gives us insights in scientists’ operating principles. The second block is oriented towards
an application model for eExperiments and the requirements for eScienceSWaT. Finally, in
Section 2.3.3 we present eScienceSWaT. This is the methodology that was developed by
Karastoyanova et al. to achieve better e-Science solutions.

2.3.1. e-Science Life Cycle

In Section 2.2.5 we introduced additional requirements for an e-Science solution that arise out
of operating principles of scientists. At the end, the DSS should support the natural scientist.
Therefore, we need to have a better understanding how scientists are doing research. The
e-Science life cycle depicts on a high level the approach of scientists doing experiments.

Capturing and
validating

data
Curation

Processing
and analysis

Permanent
archiving

Figure 7.: The e-Science Life Cycle Phases based on [57].

The four phases of the e-Science life cycle are shown in Figure 7. We give a short explanation
on the most important tasks:

1. Capturing and validating data: First of all the data is collected. The data can come from
various sources e.g. data from sensors and instruments or data from simulations. In
order to ensure the data quality, the data needs to be validated. In some cases additional
meta-data is collected, e.g. about status of sensors or calibration offsets for sensors [124].

2. Curation: A suitable format for the data is defined. The data is stored in a way that it
should not get lost. But scientists do not only use databases, but also use excel-sheets or
any other format like simple text files for storing their results.

21

2. Background

3. Processing and analysis: In this phase the raw data is analysed to reveal knowledge
and gain new insights. In many cases this involves different IT systems and the manual
intervention of the scientist, e.g. copying over intermediate results from one server to
another [57].

4. Permanent archiving: After the analysis, the data and the processed results get stored
permanently.

Many research projects build systems to target the processing and analysis phase in particular
[56]. However, many of the IT solutions are built with deficiencies from the view of software
engineering and enterprise computing. Outdated IT technologies are used, a low degree of
modularization or the non-interoperability are only a few of the identified issues. Therefore,
the authors recognized the necessity for focused fundamental research in the processing and
analysis phase. They want to revolutionize the way software for e-Science is built and used by
scientists [56].

2.3.2. Rationale behind eScienceSWaT

This section is based on the work in [56]. We introduce here the deficiencies within e-
Science solutions development. This helps to understand why eScienceSWaT was developed.
According to Karastoyanova et al., the cooperation between natural scientists and IT needs
to be improved. The tasks from natural scientists need to be separated from the IT tasks.
This helps to build better e-Science solutions. Natural scientists can focus on their strengths
and their domain, whereas the IT tasks can be executed by IT professionals. Particularly,
systematically organized best practices for building e-Science solutions are missing. In
addition, the authors identified that there is no unified application model for eExperiments.
In some publications the term eExperiment is used instead of scientific experiments. In
this thesis we also use the terms scientific experiments and eExperiments interchangeably
as synonyms. A unified application model makes it possible to develop a unified software
methodology. This again makes it possible to use the methodology across different domains.

Therefore, in [56] an eExperiment Model is defined (see Figure 8). It consists of the following 3
layers: scientific experiment model, IT experiment model and infrastructure. One can observe that
a scientist is able to make decisions on each layer based on his requirements and knowledge.
There is also a high variety on possible solutions on each layer (see Section 2.2). Here, both
scientists and software developers require tool support for making decisions to reduce the
complexity of e-Science. Furthermore, there exist dependencies between the layers. The
methodology should also capture these dependencies. In addition, decision chains need to
be captured as well. Out of the eExperiment model the different steps for the methodology
can be retrieved. If the methodology is more in line with the eExperiment model, it is
closer to the scientists’ way of doing research. Classic software engineering methods like the
Boehm-Waterfall software engineering methodology are out of harmony with the scientists’ way of
experimenting [13]. The methodology should support the scientist to build an experiment
model in his preferred domain language. Then the model of the experiment needs to be
transformed to the next lower level. Ideally, this is done in a (semi-) automatic way. This

22

2.3. e-Science at IAAS

…

Scientific Experiment
Model

IT Experiment Model

eExp
erim

en
t M

o
d

el

1.

 2.

3.

 4.

Experiment modelling

Creation of
software artefacts

Deployment on IT
execution environment

Execution

Service Bus

PANDAS opal

Cloud

Infrastructure

Figure 8.: This is the eExperiment life cycle and the eExperiment model with its three
layers based on [56].

transformation step leads to executable artefacts. These artefacts have to be mapped onto an
execution environment. In the end, the experiment has to be executed [56]. The following
section shows the resulting methodology.

2.3.3. eScienceSWaT

First of all we present the methodology for eScienceSWaT and then we explain how a DSS is
supporting decision making within eScienceSWaT.

Methodology

In Section 2.3.2 requirements for an e-Science methodology based on a unified application
model for eExperiments in the processing and analysis phase of the e-Science life cycle are derived.
In addition, observations of deficiencies in current e-Science solution development also lead
to requirements. Out of that requirements, Karastoyanova et al. defined the eExperiment life
cycle, which is built around the eExperiment model (see Figure 8). The eExperiment life cycle
builds the basement of eScienceSWaT and consists of four phases:

23

2. Background

1. Experiment modelling: The scientist models the eExperiment in his preferred mod-
elling environment. For supporting this phase, patterns and best practices for mod-
elling/design of experiments are required. An example for an eExperiments is a simula-
tion that is based on FEM for different scientific fields like solid body or porous body
simulations. Since non-functional properties for the IT infrastructure play an important
role for making decisions in the next steps, they also have to be considered here in this
phase.

2. Creation of software artefacts: In this step the pattern-based model of the scientific ex-
periment is transformed into software code and additional meta-data. Choices made in
the previous step influence the decisions for this step. Different IT technologies require
different transformations. These transformations again require specific information.
This approach might require several transformations until executable software artefacts
are derived. The methodology does not require the fully automation of the transforma-
tion. Semi-automated derivation as well as manual creation of the IT experiment model
are also possible. For instance the experiment model of the previous step is transformed
into a workflow model.

3. Deployment on IT execution environment: Here, the previously created software
artefacts are deployed on the selected IT environment. An example is the deployment
of a workflow model on a Workflow Management System (WfMS). A broad range of
complexity in the scenarios can be found. The installation of a single program on a
single computer is rather simple. Provisioning of an execution environment as a first
step and then deploying software artefacts on it is a more compound task. The decisions
made in the previous steps lead to requirements for the IT execution environment, that
need to be integrated.

4. Execution: In the preceding step software artefacts were deployed on an IT execution
environment. Now these deployed artefacts are executed. By way of example the
workflow model is instantiated and executed with a WfMS on a Grid infrastructure.
The selection of infrastructure for execution depends also on decisions about technology
and non-functional requirements from previous steps.

Scientists from different domains, with different backgrounds and skills work together in e-
Science (see Section 2.2). Within eScienceSWaT, four succeeding phases lead to the execution
of an eExperiment. The eScienceSWaT methodology enables that different scientists can
work in their domain of expertise. We showed, that there exist interdependencies between
the different phases of the methodology. This also makes the decisions in a specific phase
dependent on the decisions made in previous phases.

In Figure 9 we present a simplified decision making process in eScienceSWaT based on an
example. The natural scientists make decisions in the experiment modelling phase, when they
are modelling an experiment (see Decision 1 to Decision 3). Scientists with computer-science
background have to make the choice about IT technology within the creation of software
artefacts phase. Their choice is limited by their own knowledge about technologies in general.
In addition, they need to understand the decisions of the natural scientists’ which lead to
requirements for the creation of software artefacts. We assume, that they can extract all

24

2.3. e-Science at IAAS

Experiment Modelling Creation of Software Artefacts

Decision 2

Additional required Information
for Choosing the Technology

Knowledge about
Technologies

Decision 1

Decision 3

Requirements
for Technology

Which
technology

to use?

Technology 2

Technology 3

Decision 4

Input
from

Previous
Phase

Technology 1

Decision

Technology 4

Technology 5

Figure 9.: This is an example for the decision making process within eScienceSWaT.

requirements out of the natural scientists’ modelling decisions. However, they realize that
they cannot make a decision without additional information from the natural scientists.
This additional information is represented by Decision 4. Furthermore, there exists another
technology that matches the requirements of the natural scientists (represented by Technology
3). Initially, the computer-science researchers were not thinking of Technology 3. The driving
question is now how to support the scientists in the decision making process.

Decision Support System

Karastoyanova et al. propose to use a DSS within eScienceSWaT [56]. We explain how the
scientists in the above example would benefit from a DSS in the following. Firstly, possible
choices for modelling an experiment are presented to the natural scientists. They can select
the solutions that fit best for their way of modelling experiments. Furthermore, they have to
make additional decisions that help the IT professionals/scientists in the following phases to
make decisions (see Decision 4). Their choices are captured in the DSS. Based on these choices,
the DSS now proposes technologies, that do fit the requirements of the natural scientists.
Technology 4 and Technology 5 do not match the requirements and therefore, the DSS is not
showing them. Technology 1, Technology 2 and Technology 3 are suitable and therefore proposed
by the DSS. However, the computer-science researchers are not experienced with Technology
3. Since the DSS also holds information about best practices for the use of the different
technologies, they can read which scenarios do benefit most by using Technology 3. Finally,
the scientists with computer-science background can make a decision about the most suitable

25

2. Background

technology. This decision is based on the proposals of the DSS and their experience. In this
case, the DSS is supporting by capturing relevant requirements and providing additional
solutions packed with best practices.

In Section 2.1 the advantages of patterns were discussed. The eScienceSWaT methodology
also makes strong use of patterns. This is why also the DSS makes strong use of patterns.
Karastoyanova et al. especially see the definition of a meta-model for documenting the pat-
terns and the relationships among the patterns as a challenge from knowledge management
and software engineering point of view. Additionally, the architecture and implementation
of the pattern catalogue for decision support is another challenge [56]. The core element
of the DSS is to provide relevant information for decision making within each phase of the
methodology. This information is represented in form of patterns. Karastoyanova et al. point
out, that the DSS should help to select the best patterns across all layers in order to retrieve the
most suitable realization of an eExperiment. The proposals of the DSS should take previous
decisions of the user into account. Furthermore, the DSS should also be able to propose
decision chains and related patterns [56].

2.4. Scientific Workflows

During our literature research we were confronted with different maturity levels of scientific
workflows. We came across scientific workflows ranging from workflows that contain many
manual steps to workflows with a high degree of automation. Thus, we identify the demand
to present this term in a separate section. Vouk et al. define scientific workflows as a general
concept for describing a sequence of structured activities and computations that emerge in
scientific problem-solving. Often these structured activities are named studies or experiments
[123]. This definition is formulated in a more general manner and matches our experiences of
the broad range of scientific workflows. In [68], scientific workflows are defined as follows:

„These are networks of analytical steps that may involve, e.g., database access and querying
steps, data analysis and mining steps, and many other steps including computationally
intensive jobs on high performance cluster computers."

This definition is more specific compared to the definition of Vouk et al. and already includes
characteristics of e-Science like the computationally intensive jobs. Additionally, a vision of
scientific workflows is presented in [68]. This vision incorporates that scientists can plug-in all
kinds of scientific data resources. In addition, they are able to inspect and visualize the data on
the fly. If a scientist changes the parameters for the eExperiment, only the affected components
are re-run. Furthermore, meta-data is captured. This helps to make the eExperiment more
understandable and reproducible by other scientists. Finally, a scientific workflow system
becomes a scientific problem-solving environment. The components of this environment are
distributed and a service-oriented Grid infrastructure is used [68].

For our purpose we do not need to stick to a specific definition of scientific workflows. Our goal
is to identify patterns for e-Science. On top of these patterns we build a DSS. As we can see
in Section 2.2, e-Science is built on top of traditional science and traditional concepts. Hence,

26

2.4. Scientific Workflows

both the more manual processes and the complex and highly automated scientific workflows
can be valuable for our research if they contain best practices, which also can be applied in
e-Science.

27

2. Background

28

3. Related Work

Power defines a DSS in [88] as an interactive computer-based system, which supports people
in using computer communications, documents, data, models and knowledge with the
goal of solving problems and decision making. The DSS for eScienceSWaT should enable
decisions about the modelling of the experiment, the choice of IT models and underlying
infrastructures [56]. As described in Section 2.3.3, eScienceSWaT is strongly based on patterns,
which store knowledge and best practices. Therefore, the DSS is also based on patterns.
In [56], Karastoyanova et al. point out, that the chain of patterns across all layers of an
eExperiment are responsible for the efficiency and suitability of the eExperiment realization.
Hence, we see the major function of the decision support system to help with the choosing
of the most suitable patterns for the eExperiment. For the related work in the next sections,
we state which things we can reutilize and which things we can transform so that they fit for
our purpose. Section 3.1 comprises different approaches and techniques for decision support
in the domain of design patterns. Furthermore, we examine different relationships in the
domain of patterns in Section 3.2.

3.1. Decision Support Systems for Choosing Design Patterns

During our literature research for related work in the domain of DSSs, we came across several
frameworks, expert systems and recommendation systems in the area of selecting design
patterns. The approaches are ranging from very simple to sophisticated approaches, that also
involve data mining and machine learning. The following sections introduce the different
concepts first. At the end of each section, we state which concepts we can reuse in the context
of this thesis.

3.1.1. Case Based Reasoning

In order to automate design pattern application, Gomes et al. created the REBUILDER
framework. REBUILDER is based on Case-Based Reasoning (CBR). In CBR past experiences
are used for understanding and finally solving new problems [62]. REBUILDER has the
purpose to support software developers in the design phase with intelligent help. A case in
REBUILDER consists of a software design, a design pattern that helps to improve the design
and information about how to apply the design pattern. The software design is described
in form of an Unified Modeling Language (UML) class diagram [42]. A user imports the
UML class diagram for which he seeks support into REBUILDER. Then the relevant cases

29

3. Related Work

are identified by REBUILDER. After that, the most suitable case is selected with the help
of a similarity metric. Then, the corresponding design pattern is applied automatically to
the UML diagram of the provided software design. Together the initial design problem, the
pattern and the information how to apply the pattern build a new case. This case is then
stored in the case library.

In the domain of e-Science many different representations for experiments exist (see Section
2.2). Therefore, we do not use UML. Without such a fixed format it is hard to automate the
pattern selection process. However, full automation for pattern selection is not a requirement
for the DSS. As reported by Thabasum et al., REBUILDER’s system performance strongly
depends on the quality and the diversity of the case library [98]. This means, that on top
of creating all the e-Science patterns, we would also have to model such cases in which the
patterns are applied. Therefore, we do not use CBR for e-Science pattern selection support.
When a pattern is applied for a concrete software design, Gomes et al. store this information
in form of a case. We will also provide an example, where the e-Science pattern is applied.
However, an eExperiment involves several patterns and therefore we also need to store
decision chains. Decision chains contain different patterns that build a solution together. For
future work, we propose to store all patterns that are used in an eExperiment in a case. All
these cases can be browsed by the users for decision support.

3.1.2. Simple Recommender System for Design Patterns

Guéhéneuc et al. see the major task of a recommender system in information filtering that
leads to the items of interest, which can be presented to the user [46]. They developed a
simple recommender system for design patterns. The user selects words, which are related
to his design problem. The system searches for the design patterns, that match the selected
words. Then the best matching patterns are presented to the user. In order to realize such
a system, the textual description of design patterns have to be analysed as a first step. The
result of this analysis is a set of the most important words for each design pattern. Then this
words are associated with the design pattern [46]. In another research project, Guéhéneuc
et al. conclude, that this system cannot handle complex design problems. Furthermore, the
user has no chance to provide feedback to the recommendation system [84]. We also think
that this simple approach is not sufficient for the rather complex designs that are required for
eExperiments. However, adding meta-data to design patterns in term of tags might be a good
idea, if we want to enable browsing over the pattern catalogue.

3.1.3. Design Pattern Recommender

The Design Pattern Recommender (DPR) developed by Palma et al. is an expert system [84].
An expert system simulates the behaviour and judgement of a human or an organization. In
addition, it has expert knowledge and experience in a specific field [95]. The main goal of
DPR is to support designers in finding the most suitable pattern for a particular design [84].
Palma et al. use a ranking based selection mechanism for DPR. The ranking is calculated by

30

3.1. Decision Support Systems for Choosing Design Patterns

a simple Goal-Question-Metric (GQM) approach [33]. Four major developing steps lead to
DPR, that are explained in the following [84]:

1. Identify the conditions in which patterns can be applied: Here individual patterns
are studied in depth. Also experts in the domain of design patterns can be interviewed
in order to gain knowledge. Finally, for each pattern the conditions are defined, in
which they can be applied. For each pattern a tree is created that connects the pattern
with the circumstances (see Figure 10).

2. Refine the conditions with sub-conditions: Sub-conditions for each pattern are de-
fined. They hold information where the pattern can be applied. The sub-conditions are
inserted into the tree for the pattern (see Figure 10).

3. Formulate questions to ask designers: The tree representation stores knowledge about
the pattern. The nodes are transformed into questions that can be asked to designers.
At the end of this step for each tree a set of questions is generated.

4. Formulate GQM model with the defined questions: The pattern names are the goals.
The formerly derived questions in Step 3 build the questions.

Adapter

Want to
create a

reusable class

Need to use
several existing

subclasses

Want to use
existing
classes

GOAL

QUESTION

METRIC Yes / No / Don‘t know WEIGHT

Conditions

Sub-conditions

Solve issue of
incompatible

interface

Convert
interface

Figure 10.: The adapter pattern with conditions (pattern-intents) and sub-conditions
(pattern-applicabilities) and the mapping to GQM, based on [84].

For finding the most suitable design pattern, the designers have to answer the bottom
questions with yes, no or don’t know. In addition, they have to weight the questions with
an integer between 1 and 9 (O only for don’t know). Their answers and the weighting are
used by DPR that finally proposes the most suitable pattern with the help of a metric. We
do not want to go in more detail here. The full metric and the details of DPR can be found

31

3. Related Work

in [84]. The user interacts with the DSS by answering questions. This interaction process
has a big advantage, because it is based on questions and people from all domains should
be able to answer questions. Therefore, GQM approach seems suitable for a DSS in the
domain of e-Science. The GQM approach is suitable, when one pattern has to be selected
from a group of possible patterns that can solve the problem. However, the users of our DSS
have to select several patterns on different layers for an eExperiment. Hence, GQM is not
applicable on a global scale. We propose to use GQM at specific decision points, when the
user requires additional decision support. Finally, we do not use GQM for the thesis, because
it requires a lot of effort to define the questions for each pattern. In addition, GQM is not
applicable for the whole experiment, but only at specific decision points that have to be defined
as well. The concept of GQM is part of future work. Guéhéneuc et al. use an eXtensible
Markup Language (XML) representation of the DPR for the patterns in their prototype [84].
To use an XML representation seems suitable, since this enables portability and platform
independence.

3.1.4. Design Pattern Recommendation System

Suresh et al. want to support novice and experienced users by the selection of design patterns
[115]. They use the concept of social recommendation in their Design Pattern Recommendation
System (DPRS). The user has to select his level according to his knowledge: Novice, Beginner,
Advanced beginner, Expert and Wizard. This is helpful for the analysis of the acceptance level of
the different user groups [115]. The user starts by sending a query text to the system. The
query is a collection of words, that describe the problem scenario. The text is analysed in
order to find out the intent of the query. From here, two different scenarios are possible.
In the first scenario, knowledgeable questions are retrieved from the pattern repository based
on the intent [115]. The user has to answer these questions. Then the system is calculating a
score for the possible patterns. Based on the score, the system recommends either strongly
recommended, satisfactory recommended or not recommended. The interaction of the user with
the system is stored. For details see [115]. This is helpful for performance evaluation of the
system and is required for the second scenario.
In the second scenario, the intent of the query is compared to queries from the past. The goal is
to find a similar query. If a query satisfies the minimum thresholds of support and confidence,
then this query is chosen. The old query led finally to a pattern. This pattern is recommended.
The system always executes scenario 2 first. If no pattern can be recommended automatically,
the first scenario is executed.

We think the idea to use a query to narrow down the amount of possible patterns is also
applicable for most domains. This is because the query is free text and not a query language
like Structured Query Language (SQL). If SQL is used, only certain users can use the DSS,
because not everyone knows how to use SQL. However, there comes overhead due to the
parsing of the text of the query. There needs to be a mechanism for retrieving the intent of
the query. Finally, the patterns need to be stored in a way, that they can be parsed as well
in order to find matching patterns. Therefore, we will not use a query based DSS for this
thesis. An automatic mechanism, that suggests patterns to the user is helpful. Certainly, this

32

3.1. Decision Support Systems for Choosing Design Patterns

comes with lots of overhead. First of all we need to store the interaction from all users. This
builds the basis on which patterns are selected. We also see the thresholds for support and
confidence crucial, because they lead to a recommendation. Therefore, we would first need
to simulate different users and then define the thresholds. This is why we decide not to use
a fully automated DSS for patterns, which is based on social recommendation. However,
since the users of our DSS do not build a homogeneous group of people, we also need a
mechanism for supporting the different users. Whereas DPR by Guéhéneuc et al. (see Section
3.1.3) only suggests the highest ranked pattern as a solution, here more than one pattern
can be recommended. We think it is useful to provide an alternative and therefore, we will
provide not only one solution in our DSS.

3.1.5. Systems for Implicit Culture Support

In [10], Birukou et al. present the architecture of a multi-agent system for design pattern
selection. Their concept is based on Systems for Implicit Culture Support (SICS). In general,
knowledge can be sub-divided into explicit and implicit knowledge. Knowledge is explicit,
when it can be described and shared through any kinds of documents. In contrary, implicit
knowledge is contained in the abilities and capabilities of community members [10]. So
the basic idea is to give inexperienced users decision support for selecting design patterns
through the implicit knowledge of more experienced users. This relation between the single
agent (inexperienced user) and the group is called Implicit Culture (IC) [12]. The knowledge
transfer is enabled by a SICS and finally leads to inexperienced users behaving similar to
the community culture [10]. Universally, the architecture of a SICS consists of an observer, an
inductive module and a composer [10]. The observer observes the actions that are performed by
users and stores them in a database. The stored observations are analysed by the inductive
module. Additionally, learning techniques like data mining or machine learning are applied.
This leads to theories, which keep information about the actions performed in different
situations. The composer utilizes the information kept by the observer and the inductive module
in order to make suggestions to the user.
In the domain of choosing design patterns, the observer stores information about the design
problem, the potential patterns to solve the problem and the selected pattern, which solved
the problem. The inductive module analyses the history of users’ interaction with the system. It
groups related problem-solution pairs to a theory. The composer compares the design problem
of the user with the problem part of different theories. If a matching theory is found, the
corresponding solution part is suggested [10].
In the following, we describe the main differences between SICS and systems that are based
on CBR. CBR uses a specific situation from the past and suggests the solution to this specific
situation. IC supports the user by solving a problem, but not producing a solution directly
[10]. In IC only the implicit information about the problem and the solution is available,
whereas in CBR the problem and the solution is represented explicitly as the case.

We consider this approach as the most complex approach for decision support in the domain
of design patterns so far. It involves not only storing information about user interactions, but
the even more compound task to apply machine learning and data mining algorithms on

33

3. Related Work

this information to retrieve knowledge. The presented SICS can even be further extended,
so that it also provides support for more complex scenarios [98]. Therefore, it would fit for
our purpose, because we identified complexity in the domain of e-Science (see Section 2.2).
However, the effort to implement a system with the above described functionality is beyond
the scope of a thesis. Hence, we decide not to base our DSS on IC.

3.1.6. Design Pattern Selection, A Solution Strategy Method

Sahly et al. developed a strategy method for obtaining an appropriate recommendation for
the selection of design patterns [97]. Their approach uses different algorithms.
Query-Matching-Pattern (QMP) parses the query of the user and tries to find a matching
between pattern intents and the query. This is done by using Vector Space Model (VSM). This
is an algebraic model in which texts can be represented as vectors [52]. Both the query and
the pattern can be represented as vectors. Now similarity between query and pattern is the
cosine value of the angle between their vectors. First of all, we decided not to use a query for
our DSS. Secondly, the additional work that is coming with the use of VSM is not worth the
effort for calculating similarity in our case. Hence, we will not use QMP and VSM.
Question-Answer-Session (QAS) has the goal to narrow down the amount of suitable patterns
by asking questions. The questions that are asked, are dependent on the answers to previous
questions. To make this efficient, Sahly et al. divide the questions among four levels: Pattern-
domain (Level 1), Pattern-category (Level 2), Pattern-intent (Level 3) and Pattern-specific (Level 4).
Questions of the domain-level have to be answered first. This narrows down the questions
of the category-level and so on. Since the eExperiment model is structured hierarchically (see
Section 2.3.3), this approach would fit well for the DSS. However, QAS is similar to GQM,
which we decided not to use due to the additional effort that comes with the definition of
suitable questions. Therefore, we do also not use QAS for our DSS in this thesis.
Query-Similarity-PreviousQuery (QSPQ) is an algorithm, that is based on users’ queries from
the past. Since this approach is similar to DPRS in Section 3.1.4 and we decided not to use a
query based DSS, we will not explain it in more detail.
The last algorithm is called Collaborative-Implicit-knowledge (CIK), which is quite equal to SICS,
which is described in Section 3.1.5. Since we decided not to base our DSS on IC, we also do
not use CIK and we do not go into more detail here.

The proposed method of Sahly et al. supports three different types of recommendations
[97]. First of all, one single pattern is recommended for solving one particular problem. In
addition, recommendations regarding the implementation of this pattern are provided. The
third type of recommendation are pattern sequences that contain patterns, which are often
applied together. We have stated several times already, that the recommendation of one single
pattern is not sufficient for an eExperiment. However, the DSS also will be able to recommend
pattern sequences, which we call decision chains. Information regarding the implementation
of the pattern is stored directly within the pattern. We use a specific attribute in the pattern
format, that can provide this information in form of an example.

34

3.1. Decision Support Systems for Choosing Design Patterns

3.1.7. Patterns 2.0: a Service for Searching Patterns

Pattern selection can be seen as an instance of the problem of retrieving relevant information
from large documents collection [11, 29]. However, patterns have specific characteristics, e.g.
containing different parts that express different kinds of information or patterns are linked
in a pattern language [11]. Therefore, various approaches have been developed to support
pattern selection. Weiss et al. identify the following shortcomings to existing approaches in
the domain of pattern selection support [11]:

• Additional effort in the authoring and selection process (e.g. meta-data required for
patterns) is required

• Pattern repositories require effort in maintaining and updating information

• Patterns are targeted at one specific user group (for instance developers)

• Collaboration and personalized recommendations are rarely supported

This is why they build the Pattern 2.0 service1, which is a composite service for simplifying
pattern selection. Pattern 2.0 addresses the previously outlined shortcomings with the fol-
lowing concepts [11]. The search is improved by using tagging and usage history. In addition,
community-generated content is used. This minimizes the effort in updating and maintaining
the pattern repositories. The service is orthogonal to the domain of patterns and their format.
Furthermore, it can be used in collaboration (usage data is shared between communities) or
in an isolated way (each community only uses recommendations that are based on their own
usage) [11]. Further details to the services can be found in [11].

The collaborative characteristics of e-Science are supported by the Patterns 2.0 service. Addi-
tionally, the concepts of Weiss et al. take the different domains within e-Science into account.
Therefore, we strongly recommend to consider these approaches of the Patterns 2.0 service,
when implementing a DSS in the domain of e-Science. However, these approaches are too
sophisticated for implementing them in this thesis and we do not use them.

12.0 is used in the name because there exist similarities to Web 2.0: the service includes tagging and other
community-generated content [11]

35

3. Related Work

3.2. Relationships Among Patterns

In Section 2.1, we can identify different kinds of relationships between patterns. Alexander
uses a hierarchical structure to organize the patterns. Therefore, there can be patterns on a
lower level that help to complete the patterns on the level above (see Figure 2). Gamma et al.
use a pattern format, that includes the attribute related patterns. Related patterns are closely
related or should be used in combination with the current pattern (see Section 2.1.2).
We see that different relationships are possible among patterns. However, we only focus on
relationships that are useful with regard to decision support. Decisions for one layer of the
eExperiment model influence the decisions on the layers below (see Section 2.3.3). We transfer
this concept to the domain of patterns, so that the status of a pattern influences the decisions
for the related patterns. After the selection of one pattern, all relationships of this pattern are
evaluated. Then the status of the related patterns gets updated. This reduces the amount of
possible patterns in the next step or emphasises specific patterns. At the beginning all pattern
have a neutral status. From a neutral status, a pattern may change to the following status:
highlighted, selected or deselected (see Section 5.1.1). By focusing on this pattern status changing
relationships, we build a basis for the DSS.

3.2.1. Classification of Relationships

We introduce the used terminology for classifying relationships shortly, since different ter-
minologies exist. Abhijit et al. state, that relationships in general can be classified by the
cardinality of the relationship and the degree of the relationship [87].
The cardinality of the relationship describes the minimum/maximum number of instances,
which must/can be associated with another instance [87]. Examples are one-to-one, one-to-many
or many-to-many relationships. We use one-to-one relationships for connecting the patterns of
the e-Science pattern catalogue.
The degree of a relationship describes how many entities participate. If only one entity par-
ticipates, the relationship is called unary. If n entities are participating, we have a n-ary
relationship. Currently, we do not see the need for self relations and therefore, we do not use
unary relationships. However, we always connect two patterns with a relationship. Hence,
we only use binary relationships [87].
Relationships among entities can either be unidirectional or bidirectional [82]. In unidirec-
tional relationships, only one entity has a property that refers to the other entity, whereas
in bidirectional relationships each entity has such a property [82]. We only use unidirectional
relationships for the e-Science pattern catalogue.

3.2.2. Relationships in the Domain of Patterns

Table 1 contains all relationships, that we want to use for the e-Science patterns. The column
name(s) contains the different names that are used by different authors for the relationship.
If we reuse a name for the e-Science pattern relationships in this thesis, we put it in bold
letters. In the column explanation we summarize the meaning of the relationship and present

36

3.2. Relationships Among Patterns

our extensions, if needed. In the introductory phase of this section we pointed out, that only
relationships can be reused, which lead to a status change of the related pattern. Therefore,
also the resulting status of the related pattern is displayed. Based on the findings here, we
will define the relationships for the e-Science patterns in Section 4.2.2.

Name(s) Explanation Status

Uses, Might Use, Com-
prises

A pattern uses another pattern. Highlighted

Must Use, Requires A pattern must use another pattern. For example
a pattern requires another pattern for its own solu-
tion.

Selected

Similar To, Alternative Both patterns address a similar problem by using
different solutions. We extend this relationship so
that also patterns that do not address a similar prob-
lem can be connected. We call this modified rela-
tionship Related To.

Highlighted

Conflicts Both patterns address a similar problem by using
different solutions. However, we extend the mean-
ing. Also patterns can be in conflict, which are not
addressing a similar problem.

Deselected

Refined By A more general pattern is refined by a more specific
pattern. It is the inverse relationship to the refines
relationship (see Table 2).

Highlighted

Table 1.: Different pattern relationships that we reuse for our e-Science patterns based on
[63, 76, 131].

There are other pattern relationships, which we do not use for this thesis. Since they might be
useful in another context, we also present the not used pattern relationships in Table 2.

37

3. Related Work

Name Explanation

Refines One specific pattern refines a general pattern.

Used By A smaller pattern is used by a larger pattern. The inverse
relationship of the Uses relationship.

Variant A variant pattern refines a more well-known pattern. When an
abstract pattern is instantiated, some ways are more common
for this instantiation. The most important variations can be
stored in a separate pattern. This pattern gets connected to
the original pattern via the variant relationship.

Variant Uses A variant of a pattern uses another pattern. This means, that
the other pattern is not used all the time.

Combines Two patterns are combined to solve a single problem, which
is not addressed yet by any other pattern.

Tiling Here a pattern uses itself.

Sequences of Elaboration This is a sequence of patterns or a fragment of a pattern
language.

Table 2.: Different pattern relationships that we do not use for our e-Science patterns based
on [63, 76, 131].

38

4. e-Science Pattern Catalogue

This chapter addresses the core deliverable of this thesis – the e-Science pattern catalogue.
In Section 4.1, we describe our approach for developing the pattern catalogue. Out of
this approach, the concept for the pattern catalogue emerges. It comprises the pattern
format and the relationship types, as described in Section 4.2. Another result of the process
are the concrete e-Science patterns, the relationships among them and the structure, in
which the patterns are organized. Together, they build the e-Science pattern catalogue. The
catalogue is oriented towards eScienceSWaT, which is built around the three layers scientific
experiment model, IT experiment model and infrastructure of the eExperiment model (see Section
2.3.3). Therefore, it seemed suitable for us to use the layers as a rough structure for the
e-Science pattern catalogue. This is why Section 4.3 comprises the patterns on the level
scientific experiment model and Section 4.4 contains the IT experiment model patterns. Finally, the
infrastructure patterns are introduced in Section 4.5.

4.1. Development Approach

The e-Science pattern catalogue is one big deliverable of this thesis. Therefore, we recognize
the necessity to present our approach for developing the e-Science pattern catalogue. Our
approach starts with an information collection phase and building on top of that a pattern
generation phase, which leads to the e-Science pattern catalogue as shown in Figure 11. The
information collection phase is presented in Section 4.1.1 and the pattern generation phase is
introduced in Section 4.1.2.

4.1.1. Information Collection

The information collection phase evolved to 6 steps as shown in Figure 11. The whole infor-
mation collection phase is done in an iterative way, because we analyse various applications
for e-Science. Basically, for each application we perform an analysis, we extract information
and after that we store the information. Then we start over with the next application for
e-Science. At one point in time we stop with the collection of new information. We rather
focus on transforming the already collected information into patterns and then start with a
new information collection phase. The rationale behind this is that we want to avoid collect-
ing similar information that finally leads to an existing pattern. If we identified a pattern
already, it is easier to recognize the pattern already in the step analyse e-Science solutions. This
saves time, because we can skip the other steps of the information collection phase and start

39

4. e-Science Pattern Catalogue

t

3. Collect
structured
information

4.
Collect
unstructured
information 5.

Create
e-Science
Graph

7. Extract
patterns

6.
Detect
problem-solution
pairs

8. Refine
patterns 9. Organize

patterns 10. Define
relationships
among patterns

1. Analyse
 e-Science
 solutions

2. Extract
information

e-Science
pattern catalogue

Major
information
flow

P
attern

 gen
eratio

n

In
fo

rm
atio

n
 co

llectio
n

P-L

P-L

P-L

P-L

Iterations

Iterations

Figure 11.: This is an overview of the e-Science pattern catalogue development.

40

4.1. Development Approach

over with new e-Science solutions. The information collection phase leads to an unstructured
document, an e-Science graph and problem-solution pairs. All this information builds the input
for the pattern generation phase, that is introduced in Section 4.1.2.
In the following, we describe each single step of the information collection phase and explain
how the whole information collection process evolved. However, we only collect structured
information at the beginning of the first iteration. It is difficult to store all information about
e-Science applications in a fixed table scheme. Therefore, we decide to replace task 3 with the
task collect unstructured information for all following iterations.

1. Analyse e-Science Solutions
First of all, we analyse various e-Science solutions in the domain of scientific workflows by
doing literature research. We realize, that different authors use varying levels of granularity
and diverse perspectives for describing their e-Science solutions.

2. Extract Information
After the analysis we need to extract the important information from the e-Science solutions.
At the beginning, we extract too much detailed information. For instance we also extract
information about the used programming language, middlewares or operating systems.
Later in the process, we realize that is hard to detect reoccurring problem-solution pairs on
this abstraction level. Therefore, we refine our extraction process and focus on high level
information about the e-Science applications.

3. Collect Structured Information
At the beginning we collect important information about e-Science solutions in a table. The
table contains columns for the domain, the used technology/model and the reason why this
technology/model was used. Additionally, advantages and disadvantages for the technologies/-
models are captured in the table. We have difficulties, to store all important information in
this table scheme. By using this fixed scheme, we also cannot connect the information chunks
to each other.

4. Collect Unstructured Information
Because we cannot connect the chunks of information to each other, when using a table with
a fixed scheme, we decide to replace the table with a new document. In this document we
collect the information in an unstructured way. However, we use colours and visual effects
for separating groups of information chunks. In addition, we use indent and colours for
grouping information. Unfortunately, the document is getting bigger and bigger, and it gets
harder to keep track of all collected information.

5. Create e-Science Graph
We collect unstructured information so far and realize that it is hard to stay on top of things.
We want to have an overview about the aspects of e-Science solutions that we have already
covered. Furthermore, we want to structure the information. This is why we decide to build
an e-Science graph, which provides an overview of the collected information. The e-Science
graph contains the following clusters of information: scientists, non-functional properties, data,
scientific experiment model, IT experiment model and infrastructure. The graph also helps to avoid
the collection of redundant information. At the same time we can identify missing aspects
by examining the e-Science graph. After that we can start over with step 1, the analysis of

41

4. e-Science Pattern Catalogue

e-Science solutions, with focus on the missing aspects in e-Science solutions. The details and
references to the sources are still stored in the document containing unstructured information.
We recognize that the unstructured information in combination with the e-Science Graph do
not provide us with sufficient support for identifying patterns.

6. Detect Problem-Solution Pairs
Currently, we collect information about e-Science solutions in an unstructured manner. In
addition, we have an e-Science graph, which provides an overview about the collected infor-
mation. Nevertheless, we want to generate e-Science patterns from the collected information.
Figure 3 in Section 2.1 visualizes the concept of abstraction from concrete solutions and
problems for generating patterns. This is why we focus on the identification of concrete
problem-solution pairs now. We either highlight problem-solution pairs in the document
containing the unstructured information or we transform the collected information into
problem-solution pairs.

4.1.2. Pattern Generation

Similar to the information collection phase, also this phase is done in an iterative way. We
extract a few patterns from the problem-solution pairs, we refine the patterns and we structure
the patterns. Then we define the relationships among the patterns and insert the patterns in
the pattern catalogue. Then we start over with the extraction of new patterns. However, the
iteration also affects the pattern in the e-Science pattern catalogue. Patterns can always be
refined by using a more suitable pattern name or providing a better example. In addition,
when new patterns are inserted into the e-Science pattern catalogue, this can require adding
new relationships to existing patterns. Furthermore, the structure of the pattern catalogue
changes over the time, when new patterns are added to the catalogue. This can be due to more
suitable groupings of patterns or splitting a group of patterns in two groups. Initially, we
also thought about iterating over the two phases information collection and pattern generation.
Certainly, we realize that the amount of information that we collected, is sufficient. Only in a
few cases we step back to the information collection phase, and therefore we do not visualize
this in Figure 11. In the following we describe each of the steps of the pattern generation
phase.

7. Extract Patterns
At one point we decide to stop collecting new information, but rather carve out the patterns.
However, before carving out patterns, we need to define a pattern format. Since the pattern
format is one final result of the overall process, we put it in a separate section (see Section
4.2). Once the pattern format is available, we abstract from the concrete problem-solution
pairs to generate the patterns.

8. Refine Patterns
Pattern writing is an iterative approach. We change the values of the pattern attributes again
and again to improve the quality of the pattern. In addition, the pattern name can describe the
problem, the solution or the desired characteristics. For example, we can name a pattern low
data quality (describes the problem), improve data quality (describes the solution) or high data

42

4.2. Pattern Format and Relationships

quality (describes the desired state). When the pattern catalogue is growing, we sometimes
need to reorder certain patterns. If some patterns of a group use the problem description as
name and others use the solution as the pattern name, this can lead to misunderstandings.
We need to make sure, that patterns within one group follow the same logic for deriving the
pattern name.

9. Organize Patterns
In Section 2.3.3 we introduced eScienceSWaT, which is built around the three layers scientific
experiment model, IT experiment model and infrastructure of the eExperiment model (see Figure
8). Therefore, it seemed suitable for us to use the layers as a rough structure for the e-Science
pattern catalogue. However, we also need to define a more granular structure within each
layer. The e-Science graph helps to structure the patterns, because it also contains a structure.
Nevertheless, several iterations were required for generating the target structure. If new
patters are added to the catalogue, this can require a change of the structure, e.g. a new
category has to be defined or an existing category has to be renamed. In addition, patterns
need to be moved to a more suitable category. A holistic view on the structure of the e-Science
pattern catalogue comprising all patterns is presented in Appendix A.

10. Define Relationships Among Patterns
In this step we define the relationships among the e-Science patterns. First of all, we need
to determine what kind of relationships are useful for the e-Science patterns. We decided
to use unidirectional binary one-to-one relationships (see Section 3.2.1). Section 3.2.2 builds
the foundation for the relationships among the e-Science patterns. Since these relationships
are one important result in the context of this thesis, we put them into a separate section
(see Section 4.2.2). Once we defined these relationships, we can apply them to the e-Science
patterns.

4.2. Pattern Format and Relationships

This section comprises the pattern format for the e-Science patterns, which is presented in
Section 4.2.1. In addition, Section 4.2.2 introduces the different relationships that we use to
connect the e-Science patterns.

4.2.1. Pattern Format

We decide to focus on the most important attributes in the first step. Section 2.1 shows, that
more useful attributes exist. Table 3 shows the specified format for the e-Science patterns. We
describe a few attributes in more detail, where we think that this is required.
The name of the pattern is unique across the catalogue. Furthermore, the pattern name
can describe the problem, the solution or the desired characteristics as described in Section
4.1.2. The pattern name has to be unique across the pattern catalogue. This helps to avoid
misunderstandings, when natural scientists and IT professionals use the pattern name in their
vocabulary, when they talk about e-Science solutions.

43

4. e-Science Pattern Catalogue

Attribute Explanation

Name Unique Identifier

Classification Layer of the eExperiment model, to which the pat-
tern is allocated

Intent Summarizes the purpose of the pattern

Problem Captures the problem

Context Setting where the pattern can be applied

Solution Explanation how the problem is solved

Relationships List of relationships to other patterns

Example An example where the pattern is applied

Table 3.: This is the format used to specify the e-Science patterns.

The attribute classification can take one of the values: Scientific Experiment Model, IT Experiment
Model or Infrastructure.
The attribute example provides an example, where the pattern is applied. Often, this is only a
reference to another paper or book, where the pattern is used.

4.2.2. Pattern Relationships

In Section 3.2.2 we introduced relationships, which were used in related works and we also
stated which of them we want to reuse. Now we want to explicitly define, how we reuse the
relationships and which semantics each relationship has. Since the relationships are used to
support the decision making process, it is helpful to understand the role, which they play
in the DSS (see Section 5.1.1). Figure 12 is used to make the explanation of the different
relationships more tangible.

X

<Relationship Type>

Y

Figure 12.: This is an example for a relationship.

<Uses> If a pattern X has a <Uses> relationship to Y, it can optionally make use of Y
in its solution. For instance the heterogeneous data pattern uses the patterns
data transformation or semantic mediation. The relationship <Uses> is not as
strong as the <Requires> relationship.

<Requires> Pattern X requires Y. This means, that Y also has to be applied, when X is
applied. This can be due to side effects, which arise when X is applied. There-
fore, Y is required to solve these side effects. Additionally, the <Requires>
relationship can have the meaning, that Y has to be selected as a precondition,
so that X can be applied. An example in the e-Science pattern catalogue for

44

4.2. Pattern Format and Relationships

the <Requires> relationship is found in the low data quality pattern. It is used,
when the data quality of the currently available data sets is not sufficient for
achieving reliable scientific results. This requires an action to solve this prob-
lem and therefore the low data quality pattern has a <Requires> relationships
to the patterns data quality gate and data quality improvement.

<Related To> <Related To> replaces the similar to/alternative relationship, which was de-
scribed in Section 3.2.2. Whereas similar to/alternative connects patterns, which
address a similar problem by using different solutions, the <Related To> rela-
tionship goes beyond this. The <Related To> relationship connects X with Y,
when Y is somehow related to X. For example Y addresses a similar problem
by using a different solution or it is quite common to apply Y, when X is
applied.

<Conflicts> X has a <Conflicts> relationship to Y, when Y solves a similar problem by
using a different solution and they both cannot be applied together. In
addition, X can have a <Conflicts> relationship to Y, even when they do not
solve a similar problem. This just means that these patterns can never be
applied together.

<Refined By> X is refined by Y. This means that Y is a more specialized version of X. For
example Y is specialized for a domain or a specific case. Therefore, the user
should check, if the refining pattern is more suitable.

4.2.3. Structure Elements

Natural Way of
Doing Research

Trial and Error

One Factor at a
Time

Design of
Experiments

Further User
Characteristics

Data Pattern

Data Characteristics

Data Visualization

Data Input

Non-functional
Properties

Reduce Time

Reduce Cost

Long Running
Experiments

Improve
Collaboration

Improve
Collaboration

Ease Access

Improve Working in
Parallel

Used for
Structuring
Only

Pattern

Scientific
Experiment Model

Natural Way of
Doing Research

Data

Non-functional
Properties

Improve
Collaboration

Used for
Structuring
Only

Pattern

Used for
Structuring
Only

Pattern

Used for
Structuring
Only

Pattern

Used for
Structuring
Only

Pattern

Scientific
Experiment Model

Scientific
Experiment Model

Scientific
Experiment Model

Scientific
Experiment Model

Improve
Documentation

<Structure Element Name>

Figure 13.: This shows the visualization of a structure element.

In order to organize the patterns, we need to have additional structure elements. These
structure elements are part of the e-Science pattern catalogue. They increase the usability
by grouping similar patterns. In the textual description, the section build these structure
elements, which organize the patterns. The graphical overview contains elements with dotted
lines, that represent the structure elements as shown in Figure 13.

45

4. e-Science Pattern Catalogue

4.3. Scientific Experiment Model

Natural Way of
Doing Research

Trial and Error

One Factor at a
Time

Design of
Experiments

Further User
Characteristics

Data Pattern

Data Characteristics

Data Visualization

Data Input

Non-functional
Properties

Reduce Time

Reduce Cost

Long Running
Experiments

Improve
Collaboration

Improve
Collaboration

Ease Access

Improve Working in
Parallel

Used for
Structuring
Only

Pattern

Scientific
Experiment Model

Natural Way of
Doing Research

Data

Non-functional
Properties

Improve
Collaboration

Used for
Structuring
Only

Pattern

Used for
Structuring
Only

Pattern

Used for
Structuring
Only

Pattern

Used for
Structuring
Only

Pattern

Scientific
Experiment Model

Scientific
Experiment Model

Scientific
Experiment Model

Scientific
Experiment Model

Improve
Documentation

Figure 14.: This is an high level overview of the e-Science experiment model patterns.

In Figure 14 we give an overview of the structure of this section. This section comprises our
e-Science patterns on the level of the scientific experiment model.

4.3.1. Natural Way of Doing Research

This section comprises the natural way of doing research patterns. Figure 15 gives an overview
of the different research approaches.

Scientific
Experiment Model

Natural Way of
Doing Research

Trial and Error

One-Factor-at-a-
Time

Design of
Experiments

Further User
Characteristics

Varying Analysis
Granularity

Monitoring of
Experiment Status

Suspend and
Resume

Experiment Steering

Modelling Choices

Experiment
Interface

Used for
Structuring
Only

Pattern

Used for
Structuring
Only

Pattern

Figure 15.: This is an overview of the e-Science natural way of doing research patterns.

46

4.3. Scientific Experiment Model

Trial and Error

Name Trial and Error
Classification Scientific Experiment Model
Intent Helps to solve problems or discover new things in an unstructured way.
Problem Scientists know the goal of their research, but they do not know the exact

way for achieving the goal [104]. They try a certain parameter configuration.
If this does not lead to a satisfying result, they want to try a variation of the
parameters. However, they do not follow a methodology and therefore, the
e-Science solution needs to be flexible to support this way of doing research.

Context Scientists that want to discover new things.
Solution Provide an e-Science solution that supports a trial and error approach.
Example Karastoyanova et al. present a workflow environment, which supports the

trial and error approach of scientists for developing experiments [104].
Relationships <Uses> Varying Analysis Granularity

<Uses> Experiment Steering
<Uses> Monitoring of Experiment Status
<Uses> Suspend and Resume

Name Varying Analysis Granularity
Classification Scientific Experiment Model
Intent Helps to build an eExperiment, which is flexible with regard to the depth of

the analysis of data.
Problem How to support the scientists in spontaneously analysing data in more detail?
Context Scientists that require analysis of data on different levels. There are not

enough resources to analyse all the data on the finest level.
Solution Different approaches are possible here. The experiment steering pattern is used,

so the scientists can determine the level of granularity during runtime. The
second possibility is to use the data refinement pattern. Here, the analysis
granularity is determined by the system automatically. The system checks
for patterns in the data and it adapts the analysis granularity accordingly.

Example In [38], dynamic and adaptive workflows for mesoscale meteorology are
described, which use varying analysis granularity.

Relationships <Uses> Data Refinement
<Uses> Experiment Steering

Name Experiment Steering
Classification Scientific Experiment Model
Intent Enables the steering of an eExperiment during runtime by scientists.
Problem During runtime scientists want to steer the eExperiment by changing param-

eters [94].
Context Scientists that want to make changes to the eExperiment during runtime.
Solution First of all the eExperiment status needs to be made visible to the scientists.

The information about the status of the eExperiment is required, in order

47

4. e-Science Pattern Catalogue

to decide which parameters to change. In addition, a mechanism that can
process external parameters during runtime needs to be implemented.

Example Mattoso et al. describe how users can steer experiments during runtime [70].
Relationships <Requires> Monitoring of Experiment Status

<Uses> Suspend and Resume

Name Monitoring of Experiment Status
Classification Scientific Experiment Model
Intent Helps to make the eExperiment status visible for the scientists.
Problem How can the scientists monitor the status of the eExperiment?
Context Scientists, that want to get information about the status of their experiment

during runtime. This is especially important for long running experiments.
Solution Implement a mechanism for making the eExperiment status visible. This can

be done by a textual status update or by visualization of the status.
Example Activities in the workflow model are inked according to their execution state

[104].
Relationships <Uses> Event-based Monitoring

<Uses> Visual Monitoring

Name Suspend and Resume
Classification Scientific Experiment Model
Intent Helps to make the eExperiment more dynamic.
Problem During runtime, the scientists decide to make changes on the eExperiment.

This is especially important for long running experiments, where the likeli-
hood of changes is higher. Therefore, they have to stop the eExperiment and
apply the changes. After that, the eExperiment is run again from the start,
although the changes influenced only parts of the eExperiment.

Context Scientists that want to make changes to an eExperiment after it was started.
Solution Implement a mechanism, that stores intermediate results and makes it possi-

ble to start the modified eExperiment model from intermediate results.
Example Karastoyanova et al. describe the spontaneously re-execution of activities in

workflows within e-Science [107].
Concurrent workflow evolution is introduced by Sonntag et al. in [106].

Relationships -

One-Factor-at-a-Time Approach

Name One-Factor-at-a-Time
Classification Scientific Experiment Model
Intent Helps to understand dependencies between input parameters and outputs

by trying all parameter configurations.
Problem Several input parameters can be modified. Which configuration of the input

parameters leads to the best result?

48

4.3. Scientific Experiment Model

Context The parameters for an experiment can be controlled by the scientists.
Solution Only one input parameter is changed at a time. Then the next input parameter

is changed. By trying all the combinations, one configuration of the input
parameters will lead to the best result [40]. This can be automated, so the
scientists do not have to change the parameters manually. For defining the
range of input parameters the application plug-ins pattern can be used.

Example -
Relationships <Uses> Application Plug-ins

Design of Experiments Approach

Name Design of Experiments
Classification Scientific Experiment Model
Intent Helps to understand dependencies between input parameters and outputs

with minimal effort.
Problem Several input parameters can be modified. How to identify an approximation

for the best configuration of input parameters with less resources?
Context The parameters for an experiment can be controlled by the scientists.
Solution Define different levels for the input parameters. Now the input parameters

cannot take any value, but only the values which are defined by the levels.
This reduces the overall amount of possible input configurations compared
to OFAT. However, since the input parameters do not take all possible values,
the best configuration might not be determined. The design of experiments
approach delivers an approximation of the best configuration of input pa-
rameters. For defining the range of input parameters the application plug-ins
pattern can be helpful.

Example Full factorial design: All possible configurations of the different input parame-
ters with their levels are tested [40].
Fractional factorial design: Only a subset of all levels of input parameters is
used [40].

Relationships <Uses> Application Plug-ins

Further User Characteristics

Name Modelling Choices
Classification Scientific Experiment Model
Intent Helps to create a modelling environment, that fits the needs of the researchers.
Problem Different researchers prefer different ways of modelling. Some researchers

are used to model the experiment on a higher level. For instance biologists
are used to high-level Web portals [94]. Scientists from the domain of physics
are also interested in the low-level computational techniques. In addition, the
physicists typically also want to understand the low level details of high-end
computers which they use for their research [94].

49

4. e-Science Pattern Catalogue

Context An eExperiment that involves different scientists which prefer different ways
of modelling.

Solution Provide a modelling environment, which enables different ways for mod-
elling the same experiment.

Example In [28], workflows can be modelled on a high-level in a first step. The high-
level representation is independent from the actual execution environment.
Later on, once the execution environment is defined, the high-level represen-
tation can be refined. The refinement goes down to an executable workflow,
which also contains all necessary information about the resources. Dependent
on the skills of the scientists, they can choose their level of modelling. The
mapping to the lower level is either done in a (semi-) automated way or by
experts in this area [28].

Relationships -

Name Experiment Interface
Classification Scientific Experiment Model
Intent Helps to choose a suitable interface to the eExperiment.
Problem Some researchers prefer a specific way of interacting with IT systems. E.g.

some physicians prefer commando line based tools and some biologists prefer
high-level Web portals [94].

Context Scientists that require an interface to the eExperiment.
Solution Investigate which kind of interface the different scientists usually work with

and prefer.
Example Some biologist prefer high-level Web portals [94].
Relationships <Uses> Command Line Tools

<Uses> Graphical User Interface

50

4.3. Scientific Experiment Model

4.3.2. Data

This section presents the data patterns on the level scientific experiment model. Figure 16
provides an overview of these patterns.

Scientific
Experiment Model

Data

Data Characteristics

High Dimensional
Data

Massive Data

Heterogeneous
Data

Low Data Quality

Data Visualization

Data Input

Data Files

Data Flow

Database

Data Find Tool

Used for
Structuring
Only

Pattern

Figure 16.: This is an overview of the e-Science data patterns within the level scientific
experiment model.

Data Characteristics Pattern

Name High Dimensional Data
Classification Scientific Experiment Model
Intent Helps to handle high dimensional data.
Problem Data has many dimensions and requires massive resources in order to be

analysed [96].
Context Analysis of high dimensional data within e-Science.
Solution Use algorithms to reduce the dimensions of the data and transform the data

in a format, which eases the data processing.
Example In [96], Ruan et al. introduce Multidimensional Scaling (MDS) to reduce the

dimensions of the data.
Relationships <Uses> Reduce Dimensions

Name Massive Data
Classification Scientific Experiment Model
Intent Helps to handle massive data.
Problem The analysis of massive data on one machine takes too much time. Addition-

ally, the result set can be very huge and this makes it hard to analyse for the

51

4. e-Science Pattern Catalogue

scientists.
Context Scientists want to analyse massive data within e-Science.
Solution The work is distributed to different machines, to reduce the overall data

processing time. In order to analyse the huge result set, the result data
is visualized. Also check, if the pattern varying analysis granularity or data
refinement can be applied.

Example In [38] massive data is analysed.
Relationships <Uses> Data Visualization

<Uses> Master-Worker
<Uses> MapReduce
<Uses> Data Refinement
<Uses> Varying Analysis Granularity

Name Heterogeneous Data
Classification Scientific Experiment Model
Intent Helps to handle data that comes from various sources in various formats.
Problem In e-Science researches reuse data from other researchers. The data format

was defined from the creator of the data. So the data format fits for the
original purpose. If scientists reuse data with many different formats, this
requires intelligent data transformation for minimizing the (manual) effort.

Context Non standardized data is reused for an eExperiment. The data sets have
many different formats.

Solution Use the pattern data transformation and/or the pattern semantic mediation.
Example Heterogeneous data is analysed in [75].
Relationships <Uses> Data Transformation

<Uses> Semantic Mediation

Name Low Data Quality
Classification Scientific Experiment Model
Intent Helps to improve the data quality.
Problem In e-Science researches reuse data from other researchers. Sometimes the

data quality is not sufficient for the use. The data needs to be checked, if the
quality is sufficient. In addition, many computations contain sequences of
format translations and therefore, intermediate results can be incorrect need
to be checked as well [123].

Context There is a high chance that data has low quality and this data is reused for an
eExperiment. Intermediate results are incorrect.

Solution Implement a mechanism that can identify the low data quality. After this, a
mechanism to improve the data quality needs to be implemented.

Example -
Relationships <Requires> Data Quality Gate

<Requires> Data Quality Improvement

52

4.3. Scientific Experiment Model

Data Input

Name Data Files
Classification Scientific Experiment Model
Intent Helps to integrate data into the eExperiment
Problem How to integrate data into the eExperiment?
Context Scientists that want to integrate data into an eExperiment.
Solution The data is stored in data files, which are analysed by the e-Science solution.
Example Scientists upload data files via a Web form to an e-Science application in [75].
Relationships -

Name Data Flow
Classification Scientific Experiment Model
Intent Helps to integrate data into the eExperiment
Problem How to integrate data into the eExperiment?
Context An eExperiment that involves always on scientific instruments that produce a

continuous data flow [127].
Solution Use the data refinement or the instrument control pattern. When there is contin-

uous data flow involved, the specifics for updating the experiment model
need to be considered as well. In this case check, if the model update strategies
pattern can be applied.

Example Brooke et al. describe a continuous data flow workflow application in [18].
Relationships <Uses> Data Refinement

<Uses> Instrument Control
<Uses> Model Update Strategies

Name Database
Classification Scientific Experiment Model
Intent Helps to integrate data into the eExperiment
Problem How to integrate data into the eExperiment?
Context Scientists that want to use data from databases within their eExperiment.
Solution Establish connection to databases and retrieve data.
Example In [25], biologists use databases containing observation data.
Relationships -

Name Data Find Tool
Classification Scientific Experiment Model
Intent Helps the scientists to find appropriate data sets.
Problem Scientists have access to many different data sets. Searching over the file

names is not sufficient for finding the appropriate data set.
Context Scientists, that have access to many different data sets.
Solution Provide a data find tool, which enables the search over meta-data attributes.

53

4. e-Science Pattern Catalogue

Example In [19], scientists have access to gravitational wave data. This data comes from
different gravitational wave data detectors. In this case meta-data attributes
like start and end time of the gravitational wave data recording are available.
The scientists can also search over this meta-data attributes.

Relationships <Requires> Resource Catalogue
<Requires> Resource Discovery

Data Visualization

Name Data Visualization
Classification Scientific Experiment Model
Intent Supports the scientist in understanding data.
Problem Massive data leads to many intermediate and to many end results. If there is

too much data, it is hard to understand the data without a visualization.
Context Scientists that analyse massive data.
Solution Provide a visualization for the data.
Example Newman et al. provide a visualization for scientists in the domain of animal

tracking [75]. The visualization e.g. shows location data for one or more
animals.

Relationships -

4.3.3. Improve Collaboration

This section comprises the improve collaboration patterns. Figure 17 gives an overview of the
different patterns.

Scientific
Experiment Model

Improve
Documentation

Collaboration

Improve
Collaboration

Ease Access

Improve Working in
Parallel

Used for
Structuring
Only

Pattern

Figure 17.: This is an overview of the e-Science improve collaboration patterns.

Name Improve Collaboration
Classification Scientific Experiment Model
Intent Helps to improve the communication between different scientists that work

in an e-Science project.
Problem Different scientists work together in an e-Science project. How to make the

eExperiment comprehensible for all scientists and how to update them with
the latest status of the eExperiment?

54

4.3. Scientific Experiment Model

Context An eExperiment that involves different scientists.
Solution Provide the scientists with a communication platform, where they can discuss

the latest status of the eExperiment or where they can put intermediate results.
Furthermore the involved scientists should know, which other scientists
require which data sets at which point in time. In addition, the ontologies
pattern should be considered in such research projects.

Example Wallis et al. analyse the life cycle of e-Science collaboratory data in [124].
They identify a life cycle of data, that helps to understand the whole data
flow within the collaboration.
In [8], Belloum et al. introduce the virtual laboratory for e-Science. This
framework also improves the sharing across different scientific domains.

Relationships <Uses> Ontologies
<Uses> Communication Platform
<Related To> Ease Access

Name Ease Access
Classification Scientific Experiment Model
Intent Helps to support the different scientists and stakeholders of a research project

to access results, intermediate results and IT systems.
Problem Scientists work together in an inter disciplinary research project. Scientists

and stakeholders have trouble to access results and intermediate results at the
right point in time. Firstly, the results are spread across different machines
and in addition access rights to the machines are difficult to get [109, 124]. In
addition, people fluctuate and other researchers do not have the necessary
rights to access the systems and cannot continue the research [109].

Context An e-Science project that involves different IT systems. Additionally, it is
expected that scientists join the project and leave the project.

Solution Identify the life cycle of data. Then identify which persons need to have
access to which data sets. Finally, suitable access rights can be granted. Use
the role based access pattern in combination with the single sign on pattern.

Example In an international cancer research project, role based access was implemented
[109].

Relationships <Uses> Single Sign-On
<Uses> Role Based Access
<Related To> Resource Catalogue

Name Improve Working in Parallel
Classification Scientific Experiment Model
Intent Supports scientist to work in parallel on one eExperiment.
Problem Scientists work on one eExperiment. They want to work in parallel on things

like eExperiment model or IT model. This needs to be supported.
Context An eExperiment that involves different scientists, that want to work in paral-

lel.

55

4. e-Science Pattern Catalogue

Solution Consider the required parallel working, when designing an e-Science solu-
tion.

Example If scientists want to work in parallel on a model, this could be realized
with different model versions. In [106], the authors introduce a concept
for migrating a running workflow instance to a new model. This is not an
example for a full solution to the parallel working problem, but it can be used
as a starting point.

Relationships -

Name Improve Documentation
Classification Scientific Experiment Model
Intent Helps to improve the documentation and therefore, the reproducibility of

results.
Problem Results of eExperiments are published, but not the different models and data

sets, that were used to achieve the results. Other scientists cannot easily
reproduce the results.

Context Scientists, that want to improve the documentation of the eExperiment.
Solution Implement a mechanism to document the eExperiment on different levels.

This involves e.g. the storing of meta-data, intermediate results, end results
and the used calculations.

Example In [125], a provenance-aware geographic information system is described.
Relationships <Uses> Data Provenance

4.3.4. Non-functional Properties

Figure 18 displays the non-functional properties patterns, which are presented in this section.

Natural Way of
Doing Research

Trial and Error

One Factor at a
Time

Design of
Experiments

Further User
Characteristics

Data Pattern

Data Characteristics

Data Visualization

Data Input

Non-functional
Properties

Reduce Time

Reduce Cost

Long Running
Experiments

Improve
Collaboration

Improve
Collaboration

Ease Access

Improve Working in
Parallel

Used for
Structuring
Only

Pattern

Scientific
Experiment Model

Natural Way of
Doing Research

Data

Non-functional
Properties

Improve
Collaboration

Used for
Structuring
Only

Pattern

Used for
Structuring
Only

Pattern

Used for
Structuring
Only

Pattern

Used for
Structuring
Only

Pattern

Scientific
Experiment Model

Scientific
Experiment Model

Scientific
Experiment Model

Scientific
Experiment Model

Improve
Documentation

Figure 18.: This is an overview of the e-Science non-functional properties patterns.

Name Reduce Time
Classification Scientific Experiment Model
Intent Helps to reduce the overall time span of an eExperiment.
Problem Scientists want to shorten the time to new knowledge.

56

4.3. Scientific Experiment Model

Context Scientists that want to conduct an eExperiment.
Solution Use design of experiments to reduce the amount of iterations of the eExperi-

ment. In addition, a parallel data processing pattern can help to reduce the
processing time.

Example Parallelism is exploited to reduce processing time in [9].
Relationships <Uses> Design of Experiments

<Uses> Master-Worker
<Uses> MapReduce
<Uses> Single Program Multiple Data

Name Reduce Cost
Classification Scientific Experiment Model
Intent Helps to reduce the overall cost of an eExperiment.
Problem The cost is too high or budget is too low.
Context Scientists that want to conduct an eExperiment.
Solution Use design of experiments to reduce the amount of iterations of the eExperiment.

In addition, use the infrastructure as a service pattern to reduce cost for the
infrastructure.

Example Yuan et al. develop a cost-effective datasets storage strategy in [129].
Relationships <Uses> Design of Experiments

<Uses> Infrastructure as a Service

Name Long Running Experiments
Classification Scientific Experiment Model
Intent Helps to design a stable long running eExperiment
Problem Software as well as hardware might fail. With increasing runtime of an

eExperiment, there is a higher chance of a failure and there is a higher chance,
that the scientist wants to make changes on the eExperiment.

Context Scientists that want to conduct a long running eExperiment.
Solution Use the patterns partition-level failure recovery. If a failure occurs, only the

current partition has to be restarted. For increasing the flexibility of the
eExperiment to changes by scientists use the suspend and resume pattern.

Example Long running workflows are introduced in [28].
Relationships <Requires> Partition-Level Failure Recovery

<Requires> Suspend and Resume
<Uses> Static Partitioning

57

4. e-Science Pattern Catalogue

4.4. IT Experiment Model

Figure 19 depicts the structure of the e-Science patterns on the level IT experiment model, which
are introduced in this section.

IT Model

Simple Scripts and
Control

Functionality

Workflows

Reliability

Partition-Level
Failure Recovery

Checkpoint
Libraries

Runtime
Optimization

Task Clustering

Used for
Structuring
Only

Pattern

Application Plug-ins

Static Optimization

Workflow Pruning

Workflow Ordering

Workflow
Substitution

Static Partitioning

Abstract Workflows

Modelling

Abstract to
Concrete Workflow

Mapping

Data

Data Provenance

Data Heterogeneity
Handling

Semantic Mediation

Data
Transformation

Massive Data Input
Handling

Data Refinement

Instrument Control

Reduce Dimensions

Data Processing

Data Parallelism

Map Reduce

Data Pipeline

Ontologies

Monitoring Data

Bi-directional
Channel

Access and
Interfaces

Single Sign On

Role Based Access

GUI

Command Line
Tools

Communication
Platform

Integration of IT
Systems/legacy

applications

Tight Coupling

Loose Coupling

Open Source
Technologies

Resource
Management

Data Organizing

Data Discovery

Data Selection

Infrastructure
Organizing

Infrastructure
Discovery

Infrastructure
Selection

Data Management

Infrastructure
Management

IT Model

Used for
Structuring
Only

Pattern

Single Program
Multiple Data

Master Worker

Message Passing
Interface

Reuse Workflow
Fragments

Reuse of Results

Data Quality Gate

Data Quality
Data Quality

Improvement

Miscellaneous

Event-based

Visual Monitoring

IT Model

Model Update
Strategies

IT Experiment
Model

Simple Scripts & Control
Functionality

Workflows

Application Plug-ins

Used for
Structuring
Only

Pattern

Workflows

Reliability

Runtime
Optimization

Static Optimization

Modelling

IT EModel

Used for
Structuring
Only

Pattern

Data

Data Heterogeneity
Handling

Massive Data Input
Handling

Data Processing

Monitoring Data

Data Quality

IT Model

Used for
Structuring
Only

Pattern

Used for
Structuring
Only

Pattern

Data

Resource Management

Access and Interfaces

Resource Catalogue

Resource Discovery

Resource Selection

Resource
Management

IT Experiment
Model

Used for
Structuring
Only

Pattern

Access and
Interfaces

Single Sign-On

Role Based Access

GUI

Command Line
Tools

IT Experiment
Model

Used for
Structuring
Only

Pattern

Used for
Structuring
Only

Pattern

Communication
Platform

Miscellaneous
Model Update

Strategies

IT Experiment
Model

Miscellaneous

Figure 19.: This shows the different groups of patterns within the e-Science IT experiment
model patterns.

4.4.1. Simple Scripts & Control Functionality

Name Simple Scripts & Control Functionality
Classification IT Experiment Model
Intent Helps to perform e-Science with little programming.
Problem How to perform e-Science with little programming for the end-user?
Context Scientists, that require automation for their eExperiment.
Solution Scientists have typically software code, e.g. C/C++ or Fortran code, that

they run on computational resources [94]. In order to control the execution
of these codes, they use simple scripts that provide control functionalities.
These control functionalities are for example If-Then-Else, Do-N or Do Repeat.

Example In [94], an e-Science application is described, that uses the Do-N functionality.
The output of the previous job is used as input to the subsequent job.

Relationships -

58

4.4. IT Experiment Model

4.4.2. Application Plug-ins

Name Application Plug-ins
Classification IT Experiment Model
Intent Helps to perform e-Science
Problem How to set parameters for an eExperiment without programming for the

end-user?
Context Scientists that want to create an eExperiment. These scientists want to control

the parameters but they do not want to write any scripts or code.
Solution In [94], Riedel et al. define application plug-ins, that make it easy to e.g.

submit jobs to Grid infrastructures. In addition, job specific options or the
configuration options of the scientific applications can be set via a convenient
Graphical User Interface (GUI). For instance controls like check-boxes or lists
are used to selected the number of nodes and processors for a job.

Example An example is the GridSphere Web portal [77].
Relationships <Uses> Graphical User Interface

4.4.3. Workflows

This section introduces the workflow patterns, which are also shown in Figure 20.

Name Workflows
Classification IT Experiment Model
Intent Helps to perform e-Science
Problem How to achieve a high automation of an eExperiment, which requires data

management and computational tasks in conjunction with several numerous
control functionalities [94]?

Context Scientists that want to create an eExperiment with a high degree of automa-
tion.

Solution Use workflows [94].
Example Quantitative structure-activity relationships (QSAR) workflows are used in

the domain of healthcare [94].
Relationships -

Modelling

Name Abstract Workflows
Classification IT Experiment Model
Intent Helps the end user to model a workflow on a high level without the need of

programming.
Problem How to effectively create workflows without programming?
Context Scientists want to create workflows for an eExperiment.
Solution Oinn et al. point out, that in such a case, a useful high-level representation

of the workflows to the scientists is required. The scientists should be able

59

4. e-Science Pattern Catalogue

IT Experiment
Model

Workflows

Reliability
Partition-Level

Failure Recovery

Runtime
Optimization

Task Clustering

Static Optimization

Workflow Pruning

Workflow Ordering

Workflow
Substitution

Static Partitioning

Abstract Workflows

Modelling

Abstract to
Concrete Workflow

Mapping

Reuse Workflow
Fragments

Reuse of Results

Used for
Structuring
Only

Pattern

Semantic Workflow
Composing Support

Figure 20.: This is an overview of the e-Science workflow patterns.

to coordinate a variety of resources. Especially, it is important to present the
workflows from a problem-oriented view. The scientists are used to think in
terms of the data, which is consumed and produced. According to this data,
they want to connect the workflow components [81].

Example In [81], the architecture of a workflow system in the domain of life science is
presented. For the end-user abstraction level the Simple Conceptual Unified
Flow Language (SCUFL) is used. SCUFL is a workflow language, that links
applications from a data flow point of view. It defines a graph, that reflects
the data interactions between different components [80]. The scientists also
have to choose, which analysis they want to do on the selected data. Rather
than using services directly for the analysis, Oinn et al. added another layer,
which provides shallow descriptions of the services [81]. This helps to hide
the low level details from the scientists.

Relationships <Requires> Abstract To Concrete Workflow Mapping
<Related To> Reuse Workflow Fragments

60

4.4. IT Experiment Model

Name Abstract to Concrete Workflow Mapping
Classification IT Experiment Model
Intent Helps to transform abstract workflows to executable workflows.
Problem High level workflows cannot be executed. They need to be mapped to

executable workflows.
Context Scientists that model abstract workflows within e-Science.
Solution Implement a mapping from abstract to concrete workflows.
Example Oinn et al. use SCUFL at the end-user abstraction level [81]. SCUFL has an

extensible processor plug-in architecture. In these processors, the concrete
mappings to the lower level are implemented. For instance, a processor can
use a Java Database Connectivity (JDBC) connection to access predefined
queries over a relational database [81].

Relationships -

Name Reuse Workflow Fragments
Classification IT Experiment Model
Intent Helps to fasten the creation of workflows.
Problem How to fasten the creation of workflows?
Context Scientists that want to create a workflow.
Solution Provide workflow fragments to the scientists, so they can reuse them.
Example Hategan et al. describe a workflow component repository, which enables

the reuse of components. These components can either be maintained by a
community of researchers or by a single researcher [64].

Relationships <Uses> Resource Catalogue
<Uses> Resource Discovery

Name Semantic Workflow Composing Support
Classification IT Experiment Model
Intent Helps to reduce the manual effort for the scientists when composing different

services into a workflow.
Problem How to reduce the manual effort for the scientists when composing different

services into a workflow?
Context Scientists that want to create a workflow by composing services, that require

semantically and structurally different data sets [16].
Solution Bowers et al. propose to annotate the input and output of services with a

structural type, a semantic type and a registration mapping. Allowable data
values for output and input are described in the structural type. The seman-
tic type contains conceptual information of input and output. Properties
and concepts of an ontology express the semantic input and output. The
registration mapping links the structural types with the semantic types [16].

Example In [16], a framework that provides semantic workflow composing support is
presented.

Relationships <Uses> Semantic Mediation
<Requires> Ontologies

61

4. e-Science Pattern Catalogue

Static Optimization

Name Workflow Pruning
Classification IT Experiment Model
Intent Helps to preoptimize the runtime execution.
Problem How to shorten the execution time of a workflow?
Context A workflow that contains elements which do not contribute to the final result.
Solution Implement a mechanism, that detects components of a workflow, which do

not contribute to the final result [72]. This can be e.g. redundant components
within a workflow.

Example -
Relationships -

Name Workflow Ordering
Classification IT Experiment Model
Intent Helps to preoptimize the runtime execution.
Problem How to shorten the execution time of a workflow?
Context A workflow, in which the order of tasks is not optimized yet.
Solution Implement a mechanism, that automatically reorders the components of a

workflow in order to improve efficiency [72].
Example -
Relationships -

Name Workflow Substitution
Classification IT Experiment Model
Intent Helps to preoptimize the runtime execution.
Problem How to shorten the execution time of a workflow?
Context A workflow that contains inefficient tasks.
Solution Implement a mechanism, that can detect inefficient components within a

workflow. These inefficient components can be replaced by more efficient
components. In addition, some computations can be replaced by results of
other eExperiments, that contain the same calculation.

Example A finite-element solver gets a sparse matrix as input, which is diagonally
dominant. The basic implementation uses a Jacobi Solver. With the help of
workflow substitution, the Jacobi Solver is replaced by a Conjugate Gradient
Solver that it is more efficient for such a matrix [72].

Relationships <Uses> Reuse of Results

Name Reuse of Results
Classification IT Experiment Model
Intent Helps to preoptimize the runtime execution by reusing result that were

previously calculated.
Problem How to shorten the runtime of the workflow execution?

62

4.4. IT Experiment Model

Context A workflow that produces data sets. Data products from other eExperiments
are available and can be reused.

Solution Determine, which already available data products can be reused in the work-
flow, so that they do not have to be recalculated.

Example Deelman et al. describe the Pegasus system, which replaces calculation steps
with data products from previously executed workflows [28]. First of all, a
data catalogue is required. It stores results and intermediate results of other
eExperiments. Before the workflow is executed, Pegasus consults the data
catalogue in order to determine the already available data products. If data
products are available, they replace the corresponding components in the
workflow. If the final result is already available, the workflow is not executed
at all [28].

Relationships <Related To> Data Provenance
<Related To> Resource Catalogue

Name Static Partitioning
Classification IT Experiment Model
Intent Helps to reduce the overall runtime of a workflow in a dynamic environment.
Problem In dynamic execution environments it is hard to plan which resources are

available in the future. In the future, the resources might be overloaded or
cannot be accessed anymore [28].

Context Long running workflows in a dynamic execution environment.
Solution The workflow is partitioned before execution. This is called static partitioning.

For each partition, the WfMS is called and maps the portions inside the
partition at a time to resources. This is also called deferred mapping [28].

Example -
Relationships -

Runtime Optimization

Name Task Clustering
Classification IT Experiment Model
Intent Reduce system overheads for small task computation and optimize the overall

workflow execution time.
Problem Some workflows contain very fine-grained tasks. The scheduling mechanism

needs more resources than the computation of the small single task.
Context Workflow that contains many fine computational granularity tasks.
Solution Merging multiple small tasks into a single job. This reduces the scheduling

overhead [22].
Example Chen et al. describe different methods for balanced task clustering for scien-

tific workflows [22].
Relationships -

63

4. e-Science Pattern Catalogue

Reliability

Name Partition-Level Failure Recovery
Classification IT Experiment Model
Intent Helps to minimize the overall runtime, because when a failure occurs not the

whole workflow needs to be restarted.
Problem How to handle long running workflows that can fail?
Context A long running workflow that might fail.
Solution Partition the workflow. If the tasks within a partition are executed, the pa-

rameters are saved. Also the intermediate results that belong to this partition
need to be stored. If a failure happens inside the partition, only the partition
has to be restarted and not the whole workflow [28].

Example In [28], Deelman et al. implement a partition-level failure recovery in Pegasus.
Relationships -

4.4.4. Data

This section comprises the data patterns on the level IT experiment model. They are shown in
Figure 21.

Data Quality

Name Data Quality Gate
Classification IT Experiment Model
Intent Helps to detect data quality issues in the used data.
Problem How to determine, if the data quality is sufficient for the eExperiment?
Context Data quality issues within an eExperiment.
Solution Implement a mechanism, that checks the data quality and makes low data

quality visible.
Example In [25], several algorithms are used to detect data quality issues in biological

observation databases.
Relationships <Related To> Data Quality Improvement

Name Data Quality Improvement
Classification IT Experiment Model
Intent Helps to improve the quality of the used data.
Problem Data quality gates detect data quality issues. The data quality needs to be

improved in order to achieve reliable scientific conclusions [25].
Context Data quality issues within an eExperiment.
Solution Here several solutions are possible. Ideally, the quality of the source data can

be improved. In e-Science this can be hard, since data from other researchers
is reused. If the source data quality is sufficient and the intermediate results
are not correct, the data quality can be improved by changing the computation
in between.

64

4.4. IT Experiment Model

Used for
Structuring
Only

Pattern

Data

Data Provenance

Data Heterogeneity
Handling

Semantic Mediation

Data
Transformation

Massive Data Input
Handling

Data Refinement

Instrument Control

Reduce Dimensions

Data Processing

Master-Worker

MapReduce

Data Pipeline

Ontologies

Monitoring Data

Bi-directional
Channel

Single Program
Multiple Data

Message Passing
Interface

Data Quality Gate

Data Quality
Data Quality

Improvement

Event-based
Monitoring

Visual Monitoring

IT Experiment
Model

Figure 21.: This is an overview of the e-Science data patterns within the level IT experiment
model.

65

4. e-Science Pattern Catalogue

Example In [25], Cugler et al. introduce a geographical approach for improvement of
meta-data quality in biological observation databases.

Relationships <Uses> Data Quality Gate

Data Heterogeneity Handling

Name Data Transformation
Classification IT Experiment Model
Intent Helps to reduce the manual effort for data transformation.
Problem Scientists in e-Science use several data input formats and they apply several

calculation steps on this data. A lot of work has to be undertaken, to adapt
the calculation logic for every input format and/or transform the data manu-
ally into suitable formats. It gets even worse, when the adaptation is done
manually.

Context Scientists, that apply analysis steps to heterogeneous data.
Solution A sophisticated solution is the use of the semantic mediation pattern. Some-

times, the definition of an intermediate format might be sufficient. Map all
input data to this format first and then do the analysis based on the interme-
diate format.

Example Deelman et al. use an intermediate format for transforming mosaics in the
domain of astronomy [9].

Relationships <Uses> Semantic Mediation

Name Semantic Mediation
Classification IT Experiment Model
Intent Helps to reduce the manual effort for integrating heterogeneous data into the

eExperiment.
Problem Scientists in e-Science reuse heterogeneous data from other researchers. Be-

fore they can use the data, they need to put lots of effort into the integration
and synthesizing of the data [16].

Context Scientists, that reuse heterogeneous data within e-Science.
Solution Annotate the data with semantic types. Properties and concepts of an ontol-

ogy express the semantic types. Based on these semantic types, the data can
be transformed between heterogeneous local schemas into a global schema
[16].

Example In [16], an ontology-driven framework for data transformation in scientific
workflows is presented.

Relationships <Requires> Ontologies

Name Ontologies
Classification IT Experiment Model
Intent Helps to formalize knowledge as a hierarchy of concepts within a domain.

66

4.4. IT Experiment Model

Problem How to formalize knowledge?
Context Scientists that require a higher degree of automation for data transformations

within their eExperiment.
Solution Create an ontology for the domain. Studer et al. define an ontology as "a

formal, explicit specification of a shared conceptualization" [114]. A conceptu-
alization is an abstract model of the relevant concepts of a phenomenon in the
world. The types of concepts that are used and the usage constraints have to
be explicitly defined. In addition, the ontology has to be formal, which means
machine readable [114].

Example Bowers et al. adopt the Web Ontology Language (OWL) for expressing
ontologies within the SEEK framework [16].
Another example is Biological PAthways eXchange (BiPAX)1, that is based on
the Web Ontology Language Description Logic (OWL DL).

Relationships -

Massive Data Input Handling

Name Data Refinement
Classification IT Experiment Model
Intent Helps to analyse data in depth during runtime based on external events.
Problem There is massive data that should be analysed. For reasons like cost or

resource limitations, not all the data can be analysed on the most granular
level.

Context A massive data stream should be analysed
Solution The data is analysed on a higher level at the beginning. If interesting patterns

are detected inside the data stream, the interesting portion of the stream
gets analysed in more detail. Therefore, additional resources need to be
provisioned and/or new analysis logic components need to be started.

Example In [38], dynamic and adaptive workflows for mesoscale meteorology are
described, which use data refinement.

Relationships <Related To> Instrument Control
<Uses> Infrastructure as a Service

Name Instrument Control
Classification IT Experiment Model
Intent Helps to detect important information in a data stream that is coming from

instruments. The data generation of the instruments is controlled by the
results of the data analysis.

Problem There is massive data that should be analysed. For reasons like cost or
resource limitations not all the data can be analysed in detail.

Context Scientists that want to analyse massive data, which is produced by instru-
ments. In addition, the instrument analysis granularity can be adjusted.

1http://www.biopax.org/

67

http://www.biopax.org/

4. e-Science Pattern Catalogue

Solution The data is analysed on a higher level at the beginning. If interesting patterns
are detected inside the data stream, feedback is passed to the instruments,
which generate the data stream. Because of the feedback the sensors generate
more and/or different data.

Example In [38], dynamic and adaptive workflows for mesoscale meteorology are
described, which are using data refinement, that is based on instrument
control.

Relationships <Uses> Infrastructure as a Service
<Related To> Data Refinement

Name Reduce Dimensions
Classification IT Experiment Model
Intent Helps to reduce the dimensions in high dimensional data.
Problem The used data has many dimensions and requires massive resources in order

to be analysed [96].
Context Scientists that use high dimensional data sets for their eExperiment.
Solution Implement techniques to reduce the dimensions so the data can be analysed

easier afterwards.
Example In [96], Ruan et al. reduce dimensions of the data by using Multidimensional

Scaling (MDS) and an interpolation algorithm, that uses a deterministic
annealing technique.

Relationships -

Data Processing

Name Master-Worker
Classification IT Experiment Model
Intent Helps to speed up the processing of large datasets.
Problem How to speed up the processing of large datasets?
Context Computation that involves tasks, which can be run concurrently or data that

can be processed concurrently. Furthermore, there are no dependencies in the
computations and there is no communication between tasks required [44].

Solution Use a master-worker technique. The master splits up the work according to
the number of workers. A worker receives its task, processes the task and
returns the result to the master [44]. However, if a worker goes down, he stops
working [60]. The work that is left undone, is in an unknown stage. Please
check, if the MapReduce pattern is applicable, that solves the just described
issue by a more collaborative effort between master and workers.

Example The master-worker technique is used for a signal processing workflow in
pulsar astronomy [18].

Relationships <Refined By> MapReduce

68

4.4. IT Experiment Model

Name MapReduce
Classification IT Experiment Model
Intent Helps to speed up the processing of large datasets.
Problem How to speed up the processing of large datasets?
Context Within e-Science, scientists want to analyse a very large amount of data sets.
Solution According to Fehling et al., the solution can be split into four parts [32]. First,

the data set is retrieved. After this, the data set is split into smaller portions,
which is called mapping. Then, distributed independent components process
the small data portions. In the last step, the individual results for the small
data chunks are consolidated. This is called reducing. In contrast to the master-
worker pattern, the work in MapReduce is done in a more collaborative effort
between master and workers [60]. In addition, no portion of work is left
unfinished or forgotten.

Example Dean et al. give an overview of MapReduce in [27].
Relationships <Uses> Cluster

<Uses> Data Pipeline
<Uses> Master-Worker

Name Data Pipeline
Classification IT Experiment Model
Intent Helps to use MapReduce without the requirement to load the whole data set

into the cluster before the analysis starts.
Problem Many MapReduce implementations like Hadoop have the restriction, that the

entire input dataset needs to be loaded into the cluster, before any analysis
can take place [130].

Context Within e-Science, scientists want to analyse a very large amount of data sets.
They decide to use MapReduce.

Solution Use a data pipeline approach to MapReduce. This approach enables the
overlap of data loading and data processing. Therefore, large data sets do not
have to be fully loaded into the cluster, before the processing can start.

Example Zeng et al. explain the data pipeline approach for MapReduce in [130].
Relationships <Related To> Cluster

Name Single Program Multiple Data
Classification IT Experiment Model
Intent Helps to organize a parallel program.
Problem How to organize a parallel program?
Context Within e-Science, scientists want to analyse a very large amount of data sets.
Solution According to [71], the Single Program Multiple Data (SPMD) technique is

the typical approach for organizing a parallel program. Each node within a
parallel computer contains the same single program. However, the copies of
the program run independently from each other.

Example SPMD is used in [9].
Relationships -

69

4. e-Science Pattern Catalogue

Name Message Passing Interface
Classification IT Experiment Model
Intent Helps to write parallel programs.
Problem How to write parallel programs?
Context Parallel data processing is required within an eExperiment.
Solution Use the MPI specification. MPI aims at the message-passing parallel program-

ming model. Data is exchanged in a cooperative manner between processes.
To be more exact, one process sends the data explicitly and the other process
receives the data explicitly [5].

Example MPI is used for astronomy workflows in [9].
Relationships <Uses> Single Program Multiple Data

<Uses> Master-Worker
<Uses> Cluster

Name Data Provenance
Classification IT Experiment Model
Intent Helps to create a reproducible eExperiment.
Problem How to make an eExperiment more reproducible and understandable?
Context Scientists that want to increase the reproducibility of their eExperiment.
Solution The system should log which data sets are used, which parameters are set

by the scientists and which steps are applied in order to derive the result. In
addition, persistent identifiers of intermediate results need to be logged as
well. Furthermore, the scientists should be able to generate reports with all
relevant provenance and runtime information. These reports can be shared
with other scientists so that they can understand the eExperiment better.

Example Wang et al. implement a provenance aware geographic information system in
[125]. Simmhan et al. present a taxonomy of data provenance techniques in
[103]. The provenance approaches are categorized with respect to the reason
for provenance, what they actually describe and how provenance information
is stored and presented. In addition, the provenance dissemination builds
another category.
Another categorization scheme for provenance can be found in [41]. Here,
provenance model, query and manipulation functionality and storage model and
recording strategy build the three main categories of the scheme.

Relationships -

Monitoring Data

Name Event Based Monitoring
Classification IT Experiment Model
Intent Helps to monitor the execution of workflows.
Problem How to monitor the workflow execution?
Context Scientists, that want to monitor the execution of a workflow.

70

4.4. IT Experiment Model

Solution Provide the scientists with event-based monitoring of the workflow execution.
Example Oinn et al. created an event-based notification for the end user. They imple-

mented a logging mechanism, which captures when for example a workflow
activity is started or when an activity fails. All these messages are trans-
formed into XML document format. The results are displayed in a tabular
form for the end user [81].

Relationships -

Name Visual Monitoring
Classification IT Experiment Model
Intent Helps to monitor the execution of very complex workflows.
Problem How to monitor the execution of complex workflows, where an event-based

notification is not sufficient?
Context Scientists, that want to monitor the execution of a complex workflow.
Solution Provide a visualization, that shows the scientists at a look the current status

of the execution [81].
Example -
Relationships <Uses> Data Visualization

<Related To> Bi-directional Channel

Name Bi-directional Channel
Classification IT Experiment Model
Intent Enables the steering of an eExperiment during runtime by scientists.
Problem During runtime scientists want to steer the eExperiment by changing param-

eters [94].
Context Scientists that want to dynamically change parameters during runtime of an

eExperiment.
Solution Establish a bi-directional channel. Scientific data is transferred to a scientific

visualization. In the visualization, the computation status can be observed
by the scientists. Then the scientists can set steering parameters. After that
the steering parameters are transferred back from the visualization to the
simulation.

Example Existing frameworks supporting bi-directional channels are gVID [59], e-Viz
[91] and Collaborative Online Visualization and Steering (COVS) in the context
of Uniform Interface to Computing Resources (UNICORE)2 [93].
In [39], Gibbon et. al implement a bi-directional channel for the Pretty Effi-
cient Parallel Coulomb Solver (PEPC) plasma physics code.

Relationships -

2http://www.unicore.eu/

71

http://www.unicore.eu/

4. e-Science Pattern Catalogue

4.4.5. Resource Management

In Figure 22 an overview of the resource management patterns is given. A resource can for
example be data, computing power, workflow fragments, storage or services.

IT Model

Simple Scripts and
Control

Functionality

Workflows

Reliability

Partition-Level
Failure Recovery

Checkpoint
Libraries

Runtime
Optimization

Task Clustering

Used for
Structuring
Only

Pattern

Application Plug-ins

Static Optimization

Workflow Pruning

Workflow Ordering

Workflow
Substitution

Static Partitioning

Abstract Workflows

Modelling

Abstract to
Concrete Workflow

Mapping

Data

Data Provenance

Data Heterogeneity
Handling

Semantic Mediation

Data
Transformation

Massive Data Input
Handling

Data Refinement

Instrument Control

Reduce Dimensions

Data Processing

Data Parallelism

Map Reduce

Data Pipeline

Ontologies

Monitoring Data

Bi-directional
Channel

Access and
Interfaces

Single Sign On

Role Based Access

GUI

Command Line
Tools

Communication
Platform

Integration of IT
Systems/legacy

applications

Tight Coupling

Loose Coupling

Open Source
Technologies

Resource
Management

Data Organizing

Data Discovery

Data Selection

Infrastructure
Organizing

Infrastructure
Discovery

Infrastructure
Selection

Data Management

Infrastructure
Management

IT Model

Used for
Structuring
Only

Pattern

Single Program
Multiple Data

Master Worker

Message Passing
Interface

Reuse Workflow
Fragments

Reuse of Results

Data Quality Gate

Data Quality
Data Quality

Improvement

Miscellaneous

Event-based

Visual Monitoring

IT Model

Model Update
Strategies

IT Experiment
Model

Simple Scripts & Control
Functionality

Workflows

Application Plug-ins

Used for
Structuring
Only

Pattern

Workflows

Reliability

Runtime
Optimization

Static Optimization

Modelling

IT EModel

Used for
Structuring
Only

Pattern

Data

Data Heterogeneity
Handling

Massive Data Input
Handling

Data Processing

Monitoring Data

Data Quality

IT Model

Used for
Structuring
Only

Pattern

Used for
Structuring
Only

Pattern

Data

Resource Management

Access and Interfaces

Resource Catalogue

Resource Discovery

Resource Selection

Resource
Management

IT Experiment
Model

Used for
Structuring
Only

Pattern

Access and
Interfaces

Single Sign On

Role Based Access

GUI

Command Line
Tools

IT Experiment
Model

Used for
Structuring
Only

Pattern

Figure 22.: This is an overview of the e-Science resource management patterns.

Name Resource Catalogue
Classification IT Experiment Model
Intent Helps to organize resources.
Problem How to organize the resources?
Context Scientists that want to use resources.
Solution Provide a resource catalogue, where information about resources is stored.

Since resources in distributed environments are changing, the resource cata-
logue cannot be static. It rather has to contain up to date information about
the resources. For example, the resource catalogue should contain availability
and capability information about computing resources.

Example In [69], a site catalogue is used, which describes available computing re-
sources.

Relationships -

Name Resource Discovery
Classification IT Experiment Model
Intent Helps to discover resources.
Problem How to discover resources?
Context Scientists that want to use resources. A resource catalogue that contains

information about resources is available.
Solution Query the resource catalogue. The resource catalogue is not static, but con-

tains up to date information about services, computing resources, etc. The
query can be performed manually by the scientist or in an automated way by

72

4.4. IT Experiment Model

the IT system. As a result, the resource catalogue delivers a list of suitable
resources.

Example In [81], a scientist oriented approach for service discovery is presented. The
scientists can use their view on services and the domain for searching. The
final choice of which service to choose is made by the scientists.

Relationships -

Name Resource Selection
Classification IT Experiment Model
Intent Helps to select a suitable resource.
Problem Which resources to select?
Context A list of resources is available from which one resource has to be selected.
Solution The selection can either be done manually by the scientists or with an al-

gorithm by the IT system. The algorithm can select the resource based on
different characteristics like availability or the location [28].

Example In [81], a scientist oriented approach for service discovery is presented. The
final choice of which service to choose is made by the scientist.

Relationships -

4.4.6. Access and Interfaces

Figure 23 shows the access and interfaces patterns.

IT Model

Simple Scripts and
Control

Functionality

Workflows

Reliability

Partition-Level
Failure Recovery

Checkpoint
Libraries

Runtime
Optimization

Task Clustering

Used for
Structuring
Only

Pattern

Application Plug-ins

Static Optimization

Workflow Pruning

Workflow Ordering

Workflow
Substitution

Static Partitioning

Abstract Workflows

Modelling

Abstract to
Concrete Workflow

Mapping

Data

Data Provenance

Data Heterogeneity
Handling

Semantic Mediation

Data
Transformation

Massive Data Input
Handling

Data Refinement

Instrument Control

Reduce Dimensions

Data Processing

Data Parallelism

Map Reduce

Data Pipeline

Ontologies

Monitoring Data

Bi-directional
Channel

Access and
Interfaces

Single Sign On

Role Based Access

GUI

Command Line
Tools

Communication
Platform

Integration of IT
Systems/legacy

applications

Tight Coupling

Loose Coupling

Open Source
Technologies

Resource
Management

Data Organizing

Data Discovery

Data Selection

Infrastructure
Organizing

Infrastructure
Discovery

Infrastructure
Selection

Data Management

Infrastructure
Management

IT Model

Used for
Structuring
Only

Pattern

Single Program
Multiple Data

Master Worker

Message Passing
Interface

Reuse Workflow
Fragments

Reuse of Results

Data Quality Gate

Data Quality
Data Quality

Improvement

Miscellaneous

Event-based

Visual Monitoring

IT Model

Model Update
Strategies

IT Experiment
Model

Simple Scripts & Control
Functionality

Workflows

Application Plug-ins

Used for
Structuring
Only

Pattern

Workflows

Reliability

Runtime
Optimization

Static Optimization

Modelling

IT EModel

Used for
Structuring
Only

Pattern

Data

Data Heterogeneity
Handling

Massive Data Input
Handling

Data Processing

Monitoring Data

Data Quality

IT Model

Used for
Structuring
Only

Pattern

Used for
Structuring
Only

Pattern

Data

Resource Management

Access and Interfaces

Resource Catalogue

Resource Discovery

Resource Selection

Resource
Management

IT Experiment
Model

Used for
Structuring
Only

Pattern

Access and
Interfaces

Single Sign-On

Role Based Access

Graphical User
Interface

Command Line
Tools

IT Experiment
Model

Used for
Structuring
Only

Pattern

Used for
Structuring
Only

Pattern

Communication
Platform

Miscellaneous
Model Update

Strategies

IT Experiment
Model

Miscellaneous

Figure 23.: This is an overview of the e-Science access and interfaces patterns.

Name Single Sign-On
Classification IT Experiment Model
Intent Speeds up the research process and increases the acceptance of the eExperi-

ment solution.

73

4. e-Science Pattern Catalogue

Problem Users need to key in a username and a password for every IT system, which
they use for the eExperiment. This takes too much time [94].

Context A user wants to access different IT systems within an eExperiment.
Solution Implement a mechanism, where the user has to sign on once. After that, this

mechanism handles the sign-on to the different IT systems.
Example Riedel et al. describe a single sign-on solution, that is based on X.509 certifi-

cates of scientists for authorization [94].
Relationships -

Name Role Based Access
Classification IT Experiment Model
Intent Ease of user access management.
Problem Scientists and stakeholders need to have access to IT Systems. Different

people need to have similar access rights within the IT systems. It requires
much effort to grant each user every single right.

Context Users, who require different access rights for an IT system. There exist several
users, which require the same rights.

Solution Implement role based access. Rights are granted to roles first. Then a specific
user gets the role and therefore the rights, that are granted to the role.

Example An example for role based access can be found in [109].
Relationships -

Name Graphical User Interface
Classification IT Experiment Model
Intent Helps the scientist to interact with the eExperiment solution.
Problem How to interact with the eExperiment solution?
Context Scientists that want to perform an eExperiment and are used to GUIs.
Solution Provide the scientist with a GUI for conducting the eExperiment..
Example Biologists prefer Web-based portals [94].
Relationships -

Name Command Line Tools
Classification IT Experiment Model
Intent Helps the scientist to interact with the eExperiment solution.
Problem How to interact with the eExperiment solution?
Context Scientists that want to perform an eExperiment and are used to command

line tools.
Solution Provide the scientists with command line tools for conducting the eExperi-

ment.
Example Physicists like command-line interfaces in general and try to avoid GUIs [94].
Relationships -

74

4.4. IT Experiment Model

4.4.7. Miscellaneous

In Figure 24 an overview of the miscellaneous patterns on the level IT experiment model is
given.

IT Model

Simple Scripts and
Control

Functionality

Workflows

Reliability

Partition-Level
Failure Recovery

Checkpoint
Libraries

Runtime
Optimization

Task Clustering

Used for
Structuring
Only

Pattern

Application Plug-ins

Static Optimization

Workflow Pruning

Workflow Ordering

Workflow
Substitution

Static Partitioning

Abstract Workflows

Modelling

Abstract to
Concrete Workflow

Mapping

Data

Data Provenance

Data Heterogeneity
Handling

Semantic Mediation

Data
Transformation

Massive Data Input
Handling

Data Refinement

Instrument Control

Reduce Dimensions

Data Processing

Data Parallelism

Map Reduce

Data Pipeline

Ontologies

Monitoring Data

Bi-directional
Channel

Access and
Interfaces

Single Sign On

Role Based Access

GUI

Command Line
Tools

Communication
Platform

Integration of IT
Systems/legacy

applications

Tight Coupling

Loose Coupling

Open Source
Technologies

Resource
Management

Data Organizing

Data Discovery

Data Selection

Infrastructure
Organizing

Infrastructure
Discovery

Infrastructure
Selection

Data Management

Infrastructure
Management

IT Model

Used for
Structuring
Only

Pattern

Single Program
Multiple Data

Master Worker

Message Passing
Interface

Reuse Workflow
Fragments

Reuse of Results

Data Quality Gate

Data Quality
Data Quality

Improvement

Miscellaneous

Event-based

Visual Monitoring

IT Model

Model Update
Strategies

IT Experiment
Model

Simple Scripts & Control
Functionality

Workflows

Application Plug-ins

Used for
Structuring
Only

Pattern

Workflows

Reliability

Runtime
Optimization

Static Optimization

Modelling

IT EModel

Used for
Structuring
Only

Pattern

Data

Data Heterogeneity
Handling

Massive Data Input
Handling

Data Processing

Monitoring Data

Data Quality

IT Model

Used for
Structuring
Only

Pattern

Used for
Structuring
Only

Pattern

Data

Resource Management

Access and Interfaces

Resource Catalogue

Resource Discovery

Resource Selection

Resource
Management

IT Experiment
Model

Used for
Structuring
Only

Pattern

Access and
Interfaces

Single Sign-On

Role Based Access

GUI

Command Line
Tools

IT Experiment
Model

Used for
Structuring
Only

Pattern

Used for
Structuring
Only

Pattern

Communication
Platform

Miscellaneous
Model Update

Strategies

IT Experiment
Model

Figure 24.: This is an overview of the miscellaneous patterns on the level IT experiment
model.

Name Tight Coupling
Classification IT Experiment Model
Intent Helps to optimize the performance of applications, that are not frequently

changed.
Problem How to optimize applications?
Context Scientists, that want to optimize the performance of the applications.
Solution Use tight coupling of components. This means the components make many

assumptions about each other.
Example An example for a framework, that was build for tightly coupled, high perfor-

mance simulations is the Cactus framework [43].
Relationships <Conflicts> Loose Coupling

Name Loose Coupling
Classification IT Experiment Model
Intent Helps to create a flexible and robust distributed application.
Problem How to reduce dependencies between distributed applications and their

distinctive components [32]?.
Context Components in a distributed environment make assumptions about each

other. These assumptions should be limited for flexibility and robustness
reasons [32].

Solution Use an intermediary that handles format transformation, routing and ad-
dressing [32].

75

4. e-Science Pattern Catalogue

Example The SimTech WfMS uses a service bus for simulation workflows. This service
bus handles data transformation, message routing and service discovery and
selection [51].

Relationships <Conflicts> Tight Coupling

Name Model Update Strategies
Classification IT Experiment Model
Intent Helps to update the models within an eExperiment.
Problem The data flow within an eExperiment is continuous. The model of the IT

system needs to be changed. In a standard procedure the analysis is stopped.
Then the model is updated. After this the analysis is started again. During
the update, portions of the data flow cannot be analysed and get lost.

Context There is continuous data flow in an eExperiment. The model of the eExperi-
ment needs to be updated.

Solution Implement a mechanism to reduce the downtime of the system during the
update.

Example In [127], Wickramaarachchi et al. formalize different update models. In
addition, they provide metrics for evaluating update strategies.

Relationships -

Name Communication Platform
Classification IT Experiment Model
Intent Helps to improve the collaboration between the scientists.
Problem Scientists want to make comments and exchange thoughts about an eExperi-

ment.
Context Scientists that conduct an eExperiment in a collaborative manner.
Solution Build a mechanism, that enables communication around an eExperiment.
Example Group-to-group communication is supported by the AccessGrid via high-

speed networking and state of the art camera and display technology [49].
Relationships -

76

4.5. Infrastructure

4.5. Infrastructure

This chapter comprises the patterns on the level infrastructure. Figure 25 shows the grouping
of the patterns into concrete infrastructures and WfMS.

Infrastructure

Workflow
Management

Systems

Concrete
Infrastructures

Used for
Structuring
Only

Pattern

Figure 25.: This is an overview of the e-Science patterns on the level infrastructure.

4.5.1. Concrete Infrastructure

Figure 26 provides an overview of the concrete infrastructures patterns.

Infrastructure

Grid

Infrastructure as a
Service

HTC

HPC

Cluster

Workflow
Management

Systems

Concrete
Infrastructures

Kepler

Taverna

Triana

Pegasus

SimTech
Used for
Structuring
Only

Pattern

Infrastructure

Used for
Structuring
Only

Pattern

Figure 26.: This is an overview of the e-Science concrete infrastructure patterns.

Name Grid
Classification Infrastructure
Intent Helps to provide the scientists with infrastructures.
Problem How to share resources in a flexible, secure and coordinated way among

dynamic collections of individuals, institutions and resources [36]?
Context Scientists that require infrastructures.

77

4. e-Science Pattern Catalogue

Solution Use a Grid. Grids coordinate resources that are not subject to centralized
control. They use standard, open, general purpose protocols and interfaces.
Furthermore, they deliver non-trivial qualities of service [34]

Example A Grid is used in [19].
Relationships -

Name Infrastructure as a Service
Classification Infrastructure
Intent Helps to provide the scientists with dynamic infrastructures.
Problem How to provide the scientists with dynamic infrastructures?
Context Scientists require virtual servers, which should be offered on a pay-per-use

basis. In addition, isolation between the different tenants is required [32].
Solution The utilization of resources needs to be monitored. This is required for billing

on a pay-per-use basis. In order to achieve isolation between the tenants,
access controls need to be established. Then tenants can only access the
resources on which they have access rights [32]. Please also consider the
other Cloud computing patterns that can be used in combination with the
Infrastructure as a Service pattern that can be found in [32].

Example Lezzi et al. base an e-Science solution on Cloud technologies [66].
An examples of Cloud infrastructure hosting provider is Amazon Web Ser-
vices3.
A collection of Cloud computing patterns can be found in [32].

Relationships -

Name HTC
Classification Infrastructure
Intent Helps to provide the scientists with computing power.
Problem How to provide the scientist with computing power?
Context Scientists that require computing power.
Solution Provide HTC infrastructure, which "is based on commonly available com-

puting resources such as commodity PCs and small clusters that enable the
execution of farming jobs without providing a high performance interconnec-
tion between the CPU/cores" [92].

Example Wilson et al. describe a HTC resource in production use [128].
Relationships -

Name HPC
Classification Infrastructure
Intent Helps to provide the scientists with computing power.
Problem How to provide the scientist with massive parallel computing power?
Context Scientists that requires massive computing power.

3http://aws.amazon.com/de/

78

4.5. Infrastructure

Solution Provide a HPC infrastructure, that enables "the efficient use of parallel com-
puting techniques through specific support with dedicated hardware such as
high performance CPU/core interconnections" [92].

Example The HPCWorld consortium provides a handbook for effective use of HPC
infrastructures [6].

Relationships -

Name Cluster
Classification Infrastructure
Intent Helps to provide the scientists with computing power.
Problem How to provide the scientist with computing power?
Context Scientists that require massive computing power.
Solution Use a cluster, which "is a type of parallel and distributed system, which

consists of a collection of inter-connected stand-alone computers working
together as a single integrated computing resource" [21].

Example -
Relationships -

4.5.2. Workflow Management Systems

Figure 27 provides an overview of the WfMS patterns.

Infrastructure

Grid

Infrastructure as a
Service

HTC

HPC

Cluster

Workflow
Management

Systems

Concrete
Infrastructures

Kepler

Taverna

Triana

Pegasus

SimTech
Used for
Structuring
Only

Pattern

Infrastructure

Used for
Structuring
Only

Pattern

Figure 27.: This is an overview of the e-Science WfMS patterns.

79

4. e-Science Pattern Catalogue

Name Kepler
Classification Infrastructure
Intent Helps to conduct data-intensive, computation-intensive and knowledge-

intensive experiments [85].
Problem How to conduct experiments, that are data-intensive, computation-intensive

and knowledge-intensive [85]?
Context Scientists that want to automate their eExperiments.
Solution Use the Kepler WfMS 4. Curcin et al. see the focus of Kepler in data analysis

and modelling [26]. In Kepler, the execution engine is separated from the
workflow model. Each workflow gets one model of computation assigned
(MoC). This MoC is called director. The director triggers the execution of the
workflow components. A component in Kepler is called actor. This actor
represents data sources or operations in combination with a number of ports,
which act as endpoints for connections. Data in Kepler is represented by data
tokens. To make the Kepler actors reusable, the actors are data polymorphic.
This means that one actor can process different data types on inputs. For
instance one actor can perform string concatenation, the addition of integers
or real numbers [26]. The user can start the workflow execution either by a
GUI or from a command line [117].

Example In [68] and [85], Kepler is described in more detail.
Relationships -

Name Taverna
Classification Infrastructure
Intent Helps to conduct in silico experiments in the domain of life sciences [81].
Problem How to use Grid technology to conduct in silico experiments in the domain

of life sciences [81]?
Context Scientists that want to automate their eExperiments.
Solution Use the Taverna WfMS 5. Talia sees the goal of Taverna in supporting the

life sciences community (medicine, chemistry and biology) in the design and
execution of scientific workflows [117]. Taverna is strongly based on Web
services and therefore, it can be used by scientists from different domains.
The tree main components of Taverna are the Taverna Workbench graphical
workflow authoring client, SCUFL as workflow representation language and
the Freefluo enactment engine [26]. Taverna is open to many components,
which are provided by different organizations. Since there is no common
data format assumed, the user needs to resolve the formats manually [26].

Example In [81], Taverna is described in more detail.
Relationships <Uses> Grid

4https://kepler-project.org/
5http://www.taverna.org.uk/

80

https://kepler-project.org/
http://www.taverna.org.uk/

4.5. Infrastructure

Name Triana
Classification Infrastructure
Intent Helps to make use of services within multiple environments and to integrate

with various types of middleware toolkits [118].
Problem How to make use of services within multiple environments and how to

integrate with various types of middleware toolkits [118]?
Context Scientists that want to automate their eExperiments.
Solution Use the Triana WfMS6. Triana provides a visual interface and data analysis

tools [117]. Functional components within Triana are called units. Units can
represent a workflow, legacy code or a file [118]. Directed cables are used
to connect units. The user is interacting via the GUI with the Triana units.
The units specify one section of the system instead of implying a specific
implementation methodology [118]. The units in Triana are bound late to the
services, which they represent. This ensures a dynamic behaviour [117].

Example In [118], Triana is described in more detail.
Relationships -

Name Pegasus
Classification Infrastructure
Intent Helps to design workflows at the application level without knowledge about

the execution environment.
Problem How to design workflows at the application level without knowledge about

the execution environment [28]?
Context Scientists that want to automate their eExperiments.
Solution Use the Pegasus WfMS7. In [117], Talia introduces Pegasus as a "a set of

technologies to execute workflow-based applications in a number of different
environments, including desktops, clusters, Grids, and Clouds". The function-
ality of Pegasus is split across the three main components mapper, execution
engine and task manager. The mapper takes an abstract workflow, which can
be either created by the user or by the system, as an input. Computational
resources and the required input data are located in an automated way by
the mapper. Finally, the mapper transforms the abstract workflow into an
executable workflow. The execution engine takes the executable workflow
as input. Then it executes the tasks in the order of their dependencies on
the defined resources. Finally, the task manager supervises the execution of
a single workflow task. Pegasus also includes error recovery that is based
on workflow-level checkpointing. In addition, provenance information is
recorded for increasing the workflow reproducibility [117].

Example In [28], Pegasus is described in more detail.
Relationships -

6http://www.trianacode.org/
7http://pegasus.isi.edu/

81

http://www.trianacode.org/
http://pegasus.isi.edu/

4. e-Science Pattern Catalogue

Name SimTech
Classification Infrastructure
Intent Helps scientists conducting eExperiments with focusing on their core com-

petencies. The scientists do not have to care about the technical complexity
[51].

Problem Scientists require a WfMS for conducting eExperiments, that is tailored to
their requirements. At the same time the technical complexity should be
hidden, so that they can focus on their core competencies [51].

Context Scientists, that want to automate their eExperiment.
Solution Use the SimTech WfMS [51]. Scientists can model workflows intuitively by

using a GUI8. In addition, they can execute, monitor and adapt the workflows
within the SimTech WfMS. Furthermore, the trial and error approach for
conducting experiments is supported by increasing the flexibility of the
workflows9. For the SimTech WfMS the Business Process Execution Language
(BPEL) as workflow language is used. Additionally, Web services technology
is utilised for implementing workflow activities 10.

Example In [56], the SimTech WfMS is used for evaluating the eScienceSWaT method-
ology.

Relationships -

8http://www.iaas.uni-stuttgart.de/forschung/projects/simtech/project_modeling.php
9http://www.iaas.uni-stuttgart.de/forschung/projects/simtech/project_flexibility.php

10http://www.iaas.uni-stuttgart.de/forschung/projects/simtech/project_execution.php

82

http://www.iaas.uni-stuttgart.de/forschung/projects/simtech/project_modeling.php
http://www.iaas.uni-stuttgart.de/forschung/projects/simtech/project_flexibility.php
http://www.iaas.uni-stuttgart.de/forschung/projects/simtech/project_execution.php

5. Decision Support System

Another result of this thesis is the concept of a DSS, which provisions the e-Science patterns.
In Section 5.1 we describe the functionality of the DSS and Section 5.2 presents the architecture
of the DSS. Finally, the prototypical implementation is introduced in Section 5.3.
In eExperiments different people, e.g. natural scientists, computational scientists or software
engineers work together in a collaborative manner. The DSS is targeted at all the participants
of an eExperiment. However, for this section we do not see the need to differentiate the
various user groups, but we only speak of users.

5.1. Functionality

First of all the basic pattern selection support is introduced in Section 5.1.1. Then we present
the concept of decision chains within the DSS.

5.1.1. Basic Pattern Selection Support

Neutral

<Requires>

<Uses>

<Related To>

<Conflicts>
<Refined By>

Selected

<Requires>

<Uses>

<Related To>

<Conflicts>
<Refined By>

Highlighted

Highlighted

Highlighted

Deselected

Neutral

Neutral

Neutral

Neutral

Neutral Selected

Figure 28.: This shows the basic pattern selection support.

The basic pattern selection support makes use of the information in the e-Science pattern
catalogue. A pattern can have several relationships to other patterns. If this pattern gets
selected, the status of all related pattern gets updated according to the relationship, which
is used to connect it. A pattern can have one of the following status: neutral (default status),
highlighted, selected or deselected. In Section 4.2, we introduced the relationships, which we use

83

5. Decision Support System

for the patterns. Figure 28 visualizes the basic pattern selection support. All patterns have a
neutral status at the beginning. The pattern in the centre, which has outgoing relationships
to the other patterns gets selected by the user. After this, the status of all related patterns is
updated. For example, the pattern which is connected via the <Requires> relationship then
changes its status to selected or the pattern which is connected via the <Uses> relationship
takes the status highlighted. As soon as a pattern takes the status selected – the status can either
be set manually by the user or via the basic selection support mechanism – all its relationships
are evaluated and the status of the related patterns gets updated. This mechanism supports
the user by the pattern selection, since certain patterns get selected or deselected. In addition,
the users attention is drawn on the highlighted patterns.

5.1.2. Decision Chains

Scientific
Experiment
Model

IT
Experiment
Model

Infrastructure

pnew

relationship
to pattern

structure of
catalogue

Figure 29.: New pattern comprising a decision chain.

Karastoyanova et al. stated, that a knowledge base for eScienceSWaT should also comprise
decision chains [56]. Currently, the e-Science pattern catalogue – the knowledge base –
only comprises the basic e-Science patterns. With the DSS it is possible to store decision
chains. In the context of the DSS, a decision leads to the selection or deselection of a pattern.
Consequently, a decision chain leads to a selection or deselection of certain patterns p1, ...,
pi. The decision chain can be stored with the help of a new pattern pnew. Pnew comprises
all patterns p1, ..., pi. The problem of pnew describes the problem, which is solved by the

84

5.2. Architecture

decision chain. The intent of pnew specifies the intent of the decision chain. Furthermore, the
solution provided by pnew comprises the solution of all patterns p1, ..., pi. Pnew has either a
<Requires> or a <Conflicts> relationship to each of the patterns p1, ..., pi. Figure 29 shows
the position of pnew in the e-Science pattern catalogue. Pnew should be positioned as high as
possible in the eExperiment model, but not higher as the highest comprised pattern. If the
user follows eScienceSWaT, he starts with the selection of scientific experiment patterns. This
means he can reuse the decision chain early in the process by selecting the pattern pnew. The
pnew pattern shown in Figure 29 comprises four patterns. The relationships to these patterns
are visualized by dashed lines.

5.2. Architecture

We use the Model-View-Controller (MVC) architecture pattern, which was introduced by
Buschmann et al. in [20]. By using the MVC pattern, an application is split into the three
components model, view and controller. The decoupling of model, view and controller leads
to a higher flexibility of the application [83]. One component can be modified or replaced
with a new version. This only has minimal impact on the other components. For example the
visualization of the pattern catalogue can be changed by using a different view component. In
addition, there can be multiple views of the same model [20]. Furthermore, the complexity
is reduced by separating the different application components. The core functionality and
data is kept inside the model. Information is displayed to the user by the view component.
The controller receives the input of the user. Figure 30 displays the interaction among model,
view and controller. The view can query the model about its status. If the model is changing,
it notifies the view. The user can make changes in the view, which are propagated to the
controller. The controller selects the view and updates the model according to the changes of
the user.

State
change

View selection

State
query Change

notification

View Control

Model

User gestures

Figure 30.: Interaction among model, view and controller based on [83].

In our case, the model of the DSS comprises the e-Science pattern catalogue. The contents
of the patterns, the relationships among the patterns and also the logic for determining the
pattern status of the related patterns. The view visualizes the e-Science pattern catalogue. It

85

5. Decision Support System

shows the patterns and their relationships to other patterns. In addition, the pattern status
is displayed. The controller receives the user gestures from the view. For example the user
requests to see a different section of the e-Science pattern catalogue or selects a pattern. Then
the controller selects a different view of the e-Science pattern catalogue and sets the pattern
status accordingly. Once the pattern status is set, the model sends a change notification to the
view.

5.3. Prototype

In the last section we introduced the MVC pattern. We apply this pattern for the DSS
prototype architecture. For implementing the prototype, we use the Graphical Modeling
Framework (GMF)1. GMF is based on the Eclipse Modeling Framework Project (EMF)2 and
the Graphical Editing Framework (GEF)3. Section 5.3.1 provides an overview of the model
and Section 5.3.2 introduces view and controller. In Section 5.3.3, we describe how the user
can work with the DSS prototype.

5.3.1. Model

The model of the DSS is created with the help of EMF. In Figure 31 the major steps for
generating the Java classes of the domain model and the flow of artefacts are presented. A
XML Schema Definition (XSD) description of the domain model of the DSS builds the basis.
This XSD description can be seen in Listing B.1. The main elements of the domain model of
the DSS are patterns and structure elements. This XSD model is imported into EMF and gets
transformed into a model in Ecore format. We make manual adjustments on the Ecore model,
because the import mechanism does not set all properties of the Ecore model properly. Based
on the Ecore model, a generator model is generated. Finally, the Java classes for the domain
model of the DSS are generated with the help of the generator model.

5.3.2. Graphical User Interface

By using GMF, a graphical editor is created, which implements the MVC pattern [120]. We
use the editor as a view. The controller links the model and the view. By using a graphical
editor for the view, we get additional benefits. The pattern status can be set in the editor
and decision chains can directly be created in the editor (see Section 5.1.2). Figure 31 provides
an overview of the flow of artefacts and the major steps for generating the graphical editor.
Based on the Ecore domain model, we define the graphical notation and a tooling definition.
Then we create a mapping model, which maps the different models of graphical notation,
tooling definition and domain model generator. Out of this mapping model, we generate the
generator model for the graphical editor. Finally, the Java classes for the graphical editor are

1http://wiki.eclipse.org/Graphical_Modeling_Framework
2http://www.eclipse.org/modeling/emf/
3http://www.eclipse.org/gef/

86

http://wiki.eclipse.org/Graphical_Modeling_Framework
http://www.eclipse.org/modeling/emf/
http://www.eclipse.org/gef/

5.3. Prototype

.xsd

.genmodel .gmfgraph .gmftool

.gmfmap

.gmfgen

.java

.java

Generate Domain
Model Classes

Create Graphical
Notation

Create Generator
Model for Domain

Model

Create Domain
Model

Create Tooling
Definition

Create Mapping
Model

Create Generator
Model for Graphical

Editor

Generate Graphical
Editor Classes

.ecore

.genmodel

.ecore .ecore

EMF GMF

Figure 31.: This shows the major steps and the flow of artefacts for generating the DSS
prototype based on [122].

generated with the help of the graphical editor generator model. A detailed description of
the steps for generating a graphical editor with GMF can be found in [121].

In Figure 32, a screenshot of the GUI of the DSS prototype is presented. The GUI can be
partitioned into the four parts outline, palette, editor and properties. We explain each part briefly
hereinafter.

Outline: An overview of the whole e-Science pattern catalogue is provided. In addition, the
current position within the e-Science pattern catalogue is visualized, so that the user can use
the outline for orientation.

Editor: The editor contains the graphical representation of the e-Science pattern catalogue.
Since it is an editor, the whole e-Science pattern catalogue is editable. This is a prototype and
therefore, we accept the editability. However, for the future DSS the editability needs to be
restricted, so that only the pattern status can be edited.

87

5. Decision Support System

Figure 32.: This shows the GUI of the DSS prototype.

88

5.3. Prototype

The graphical representation of the e-Science pattern catalogue follows the same logic as the
e-Science pattern catalogue, which is presented in Chapter 4. It consists of structure elements
and patterns. Additionally, the editor visualizes each of the different relationships in the
e-Science catalogue. The structure elements and patterns are labeled with their names. The
pattern status is visualized via colours. Green means selected, red stands for deselected and blue
means highlighted.

Palette: The palette can be used to create new elements of the e-Science pattern catalogue.
New decisions chains can be added by dragging new elements from the palette onto the
editor (see Section 5.1.2). We already explained, that the future version of the DSS requires
limited editability. Additionally only certain users should be able to extend the e-Science
pattern catalogue with new elements. Beside the initial functionality of the palette, it can
be used as a legend. It holds the mapping between the graphical representation and the
description of the elements.

Properties: The properties view provides detailed information in form of the attributes of
the e-Science patterns and the structure elements. The structure elements in the e-Science
pattern catalogue only had the purpose of organizing the patterns (Section 4.2.3). The
structure elements in the DSS prototype contain an additional attribute. This attribute is
called instruction and contains additional information about the related patterns. For instance
the structure element data characteristics contains the information "please select patterns, which
describe the data, that is used in the eExperiment". This additional information helps the user
to understand the purpose of the related patterns better, before he actually reads through the
patterns.

5.3.3. Use Case

In the following, we explain how the user is working with the DSS prototype. The user wants
to create an eExperiment and requires decision support, because he can make many choices
for the scientific experiment model, the IT experiment model and infrastructures. This is why
he uses the DSS prototype. Basically, the graphical representation of the e-Science pattern
catalogue can be seen as a graph. It consists of nodes, which represent patterns and structure
elements, and edges that represent the relationships. The user has three starting nodes:
scientific experiment model, IT experiment model and infrastructure. From each starting node, the
user can reach patterns or structure elements by following the edges. Each structure element
can also be seen as an important category for the creation of an eExperiment. By providing
the different categories of patterns, the user gets an overview what might be important for
his eExperiment. The user can select or deselect the patterns for his eExperiment by setting
the pattern status. The status of the related pattern gets updated automatically, because
the DSS prototype supports the basic pattern selection support (see Section 5.1.1). Now the
user can follow the edges to related patterns and especially focus on the patterns, which are
highlighted. In general, the patterns contain more generic information and best practices.
This information should be seen as a starting point, since no concrete detailed solutions are
provided. If the user is not familiar with a pattern, then he can access its detailed information
in the properties section (see Figure 32). Furthermore, the properties section provides an example,

89

5. Decision Support System

where the pattern is applied in an eExperiment. This helps the user to understand the pattern
better so that he can decide if he selects the pattern or not.

90

6. Conclusion and Future Work

This chapter summarizes the contents of the thesis in Section 6.1. In Section 6.2 we present
several possible extensions for the e-Science pattern catalogue and the DSS.

6.1. Conclusion

In order to realize systems supporting the eScienceSWaT methodology, Karastoyanova et
al. identified the clear need of a DSS, which comprises knowledge and best practices from
natural sciences, software engineering and computer science [56]. This thesis provides
these best practices in the form of an pattern catalogue. Furthermore, the concept of a DSS,
which provisions the patterns and its prototypical implementation are introduced. Chapter
2 provides background information, which is necessary to understand the concepts of this
thesis. Patterns, an overview about e-Science and the concept of scientific workflows belong to
these. In Chapter 3, related work in the fields of patterns and DSSs is introduced. Additionally,
various relationships among patterns are analysed and the work of this thesis is positioned
to each related work. Furthermore, the findings in this chapter lay the groundwork for the
following chapters. Chapter 4 is the key contribution of this thesis. First of all, we describe
our approach for developing the e-Science pattern catalogue. This contains the information
collection phase and the pattern generation phase. In the information collection phase we
gather relevant information about eExperiments, which we transform into problem-solution
pairs. In the pattern generation phase we abstract from the concrete problem-solution pairs
and by doing so we carve out patterns. After that the results in form of the relationships among
e-Science patterns and the e-Science pattern catalogue are introduced. The catalogue is split
into three categories: scientific experiment model, IT experiment model and infrastructure.
Each category again contains a substructure in which the patterns are organized. Finally,
in Chapter 5 the concept of a DSS is introduced. The core functionality of the DSS is to
provide relevant information in form of patterns for decision making within each phase of the
eScienceSWaT methodology. Furthermore, an architecture for the DSS is introduced, which is
prototypically implemented.

6.2. Future Work

This section comprises different suggestions for extending the e-Science pattern catalogue and
the DSS. For simplification reasons we do not differentiate among the different user groups
of the DSS and the e-Science pattern catalogue in the next section. We only speak of users.

91

6. Conclusion and Future Work

6.2.1. Pattern Awareness for Artefacts

At one point in the decision making process, concrete artefacts, e.g.infrastructures, applica-
tions, services or middleware have to be selected. All artefacts have certain characteristics.
Due to these characteristics, they support certain patterns or do conflict with certain patterns.
We propose to store this information about supported patterns and conflicting patterns for
each artefact. Now the artefacts are aware of the supporting and conflicting patterns. With
the help of this information, the DSS can propose suitable artefacts. In the following we give
an example how the DSS can provide decision support for selecting the most suitable WfMS
pattern for an eExperiment. The e-Science catalogue comprises five different WfMS patterns
from which the user can choose, that represent five different WfMS (see Section 4.5.2). Each
WfMS supports certain patterns of the e-Science pattern catalogue. We propose to add a list
of all supported e-Science patterns from the e-Science pattern catalogue to each WfMS. With
the help of the DSS, the user selects the required patterns for his eExperiment. However, he
does not select the WfMS patterns, because he is not sure which of the WfMS fits best for his
eExperiment. At the end, the DSS compares all selected patterns with the list of supported
patterns of every WfMS. Then the DSS ranks the WfMS according to the number of patterns,
which they support. Finally, the DSS can make a proposal for the most suitable WfMS – the
WfMS that supports the most patterns – to the user.

Currently, we assume that the user follows the eScienceSWaT methodology. Therefore, he
starts with the selection of patterns on the scientific experiment model, then he selects patterns
for the IT experiment model and finally he makes choices for the infrastructure patterns. With
respect to the eExperiment model, this is a top-down approach (see Figure 8). However, the
user knows, that he has to use a cloud computing infrastructure from a certain provider. This
infrastructure has specific characteristics and narrows down the amount of possible patterns
of the IT experiment model. Nevertheless, the user has no choice to provide this information
at an earlier stage in the decision making process, because infrastructures are selected at
the end. Pattern awareness brings an additional benefit. The user can set this specific cloud
computing infrastructure as a precondition. This cloud computing infrastructure is aware
of its supported and conflicting patterns. Now the DSS can use this information to provide
better decision support at an earlier stage in the decision making process. Conflicting patterns
of the IT experiment model are automatically deselected and required patterns are automatically
selected.

6.2.2. Extended Pattern Selection Support

Some decisions do only affect one single pattern. If a pattern X has no connection to other
patterns and no other patterns have a connection to X, the user only has to consider two
choices for X: he can select X or deselect X. However, if X is in relationships with other
patterns, so that the status of the patterns are influenced mutually, the decision gets more
complicated. The effects on the other patterns due to selection or deselection of X have to be
considered as well. Generally speaking, the problem is to select m patterns out of a group of n
patterns under certain conditions. For such cases, we propose to provide additional decision

92

6.2. Future Work

support for the user. An example for this problem is the selection of one pattern among a

Question 1
Question 2
Question 3
Question 4
Question 5
Question 6
Question 7
Question 8
Question 9
…
Question n

?

Global question
catalogue

Decision Point

Possible choices

Figure 33.: Extended pattern selection support.

group of four patterns, that have a <Conflicts> relationship to each other. We propose to
give the user additional guidance for this decision. In Section 3.1.3, the GQM approach was
introduced. In GQM every pattern is connected to questions. Figure 33 shows the decision
point and the four patterns, from which the user can choose. In addition, the connection of
the patterns to the global question catalogue is visualized. At such a decision point, the DSS
provides additional support by displaying all the questions, which are related to the patterns
to the user. Now the user has to answer each question with yes, no or don’t know and has to
assign a weight to the question. The weight stands for the relevance of this question to his
eExperiment. Now a metric calculates a ranking of the patterns based on his answers and the
given weightings. At the end, the DSS can propose the pattern which is ranked on the first
place to the user.

6.2.3. Case Based Reasoning for Pattern Selection

The DSS is used to select the most suitable e-Science patterns for an eExperiment. We propose
to store a list of all selected/deselected e-Science patterns and additional information about
the eExperiment. Together this information builds a case. A case has certain attributes, in
which the additional information is stored. For instance a case can have attributes like domain
of the eExperiment, the goal of the eExperiment, number and domain of scientists, available
budget. In addition, every pattern in the e-Science pattern catalogue should be connected
to all cases, in which it is applied. Then we want to provide this information to the users of
the DSS. They can browse this information and check, which patterns were applied in other
similar eExperiments. For example biologists have a certain budget for the eExperiment. In
addition, they identified that they require the heterogeneous data pattern. Now they can
browse all cases in the domain of biology, in which the heterogeneous data pattern was
applied within a certain budget. They can see which other patterns were applied together
with the heterogeneous data pattern. This helps them to select the most suitable patterns for

93

6. Conclusion and Future Work

their own eExperiment.
For a more sophisticated DSS, we propose to use CBR, which also makes use of the cases. In
CBR past experiences are used to understand and solve new problems. However, the whole
system proposes suitable patterns with the help of a similarity metric (see Section 3.1.1). CBR
seems suitable for the DSS and therefore, we propose to do further research in this domain.

6.2.4. Pattern Status Conflicts

Deselected

<Requires>

<Conflicts>

Selected

X

Y

Z

Selected

<Requires>

<Conflicts>

Selected

X

Y

Z Neutral Selected

Figure 34.: This shows an example for a possible pattern status conflict.

Currently, there is no logic in the DSS, which ensures a correct pattern status. The sequence of
actions of the user determine the final pattern status. Although there is no concurrency in the
DSS prototype, this kind of faults can be compared with race conditions. In [24], race conditions
are introduced with an example of two parallel processes that attempt to write to the same
offset. The process that finishes later, overwrites the assignment of the process that finished
first. Figure 34 shows the uncontrolled overwriting of the pattern status in the DSS prototype.
Pattern X got selected by the user. Via the <Requires> relationship, Z gets automatically
selected by the DSS. If the user selects now the pattern Y, the status of Z changes to deselected
due to the <Conflicts> relationship. However, Z cannot be deselected, when X is selected.

We propose to implement a mechanism, that ensures integrity among the patterns. The sur-
vey of Beckman about preventing race conditions can be used as a starting point for further
research [7]. Another concept, that might be applicable for the DSS prototype, is dead path
elimination (DPE). Weidlich states, that DPE supports the explicit skipping of activities [126].
This skipping can lead to the skipping of subsequent activities for eliminating the dead path. If
we apply this concept to the example in Figure 34, we force a correct pattern status. After the
deselection of Z by the DSS due to the <Conflicts> relationship, also X gets deselected. Now
there are no conflicting pattern status anymore.

94

6.2. Future Work

6.2.5. Global and Local Views on eExperiments

Currently, the DSS supports only one single global view on an eExperiment for all users/s-
takeholders (e.g. natural scientists, IT specialists, ...). This can lead to conflicts for the pattern
selection. For one component, there is a combination of certain patterns that is locally applied,
for example on the level of a scientific experiment model. For another component, different
patterns are locally applied, for example on the level of an IT experiment model. The patterns
of each component are in conflict with each other. However, this is not an issue, since they
are applied locally. But if all these patterns get aggregated into the single global view of the
eExperiment, this leads to a conflict. For example the whole application of the eExperiment
can be loosely coupled. However, one part of the application consists of a tightly coupled
HPC. From a global perspective, the loose coupling pattern should be selected, but for the HPC
the tight coupling pattern needs to be selected. We propose to extend the DSS in a way, so that
the separate selection of patterns for local components of the eExperiment is possible.

95

6. Conclusion and Future Work

96

Appendix A.

e-Science Catalogue Overview

Scientific Experiment
Model

Natural Way of Doing
Research

Data

Non-functional
Properties

Improve Collaboration

IT Experiment Model

Simple Scripts & Control
Functionality

Workflows

Application Plug-ins

Data

Resource Management

Access and Interfaces

Miscellaneous

Infrastructure
Workflow Management

Systems

Concrete Infrastructures

e-Science Pattern
Catalogue

Used for
Structuring
Only

Pattern

Figure 35.: This shows the top layers of the e-Science pattern catalogue.

97

Appendix A. e-Science Catalogue Overview

Scientific
Experiment Model

Natural Way of
Doing Research

Trial and Error

One-Factor-at-a-
Time

Design of
Experiments

Further User
Characteristics

Varying Analysis
Granularity

Monitoring of
Experiment Status

Suspend and
Resume

Experiment Steering

Modelling Choices

Experiment
Interface

Data

Data Characteristics

High Dimensional
Data

Massive Data

Heterogeneous
Data

Low Data Quality

Data Visualization

Data Input

Data Files

Data Flow

Database

Data Find Tool

Non-functional
Properties

Reduce Time

Reduce Cost

Long Running
Experiments

Improve
Documentation

Collaboration

Improve
Collaboration

Ease Access

Improve Working in
Parallel

Used for
Structuring
Only

Pattern

Figure 36.: This is an overview of the e-Science patterns on the level experiment model.

98

IT Experiment
Model

Simple Scripts &
Control

Functionality

Workflows

Reliability
Partition-Level

Failure Recovery

Runtime
Optimization

Task Clustering

Application Plug-ins

Static Optimization

Workflow Pruning

Workflow Ordering

Workflow
Substitution

Static Partitioning

Abstract Workflows

Modelling

Abstract to
Concrete Workflow

Mapping

Access and
Interfaces

Single Sign-On

Role Based Access

GUI

Command Line
Tools

Communication
Platform

Tight Coupling

Loose Coupling

Resource
Management

Resource Catalogue

Resource Discovery

Resource Selection

IT Experiment
Model

Used for
Structuring
Only

Pattern

Reuse Workflow
Fragments

Reuse of Results

Miscellaneous

Used for
Structuring
Only

Pattern

Model Update
Strategies

Semantic Workflow
Composing Support

Figure 37.: This is the first part of an overview of the e-Science patterns on the level IT
experiment model.

99

Appendix A. e-Science Catalogue Overview

Used for
Structuring
Only

Pattern

Data

Data Provenance

Data Heterogeneity
Handling

Semantic Mediation

Data
Transformation

Massive Data Input
Handling

Data Refinement

Instrument Control

Reduce Dimensions

Data Processing

Master-Worker

MapReduce

Data Pipeline

Ontologies

Monitoring Data

Bi-directional
Channel

Single Program
Multiple Data

Message Passing
Interface

Data Quality Gate

Data Quality
Data Quality

Improvement

Event-based
Monitoring

Visual Monitoring

IT Experiment
Model

Figure 38.: This is the second part of an overview of the e-Science patterns on the level IT
experiment model.

100

IT Experiment
Model

Simple Scripts &
Control

Functionality

Workflows

Reliability
Partition-Level

Failure Recovery

Runtime
Optimization

Task Clustering

Application Plug-ins

Static Optimization

Workflow Pruning

Workflow Ordering

Workflow
Substitution

Static Partitioning

Abstract Workflows

Modelling

Abstract to
Concrete Workflow

Mapping

Access and
Interfaces

Single Sign-On

Role Based Access

Graphical User
Interface

Command Line
Tools

Communication
Platform

Tight Coupling

Loose Coupling

Resource
Management

Resource Catalogue

Resource Discovery

Resource Selection

IT Experiment
Model

Used for
Structuring
Only

Pattern

Reuse Workflow
Fragments

Reuse of Results

Miscellaneous

Used for
Structuring
Only

Pattern

Model Update
Strategies

Semantic Workflow
Composing Support

Figure 39.: This is the third part of an overview of the e-Science patterns on the level IT
experiment model.

101

Appendix A. e-Science Catalogue Overview

Infrastructure

Grid

Infrastructure as a
Service

HTC

HPC

Cluster

Workflow
Management

Systems

Concrete
Infrastructures

Kepler

Taverna

Triana

Pegasus

SimTech

Used for
Structuring
Only

Pattern

Figure 40.: This is an overview of the e-Science patterns on the level infrastructures.

102

Appendix B.

Decision Support System

1 <?xml version="1.0" encoding="UTF-8" standalone="no"?>
2 <xsd:schema xmlns:catalogue="http://www.example.org/catalogue" xmlns:ecore="http://www.

eclipse.org/emf/2002/Ecore" xmlns:xsd="http://www.w3.org/2001/XMLSchema" ecore:nsPrefix=
"catalogue" ecore:package="catalogue" targetNamespace="http://www.example.org/catalogue"
>

3

4 <xsd:element name="patternCatalogue" type="catalogue:PatternCatalogue"/>
5

6 <xsd:simpleType name="Classification">
7 <xsd:restriction base="xsd:string">
8 <xsd:enumeration ecore:name="ScientificExperimentModel" value="Scientific Experiment

Model"/>
9 <xsd:enumeration ecore:name="ITExperimentModel" value="IT Experiment Model"/>

10 <xsd:enumeration value="Infrastructures"/>
11 </xsd:restriction>
12 </xsd:simpleType>
13

14 <xsd:complexType name="PatternCatalogue">
15 <xsd:sequence>
16 <xsd:element maxOccurs="unbounded" minOccurs="0" name="patterns" type="catalogue:Pattern

"/>
17 <xsd:element maxOccurs="unbounded" minOccurs="0" name="structureElements" type="

catalogue:StructureElement"/>
18 </xsd:sequence>
19 <xsd:attribute name="title" type="xsd:string"/>
20 </xsd:complexType>
21

22 <xsd:complexType name="Pattern">
23 <xsd:attribute name="classification" type="catalogue:Classification"/>
24 <xsd:attribute name="context" type="xsd:string"/>
25 <xsd:attribute name="example" type="xsd:string"/>
26 <xsd:attribute name="intent" type="xsd:string"/>
27 <xsd:attribute name="name" type="xsd:string"/>
28 <xsd:attribute name="problem" type="xsd:string"/>
29 <xsd:attribute name="solution" type="xsd:string"/>
30 <xsd:attribute name="status" type="xsd:string"/>
31 <xsd:attribute ecore:name="conflicts" ecore:reference="catalogue:Pattern" name="

CONFLICTS">
32 <xsd:simpleType>
33 <xsd:list itemType="xsd:anyURI"/>

103

Appendix B. Decision Support System

34 </xsd:simpleType>
35 </xsd:attribute>
36 <xsd:attribute ecore:name="refinedBy" ecore:reference="catalogue:Pattern" name="

REFINEDBY">
37 <xsd:simpleType>
38 <xsd:list itemType="xsd:anyURI"/>
39 </xsd:simpleType>
40 </xsd:attribute>
41 <xsd:attribute ecore:name="relatedTo" ecore:reference="catalogue:Pattern" name="

RELATEDTO">
42 <xsd:simpleType>
43 <xsd:list itemType="xsd:anyURI"/>
44 </xsd:simpleType>
45 </xsd:attribute>
46 <xsd:attribute ecore:name="requires" ecore:reference="catalogue:Pattern" name="REQUIRES"

>
47 <xsd:simpleType>
48 <xsd:list itemType="xsd:anyURI"/>
49 </xsd:simpleType>
50 </xsd:attribute>
51 <xsd:attribute ecore:name="uses" ecore:reference="catalogue:Pattern" name="USES">
52 <xsd:simpleType>
53 <xsd:list itemType="xsd:anyURI"/>
54 </xsd:simpleType>
55 </xsd:attribute>
56 </xsd:complexType>
57

58 <xsd:complexType name="StructureElement">
59 <xsd:attribute name="name" type="xsd:string"/>
60 <xsd:attribute name="instruction" type="xsd:string"/>
61 <xsd:attribute ecore:name="patternref" ecore:reference="catalogue:Pattern" name="

PATTERNREF">
62 <xsd:simpleType>
63 <xsd:list itemType="xsd:anyURI"/>
64 </xsd:simpleType>
65 </xsd:attribute>
66 <xsd:attribute ecore:name="structureelementref" ecore:reference="

catalogue:StructureElement" name="STRUCTUREELEMENTREF">
67 <xsd:simpleType>
68 <xsd:list itemType="xsd:anyURI"/>
69 </xsd:simpleType>
70 </xsd:attribute>
71 </xsd:complexType>
72

73 </xsd:schema>

Listing B.1: Domain model of the DSS in XML Schema Definition (XSD) .

104

Bibliography

[1] Ahronovitz, M.: Some Thoughts on the Differences between
HTC and HPC. http://my-inner-voice.blogspot.de/2013/03/
some-thoughts-on-differences-between.html (2013)

[2] Alexander, C.: The Timeless Way of Building. Oxford University Press, New York (1979)

[3] Alexander, C., Ishikawa, S., Silverstein, M.: A Pattern Language: Towns, Buildings,
Construction. Oxford University Press, New York (August 1977)

[4] Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R.H., Konwinski, A., Lee, G.,
Patterson, D.A., Rabkin, A., Stoica, I., Zaharia, M.: Above the Clouds: A Berkeley View
of Cloud Computing. Tech. Rep. UCB/EECS-2009-28, EECS Department, University of
California, Berkeley (2009)

[5] Barney, B.: Message Passing Interface (MPI), https://computing.llnl.gov/
tutorials/mpi/

[6] Bassini, S., Boyer, E., Browne, M., Dale, T., Desplat, J.C., Bela Dias, A., Eickermann, T.,
Garofalo, F., Geller, C., Girona, S., González, M., Hart, D.L., Kennedy, A., Norman, M.,
Patra, A., Towns, J., Webster, P., White, J.C.: Handbook of HPC e-Science Infrastructure
Allocation Reviewing, Selection and Management. http://www.hpcworld.eu/files/
intranet/handbook.pdf (2011)

[7] Beckman, N.E.: A Survey of Methods for Preventing Race Conditions. http://www.cs.
cmu.edu/~nbeckman/papers/race_detection_survey.pdf (2006)

[8] Belloum, A., Inda, M., Vasunin, D., Korkhov, V., Zhao, Z., Rauwerda, H., Breit, T., Bubak,
M., Hertzberger, L.: Collaborative e-Science Experiments and Scientific Workflows.
Internet Computing, IEEE 15(4), 39–47 (July 2011)

[9] Berriman, G., Deelman, E., Good, J., Jacob, J., Katz, D., Laity, A., Prince, T., Singh, G.,
Su, M.H.: Generating Complex Astronomy Workflows. In: Workflows for e-Science:
Scientific Workflows for Grids, pp. 19–38. Springer London (2007)

[10] Birukou, A., Blanzieri, E., Giorgini, P.: Choosing the Right Design Pattern: The Implicit
Culture Approach (2006)

[11] Birukou, A., Weiss, M.: Patterns 2.0: a Service for Searching Patterns. In: Proceed-
ings of the 14th Annual European Conference on Pattern Languages of Programming
(EuroPLoP 2009), 8-12 July 2009, Irsee, Germany (2009)

105

http://my-inner-voice.blogspot.de/2013/03/some-thoughts-on-differences-between.html
http://my-inner-voice.blogspot.de/2013/03/some-thoughts-on-differences-between.html
https://computing.llnl.gov/tutorials/mpi/
https://computing.llnl.gov/tutorials/mpi/
http://www.hpcworld.eu/files/intranet/handbook.pdf
http://www.hpcworld.eu/files/intranet/handbook.pdf
http://www.cs.cmu.edu/~nbeckman/papers/race_detection_survey.pdf
http://www.cs.cmu.edu/~nbeckman/papers/race_detection_survey.pdf

Bibliography

[12] Blanzieri, E., Giorgini, P., Massa, P., Recla, S.: Implicit Culture for Multi-agent Inter-
action Support. In: Proceedings of the 9th International Conference on Cooperative
Information Systems, CoopIS 2001, 5-7 September 2001, Trento, Italy, Lecture Notes in
Computer Science, vol. 2172, pp. 27–39. Springer Berlin Heidelberg (2001)

[13] Boehm, B.: Software Engineering. IEEE Trans. Computers C-25, 1226–1241 (1976)

[14] Boisseau, J.: High Throughput Computing, Grid Computing, Cloud Computing,
Etc. – Definitions & Thoughts. http://cfc.fis.uc.pt/events/tacc2008/docs/HTC,
%20Grid%20Computing.pdf (2008)

[15] Booch, G.: Object-oriented Analysis and Design with Applications (2nd Ed.). Benjamin-
Cummings Publishing Co., Inc., Redwood City, CA, USA (1994)

[16] Bowers, S., Ludäscher, B.: An Ontology Driven Framework for Data Transformation
in Scientific Workflows. In: Proceedings of the 1st International Workshop on Data
Integration in the Life Sciences (DILS 2004), 25-26 March 2004, Leipzig, Germany. LNCS
2994, Leipzig, Germany (March 2004)

[17] Breitenbücher, U., Binz, T., Kopp, O., Leymann, F.: Pattern-based Runtime Management
of Composite Cloud Applications. In: Proceedings of the 3rd International Conference
on Cloud Computing and Service Science, CLOSER 2013. SciTePress (2013)

[18] Brooke, J., Pickles, S., Carr, P., Michael, K.: Workflows in Pulsar Astronomy. In: Work-
flows for e-Science: Scientific Workflows for Grids, pp. 60–79. Springer London (2007)

[19] Brown, D., Brady, P., Dietz, A., Cao, J., Johnson, B., McNabb, J.: A Case Study on the Use
of Workflow Technologies for Scientific Analysis: Gravitational Wave Data Analysis. In:
Workflows for e-Science: Scientific Workflows for Grids, pp. 39–59. Springer London
(2007)

[20] Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., Stal, M.: Pattern-Oriented
Software Architecture, Volume 1: A System of Patterns. John Wiley & Sons, Hoboken,
New Jersey, USA (Aug 1996)

[21] Buyya, R., Yeo, C.S., Venugopal, S., Broberg, J., Brandic, I.: Cloud Computing and
Emerging IT Platforms: Vision, Hype, and Reality for Delivering Computing As the 5th
Utility. Future Generation Computer Systems 25(6), 599–616 (Jun 2009)

[22] Chen, W., Silva, R.F.D., Deelman, E., Sakellariou, R.: Balanced Task Clustering in
Scientific Workflows. In: Proceedings of the 2013 IEEE 9th International Conference
on e-Science, 22-25 October 2013, Beijing, China. pp. 188–195. IEEE Computer Society,
Washington, DC, USA (2013)

[23] Convention on Biological Diversity: Article 2 (Rio Earth Summit). http://www.cbd.
int/convention/articles/?a=cbd-02 (1992)

[24] Corbet, J., Rubini, A., Kroah-Hartman, G.: Linux Device Drivers, 3rd Edition. O’Reilly
Media, Inc. (2005)

106

http://cfc.fis.uc.pt/events/tacc2008/docs/HTC,%20Grid%20Computing.pdf
http://cfc.fis.uc.pt/events/tacc2008/docs/HTC,%20Grid%20Computing.pdf
http://www.cbd.int/convention/articles/?a=cbd-02
http://www.cbd.int/convention/articles/?a=cbd-02

Bibliography

[25] Cugler, D.C., Medeiros, C.B., Shekhar, S., Toledo, L.F.: A Geographical Approach for
Metadata Quality Improvement in Biological Observation Databases. Proceedings of
the 2013 IEEE 9th International Conference on e-Science, 22-25 October 2013, Beijing,
China pp. 212–220 (2013)

[26] Curcin, V., Ghanem, M.: Scientific Workflow Systems - Can one Size fit all? In: Pro-
ceedings of 2008 Cairo International Biomedical Engineering Conference (CIBEC 2008),
18-20 December 2008, Cairo, Egypt. pp. 1–9 (Dec 2008)

[27] Dean, J., Ghemawat, S.: MapReduce: Simplified Data Processing on Large Clusters.
Commun. ACM 51(1), 107–113 (Jan 2008)

[28] Deelman, E., Mehta, G., Singh, G., Su, M.H., Vahi, K.: Pegasus: Mapping Large-Scale
Workflows to Distributed Resources. In: Workflows for e-Science: Scientific Workflows
for Grids, pp. 376–394. Springer London (2007)

[29] Fan, W., Gordon, M., Pathak, P.: On Linear Mixture of Expert Approaches to Information
Retrieval. Deciision Support Systems 42(2), 975–987 (Nov 2006)

[30] Fehling, C., Ewald, T., Leymann, F., Pauly, M., Rütschlin, J., Schumm, D.: Capturing
Cloud Computing Knowledge and Experience in Patterns. In: Proceedings of the 5th
IEEE International Conference on Cloud Computing, CLOUD 2012. pp. 726–733. IEEE
Computer Society (2012)

[31] Fehling, C., Leymann, F.: Cloud Computing Patterns – Fundamentals to Design,
Build, and Manage Cloud Applications, Tutorial at SummerSoC 2013, 1-6 July, Her-
sonissos, Crete, Greece. http://www.summersoc.eu/summersoc2013/wp-content/
uploads/2013/07/Christoph_Fehling_Part_1.pdf (2013)

[32] Fehling, C., Leymann, F., Retter, R., Schupeck, W., Arbitter, P.: Cloud Computing
Patterns – Fundamentals to Design, Build, and Manage Cloud Applications. Springer
(2014)

[33] Fenton, N.E., Pfleeger, S.L.: Software Metrics: A Rigorous and Practical Approach. PWS
Publishing Co., Boston, MA, USA, 2nd edn. (1998)

[34] Foster, I.: What is the Grid? A Three Point Checklist. GRIDtoday (June 2002)

[35] Foster, I., Kesselman, C. (eds.): The Grid: Blueprint for a New Computing Infrastructure.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA (1999)

[36] Foster, I., Kesselman, C., Tuecke, S.: The Anatomy of the Grid: Enabling Scalable Virtual
Organizations. Int. J. High Perform. Comput. Appl. 15(3), 200–222 (Aug 2001)

[37] Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable
Object-oriented Software. Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA (1995)

[38] Gannon, D., Plale, B., Marru, S., Kandaswamy, G., Simmhan, Y., Shirasuna, S.: Dynamic,
Adaptive Workflows for Mesoscale Meteorology, chap. 9, pp. 129–145. Springer (2007)

107

http://www.summersoc.eu/summersoc2013/wp-content/uploads/2013/07/Christoph_Fehling_Part_1.pdf
http://www.summersoc.eu/summersoc2013/wp-content/uploads/2013/07/Christoph_Fehling_Part_1.pdf

Bibliography

[39] Gibbon, P., Frings, W., Dominiczak, S., Mohr, B.: Performance Analysis and Visual-
ization of the N-Body Tree Code PEPC on Massively Parallel Computers, NIC series,
vol. 33, pp. 367–374. John von Neumann Institute for Computing, Jülich (2006)

[40] Giger, B.: Design of Experiments - Einführung in die statistische Versuchsplanung).
http://www.tqu-group.com/downloads/doedownload.pdf (2013)

[41] Glavic, B., Dittrich, K.R.: Data Provenance: A Categorization of Existing Approaches. In:
Proceedings of the 12th GI Conference on Datenbanksysteme in Buisness, Technologie
und Web (BTW). LNI, vol. 103, pp. 227–241. GI (2007)

[42] Gomes, P., Pereira, F.C., Paiva, P., Seco, N., Carreiro, P., Ferreira, J.L., Bento, C.: Using
CBR for Automation of Software Design Patterns. In: Proceedings of the 6th Euro-
pean Conference on Advances in Case-Based Reasoning, pp. 534–548. Springer Berlin
Heidelberg (2002)

[43] Goodale, T.: Expressing Workflow in the Cactus Framework. In: Workflows for e-
Science: Scientific Workflows for Grids, pp. 416–427. Springer London (2007)

[44] Google: Introduction to Parallel Programming and MapReduce.
https://courses.cs.washington.edu/courses/cse490h/07wi/readings/
IntroductionToParallelProgrammingAndMapReduce.pdf (2007)

[45] Grimm, C.: Seminar Aspekte Verteilter Systeme, Teil 1 – Einführung in e-
Science und Grid Computing. http://www.rrzn.uni-hannover.de/fileadmin/ful/
vorlesungen/Seminar/ss_08/Grid-Seminar_2_SS08.pdf (2008)

[46] Guéhéneuc, Y.G., Mustapha, R.: A Simple Recommender System for Design Patterns.
In: Proceedings of the 1st EuroPLoP Focus Group on Pattern Repositories (2007)

[47] Hey, T., Tansley, S., Tolle, K. (eds.): The Fourth Paradigm: Data-Intensive Scientific
Discovery. Microsoft Research, Redmond, Washington (2009)

[48] Hey, T., Trefethen, A.E.: The UK e-Science Core Programme and the Grid. Journal of
Future Generation Computer Systems(FGCS 18, 1017–1031 (2002)

[49] Hinde, S., Wilcock, L.: The Grid as a Platform for Communication, Collaboration and
e-Science (2002)

[50] Huerta, M., Haseltine, F., Lio, Y., Downing, G., Seto, B.: Nih Working Definition
of Bioinformatics and Computational Biology. http://www.bisti.nih.gov/docs/
CompuBioDef.pdf (2000)

[51] IAAS, University of Stuttgart: Simulation Workflows. http://www.iaas.
uni-stuttgart.de/forschung/projects/simtech/index.php (2011)

[52] Intakosum, S., Muangon, W.: Retrieving Model for Design Patterns. In: Proceedings of
ECTI Transactions on Computer and Information Technology, Vol. 3, No. 1. pp. 51–55
(May 2007)

[53] Jacobson, I., Christerson, M., Jonsson, P., Overgaard., G.: Object-Oriented Software
Engineering: A Use Case Driven Approach. Addison-Wesley (1992)

108

http://www.tqu-group.com/downloads/doedownload.pdf
https://courses.cs.washington.edu/courses/cse490h/07wi/readings/IntroductionToParallelProgrammingAndMapReduce.pdf
https://courses.cs.washington.edu/courses/cse490h/07wi/readings/IntroductionToParallelProgrammingAndMapReduce.pdf
http://www.rrzn.uni-hannover.de/fileadmin/ful/vorlesungen/Seminar/ss_08/Grid-Seminar_2_SS08.pdf
http://www.rrzn.uni-hannover.de/fileadmin/ful/vorlesungen/Seminar/ss_08/Grid-Seminar_2_SS08.pdf
http://www.bisti.nih.gov/docs/CompuBioDef.pdf
http://www.bisti.nih.gov/docs/CompuBioDef.pdf
http://www.iaas.uni-stuttgart.de/forschung/projects/simtech/index.php
http://www.iaas.uni-stuttgart.de/forschung/projects/simtech/index.php

Bibliography

[54] Jones, A.: Workflow and Biodiversity e-Science. In: Workflows for e-Science: Scientific
Workflows for Grids, pp. 80–90. Springer London (2007)

[55] Journal of Theoretical and Applied Information Technology: Comparison of Grid Com-
puting vs. Cluster Computing. http://www.jatit.org/research/introduction_
grid_computing.htm

[56] Karastoyanova, D., Andrikopoulos, V.: eScienceSWaT – A Software Engineering
Methodology and Architectural Framework for Building eScience Applications

[57] Karastoyanova, D., Andrikopoulos, V.: eScienceSWaT – Towards an eScience Software
Engineering Methodology. Proceedings of the 17th International Enterprise Distributed
Object Computing Conference Workshops (EDOCW 2013), 0, 229–238 (2013)

[58] Karastoyanova, D., Leymann, F.: Making Scientific Applications on the Grid Reliable
through Flexibility Approaches Borrowed from Service Compositions, pp. 635–656.
Handbook of Research on P2P and Grid Systems for Service-Oriented Computing:
Models, Methodologies and Applications. Volume II., IGI Global (January 2010)

[59] Köckerbauer, T., Polak, M., Stütz, T., Uhl, A.: GVid - Video Coding and Encryption for
Advanced Grid Visualization. In: Proceedings of the 1st Austrian Grid Symposium, 1-2
December 2005, Hagenberg, Austria. pp. 204–218 (2006)

[60] Kerzner, M., Maniyam, S.: Hadoop Illuminated. Hadoop illuminated LLC (2013)

[61] Khurana, R., Beniwal, V.: Object Oriented Solution for Industrial ERP
Using Design Patterns in .Net. International Journal of Applied Engineer-
ing Research (IJAER). http://gimt.edu.in/clientFiles/FILE_REPO/2012/NOV/23/
1353645863030/78.pdf (2012)

[62] Kolodner, J.L.: An Introduction to Case-Based Reasoning. Artificial Intelligence Review
6(1), 3–34 (Mar 1992)

[63] Kumar, K., Prabhakar, T.: Design Decision Topology Model for Pattern Relationship
Analysis. In: Proceedings of the 1st Asian Conference on Pattern Languages of Programs.
AsianPLoP ’10, ACM, New York, NY, USA (2010)

[64] von Laszewski, G., Hategan, M., Kodeboyina, D.: Java CoG Kit Workflow. In: Work-
flows for e-Science: Scientific Workflows for Grids, pp. 340–356. Springer London
(2007)

[65] Leong, L., Toombs, D., Gill, B., Petri, G., Haynes, T.: Magic Quadrant for Cloud
Infrastructure as a Service. http://www.gartner.com/technology/reprints.do?id=
1-1UKQQA6&ct=140528&st=sb (2014)

[66] Lezzi, D., Rafanell, R., Torres, E., Giovanni, R., Blanquer, I., Badia, R.: Programming
Ecological Niche Modeling Workflows in the Cloud. In: Proceedings of the 27th Interna-
tional Conference on Advanced Information Networking and Applications Workshops
(WAINA 2013). pp. 1223–1228 (March 2013)

109

http://www.jatit.org/research/introduction_grid_computing.htm
http://www.jatit.org/research/introduction_grid_computing.htm
http://gimt.edu.in/clientFiles/FILE_REPO/2012/NOV/23/1353645863030/78.pdf
http://gimt.edu.in/clientFiles/FILE_REPO/2012/NOV/23/1353645863030/78.pdf
http://www.gartner.com/technology/reprints.do?id=1-1UKQQA6&ct=140528&st=sb
http://www.gartner.com/technology/reprints.do?id=1-1UKQQA6&ct=140528&st=sb

Bibliography

[67] Library of Congress: Science Reference Services – e-Science. http://www.loc.gov/rr/
scitech/tracer-bullets/esciencetb.html

[68] Ludäscher, B., Altintas, I., Berkley, C., Higgins, D., Jaeger, E., Jones, M., Lee, E.A., Tao,
J., Zhao, Y.: Scientific Workflow Management and the Kepler System. Concurrency and
Computation: Practice and Experience 18(10), 1039–1065 (2006)

[69] Maechling, P., Deelman, E., Zhao, L., Graves, R., Mehta, G., Gupta, N., Mehringer, J.,
Kesselman, C., Callaghan, S., Okaya, D., Francoeur, H., Gupta, V., Cui, Y., Vahi, K.,
Jordan, T., Field, E.: SCEC CyberShake Workflows—Automating Probabilistic Seismic
Hazard Analysis Calculations. In: Workflows for e-Science: Scientific Workflows for
Grids, pp. 143–163. Springer London (2007)

[70] Mattoso, M., Dias, J., Costa, F., Oliveira, D., Ogasawara, E.: Experiences in Using
Provenance to Optimize the Parallel Execution of Scientific Workflows Steered by Users
(2014)

[71] Mattson, T., Sanders, B., Massingill, B.: Patterns for Parallel Programming. Addison-
Wesley Professional, first edn. (2004)

[72] McGough, S., Lee, W., Cohen, J., Katsiri, E., Darlington, J.: ICENI. In: Workflows for
e-Science: Scientific Workflows for Grids. Springer (June 2007)

[73] Mell, P., Grance, T.: The NIST Definition of Cloud Computing. Tech. rep., National
Institute of Standards and Technology (NIST) (2009)

[74] Naveda, J.F., Seidman, S.B.: IEEE Computer Society Real-World Software Engineering
Problems: A Self-Study Guide for Today’s Software Professional. Wiley (2006)

[75] Newman, P., Ward, N., Campbell, H., Watts, M., Franklin, C., Hunter, J.: Oz-
Track: Data Management and Analytics Tools for Australian Animal Track-
ing. http://www.itee.uq.edu.au/eresearch/filething/files/get/projects/
oztrack/OzTrack_eResearch_Conference.pdf (2011)

[76] Noble, J.: Classifying Relationships Between Object-Oriented Design Patterns. In:
Proceedings of the 1998 Australian Software Engineering Conference, 9-13 November
1998, Adelaide, Australia. pp. 98–107 (Nov 1998)

[77] Novotny, J., Russell, M., Wehrens, O.: GridSphere: A Portal Framework for Build-
ing Collaborations: Research Articles. Concurrency and Computation: Practice and
Experience 16(5), 503–513 (Apr 2004)

[78] Nowak, A., Binz, T., Fehling, C., Kopp, O., Leymann, F., Wagner, S.: Pattern-driven
Green Adaptation of Process-based Applications and their Runtime Infrastructure.
Computing 94(6), 463–487 (2012)

[79] Nowak, A., Leymann, F.: Green Business Process Patterns - Part II. In: Proceedings of
the 6th IEEE International Conference on Service Oriented Computing and Applications,
SOCA 2013, 16-18 December 2013, Kauai, Hawaii, USA. p. TBA. IEEE Computer Society
(2013)

110

http://www.loc.gov/rr/scitech/tracer-bullets/esciencetb.html
http://www.loc.gov/rr/scitech/tracer-bullets/esciencetb.html
http://www.itee.uq.edu.au/eresearch/filething/files/get/projects/oztrack/OzTrack_eResearch_Conference.pdf
http://www.itee.uq.edu.au/eresearch/filething/files/get/projects/oztrack/OzTrack_eResearch_Conference.pdf

Bibliography

[80] Oinn, T., Addis, M., Ferris, J., Marvin, D., Carver, T., Pocock, M.R., Wipat, A.: Taverna:
A Tool for the Composition and Enactment of Bioinformatics Workflows. Bioinformatics
20(17) (2004)

[81] Oinn, T., Li, P., Kell, D., Goble, C., Goderis, A., Greenwood, M., Hull, D., Stevens, R.,
Turi, D., Zhao, J.: Taverna/myGrid: Aligning a Workflow System with the Life Sciences
Community. In: Workflows for e-Science: Scientific Workflows for Grids, pp. 300–319.
Springer London (2007)

[82] Oracle Corporation: The Java EE 6 Tutorial - Direction in Entity Relationships). http:
//docs.oracle.com/cd/E19798-01/821-1841/bnbqi/index.html (2010)

[83] Oracle Corporation: The NetBeans E-commerce Tutorial - Designing the Application.
https://netbeans.org/kb/docs/javaee/ecommerce/design.html (2013)

[84] Palma, F., Farzin, H., Guéhéneuc, Y.G., Moha, N.: Recommendation System for Design
Patterns in Software Development: An DPR Overview. In: Proceedings of the 3rd
International Workshop on Recommendation Systems for Software (RSSE) (2012)

[85] Pennington, D., Higgins, D., Peterson, A., Jones, M., Ludäscher, B., Bowers, S.: Ecologi-
cal Niche Modeling Using the Kepler Workflow System. In: Workflows for e-Science:
Scientific Workflows for Grids, pp. 91–108. Springer London (2007)

[86] Pfister, G.F.: In Search of Clusters (2nd Ed.). Prentice-Hall, Inc., Upper Saddle River, NJ,
USA (1998)

[87] Pol, A.A., Ahuja, R.K.: Developing Web-Enabled Decision Support Systems Using
VB.NET and ASP.NET. Dynamic Ideas (2007)

[88] Power, D.J.: Decision Support Systems: Concepts and Resources for Managers). West-
port, CN: Quorum Books (2002)

[89] Reiter, M., Breitenbücher, U., Kopp, O., Karastoyanova, D.: Quality of Data Driven
Simulation Workflows. In: Proceedings of the 8th IEEE International Conference on
e-Science. pp. 1–8 (Oct 2012)

[90] Research Councils UK: About the UK e-Science Programme. http://www.bath.ac.uk/
bucs/services/esciencegridwork/

[91] Riding, M., Wood, J.D., Brodlie, K.W., Brooke, J.M., Chen, M., Chisnall, D., Hughes, C.,
John, N.W., Jones, M.W., Roard, N.: e-Viz: Towards an Integrated Framework for High
Performance Visualization. In: Proceedings of the UK e-Science All Hands Meeting
2005, 19-22 September 2005, Nottingham UK. pp. 1026–1032 (2005)

[92] Riedel, M.: Design and Applications of an Interoperability Reference Model for Produc-
tion e-Science Infrastructures. Dissertation, Karlsruher Institut für Technologie (KIT),
Jülich (2013)

111

http://docs.oracle.com/cd/E19798-01/821-1841/bnbqi/index.html
http://docs.oracle.com/cd/E19798-01/821-1841/bnbqi/index.html
https://netbeans.org/kb/docs/javaee/ecommerce/design.html
http://www.bath.ac.uk/bucs/services/esciencegridwork/
http://www.bath.ac.uk/bucs/services/esciencegridwork/

Bibliography

[93] Riedel, M., Eickermann, T., Frings, W., Dominiczak, S., Mallmann, D., Dussel, T.,
Streit, A., Gibbon, P., Wolf, F., Schiffmann, W., Lippert, T.: Design and Evaluation
of a Collaborative Online Visualization and Steering Framework Implementation for
Computational Grids. In: Proceedings of the 8th IEEE/ACM International Conference
on Grid Computing (GRID ’07). pp. 169–176. IEEE Computer Society, Washington, DC,
USA (2007)

[94] Riedel, M., Streit, A., Wolf, F., Lippert, T., Kranzlmüller, D.: Classification of Different
Approaches for e-Science Applications in Next Generation Computing Infrastructures.
In: Proceedings of the 4th IEEE International Conference on eScience, eScience 2008,
7-12 December 2008, Indianapolis, Indiana, USA. pp. 198–205 (December 2008)

[95] Rouse, M.: Expert System. http://searchhealthit.techtarget.com/definition/
expert-system (2005)

[96] Ruan, Y., Fox, G.: A Robust and Scalable Solution for Interpolative Multidimensional
Scaling with Weighting. In: Proceedings of the 2013 IEEE 9th International Conference
on e-Science, 22-25 October 2013, Beijing, China. pp. 61–69. IEEE Computer Society, Los
Alamitos, CA, USA (2013)

[97] Sahly, E., Sallabi, O.: Design Pattern Selection: A Solution Strategy Method. In: Proceed-
ings of the IEEE 2012 International Conference on Computer Systems and Industrial
Informatics (ICCSII), 18-20 December 2012, Dubai, Sharjah, United Arab Emirates. pp.
1–6 (Dec 2012)

[98] Saira Thabasum, S., Mani Sundar, U.T.: A Survey on Software Design Pattern Tools for
Pattern Selection and Implementation. In: International Journal of Computer Science &
Communication Networks, Vol 2(4) (2012)

[99] SAS Institute Inc.: Concepts of Experimental Design: Design Institute for Six Sigma.
https://support.sas.com/resources/papers/sixsigma1.pdf (2005)

[100] Schumm, D., Anstett, T., Leymann, F., Schleicher, D.: Applicability of Process Viewing
Patterns in Business Process Management. In: Proceedings of the International Work-
shop on Models and Model-driven Methods for Service Engineering (3M4SE 2010), in
conjunction with the 14th IEEE International EDOC Conference (EDOC 2010), 25-29
October 2010, Vitória, Brazil. pp. 79–88. IEEE Computer Society (2010)

[101] Schumm, D., Barzen, J., Leymann, F., Ellrich, L.: A Pattern Language for Costumes
in Films. In: Proceedings of the 17th European Conference on Pattern Languages of
Programs (EuroPLoP 2012) (2012)

[102] Schumm, D., Leymann, F., Streule, A.: Process Viewing Patterns. In: Proceedings of the
14th IEEE International EDOC Conference, EDOC 2010, 25-29 October 2010, Vitória,
Brazil. pp. 89–98. IEEE Computer Society (2010)

[103] Simmhan, Y.L., Plale, B., Gannon, D.: A Survey of Data Provenance in e-Science. ACM
SIGMOD Record 34(3), 31–36 (Sep 2005)

112

http://searchhealthit.techtarget.com/definition/expert-system
http://searchhealthit.techtarget.com/definition/expert-system
https://support.sas.com/resources/papers/sixsigma1.pdf

Bibliography

[104] Sonntag, M., Hahn, M., Karastoyanova, D.: Mayflower - Explorative Modeling of
Scientific Workflows with BPEL. In: Proceedings of the Demo Track of the 10th Inter-
national Conference on Business Process Management (BPM 2012), CEUR Workshop
Proceedings, 2012. pp. 1–5. CEUR Workshop Proceedings (September 2012)

[105] Sonntag, M., Hotta, S., Karastoyanova, D., Molnar, D., Schmauder, S.: Using Services
and Service Compositions to Enable the Distributed Execution of Legacy Simulation
Applications. In: Proceedings of the 4th European Conference on Towards a Service-
based Internet. pp. 242–253. ServiceWave’11, Springer-Verlag, Berlin, Heidelberg (2011)

[106] Sonntag, M., Karastoyanova, D.: Concurrent Workflow Evolution. In: Electronic Com-
munications of the EASST, Volume 37, ISSN 1863-2122. pp. 1–12. Gesellschaft für
Informatik e.V. (GI) (März 2011)

[107] Sonntag, M., Karastoyanova, D.: Ad hoc Iteration and Re-execution of Activities in
Workflows. International Journal On Advances in Software 5(1 & 2), 91–109 (Juli 2012)

[108] Sonntag, M., Karastoyanova, D., Leymann, F.: The Missing Features of Workflow Sys-
tems for Scientific Computations. In: Proceedings of the 3rd Grid Workflow Workshop
(GWW), Software Engineering Conference, GI-Edition Lecture Notes in Informatics
(LNI), P-160. pp. 209–216. Gesellschaft für Informatik e.V. (GI) (February 2010)

[109] Stell, A., Sinnott, R.: e-Enabling International Cancer Research: Lessons Being Learnt
in the ENS@T-CANCER Project. In: Proceedings of the 2013 IEEE 9th International
Conference on e-Science, 22-25 October 2013, Beijing, China. pp. 132–139 (Oct 2013)

[110] Stevens, R., Goble, C.A., Baker, P.G., Brass, A.: A Classification of Tasks in Bioinformat-
ics. Bioinformatics 17(1), 180–188 (2001)

[111] Strauch, S., Andrikopoulos, V., Breitenbücher, U., Kopp, O., Leymann, F.: Non-
Functional Data Layer Patterns for Cloud Applications. In: Proceedings of the 4th
IEEE International Conference on Cloud Computing Technology and Science, Cloud-
Com 2012, 3-6 December 2012, Taipei, Taiwan. pp. 601–605. IEEE Computer Society
(2012)

[112] Strauch, S., Andrikopoulos, V., Breitenbücher, U., Sáez, S.G., Kopp, O., Leymann, F.:
Using Patterns to Move the Application Data Layer to the Cloud. In: Proceedings of the
5th International Conference on Pervasive Patterns and Applications, PATTERNS 2013,
27 May – June 1 2013, Valencia, Spain. pp. 26–33. Xpert Publishing Services (XPS) (2013)

[113] Strauch, S., Breitenbücher, U., Kopp, O., Leymann, F., Unger, T.: Cloud Data Patterns
for Confidentiality. In: Proceedings of the 2nd International Conference on Cloud
Computing and Service Science, CLOSER 2012, 18-21 April 2012, Porto, Portugal. pp.
387–394. SciTePress (2012)

[114] Studer, R., Benjamins, V.R., Fensel, D.: Knowledge Engineering: Principles and Methods.
Data and Knowledge Engineering 25(1-2), 161–197 (March 1998)

[115] Suresh, S.S., Naidu, M.M., Asha Kiran, S.: Design Pattern Recommendation System
(Methodology, Data Model and Algorithms) (2011)

113

Bibliography

[116] SYS-CON Media Inc.: Twenty-One Experts Define Cloud Computing. http://
virtualization.sys-con.com/node/612375 (2009)

[117] Talia, D.: Workflow Systems for Science: Concepts and Tools. ISRN Software Engineer-
ing 2013, 15 (2013)

[118] Taylor, I., Shields, M., Wang, I., Harrison, A.: The Triana Workflow Environment:
Architecture and Applications. In: Workflows for e-Science: Scientific Workflows for
Grids, pp. 320–339. Springer London (2007)

[119] Taylor, J.: Defining e-Science. http://www.nesc.ac.uk/nesc/define.html

[120] The Eclipse Foundation: GEF Programmer’s Guide. http://help.eclipse.org/luna/
index.jsp?topic=%2Forg.eclipse.gef.doc.isv%2Fguide%2Fguide.html (2014)

[121] The Eclipse Foundation: Graphical Modeling Framework. http://wiki.eclipse.org/
Graphical_Modeling_Framework (2014)

[122] Vandenhouten, R.: Modellgetriebene Entwicklung mit Eclipse GMF oder Wie program-
miert man einen graphischen Editor ohne eine Zeile Quellcode? Tutorial zum Graph-
ical Modeling Framework. http://www.tm.tfh-wildau.de/vandenhouten/media/
GMF-Step-By-Step.pdf (2008)

[123] Vouk, M.A., Singh, M.P.: Quality of Service and Scientific Workflows. In: Proceedings of
the IFIP Conference on Quality of Numerical Software: Assessment and Enhancements,
8-12 July, Oxford, U.K. pp. 77–89 (1996)

[124] Wallis, J., Mayernik, M., Pepe, A., Borgman, C.: An Exploration of the Life Cycle of
eScience Collaboratory Data (2008)

[125] Wang, S., Padmanabhan, A., Myers, J.D., Tang, W., Liu, Y.: Towards Provenance-
aware Geographic Information Systems. In: Proceedings of the 16th ACM SIGSPATIAL
International Conference on Advances in Geographic Information Systems. GIS ’08,
ACM, New York, NY, USA (2008)

[126] Weidlich, M., Grosskopf, A., Barros, A.: Realising Dead Path Elimination in BPMN.
In: Proceedings of the 11th IEEE Conference on Commerce and Enterprise Computing
(CEC’09) (July 2009)

[127] Wickramaarachchi, C., Simmhan, Y.: Continuous Dataflow Update Strategies for
Mission-Critical Applications. In: Proceedings of the 2013 IEEE 9th International Con-
ference on e-Science, 22-25 October 2013, Beijing, China. pp. 155–163. ESCIENCE ’13,
IEEE Computer Society, Washington, DC, USA (2013)

[128] Wilson, P., Emmerich, W., Brodholt, J.: Leveraging HTC for UK eScience with Very Large
Condor pools: Demand for transforming untapped power into results. In: Proceedings
of the 2004 UK E-Science All Hands Meeting (2004)

114

http://virtualization.sys-con.com/node/612375
http://virtualization.sys-con.com/node/612375
http://www.nesc.ac.uk/nesc/define.html
http://help.eclipse.org/luna/index.jsp?topic=%2Forg.eclipse.gef.doc.isv%2Fguide%2Fguide.html
http://help.eclipse.org/luna/index.jsp?topic=%2Forg.eclipse.gef.doc.isv%2Fguide%2Fguide.html
http://wiki.eclipse.org/Graphical_Modeling_Framework
http://wiki.eclipse.org/Graphical_Modeling_Framework
http://www.tm.tfh-wildau.de/vandenhouten/media/GMF-Step-By-Step.pdf
http://www.tm.tfh-wildau.de/vandenhouten/media/GMF-Step-By-Step.pdf

Bibliography

[129] Yuan, D., Yang, Y., Liu, X., Chen, J.: A Local-Optimisation Based Strategy for Cost-
Effective Datasets Storage of Scientific Applications in the Cloud. In: Proceedings of
the 2011 IEEE 4th International Conference on Cloud Computing (CLOUD), 4-9 July
2011, Washington, DC, USA. pp. 179–186 (July 2011)

[130] Zeng, J., Plale, B.: Data Pipeline in MapReduce. In: Proceedings of the 2013 IEEE 9th
International Conference on e-Science, 22-25 October 2013, Beijing, China. pp. 164–171.
IEEE Computer Society, Los Alamitos, CA, USA (2013)

[131] Zimmer, W.: Relationships between Design Patterns. In: Pattern Languages of Program
Design. pp. 345–364. Addison-Wesley (1994)

All links were last followed on July 31, 2014.

115

Declaration

I hereby declare that the work presented in this thesis is entirely
my own. I did not use any other sources and references than
the listed ones. I have marked all direct or indirect statements
from other sources contained therein as quotations. Neither this
work nor significant parts of it were part of another examination
procedure. I have not published this work in whole or in part
before. The electronic copy is consistent with all submitted copies.

place, date, signature

	1 Introduction
	1.1 Problem Statement
	1.2 Motivating Scenario
	1.3 Scope of Work
	1.4 Outline
	1.5 Definitions and Conventions

	2 Background
	2.1 Patterns
	2.1.1 Christoph Alexander
	2.1.2 Gang of Four
	2.1.3 Patterns at IAAS

	2.2 e-Science
	2.2.1 Application Domains
	2.2.2 Modelling Approaches
	2.2.3 Technologies
	2.2.4 Infrastructures
	2.2.5 Further Complexity and Challenges

	2.3 e-Science at IAAS
	2.3.1 e-Science Life Cycle
	2.3.2 Rationale behind eScienceSWaT
	2.3.3 eScienceSWaT

	2.4 Scientific Workflows

	3 Related Work
	3.1 Decision Support Systems for Choosing Design Patterns
	3.1.1 Case Based Reasoning
	3.1.2 Simple Recommender System for Design Patterns
	3.1.3 Design Pattern Recommender
	3.1.4 Design Pattern Recommendation System
	3.1.5 Systems for Implicit Culture Support
	3.1.6 Design Pattern Selection, A Solution Strategy Method
	3.1.7 Patterns 2.0: a Service for Searching Patterns

	3.2 Relationships Among Patterns
	3.2.1 Classification of Relationships
	3.2.2 Relationships in the Domain of Patterns

	4 e-Science Pattern Catalogue
	4.1 Development Approach
	4.1.1 Information Collection
	4.1.2 Pattern Generation

	4.2 Pattern Format and Relationships
	4.2.1 Pattern Format
	4.2.2 Pattern Relationships
	4.2.3 Structure Elements

	4.3 Scientific Experiment Model
	4.3.1 Natural Way of Doing Research
	4.3.2 Data
	4.3.3 Improve Collaboration
	4.3.4 Non-functional Properties

	4.4 IT Experiment Model
	4.4.1 Simple Scripts & Control Functionality
	4.4.2 Application Plug-ins
	4.4.3 Workflows
	4.4.4 Data
	4.4.5 Resource Management
	4.4.6 Access and Interfaces
	4.4.7 Miscellaneous

	4.5 Infrastructure
	4.5.1 Concrete Infrastructure
	4.5.2 Workflow Management Systems

	5 Decision Support System
	5.1 Functionality
	5.1.1 Basic Pattern Selection Support
	5.1.2 Decision Chains

	5.2 Architecture
	5.3 Prototype
	5.3.1 Model
	5.3.2 Graphical User Interface
	5.3.3 Use Case

	6 Conclusion and Future Work
	6.1 Conclusion
	6.2 Future Work
	6.2.1 Pattern Awareness for Artefacts
	6.2.2 Extended Pattern Selection Support
	6.2.3 Case Based Reasoning for Pattern Selection
	6.2.4 Pattern Status Conflicts
	6.2.5 Global and Local Views on eExperiments

	A e-Science Catalogue Overview
	B Decision Support System
	Bibliography

