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Abstract

Retrieving multidimensional data out of distributed systems becomes increasingly important.
But applications of these systems are often not only interested in data vectors that match
certain queries. Instead, many applications demand for retrieval of data with high quality. In
this thesis, we design a distributed system that can be used by applications to retrieve data of
high quality for arbitrary multidimensional queries.
Major challenges for the quality-based data retrieval are to 1.) find an appropriate formaliza-
tion of data quality, 2.) design routing algorithms for queries, that are robust in the presence of
high dynamics with respect to the participants of the system and the data on the participants
and 3.) handle heterogeneous and high-dimensional data in the system.
In order to retrieve data quality, we propose 1.) the measure of confidence for a query that
is based on clusters of data. When a participant of the system finds, that its confidence for
a query is high, it will assume to possess data of high quality for that query. 2.) Further, we
design and implement routing strategies in order to route queries to nodes that can answer
them with high confidence. Maintaining exact routing tables for each possible query would
be infeasible, so nodes have to model the data that can be reached via neighbours in routing
models. Such modelling of data is based on structural properties of the data such as how good
the data can be clustered. 3.) In the high-dimensional space, we have to overcome the curse of
dimensionality: the structure of data can become invisible in higher dimensions. We address
this problem with a method for dimensionality reduction that reduces the dimensions with
highest data variance.
The evaluation of our approaches shows a high accuracy of query routing, even if our ap-
proaches do not make use of scalability bottlenecks like flooding of the query or flooding of
routing information. Further, we show that the use of dimensionality reduction in routing has
positive influence on the routing accuracy. We think that the methods in our approach can be
useful instruments, whenever the task of retrieving data of high quality has to be outsourced
to a distributed system.
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1 Introduction

The world’s data volume grows rapidly. Examples of data are images and videos, telephone
calls, emails, articles, web pages and sensor data [BA03]. Because of the high velocity of data
generation, it becomes increasingly important to automatically extract relevant information
from the data in real-time [GR12]. In addition to data volume and velocity, a major task
today is analyzing data with heterogeneous and diverse dimensionality [WZWD14]. Diverse
dimensionality can arise, when different organizations or data sources observe individuals
with respect to different attributes. When data is of diverse dimensionality, information
extraction becomes more difficult. This challenge of high data volume, high velocity of
data generation and high dimensionality of data is commonly identified with the term Big
Data [Jac09]. Numerous applications and design principles have evolved that are positioned
around the field of Big Data. Examples are search engines [BKL08], social networks [Loh12],
Internet encyclopedia [CSC+06], cloud computing [ADEA10], pervasive computing [Han03],
the Internet of Things [GBMP13] and others.

An application of large amounts of data with heterogeneous dimensionality is given in collective
adaptive systems. Collective adaptive systems (CAS) are large-scale distributed systems, that
consist of a heterogeneous and dynamic changing set of autonomous participants [ABGS+14].
An example of a CAS is an urban mobility system, where different participants build a sponta-
neous interaction network. Participants can be agents in the real world like trains, passengers
and buses, as well as back-end computer systems that are responsible for payment or route
planning. In order to react to changing contexts, the system should be able to store and retrieve
observations from past experiences (collaborative learning). The observations can be the basis
for diverse learning algorithms. For example, the CAS might have learned that on major events,
the number of buses should increase. If the system has made many observations in a similar
context, it can be more confident about the learning. On the other hand, the system should not
have much confidence in the learning, if there are only few observations. This knowledge can
be maintained in a distributed knowledge base that consists of local data models on each par-
ticipant. In addition to storing past observations, data models provide an interpretation of how
much confidence in the data a learning algorithm could have. Participants may find different
aspects of the environment important. This results in local data models with heterogeneous
dimensionality that can change over time. In this context, scalable retrieval of information is a
very challenging task.

Such systems are different to traditional data retrieval systems. The aim is not to store and
retrieve some specific data. Instead, automatically interpretation of the data is needed, so that
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1 Introduction

information about the data can be retrieved. In the CAS example, data is interpreted in order
to retrieve a confidence score for certain contexts. This score can then be used for higher levels
of learning.

Here’s the big truth about big data in traditional databases: It’s easier to get the
data in than out.
- Adam Jacobs [Jac09]

We will concentrate on methods that help to get something out of the data in a distributed system.
In a nutshell, this thesis is about retrieving specific quality information out of unstructured,
multidimensional data that is stored in a distributed system.

1.1 Contributions

The main contributions of this thesis are the following:

• We propose the measure of data confidence. With this measure, nodes can find out about
the quality of the local data for a given multidimensional query. A higher confidence
score means that a node can provide better knowledge for the query. The score depends
on the euclidean distance between query and data, the number and density of the data
in proximity to the query and the shape of the data.

• We develop a routing approach, so that a query can be routed to a node with high local
confidence. Each participant maintains information about the data that is reachable
via each neighbour. This information can be used to decide to which neighbour the
query should be routed. To spread the routing information across the network, each
node aggregates routing information of the neighbours and its local data and forwards
the aggregate to the neighbours. Because of this method, we call this approach data
aggregation (DA) routing approach. While this kind of routing shows a high accuracy,
this technique can be inflexible in large and dynamic networks.

• In order to provide scalability, we develop a more fine grained routing approach, where
nodes do not have to wait until each reachable participant has forwarded routing
information. In the query learning (QL) routing approach, nodes use past queries to
neighbours to find out about the kind of data that is reachable via this neighbour. Each
neighbour feedbacks the queries with an estimation of the confidence score that will
be retrieved, if the query is send via itself. Feedback receivers use this information for
future routing decisions. The confidence estimation of the neighbours is based on their
local data and their local routing information. Because of that, the learning of routing
information is only local and the system can adapt itself very dynamically.

14



1.2 Structure of the Thesis

• As queries and data can be very high dimensional, we have to take into account the
curse of dimensionality [VF05]: with increasing dimensionality, data becomes sparse and
clusters become invisible. Therefore, we introduce a dimensionality reduction method
for the QL routing approach. This enables nodes to ignore dimensions that do not have
good clustering properties.

• We investigate the routing approaches in an evaluation of the routing accuracy of the
different approaches with and without dimensionality reduction.

1.2 Structure of the Thesis

In the following, we give the structure of the thesis. Chapter 2 is about related work on which
this thesis is built-on. The assumptions about the network and the problem formulation is
presented in Chapter 3. Afterwards, we introduce the confidence metric and how we came to
it in Chapter 4. In Chapter 5, we present the DA routing approach that is based on forwarding
cluster information. Nodes use this information to route queries through the network. As this
approach is not always feasible in large and dynamic networks, we develop the QL routing
approach in Chapter 6. Here, the learning of routing information is based on exploration
queries and their feedbacks. For the QL routing approach, we give a method for reducing
high-dimensional data. Both approaches will be evaluated in Chapter 7. We summarize the
results of the thesis in Chapter 8 and propose topics for future work on the approaches.
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2 Related Work

In this chapter, we give an overview about related approaches for routing and data retrieval in
dynamic networks. Initially, we investigate diverse strategies for data retrieval in a peer-to-peer
system. Afterwards, we introduce publish/subscribe systems and discuss how those systems
can be used to retrieve information. Finally, we introduce the method of reinforcement learning
that has influenced our routing approach.

2.1 Data Retrieval in Peer-to-peer Systems

Scalable retrieval of data in peer-to-peer (P2P) systems was subject to intensive research during
the last decades [LCP+05]. P2P systems are decentralized, distributed systems, where each
node can be client and server of the system at the same time. Because of the absence of a
centralized component, there is no single point of failure.

Typically P2P systems can be categorized into structured and unstructured systems.

2.1.1 Unstructured P2P Approaches

Unstructured P2P systems do not maintain a fixed structure of the topology and the kind of
data that is stored by peers. Each peer can store arbitrary data. Because of this, unstructured
P2P systems normally work well, even if there is a high frequency of nodes joining and leaving
the system.

When processing queries for data items, unstructured P2P systems often use blind searches such
as flooding of the query [BAH+06]. In blind searches, peers maintain no routing information
about data that is reachable via a neighbour. Examples of such P2P systems using flooding
are Gnutella [AH00] and Kazaa [LKR04]. Flooding the query has the property of guaranteed
retrieval of the searched file, but limits the scalability of the system. The other extreme in
blind searching is the random walk approach, where the query is forwarded to one random
neighbour. This solves the problem of high message overhead. Eventually, each content can be
found, but the search latency can become very high.

In order to provide scalability, nodes can maintain some routing information to enable an
informed search [BAH+06]. An example for informed search is given in Freenet [CSWH01],
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where files are associated with keys and nodes store keys of files that can be retrieved via
neighbours. A query (key) can be forwarded to the neighbour that has already answered
similar keys.

2.1.2 Structured P2P Approaches

In structured P2P systems, the network overlay is organized in a way, so that contents can be
retrieved efficiently. Structured P2P systems can be seen as Distributed Hash Tables (DHTs),
because these systems provide key-value lookup like a hash table. The structure of the network
helps nodes to route queries efficiently to their neighbours, because a node has information
about the responsibility of its neighbours for certain keys.

An example of a structured P2P approaches is CAN [RFH+01], where a key is a point in
the multidimensional space. Each node is responsible for keys in a certain area of this
multidimensional space. A node is connected with its direct two neighbours in each dimension.
When a node receives a query, it determines, whether the key falls in its responsibility area. If
this is the case, it will answer it locally, otherwise it forwards the query to the neighbour that
is closest to the query. Other examples of structured P2P approaches are Chord [SMLN+03],
where the overlay is organized as ring with long range contacts to nodes that are far away in
the ring, so that the search is more efficient, and Pastry [RD01].

All structured P2P approaches have in common, that data retrieval is efficient, but the mainte-
nance of the structure is costly, when nodes join and leave the protocol very frequently. DHTs
are designed to retrieve values, having the associated keys. But as we have already discussed
in the introduction, we do not search for exact query matches in this thesis, but for nodes that
contain similar data. We investigate now an approach that provides more complex, content
based query searches using a hybrid overlay structure.

2.1.3 Semantic Small World

The problem of routing queries to nodes that contain similar data is addressed by the semantic
small world protocol [LLS04]. For this, a small world network is constructed. The characteristic
properties of such a network are a small average length of query routes and a high clustering
coefficient. This means that two neighbours of a node are likely to be already neighbours of
each other. We will name such a cluster of nodes node cluster to distinguish it clearly from the
concept of data cluster that is used often in this thesis.

The term semantic in semantic small world refers to the idea of building clusters of nodes that
store data vectors that are approximately in the same area of the space. For this, each node
determines its semantic label that is the centroid of the largest cluster of local data. Based on
the semantic labels, nodes construct an overlay network, such that semantically close nodes
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are also topographically close. We can see a simplified example of such a network in Figure
2.1 (please see the paper for a more detailed example). Each node has a semantic label in the
m-dimensional space. Additionally, we have plotted the local data vectors of node P3 that are
responsible for its semantic label. Each node maintains information about its current node
cluster that is given by the box around a node. Each node maintains communication links i) to
each node in its node cluster, ii) to 2m nodes of the neighbour node clusters and iii) to some
distant nodes (long range contacts) with probability proportional to the inverse distance to
that nodes. The links of node P3 are given in the example.

Figure 2.1: An example for semantic small world.

With increasing dimensionality, the number of neighbours of a node increases too. Because
of that, the authors give a method to reduce dimensionality of the overlay by constructing
a double linked list that connects a node with only two of the nodes in neighbour clusters.
Routing is performed by simply forwarding the query to the node whose label is closest to the
query.

This approach addresses some of the problems that have to be solved in our approach such as
semantic query forwarding and high dimensionality. However, the dimensionality reduction
reduces only the overlay, which results in a lower number of links to neighbours. The authors
specify explicitly that for the routing, the whole dimensional query is used. Additionally, each
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node determines its semantic label by clustering its local data vectors in the whole space. This
is problematic, because the curse of dimensionality remains a problem as in high dimensions
clusters can become invisible.

Another limitation is the assumption that each node maintains data of the same dimensionality.
In our approach, we do not assume such homogeneous dimensionality: nodes may have
different dimensions.

Because the semantic small world approach is a hybrid between structured and unstructured
P2P systems, it still requires a certain decree of overlay maintenance costs. While this design
decision enables efficient retrieval of data, it may be better to not assume such a structure in a
highly dynamic environment. Using such an unstructured topology will result in suboptimal
routing but low maintenance costs of the overlay.

2.2 Publish/Subscribe Systems

In this section, we provide an overview about different types of routing in Publish/Subscribe
(pub/sub) systems [BQV05, KDT13, TKKR09, TKK+11, TKKR12, TKR13, TKR14]. A decentral-
ized pub/sub system can be implemented as a P2P system, where communication is performed
via events. An event is a set of attribute-value-pairs. Nodes can publish events or subscribe to
events. This results in a loose coupling between publisher and subscriber. They do not need to
know about each other, because an event is not sent to a specific node. Instead, the system
delivers events to subscribers. A subscriber has to specify an event filter that keeps only events,
it is interested in. Pub/sub systems can be used to deliver queries (events) to content providers,
that subscribe to queries with their content.

There are multiple subscription models how nodes can specify their interest in events:

• Using the topic-based model, a subscriber receives only events of a certain topic. Nor-
mally, topics are very coarse granular. A subscriber can not specify its individual filter
and has to rely on the predetermined topics.

• In the content-based model, subscribers can specify conditions on the attributes of
events, they are interested in.

• When nodes do not know the syntactic and semantic structure of an event, i.e., the
meaning, number and type of the attributes is unknown, this information can be encoded
in metadata of the events. Concept-based addressing makes use of metadata, so that
the filtering on the event can be performed on concepts rather than attribute values.

Beside the different subscription models, pub/sub systems differ in the used event routing
algorithms. In general, one can categorize these algorithms into four different approaches
[BQV05]:
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2.3 Collaborative Reinforcement Learning

Event flooding Publishers broadcast events to each node in the system. Then, nodes will
decide locally, if the event matches a subscription of the node. This obviously results in a
huge event message overhead.

Subscription flooding Subscribers flood their subscriptions across the network. Hence, each
publisher knows locally to which subscriber it has to send the event. If the rate of
subscription change is high, this solution will be infeasible due to the overhead of
subscription messages.

Filtering-based routing In contrast to the flooding approaches, an event is routed from the
publisher to the interested subscribers. Each node stores routing information for each
neighbour about the subscriptions that can be reached via the neighbour. A node can
aggregate multiple subscriptions, so that it has to forward only aggregated subscriptions.
Events were only forwarded to neighbours that have subscribed to those.

Rendezvous-based routing For each event ev and each subscription sn, a set of rendezvous
nodes can be computed. A publisher publishes ev by forwarding it to the rendezvous
nodes RV (ev). The same will be done, when a node intends to subscribe with sn: it
determines a set of rendezvous nodes RV (sn) to which sn is forwarded. If RV (ev) ∩
RV (sn) and sn matches ev, then at least one of the nodes in RV (ev) knows a subscriber
to ev.

In general, pub/sub systems can be used for routing queries (events) to content providers
(subscriber to queries). But as we are interested in scalable protocols, we can not use one of
the flooding based event routing approaches. The rendezvous-based approach as presented
is very general, finding a rendezvous function is a challenging problem. When nodes come
and go very frequently, how to integrate them into the rendezvous functions, so that they
participate in the routing?

In our data aggregation (DA) routing approach (see Chapter 5), we have used an idea that
is similar to filtering-based routing. A node aggregates routing knowledge and forwards the
aggregate to neighbours. However, we do not rely on the pub/sub paradigm as there is no hard
subscription to queries in our approach. Some nodes may answer a query better than others.
To increase robustness, each node should be allowed to answer each query. In the pub/sub
paradigm, this would result in a situation, where each node subscribes to each query.

2.3 Collaborative Reinforcement Learning

Collaborative Reinforcement Learning can be used as a method to optimize routing paths in a
mobile ad hoc network [BQV05, KV06, BL94, HF10, WHH96].

Reinforcement learning is a technique for a single agent to learn optimal behaviour in an
observable environment, where the agent can determine the state of the environment. The
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agent performs actions (state transitions) to change the state of the environment. Each state
transition is rewarded by a reward function. The goal of the agent is to maximize the total
reward it will receive, when it follows the transition rules.

In collaborative reinforcement learning, the system is assumed to consist of a set of agents,
where each agent interacts only with its local environment and follows relative simple rules. In
contrast to reinforcement learning, there are multiple agents and each agent can observe only
its local reward, but not rewards of other agents [KV06]. However, the goal of each agent is
still to maximize the global reward of the system.

The states and state transitions of the collaborative agent system are illustrated in Figure 2.2.
There are two agents A and B with internal states A1,A2,A3,B1,B2 and internal and external
state transitions. For example, the internal state A3 has two possible state transitions: one
to the internal state A2 and another to the external state B1. Agent A has to decide which
transition gives more expected reward in the long run.

Figure 2.2: States and state transitions in a collaborative reinforcement learning environment.

In order to be able to decide which action to take, each state is associated with an estimation of
the total reward, that will be received, when being in a state and following the rule to always
choose the successor state that has the highest expected reward. This means, that each node
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has to store such a value for each of its internal and external states. The value of a state can be
learned over time. Each neighbour calculates this value based on the values of the succeeding
states, the reward that is received by performing the state transition to the succeeding states
and the old value of the state.

The calculated value of a state will be sent to neighbour agents, so that these agents learn
about values of external states. In the paper, this is called advertisement because each node
advertises its local state values.

Although we can not use the reinforcement learning approach in the paper directly, because
the number of states for each node is infinite (when each state is defined by “holding a certain
query in the space” and there are an infinite number of such queries), we have used the idea
of collecting feedback values for exploration queries that are estimations of the confidence
with that a query can be answered via a neighbour. A node can use its collected feedback
values to determine an estimation of confidence with that the query can be answered via itself.
This estimation can be the basis for further feedbacks for some neighbours. With this method,
knowledge about the ability to answer queries can spread through the network.
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3 System Model and Problem Formulation

In this chapter, we introduce assumptions about the network and its participants. After this, we
define the local data models and the notion of confidence. The chapter ends with a specification
of the routing problem.

3.1 Network

We assume a network of nodes p1, p2, ..., pn in a mobile environment that can communicate
with each other either directly or indirectly via a routing path. A node can be any device
that is able to run the protocol. Because of the mobile environment, the network can be very
heterogeneous and dynamic. Nodes may join and leave the protocol and may crash and recover
at any time. We do not assume any upper bounds for message delivery, clock drift and process
execution. Messages can be duplicated and nodes may receive old messages.

Further, we assume an undirected, acyclic topology. We write {p1, p2} to indicate that there is a
link between p1 and p2. The decision for an undirected topology has practical reasons: we will
see that neighbours exchange queries and routing information in our protocols, so they know
each other in any case. This results naturally in a bidirectional information flow. We assume
acyclicity, because cycles in the network disturb routing decisions and the exchange of routing
information in our protocols. Maintaining an acyclic topology under dynamic condition is a
well-studied problem, see for example [CCK88].

In the following, we bring into focus an individual participant of the protocol.

3.2 Data Model

Each node pi maintains a data model DMi, where it can store data vectors. Data vectors in
a metric space can have different dimensions and different dimensionality. This is because
each dimension can be seen as variable that measures the value of one specific property of
individuals. For example, if the data model contains samples of persons, the dimension “body
height” measures the size of a concrete person. But there can be other dimensions for that
same individual, like “monthly income” or “weight”.
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Figure 3.1: Confidence in local data.

We denote a data vector with vD′
, where D′ is the set of dimensions that are associated to the

data vector. Assuming a set of possible dimensions D = {0, 1, 2, ..., m}, the set D′ will be a
subset of D. An example would be the data vector v{0,1,2} that is a vector in the space R3 with
dimensions 0, 1 and 2. The set {0, 1, 2} is a subset of D.

Together, the data models build the basic knowledge of the overall system. Dependent on
the data model, nodes can have different confidence in their data. A node should have more
confidence in its data in an area, where it has very much knowledge. We have to come up with
a metric that measures the quality of data with respect to a certain query. This metric will be
called confidence score. Assume a set of data vectors c that build a cluster in the space and a
query q. We have to come up with a measure C(c, q) that measures the goodness of c for a
query q. We define the local confidence Ci(q) of a node pi for a query q to be the maximal
confidence value for each data cluster in the data model:

Ci(q) = maxc∈DMiC(c, q)

In Figure 3.1 we visualize how the confidence metric could look like for a local data model,
that consists of two-dimensional data vectors in the space. These vectors are the learned
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knowledge on a certain node. Each point in the space is associated with a confidence value,
that gives information about how much knowledge a node has in this area. Areas in the space,
where there are more information should have higher confidence. We can see, that the farther
away from the local data vectors, the smaller the confidence score. The measure of confidence
enables a node to extract its “area of expertise”.

From now on, we shift our focus away from the individual participant to the interaction
between participants.

3.3 Query Routing

In Figure 3.2, we can see an example topology and the local data models of nodes p0, p1, p2.
Node p0 receives a query, but finds that it has not enough knowledge for the query. So the
query is routed through the network until node p3 finds that it can answer the query locally
with its local confidence.

Figure 3.2: Query Routing

In the following, we give a problem statement for the routing.
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Given: A query q = (q, Cq
min) on a node p1. The query q consists of a query vector q ∈ Rmq

and a confidence threshold Cq
min, with that a node should be able to respond the query.

The threshold is more an indicator how hard the system tries to find a good confidence
value. If no local confidence value is good enough, the system should retrieve the best
confidence value. Note, that the dimensionality of the query could be different to the
dimensionality of each local data model of a node on the way.

Find: The best neighbour to which the query should be forwarded. Assume p̂ is the node with
the highest local confidence for query q. Then, the best neighbour is the one that lies
on the path to p̂. If each node is able to find the best neighbour, routing will be optimal,
because the system will retrieve the best local confidence value for each query.

To maintain scalability, each node may only have a local view on the system. This means that
it only knows its local data, its neighbours and some routing information to be able to route
queries through the network, in order to find a node that has good fitting data in its local data
model.

Our main goal in the thesis is to develop scalable routing protocols for multidimensional
queries so that queries can be routed to nodes that maintain data with high confidence for the
queries.

After introducing the confidence score, we can easily determine which data should have been
retrieved by the system assuming an optimal routing protocol: the data with the highest
confidence score for the query. But in large systems we can not implement an optimal routing
protocol due to the necessity of global knowledge. Therefore, we have to come up with a
scalable routing protocol that routes the query to nodes that can answer the query better.

When we assume very high dimensionality of the data, we have to solve another difficulty: the
curse of dimensionality [VF05]. In higher dimensions data becomes sparse and the clustering
property of data can become invisible. See for example Figure 3.3. We have plotted two clusters
in the three-dimensional space and in the reduced two-dimensional space. The reduction makes
the two clusters more visible. As we rely on clustered data for computing the confidence score,
we have to develop methods to reduce the irrelevant dimensions and integrate dimensionality
reduction into our routing approaches.

To summarize, the main challenges are the following:

• As the dimensionality of data in the data model can become very high, we have to come
up with a method for dimensionality reduction in the data model to address the curse of
dimensionality.

• Each node has to be able to determine the confidence in its local data for a given query.
We have to define a measure for this purpose.

• We have to come up with a scalable routing protocol so that the system is able to route a
query to a node having a high confidence value for the query.
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• The routing protocol should work in the presence of heterogeneous dimensionality of
the local data models in the system.

(a) Data clusters in three-dimensional space. (b) Data clusters in two-dimensional space.

Figure 3.3: Effects of clustering property, when reducing dimensionality.
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In this chapter, we develop a very central concept of the thesis: the confidence in the data.
Initially, we explain the notion of confidence, where we we describe “confidence” in words.
In our approach, the determination of confidence is based on clusters. Therefore, we explain
how the clustering of the data can be done. Afterwards, we introduce the measure for
confidence, that is a concrete formula, instead of a concept. Given a cluster c and a query q,
the measure for confidence is based on the cluster quality of cluster c and a distance metric
between cluster c and query q. We develop formulas for these two concepts at the end of this
chapter.

4.1 The Notion of Confidence

A common precondition for algorithms in the area of machine learning is to provide a data set,
so that some knowledge can be learned. This data set has to be big enough, so that actually
some valuable information can be extracted out of the data. If the learned knowledge is based
on very much data, we should have more confidence in it, as if the underlying data set was
small. We have to come up with a metric, that maps each point in the space to a confidence
score that measures the quality of data for this point. Beside the number of data, confidence
should be influenced by the density and the distance between data and query point.

We have already mentioned in the problem formulation (see Chapter 3), that we are interested
in a system that responses queries with high-confident data. The provided data should reflect
some knowledge in the area of the query. The system should return not only the best data,
but also the confidence score of the data for the query. If the system has very little knowledge
about a query, it will also provide this information to the user of the system by means of the
confidence score.

Definition 4.1.1 (Confidence)
Confidence is a quality measure for a set of multidimensional data and a query.

In this chapter we define properties of this measure and develop a confidence function C, that
fulfils these properties.

We assume the perspective in Figure 4.1.
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4 Confidence-based Retrieval

Figure 4.1: Retrieval of confidence score for a query on a node.

Each node maintains a local data model (see Chapter 3), that consists of a data set V =
{v0, v1, ..., vt}, vi ∈ Rm. When a node receives a query, it has to find out the confidence score
of its local data V for a query q ∈ Rm. Hence, the data model maps an incoming query to a
confidence score.

In summary, the measure of confidence gives us the opportunity to compare two data sets,
to find out, which one has higher data quality for a certain query. In order to determine the
confidence score for a data set, we divide the data set into clusters and compute the score
separately for each cluster-query pair.

4.2 Clustering of the Data

The first step towards the computation of the confidence score is to cluster the data set. For
clustering, we use the G-Means algorithm (see [HE03]) that performs multiple instances of
K-Means clustering, but determines k (the number of clusters) automatically. After clustering
the data, we can compute a confidence score for each cluster-query pair. The confidence

32



4.3 A Measure for Confidence

score C(c, q) for an arbitrary query q and a cluster c will consist of two distinct measures: the
quality of the cluster itself and a distance measure between the query and the cluster centre.
A cluster of high quality in proximity to the query will receive a higher score than a cluster of
low quality that is far away. We can also imagine a situation, where the quality of one cluster
is compensating the slightly greater distance (see Figure 4.2).

Figure 4.2: Cluster quality and query distance

The figure shows two data clusters c1 and c2. One is obviously of very good (c2), the other
of very bad quality (c1). The query is somewhere in between the cluster centres, but a little
closer to the bad cluster c1. Nonetheless, we should take into account, that cluster c1 consists
of a very low number of points with a high variance. We should be more confident in learned
knowledge based on cluster c2 than in knowledge based on cluster c1.

4.3 A Measure for Confidence

In this section, we develop a formula for computing the confidence score. For this purpose, we
combine the fundamental requirements for a good score: The quality of the cluster should be
good and the distance between query and cluster centre should be low. We investigate both
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requirements and define the confidence score to be the product of the quality of the cluster
Q(c) and the distance between query and cluster centre Dist(c, q).

C(c, q) = Q(c) ∗Dist(c, q)

The score will give a high value, if the number of data vectors in the cluster is high, the
variance is low and the distance from the query to the centroid of the cluster is low.

4.4 Cluster Quality

We have to come up with a formula, that measures the quality of each cluster c. The quality
score Q(c) should increase with the number of data vectors and decrease, when the variance
of the cluster increases (see Figure 4.2 in the last section).

We denote the number of data in the cluster as tc, the variance as σ2 and the centroid of the
cluster as c̄:

Q(c) = tc

σ2 σ2 = 1
tc

∑
v∈c

(v− c̄)2 c̄ =
∑

v∈c v
tc

The quality of cluster c is the number of data vectors in c divided by the variance of the cluster.
This satisfies our requirements for the quality score directly. A high number of data vectors in
each cluster will result in a large quality score. On the other hand, increasing the variance of
the cluster, decreases the quality score.

4.5 Distance Metric

To be able to compute the confidence score, we still need a measure for distance between the
query and the centroid of vectors in the cluster. We have decided to include the evolution
of the distance function in this thesis, because we think that it can give more insights to the
reader than only presenting the final metric and its evaluation.

In the following, we introduce some properties, that our distance metric should fulfil.

Property 4.5.1
The distance metric Dist(c, q) should be high, if the euclidean distance ||q, c̄|| from the query q to
the centroid of the cluster c is low. On the other hand, if ||q, c̄|| is high, Dist(c, q) should be low.
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This is the fundamental requirement on our distance function. Confidence of a query to a
cluster should increase, when the euclidean distance to the cluster decreases. We want to
reward short distances to the cluster.

The following property is not as apparent as property 4.5.1.

Property 4.5.2
When a cluster c has low variance, the decline of the score should be relatively high with increasing
euclidean distance. On the other hand, if the variance is high, the decline of the score should be
low.

To understand the meaning of this property, see Figure 4.3.

(a) High variance should result
in a high distance score

(b) Low variance should result
in a low distance score

Figure 4.3: The variance of a cluster influences the distance function

We can see two equal sized cluster with different variances and a query that has the same
distance to the centroids of the clusters. Intuitively, the distance score should be higher for the
cluster with higher variance. This cluster fits much better to the query. Hence, the decline of
the distance score should not only depend on the euclidean distance, but also on the variance
of the cluster.

Before introducing the final distance metric, we will investigate the inverse euclidean distance
function.

4.5.1 Inverse Euclidean Distance

Initially, we have chosen a similar formula that fulfils property 4.5.1. The inverse of euclidean
distance is defined as:
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Dist′′(c, q) = 1
||c̄− q||

The distance score increases, when the distance between the query q and the centroid of the
cluster c̄ decreases. This satisfies property 4.5.1. We have plotted the function in Figure 4.4.

Figure 4.4: Inverse euclidean distance function.

The horizontal axis represents the euclidean distance between a query and the centroid of a
cluster. The vertical axis gives the associated distance score.

As we can see, the inverse euclidean distance function goes against infinity for positive very
small distance values. That means, the difference between the scores of two queries, that are
very near to the cluster centre can be unimaginably high. On the other hand, queries that are
far away from the cluster centre still can have a reasonable score (fat tail). To be more precise,
queries that have an euclidean distance to the cluster centre that is greater than two or three,
have more or less the same distance value.

Assume a number of clusters c0, ..., ct and a query q. We want to determine the best cluster
for the query, i.e., the cluster with highest C(c, q) value. When there is no cluster, that is very
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close to the query, the confidence score will be more or less independent of the distance from
the query to the cluster centre. This is because of the property of the inverse euclidean distance
function, that it produces more or less the same value for all clusters.

Instead, the quality scores of the clusters dominates the distances. This results in a situation,
where good clusters attract nearly all queries in the space. See Figure 4.5 for an illustration of
this issue.

Figure 4.5: Best clusters for random queries with inverse euclidean distance function.

We have initialized 100 clusters with random means, random standard deviations σ ∈ [1 : 100]
and a random number of points in the interval [2 : 100]. Hence, the quality scores for the
clusters differ widely. Then we have generated 10000 random queries and determined the best
cluster for each query. For this, the confidence metric based on inverse euclidean distance was
used.

For each cluster c we have plotted the fraction of queries, for which it was the best cluster, that
means c = argmaxciC(ci, q).

There were only four clusters, that answer nearly all queries. This is because these four clusters
have a very low variance and a relative high number of points. Here, the cluster quality
dominates the distance score.
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This issue is problematic as we have seen, but even more important, property 4.5.2 is not
fulfilled either. The variance of a certain cluster has absolutely no influence on the distance
score. We will solve these issues with a distance score that is based on the gaussian distribution
function.

4.5.2 Gaussian Distance

We have seen, that the inverse euclidean distance does not fulfil property 4.5.2. We need a
distance function that decreases with increasing euclidean distance between the query and
the cluster. But the decreasing should be dependent on the variance of the cluster. For this
purpose, we will introduce a new distance metric that is based on the normal distribution.

The standard normal distribution with mean µ and standard deviation σ is defined as:

gauss(x, µ, σ) = 1
σ ∗
√

2π
exp− (x−µ)2

2σ2

Then, the distance score for a query q to the cluster centre c̄ from cluster c is:

Dist′(c, q) = gauss(||c̄− q||, 0, σc)

As standard deviation for the gaussian function, we take the standard deviation of the cluster
σc. We will explain the reason for this in the following.

The function is plotted in Figure 4.6 for different standard deviations. In the figure, we
compared two clusters c1 and c2 with standard deviations one and two. We can see, that
property 4.5.2 is fulfilled automatically, when taking the standard deviation of the cluster as
standard deviation of the gaussian function: The gaussian distance function will decline slowly,
when the variance of the cluster is high. On the other hand, if the variance of the cluster is low,
the gaussian distance function will decline much faster.

Also, if there is a dense cluster with small variance, a very close query will receive a relative
high score. This is also a very intuitive property of data confidence. When we have a cluster of
dense data in proximity of the query, we should be more confident in the query response than
if the data in the cluster is sparse.

In Figure 4.7 we have plotted the gaussian distance function for a cluster. Each point on the
upper plane corresponds to the distance score, a query would receive.

Queries, that are very close to the centroid receive the highest values. The score smoothes out
for more distant queries and becomes eventually (practically) zero.
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Figure 4.6: Gaussian distance function for standard deviation one (continuous line) and two
(dashed line).

As we have seen, property 4.5.1 and property 4.5.2 are fulfilled, when using the gaussian
distance function. Additionally, there is a bounded upper distance score for close queries and
the exponential decrease of the function value makes the score for distant queries practically
zero. Hence, only relative close queries get a reasonable distance score. This solves the
undesirable balancing property with the inverse euclidean distance function. The quality score
can not compensate for distant queries, as the distance score will be practically zero.

In Figure 4.8 we can see the positive implication of this:

We have repeated the experiment from the inverse euclidean distance function for the distance
score that is based on the gaussian function. The balancing of the best clusters for random
queries is much better. High quality clusters still attract more queries than low quality clusters.
But the distance between the query and the cluster centre has also influence on the confidence
score, so that the distribution of queries is not as extreme as above.

The gaussian distance score fulfils our requirements on a distance function. Nevertheless, we
will extend it in the following to a multivariate gaussian distance function, so that we can work
with multivariate distributed data clusters.
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Figure 4.7: Gaussian distance function for all queries and a two dimensional data cluster.

4.5.3 Multivariate Gaussian Distance

Multivariate normal distributed clusters are a more general form of normal distributed clusters.
The difference is, that each two dimensions can have a certain correlation. This results in
clusters, that can be “squeezed” to some extend (see Figure 4.9).

The correlation between two dimensions can be specified in the covariance matrix Σ. The
covariance matrix can be extracted out of the data. This can be done in three steps:

1. Data matrix V: Assume, we have t data vectors v1, ..., vt, each having dimensionality m

(vi ∈ Rm. Then, the data matrix V is the matrix with the t vectors vi as rows.

2. Deviation matrix V′: We subtract from each element i, j of the data matrix V the mean
value µj of dimension j. The mean µj can be extracted easily from the data set.

3. Covariance matrix Σ: Σ = V′T V′(1/t)

The gaussian distance measure, that was introduced in the last section, is a special case of a
more general kind of function: the multivariate normal distribution. In the following, we
will introduce a distance measure, that can also be applied to multivariate data clusters.

40



4.5 Distance Metric

Figure 4.8: Best clusters for random queries with gaussian distance function.

The formula to compute the multivariate gaussian distance function for query q ∈ Rm and
cluster c is:

Dist(c, q) = 1
(2π)0.5m|Σ|0.5 exp−0.5(q−µ)T Σ−1(q−µ),

where |Σ| is the determinant and Σ−1 is the inverse of the covariance matrix Σ. The mean
vector µ = (µ1, ..., µm)T can be extracted out of the data set.

The confidence measure for multivariate clusters is a more general form of the confidence
score, that we have developed in the last section. If we would like to know the confidence
value for a cluster with no covariances between any two dimensions, we will get the same
value in the multivariate function.

In Figure 4.9 we give an example, where the two dimensions are more correlated. Queries that
lie on the same circle, have the same distance score. This means, that a query q that lies more
into the direction of the squeezed cluster than another query q′ receives a higher score than
query q′, even if both have the same absolute euclidean distance to the cluster centre.
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Figure 4.9: Multivariate gaussian distance function for all queries.

In summary, we have developed a measure for confidence in this chapter. The metric consists
of two parts: the cluster quality and the distance function. The main part of this chapter was
finding a good distance function. Because of its good properties, the multivariate gaussian
distance function will be used to compute confidence values between queries and clusters.
The question of how good a query fits to a cluster can be answered computationally by this
measure.

With this, we have a practical instrument to determine, which data will be a good response for
a query.
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In this chapter, we present an approach for query routing, that is based on the aggregation and
forwarding of data clusters. Data clusters can consist of a huge set of data vectors. In order to
save bandwidth, when forwarding data clusters, we develop an approach how to make data
clusters more compact. Nodes that receive such compact cluster information can regenerate
data that is very similar to the original data cluster. The regenerated data vectors can be used
as routing information, as we will see later.

We begin this chapter with a protocol overview. In Section 5.2, we look into the theoretical
foundations of how to extract compact cluster information on a node, so that the information
can be forwarded to a neighbour without sending each single data vector. A node receiving
this compact cluster information has to regenerate the data. We present a method how this
can be achieved in Section 5.3. Afterwards, we give a protocol description in pseudocode.
Finally, we discuss some properties of the approach.

5.1 Protocol Overview

In Chapter 3 we have already mentioned, that each node maintains a local data model (DM).
Additionally, each node holds for each direct neighbour a local routing model (RM), where
information can be stored about the neighbours ability to answer the query.

Receiving a query, a node has to decide, whether to forward the query q = (q, Cq
min) (see

Chapter 3) to a neighbour or to answer it locally. For this purpose, we have introduced the
measure of confidence in Chapter 4: Each node is able to compute the score C(c, q) for each
data cluster c in the local data model. If the score is good enough, the query can be answered
locally. This is the case, if there exists a local data cluster c, such that C(c, q) > Cq

min.

Otherwise, if the local data is not good enough for the query, a node will have to decide, to
which neighbour the query should be forwarded. Therefore, we need to fill the local routing
model for a neighbour with information about the data that is reachable via this neighbour. In
Figure 5.1 we can see the process of forwarding clustering information into the routing models
of node p1.

We assume a very simple example, where node p1 is connected to nodes p2 and p4. Additionally,
node p2 has a connection to node p3. We have given the data models of nodes p2 and p4. Node
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p2 has already clustering information in its local routing model for node p3. Initially the routing
model of node p1 is empty. Nodes p2 and p4 decide to send routing information to node p1
about data that is reachable via themselves. Therefore, the nodes have to extract compact
cluster information for all local clusters in their routing and data models. For each cluster they
determine one such compact cluster information that can be send to node p1. When node
p1 receives compact cluster information, it regenerates the data in the routing model of the
sender. With this method, node p1 learns about data that is reachable via its neighbours.

There is another detail, we want to mention here. Node p2 has actually another routing model
that is omitted in the figure: the routing model for node p1. When node p2 intends to send
cluster information, it has to ignore clusters in this routing model, because node p1 is already
the source of all the cluster information in this routing model.

As we will see, the compact cluster information is actually compact and can be sent easily to
neighbours. The compact cluster information is also sufficient to enable node p1 to reproduce
a cluster of local data, that is very similar to the original cluster on node p2.

The reproduced data vectors can be stored directly in node p1’s routing model for node p2.
With these data vectors in the routing model, node p1 can determine very easily an estimation
of the confidence score Cest(q, c) for a received query q and a cluster c. Node p1 will then
forward the query to the neighbour, whose routing model contains the best cluster, if it can not
answer it locally.

In the following, we show, how a node can determine the compact cluster information, it
intends to forward to a neighbour. Afterwards, we introduce a method to generate data out of
this cluster information.

5.2 Analysis of Multivariate Clusters

We assume, node p2 wants to forward cluster information to node p1. For this purpose, node
p2 clusters the data in its local data model with the G-means algorithm (see Chapter 4). Node
p2 has to forward data that is reachable via itself. Because of that, it clusters the local routing
models as well and merges both sets of clusters into the set S = {c1, c2, ...}.

This is basically the information, node p1 is interested in. But it would be problematic to simply
send the set S to node p1, because the individual clusters can consist of a huge number of
data vectors. A single routing cluster on node p2 can actually be a merged super-cluster of all
reachable data via a neighbour of node p2. Therefore, it makes sense to model each individual
cluster ci, i ∈ {1, 2, ..., |S|} as multivariate data cluster c′

i:

c′
i = (Σci , µci , tci),
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(a) Initially, the routing models of node p1 are
empty. Node p2 already has some informa-
tion in the routing model for node p3.

(b) Nodes p2 and p3 intend to forward cluster
information to node p1 and analyze their
local clusters.

(c) Nodes p2 and p3 send the analyzed, com-
pact cluster information to node p1.

(d) Node p1 regenerates the data vectors out of
the cluster information and puts the regen-
erated data into its local routing models.

Figure 5.1: Example of forwarding cluster information

where Σci is the covariance matrix of cluster ci, µci is the mean vector or centroid and tci is
the number of data in cluster ci. See Chapter 4 for how to determine the covariance matrix
and the mean vector of a data set.

The list of compact cluster information that p2 can send to p1 is now:

S′ = {c′
1, c′

2, ...}

In contrast to the set S, the set S′ is very compact, because each individual component is
independent of the number of data vectors it encodes.
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We will look now into a method for node p1 to regenerate data out of the list S′.

5.3 Generation of Multivariate Clusters

We assume, that node p1 has received a list of cluster information S′ from node p2. Node p1 can
then use this information for its routing model for node p2. This can be done by regenerating
the cluster c′ for each cluster c′ ∈ S′. In [Her98], a method is given to draw a random vector
according to a multivariate normal distribution that is given by a (m×m) covariance matrix Σ
and the mean vector µ ∈ Rm:

1. Generate a random vector v = (v1, v2, ...vm)T , so that each vi is independently generated
by a normal distribution with mean µ = 0 and variance σ2 = 1. It is important that the
individual vi are independent. If so, this is already a possibility to draw values from the
multivariate distribution, where the mean is 0 and the covariance matrix is the identity
matrix (the diagonal values equal one and the rest equals zero).

2. Afterwards, the identity matrix has to be transformed into the covariance matrix Σ. This
can be done by finding the (m×m) matrix Φ that has the normalized eigenvectors of
Σ as columns, as well as the matrix Λ that has the eigenvalues as diagonal entries that
belong to the eigenvectors in Φ. There are many methods to calculate the eigenvectors
and eigenvalues of a matrix like for example the eigendecomposition of a matrix.

3. Let Ω = Λ0.5Φ. Then we can transform the vector v, such that it would be produced by a
multivariate normal distribution with mean µ and covariance matrix Σ:

v′ = Ωv + µ

This can be seen, as deforming the normal distributed cloud of produced vectors to a multivari-
ate distribution with mean 0 and translating this cloud to the new mean µ. With this, we are
now able to generate random vectors out of a multivariate normal distribution, that is given by
the compact cluster information.

5.4 Protocol Description

In this section, we will give algorithms, that describe how the routing and information forward-
ing protocol works. Each node maintains the following variables:

• A set of adjacent nodes, called neighbours.
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• The dataModel can be seen as module that manages the local data and offers a possibility
to calculate the confidence score for each cluster. We define the best local cluster to be ĉ.
The response vector v̂ will be the best local clusters centroid:

ĉ = argmaxc∈dataModelC(c, q) v̂ =
∑

v∈ĉ v
tĉ

• A set of routing models routingModels, one routing model for each neighbour. In this
approach, a routing model is much like a data model, we will save a number of local
data vectors in it and determine the estimated confidence for queries to find out, which
neighbour is likely to answer the query best.

Algorithm 5.1 Node pi receives query message
1: set neighbours

2: module dataModel

3: set routingModels

4: on receive(QUERY, q = (q, Cq
min), visited) from node pj do :

5: if Cq
min < Ci(q) ∨ neighbours \ {pj} = ∅ then

6: send(RESPONSE, v̂, Ci(q), q, visited) to node pj

7: else
8: visited← visited + [pi]
9: send(QUERY, q = (q, Cq

min), visited) to bestNeighbour(q)
10: end if
11: endOn

In Algorithm 5.1 we show the behaviour of a node pi on receiving a query from node pj . Node
pi will answer the query q, if either its local data model possesses data that has high enough
confidence or if it has no other node to forward the query to. Otherwise, it will forward the
query to the neighbour, whose routing model gives the highest estimated confidence for the
query.

Algorithm 5.2 Node pi receives response message for a query
1: on receive(RESPONSE, v, C, q, visited) from node pj do :
2: if Ci(q) <= C then
3: send(RESPONSE, v, C, q, visited− [pi]) to visited.previous()
4: else
5: send(RESPONSE, v̂, Ci(q), q, visited− [pi]) to visited.previous()
6: end if
7: endOn

When a node decides to answer the query locally, the response associated with the confidence
value will be send backwards along the path, the query has taken. If a node receives a
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response (see Algorithm 5.2) and can answer the query locally with a higher confidence value,
it will replace the received response with its own and adapt the confidence value for the next
receiver.

Regularly, each node should initiate a cluster forwarding round (Algorithm 5.3). Assume node
pi wants to send updates to node pj . First, it analyzes its local data clusters and all its local
routing clusters, except those in the routing model for node pj , and determines the set S′ like
described in the previous sections. It then sends S′ to node pj , which regenerates the data in
its local routing model for node pi.

Algorithm 5.3 Node pi: cluster forwarding
1: on data forwarding event for node pj do :
2: if received updates from each p ∈ neighbours \ {pj} then
3: send(UPDATE, S′) to node pj

4: end if
5: endOn
6: on receive(UPDATE, S) from node pj do :
7: Generate cluster in routing model from pj

8: endOn
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In large and dynamic networks, the DA approach has some problematic properties. Data
models can evolve continuously and nodes can join and leave the system very frequently. In
this setting, maintaining routing models, that are up to date, is very expensive, because each
change in a data model triggers the whole data aggregation process in which many nodes are
involved.

Therefore, we present the query learning (QL) routing approach that learns the routing of
queries with the help of past queries. In contrast to the DA approach, the learning is done in
smaller portions, i.e., queries, instead of clusters of reachable data.

Initially, we give a detailed protocol overview. This is followed by a protocol description
using algorithms in pseudocode. The chapter ends with an approach to reduce dimensionality
of the local models and a discussion of the protocols properties.

6.1 Protocol Overview

We start this section with a high-level description of how routing can be performed based on the
routing models on a node. Then, we investigate in detail, how exactly a single routing model
works. Afterwards, we introduce the different possibilities to maintain routing information in
the routing models on a node.

6.1.1 Routing of Queries

When a participant p1 of the system receives a query q = (q, Cq
min), where q ∈ Rm and Cq

min is
the minimal expected confidence value, node p1 has to decide, whether to answer the query
locally or to forward the query to some neighbour (see Figure 6.1).

Node p1 answers the query locally, when the local confidence Ci(q) exceeds the minimal
confidence score Cq

min or there is no other neighbour to forward the query to. Then, a node
will simply determine the local confidence score for the query based on the data in its local
data model (see Chapter 4) and send a response back to the last query issuer.

If it can not answer the query locally, node p1 will have to forward the query to a neighbour. In
routing, there often exists a routing table, that maps a query to an outgoing link. Because of
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6 Routing Based on Query Learning

Figure 6.1: Routing decision on a node p1. The data models (DM) contains local data, each
neighbour is represented locally with a routing model (RM). Where to route the
query?

the infinite number of possible queries, we can not rely on an exact routing table. Instead, we
try to come up with a routing model for each outgoing link. This routing model models the
“area of expertise” following the associated link. Technically, a node can ask each of its routing
models for an estimation about the confidence value that would be retrieved, when the query
was handed to the neighbour that is represented by the routing model. We call this function
CONFIDENCEESTIMATION(q). The query is then forwarded to the neighbour for that the highest
confidence estimation was retrieved.

6.1.2 Query based routing model

Subsequently, we show how the confidence estimation CONFIDENCEESTIMATION(q) can be
computed in the routing model.

Node p1 maintains a routing model for neighbour p2. The routing model consists of query-
confidence pairs, that it has learned during the protocol execution. We will see later how this
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is done exactly. We denote a query-confidence pair as (qi, Ci). Each such pair represents an
experience or an estimation of the confidence value that will be retrieved, when forwarding
the query to node p2.

See Figure 6.2 for an example of a routing model. The routing model consists of two di-
mensional data. Each query-confidence pair represents a piece of knowledge, namely the
confidence value that can be expected for a query on this point in the space. For queries that
are different to those in the model, we try to predict confidence values using the known queries.
This prediction is actually the confidence estimation CONFIDENCEESTIMATION(q).

Figure 6.2: Routing model filled with query-confidence pairs.

The estimation of confidence will be based on clusters of similar query-confidence pairs. For
clustering we use the weighted k-means clustering algorithm (compare [CYTZ09]). The
difference between k-means and weighted k-means clustering is, that in weighted k-means
vectors can have different influence on the clustering (higher weights means higher influence).
As weights, we use the confidence values of the queries. This has the effect of practically
ignoring very bad queries in the space.

In Figure 6.3 we can see the same routing model as above with clustered queries. There are
two clusters of query vectors, one is plotted with empty circles, the other with empty squares.
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For the clustering we have used weighted k-means clustering. Each cluster c has a weighted
centroid c̄weighted that is given by a filled circle and a filled square. As we can see, the bad
query with confidence 1 has little effect on weighted clustering and the weighted centroid
computation.

Figure 6.3: Routing model with clustered query-confidence pairs using weighted K-means
clustering.

For each cluster c, we can develop now a function fc for confidence estimation. The confidence
estimation for a query is always based on a cluster c. If there are multiple clusters in the
routing model, we will have to perform multiple estimations, one for each cluster and take
the maximum. The function fc takes the euclidean distance of the query and the weighted
centroid of cluster c as input and returns the estimated confidence of the query.

We specify the following requirements on the function fc:

Requirement 1
If the distance from the query q to the weighted centroid c̄weighted is zero, the function should
return the weighted average confidence score of cluster c.

fc(0) = µscore µscore =
∑

(q,C)∈c
C
|c|C

|c|
.
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Requirement 2
The function fc should decrease with increasing distance between query and weighted centroid of
the cluster. For an increasing distance, the score should go against zero. To be more precise, we
define the function value as follows:

fc(σc) = µscore − σscore.

The standard deviation of confidence values σscore of queries in the model is defined as:

σscore =
∑

(q,C)∈c(C −
∑

(q,C)∈c
C

|c| )
|c|

.

Requirement 3
We define fc to be a standard gaussian function:

fc(x) = a1exp(−x2

2a2
2

)

with constants a1 and a2.

Theorem 1
With these requirements, we get the following function for confidence estimation in the routing
models:

fc(x) = µscore(µscore − σscore

µscore
)

x2
σ2

c

Proof 1
Insertion of requirements 1 and 2 in requirements 3 and transformation gives:

a1 = µscore a2
2 = −σ2

c

2 ln(µscore−σscore

µscore
)

Insertion of constants a1 and a2 in requirement 3 and transformation gives Theorem 1.

With Theorem 1, we can define the confidence estimation CONFIDENCEESTIMATION(q) of a
routing model RM as:

CONFIDENCEESTIMATION(q) = maxc∈RM (fc(||c̄weighted − q||))
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6.1.3 Maintenance of routing models

Initially, the routing models on a node contain no information. In order to fill the routing
models with information, nodes regularly issue exploration queries to neighbours. Neighbours
answer exploration queries with a feedback value. Nodes use the feedback values in order to
update their routing models. We introduce these three concepts in the following.

In order to learn about the neighbours expertise areas, nodes regularly issue exploration
queries to some neighbours. These exploration queries are conceptually different to normal
queries (sometimes called exploitation queries), their only purpose is to gain routing information
for the routing models.

A node p1 first decides on a point in the space for that it would like to have more information
about how good neighbours think, they can answer queries at this point. In our implementation,
we have chosen a random point in the space as exploration query. Then, node p1 sends the
exploration query to a set of neighbours. It chooses this set according to a selectivity parameter
s. Selectivity specifies the number of neighbours to which the query has to be forwarded. For
example, if selectivity equals two, it will be sent to two randomly selected neighbours.

The exploration query is associated with another parameter, the hop count h. This parameter
specifies the depth of the exploration query. When a node receives an exploration query, it
will forward the same exploration query to its neighbours, until the maximal hop count is
reached.

We can see an example of these two concepts in Figure 6.4. A node initiates an exploration
query with h = 2 and s = 2. Each node on the way chooses two neighbours and forwards the
exploration query to those. When the maximal depth of the exploration query is reached, the
forwarding will be stopped.

Each node that receives an exploration query gives a feedback to the last forwarder of the
exploration query that can be used as routing information. The feedback is basically an
estimation of the confidence value that would be retrieved for a normal (exploitation) query at
this point in the space. This idea is based on the reinforcement approach, we have presented
in Chapter 2. The hope is, that the estimations will become better over time, when each node
learns about the estimations of its neighbours.

We have identified two different feedback mechanisms: immediate feedback and delayed
feedback. Using immediate feedback, a node that receives an exploration query determines the
maximal value of the local confidence for the exploration query and the estimated confidence
based on its local routing models. Before forwarding the exploration query to any other node
(if hop count is specified accordingly), it returns this feedback value to the last sender of the
exploration query. Hence, immediate feedback is based only on the local information of a node.
For an example of immediate feedback see Figure 6.5.
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Figure 6.4: Paths of an exploration query with hop count 2 and selectivity 2.

The other mechanism is delayed feedback (see Figure 6.6). On receiving an exploration query,
a node forwards the exploration query according to selectivity and hop count to its neighbours.
Once it has received feedback for the exploration query from all of these neighbours, it gives
feedback to the last sender. In this case, the feedback value is the maximum of the local
confidence and each neighbours feedback. If there is no neighbour or maximum hop count is
reached, the feedback is, as above, only based on its local information in the data and routing
models.

In order to update the routing models with query-confidence pairs, nodes issue exploration
queries and receive feedbacks from neighbours, as we have seen. For each exploration query
q, a node selects the neighbour from which it has received the highest feedback value Ĉ and
updates the routing model of this neighbour with the query-confidence pair (q, Ĉ).

In dynamic environments, query-confidence pairs can become stale and should be removed
from the routing models. We have identified two concepts to solve this problem. In order to
store only fresh query-confidence pairs, a node can maintain only a window of query-confidence
pairs of size w. The routing model simply forgets older queries.
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Figure 6.5: Example of immediate feedback.

Another technique to handle this problem is to smoothly decrease the meaning of older queries
in the routing model by multiplying regularly a decay factor α to the confidence values of
the stored queries (compare [DCCC05]). When the confidence part of a query-confidence
pair falls beyond a certain threshold Θ, it will be removed from the routing model. With this
method, query-confidence pairs become unimportant over time with respect to the confidence
estimation (see weighted k-means clustering above).

In the following, we present how the protocol could be realized in pseudocode.

6.2 Protocol Description

This section is structured like the protocol overview: First, we recap the protocol specific
parameters and notation. This is followed by the basic routing algorithm. Afterwards we give
algorithms for exploration. We end this chapter with a short investigation of the implementation
of a routing model.

We have the following system parameters:
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Figure 6.6: Example of delayed feedback.

• The selectivity parameter s ∈ [0, 1] specifies the fraction of neighbours to which a node
forwards an exploration query

• Each exploration query has a maximal depth with respect to the initial issuer. This
maximum hop count is specified by h ∈ N.

• In the local routing models, a node can store query-confidence pairs. The maximal
number of such pairs is given by the window size w. Regularly a node will decay each
confidence value of the stored pairs by the specified decay factor α. Hence for a pair
(q, C) the confidence value will be decayed like C = αC. It may occur that some
confidence values fall below a certain threshold Θ. Then the query-confidence pair will
be removed from the routing model.

In addition to the protocol specific parameters, each node maintains some variables to run the
protocol correctly:

• A set of adjacent nodes, called neighbours.
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• The dataModel can be seen as module that manages the local data and offers a possibility
to calculate the confidence score for each cluster. As in the previous section, we define the
best local cluster to be ĉ. The response vector v̂ will be the best local clusters centroid:

ĉ = argmaxc∈dataModelC(c, q) v̂ =
∑

v∈ĉ v
tĉ

• A set of routing models routingModels, one routing model for each neighbour. The
routing model differs from the DA approach. Each model maintains query-confidence
pairs instead of data vectors. The idea is to learn expert areas of the neighbours with the
help of exploration queries.

In Algorithm 6.1 we show the behaviour of node pi on receiving a query from node pj . Node
pi will answer the query q locally with the best local data v̂ (line 3), if the local data model
possesses data that has high enough confidence or if there is no other node to forward the query
to. Otherwise, it will forward the query to the neighbour, whose routing model gives the highest
estimated confidence for the query. This neighbour is determined with bestNeighbour(q) in
line 6.

Algorithm 6.1 Node pi receives query message
1: on receive(QUERY, q = (q, Cq

min), visited) from node pj do :
2: if (Cq

min < Ci(q)) ∨ (neighbours \ {pj} = ∅) then
3: send(RESPONSE, v̂, Ci(q), q, visited) to node pj

4: else
5: visited← visited + [pi]
6: send(QUERY, q, visited) to bestNeighbour(q)
7: end if
8: endOn

When a node decides to answer the query locally, the response will be send backwards along
the path of the query. When a node receives a response (see Algorithm 6.2) and is able to
answer the query locally with a higher confidence value, it will replace the received response
with its own and adapt the confidence value for the next receiver (line 4). Otherwise it sends
the response backwards without any change.

Regularly, each node should explore its environment by sending an exploration query q to a
number of neighbours according to the selectivity parameter s (Algorithm 6.3, line 2). The
depth of this exploration query is given by h.

Also on a periodical basis, each node decays the query-confidence pairs in its local routing
models (line 6). With this, old queries were smoothed out of the routing models.

After receiving an exploration query (line 11), a node will check, whether the maximal number
of hops is reached. If so, the node will have to determine the feedback for the sender of the
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Algorithm 6.2 Node pi receives response message for a query
1: on receive(RESPONSE, R, C, q, visited) from node pj do :
2: visited.removeLast()
3: if Ci(q) > C then
4: send(RESPONSE, v̂, Ci(q), q, visited) to visited.last()
5: else
6: send(RESPONSE, R, C, q, visited) to visited.last()
7: end if
8: endOn

exploration query. For this, it takes the maximum of the local confidence value and the routing
models estimations of the confidence values for the query (line 13).

If the maximal number of hops is not reached yet, the node randomly selects a subset of
its neighbours according to the selectivity parameter s (line 15). The node forwards the
exploration query to these neighbours and waits for all the feedback responses. It returns the
best feedback value from all neighbours to the issuer of the exploration query (line 19) or the
local confidence, if it is better than each feedback.

Now, the node updates the best neighbours routing model with the exploration query and the
feedback value of this neighbour (line 20). The underlying assumption is, that if this neighbour
thinks, it can answer the query best, future queries that are in this area should be forwarded
more likely to this one.

We will give now a possible implementation of the routing model (see Algorithm 6.4). We
thought of it as a module that offers some functionality like determining an estimation of
confidence for a query (line 10), which is basically the maximal confidence estimation over
all clusters in the routing model. We have discussed the method of estimating the confidence
score above. In line 2, we have given the update function for new query confidence values.
Only query-confidence values will be stored that are better than the threshold value Θ. If there
is a maximal window size, the oldest pairs will be removed from the routing model (line 5).

For estimating confidence values (line 10), we first need to cluster the queries with the method
in line 13. Queries that have a higher confidence score, should have more impact on clustering.
This can be done by performing weighted k-means with the confidence scores as weights.
Overweighting these queries has the effect of slowly forget about old or bad queries that are
still in the model.

The weighted k-means algorithm requires the number of clusters as input. To make the protocol
more flexible and independent on system parameters, we decided to estimate this parameter
using G-means (line 14).
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Algorithm 6.3 Node pi: exploration query
1: set received

2: on explorationT imeout() do :
3: q← getRandomQuery()
4: send(EXPLORE, q, h) to node pi

5: endOn
6: on decayT imeout() do :
7: for rm ∈ routingModels do
8: rm.DECAY()
9: end for

10: endOn
11: on receive(EXPLORE, q, h) from node pj do :
12: if h = 0 then
13: send(FEEDBACK, q, max(Ci(q), CONFIDENCEESTIMATION(q))) to pj

14: else
15: neighbours′ ← selectNeighbours(neighbours, s)
16: received = {}
17: send(EXPLORE, q, h− 1) to neighbours′

18: waitForFeedbacks(neighbours′)
19: send(FEEDBACK, q, max(getBest(received), Ci(q))) to pj

20: getBestRoutingModel(received).UPDATE(q, getBest(received))
21: end if
22: endOn
23: on receive(FEEDBACK, q, C) from node pj do :
24: received ∪ (q, C, pj)
25: endOn

In line 17, we give the decay function, that decays each confidence value by the specified
decay factor α and removes query-confidence pairs in the routing model, that fall below the
threshold Θ.

Until now, we have assumed that the dimensionality of the query and the routing and data
models are the same. But as we have already mentioned in Chapter 3, the dimensionality can
be different. In the following, we show how we can handle different dimensionality of query
and data and routing models.

6.3 Dimensionality Reduction

The curse of dimensionality [VF05] is a phenomenon that arises, when dealing with high
dimensionality. It states, that properties of the data set, like the clustering of the data, vanish
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Algorithm 6.4 Routing model
1: list queryConfidencePairs

2: procedure UPDATE(q, C)
3: if C >= Θ then
4: if |queryConfidencePairs| >= w then
5: queryConfidencePairs.removeF irst()
6: end if
7: queryConfidencePairs.APPEND((q, C))
8: end if
9: end procedure

10: function CONFIDENCEESTIMATION(q)
11: Please see the last section for how to compute the estimation
12: end function
13: function CLUSTER(V )
14: goodK ← |GMeans.cluster(queryConfidencePairs)|
15: return WeightedKmeans.cluster(queryConfidencePairs, goodK)
16: end function
17: procedure DECAY( )
18: for (q, C) ∈ queryConfidencePairs do
19: C ← C ∗ α

20: if C < Θ then
21: queryConfidencePairs.remove(q, C)
22: end if
23: end for
24: end procedure

in higher dimensions. In Chapter 4, we give a method of how to compute the confidence score
for a query. This method is based on data clusters. The implicit assumption here is, that the
data can be clustered at all. Because of that, it makes sense to reduce some dimensions of the
local data model, so that data clusters become better. We have to come up with a method that
selects dimensions that can be reduced.

In the routing model, we compute an estimation of confidence based on query clusters (see
previous sections). This computation requires also good clusters. Like in the local data model, it
is a good idea to reduce dimensionality, so that the clustering property of the data is preserved.
In the following, we show a method to reduce both models, the local routing model and the
local data model.

The goal is to get a lower dimensional space, where the clustering of the data is better as in the
high dimensional space. We strive to achieve this property by i)clustering the data separately
for each dimension with G-means clustering (see [HE03]), ii) determining the average variance
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of a cluster for each dimension and iii) reducing the dimensions with highest average variance
of a cluster. The idea behind this method is that clusters will be interpreted as good, if their
variance is low (compare Chapter 4).

In Figure 6.7 we have given an example of the variance based reduction. We have plotted
three-dimensional data, where there are two clusters in the space. Dimension 1 disturbs
the clustering, as data is spread widely in this dimension. The above method clusters each
dimension separately and determines for each dimension the average variance of a cluster.
Obviously, the average variance of clusters in dimension 1 (there is only one cluster) has the
highest variance and should be reduced. In Subfigure 6.7e, we can see the reduced space,
where there are very well separated clusters.

With this method, we can reduce dimensionality in the local models. It is possible that the
query has different dimensions than the model. In this case, we take the intersection of
the dimensions of the model and the query as basis to compute the confidence or estimated
confidence score. If the intersection of dimensions is the empty set, we will have no confidence
in the data for the query and should return zero as confidence or confidence estimation.

We end this chapter with a short discussion of the approach.

6.4 Discussion

In contrast to the data aggregation (DA) routing approach, the query learning (QL) routing
approach uses previous queries and their feedbacks to fill the routing models with information.
The updating can be performed during the protocol execution. There is no direct dependency
between a node and a distant participant of the protocol. A node needs only feedback from its
direct neighbours to learn about reachable data. This makes the approach more robust against
node failures.

We have given a method for extracting an estimation of confidence out of the routing models,
even in the presence of diverse dimensionality of the query and the model. Additionally, we
have shown how dimensionality reduction can be integrated into this approach. Note, that
methods for dimensionality reduction are well-studied in research [YL03, PHL04]. Other
dimensionality reduction techniques could be integrated easily into the approach. We just need
a method that determines a lower dimensional space with good clustering properties.

In the next section, we give an evaluation of both approaches.
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(a) Data in three-dimensional space. (b) Data projected to dimension 1.

(c) Data projected to dimension 2. (d) Data projected to dimension 3.

(e) Data in reduced space (dimensions 2 and 3).

Figure 6.7: Dimensionality reduction example.
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In this chapter, we evaluate the query learning (QL) routing approach and the data aggregation
(DA) routing approach with respect to the accuracy of the retrieved confidence scores.

Definition 1
Accuracy measures the ability of the system to retrieve high confidence values for a query q.
Accuracy of one means, that the system always finds the highest confidence score in one of the
local data models. We calculate accuracy as the confidence value C(q) that was retrieved by
the system, divided by the highest possible confidence value in any local data model given by
Ĉ(q) = maxi∈{1,...,n}Ci(q).

We have used the network simulator “PeerSim” [MJ09] to simulate and evaluate our routing
approaches. Using a simulator does not influence the accuracy of the system.

This chapter is structured as follows. Data can be localized in the system or not localized.
When data is localized, nodes that are topographically close are also semantically close (i.e.,
neighbours have approximately the same data in their data models). In the next section, we
present our topology generator that generates a localized simulation network. Afterwards we
evaluate the accuracy of the QL routing approach for different parameter settings. At the end,
we compare the presented routing approaches and give the accuracy of the QL approach in
presence of dimensionality reduction.

7.1 Topology

We investigate our approaches with respect to localized topologies. For our tests, we have
implemented a topology generator that generates acyclic, undirected and localized simulation
networks for our experiments. In practice, topologies with localized data could arise for
different reasons, e.g., because neighbours observe the same environment in sensor networks.

An example of a generated, small topology with 100 nodes is given in Figure 7.1. Each point
(seed vector) represents one node of the network. The topology generator initializes the data
models of the nodes with data that is distributed around these seed vectors.

The construction of the network is performed hierarchically and starts with the seed of the
source node and a circle with a certain radius around the seed. Each such cycle represents the
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maximal seed distribution of the children. The source node chooses some seeds in its circle
and builds for each seed one direct child. The children iterate this process recursively with a
smaller radius. With this, we have a method for constructing a tree topology with localized
data.

Figure 7.1: Localization of data. Nodes are associated with points in the vector space.

The generated topology for 100 nodes is shown in Figure 7.2. The graph is undirected and
acyclic.

All experiments are performed on a topology that was generated with the presented method.
In the next section, we evaluate the QL routing approach in order to find appropriate protocol
parameters.

7.2 Parameters for the QL Approach

There are two different kind of queries (see Chapter 6): exploration queries that nodes can
send to their neighbours in order to retrieve routing information and exploitation queries or
simply queries that were issued by an application of the system and were routed according to
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Figure 7.2: Topology with 100 nodes

the information in the routing models. For all experiments, (exploitation) queries were routed
to the best neighbour according to the routing models. For the determination of the accuracy
of the system, we use only the exploitation queries.

The information for the routing models were retrieved by exploration queries. There are two
parameters for exploration queries: selectivity s, i.e., the number of neighbours to send the
exploration query, and hop count h, that is the depth of an exploration query. With increasing
selectivity or hop count, the number of nodes that were affected by a single exploration query
increases, too. We are interested in a parameter configuration that results in high accuracy,
while the system is still scalable.
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In Figure 7.3 we have plotted the average accuracy of the QL routing approach for different
parameter configurations. The horizontal axis represents the selectivity value for exploration
queries. For each selectivity value, we have measured accuracy for three different hop count
values: one, three and infinity. For the experiments, we have used different localized topologies
with 1000 nodes. Each node has maximal five neighbours. We have averaged the accuracy of
the retrieved confidence values. As we can see, with increasing selectivity and hop count, the
accuracy of the approach increases as more information can be gained by one exploration query
round. This is basically a trade-off between accuracy and scalability. For instance, flooding
the network with exploration queries results in poor scalability but high accuracy (see Figure
7.3).

Figure 7.3: Accuracy of QL routing for different selectivity and hop count parameter values.

For further experiments, we set selectivity s = 5 and hop count h = 2, because the accuracy
is still high and the exploration queries have only local scope. In the following, we compare
accuracy for different routing approaches.
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7.3 Comparison Routing Approaches

7.3 Comparison Routing Approaches

In Figure 7.4, we compare the QL and DA routing against a random routing approach (Rand).
In the random routing approach, the query is forwarded into a random direction. Therefore, it
can be seen as a lower bound for accuracy. Because of scalability issues, we have modified the
DA approach slightly: when receiving cluster information, a node regenerates only half of the
data vectors per cluster. This has a slight negative influence on the accuracy, but enables the
simulator to run a high number of nodes.

The DA approach has better accuracy for big topologies (1000 and 10000 nodes) than the other
routing approaches. However, the QL routing approach is very close to it. Both approaches
outperform very easily the random-based routing due to the additional information in the
routing models.

Figure 7.4: Comparison of accuracy between data aggregation (DA), query learning (QL) and
random (Rand) routing for different network sizes.

The protocol execution is organized in cycles. In each cycle, each node may perform some
protocol specific steps like exploration of the network. Additionally, we issue in each cycle 100
random queries to random nodes in the system in order to determine the current accuracy of
the system.
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7 Evaluation

Initially, the routing models of both approaches contain no information. During the protocol
execution, nodes explore the network and fill their routing models with routing information.
The DA approach exchanges compact clustering information. In Figure 7.5, we can see the
learning phase of the DA approach. We have plotted the accuracy of DA routing for a small
topology (100 nodes). The horizontal axis is the number of cycles that were performed. The
accuracy of a cycle is the average accuracy of all queries in that cycle. Initially, the accuracy is
not higher than random routing. Then, nodes start to exchange compact clustering information
and fill their models with data. After the exchange is ready, all nodes have information about
their neighbours and accuracy increases.

Figure 7.5: Learning in the DA approach.

In contrast to the DA approach, learning routing information in the QL approach is done
in smaller steps (see Figure 7.6). Here, in each cycle, each node initiates one exploration
query. After approximately 500 cycles, the system reaches its maximal accuracy level for this
configuration.

In comparison, the DA approach shows better accuracy than the QL approach for big topologies.
The benefits of the QL approach are in the finer granularity of learning. The QL approach
converges smoothly to its maximal accuracy level, while the DA approach has either very low
accuracy or very high. There is nothing in-between.
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7.4 Dimension Reduction

Figure 7.6: Learning in the QL approach.

7.4 Dimension Reduction

We have implemented dimensionality reduction in the QL routing approach (compare Chapter
6). The evaluation in this section is based on a localized topology with 1000 nodes. Each
node is initialized with 10-dimensional data (instead of two-dimensional as previously). The
data on each node has in 7 dimensions a high variance and in 3 dimensions low variance.
The dimensions with lower variance are called unimportant dimensions. For different nodes,
different dimensions are unimportant. But the unimportant dimensions are also localized in the
network, i.e., that neighbours consider approximately the same dimensions as unimportant.

Nodes perform dimensionality reduction of the local data in order to overcome the curse of
dimensionality. Then, random 10-dimensional queries were issued to random nodes. In Figure
7.7, we compare an approach, where nodes reduce the dimensionality of their routing models
against an approach, where nodes do not perform such a reduction in the routing models. As
we can see, the accuracy is higher, when dimensionality is reduced in the routing models. The
explanation is that the (reduced) information in the routing models fits better to the (reduced)
data in the data models of the nodes.
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7 Evaluation

Figure 7.7: Effect of dimensionality reduction in the routing models (RM).

In essence, when nodes have to deal with high-dimensional data and therefore decide to reduce
dimensionality in their local data models, it has a positive effect on the accuracy to reduce
dimensionality in the routing models. The reduction is performed only with local knowledge
in the routing models.

We end this thesis with a conclusion and give some future work that can be done.
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8 Conclusion and Future Work

The main goal of this thesis was to design and implement a distributed system that stores
multidimensional data and can be queried in order to retrieve confidence values for the queries.
Therefore, we have formalized the idea of data confidence, so that the system is able to
determine how much knowledge it has about a query, even if it has never seen a data vector
that is similar to the query.

A main challenge for the system was the heterogeneous and dynamic environment in which
a query should be routed to a node that has high confidence in it. We have designed the
protocols to be scalable in terms of message overhead and routing information: nodes use only
local communication and build a model of their environment instead of maintaining exact
routing tables.

The problem of high dimensionality of data on different nodes was solved with a method
for dimensionality reduction. In the reduced space, previously hidden clusters become more
visible. This is crucial for our confidence measure. Therefore dimensionality reduction is an
important tool for nodes to determine their confidence in a query. Also, we have shown in the
evaluation how dimensionality reduction can be useful for routing, too.

The different techniques in our approach, like dimensionality reduction, a measure for con-
fidence or how to use the routing models to determine the next hop for a query, can be
seen as modules that are in fact interchangeable with possible alternatives. For example we
decided for a relatively simple dimensionality reduction technique, but we can imagine to use
more sophisticated techniques that can be used instead, perhaps at the cost of more resource
consumption on the nodes.

In our evaluation, we have investigated the accuracy of the routing approaches. We have left it
for future work to evaluate the system against dynamic changes of the topology and the data
on the nodes. Furthermore, the system could be extended to handle data insertions or delete
operations, perhaps to provide some localization of data by design. An argument to left this
open was, that data is often inherently localized, because neighbours often perceive similar
observations of their environment.

A limitation of the confidence measure is in the meaning of a data vector. We have assumed,
that a high number of data results in a high confidence score. While this is reasonable in general,
we can also imagine data vectors that are of different implicit quality. Then, the implicit quality
of the data vectors in a cluster should also have some influence on the confidence measure.
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8 Conclusion and Future Work

We can even think of data vectors that are “negative observations” and that should make the
confidence score worse for similar queries. However, this is also left open for future work.

We strongly believe, that our system for confidence retrieval can be the basis for interesting
applications that make use of the provided quality information about the data.
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