
Institute of Software Technology
Department of Programming Languages and Compilers

University of Stuttgart
Universitätsstraße 38
D–70569 Stuttgart

Master Thesis Nr. 3556

Simulation of Multi-core Scheduling
in Real-Time Embedded Systems

Md. Golam Hafiz Khan

Course of Study : INFOTECH

Examiner : Prof. Dr. rer. nat./HarvardUniv. Erhard Plödereder

Supervisor : Dipl.-Inf. Mikhail Prokharau

Date of Submission : April 7, 2014

CR-Classification : D.4.1, D.4.8, C.4.d, I.6.8.i

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Publikationen der Universität Stuttgart

https://core.ac.uk/display/147542838?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

In real-time systems the correctness of a system depends not only on the logical
correctness of the running program but also on the time at which the logically cor-
rect output is produced. Therefore, in such a system it is necessary to provide the
right computational result within a strict time limit called the deadline of a task.
In hard real-time systems the deadline of a task must not be missed, whereas in
soft real-time systems it can be missed occasionally. In recent years the trend has
been observed which shows a shift from single-core to multi-core architectures for
real-time systems. The main point of this thesis is to study a few promising multi-
core scheduling algorithms both from the partitioned and the global approaches
to multi-core scheduling and implement some of them into the existing simulation
software. To represent the partitioned approach, Partitioned EDF has been imple-
mented with the capability of specification of a resource access protocol for each
core. The partitioned approach requires heuristics for task partitioning, the prob-
lem known to be NP-hard in the strong sense. For this reason, the implementation
of Partitioned EDF requires manual task partitioning of the system in order to be
able to utilize the maximum processing power. Proportionate Fair abbreviated as
Pfair is the only known optimal way to schedule a set of periodic tasks on multi-core
systems that falls into the global approach of multi-core scheduling. Therefore, to
represent the global approach, several variants of Pfair scheduling algorithm have
been selected for the implementation into the existing system. To be truly useful
in practice, a real-time multi-core scheduling algorithm should support access to
shared resources using some resource access protocol. For this reason, the Flexible
Multiprocessor Locking Protocol abbreviated as FMLP has been studied and im-
plemented to simulate shared resource access on multi-core systems. This resource
access protocol can be used by scheduling algorithms representing both the parti-
tioned and global approaches, but it only supports such variants of those algorithms
which allow non-preemptive execution. A variant of Global EDF termed Global Sus-
pendable Non-preemptive EDF was implemented prior to implementing FMLP. The
existing simulator provided a set of single-core and some basic multi-core scheduling
algorithms for scheduling real-time task sets. No schedulability analysis was imple-
mented in the previous work. So, as part of this thesis, the schedulability analysis
for single core scheduling algorithms has been implemented. A schedulability anal-
ysis for the partitioned approach of multi-core scheduling has also been provided
for systems where a single-core scheduling algorithm runs on each partition. The
updated simulation software also supports self-suspension of tasks for a specified
duration.

3

Acknowledgement

Foremost, I would like to thank Prof. Dr. rer. nat./Harvard Univ. Erhard
Plödereder for the opportunity to do my master’s thesis at the Department of Pro-
gramming Languages and Compilers, Institute of Software Technology, University
of Stuttgart.

Many thanks to my supervisor, Dipl.-Inf. Mikhail Prokharau for his enthusiasm,
wisdom, cordial supervision and valuable advice that helped me a lot throughout
my thesis work. I am earnestly grateful to my supervisor for the fruitful discussions,
providing significant guidelines for solving difficult problems in an easier way, im-
portant corrections throughout writing of my thesis and educating me how to be
able to write.

I also want to thank the people who work at this department and who provided
instant support for any difficulty I faced.

I am very grateful to my father and mother for the continuous support starting from
the childhood to today. If not for their encouragement, care, love, passion, and their
aimed assistance, I would not be here writing my master’s thesis.

Finally, I would like to finish by expressing my acknowledgement and love to all of
my friends for their support in all the ways during my master’s study.

5

Contents

1 Introduction 11
1.1 Motivation . 11
1.2 Previous Work . 12
1.3 Contributions . 12
1.4 Organization . 13

2 Definitions 15
2.1 An Embedded System . 15
2.2 A Real-Time System . 15
2.3 Classification of Multiprocessor Systems 16
2.4 Tasks . 16

2.4.1 Periodicity . 17
2.4.2 Deadlines . 18
2.4.3 State Transitions . 18

2.5 Schedulability Tests . 19

3 Project Management and Software Engineering 21
3.1 Project Management . 21
3.2 Software Engineering . 22

3.2.1 System Prototyping . 22
3.2.2 Incremental Delivery . 23
3.2.3 Continuous Integration . 23

4 Design 25
4.1 System Model . 26

4.1.1 Tasks . 28
4.1.1.1 Commands . 29
4.1.1.2 Resource Usage . 30

4.1.2 Cores . 30
4.1.3 Resources . 31
4.1.4 Events . 32

4.2 Simulation Parameters . 32
4.3 Simulator . 33
4.4 Task Monitor . 34
4.5 Resource Monitor . 34

7

Contents

4.6 Exception Handling . 34

5 Schedulability Analysis 37
5.1 Utilization Based Schedulability Analysis 38

5.1.1 Rate Monotonic Scheduling 38
5.1.2 Deadline Monotonic Scheduling 38
5.1.3 Earliest Deadline First . 39

5.2 Response Time Analysis . 39
5.2.1 Exact Schedulability Test . 40
5.2.2 Sufficient Schedulability Test 40

5.3 Demand Bound Analysis . 41
5.4 Summary . 43

6 Self Suspension, Non-Preemptive Execution and Interrupt Han-
dling 45
6.1 Self Suspension . 45
6.2 Non-Preemptive Execution . 46
6.3 Interrupt Handling . 46

7 Scheduling on Multiprocessor Systems 49
7.1 Taxonomy of Multiprocessor Scheduling Algorithms 49

7.1.1 Allocation . 50
7.1.1.1 No Migration . 50
7.1.1.2 Task Level Migration 50
7.1.1.3 Job Level Migration 50

7.1.2 Priority . 51
7.1.2.1 Fixed Task Priority 51
7.1.2.2 Fixed Job Priority 51
7.1.2.3 Dynamic Priority . 51

7.1.3 Work-conserving and non-work-conserving 51
7.2 Schedulability, Feasibility and Optimality 51
7.3 Multiprocessor Scheduling Approaches 52

7.3.1 Partitioned Scheduling . 52
7.3.2 Global Scheduling . 53
7.3.3 Hybrid Scheduling . 54

7.4 Resource Sharing . 55

8 Multiprocessor Scheduling Policies 57
8.1 Partitioned Earliest Deadline First 57
8.2 Proportionate Fairness . 58

8.2.1 Algorithm PF . 60
8.2.1.1 The Comparison Algorithm 62

8.2.1.1.1 A Naive Implementation 62
8.2.1.1.2 An Efficient Implementation 62

8.2.2 Algorithm PD . 64
8.3 Multiprocessor Resource Access Protocol 66

8

Contents

8.3.1 The GSN-EDF Algorithm . 66
8.3.2 Flexible Multiprocessor Locking Protocol 69

8.3.2.1 Resource Request Rules 69
8.3.2.2 Blocking under GSN-EDF with FMLP 70

9 Implementation 73
9.1 Schedulability Analysis . 73

9.1.1 Utilization Based Analysis . 74
9.1.2 Response Time Analysis . 75
9.1.3 Demand Bound Analysis . 77

9.2 Self Suspension . 77
9.3 Non-preemptive Execution . 79
9.4 Partitioned EDF . 80
9.5 Proportionate Fairness . 82

9.5.1 Algorithm PF . 84
9.5.2 Algorithm PD . 86

9.6 Global Suspendable Non-Preemptive EDF 87
9.7 Flexible Multiprocessor Locking Protocol 90
9.8 Clusters and Group of Task . 92

10 Validation, Test and Results 93
10.1 Validation and Test . 93

10.1.1 Development Testing . 93
10.1.1.1 Unit Testing . 93
10.1.1.2 Component Testing 94
10.1.1.3 System Testing . 95

10.2 Results . 95

11 Conclusion and Future Work 101
11.1 Conclusion . 101
11.2 Future Work . 103

Bibliography 105

List of Figures 110

List of Tables 111

List of Listings 113

Abbreviations 114

9

1 | Introduction

A real-time system is a system where the correctness of the system not only depends
on the logical correctness of the output but also on the time when the correct output
is produced. Thus, a real-time system has two concepts of correctness: logical and
temporal [55]. The logical correctness means that the produced output is correct
and the temporal correctness means that the system meets the timing constraint,
in other words the output is produced at the right time [55].

Nowadays, the computational complexity of real-time applications is on the increase.
Thus, computational requirements for systems using them grow very fast. Exam-
ples of such complex systems are automated tracking systems, teleconference sys-
tems, etc. These applications have to follow some timing constraints in order to en-
sure performance, responsiveness and safety. The processing requirements of these
systems may exceed the capacity of a single processor and thus the necessity for
multi-core processors has come to the front. Additionally, multiprocessors are more
cost-effective than a single processor of the same processing speed [57].

The main goal of this thesis work is to extend the existing simulator by Munk [41]
to provide a few additional multiprocessor scheduling policies. This thesis work
also deals with the schedulability analysis of single core scheduling policies and also
of multi-core partitioned policies where single core scheduling algorithms are used
for each core. A task may suspend itself while accessing resources or wait for an
event to occur. A task may need to execute non-preemptively in the preemptive
scheduling algorithms where a higher priority task is in ready state. This thesis
also discusses task self-suspension and non-preemptive execution where a task may
contain non-preemptive sections for execution.

1.1 Motivation

In May 2004, Intel canceled the next version of the Pentium P4 processor named as
Tejas because of excessive power consumption and started to move towards multi-
processor systems [22]. Therefore, to solve the problem of high power consumption
by single core processors and to increase the processing speed, research has been
started to move away from increasing the computational speed of a single processor
and increase the number of cores on a single chip. A noticeable trend was started

11

1. Introduction

in 2009 to use multi-core processors in hard real-time embedded systems [22].

The invention of multiprocessors on a single chip has improved the availability of high
processing speed in a cost effective manner. The hardware for high processing speed
has been developed by introducing multi-core systems but the theory necessary
for the software architecture of such systems has not been fully developed [13].
In order to run software on multi-core systems, the most important issue is to
schedule the task set on each of the cores in an effective and efficient manner. The
scheduler for multi-core systems has to dispatch the task on each and every core
in such a manner that it can extract the maximum level of parallelism out of the
processor architecture, without affecting the correct functionality of the software
and the system. Therefore, appropriate multiprocessor scheduling algorithms are
necessary to utilize the expensive processing power.

1.2 Previous Work

In the previous work [41], a simulation software has been developed to simulate
and visualize task sets for real-time embedded systems. The input parameters for
the simulator are file based and the output is visual. The simulator simulates and
visualizes simultaneously in such a manner that it can be thought of as real time
simulation and visualization system. [41].

The simulator provides the required functionality so that it can be paused and
resumed at any time. The simulator also analyzes the internal events and notifies the
visualization thread accordingly, e.g. a deadline miss of a hard real-time task, a task
changing its priority, etc. The visualization runs in a separate thread and updates
the visualization context according to the triggered event from the simulation thread.
The user can configure the event notifications of the simulator in order to customize
the type of notifications they wants to see [41].

The software supports well known single core scheduling algorithms with various
resource access protocols. From the category of multi-core scheduling algorithms
partitioned deadline monotonic scheduler (P-DMS) and global earliest deadline first
(G-EDF) scheduling have been implemented.

1.3 Contributions

In the beginning of this chapter, the contribution of this thesis work has been briefly
described. In this section, the contribution is discussed in greater detail.

The target of this thesis is to study some promising multi-core real-time scheduling
approaches and extend the existing simulator to support several multi-core schedul-
ing algorithms considering the use of shared resources and the impact of resource
blocking.

12

1.4. Organization

The new version of the existing simulator has to be improved by extending it with
the following features:

• The existing software does not support schedulability analysis for single-core
scheduling policies. The software should support the schedulability analysis for
single core scheduling algorithms as well as partitioned scheduling algorithms
where single core scheduling algorithms are used to schedule task sets.

• A task may self-suspend, so this feature should be implemented in the simu-
lation software.

• The following multi-core scheduling policies must be supported for multi-core
scheduling:

– Scheduling Algorithms

∗ Partitioned Earliest Deadline First (P-EDF)

∗ Proportionate Fairness (Pfair)

– Resource Access Protocol

∗ Flexible Multi-processor Locking Protocol

• Interrupt handling should be supported by multi-core scheduling algorithms

• Clusters and grouped of tasks should also be supported.

As a part of this thesis work the existing visualization of the software should be
enhanced as necessary for the specified features. Graphical library provided by
Eclipse is used for the existing software and the same library should be used for the
improvement of the graphical part and the visualization. As the existing software
is written in Java in order to support multiple platforms [41], Java is selected as a
programming language to develop the new features.

1.4 Organization

The rest of this thesis is organized as follows. Chapter 2 introduces and defines the
terms related to real-time embedded systems in order to establish a common nota-
tion. Chapter 3 presents the project management and software engineering methods,
applied for this thesis. In chapter 4, the design of the existing software is presented
along with the changes done as part of this thesis work. Chapter 5 discusses the nec-
essary theories related to the schedulability analysis of single core scheduling policies
and chapter 6 deals with the general concepts of self-suspension, non-preemptive ex-
ecution and interrupt handling. In chapter 7 and chapter 8, the general scheduling
techniques for multiprocessor systems and some selected multiprocessor scheduling
algorithms are discussed. Chapter 9 deals with the implementation details of the
new features. The validation and testing of the newly implemented features is dis-

13

1. Introduction

cussed in chapter 10 along with the results. Chapter 11 concludes with a discussion
of the further work.

14

2 | Definitions

There are some common terms related to real-time embedded systems, which will
be used throughout this thesis. This chapter defines those terms so that they are
understood before they are used.

2.1 An Embedded System

An embedded system is an information processing or computer system enclosed in
a fixed context which is not a general-purpose workstation like desktop or laptop
computer, dedicated to predefined functionality, not directly visible to the user [41].
According to Barr [8],

“an embedded system is a combination of computer hardware and soft-
ware, and perhaps additional mechanical or other parts, designed to
perform a dedicated function.”

The noticeable term is dedicated function, that contrasts to the general purpose
computer which can be used to program and execute any kind of application. An
embedded system ranges from portable devices like digital watches or GPS devices
to large complex systems like modern cars, trains, aircraft, MRI etc.

2.2 A Real-Time System

Nowadays many embedded systems must meet real-time constraints. They have
to finish a task execution within a predefined fixed time limit, which is defined as
deadline of the task. Such a system is referred to as real-time system. According to
Burns and Wellings [17], a real time system is defined as

“any information processing activity or system which has to respond to
externally generated input stimuli within a finite and specified delay”

The correctness of a real-time system not only depends on the correctness of the
functionality, provided by the system, it also depends on the time at which the cor-
rect results are available. Real-time systems are divided into three categories:

15

2. Definitions

Hard Real-Time Systems: In a hard real-time system, a task is not allowed
to miss its deadline. The violation of hard real-time constraint can cause massive
disaster such as loss of life or property [42]. Typical examples of hard real-time
systems are industrial process control systems, medical implants such as pacemakers,
robots, controllers for automotive systems, air-traffic controllers, etc.

Soft Real-Time Systems: In a soft real-time system, a task is allowed to miss
its deadline occasionally but meet it on average, which is the opposite of a hard
real-time system. As soft real-time constraints are less critical, they can be violated.
The violation of soft real-time constraints does not directly impact system safety and
the system can keep running. However, this violation of deadlines is not desirable
because it may degrade the quality of service of the system [42].

Firm Real-Time Systems: A firm real-time system can be placed somewhere
between hard and soft real-time system. It is neither soft nor hard real-time system.
A task can miss its deadline until an upper bound has been reached. It is supposed
to keep a certain level of quality of service to the end user [42].

2.3 Classification of Multiprocessor Systems

Multiprocessor systems can be classified into three different categories from the
scheduling perspective [22].

Homogeneous Multiprocessor Systems: In this category of multiprocessor
systems, the processors are identical. The rate of execution for all tasks on each
processor is the same.

Heterogeneous Multiprocessor Systems: In this category of multiprocessor
systems, the processors are not identical. The rate of execution of tasks depends
on both the processor and the task. Furthermore, all tasks might not be able to
execute on all processors.

Uniform Multiprocessor Systems: In this category of multiprocessor systems
the task execution rate only depends on the speed of the processor. A processor of
speed 2 will execute a task exactly at the double speed of what was executed on a
processor of speed 1.

2.4 Tasks

In a real-time system, there are several processes with timing constraints; each of
these processes is referred to as a task. The functionality of a real-time system is
provided by the execution of these processes or tasks. A task can be invoked any
number of times either finite or infinite. Each new invocation of a task is known as
a job [31].

16

2.4. Tasks

In other words, “a task is a software entity or program intended to process some
specific input or to respond in a specific manner to events conveyed to it” [44],
quoted by Munk [41]

A real-time task has a sequence of commands which includes execution that can be
preemptive or non-preemptive, feature resource use and suspension delay. A real-
time system may contain arbitrary n tasks Ti and the task set denoted as τ is a
set of all tasks in the system where τ = {T1, T2, · · ·Tn}. Each task has arbitrarily
many attributes, the main three attributes are worst-case execution time, Ci, period
or minimum inter-arrival time, Pi and deadline, Di.

The release time of a task denoted as ri is the time when the first job of a task is
released. A periodic task set can be classified in two different categories based on the
arrival time of the tasks. A task set is termed synchronous if there are some points
where all tasks arrive simultaneously [22]. A task set is termed asynchronous if
task arrival times are separated by fixed offsets and there is no simultaneous arrival
time of all tasks [22]. Another way of defining it is: “a periodic task set is said to
be synchronous if all the tasks release their first jobs at the same time otherwise
asynchronous”[25].

2.4.1 Periodicity

A period is an important parameter of a task by which the task releases its jobs.
Real-time tasks are categorized in three different classes based on the frequency of
releasing jobs by a task.

Periodic: A periodic task arrives repeatedly with a certain regular interval, this
interval is known as task period. A periodic task must be executed periodically.
This means, a periodic task Ti with a period Pi, releases a new job at every Pi time
units. A periodic task Ti therefore generates an infinite sequence of jobs at every Pi
time units.

Sporadic: A sporadic task arrives irregularly with each arrival separated by at
least a predefined time unit, this predefined time unit is called minimum inter-
arrival time. A sporadic task Ti with minimum inter-arrival time Pi, generates two
successive jobs by a delay of at least Pi time units. A sporadic task Ti therefore also
generates an infinite sequence of jobs at least every Pi time units.

Aperiodic: An aperiodic task does not have any period or minimal inter-arrival
time constraint. It can release a job at any time without caring about the delays
between two successive job releases. This is the most difficult type of tasks that
needs to be scheduled in a real-time system.

17

2. Definitions

2.4.2 Deadlines

A deadline is another important parameter of a real-time tasks. The deadline Di

of a task Ti specifies the time when the job of this task must finish its execution.
Therefore, Di is the deadline of a task that defines the real-time behavior of that
task. There are two types of deadlines to mention.

Relative Deadlines: A real-time job, one invocation of a task, needs to finish
its execution by a predefined time interval after its invocation, the duration of this
time interval is called relative deadline and denoted Di.

Absolute Deadlines: The absolute deadline is the time by which the job must
complete its execution. The absolute deadline is denoted di and defined as di =
ri+Di where ri and Di are the release time and relative deadline respectively.

There are three different types of tasks depending on the relation between deadline
and period or minimum inter-arrival time.

Implicit Deadlines: A task has an implicit deadline if the deadline of the task is
equal to its period or minimum inter-arrival time. A task Ti with a period Pi and
deadline Di is an implicit deadline task if Di = Pi.

Constrained Deadlines: A task has a constrained deadline if the deadline of
the task is equal to or less than its period or minimum inter-arrival time. A task Ti
with a period Pi and deadline Di is a constrained deadline task if Di ≤ Pi.

Arbitrary Deadlines: There is no constraint on a deadline for arbitrary deadline
tasks, deadlines can be less than, equal to or greater than the period of the task. A
task Ti with a period Pi and deadline Di is an arbitrary deadline task if Di ≤ Pi or
Di > Pi.

2.4.3 State Transitions

A task may be in any of the six states, non-existing, created, ready, running, blocked
or terminated. The transition from one state to another state has been discussed
in [41, section 2.3] using the state transition diagram. In this section, the state
transition diagram is given, the solid arrow represents a valid state transition, and
dashed arrow represents a state transition in case of any exception.

18

2.5. Schedulability Tests

Non-ExistingNon-Existing

CreatedCreated

ReadyReady

BlockedBlocked

RunningRunning

TerminatedTerminated

Figure 2.1: State transitions of a real-time task

2.5 Schedulability Tests

A schedulability test or analysis checks whether all the real-time tasks in a real-time
system can meet their deadlines or not. There are three different schedulability
tests:

Sufficient: A schedulability test is termed sufficient if all the tasks in the task set
are considered to be schedulable by the test are in fact schedulable [23]. If the test
is passed then the task set is schedulable. If the test is failed, then the task set may
be schedulable or not, but not necessarily.

Necessary: A schedulability test is referred to as necessary if all tasks in the task
set are considered to be unschedulable by the test are in fact not schedulable [23].
If the test is failed, then the task set will not be schedulable. If the test is passed
then the task set may be schedulable but not necessarily.

Exact: A schedulability test which is both necessary and sufficient is referred to
as an exact schedulability test [23]. The task set is schedulable if it passes the exact
test; task set is unschedulable if the test is failed.

19

3 | Project Management and Soft-
ware Engineering

In this thesis work, along with theoretical work a previous version of simulation
software had to be understood and was to be improved by developing some prede-
fined new features. Therefore, as a part of this master thesis a piece software was
going to be developed. In order to have quality software in time, the development
of the software was done using project management with some software engineering
steps.

Software development gives structure to the development of software products.
Among the recent software development methodologies, agile methodologies are
considered to be more fast and highly adaptable to the changes. The important
aspect of agile methodologies contrasting them to the classical software development
methodologies is that they do not focus on the long development cycle but rather do
the work in short iterative light weight cycles. Agile methodologies are developed
to be used in small software projects where the number of team members is limited
[53]. As the development team comprises only one developer, a light weight soft-
ware development methodology is appropriate, thus the agile software development
methodology has been selected for the development of this project.

3.1 Project Management

Agile project management methods provide less time consuming procedures which
can be used to manage agile software development. In order to manage the software
development a well known agile project management method called Scrum is selected
for the project. Scrum is a framework for managing an iterative and incremental
development of a software project. There are three core roles in Scrum: Product
Owner, Development Team and Scrum Master. The product owner represents the
stakeholder, in this project the supervisor gets this responsibility. The development
team contains only one member thus the other two roles go to that member. There
are three phases of Scrum: planning and design, sprint cycle and project closure
[53].

The product owner is responsible to create a feature list and prioritize the features,

21

3. Project Management and Software Engineering

this list is known as product backlog. A specification is given by the product owner,
i.e. supervisor, which contains all tasks that have to be done. A number of meetings
have been scheduled with the supervisor to discuss the requirements and to plan and
design accordingly. From these meetings the product backlog was created for the
next phase known as sprint cycles.

Scrum provides an innovative feature which is the middle phase, the sprint cycle.
The sprint is a short time period where a list of tasks will be taken to be completed
by the specified time period. For this project the sprint duration was set to four
weeks, a set of tasks was taken from the product backlog in order to complete a
specific functionality and deliver it to the customer, i.e. the supervisor. If the
developed product meets the requirements then it is marked as a completed task,
otherwise the modification goes to the next sprint.

The final phase of Scrum is known as project closure where the project finishes
by wrapping all the completed tasks into a single deliverable software unit that is
delivered to the stakeholder, i.e. the supervisor.

3.2 Software Engineering

Incremental software development consists of development of the initial software,
its delivery to the customers for their observation and comments, and its improve-
ment by going through several versions until a complete fully functional system has
been developed. Incremental software development is a fundamental part of agile
methodologies which is considered to be better than the waterfall model [53]. In
this approach specification, development, validation and verification are combined
into one activity rather than separated.

The specification document of this thesis only listed some topics related to real-
time scheduling problems which had to be understood properly by studying the
available literature and implemented into the existing simulator. In the beginning,
the implementation algorithms were not well defined and came from the literature
study. In order to cope with these changing requirements incremental approach was
selected as a software development methodology.

3.2.1 System Prototyping

System prototyping is the process of developing an initial version of the software,
generally a part of the software. Rapid software development is used to develop
a system prototype in order to check the requirements specified by the customer
and the feasibility decisions of the software design. Then the software prototype
is presented to the customer in order to show the functionality they desire and to
collect their feedback. The customer satisfaction or changes of the prototype are
therefore necessary to avoid frequent changes when the system gets bigger. Thus,

22

3.2. Software Engineering

the change requirements by the customer after the system delivery are reduced by
noticeable amount[53].

The customer may get new ideas from the demonstration of the prototype and should
be able to understand the effectiveness and efficiency of the software. Therefore,
they can propose to substitute some old requirements with valuable new require-
ments.

The software prototypes are developed by using several Scrum sprints, and the
results are presented to the customer in order to collaborate and gather customer
feedback.

3.2.2 Incremental Delivery

Incremental delivery is the process where predefined tasks have been completed in
one increment and delivered to the customer. This allows to have collaboration with
the customer, they can test the software to see whether it meets their needs, if not
they can place a change request for incremental delivery which can be incorporated
into the system in the next increment at a relatively low cost[53].

In this project work, the Scrum sprints are considered as an increment and at the
end of each sprint the output is delivered to the customer, i.e. the supervisor. The
tasks are selected in each sprint in such a way that independent functionality is
developed in every sprint that can be presented to the customer. The good thing
about incremental delivery is that this presentable functionality is available after a
certain time duration, i.e. sprint duration that satisfies the customer.

3.2.3 Continuous Integration

As a part of software development using the agile approach, during the development
continuous integration has to be carried out. The continuous integration involves
building the whole software frequently even though a negligible code segment has
been changed. Software testing and documentation generation are included in this
build process [53].

23

4 | Design

In the previous work, Munk [41, chapter-6] has presented a system model for the
simulation software. This thesis is based on the previous work so the previous system
design is being used with some extensions and modifications. In this chapter, the
previous software design will be presented in brief along with the modifications in
detail.

EditPart EventAnalyzer

<<generated>>
SystemModel ResourceMonitor TaskMonitor

<<interface>>
IScheduler

<<singleton>>
Simulator

SimulationThread

TimeAxis

Job

 <<singleton>>
ResourceManager

 <<singleton>>
TaskManager

Figure 4.1: An overview of the system, software design [41]

25

4. Design

Figure 4.1 shows an overview of the simulation software where classes are represented
by boxes, references are represented by solid arrows and notifications are represented
by dotted arrows [41]. The basic software design is the same as the previous design;
no main block is added to the system design. There are some enhancements in the
existing software blocks in order to support new features. The software components
that are blue colored in the design diagram have been changed by adding new
features to support schedulability analysis, task self suspension, non-preemptive
execution and finally for multi-core scheduling simulation. As mentioned in [41],
this diagram is a coarse overview so the UML standard has not been followed. In
the following sections, the modified parts of the architecture will be discussed to
clarify the improvements that have been done to the existing system.

4.1 System Model

Munk [41] quoted from Shannon [52], a simulation is “the process of designing a
model of a real system and conducting experiments with this model for the purpose
of understanding the behavior of the system and / or evaluating various strategies
for the operation of the system.” Thus, a simulation model is a necessary part of the
simulation. The system model has to contain all necessary information in order to
generate a schedule. The system needs to be designed in such a way that it is neither
oversimplified nor too detailed whereas the quality of simulation result depends on
the abstraction result of the system model [52].

In the previous work [41], ameta-model has been developed that tells how to describe
the system model and its elements. This meta-model is named system model. The
root element of the system model is the class systemModel that has a name and a
description of String type. A system model consists of multiple Tasks, Cores and
Resources [41].

26

4.1. System Model

Core

active : EBoolean

contextSwitchCorrectionFactor : EInt

resourceAccessProtocol : EString

Task

deadlineType : Deadline

deadline : EInt

priority : EInt

offset : EInt

periodity : Periodity

period : EInt

jitter : EInt

completion : EInt

initialization : EInt

repetitions : EInt

lambda : EInt

contextSwitchingTime : EInt

executionTime : EInt

responseTime : EInt

Event

type : EString

time : ELong

duration : ELong

SystemModel

description : EString

name : EString

version : EString

<<enumeration>>

State

NON_EXISTING

CREATED

READY

RUNNING

BLOCKED

TERMINATED

<<enumeration>>

Deadline

NONE

SOFT

HARD

<<enumeration>>

Periodity

PERIODIC

SPORADIC

Resource

priority : EInt

units : EInt

accessTime : EInt

resourceType : ResourceType

Command

Execution

duration : EInt

RequestResource

resourceNestedType : ResourceNestedType

units : EInt

TaskEvent CoreEventResourceEvent

ReleaseResource

units : EInt

resourceNestedType : ResourceNestedType

SimulationParameters

simulationSpeed : EDouble

schedulerName : EString

timeScale : EDouble

Color

r : EInt

g : EInt

b : EInt

IElementToColorMap
Instance

class:

java.util.M...

IElement

name : EString

StringToStringMap

key : EString

value : EString

<<enumeration>>

ResourceType

SHORT

LONG

<<enumeration>>

ResourceNestedType

L_OUTER

L_INNER

S_OUTER

S_INNER

Suspension

duration : EInt

InitiateSelfSuspension

TerminateSelfSuspension

InitiateNonPreemptive

TerminateNonPreemptive

ResourceGroup

locked : EBoolean

ResourceUsage

usage : EInt

Cluster

schedulerName : EString

values0..*

iElementToColorMap0..*

value1

key

1

core

0..1

event0..*

task

0..1

event

0..*

command1..*

resource

0..*

event0..*

resource1

resource1

resource

1..*

resourceUsage

0..*

resource

0..1

resourceGroup

0..*

resource

0..*

core

0..*

task0..*

cluster

0..*

resources

0..*

cores

1..*

Figure 4.2: An overview of the system model

Figure-4.2 shows the UML representation of the system model. The system model
contains all the model classes from the previous work that were added or modified as

27

4. Design

a part of this thesis work. The model classes colored yellow in the diagram are from
the previous work without any modification. The model classes colored green, are
newly added, and those colored blue are from the previous work with some necessary
modification. The system model is designed and defined in the EMF framework,
therefore the source code is generated by its framework [41].

The systemModel class is modified by adding two new attributes to it. A system
model may also contain multiple instances of ResourceGroup and Cluster. The
attribute ResourceGroup is necessary for flexible multiprocessor locking protocol,
which is a resource access protocol for multiprocessor scheduling and the Cluster
attribute is used to specify the clusters to group the task sets into m clusters where
each cluster will be scheduled under a specified scheduling algorithm.

4.1.1 Tasks

A task should have some properties like periodicity, deadline type, deadline, execu-
tion time etc. All these basic properties have been included in the Task model of
the previous work.

The execution time of a job, i.e one invocation of a task is not specified in an
attribute. The total execution of a task is split into multiple commands [41]. There-
fore, in order to get the total execution time of a task, every time one needs to go
through a loop to sum up the execution time of all Execution commands. The
total execution time of a task is necessary to perform the schedulability analysis.
For this purpose an attribute named executionTime has been added to the Task
model. This attribute stores the total execution time of the task.

In order to perform schedulability analysis, a response time analysis is done which
calculates the response time of each task. Once the response time of a task is cal-
culated, it is stored for future use, e.g. to check that the response time calculation
conforms to the simulation output. For this purpose an attribute named respon-
seTime has been added to the Task model. The calculated response time of a task
will be stored in this attribute.

Response time analysis using blocking time requires to calculate the blocking time,
which is different for various resource access protocols. In order to calculate blocking
time for simple priority inheritance or priority ceiling protocol, the resource usage
information is necessary. A task should keep the information of all resources whether
it uses them or not. For this purpose an attribute named resourceUsage has been
added that may contain multiple instances of ResourceUsage model class. Table 4.1
lists all the attributes of Task model with a brief description of each attribute, for
more information see [41, sec 6.1.1]. A horizontal line is placed to separate the
existing attributes and newly added attributes, the notation which will also be used
for other tables where the attributes of a model class are listed.

28

4.1. System Model

Properties Default Value Description
deadlineType NONE The deadline of a task can be NONE, SOFT or

HARD
deadline 0 The relative deadline of the task
priority 0 The priority of the task
offset 0 The release offset of the first creation of the

task
periodity PERIORIC A task can be PERIODIC or SPORADIC
period 0 The time of the task’s period or minimum

inter-arrival time for sporadic task
jitter 0 The maximum variation of a task release

time, earlier or later
completion 0 Duration of the completion phase, for future

use
initialization 0 Duration of the initialization phase for fu-

ture use
repetitions -1 The number, how many times a task will re-

peat its creation; -1 represents infinite rep-
etitions

lambda 0 The lambda parameter of the Poisson dis-
tribution, used for sporadic tasks

contexSwitching-
Time

0 The time necessary for context switching
before the task starts executing

executionTime 0 The execution time, i.e WCET of the task,
it has to execute for each invocation

responseTime 0 The time necessary for a job, to complete
its execution

resourceUsage 0 The list of resources a task uses

Table 4.1: The attributes of the task model with a default value and short description

4.1.1.1 Commands

A task may contain arbitrary sequences of Commands. A command is an abstract
class inherited by its subclasses RequestResource, ReleaseResource, and Execu-
tion. The execution command has an attribute named duration that the task
needs to execute which is known as WCET. The execution time of a task needs to
be split for only execution and execution while using a resource. The previous work
only supports these three commands. As a part of FMLP implementation, nested
resource access should be understood by the simulator. A new enumeration model
class has been created for this purpose named ResourceNestedType which contains
L_OUTER, L_INNER, S_OUTER, S_INNER. A RequestResource or ReleaseResource
should be marked as of the nested type. For this purpose a new attribute is added
to these models named resourceNestedType which contains any value from the

29

4. Design

enumeration model accordingly.

The previous work does not support self suspension and non-preemptive execution.
In order to enable the system to support these two features, some new commands
have been introduced.

Self Suspension: three new commands have been introduced to support self sus-
pension, InitiateSelfSuspension, TerminateSelfSuspension, and Suspension.
All these three commands inherit the Command abstract class. These three com-
mands work as execution with resource lock. When a task wants to suspend itself
then these three commands come in the following sequence: InitiateSelfSuspen-
sion, Suspension, TerminateSelfSuspension. The suspension command has an
attribute name suspension, that stores the time duration for which the task needs
to be in suspension mode.

Non-Preemptive Execution: two new commands have been introduced to sup-
port a task executing its non-preemptive section, so that a higher priority task
cannot preempt the task while it is executing its non-preemptive section. Ini-
tiateNonPreemptive and TerminateNonPreemptive are the two new commands
inheriting the Command abstract class. When a task starts its non-preemptive exe-
cution it sets a InitiateNonPreemptive in the command sequence and a Termi-
nateNonPreemptive command when it finishes non-preemptive execution. There
will be an Execution command placed between these two commands which spec-
ifies the time duration of non-preemptive execution. This feature is necessary to
implement FMLP, a resource access protocol for multiprocessor scheduling.

4.1.1.2 Resource Usage

A ResourceUsage model class has two attributes, one is resource of type Resource
class and another is usage of type integer. The value of this usage attribute can be
either 0 or 1. A task has the resourceUsage of all resources that are necessary to
calculate blocking time and thus response time.

4.1.2 Cores

A Core is a part of the processor. A processor i.e. a processing chip may have
multiple cores which is known as multi-core system. A system model prepared for
single core scheduling will have one core and for multi-core scheduling a system
model will have more than one core, thus a system model may contain arbitrary
number of cores.

In the existing system model the Core model has two attributes active and con-
textSwitchCorrectionFactor. The short description will be given in the attributes
overview table, for more information see [41, sec-6.1.2]

30

4.1. System Model

In partitioned scheduling approach of multi-core scheduling, a different resource
access protocol can be specified for each core. i.e one core can run using one resource
access protocol, whereas another core may use different resource access protocol.
In order to support this feature, an attribute named resourceAccessProtocol is
added to the Core model. The use of this attribute will be discussed in 9.4 on page
80.

The attributes of the Core model are listed in table-4.2 along with short description
of each attribute and their default values.

Properties Default Value Description
active false Option to deactivate a core, for future use
contextSwitch-
CorrectionFactor

0 A correction factor of task context switch
timings

resourceAccess-
Protocol

NULL The resource access protocol that will be
used for this core with the specified schedul-
ing algorithm for partitioned multi-core
scheduling algorithm

Table 4.2: The attributes of the core model with default value and short description

4.1.3 Resources

A unit of a resource can only be exclusively accessed by one task at a time as defined
in [41, sec-2.5].

In the existing system model the Resource model has two attributes priority and
units. Some resource access protocols need to specify a ceiling priority, for this
reason a resource has this priority attribute. There may be some resource with
multiple units, the resource model has the units attribute to specify how many
units of that resource there are. More about these two attributes is found in [41,
sec-6.1.1]

In order to perform the response time analysis, blocking time is necessary for calcu-
lation. The accessTime attribute of a resource is needed to calculate the blocking
time. The accessTime of a resource is the maximum access time among all tasks
using this resource. For FMLP, it is necessary to mark a resource as short or long.
The resourceType attribute tells whether a resource is short or long.

The attributes of the Resource model are listed in table-4.3 along with short de-
scription of each attribute and their default values.

31

4. Design

Properties Default Value Description
priority empty list A list of priority ceiling values in the order of

available units
units 1 The number of total available units
accessTime 0 The maximum access time of all task used this

resource
resourceType LONG The resource type either SHORT or LONG

Table 4.3: The attributes of the resource model with default value and short de-
scription

4.1.4 Events

There are arbitrarily many Events generated during the simulation related to tasks,
resources and cores. The examples of such events are: a task is created, a task is
scheduled on a specific core, the priority of a task changes during the simulation,
a task is blocked to access a resource etc. The visualization of the simulation is
event based, when an event occurs in the simulation, it triggers the simulation event
and the visualization updates accordingly, thus the events work as an interface be-
tween the simulation and visualization [41]. Every model class contains an attribute
of event class to allow a different visualization kind depending on the event type
[41].

A new event type can be created without modifying the model as the type attribute
of Event class is a string. Existing simulator triggers a CORE_USE_EVENT when a task
is scheduled on a core in order to update the visualization. In the implementation
of GSN-EDF, it requires to update the visualization when a task is linked to a core
in addition with the task scheduled on a core, for this reason a new event is created
as TASK_LINKED_EVENT in order to update the visualization when a task is linked
to a processor. The system introduces two different running types RUNNING and
NON_PREEMPTIVE_RUNNING for execution to update the visualization correctly for
preemptive and non-preemptive execution accordingly.

4.2 Simulation Parameters

The simulation model is loaded from an XML file along with some other information
for the simulator to run. The class SimulationParameters is modeled with the
Eclipse EMF which is not a part of the system model. This class has some important
attributes: those will be taken from the user, the scheduler name that will do the
task scheduling as schedulerName, simulation speed as simulationSpeed and the
time scale for the visualization as timeScale [41]. As a part of this thesis work
nothing has been changed in this class.

32

4.3. Simulator

4.3 Simulator

The simulator is the central element of the simulation software and the simulation
kernel is necessary to access from other classes like scheduler, visualization etc.
In order to support this, the class Simulator is designed to develop according to
the singleton design pattern. Therefore, the number of instances of this class is
restricted to one which allows to access this class from other places without creating
an instance [41].

The simulation and visualization need to run separately in order to keep them inde-
pendent. The simulator class contains an inner class SimulationThread by extend-
ing the Java Thread class which is responsible for the simulation. The simulator
class contains the methods start(), play(), pause(), and stop() to control the
SimulationThread and thus, simulation [41].

The class TimeAxis holds a map between integral points of time t and a list of events
at that time. The list of events represented by the abstract class Job. Thus, the
events are generally generated by the Jobs. In general, the Jobs are the implemen-
tation of the Command model and some other events like deadline check, to block a
task etc. Each implementation of a Job has to implement executeJob(), where the
code segment is placed to do the necessary work for this Job and isDispatchNec-
essary() to tell the simulator whether a dispatch is necessary or not. Therefore,
the unnecessary calls to dispatch method are avoided [41].

A job can be added to the time axis by calling its addJob(final long time, final
IJob job) function. The simulation thread calls the function executeJobs(final
long now) to execute all the jobs at that point and returns the boolean value
stating whether a dispatch is necessary or not. If a dispatch is necessary then the
scheduler gets a dispatch call and thus executes the dispatch() method of the
respective scheduler to schedule the task set at that point of time. Thereafter, the
simulator gets the next time where there are some jobs to process by the function
getNextTimeStep() of TimeAxis class.

A scheduler interface IScheduler is presented in [41, figure 6.4]. Any combination
of scheduling policy and resource access protocol must implement this interface.
The initialize() method is to initialize the variables. In order to request and
release a resource requestResource() and releaseResource() methods will be
used respectively. The scheduling decision is done inside the dispatch() method.
Whenever a scheduling decision is necessary, the dispatch method of the scheduler
is called. The stateChangeRequest() method is used to receive the notification
when the state of a task is changed.

33

4. Design

4.4 Task Monitor

The responsibility of dispatch() method of a scheduler is not only taking the
scheduling decision but also starting the task execution, preempting a task if nec-
essary etc. In order to provide this functionality, necessary methods are provided
by the TaskMonitor class. A task is linked to a task monitor where necessary at-
tributes are defined to maintain the life cycle of a task via the TaskManager class.
The TaskManager is a singleton class that maintains a map between the tasks and
their monitors [41].

Task Monitor provides functions to change the state of a task, create the jobs to the
time axis, etc. The important thing is done here, it creates the events accordingly
which is necessary for the visualization thread to update the view part[41].

The newly implemented features, e.g. self-suspension, non-preemptive execution,
FMLP requires to add some attributes and functions in the TaskMonitor class.
The details of these attributes and functions will be discussed in detail in their
respective implementation sections.

4.5 Resource Monitor

Like TaskMonitor, a resource is linked to a ResourceMonitor via the ResourceM-
anager class, which is also a singleton class that keeps track of resources with its
associated resource monitor. ResourceMonitor class provides necessary methods
to have functionality of locking a resource when necessary, and releasing a resource
when its use is complete. The necessary events are generated from this class required
for the visualization of resource events[41].

In order to implement FMLP, resources need to be grouped, one group may con-
tain one or more resources. In FMLP, a lock needs to be granted on a resource
group rather than a lock on a single resource. As a resource monitor only keeps
the information for one resource, the locking is not possible inside this class. Re-
sourceManager keeps the mapping between a resource and a resource monitor for
all resources, thus the information for all resources can be obtained in this class
by adding new attributes and the necessary functions are placed here to lock and
unlock a group required by the FMLP. This will be discussed in detail in the section
on FMLP implementation.

4.6 Exception Handling

The advantages of using Java and Eclipse RCP include the availability of built-
in feature for exception handling. A view which is called “Error Log”, lists all
the status messages. The class StatusManager can be used to add new status

34

4.6. Exception Handling

messages in the above list. It supports different severity levels, i.e., information,
warning and error. The exceptions that are caught in the main simulation loop called
SimulationThread, that is simulation exceptions, that arise during simulation are
reported by the StatusManager class [41].

The class SimulationException is introduced in order to differentiate between the
Java exceptions and exceptions that are provided by the simulation. The simulation
exceptions may be an illegal state transition, resource release for more than available
units etc. The SimulationException inherits from the java.lang.Exception to
serving as Java exception. The main simulation exceptions come from the TaskMon-
itor or ResourceMonitor classes as they serve the purpose of changing the state
of a task and requesting or releasing a resource [41]. Simulation exceptions may be
thrown from some other places like newly developed Pfair schedulers when a task
violates its lag constraint.

As a part of this thesis work, all new implementations use the existing exception
handling introduced by the previous work by Munk [41].

35

5 | Schedulability Analysis

Many safety-critical hard real-time systems involve several distinct functionalities
where each functionality has a hard real-time constraint that must not be violated
[17]. It is quite challenging to develop such a system where no critical task misses its
deadline. In preemptive scheduling algorithms the order of task execution changes
dynamically so it is very difficult to predict in advance whether all tasks will meet
their deadline or not.

In multitasking real-time systems, schedulability analysis is formally employed to
prove in advance that a task set that will be scheduled on a system will conform
to its deadlines. In this chapter, the necessary theory for schedulability analysis
of single-processor algorithms implemented by Munk [41] will be discussed. The
implementation will be discussed in chapter 9.

A schedulability analysis can be either direct or indirect. An indirect schedulability
test does not calculate the delay between arrival time and completion time known
as response time, but determine the schedulability of a given task set for the given
system parameters. Direct schedulability test will explicitly calculate the worst-case
response time of the tasks to determine the schedulability. Direct schedulability
analysis is more accurate than indirect schedulability analysis but results in high
computing costs [58].

Schedulability Analysis for Fixed Priority Preemptive Scheduling: As
discussed above, there are two different approaches for schedulability analysis [28].
The earlier schedulability analysis which calculates the total processor utilization
i.e. the percentage of processor used by all the tasks is known as utilization based
schedulability test. The later work on schedulability analysis focuses on response time
analysis, i.e. the time duration by which a task completes its execution [35, 5]. These
two approaches will be used for fixed priority preemptive scheduling schedulability
analysis.

Schedulability Analysis for Dynamic Priority Preemptive Scheduling: The
most common dynamic priority scheduling algorithm, earliest deadline first which
was introduced by Liu and Layland [38]. Dertouzos [24] proves that earliest deadline
first is optimal among all other uni-processor scheduling algorithms. The schedu-
lability analysis for implicit task set scheduling under EDF scheduler can be done
using utilization based schedulability analysis mentioned in [38]. Demand bound
analysis will be done for constrained deadline task sets.

37

5. Schedulability Analysis

5.1 Utilization Based Schedulability Analysis

The utilization based schedulability test is the most common and less costly ap-
proach in terms of computing cost [58]. In this analysis a task set can only be
scheduled if the total utilization of all tasks is lower than a predefined bound [58].
This utilization bound differs for different algorithms used to schedule the task set
[38].

5.1.1 Rate Monotonic Scheduling

Rate monotonic scheduler is a fixed priority preemptive scheduling algorithm. A
static priority is assigned to each task according to the rule “The shorter the period,
the higher the priority”. [38]

In order to perform the utilization based schedulability test for RMS the processor
load needs to be measured i.e. the processor utilization [38]

U =
n∑
i=1

Ci
Pi

(5.1)

A necessary but not sufficient condition for RMS schedulability test is that the total
processor utilization is not more than one, i.e. U ≤ 1. A simple utilization based
sufficient schedulability test for RMS with the following conditions:

• all tasks are independent, there is no communication or synchronization be-
tween the tasks, if it does exist this test does not consider that.

• every task in the task set should have implicit deadline i.e. deadline is equal
to period Di = Pi.

• the task set should be synchronous.

A real-time system is schedulable under RMS if the total utilization of the task set
does not exceed the utilization bound according to Liu and Layland [38].

U =
n∑
i=1

Ci
Pi
≤ n(21/n − 1) (5.2)

This is a sufficient test but not necessary [4].

5.1.2 Deadline Monotonic Scheduling

For a task set, deadline equaling period is not always realistic, sometimes a task set
may have tasks with deadlines being less than or equal to period. Deadline mono-
tonic scheduler is also a fixed priority preemptive scheduling algorithm. The priority
assignment differs from RMS in such a way “The shorter the relative deadline, the
higher the priority”, called deadline monotonic priority assignment.

38

5.2. Response Time Analysis

Audsley et al. [4] observe that a task may experience worst case interference Ii from
the higher priority tasks in the same task set while scheduling using DMS.

Ii =
i−1∑
j=1

⌈
Di

Pj

⌉
Cj (5.3)

The entire task set will be scheduled using DMS, if [4]

for all task i, Ci
Di

+ Ii
Di

≤ 1 (5.4)

where Ci/Di is the processor utilization by task i, until its deadline Di and Ii/Di is
the maximum degree of interference (utilization) it experiences from higher priority
tasks until deadline Di. This test checks that the processor utilization of any task
Ti plus the degree of interference it experienced from higher priority tasks before
the deadline of the task Ti is not more than 1. This is also a sufficient test but not
necessary [4].

5.1.3 Earliest Deadline First

A task set is schedulable under earliest deadline first scheduling algorithm if the
total processor utilization by all the tasks in this task set does not exceed 100% [38].
Thus, a set of periodic tasks is schedulable under EDF if the following conditions
hold

• all tasks in the task set are independent.

• deadline is equal to period i.e. Di = Pi for all tasks.

• the task set is synchronous.

• and utilization:
U =

n∑
i=1

Ci
Pi
≤ 1 (5.5)

which is an exact schedulability test for EDF without considering the synchroniza-
tion and communication between tasks.

5.2 Response Time Analysis

This analysis finds out the worst-case response time of each task and compares it to
its deadline to determine whether a task can meet its deadline or not. The response
time analysis can test the schedulability of a task set with arbitrary deadline tasks
[56]. This section describes the schedulability analysis for an arbitrary deadline task
set.

39

5. Schedulability Analysis

5.2.1 Exact Schedulability Test

In this section, the response time analysis considers each task to be independent,
only accounts for the execution time, does not care about the blocking time while
accessing shared resources. Therefore, this test is both necessary and sufficient
schedulability test. The response time analysis for ith process is given by the follow-
ing equation

Ri = Ci +
∑

j∈hp(i)

⌈
Ri

Pj

⌉
× Cj (5.6)

where ∑
j∈hp(i)

dRi/Pje×Cj is the worst-case interference by the higher priority tasks.

In equation 5.6, the worst-case response time Ri comes in both left and right hand
sides. Note that, the right hand side of equation 5.6 is a monotonically non-
decreasing function of Ri [23]. This equation is a fixed point iteration where the
iteration starts with an initial value of Ri which is R0

i = Ci. From this equation
the smallest Ri needs to be found satisfying the equation which can be solved by a
recurrence relation

W n+1
i = Ci +

∑
j∈hp(i)

⌈
Wi

Pj

⌉
× Cj (5.7)

starts from the initial value and continues until Wi stabilize, meaning W n
i = W n+1

i

or Wi > Di where Di is the relative deadline of ith task [23].

5.2.2 Sufficient Schedulability Test

In the previous section on the exact schedulability test by response time analysis,
it is assumed that all tasks are independent, no synchronization or communication
between tasks is present. Synchronization and communication add another factor
that may increase the response time for some tasks i.e. a task may be blocked
to access shared resources. Therefore, equation-5.6 can be rewritten as follows by
adding blocking time Bi

Ri = Bi + Ci +
∑

j∈hp(i)

⌈
Ri

Pj

⌉
× Cj (5.8)

where Bi is the blocking time i.e. a task is blocked on accessing some shared re-
sources that need to be calculated. The worst case blocking time Bi needs to be
calculated which is different for different resource access protocols. In order to cal-
culate blocking time for default protocol and simple priority inheritance protocol
for resource access, the worst-case blocking time can be calculated by the following
equation

Bi =
K∑
k=1

usages(k, i)× CS(k) (5.9)

40

5.3. Demand Bound Analysis

The worst-case blocking time calculation is different for Priority Ceiling Protocol
which can be calculated by the following equation

Bi = max(usages(k, i)× CS(k)) (5.10)

In the above two equations (equation 5.9 and 5.10), K is the number of resources
and CS(k) is the worst-case access time of resource k. The usage of a resource k is
defined as, usage(k, i) = 1 if resource k is used by a higher priority task including
the task itself and a lower priority task, otherwise usage(k, i) = 0

Like equation 5.6, equation 5.8 is also a fixed point iteration where the iteration
starts with a different initial value which is R0

i = Bi + Ci and continue until it
stabilizes.

A scheduler requires to switch between jobs while scheduling a set of tasks, which is
known as context switching [30]. Context switching overhead refers to the overhead
when there is preemption. The processor needs to save the context of the current
job, load the context of the next job and resume it [30]. Thus, the cost for con-
text switching may lengthen the response time. The following equation calculates
response time by also considering context switching time.

Ri = CS1 +Bi + Ci +
∑

j∈hp(i)

⌈
Ri

Pj

⌉
× (CS1 + CS2 + Cj) (5.11)

where CS1 is the WCET cost of context switch to the process and CS2 is the WCET
cost of context switch away from the process.

5.3 Demand Bound Analysis

A utilization based necessary and sufficient schedulability analysis is presented by
Liu and Layland [38] where all the tasks have implicit deadlines, i.e the relative
deadlines are equal to their period, which has been presented in section 5.1.3. In
real-time systems, the assumption that all task deadlines will be equal to their
period is not always realistic. For such a system where the deadline of a task
is not implicit, the schedulability analysis is not possible by the utilization based
schedulability analysis.

The earlier research on exact schedulability analysis for the EDF scheduling al-
gorithm with arbitrary deadlines was described by Leung and Merrill [36]. They
showed that a periodic task set will be schedulable using the EDF algorithm if and
only if the absolute deadlines of all the tasks in the period [0,max{si + 2H}] has
been meet. Where si is the start time of a task Ti and min{si} = 0, H is the least
common multiple of the periods of the tasks. Baruah et al. [9] improved this schedu-
lability analysis by introducing a processor demand function. According to them,

41

5. Schedulability Analysis

a task set, including sporadic tasks, is schedulable if and only if ∀ t > 0, h(t) ≤ t,
here t is the time and h(t) is processor demand function defined as:

h(t) =
n∑
i=0

max{0, 1 +
⌊
t−Di

Pi

⌋
} Ci (5.12)

In the above demand function, the time value t that is not bound and is more than
0 (zero) can be bound to a certain value. Now the lower bound and upper bound
will be discussed first and then they will be combined.

Upper Bound: A task set is schedulable If and only if U ≤ 1 and ∀t La, h(t) ≤ t.
Where the upper bound La is defined as: [10, 9, 49]

La = max
1<i<n

{Pi −Di}
U

1− U (5.13)

Lower Bound: A task set is schedulable if and only if U ≤ 1 and ∀t Lb, h(t) ≤ t
where Lb is the synchronous busy period of the task set. The interval between 0
(zero) and the first time the process is idle is called busy period. The length of the
synchronous busy period Lb can be computed by the following equation to stop at
the first idle time

W (0) =
n∑
i=1

Ci (5.14)

W (k) =
n∑
i=1

⌈
W (k − 1)

Pi

⌉
(5.15)

This iteration stops when the first idle time is found which is at W (k) when
W (k − 1) = W (k).

Combining Upper Bound and Lower Bound: Now the upper bound and
lower bound can combined to a single equation to check schedulability of a task set.
Thus, a task set is schedulable if and only if U ≤ 1 and ∀t ∈ P, h(t) ≤ t. Where the
P is defined as a collection of absolute deadlines by the following equation

P = {dk| dk = kPi +Di ∧ dk < min(La, Lb), k ∈ N} (5.16)

The schedulability analysis using demand bound analysis for EDF is necessary and
sufficient thus it is an exact schedulability test without considering synchronization
between tasks.

42

5.4. Summary

5.4 Summary

The following table lists all discussed schedulability analysis techniques with respec-
tive single core scheduling algorithms for which they can be used on different types
of task sets except the sufficient response time analysis that is not listed in the table,
the table only lists appropriate schedulability tests for various single core scheduling
algorithms, applied only to independent task sets.

Deadline Equals Period Deadline Less Than
Period

RMS Sufficient U =
n∑
i=1

Ci

Pi
≤ n(21/n − 1)

Exact Response Time Analysis

DMS Sufficient Ci

Di
+ Ii

Di
≤ 1

Exact Response Time Analysis

EDF Sufficient
Exact U =

n∑
i=1

Ci

Pi
≤ 1 Demand Bound Analysis

Table 5.1: Schedulability analysis summary

43

6 | Self Suspension, Non-Preemp-
tive Execution and Interrupt
Handling

6.1 Self Suspension

In many real-time embedded systems, tasks may invoke some significant suspension
intervals during communication, synchronization and on accessing external resources
like I/O. The intervals of these suspensions are mostly independent of the processors
on which these tasks are being scheduled. Traditional real-time systems consider
the self suspension time as a part of execution time [34], and thus, the task holds
the processor though it does not need it for computation. In this section, the basic
theory on self-suspension of real time tasks will be discussed for implementation into
the simulator.

In many real-time systems when a task interacts with external devices or waits for
some events to occur it may introduce self suspension delays. The examples of such
devices are magnetic disc, network card, etc. When a task initiates to use a device
and sends the commands to process, there may be some predefined time intervals
that the device will use to process the data to get the result. After sending the
command to the device, the task may self-suspend itself by the predefined time
duration, which is termed self-suspension time.

The recent research on scheduling tasks with self-suspension delays [47, 48] shows
that the feasibility problem of scheduling periodic tasks containing self-suspension
delays is NP-hard in the strong sense. In real-time systems such self-suspension
delays impact schedulability analysis quite negatively when deadline misses are not
allowed [39].

Thus, the sequence of execution times of a task can be split by adding suspension
delays between the execution times. Thus, the execution time Ci of each task Ti can
be represented as a sequence of execution times and suspension delays [34]

Ci = (C1
i , E

1
i , C

2
i , E

2
i , C

3
i , E

3
i , · · · , E

mi−1
i , Cmi

i) (6.1)

where there are mi non-suspending computation time chunks separated by mi −

45

6. Self Suspension, Non-Preemptive Execution and Interrupt Handling

1 suspension delays. There are some constraints on using the defined model for
self suspension described in [34]. The most important constraint is that a task
will contain multiple execution chunks with different suspension behavior which is
supported by the existing simulator. As the self-suspension behavior is defined by
the system model, the self suspension is defined for the first time when the model is
being prepared; the self-suspension cannot happen at unknown time. This problem
has also been solved in the course of development of the simulation that is necessary
for FMLP implementation.

When a task self suspends itself, the scheduler removes it from the ready queue,
places it into the blocked queue, and takes the next eligible task for scheduling.

The schedulability analysis for a single core scheduling algorithm, which is a part
of this thesis work, will not work if a task in a task set is going to be scheduled on
the system that contains self-suspension delays. Thus, the schedulability analysis
including self-suspension delays can be treated as future work.

6.2 Non-Preemptive Execution

The term non-preemptive execution refers to the situation when in a preemptive
scheduling algorithm a task in the task set may have a finite time duration that
should be executed non-preemptively even though there is a higher priority ready
task that is waiting for its execution. FMLP requires a version of G-EDF where jobs
can be non-preemptable for a short duration of time [14]. In order to implement
FMLP, the existing simulator needs to be updated to support a scenario where a
task may have non-preemptive section which should be executed non-preemptively.
As the execution of a non-preemptive section in a preemptive scheduling algorithm
is supported by the simulator for the implementation of GSN-EDF which is required
for the FMLP implementation, it will also be available for any preemptive scheduling
algorithm supported by the existing system and its improvement is part of this thesis
work.

A higher priority jobs can be blocked by a lower priority job when it is executing its
non-preemptive section and such blocking is termed non-preemptive blocking.

6.3 Interrupt Handling

Interrupt is an asynchronous notification to the processor and it may occur at any
time, possibly between two instructions. If an interrupt is detected by a processor,
it pauses the currently scheduled task and instead runs a designated interrupt ser-
vice routine (ISR). Therefore the interrupted task faces undesirable delay and the
response time is increased. Most interrupts are maskable. However, there are some

46

6.3. Interrupt Handling

routines to check the system health that are non-maskable, known as non mask-
able interrupts (NMIs). In multiprocessor interrupt handling, some interrupts may
be designated to a processor on which they will be processed. In other cases an
interrupt can be processed by any processor [16].

Interrupts are categorized into four different groups, device interrupts (DIs), timer
interrupts (TIs), cycle-stealing interrupts (CSIs), and inter-processor interrupts (IPIs)
[16].

In the uni-processor scheduling for real-time systems interrupt handling methods
were discussed by Liu and Layland [38]. In static priority scheduling algorithms the
priorities of interrupts are set to higher priority values and thus processed instantly.
In EDF, a dynamic priority scheduling algorithm, “schedulability can be tested by
treating time lost to processing interrupts as a source of blocking” [32].

In the existing simulation software, the interrupt requests are handled in the same
way Liu and Layland [38] described it in their paper. For fixed priority scheduling
algorithms, the task which is treated as an interrupt gets the highest priority. In
the Earliest Deadline First scheduling algorithm, the deadline of the interrupt task
is given a small value which is very close to its WCET and thus it is executed as a
higher priority task.

In the multiprocessor scheduling algorithms the interrupts are handled in the same
way as they are handled in the single-core scheduling algorithms. There is a prob-
lem of handling interrupts for the Pfair scheduling algorithms where the priority is
dynamic and the deadline of a task must be equal to its period. Therefore in Pfair,
it is a bit difficult to make the priority of the interrupt higher as it is done for other
scheduling algorithms. The interrupt task will also progress in proportion to its
weight.

47

7 | Scheduling on Multiprocessor
Systems

Nowadays real-time embedded systems are increasingly used in many different en-
vironments where the technology is changing rapidly. As a result the number of
processors on a single chip is growing every year for more powerful and rapid com-
putation.

In recent years, chip designers prefer to increase the number of processors on a single
chip rather than increasing the processor speed because of cost minimization and
some other related factors [33, 50, 59]. Thus, task execution parallelism is necessary
to use the maximum processing speed of multiprocessor systems.

This technological modification of the processor architecture has stimulated more
research in the field of multiprocessor scheduling in recent years. There are many
mature algorithms for single core scheduling that can feasibly schedule a task set on
a single processor system [17, 18, 40] . On the other hand, real-time multiprocessor
scheduling is a more difficult problem than uni-processor scheduling [37]. Real-time
multiprocessor scheduling research is still ongoing with many open problems.

The correctness of a real-time system not only depends on the correctness of the
functionality provided by the system, it also depends on the time at which the
correct results are available. Thus, a real-time system should function properly
within a predefined time. For example, in a safety critical system, the system must
be shut down as soon as any indicator is reacting in an unusual way. If the system
is not shut down within a very short time period, it may cause life risk.

7.1 Taxonomy of Multiprocessor Scheduling Al-
gorithms

Multiprocessor scheduling can be regarded as trying to solve two problems: the
allocation problem that will define on which processor a task should execute and the
priority problem that will define when and in what order each task should execute
with respect to other tasks. Multiprocessor scheduling algorithms can be classified
into three different categories according to the available degree of inter-processor

49

7. Scheduling on Multiprocessor Systems

migration and three other categories according to when the priority is being changed
[19].

7.1.1 Allocation

Traditionally inter-processor migration has been restricted in real-time system. In
many systems, the cost of context switching from one processor to another pro-
cessor is prohibited. The traditional real-time scheduling theory does not have
techniques, tools and results so that it could analyze the system in detail to allow
migration.

Recent development in multiprocessors on a single chip and very fast communication
over small areas solves the issue of context switching cost described earlier. So
the system designer does not need to care about inter-processor migration solely
due to implementation consideration. The result of recent experiments also shows
that scheduling algorithms that provide inter-processor migration are competitive
in comparison to scheduling algorithms that do not allow migration [54].

Scheduling algorithms fall into one of the following three different categories accord-
ing to the degree of migration [22].

7.1.1.1 No Migration

Every task is assigned to a processor on which it can be scheduled. In this category,
migration among processes is not allowed and the technique can also be named
partitioned. There are m different subsets of task sets if the available numbers of
processors are m. A subset of tasks is assigned to a processor and needs to schedule
only on that processor.

7.1.1.2 Task Level Migration

The jobs of a task may execute on different processors; however, each job must
execute entirely on a single processor. So, the run-time context of a job needs to
be maintained only on one processor, whereas the task-level context migration is
possible. Task level migration is also known as restricted migration.

7.1.1.3 Job Level Migration

There is no restriction on inter-processor migration. A job of a task can be migrated
and moved from one processor to another; however, parallel execution of a job is
restricted so that a job cannot be scheduled on more than one processor at a time.
Task level migration is also referred to as full migration.

50

7.2. Schedulability, Feasibility and Optimality

7.1.2 Priority

A scheduling algorithm falls into any of the following three different categories ac-
cording to the complexity of the priority scheme [22].

7.1.2.1 Fixed Task Priority

A unique fixed priority is assigned to each task and this priority will be applied to
all of its jobs. Fixed job priority is also referred to as static priority.

7.1.2.2 Fixed Job Priority

The different jobs of a task may have different priorities but each job will have the
same static priority.

7.1.2.3 Dynamic Priority

As the name suggests, a job may have different priority at different points of time.
There is no restriction on priorities that can be assigned to jobs.

7.1.3 Work-conserving and non-work-conserving

A scheduling algorithm is said to be work-conserving, if the processor is not idle at
any time where one or more tasks are in ready states and waiting to get the processor
to be executed, otherwise it is said to be non-work-conserving. The multiprocessor
scheduling algorithms in the class of partitioned approach are not work-conserving
because they may allow an idle processor while there are some ready tasks on other
processors and waiting to get the processor but the idle processor cannot schedule
them [22].

7.2 Schedulability, Feasibility and Optimality

A task set τ is said to be feasible with respect to a system if there exists a scheduler
that can schedule all possible sequences of jobs released by the tasks belonging to τ

on that system so that no task misses its deadline [22]. Therefore, the feasibility of
a task set τ is not dependent on a particular scheduling algorithm used to schedule
the jobs released by the tasks in τ [42].

A task set τ is said to be schedulable with respect to a scheduling algorithm S, if any
job generated by the tasks in τ does not miss its deadline in the schedule generated
by S [42]. In other words, a task set τ is said to be schedulable with respect to a

51

7. Scheduling on Multiprocessor Systems

scheduling algorithm if the worst-case response time of all the jobs generated by the
tasks in τ is less than or equal to their respective deadlines [22].

The optimality of a real-time scheduling algorithm can be derived by combining
these two terms, schedulability and feasibility [42]. Thus, a real-time scheduling
algorithm S is said to be optimal with respect to a system and a task model,if it can
schedule any task set that is generated according to the task model and is feasible
on the system [22]. Therefore, an optimal scheduling algorithm is an algorithm that
can schedule a task set for which a scheduling solution exists [42].

7.3 Multiprocessor Scheduling Approaches

There are two main approaches that are traditionally considered for scheduling on
multiprocessors, they are partitioned and global scheduling. Scheduling algorithms
where task migration is restricted are known as partitioned scheduling and where
task migration is not restricted are known as global scheduling. In multiprocessor
scheduling, sometimes these two approaches are combined which is called hybrid
scheduling [6, 7, 19, 25].

7.3.1 Partitioned Scheduling

In this approach, tasks are partitioned among available processors. It means, a
task is assigned to a specific processor and is always scheduled only on that pro-
cessor. Therefore, the multiprocessor system becomes a collection of independent
uni-processor systems and a uni-processor scheduling algorithm will run for each
core to schedule the tasks assigned to that processor. Unlike in global scheduling, in
partitioned approach tasks cannot migrate from one processor to another, as this is
prohibited for partitioned approach. For example, in multiprocessor scheduling with
partitioned EDF (P-EDF), a uni-processor scheduling algorithm, earliest deadline
first is used to schedule the task set on each processor independently [22].

The following advantages have been observed for partitioned scheduling algorithms
over global scheduling algorithms for scheduling on multiprocessors [22]

• A task may overrun its worst-case execution time, this situation only affects
the tasks on the same processor.

• There is no penalty in terms of migration cost as each task only runs on the
same processor.

• A priority queue is maintained for each processor, so the queue length is small
and queue access is faster in comparison to global priority queue.

• The main advantages of using this approach for multiprocessor scheduling is
that it reduces the multiprocessor scheduling to single processor scheduling,
when the assignment of all tasks to processors has been done.

52

7.3. Multiprocessor Scheduling Approaches

The following disadvantages have been observed for partitioned scheduling algo-
rithms over global scheduling

• The main disadvantage of this approach is allocation of the tasks to the pro-
cessors. Finding the optimal assignment of tasks to processors is a bin-packing
problem which is NP-Hard in the strong sense.

• Partitioned approach is not work-conserving, i.e. a processor may remain idle
while there may be some ready task to be scheduled on another processor and
missing its deadline.

The performance of the partitioned scheduling algorithms depends on the bin pack-
ing algorithms used to partition the tasks among the processors of the multiprocessor
system. Truly, the bin packing algorithms cannot ensure a task partitioning that can
achieve total utilization of more than (m + 1)/2 on a multiprocessor system where
the number of processors is m [3]. Therefore, in the worst-case scenario, slightly
more than 50% of the processing capacity of the multiprocessor system is used by
the partitioned scheduling algorithms for the task execution while the other almost
50% remain unused [42].

7.3.2 Global Scheduling

In this approach, all the ready tasks are placed in a global priority queue and
the scheduler selects the highest priority task from the queue for its execution. A
task can be dispatched to any available processor even after preemption. Unlike
partitioned scheduling, a task is not fixed onto a processor and task (job) migration
is permitted in global scheduling. For example, the global version of EDF named
global EDF (G-EDF) selects the m highest priority (earliest deadline) ready tasks
to execute on the m processors of the multiprocessor system at time t [22].

The following advantages have been observed for global scheduling algorithms over
partitioned scheduling algorithms for scheduling on multiprocessors [22]

• There are typically fewer preemptions because the scheduler needs to preempt
a task when there is no idle processor but a task needs to be scheduled.

• When a task used less time than its worst-case behavior then the time can be
used by all tasks, not a subset of tasks as in partitioned scheduling.

• This approach is more appropriate for open systems where load balancing /
task allocation is not necessary for taskset changes.

• Some global scheduling algorithms are work-conserving, i.e. there will be no
idle processor if there is a ready task needed to be scheduled.

The following disadvantages have been observed for global scheduling algorithms
over partitioned scheduling algorithms for scheduling on multiprocessors

53

7. Scheduling on Multiprocessor Systems

• Global scheduling uses a single queue for ready tasks. The queue length is
long and queue access is time consuming.

• A job can be frequently migrated from one processor to another processor,
this leads to a high migration overhead of the system.

In 2001, Andersson et al. [3] develop an utilization bounds for periodic task-sets
with implicit deadlines. According to them, the maximum utilization bound for any
global fixed job priority algorithm is (m+ 1)/2. Thus, the G-EDF and its variants
have the same utilization bound as partitioned EDF [42].

7.3.3 Hybrid Scheduling

In global scheduling, depending on the hardware architecture, a task may migrate
from one processor to another frequently which leads to a very high migration over-
head. This job migration results in excessive communication loads and cache misses
which increase the worst case execution time that would not occur in the fully par-
titioned or non-migration scheduling approaches. On the other hand, in partitioned
scheduling, the total available processing capacity is fragmented and a large amount
of processing capacity is unused and remains idle. In fully partitioned approach the
maximum utilization bound is just about 50% of the total processing capacity thus
the utilization is very low [22].

Furthermore, there are some systems that can be scheduled under fully partitioned
or fully global scheduling approach because, some tasks are not permitted to migrate
while some other are permitted to migrate [43].

The recently developed more general hybrid scheduling approach is cluster based
scheduling which can be categorized as a generalization of partitioned and global
scheduling protocols [43]. In this approach, tasks are statically assigned to clusters
and then inside a cluster tasks are scheduled globally. There are two forms of clus-
ter based scheduling; clusters can be physical or virtual. In physical cluster-based
scheduling the processors are statically assigned to each cluster and each cluster will
contain a subset of processors from the available multi-processor system. In virtual
cluster-based scheduling the processors are dynamically mapped to each cluster,
there is a one-to-many relationship between cluster and multiprocessors[43].

Thus, clustering is an approach where processors are partitioned into a smaller
number of subsystems to which tasks are allocated. Therefore, the issue of capacity
fragmentation in partitioned approaches is improved and the number of processors
in each cluster are fewer than on the total system which reduces the global queue
length and the migration overhead. The processors in the same cluster may share
the same cache which reduces the penalty in terms of increasing worst-case execution
time despite migrations.

54

7.4. Resource Sharing

7.4 Resource Sharing

In the previous section, the scheduling approaches for multiprocessors have been
discussed in detail where the tasks are independent from each other. In this section
resource access protocol will be discussed for both partitioned and global approaches
in order to allow accesses to shared resources by the tasks.

In 1988, a multiprocessor variant of the priority ceiling protocol named MPCP has
been introduced by Rajkumar et al. [46], which is applicable with the fixed priority
scheduling algorithms of partitioned approaches. The global shared resources receive
a priority ceiling values that are strictly higher than those of any other tasks in the
system. When a task tries to acquire a global resource that is currently locked by
any other task then the requested task is blocked and waits in a priority queue for
the maintenance of blocked tasks on that resource. As a result, the lower priority
local tasks can continue execution. At the time of global resource being released,
a task will be taken from the head of the queue waiting to acquire this resource,
will have the lock on the resource and resume with the ceiling priority of the re-
source. MPCP restricts nested access to the globally shared resources, i.e. local
and global critical section nesting is not allowed. A bounded blocking time and a
sufficient schedulability test is provided by MPCP, the schedulability test is based
on utilization bound provided by Liu and Layland [38] [22].

Another multiprocessor variant of priority ceiling protocol named MDPCP has been
described by Chen et al. [20]. A sufficient schedulability analysis for Partitioned
EDF with MDPCP resource access protocol is provided by them for a multiprocessor
system [20].

A multiprocessor resource access protocol MSRP has been introduced by Gai et al.,
which is based on the stack resource protocol for uni-processor resource access proto-
col. MSRP can be used with either fixed priority scheduling algorithms or EDF for
partitioned systems. The significant difference between MPCP and MSRP is that
when a resource is blocked on a global resource in MSRP, it busy-waits and becomes
non-preemptive which is known as spin-lock. A FIFO queue is used for each global
resource in order to store the blocked task on this resource so that the correct task
resumes when the resource is released. In MSRP, the spin-lock wastes processing
time just by making the processor idle which can be used by other tasks [22].

Devi et al. [26] proposed two simple methods for short non-nested access to shared
data structures by considering the problems of accessing shared resources under
global EDF, a scheduling approach for global multiprocessor scheduling. The meth-
ods are spin-based queue lock and lock free synchronization [22].

Block et al. [14] introduced a multiprocessor resource access protocol which is known
as flexible multiprocessor locking protocol abbreviated as FMLP. FMLP can be used
with both partitioned and global scheduling algorithms. A variant of both parti-
tioned EDF and global EDF is necessary to use FMLP which is discussed in detail
in section 8.3.2 on page 69.

55

8 | Multiprocessor Scheduling Poli-
cies

In chapter-7, the general concepts for scheduling on multiprocessor systems have
been discussed. In this section, a few scheduling algorithms both from partitioned
and global approach will be discussed in detail.

The existing simulation software developed by Munk [41] supports multi-core schedul-
ing algorithms along with single-core scheduling algorithms. He explained how to
add a new scheduler to the SAVORS system [41, sec. 8.11]. New scheduling poli-
cies and resource access protocols can be added to the existing installation of the
software as an additional plug-in. All newly implemented multi-core scheduling al-
gorithms were added to the de.unistuttgart.iste.ps.savors.scheduler.mul-
ticore plug-in. A multi-core scheduling algorithm will be available to the software
after adding it to the plug-in extension.

This simulation software supports only homogeneous multiprocessor systems, de-
fined in Chapter-2 [41]. The simulation software does not support task parallelism,
meaning a task cannot run on more than one processors at a time [41]. Therefore,
the newly implemented multi-core algorithms only work for homogeneous multipro-
cessor systems without task parallelism.

8.1 Partitioned Earliest Deadline First

In the Partitioned EDF multiprocessor scheduling algorithm the task-set needs to
be divided into smaller disjoint sets of tasks. There are several heuristic methods for
this partitioning process. Once the task-set is partitioned, on each processor each
task set will be scheduled by a uni-processor scheduling algorithm Earliest Deadline
First.

Therefore, the multiprocessor scheduling problem under partitioned approach can be
divided into solving two different parts: partition the task set intom subsets of tasks,
so that each subset is schedulable where m is number of processors, and run a uni-
processor scheduler for each core. In this case the uni-processor scheduling algorithm
is EDF. Several polynomial time heuristics are present to partition the task set on

57

8. Multiprocessor Scheduling Policies

multiprocessor systems based on bin-packing approaches which are known to be
NP-hard in the strong sense [21, 27]. Three of them are going to be described here
in brief, details with the algorithms can be found in [55, section 2.1.2]

Heuristic Methods for Task Partitioning

Next Fit: this method maintains an ordering among the processors and assigns
tasks to each processor. Since many tasks can be assigned on that processor in
such a way, the partition is schedulable using a desirable single core scheduling
algorithm. The detailed procedure can be found in [55, figure 2.3]

First Fit: the next fit method is achieved by considering that a task will be as-
signed to the first available processor to which it fits and is known as first fit,
described in [55, figure 2.4].

Best Fit: in this method, each task is assigned to a processor that the assigned
task can fit on and the remaining unused processing capacity is minimized.
Srinivasan [55] described this method in section 2.4 with EDF as uni-processor
scheduling algorithm.

The next fit partitioning method has a time complexity of O(n) times the uni-
processor schedulability analysis, whereas the first fit and best fit partitioning meth-
ods have the time complexity of O(mn) times the uni-processor schedulability anal-
ysis time.

In P-EDF, when the task set partitioning has been done, a uni-processor dynamic
priority scheduling algorithm EDF will be used to schedule the task sets assigned
to that core.

8.2 Proportionate Fairness

Baruah et al. introduced the Proportionate Fair (Pfair) scheduling algorithm in their
paper in 1996[12]. The algorithms in this class of Pfair scheduling are applicable to
schedule periodic task sets with implicit deadlines. Pfair scheduling algorithms are
based on the concept of fluid scheduling, where each task executes or make progress
proportionate to its utilization or task weight. A task weight is the ratio of the
execution time and the period and termed Wi i.e. Wi = Ci/Pi.

Liu, first discussed the periodic scheduling problems in 1969[37]. A task set of n
tasks and m resources, where each task has an execution time Ci and a period Pi by
which the task is periodic. A scheduler that schedules the task set on m processors,
allocates exactly Ci time units to each task in every Pi time units [37].

A decision problem that a task set can be scheduled on the given number of proces-
sors can be solved efficiently. A task set cannot be scheduled if the total weight of
all tasks is more than the available number of processors i.e. ∑n−1

i=0 Wi > m. A task
set will be schedulable if ∑n−1

i=0 Wi ≤ m and resource sharing is allowed [10].

58

8.2. Proportionate Fairness

Baruah et al. mentioned that they have solved the periodic scheduling problems by
appointing an even stonger fairness constraint in [12]. They mention the approach
as proportionate progress where each task is scheduled on resources in proportion to
its weight. At any time t, a task Ti should have executed either bWi · tc or dWi · te.
They named this approach proportionate fairness or P-fairness. The P-fairness is
a strict and stronger condition than periodic scheduling because any proportionate
scheduling is periodic where the inverse is not always true [12]. They proved that
any periodic task set has a P-fair schedule if ∑n−1

i=0 Wi ≤ m holds. P-Fair scheduling
is optimal for periodic task sets with implicit deadlines [12].

P-Fairness

• In P-fair scheduling algorithms, scheduling decisions need to be taken at every
point of time t, starting from 0. The time interval between t and t+1 (including
t but excluding t+ 1) is called slot t, t ∈ N .

• The symbol φ is referred to as fair scheduling problems with m processors and
n tasks.

• Every task Ti has an integer period Pi, an integer execution time Ci and a
rational weight Wi, where Ti, Pi > 1 and 0 < Wi < 1.

• Although the loss of generality Baruah et al. [12] limits their attention to the
case

n−1∑
i=0

Wi = m (8.1)

In order to maintain this constraint they suggest to use a dummy task for the
unused processor time with larger execution time and period [12].

Some Definitions:

• A schedule S for an instant φ is a function from τ × N to {0, 1} where∑
Ti∈τ S(Ti, t) ≤ m, t ∈ N . Informally S(Ti, t) = 1 if and only if the task

Ti is scheduled at slot t by the scheduler S, otherwise S(Ti, t) = 0 [12].

• Lag is the most important term in P-fair scheduling which calculates the dif-
ference between how much resource a task should receive in the interval [0, t)
and how much it actually received. The lag of a task Ti at time t with respect
to a scheduler S is denoted Lag(S, Ti, t) and is defined as

lag(S, Ti, t) = Wi · t−
∑
i∈[0,t)

S(Ti, i) (8.2)

• A schedule S is said to be P-fair if and only if at any time t, the absolute value
of its lag constraint is strictly less than 1 i.e.

∀ Ti, t : Ti ∈ τ, t ∈ N : −1 < lag(S, Ti, t) < 1 (8.3)

Existence of P-fair Scheduling: The correctness proof of P-fair scheduling
algorithm depends on the existence of P-fair schedule of the resource (processor)

59

8. Multiprocessor Scheduling Policies

sharing problem. Regarding resource sharing scheduling instance φ, the earliest
and latest possible slot denoted earliest(Ti, j) and latest(Ti, j) respectively, during
which the jth time, j ∈ N , of task Ti may be scheduled. The closed expression of
earliest(Ti, j) and latest(Ti, j) are earliest(Ti, j) = min t : t ∈ N : Wi · (t + 1) −
(j + 1) > −1 and latest(Ti, j) = max t : t ∈ N : Wi · t− j < 1 [12].

earliest(Ti, j) = bj/Wic (8.4)

latest(Ti, j) = d(j + 1)/Wie − 1 (8.5)

Observe that, earliest(Ti, j) < latest(Ti, j) where Ti ∈ τ, j ∈ N . Let the least
common multiple of all tasks in the task set be L i.e L = lcmTi∈τ Pi. Baruah et al.
[12, Lemma 3.1] proved a lemma in their paper that a scheduling instance φ has a
P-fair schedule if and only if there is a schedule S i.e.

∀ Ti, t : Ti ∈ τ, t ∈ (0, L] : −1 < lag(S, Ti, t) < 1 (8.6)

8.2.1 Algorithm PF

In this section, the original P-fair scheduling algorithm PF will be discussed. As
a P-fair scheduling algorithm, PF was the first optimal multiprocessor scheduling
algorithm [12]. Algorithm PF assigns a dynamic priority for each task at every
integral point of time t ≥ 0 and then schedules m highest priority tasks to m
available processors in slot t with an arbitrary tie breaking mechanism.

PF uses the earliest-pseudo-deadline-first mechanism to prioritize the sub-tasks and
several tie breaking rules to break the tie when several sub-tasks have the same
pseudo-deadline.

Some definitions:

• The characteristic string is an important parameter for P-fair scheduling. The
characteristic string of a task Ti is an infinite string over the sequence of
{−, 0,+} which is denoted α(Ti) [12]. At every integral point of time t the
characteristic string of a task can be calculated by the following equation

αt(Ti) = sin(Wi · (t+ 1)− bWi · tc − 1), t ∈ N. (8.7)

At time t, the characteristic sub-string of a task Ti is a finite string

αt(Ti, t) = αt+1(Ti)αt+2(Ti) · · ·αt′ (Ti) (8.8)

60

8.2. Proportionate Fairness

where t′ = min i : i > t : αi(Ti) = 0. [12]. Informally, the characteristic string
of a task Ti at time t is a finite sequence of string over −, 0,+ starting from
the characteristic string of time t to until it finds a 0 in its characteristic string
[12].

• Regarding P-fair scheduling a task will be in any of three different states ahead,
behind or punctual based on its executed time. With respect to a schedule S,
at time t, a task Ti is said to be ahead if and only if lag(S, Ti, t) < 0, behind
if and only if lag(S, Ti, t) > 0 and punctual if and only if the task is neither
ahead nor behind [12].

• In P-fair scheduling all tasks will be placed in three different categories ex-
amining their executed time and the characteristic string at time t. The
three different categories are urgent, tnegru and contending. A task Ti will
be placed in urgent category if and only if it is behind and the characteristic
string αt(Ti) 6= −, the task Ti will be placed in tnegru category if and only if it
is ahead and αt(Ti) 6= + and the task Ti will be placed in contending category
if and only if it is neither urgent nor tnegru [12].

With the above terms and definitions the original P-fair scheduling algorithm (PF)
can be presented based on [12], derived from which it was implemented as a multi-
core scheduler as part of this thesis work. This algorithm is referred to as Algorithm
PF in [12].

At any time t, the Algorithm PF has to make a decision which m sub-tasks from
the task set of n tasks need to be scheduled. According to Baruah et al. [12, Lemma
4.4], all urgent tasks must be scheduled in the current time slot, i.e. slot t in order
to maintain P-fairness for the scheduler. According to Baruah et al. [12, Lemma
4.3], in order to preserve the P-fairness, no tnegru tasks will be scheduled in the
current time slot t. As PF generates P-fair scheduling, at time t, it must schedule
all the urgent tasks and no tnegru task.

There are n tasks in the task set and m resources to schedule those tasks. The
first step is to do the task categorization, i.e. n tasks will be divided into urgent,
tnegru and contending tasks. The assumption is that there are n0, n1 and n2 urgent,
tnegru and contending tasks respectively. As mentioned before, the scheduler needs
to schedule all urgent tasks at time t. If the number of urgent tasks are more than
the available resources, i.e. n0 > m, it would be impossible for the algorithm PF
to schedule all the urgent tasks and thus it will violate the lag constraint. The
assumption is that ∑Ti∈τWi = m, see equation-8.1, therefore to get a schedule
instance φ correctly the scheduler should allocate exactly m resources in every time
slot. But if n1 > n−m then the scheduler is bound to schedule some tnegru task.
Baruah et al. [12] showed that the two above discussed problems will never happen
in PF scheduler, thus n1 ≤ n−m and n0 ≤ m.

At each time t, the algorithm PF will schedule all the urgent tasks and if there are
free resources after executing all urgent tasks then the scheduler executes m − n0

61

8. Multiprocessor Scheduling Policies

tasks for the contending tasks according to the total order by which contenting tasks
are prioritized. The algorithm PF is summarized below in [12].

Algorithm PF
1. All urgent tasks must be scheduled.
2. No tnegru task is scheduled.
3. The remaining resources must be allocated to the highest priority con-
tending tasks according to total order.

Table 8.1: Algorithm PF

the PF algorithm uses characteristic strings to order the contending tasks moving
forward from time t. At every time t, the total order � to prioritize tasks in the
contending task set can be defined as: If Ti and Tj are two different contending tasks
then Ti � Tj if and only if α(Ti, t) ≥ α(Tj, t). The lexicographical comparison is done
between the characteristic sub-strings of α(Ti, t) and α(Tj, t) where the priorities of
the string characters are defined as − < 0 < + [12].

8.2.1.1 The Comparison Algorithm

The PF algorithm needs a comparison algorithm to compare two tasks to determine
the total order. Baruah et al. [12] have presented two different implementations of
the characteristic sub-string comparison algorithm. The first, they called Naive-
Compare and proved its correctness. The second, they called Compare and proved
its equivalence to the first algorithm.

8.2.1.1.1 A Naive Implementation This section discusses the naive imple-
mentation of the characteristic sub-string comparison algorithm which will be used
by the PF algorithm to compare two contending tasks in order to determine the
total order. Let’s assume two contending tasks are Ti and Tj at any time t. The
goal is to determine whether [12]:

(i) α(Ti, t) < α(Tj, t)

(ii) α(Ti, t) > α(Tj, t)

(iii) α(Ti, t) = α(Tj, t)

8.2.1.1.2 An Efficient Implementation In this section an efficient algorithm
will be discussed to compare the characteristic sub-string named Compare that has
been presented in [12, sec 6.2] by Baruah et al.. The comparison algorithm Compare
is a polynomial time algorithm with the same input output behavior as NaiveCom-
pare.

62

8.2. Proportionate Fairness

Algorithm 1 A naive implementation of the characteristic sub-string comparison
algorithm

1: function NaiveCompare(a0, b0, c0, a1, b1, c1)
2: int a0, b0, c0, a1, b1, c1;
3: do
4: c0, c1 := c0 − a0, c1 − a1
5: do
6: c0, c1 := c0 + b0, c1 + b1
7: while (c0 < 0 ∧ c1 < 0)
8: while (c0 > 0 ∧ c1 > 0)
9: if c0 = 0 ∧ c1 = 0 then return TIE

10: end if
11: if c0 ≥ 0 ∧ c1 ≤ 0 then return 0
12: else if c0 ≤ 0 ∧ c1 ≥ 0 then return 1
13: end if
14: end function

Algorithm 2 An efficient implementation of the characteristic sub-string compari-
son algorithm

1: function Compare(a0, b0, c0, a1, b1, c1)
2: int a0, b0, c0, a1, b1, c1;
3: if min(a0, a1) > min(b0, b1) then
4: return Compare(b1, a1,−c1, b0, a0,−c0)
5: end if
6: if dc0/a0e > dc1/a1e then return 0
7: else if dc0/a0e < dc1/a1e then return 1
8: end if
9: c0, c1 := c0 − a0 · dc0/a0e , c1 − a1 · dc1/a1e ;

10: if c0 = 0 ∧ c1 = 0 then return TIE
11: else if c0 6= 0 ∧ c1 = 0 then return 0
12: else if c0 = 0 ∧ c1 6= 0 then return 1
13: end if
14: if bb0/a0c > bb1/a1c then return 0
15: else if bb0/a0c < bb1/a1c then return 1
16: end if
17: return Compare(a0 − (b0 mod a0), b0 mod a0, c0 + (b0 mod a0), a1 − (b1

mod a1), b1 mod a1, c1 + (b1 mod a1))
18: end function

63

8. Multiprocessor Scheduling Policies

8.2.2 Algorithm PD

Baruah et al. [11] defined an algorithm to solve the periodic scheduling problem
that has a running time O(min {m log n, n}). They named the algorithm Algorithm
PD, the letters “PD” refer to the word pseudo-deadline which is very close to the
term quasi-deadline used for Algorithm PF. They proved in [11] that Algorithm PD
is correct and also generates a P-fair schedule for each feasible periodic scheduling
instance φ.

Algorithm PD is developed based on the correctness of Algorithm PF, by looking
up the constant time tie-breaking rules which is sufficient to preserve the P-fairness
constraint. The main aim is to limit the tie-breaking rules to check only for a
fixed number of future pseudo-deadlines. Algorithm PF used a finer “resolution”
of tie breaking rules. Thus, these two algorithms may produce different scheduling
decisions but they are closely related [11].

Like Algorithm PF, Algorithm PD also used the task categorization into three dif-
ferent categories namely urgent, tnegru and contending at time t but it orders the
contending tasks in a different way which will be discussed in the following sections
starting with definitions.

Some definitions:

• The task sets are divided into two different groups, heavy and light. A task Ti,
that has a weight Wi is heavy if the weight of the task is more than or equal
to 1/2 (i.e Wi > 1/2) and the task is light if the weight of the task is less than
1/2 (i.e Wi < 1/2). A task of weight 1/2 cannot go to both categories at the
same time, it can go either to the heavy of light task group [11].

• Baruah et al. [11] defined another type of characteristic string β(Ti) which
is closely related to the characteristic string α(Ti) defined in algorithm PF.
For a light task β(Ti) = α(Ti) and for a heavy task β(Ti) = α(T ′i) where T ′i
is assumed to be a task of weight W ′

i = 1 −Wi. They introduced β(Ti) to
generate a schedule for Ti from a schedule for T ′i . They did it reversely by
allocating a resource in exactly those slots where T ′i is not scheduled.

• A task Ti will have a pseudo-deadline at slot t if β(Ti) = 0 or β(Ti) = +. A
pseudo-deadline corresponds to the quasi-deadline. A pseudo-deadline is the
last slot by which a light task Ti must get the resource a given number of
times and a heavy task Ti must deny the resource a given number of times
to preserve the P-fairness. If a task has a pseudo-deadline at any time slot
i where i > t and there is no pseudo-deadline between i and t, it is denoted
δ(Ti, t) [11].

• An integer value k is defined for each task Ti which is determined from the
execution time of the task Ci and period of the task Pi. For a light task, the
integer value k is defined as k = bPi/Cic and for a heavy task the integer value
k is defined as k = bPi/(Pi − Ci)c.

64

8.2. Proportionate Fairness

Baruah et al. [11] defined a total order w on tuples {N, {0,+}, N} by which the
contending tasks will be prioritized and sorted according to the priority. The total
order is defined as:

(d1, s1, k1) w (d2, s2, k2)⇐⇒ (d1 < d2)∨
((d1 = d2) ∧ (s1 = +) ∨ (s2 = 0))∨
((d1 = d2) ∧ (s1 = s2) ∨ (k1 < k2))

(8.9)

The total order w defined in equation 8.9 produces an ordering on task Ti and Tj
at any time t [11]

Ti D Tj ⇐⇒ (δ(Ti, t), βδ(Ti,t)(Ti), Ti.k) w (δ(Tj, t), βδ(Tj ,t)(Tj), Tj.k) (8.10)

The equation 8.10 will order the task set according to the total order D. There is
a tie between task Ti and Tj if and only if Ti D Tj and Tj D Ti hold. Such tie can
be broken arbitrarily [11]. At every slot t, Algorithm PD will assign m resources
to the m highest priority tasks. The tasks will be categorized in seven categories,
where lower categories have the higher priorities. The tasks will be categorized by
the following rules, listed in the table [11]

Task categorization according to the algorithm PD
1. All urgent tasks (all tasks must be scheduled).
2. Heavy contending tasks having characteristic string + at time t + 1 i.e
αt+1(Ti) = +. In this category, a task Ti receives higher priority than Tj if
and only if Tj D Ti.
3. Light contending tasks having characteristic string + at time t + 1 i.e
αt+1(Ti). In this category, a task Ti has higher priority than Tj if and only
if Ti D Tj.
4. Heavy contending tasks having characteristic string 0 at time t + 1 i.e
αt+1(Ti) = 0.
5. Light contending tasks having characteristic string 0 at time t + 1 i.e
αt+1(Ti) = 0.
6. Rest of the heavy contending tasks will be placed in this category. In
this category, a task Ti receives higher priority than Tj if and only if TjDTi.
7. Rest of the light contending tasks will be placed in this category. In this
category, a task Ti has higher priority than Tj if and only if Ti D Tj.

Table 8.2: Task categorization used by the algorithm PD

65

8. Multiprocessor Scheduling Policies

8.3 Multiprocessor Resource Access Protocol

The recent movement from uni-processor systems to multi-processor systems stim-
ulates the research of analysis techniques to support real-time applications on mul-
tiprocessor systems. In order to support real-time applications on multiprocessor
systems, the multiprocessor scheduling algorithms and resource access protocols are
necessary to maintain the timing constraint of all tasks scheduled on the system
[15]. The scheduler should restrict in some way to guarantee such constraints. In
lock based resource sharing, processor capacity or utilization is lost when a task is
blocked to access a resource that is used by another task. To minimize such loss of
processing time an efficient locking protocol is necessary.

In order to access a resource on uni-processor systems, some efficient resource access
protocols exist that ensure that each job of a task blocks at most once [51, 6, 45].
Resource access on multiprocessor systems is much more complex than on uni-
processor systems. In 2007, Block et al. [14] presented a resource access protocol
for multiprocessor systems named Flexible Multiprocessor Locking Protocol abbrevi-
ated as FMLP. FMLP can be used for both the partitioned and global scheduling
approaches.

In this section the Flexible Multiprocessor Locking Protocol will be discussed as
implemented with Global EDF scheduler. In order to implement the resource access
protocol with Global-EDF, it is not sufficient to implement FMLP with the original
version of G-EDF. In the original version of the G-EDF scheduling algorithm jobs
can be preempted at any time. To implement FMLP it is necessary to have the
functionality that a job can execute non-preemptively for a fixed duration of time. In
this section a variant of G-EDF scheduling algorithm will be presented named Global
Suspendable Non-Preemptive EDF abbreviated as GSN-EDF which is necessary for
the FMLP implementation.

8.3.1 The GSN-EDF Algorithm

In this section the variant of G-EDF will be presented with necessary modifications.
At first, we need to discuss some terms and definitions.

• A job T ji (jth job of ith task) is eligible for its execution at its release time
r(T ji) and should finish its execution before its absolute deadline d(T ji). A job
is pending at time t if and only if t ≥ r(T ji) and the job has not finished its
execution. A pending job can be in any of three different states: suspended,
preemptable or non-preemptable. A suspended job, also known as blocked,
cannot be scheduled on any processor. A preemptable job can be scheduled
on any processor and can be preempted by any higher priority job at any
time. A non-preemptive job will continue its execution until it finishes its non-
preemptive section. A job can only become non-preemptive or suspended when
it is being scheduled on some processor. A preemptive or non-preemptive job

66

8.3. Multiprocessor Resource Access Protocol

is named runnable. The state transition of a job from suspended to preemptive
is known as resumed [14].

• A task should have a unique priority which is required by the FMLP. In G-
EDF the task sets are prioritized according to their absolute deadline, if two
tasks have the same absolute deadline then the tie is broken arbitrarily. Block
et al. [14] used Y (T ji) = (d(T ji), i) where i denotes the task number and Y (T ji)
is the priority of task T ji . They defined the priority between two tasks T ji and
T dc as Y (T ji) > Y (T dc) if and only if d(T ji) < d(T dc) or d(T ji) = d(T dc) ∧ i < c.

The GSN-EDF algorithm takes care of the situation that a job can only be blocked
by any other non-preemptive jobs when T ji is either released or resumed. The above
mentioned blocking durations are reasonably constrained. A task T ji is said to be
non-preemptively blocked at time t if and only if T ji is one of the m highest priority
runnable jobs but instead of T ji a lowest priority non-preemptive job is scheduled
[14].

In order to allow jobs to have a non-preemptive section, the naive modification to
the GSN-EDF algorithm is necessary. At any time t, the non-preemptive jobs need
to be scheduled first. If there are q non-preemptive pending jobs at time t, then
these jobs are scheduled at t additionally, if there are k preemptive pending jobs
then the min(k,m− q) highest priority preemptive jobs are scheduled at t.

At any time t, the scheduler selects m highest priority tasks and schedules them
on m processors. However, in GSN-EDF [14] used another term that a runnable
job is either linked to a processor or unlinked. According to G-EDF when a job is
scheduled on a processor, in GSN-EDF that job T ji is linked to a processor at time
t. Therefore, at any time t, m highest priority tasks are linked to m processors.
The most important event to notice here, if a task T ji is linked to a processor, but
not scheduled and instead another task is scheduled then task T ji is said to be non-
preemptively blocked. Consequently, if a task T ba is scheduled on a processor but is
unlinked and continues its execution though it is not one of m highest priority tasks
at time t; the reason is the task is non-preemptable [14].

Block et al. [14, figure 2] have defined the pseudo-code for the GSN-EDF algorithm
which has been taken into consideration for the implementation of the GSN-EDF in
the existing system. The algorithm is straightforward and is given below for better
understanding.

67

8. Multiprocessor Scheduling Policies

Algorithm 3 Pseudo-code that defines the GSN-EDF algorithm [14]
T ji is released or resumed at time t
1: T ba := lowest-priority linked job (if exists);
2: if fewer than m jobs are linked then
3: k := index of any unlinked processor;
4: T ji is linked to and scheduled on processor k
5: else if Y (T ji) > Y (T ba) then
6: k := processor T ba is linked to;
7: T ba becomes unlinked;
8: T ji becomes linked to processor k;
9: if T ba is scheduled and preemptable then

10: T ba stops being scheduled;
11: T ji is scheduled on processor k;
12: end if
13: end if
T ji changes from non-preemptable to preemptable at time t
14: k := processor T ji is scheduled on;
15: T ba := job linked to processor k;
16: if T ba exists ∧ T ba 6= T ji then
17: T ji stops being scheduled
18: T ba is scheduled on processor k;
19: end if
T ji becomes suspended or completes at time t
20: k := processor T ji is scheduled on;
21: T ji stops being scheduled;
22: T ba := job linked to processor k;
23: if T ba exists ∧ T ba 6= T ji then
24: T ba is scheduled on processor k;
25: else
26: T yx := highest-priority runnable unlinked job;
27: T ji becomes unlinked;
28: if T yx exists ∧T yx is not scheduled then
29: T yx is linked to and scheduled on processor k;
30: else if T yx exists then
31: q := processor T yx is scheduled on;
32: T er := job linked to processor q;
33: if T er exists then
34: T er ’s link changes from processor q to k;
35: T er is scheduled on processor k;
36: end if
37: T yx becomes linked to processor q,
38: end if
39: end if

68

8.3. Multiprocessor Resource Access Protocol

8.3.2 Flexible Multiprocessor Locking Protocol

In this section the flexible multiprocessor locking protocol will be discussed. Block
et al. [14] used the term “flexible” because it can be used under both partitioned and
global scheduling approaches. In this protocol, resources are grouped as short or
long which is specified by the user based on the resource worst case access time.

One important observation while implementing multiprocessor locking protocol is
how to respond to a resource request which cannot be satisfied immediately. If
a task is suspended in such a case, this will impact the blocking time negatively.
Block et al. [14] suggested to improve the blocking time by introducing busy-wait
for short resources where jobs busy-wait non-preemptively. In this case, at any time
t the number of jobs that can be blocked on the same resources are (m− 1) but the
important situation to notice here, the processor may be idle for some short time
duration which leads to the waste of valuable processing speed [14].

In order to achieve a high degree of parallelism, they suggest a balance between
busy-waiting and suspensions in three different ways [14]:

• A resource can be obtained only for a long or short duration and busy-waiting
can only be employed with short resources. As mentioned earlier a resource
can be treated as being in either long or short group which is specified by the
user. For resource nesting, a long resource cannot be nested inside a short
resource which is a constraint imposed by Block et al. [14].

• The time duration a job spends for busy-waiting is minimized by executing
the short resources non-preemptively.

• In order to deal with short, non-nestable resources efficiently, resources are
grouped in an effective way which helps to minimize the overhead of deadlock
avoidance.

8.3.2.1 Resource Request Rules

In FMLP, the fundamental unit of resource locking is resource groups. A resource
group is formed by either short or long resources together. The minimum number of
resources that a resource group may contain is one. A resource group is protected
by a lock which is termed as group lock. A resource group of short resources is
protected by a non-preemptive queue lock and semaphore is used for long resource
groups. Two resources r1, r2 belong to the same resource group, if there is a job that
has nested requests for a resource, request for r1 is nested inside the request for r2
and both r1 and r2 are either short or long [14].

The non-nestable resources are grouped individually in FMLP. Thus, FMLP im-
proves parallelism by handling the common case of non-nested resource access effi-
ciently. In regard to the type of resource request, some important terms outermost
request, inner request and non-nestable resource are defined. A request for a non-
nestable long resource may contain requests for short resources whereas requests

69

8. Multiprocessor Scheduling Policies

for short resources contained in long requests are considered to be short outermost
requests [14]. Block et al. [14] refer to the long (short) outermost and inner requests
as l-outermost(s-outermost) and l-inner(s-inner) respectively, in order to avoid con-
fusion.

Short Resource Request: When a job T ji requests a short resource r1, which is
an s-outermost resource request, the job must acquire the group lock of the resource
group that contains r1. In order to acquire such group lock the job has to become
non-preemptive until it releases the group lock. In a queue lock all other jobs
blocked on the same resource group will busy wait in a FIFO order. Any inner
resource request will be granted immediately as the inner resources are also in the
same resource group by definition. The resource group lock will be released when
the s-outermost resource use has been completed [14].

Long Resource Request: When a job T ji request a long resource r1, which is a l-
outermost resource request, the job must acquire the group lock of the resource group
that contains r1. In a semaphore lock all other jobs are blocked on the same resource
group, pushed into a FIFO queue and suspended. The task T ji that holds the group
lock of the resource group that contains r1 will inherit the priority of the highest
task that blocked on the same resource group and task T ji is scheduled preemptively.
Any inner resource request for a long resource will be granted immediately as the
inner long resources are also in the same resource group by definition. If the task T ji
has an inner request for a short resource inside the long resource request then the
short resource may be an s-outermost request or an s-inner request, in such case the
task has to follow the short resource request protocol described earlier. The resource
group lock will be released when the s-outermost resource use has been completed
and the priority of the task is restored to its original priority. At this point the first
blocked job from the FIFO queue will be taken and resumed [14].

8.3.2.2 Blocking under GSN-EDF with FMLP

A job T ji may experience delays due to a shared resource access which is currently
not available, locked by any other job. Such delays come from busy-waiting and
suspensions or blocking and are not from the preemption happened for a higher
priority job being executed instead of that. In GSN.EDF, at any time t, m highest
priority jobs are linked to m processors [14]. In normal behavior, a job should be
scheduled on the processor to which it is linked. Therefore, the job T ji is said to be
blocked at time t, if the job is linked to a processor but not scheduled which means
the job is either blocked or busy waits. The important point should be noted here,
under GSN-EDF a job may be blocked by both lower or higher priority tasks in
contrast to uni processor where only lower priority tasks experience blocking [14].
There are three different types of blocking under GSN-EDF which come from three
different sources.

• “Busy-wait blocking occurs when a job must busy-wait in order to acquire a
short resource” [14]. The maximum total amount of time that a job of a task

70

8.3. Multiprocessor Resource Access Protocol

Ti can busy-wait is denoted BW (Ti) by [14].

• “Non-preemptive blocking occurs when a preemptable pending job T ji is one
of the m highest-priority pending jobs, but is not scheduled because a lower-
priority non-preemptable job is scheduled instead (i.e. T ji is linked but not
scheduled)”. The maximum total amount of non-preemptive blocking time
that a job of a task Ti can face is denoted NPB(Ti) [14].

• “Direct blocking occurs when a preemptable pending job T ji is one of the m
highest-priority jobs and it issues a request for an outermost long resource r1
from Group g, but is suspended because some other job holds a resource from
Group g.” The maximum total amount of time for which a job of a task Ti
can be directly blocked is denoted BB(Ti) [14].

Therefore, the total blocking time that any job of a task Ti suffers from, is denoted
B(Ti), which is the sum of the three different blocking times described above, defined
as [14]

B(Ti) = BW (Ti) +NPB(Ti) +DB(Ti) (8.11)

Block et al. [14, Theorem 3] presented and proved a theorem that FMLP is deadlock-
free.

71

9 | Implementation

In the previous chapters the theoretical background of this thesis’ goal, what should
be implemented and the necessary modifications of the system model have been
discussed in detail. This chapter focuses on the implementation of the new features
that have been integrated into the existing system.

9.1 Schedulability Analysis

The necessary theory for the schedulability analysis of different scheduling algo-
rithms has been studied in detail and discussed in chapter 5. A schedulability
analysis runs offline, i.e before starting the simulation, the schedulability analysis
module checks the system model and decides whether the task set can be scheduled
on the specified processor by the desired scheduling algorithm using the mentioned
resources.

Munk [41, section-6.3.4] presented the UML diagram for the scheduler interface
IScheduler that has to be implemented by each combination of scheduling algo-
rithms and resource access protocols. In this scheduler interface, a function name
checkSystemModel() is intended to check whether the system model is valid or not.
In order to maintain the software design, the schedulability analysis function calls
are placed inside this function. After the system model validation, the schedulability
analysis is done and delivers the result to the user along with different types of no-
tifications INFO, WARNING, ERROR or FATAL according to the enumeration Severity.
In case of a FATAL error the simulation cannot be started [41].

All the new classes or the new functions in the existing classes for schedulability
analysis are placed inside the package de.unistuttgart.iste.ps.savors.sche-
duler.systemModelCheckProvider. The system model contains Tasks model which
has been updated by adding the attribute executionTime, which is an optional field.
It can be provided by the user in the system model but does not have to. In case
it is not provided, the function updateTasksByExecutionTime(SystemModel sys-
temModel) has been implemented to update this field for all tasks which is necessary
for schedulability analysis. Thus, it is important to check that the values of this
field are valid for all tasks.

73

9. Implementation

Listing 9.1: Update all tasks in the task model by setting up the executionTime
attribute

1 // go through all tasks and set the execution time
2 for (Task task : systemModel . getTask ()) {
3 int executionTime = 0;
4 // go through all commands , take only Execution command and

sum all Execution commands of current task
5 for (Command command : task. getCommand ()) {
6 // check if the command is execution type then we
7 if (command instanceof ExecutionImpl) {
8 // add this execution value to the executionTime

variable
9 executionTime += ((ExecutionImpl) command).

getDuration ();
10 }
11 }
12 // set the task execution time
13 task. setExecutionTime (executionTime);
14 }

9.1.1 Utilization Based Analysis

There are two functions written for utilization based schedulability analysis, uti-
lizationBasedCheck() and utilizationBasedCheckDeadlineLessThanPeriod(),
for simplicity the parameters of the functions have not been given. As the function
names show the difference between these two functions, they will be clarified further
when used.

In order to avoid exceptions in the schedulability analysis functions where the period
or deadline of a task is zero, as provided by the system model, the schedulability
analysis will not be done and informs the user accordingly.

Listing 9.2: Checking the period and deadline of every task is not zero, if zero then
schedulability analysis will not be done

1 // check necessary condition so that the schedulability test do
not produce errors , like periods , deadlines are not zero

2 if (task. getPeriod () <= 0 || task. getDeadline () <= 0) {
3 // produce message that utilization based test is not

possible and return
4 reporter . addFinding (Severity .INFO , Messages .

PeriodOrDeadlineisZero);
5 return false;
6 }

In general, given the assumption for RMS that the deadline of any task is equal to
its period, the task set is synchronous. If the task set follows the assumption, then
the schedulability analysis can be done by using the function utilizationBased-
Check() from the class FixedPriorityPreemptiveSystemModelCheckProvider, if
utilization based test fails for RMS then response time analysis has to be done. If the

74

9.1. Schedulability Analysis

task set that is going to be scheduled using RMS, does not follow the assumption,
e.g. some task deadlines are not equal to its period or task set is asynchronous then,
the schedulability analysis cannot be done using utilization based schedulability
analysis, so response time analysis is necessary.

In DMS, the deadline of a task may be equal to or less than its period, the utilization
based schedulability for DMS is done by the function utilizationBasedCheckDead-
lineLessThanPeriod() from the same class. If utilization based Schedulability fails
for DMS then response time analysis is necessary.

For utilization based schedulability analysis for the dynamic priority scheduling
algorithm EDF, the function utilizationBasedCheck() is called from the class
DynamicPrioritySystemModelCheckProvider. The schedulability analysis of EDF
can be done using this function when the deadlines of all tasks are implicit. If there
is a task having a deadline less than its period or the utilization based schedulability
analysis for EDF has failed, then demand bound analysis has to be done to check
the schedulability for EDF.

In schedulability analysis a necessary condition is defined that utilization cannot
be more than 1. If this necessary condition fails, utilization is more than 1, then
a FATAL error is triggered and simulation cannot be started. In all other cases, if
the utilization based test is successful then no message will be triggered. If any test
fails then a message will be triggered to inform the user that the test has failed and
provide information about the next step which is going to be done.

Listing 9.3: Checking the necessary condition for schedulability
1 if (utilization > 1.0)
2 {
3 reporter . addFinding (Severity .FATAL , Messages .

UtilizationMoreThanOne);
4 return false;
5 }

9.1.2 Response Time Analysis

In order to perform response time analysis, the function responseTimeAnalysis()
is provided in three different classes to serve three different purposes.

The exact schedulability analysis has been done by the responseTimeAnalysis()
function, which is written in the FixedPriorityPreemptiveSystemModelCheck-
Provider. If the utilization based schedulability analysis fails then the response
time analysis function from this class will be called which does not consider any
synchronization between tasks, i.e the blocking time for shared resource use will not
be considered.

75

9. Implementation

Listing 9.4: Exact schedulability analysis without task synchronization for shared
resource access inside CheckSystemModel()

1 if(FixedPriorityPreemptiveSystemModelCheckProvider .
utilizationBasedCheck (reporter , systemModel))

2 {
3 // necessary and sufficient test , consider only execution
4 FixedPriorityPreemptiveSystemModelCheckProvider .

responseTimeAnalysis (reporter , systemModel);
5 }

The version of response time analysis that supports the synchronization and commu-
nication between tasks is a sufficient schedulability analysis which is not necessary.
The implementation of this version of response time analysis varies for different
resource access protocols. For the simple priority inheritance protocol a version
of this function is implemented in class SimplePriorityInheritanceSystemMod-
elCheckProvider and for Priority Ceiling Protocol a version of this function is
implemented in class PriorityCeilingSystemModelCheckProvider where the cal-
culation of blocking time is different for different resource access protocols. The
following listings show the calculation of blocking times and thus how response time
analysis is done from the CheckSystemModel() function.

Listing 9.5: Blocking time calculation for simple priority inheritance
1 // calculate the blocking time of each task
2 int blockingTime = 0;
3 for(ResourceUsage resourseUsage : taskWithPriority . getTask ().

getResourceUsage ())
4 {
5 blockingTime += resourseUsage . getResource (). getAccessTime ()

* resourseUsage . getUsage ();
6 }

Listing 9.6: Blocking time calculation for priority ceiling protocol
1 // calculate the blocking time of each task
2 int blockingTime = 0;
3 for(ResourceUsage resourseUsage : taskWithPriority . getTask ().

getResourceUsage ())
4 {
5 blockingTime = Math.max(blockingTime , resourseUsage .

getResource (). getAccessTime () * resourseUsage . getUsage ()
);

6 }

Listing 9.7: Schedulability analysis with task synchronization for shared resource
access inside CheckSystemModel()

1 if(FixedPriorityPreemptiveSystemModelCheckProvider .
utilizationBasedCheck (reporter , systemModel))

2 {
3 // necessary and sufficient test , consider only execution
4 FixedPriorityPreemptiveSystemModelCheckProvider .

responseTimeAnalysis (reporter , systemModel);

76

9.2. Self Suspension

5 }
6 // sufficient test , also consider blocking time
7 PriorityCeilingSystemModelCheckProvider . responseTimeAnalysis (

reporter , systemModel);

In case a task may violate its deadline as found by the response time analysis, this
will be notified to the user by WARNING message.

9.1.3 Demand Bound Analysis

In order to perform the demand bound analysis for a task set that will be sched-
uled under EDF, the function demandBoundCheck() from the class DynamicPrior-
itySystemModelCheckProvider() can be used.

Listing 9.8: Exact schedulability analysis for EDF without task synchronization for
shared resource access inside CheckSystemModel()

1 // at first call the utilization based schedulability check
2 if(DynamicPrioritySystemModelCheckProvider .

utilizationBasedCheck (reporter , systemModel))
3 {
4 // if the utilization based schedulability check fails then

demand bound analysis is done
5 DynamicPrioritySystemModelCheckProvider . demandBoundCheck (

reporter , systemModel);
6 }

The important piece of information to be listed here is that the demand bound
analysis is an exact schedulability analysis for dynamic priority scheduling algo-
rithm EDF that does not consider the blocking time occurred during shared resource
usage.

9.2 Self Suspension

There are three new model classes that have been created for self suspension Ini-
tiateSelfSuspension, Suspension, TerminateSelfSuspension which have been
presented in section 4.1.1.1 on page 29. In order to implement the self suspension
functionality for a task, these three subclass instances of Command model must come
in the order they are listed here. A listing of the system model which contains a task
that will have self suspension is given below. The task W will execute for one time
unit and then suspend for one time unit. When it completes the self suspension of
one unit, it will again execute for one time unit.

77

9. Implementation

Listing 9.9: Representing self-suspension in the system model
1 <task name="W" deadlineType ="HARD" deadline ="4" offset ="0"

period ="4" executionTime ="2" repetitions =" -1">
2 <command xsi:type="model: Execution " duration ="1"/>
3 <command xsi:type="model: InitiateSelfSuspension "/>
4 <command xsi:type="model: Suspension " duration ="1"/>
5 <command xsi:type="model: TerminateSelfSuspension "/>
6 <command xsi:type="model: Execution " duration ="1"/>
7 </task >

There are two new jobs associated with the above mentioned two model classes.
They are InitiateSelfSuspensionJob and TerminateSelfSuspensionJob related
to InitiateSelfSuspension and TerminateSelfSuspension respectively. Task
monitor is responsible to create the next job on the TimeAxis. Like other jobs, task
monitor also creates the task job InitiateSelfSuspensionJob on the TimeAxis but
TerminateSelfSuspensionJob is not created from the TaskMonitor. When the job
InitiateSelfSuspensionJob is executed from the TimeAxis, the execute() func-
tion of the InitiateSelfSuspensionJob is executed. This function changes the
state of the task from running to blocked, and calls the function createTermi-
nateSelfSuspensionJobTask(long time) of TaskMonitor class which is responsi-
ble for creating TerminateSelfSuspensionJob. This function takes the value from
the Suspension model, which tells how many time units the task wants to be in
suspension. Then it calculates the time, meaning the time in TimeAxis, where the
TerminateSelfSuspensionJob should be created. This function is also responsi-
ble to change the blocking type to SELF_SUSPEND, and update the commandNumber
attribute of TaskMonitor correctly.

Listing 9.10: Creation of TerminateSelfSuspensionJob from TaskMonitor
1 // check the command is a type of TerminateSelfSuspension
2 final Command command2 = task. getCommand ().get(

commandNumber);
3 if (command2 instanceof TerminateSelfSuspension) {
4 // create TerminateSelfSuspensionJob
5 IJob terminateSelfSuspensionJob = new

TerminateSelfSuspensionJob (task);
6 // add the job to the time axis
7 Simulator . getInstance (). getTimeAxis ().

addJob (time+ suspensionTime ,
terminateSelfSuspensionJob);

8 // update the command number
9 commandNumber ++;

10 }

When a task initiates a self suspension, a state transition is done from running
to blocked, the task is blocked without any resource access. For such blocking a
new blocking type is introduced for visualization which is SELF_SUSPEND. When the
task completes its self suspension, a state transition from blocked to ready is done.
Execution of any self suspension job requires a dispatch. The important method of
the IJob interface is isDispatchNecessary() which tells the simulator whether a

78

9.3. Non-preemptive Execution

dispatch is necessary or not. Both jobs for self suspension return true to tell the
simulator that a dispatch is necessary.

9.3 Non-preemptive Execution

Like self-suspension, two new model classes InitiateNonPreemptive and Termi-
nateNonPreemptive have been added to support non-preemptive execution. The ex-
ecution time will be split by only execution, execution with resource access and non-
preemptive execution as explained in section 4.1.1.1 on page 29. Non-preemptive
execution should be started with InitiateNonPreemptive Command and ended with
TerminateNonPreemptive Command. A listing of the system model which contains
a task that has a non-preemptive section for execution is given below. The task
I2 will preemptively execute for two time units and then non-preemptively execute
for two time units and finally it will execute for one time unit preemptively. When
the task executes preemptively any higher priority task can preempt it. In contrast,
when non-preemptive task is executed no higher priority task can preempt it.

Listing 9.11: Representing non-preemptive section in the system model
1 <task name="I2" deadlineType ="HARD" deadline ="10" offset ="0"

period ="500" repetitions =" -1">
2 <command xsi:type="model: Execution " duration ="2"/>
3 <command xsi:type="model: InitiateNonPreemptive "/>
4 <command xsi:type="model: Execution " duration ="2"/>
5 <command xsi:type="model: TerminateNonPreemptive "/>
6 <command xsi:type="model: Execution " duration ="1"/>
7 </task >

There are two new jobs InitiateNonPreemptiveJob and TerminateNonPreemp-
tiveJob for the above described two models respectively. These jobs are created and
sent to TimeAxis from the TaskMonitor class except it updates the commandNum-
ber attribute. The commandNumber attribute is updated from the functions initi-
ateNonPreemptiveRequestSuccessful() and terminateNonPreemptiveRequest-
Successful() of TaskMonitor class, they are called from the execute() method of
InitiateNonPreemptiveJob and TerminateNonPreemptiveJob respectively.

A new boolean type attribute nonPreemptiveExecution is added to the TaskMon-
itor class which is updated by the above mentioned two non-preemptive jobs. This
attribute is checked by the scheduler to know whether a task is executing its non-
preemptive section or not. This nonPreemptiveExecution attribute is set to true
from the InitiateNonPreemptiveJob which means the respective task is executing
its non-preemptive section. It is set to false from TerminateNonPreemptiveJob
to indicate that non-preemptive execution has been finished. When a dispatch is
necessary, the dispatch() method of the scheduler is called, it checks inside the
dispatch whether a task is non-preemptive or not. If a task is non-preemptive then
the scheduler does not perform the preemption, although there is a higher priority

79

9. Implementation

ready task. How exactly the scheduler checks non-preemptive execution is explained
below:
Listing 9.12: Checking non-preemptive execution inside the dispatch method of the
scheduler taken from global-EDF

1 // check the priority of the ready and compare it with running
task

2 if (runningTaskDeadline > inspectTaskDeadline
3 // This condition is added for non - preemptive access , if non -

preemptive job will not be preempted , simply keep running
4 && ! TaskManager . getMonitorForTask (runningTask).

isNonPreemptiveExecution ())
5 {
6 // Preemption !
7 // preempt the running task
8 TaskManager . getMonitorForTask (runningTask). makeReady ();
9

10 // Preempted task is immediately put on the ready queues ,
11 readyQueues .add(runningTask , runningTaskDeadline , false);
12 coreTaskAssignment .put(core , inspectTask);
13 // start the selected task
14 TaskManager . getMonitorForTask (inspectTask).run(core);
15

16 assignmentFound = true;
17 }

9.4 Partitioned EDF

In section 8.1, some heuristic methods for task partitioning have been discussed. In
practice, to implement EDF into the existing system the tasks partitioning part has
to be done by the user explicitly. In the system model, the task partitioning has to
be done by the user as part of preparing the system model for the simulator. The
task partitioning is described below with the help of the system model listing.

Listing 9.13: Task partitioning in the system model for multiprocessor partitioned
scheduling approach

1 <task name="1.I1" ...>
2 <command xsi:type="model: Execution " duration ="1"/>
3 </task >
4 <task name="1.I2" ... >
5 <command xsi:type="model: Execution " duration ="5"/>
6 ...
7 </task >
8 <task name="2.A" ...>
9 <command xsi:type="model: Execution " duration ="2"/>

10 ...
11 </task >
12 <task name="2.B" ...>
13 <command xsi:type="model: Execution " duration ="3"/>
14 </task >

80

9.4. Partitioned EDF

15 <core name="Core 1"/>
16 <core name="Core 2" resourceAccessProtocol ="Stack Resource

Protocol (Baker ’s)"/>

The tasks are partitioned to the processors by their names. The task name will
start with an integer number and a dot. The integer number represents the core
on which the task will be executed. In the implementation of P-EDF, the tasks are
restricted in such a way that two different tasks cannot share a single resource from
two different processors. For this reason resources are also bound to a core from
which they can be accessed. The resource will be named in the same way as the
task name where the integer number indicates the core to which a resource will be
linked and the resource will only be allowed to be accessed by the tasks linked to
that core.

A resource access protocol can be specified in the simulation model with the sched-
uler name. If no name is specified then the default resource access protocol will be
used. In order to specify the resource access protocol for each core, the resourceAc-
cessProcol attribute of Core model will be used as discussed in section 4.1.2 on
page 30. Any resource access protocol supported by the EDF uni-processor schedul-
ing algorithm can be used for a core. If no resource access protocol is specified for
a core then the default resource access protocol will be used for that core. The
following listing shows the way partitioned EDF initializes an EDF algorithm for
each core with specified resource access protocol for that core.

Listing 9.14: P-EDF initializes a single core EDF algorithm for each core
1 // assign an EDF algorithm with specified resource access protocol

for each core
2 for (Core core : Simulator . getInstance (). getSystemModel (). getCore ()

) {
3 if (core. getResourceAccessProtocol () == null || core.

getResourceAccessProtocol (). equals ("")) {
4 EDF scheduler = new EDF ();
5 scheduler . initialize (core);
6 coreScheduler .add(scheduler);
7 } else if (core. getResourceAccessProtocol (). equals (Messages .SRP

)) {
8 EDFWithSRP scheduler = new EDFWithSRP ();
9 scheduler . initialize (core);

10 coreScheduler .add(scheduler);
11 }
12 }

At this point, the partitioned EDF scheduler needs to run a single core EDF sched-
uler for each core with the specified resource access protocol. The P-EDF scheduler
does this in its initialize() method and keeps track of schedulers on each core in
coreScheduler attribute which is a Java array list of IScheduler. When a dispatch
is necessary, P-EDF calls the dispatch method of the associated scheduler of each
core from its own dispatch() method.

81

9. Implementation

The P-EDF algorithm validates the system model from the checkSystemModel()
function. It checks the task names and resource names to see whether the names
are given according to the convention. It also checks that a resource is not accessed
from a task that is not linked to this core. If the two above described system model
validations fail then the simulator triggers an ERROR message and the simulation
cannot be started. The schedulability analysis for each core is done by using the
single core schedulability analysis methods for EDF.

9.5 Proportionate Fairness

In contrast to all other scheduling algorithms that have been implemented, the
class of P-fair scheduling algorithms contains job level dynamic priority scheduling
algorithms. As discussed in section 8.2 on page 58, the variants of P-fair schedul-
ing algorithms use the same logic to categorize tasks into three different categories
urgent, tnegru and contending. An abstract class Pfair has been created by imple-
menting the IScheduler interface. This abstract class serves as a super class for all
the P-fair variants, namely PF, PD and PD2 scheduling algorithms.

P-fair scheduling algorithm needs to have a dispatch at every integer time t which
is not possible with the existing simulation kernel. With the existing system, a
scheduler gets a dispatch when it is necessary to get a dispatch determined from
the executed jobs, e.g. the scheduler gets a dispatch when a task is ready, a task
is blocked on any resource, etc. In order to get a dispatch at every time t, a new
job is added named DispatchJob. The Pfair scheduler adds a DispatchJob to the
TimeAxis at time t + 1 from its dispatch() method to get a dispatch at the next
integral point of time when it gets a dispatch at time t.

Listing 9.15: Generating a dispatch job from Pfair for every time unit t
1 // need to check whether there is a task to schedule at the

next point or not
2 // create the Dispatch job to dispatch at next integer time
3 if (! TaskManager . areAllTasksNonExisting () && time !=

previousDispatchTime) {
4 DispatchJob dispatchJob = new DispatchJob ();
5 Simulator . getInstance (). getTimeAxis (). addJob (time + 1,

dispatchJob);
6 }

The functionality of DispatchJob is nothing but to generate a dispatch on that
point of time by the simulator. Every job has a function isDispatchNecessary()
which is called from the time axis to decide whether a dispatch is necessary or not.
This function returns true and thus the dispatch() method is called.

The abstract class Pfair implements the function stateChangeRequest(long time,
Task task, State newState) which will be used by all sub-classes. Pfair has
some protected attributes that will be updated from this class and will be used

82

9.5. Proportionate Fairness

from its subclasses. Pfair uses a Java HashMap instance characteristicStringOf-
Task to store the characteristic string of each task at time t. The following listing
shows the calculation of characteristic sting done by Pfair according to Baruah
et al. [12].

Listing 9.16: Calculation of characteristic string in Pfair
1 // calculate characteristic string for each task at this point of

time
2 for (Task task : Simulator . getInstance (). getSystemModel (). getTask ()

) {
3 double csValue = 0;
4 String cString ;
5 double taskWeight = (double) task. getExecutionTime () / (double)

task. getPeriod ();
6 // equation to calculate characteristic string on each point by

Baruah et. al.
7 // alpha(x) = sign(x.w * (t + 1) - Floor(x.w * t) - 1)
8 csValue = Math.sin ((taskWeight * (double) ((double) time + 1.0)

) - Math.floor(taskWeight * (double) time) - 1.0);
9 if (csValue < 0.0)

10 cString = Messages . NegativeString ;
11 else if (csValue > 0.0)
12 cString = Messages . PositiveString ;
13 else
14 cString = Messages . NeutralString ;
15 // update the hashmap to store the characteristic string
16 characteristicStringOfTask .put(task , cString);
17 }

The most important attributes urgetTasks, tnegruTasks and contendingTasks
are Java lists of type Task that contains the tasks of three different categories. In
the dispatch() function of this Pfair class, the characteristic strings and lags of
all tasks are calculated and based on these two values the tasks are categorized and
stored accordingly.

Listing 9.17: Categorize tasks into urgetTasks, tnegruTasks and contending-
Tasks

1 // check all the tasks that need to be scheduled and add to
urgent , tnegru , or contending task list

2 for (Task task : schedulingTasks) {
3 if (lagMulPeriodOfTask .get(task) > 0 && !

characteristicStringOfTask .get(task). equals (Messages .
NegativeString)) {

4 // the task is urgent
5 urgentTasks .add(task);
6 } else if (lagMulPeriodOfTask .get(task) < 0 && !

characteristicStringOfTask .get(task). equals (Messages .
PositiveString)) {

7 // the task is tengru
8 tnegruTasks .add(task);
9 } else {

10 // the task is contending

83

9. Implementation

11 contendingTasks .add(task);
12 }
13 }

In order to prove that a generated schedule is P-fair, it must be proven to obey the
lag constraint. At each dispatch the lag of every task should be checked so that it
does not violate the constraint. Pfair provides a function checkLagConstraint()
to check the lag constraint which is called at the beginning of every dispatch.

All variants of Pfair scheduling algorithm are able to access shared resources by
default resource access protocol.

9.5.1 Algorithm PF

The class PF has been implemented by extending the abstract class Pfair to im-
plement the algorithm PF. PF calls the initialize() method from the super class
inside its own initialize() method, in order to initialize all the variables of the
super-class. If necessary, it will initialize its own variables inside its own initialize
method after invoking the super-class method. In this case all variables are declared
in the super-class. At every integral point of time t, when a dispatch is necessary,
PF first calls the dispatch() method from the super-class which categorizes all the
tasks into urgent, tnegru and contending task lists and stores them accordingly.

At this point, algorithm PF needs to sort the contending tasks according to the to-
tal order by using any of the two comparison algorithms described in section 8.2.1.1
on page 62. Both algorithms have been implemented inside PF class as functions,
namely naiveCompare(Task task0, Task task1) and compare(int a0, int b0,
int c0, int a1, int b1, int c1). These two algorithms have been describes in
algorithm 1 on page 63 and algorithm 2 on page 63 respectively. In the implementa-
tion of the algorithm 1 is slightly different in the function parameters, instead of six
parameters it takes the two tasks it needs to compare and calculate all six original
parameters inside the function.

Listing 9.18: Calculating six parameters for the implementation of algorithm 1,
NaiveCompare [12]

1 // the values need to be passed inside the function , calculated
inside here

2 int a0 , b0 , c0 , a1 , b1 , c1;
3 // a0 = x.p - x.e
4 a0 = task0. getPeriod () - task0. getExecutionTime ();
5 a1 = task1. getPeriod () - task1. getExecutionTime ();
6 // b0 = x.e
7 b0 = task0. getExecutionTime ();
8 b1 = task1. getExecutionTime ();
9 // c0 = x.p * lag(S,x,t) + 2 * x.e - x.p

10 // we have lag * period , we used that instead of {x.p * lag(S,x
,t)}

84

9.5. Proportionate Fairness

11 c0 = lagMulPeriodOfTask .get(task0) + 2 * task0. getExecutionTime
() - task0. getPeriod ();

12 c1 = lagMulPeriodOfTask .get(task1) + 2 * task1. getExecutionTime
() - task1. getPeriod ();

Both of these functions take two tasks task0 and task1 as input, the order of the
parameters is important to decide the tasks’ priority. Let’s assume task0 is the
first parameter and task1 is the second parameter. The functions compare and
return the result of comparison in the following way, 0 => [task0 > task1], 1 =>
[task0 < task1], 2 => [task0 = task1] and finally -1 => [an error occurred
during comparison], which should not happen for these algorithms. For safety, in
case of any bug inside the code this error value is returned. The return values are
slightly different than in the algorithm for the implementation purposes, however,
the functionality is the same.

In order to insert the tasks from the contendingTasks list to a list where the
task will be arranged according to the priority in descending order, Pfair uses
a Java LiknedList instance, contendingTaskLinkedList. In this linked list, by
comparing two tasks, if task0 has higher priority than task1 then task0 is placed
before task task1, if task1 has higher priority than task0 then task1 is placed
before task task0 and finally if both tasks have the same priority then the tie can
be broken arbitrarily, the order of these two tasks can be arbitrary.

When the contending tasks are prioritized and sorted according to the priorities,
the PF can schedule tasks according to the algorithm PF described in table 8.1 on
page 62. All the urgent tasks will be scheduled from the urgentTasks task list. If
the number of urgent tasks n0 is less than m, the number of processors, then the
first m− n0 tasks will be scheduled from the contending task linked list. In P-fair,
the lag of every task is important and needs to update the lag of all tasks at every
integral point of time t to the respective variable. In P-fair implementation, in order
to have an integer number, the lag will be stored multiplied by its period in a Java
HashMap named lagMulPeriodOfTask. At every dispatch the lag value for each task
needs to be updated according to Baruah et al. [12]. The implementation for the
lag update is given by the following listings:

Listing 9.19: Updating lag multiplied by period value when a task is scheduled [12]
1 // update task lag , if a task is scheduled then add
2 lagMulPeriodOfTask .put(runTask , lagMulPeriodOfTask .get(runTask)

- (runTask . getPeriod () - runTask . getExecutionTime ()));

Listing 9.20: Updating lag multiplied by period value when a task is not scheduled
[12]

1 // update task lag , if a task is scheduled then add
2 lagMulPeriodOfTask .put(task , lagMulPeriodOfTask .get(task) +

task. getExecutionTime ());

85

9. Implementation

9.5.2 Algorithm PD

Like PF, the class PD has been implemented by extending the abstract class Pfair
for the implementation of algorithm PD. Algorithm PD uses the attributes and
methods from its super class and also it has some local attributes, six instances
of Java HashMap to arrange the contending task list in six different categories
mentioned in table 8.2 on page 65. These local variables are initialized after the
call to super class initialize() method. When a dispatch is necessary it first calls
the super-class dispatch() method and gets the urgent, tnegru and contending
tasks in three different lists. As in PF, it is necessary to sort the contending tasks
according to the total order which is different for PD.

PD calculates the pseudo-deadline di, characteristic string βt(Ti) and the integer
value k for each task at every integral point of time t and uses a Java HashMap
instance contendingTaskWithPDAttributes to store this value which maps to the
corresponding task Ti. These three values for each task will be called PD attributes
in this thesis, those are necessary to determine the total order. The calculation of
PD attributes is different for heavy tasks and light tasks.

Listing 9.21: Calculate PD attributes for heavy tasks
1 // calculate the pseudo -deadline , characteristic string and

k for each heavy task and add to the hash map
2 characteristicString = calculateCharacteristicString (csTime

, 1.0 - taskWeight);
3 while(characteristicString != Messages . NeutralString &&

characteristicString != Messages . PositiveString)
4 {
5 csTime = csTime + 1;
6 characteristicString =

calculateCharacteristicString (csTime , 1.0 -
taskWeight);

7 }
8 // at position 0, stores di

9 pdAttributes .add(csTime);
10 // at position 1, stores β(Ti)
11 pdAttributes .add(characteristicString);
12 // at position 2, stores Ti.k
13 pdAttributes .add(Math.floor(contendingTask . getPeriod () /(

contendingTask . getPeriod () - contendingTask .
getExecutionTime ())));

14 // add put into the hash map
15 contendingTaskWithPDAttributes .put(contendingTask ,

pdAttributes);

Listing 9.22: Calculate PD attributes for light tasks
1 // calculate the pseudo -deadline , characteristic string and k

for each light task and add to the hash map
2 characteristicString = calculateCharacteristicString (csTime ,

taskWeight);
3 while(characteristicString != Messages . NeutralString &&

characteristicString != Messages . PositiveString)

86

9.6. Global Suspendable Non-Preemptive EDF

4 {
5 csTime = csTime + 1;
6 characteristicString =

calculateCharacteristicString (csTime , taskWeight
);

7 }
8 // at position 0, stores di

9 pdAttributes .add(csTime);
10 // at position 1, stores β(Ti)
11 pdAttributes .add(characteristicString);
12 // at position 2, stores Ti.k
13 pdAttributes .add(Math.floor(contendingTask . getPeriod ()/

contendingTask . getExecutionTime ()));
14 // add put into the hash map
15 contendingTaskWithPDAttributes .put(contendingTask ,

pdAttributes);

The algorithm PD now checks the contending tasks from the list contendingTasks
and places them in the appropriate category according to the rules listed in ta-
ble 8.2 on page 65. When the contending tasks are categorized into six different
categories, they are combined to the contendingTaskLinkedList according to the
priority, highest priority category will be added first as mentioned by [11] where
lowest numbered category has the higher priority.

At this point algorithm PD follows the same procedure as algorithm PF, it schedules
all urgent tasks n0 and if n0 < m then first m− n0 tasks from the contending task
linked list. It follows the same rule to update the lag and period multiplication
values of the HashMap instance lagMulPeriodOfTask as PF.

9.6 Global Suspendable Non-Preemptive EDF

This section describes the implementation of the variant of Global-EDF scheduling
algorithm known as global suspendable non-preemptive EDF, or abbreviated GSN-
EDF. This algorithm needs a simulator that supports task suspension which is
also known as blocking. Also, a task is allowed to execute some period of time
non-preemptively, no higher priority tasks can preempt a task while it is executing
its non-preemptive section. The existing simulator support task suspension which
is termed blocking on shared resource access. The implementation of the non-
preemptive section is discussed in section 9.3 on page 79, therefore, now the current
simulator also supports non-preemptive execution in a preemptive scheduling algo-
rithm.

In GSN-EDF, the scheduler needs to take scheduling decisions when a task changes
states from the following three cases; at any time t, when a task (i) is released
or resumed, (ii) changes from non-preemptable to preemptable and (iii) becomes
suspended or completes, described in algorithm 3 on page 68 [14, figure 2].

87

9. Implementation

When a task is released or resumed, a state transition is triggered from different
states to ready state, according to a valid state transition. Similarly, when a task is
blocked or completed, a state transition is triggered from different states to blocked
or terminated state respectively, according to a valid state transition. For such state
transitions, the simulator works accordingly and the scheduler gets a dispatch if it
is necessary.

There is no state transition in the system when a task changes from non-preemptable
to preemptable. It would be better to have such a state transition in the system.
As there is no such state transition in the existing simulator, a new state is not
introduced in order to keep the original state transition working as it is described
by Munk [41] and to avoid modifications in the core of the simulator, the simulation
kernel. However this situation is handled in a different way. A new boolean type
attribute nonPreemptiveToPreemptive is added to the TaskMonitor class, which
is initially false and set to true when a task transits from non-preemptive to pre-
emptive execution. When a task executes the TerminateNonPreemptiveJob, the
execute() function sets this nonPreemptiveToPreemptive to true and the is-
DispatchNecessary() function returns true to tell the simulator that a dispatch is
necessary. This attribute nonPreemptiveToPreemptive is checked from the dispatch
routine to determine that the task changes from non-preemptable to preemptable
and processes according to the GSN-EDF algorithm.

Priority Queue: it serves the purpose of a queue to store all ready tasks ac-
cording to the task priority. The mechanism used to break a tie, where two tasks
have the same priority, is FIFO. As discussed in section 8.3.1 on page 66, GSN-EDF
requires unique priority, if there is a tie with the deadline values then the lowest
numbered task, the serial number of the task is considered here, gets higher pri-
ority. A variation of the existing add(final Task task, final int priority,
final boolean tail) function, addInTaskOrder(final Task task, final int
priority, boolean lowestIndexedTaskHashighestPriority) has been implemen-
ted which adds the task to the priority queue according to the priority definition in
GSN-EDF [14].

The implementation of GSN-EDF uses two instances of Java HashMap, linked-
TaskOnCore and scheduledTaskOnCore to keep track of tasks linked on processors
and scheduled on processors respectively. At any time t, it is necessary to know the
linked and scheduled tasks on processors. It is also necessary to visualize linked tasks
on processors along with scheduled tasks on processors. The event of tasks running
on core is triggered from the TaskMonitor, which it knows from the state transi-
tions. As there is no state transition for task linked on core, the event for task linked
on processor is done from the dispatch() method of GSN-EDF scheduler.

In GSN-EDF, two instances of priority queue linkedJobReadyQueue and unLinked-
JobReadyQueue are used to store two types of tasks, linked tasks and unlinked
runnable tasks respectively. linkedJobReadyQueue stores the tasks that are linked
to any processor, the length of this queue is equal to the number of processors.
unLinkedJobReadyQueue stores all other ready tasks and non-preemptively running

88

9.6. Global Suspendable Non-Preemptive EDF

tasks not linked to any processor.

The GNS-EDF algorithm is described in a way that would be easier to implement
if the dispatch() method is called on each state transition whenever a dispatch is
necessary. However, the existing simulation software executes all Jobs at any time
t and calls the dispatch routine if necessary. In order to handle such a difference, a
Java ConcurrentLinkedQueue instance readyTasks is used to store all ready tasks
and also the same type instance blockedOrTerminatedTasks to store all blocked
or terminated tasks in order to process them according to the algorithm when it
gets a dispatch call. There are concurrent accesses on the above mentioned two task
lists, if Java List is used instead, they will get concurrent modification exception
from the java exception class java.util.ConcurrentModificationException. Al-
though ConcurrentLinkedQueue instances are used to store ready tasks and blocker
or terminated tasks, these two instances will be referred to as ready task lists and
blocked or terminated task lists from now for simplicity.

T ji is released or resumed: When a task is ready, then it is inserted into the
list readyTasks from the stateChangeRequest() method. At first it checks that
if there is any core, that is not linked to any tasks then it takes a task from ready
tasks, linked and scheduled on that core, this process continues until all cores are
linked by a task. When a task is linked to a core, it must be pushed into the priority
queue linkedJobReadyQueue. If there are more ready tasks in the list then the
remaining ready tasks are processed according to the section 1, line 1 to line 13 of
algorithm 3.

T ji changes from non-preemptive to preemptive: If a task is finished its non-
preemptive execution and needs to execute preemptively then the dispatch routine
executes the section 2, line 14 to line 19 of algorithm 3.

T ji becomes suspended or finished: A task may be suspended at any time
and resumes later on. In order to schedule a task that is suspended and going to
be resumed, GSN-EDF checks on which core it was scheduled previously and tries
to schedule on that core. Therefore, GSN-EDF uses a Java HashMap instance pre-
emptedTaskOnCore to store the scheduled core when a task is preempted. When a
task is blocked or terminated, it is inserted into the list blockedOrTerminatedTasks
from the stateChangeRequest() method. These tasks are processed according to
the section 3, line 20 to line 39 of algorithm 3.

There is a call to the dispatch() method itself inside this method for the im-
plementation of GSN-EDF. The dispatch method starts the processing with ready
tasks, then non-preemptive to preemptive tasks and finishes by processing blocked
or terminated tasks. Meanwhile, a task may be in ready state from blocked state.
Therefore, the dispatch method checks at the end if there is any ready task then
calls itself.

89

9. Implementation

Listing 9.23: Dispatch method calls itself to process ready tasks
1 // Need to check there are ready tasks that were not processed

, if any then process them
2 if(! readyTasks . isEmpty ())
3 {
4 // dispatch again for the remaining ready tasks
5 this. dispatch (time);
6 }

9.7 Flexible Multiprocessor Locking Protocol

The class GSNEDFWithFMLP is introduced by extending the class GSNEDF for the imple-
mentation of multiprocessor scheduling algorithm, global suspendable non-preemptive
EDF with the flexible multiprocessor locking protocol. The GSNEDFWithFMLP class
only implements the requestResource() and releaseResource() methods, all
other required methods will be inherited from the super class.

As required by the FMLP implementation a resource needs to be marked short or
long which is done by the user in the system model. In order to make it simple in
the implementation, the system model also needs to specify each RequestResource
or ReleaseResource Command by s-outermost, l-outermost, s-inner or l-inner
in the resourceNestedType attribute. In the following listing a system model for
task A is given that uses resource and the resource nested type is specified with each
request.

Listing 9.24: Resource nested type in RequestResource and ReleaseResource
1 <task name="1.I2" deadlineType ="HARD" deadline ="10" offset ="

0" period ="500" repetitions =" -1">
2 <command xsi:type="model: Execution " duration ="1"/>
3 <command xsi:type="model: RequestResource " resource ="/0/

@resource .0" resourceNestedType =" L_OUTER "/>
4 <command xsi:type="model: Execution " duration ="1"/>
5 <command xsi:type="model: RequestResource " resource ="/0/

@resource .1" resourceNestedType =" L_INNER "/>
6 <command xsi:type="model: Execution " duration ="1"/>
7 <command xsi:type="model: ReleaseResource " resource ="/0/

@resource .1" resourceNestedType =" L_INNER "/>
8 <command xsi:type="model: ReleaseResource " resource ="/0/

@resource .0" resourceNestedType =" L_OUTER "/>
9 </task >

FMLP needs the resource group based on the rules described in section 8.3.2.1 on
page 69. The resource group should be done by the user and must provide the
information in the system model. In the following listing three resource groups are
provided. First group contains two resources, and the rest two groups contains one
resource in each group.

90

9.7. Flexible Multiprocessor Locking Protocol

Listing 9.25: Providing resource group in the system model
1 <resourceGroup resource ="/0/ @resource .0 /0/ @resource .1"/>
2 <resourceGroup resource ="/0/ @resource .2"/>
3 <resourceGroup resource ="/0/ @resource .3"/>

In order to access a resource, the FMLP requires a group lock. In order to lock a
resource, ResourceMonitor provides a method lock() and to unlock it provides
another method unlock(). For FMLP locking a variants of these two methods
fMLPLock() and fMLPUnlock() have been written. As resource monitor only mon-
itors one resource, it is not possible to get the group lock from resource monitor,
because a resource group may contain more than one resource. In order to grant
a FMLP locking, ResourceMonitor checks some necessary information about the
resource group in the ResourceManager class which can be accesses by any other
ResourceMonitor. The following listing shows when a group lock is granted then
how ResourceMonitor update ResourceManager attributes.

Listing 9.26: Update ResourceManager on FMLP group lock
1 // check the group is free
2 if(! resourceGroupObj . isLocked ()){
3 // lock the group
4 ResourceManager . addGroupLock (resourceGroupObj ,

lockingTask);
5 return resourceGroupObj ;
6 } else {
7 // add the task to the waiting list of this group
8 ResourceManager . addTaskToBlockedList (

resourceGroupObj , lockingTask);
9 }

If the resource group can be locked then the addGroupLock(resourceGroupObj,
lockingTask) method from ResourceManager is called which is responsible to up-
date its attribute resourceGroupMapsLockedTask that maps a resource group and
the locking task. If the resource cannot be locked then the addTaskToBlockedList-
(resourceGroupObj, lockingTask) method from the same class will be called
which insert the task in to the blocked task list which is maintained as FIFO
queue. ResourceManager maintain an attribute blockedTasksOnResourceGroup
which maps between the resource group and the FIFO queue that contains the
tasks blocked on that resource group.

The following listing shows when a FMLP group lock is released then the task
monitor tells task manager to release the group lock.

Listing 9.27: Update ResourceManager on FMLP group lock release
1 // check the group is locked
2 if(resourceGroupObj . isLocked ()){
3 // unlock the group lock
4 ResourceManager . removeGroupLock (resourceGroupObj ,

lockingTask);
5 return resourceGroupObj ;

91

9. Implementation

6 }

In FMLP resource request method, when a task needs to request for a resource it
checks the resource nested type, if it is a s-outermost request then it sets the non-
preemptive execution and requests for the resource. Any inner resource request get
the immediate access to the resources as it has the group lock. When a s-outermost
request gets blocked on any resource group then the task busy-waits. If a l-outermost
request blocks then the current task holding this resource group will get the highest
priority among all tasks blocks on that group.

In FMLP resource release method, when a task releases a resource and it is s-
outermost, then non-preemptive execution is turned off and the first task from the
busy-wait FIFO queue gets the group lock of this group and starts execution. If the
release request is l-outermost then revert back the priority of the task, it inherited
from the highest priority task blocked in this group and the first task from the FIFO
queue, blocked on this group, gets the resource and starts executing.

9.8 Clusters and Group of Task

Clustering is a hybrid approach of scheduling on multiprocessors. For each cluster,
a specified scheduling algorithm is used to schedule the group of tasks assigned to
that cluster. A cluster may contain an arbitrary number of cores. A single-core
scheduling algorithm may be used where the cluster only contains one core. On the
other hand, a multi-core scheduling algorithm is needed where the number of cores
is more than one in a cluster.

As in case of implementation of the partitioned approach, the tasks are grouped and
assigned to a cluster which requires manual task partitioning. The task partitioning
must be done by the user through the system model. The tasks and resources are
linked to a cluster by their names, ending with a dot followed by an integer number
that specifies the cluster to which they are linked. The scheduler name and resource
access protocol must be provided for each cluster.

Thus, the cluster scheduler runs the respective scheduler for each cluster with the
specified resource access protocol. As P-EDF scheduler, the cluster scheduler also
does this in its initialize() method and keeps track of the scheduler for each
cluster in a clusterScheduler attribute. If a dispatch is necessary then the cluster
scheduler calls the dispatch() method of the respective scheduler associated with
the cluster that requires the dispatch.

The system model is validated by the checkSystemModel() function that determines
whether the system model is properly prepared for the cluster scheduler or not, i.e.
it checks the task names, resource names, scheduler for the cluster, etc.

92

10 | Validation, Test and Results

10.1 Validation and Test

In software engineering, verification is the process of checking a piece of software to
confirm that it meets its specification and that the developed result includes all the
functionality specified by the customer, verification refers to the confirmation that
all functional and non-functional requirements are correctly implemented. Software
testing is the procedure to show that the software does its specified work and to
find the errors before it is used [53]. A testing process has two goals: (i) validation
testing that determines whether the software satisfies the specified requirements and
(ii) defect testing where the test cases are designed and checked to find out about
the defects. Thus, software testing is part of a wider process - software verification
and validation [53]. The eventual aim of the software testing is to make sure with
confidence that the software is ready for the intended purpose.

Sommerville [53] mentioned in his book that software testing goes through three
testing phases development testing, release testing and user testing. This section
presents the testing procedures applied to test the developed software.

10.1.1 Development Testing

Development testing is a testing phase where the testing takes place during the
development of the software to find the bugs and errors. System developers and
programmers are responsible to carry out the testing in this phase [53].

Development testing includes all testing activities that are carried out by the team
developing the system. The tester of the software is usually the programmer who
developed the software. Development testing may consist of three phases: unit
testing, component testing and system testing [53].

10.1.1.1 Unit Testing

Unit testing is the process of testing program components or units, i.e methods,
objects and their individual functionality. Thus, the simplest types of program

93

10. Validation, Test and Results

components are distinct methods or functions. Unit testing is carried out by testing
of these methods individually by different sets of input parameters and comparing
the results to the expected values [53].

10.1.1.2 Component Testing

Software components are usually composite components which consist of several
individual interacting objects or functions. Thus, component testing tests the func-
tionality provided by the software component where several individual software units
or methods are integrated to provide the specified functionality [53].

During the development phase of the current version of the simulation software, each
specific functionality has been tested as part of development testing. The individ-
ual functionality has been tested carefully. Among the tested are some important
functionality tests that are going to be listed here in this section.

The implementation of self-suspension requires a function createTerminateSelf-
SuspensionJobTask, provided in the TaskMonitor class which is responsible to
create the TerminateSelfSuspensionJob which is called from the execute() func-
tion of InitiateSelfSuspensionJob. It has been tested that it provides the correct
functionality, i.e. creates the Job at correct time on the TimeAxis.

There are several functions provided for the schedulability analysis, each of them
has been tested by loading system model and checking whether it is schedulable or
not. The result was checked according to the expectations. If the result was not
correct then the errors were located and fixed accordingly.

The sub-string comparison algorithms described in algorithm 1 on page 63 and
algorithm 2 on page 63 have been implemented as a part of PF contending task
comparison functionality. These two functions were tested with the respective in-
puts, i.e. two tasks from the example given by Baruah et al. [12] at time t and
the output was compared. The attribute calculation for comparing two contending
tasks according to algorithm PD was tested by manually calculating the result and
checking whether the task comparison is correct or not.

The GSN-EDF algorithm has three sections for the implementation: a task released
or resumed, a task finished its non-preemptive section and a task terminated or
blocked. All these three sections have been tested independently to see whether the
functionality of the algorithm was implemented successfully.

As a part of the FMLP implementation, a task may be required to be non-preemptive
for a short time duration which depends on the accessing resource type. If the task
is going to request a resource which is s-outermost then at first it should update
the execution type from preemptive execution to non-preemptive execution. This
functionality has been tested by creating a scenario.

94

10.2. Results

10.1.1.3 System Testing

During development, system testing is done by integrating the software components.
A version of the software is created by integrating the software components and
then tests of the integrated system are done as part of development testing which
is termed system testing. The responsibilities of system testing are to check that
all components are integrated correctly, they are compatible and correctly interact
with each other, and also transfer correct data at the right time [53].

The incremental software development follows a short development cycle to complete
some functionality, testing and deploy it to the customer which was followed as a soft-
ware engineering approach for this project. The incremental software development is
managed by Scrum, a project management approach for software development. Each
increment is managed by a sprint. Thus, during the sprint, developed functionality
is integrated, tested and presented to the customer, i.e. the supervisor.

The test cases are written in such a way where the steps, inputs, preconditions,
post-conditions and expected results are listed for each test case. During the test
the test document is followed and the actual output is listed as actual result. When
the testing has been completed, the expected outputs and actual outputs are com-
pared. If the actual output is different from expected output then the source code
is analyzed to find the bug and fix it.

The system testing has been done for the schedulability analysis, self-suspension
functionality, algorithm PF, algorithm PD, GSN-EDF algorithm and FMLP im-
plementation individually by following the examples presented in the respective
literature as well as a lot of self created examples.

10.2 Results

This section discusses the results of the simulations that have been implemented
as part of this thesis work. The results are going to be presented graphically, as
generated by the software with a short description for each.

95

10. Validation, Test and Results

Figure 10.1: The simulation result of a task set scheduled under RMS where some
tasks contain self-suspension delays.

Figure 10.2: The simulation result of a task set scheduled under EDF where a task
contains a non-preemptive section.

96

10.2. Results

Figure 10.3: An example task set taken from Baruah et al. [12] is scheduled using
algorithm PF. The task set only contains execution without using any resource.

Figure 10.4: The same task set scheduled under PD, which has been scheduled under
PF in the previous simulation, figure 10.3.

97

10. Validation, Test and Results

The following two figures show the simulation result of a task set scheduled under
Pfair scheduling algorithm PF where some tasks in the task set get blocked to access
shared resources and thus violate the Pfair lag constraint.

Figure 10.5: The simulation result of a task set scheduled under PF with shared
resources.

Figure 10.6: The notification of the violation of Pfair lag constraint due to task
being blocked to access shared resources.

98

10.2. Results

Figure 10.7: The simulation result of a task set scheduled under GSN-EDF with the
default resource access protocol.

Figure 10.8: The simulation result of a task set scheduled under GSN-EDF with
FMLP where a task gets blocked while accessing a shared resource that is a long
resource. The resource is free but the group to which this resource belongs to is
locked by another task, thus, the requested task is blocked.

99

10. Validation, Test and Results

Figure 10.9: The simulation result of a task set scheduled under P-EDF with the
default resource access protocol.

100

11 | Conclusion and FutureWork

11.1 Conclusion

In this thesis work, available literature related to scheduling on multiprocessors and
multiprocessor scheduling policies for real-time embedded systems have been studied
in detail. Furthermore, the concepts related to scheduling on multiprocessors and
some promising multiprocessor scheduling policies have been presented with their
implementation on the existing system which can be considered the main part of
this thesis work.

In the the previous work [41], a simulation software for task scheduling and visu-
alization was developed which focuses on but is not limited to scheduling policies
primarily used in real-time embedded systems. The existing software does not pro-
vide schedulability analysis and self-suspension of tasks which is a part of this thesis
work. Additionally, the newly implemented multiprocessor scheduling policies have
been integrated into the existing software. Furthermore, an extensive effort has been
given to understanding the existing software in a comprehensive manner. The nec-
essary parts of existing software used by the implementation part of this thesis work
have been discussed in brief to give an outline of the base simulation kernel.

As mentioned earlier, the existing simulation software supports some well known
single core and a few multi-core scheduling algorithms but the schedulability analysis
is absent. The necessary theory and its implementation on schedulability analysis
for single core scheduling policies has been discussed in detail both for fixed priority
and dynamic priority scheduling algorithms.

In multi-core scheduling, a task may self-suspend itself when it accesses a resource
and knows the time duration required by the resource to respond, in such scenario it
self-suspends itself by the predefined duration required by the resource to respond.
The existing software does not support the feature of task self-suspension which
has been implemented in this thesis work. The concept of self-suspension is simple
but it creates some scheduling anomalies by a very low utilization of the processor
that happen in the dynamic priority scheduling policies [39]. Furthermore, the
schedulability analysis is more difficult than task self-suspension itself. Therefore,
the system does not provide schedulability analysis where there is a task containing
self suspension in the task set.

101

11. Conclusion and Future Work

There are two main approaches for scheduling on multiprocessors that have been
discussed in detail with their pros and cons with respect to other mechanisms. An-
other approach has been discussed that combines the above two approaches termed
hybrid approach. A noticeable term for multiprocessor scheduling algorithms de-
scribes whether an algorithm is work conserving or not. The scheduling algorithms
in the class of partitioned approach are not work-conserving whereas some global
approaches for scheduling algorithms are work-conserving.

The partitioned EDF has been discussed in detail with some heuristic methods to
partition the task set into m subsets where the number of processors is m. The
partitioning approaches are known as bin-packing problems which is NP-Hard in
the strong sense. They cannot guarantee more than about 50% use of the processor.
The implementation does not provide any automatic task partitioning method which
should be done by the user manually, so that for each processor a single-core EDF
algorithm runs to schedule the task set.

The Pfair scheduling approach introduced by Baruah et al. [12] is currently the
only known optimal scheduling approach for scheduling on multiprocessors. The
optimality of the Pfair approach is only restricted to periodic task sets with implicit
deadlines. The Pfair variants of multiprocessor scheduling algorithms PF and PD
have been discussed in detail with their implementation. They both use the same
method to prioritize tasks based on the task deadline; the only difference is the way
they break the tie where two jobs of different tasks have the same deadline. The
implementation has been done in such a way, the common functionality is placed
inside an abstract class Pfair which is extended by the variants of Pfair scheduling
algorithms and implement the differing parts in their subclasses. The Pfair variants
of scheduling algorithms can use resources by default resource access protocol but
there may arise some scheduling anomalies while accessing a shared resource, e.g. a
task is blocked on a resource and cannot execute for some subsequent slots and thus
violates its lag constraint.

Like single-core scheduling algorithms, a multi-core scheduling algorithm must have
a resource access protocol where there are some resources shared by multiple tasks
at any time t. In order to synchronize the resource usage by the tasks scheduled on a
multiprocessor system, a multiprocessor resource access protocol must be used with
the scheduling algorithms. The flexible multiprocessor locking protocol has been
discussed in detail including its implementation with GSN-EDF, a variant of global
EDF. Block et al. [14] used the term “flexible” to mean that it can be used for both
partitioned and global approaches. The FMLP requires a version of Global-EDF
namely GSN-EDF which has been implemented as a prerequisite to implement it.
The GSN-EDF implementation includes the enhancement of the existing simulator
so that a task can execute for a specified duration non-preemptively, which can be
used by any other scheduling algorithms by specifying the non-preemptive section
in the system model. A multiprocessor system model can be scheduled under GSN-
EDF with FMLP.

As a part of visualization, some small changes have been introduced that are required

102

11.2. Future Work

by the new implementation. The scheduling view has been updated for GSN-EDF
algorithm to display which tasks are linked to which cores in addition displaying the
task scheduled on each core.

The system has been tested using the specified testing approach. As a part of
development testing unit testing, component testing and system testing have been
done during the development. Although release testing requires a separate team to
test the entire system, there is no available separate team for that. Therefore, the
release testing has also been done by the developer.

11.2 Future Work

The present version of the simulation software does not support the schedulability
analysis for EDF, the dynamic priority single core scheduling algorithm, by consid-
ering the synchronization between tasks for shared resource access. Neither does
it support the schedulability analysis where a task in the task set contains self-
suspension delays or non-preemptive sections for execution. The simulator provides
multi-core scheduling simulation algorithms both from partitioned and global ap-
proaches of multiprocessor scheduling policies. It only provides the schedulability
analysis for the partitioned multi-core scheduling algorithms but not for the class of
global multi-core scheduling algorithms. Therefore, the schedulability analysis can
be improved for the cases where the present version of the software does not provide
a solution.

Of the partitioned approaches of multi-core scheduling policies P-DMS was imple-
mented in the previous work [41] and P-EDF has been implemented in this thesis
work where the task partitioning is manual, done by the user through the provided
system model. A literature study can be employed to search for the promising
partitioned multi-core scheduling algorithms and the automatic task partitioning
techniques to implement in the simulator.

In this thesis work, the Pfair variants of dynamic priority scheduling algorithms PF
[12] and PD [11] have been implemented which provide a framework that can be
used to implement other variants of Pfair scheduling approaches. Therefore, other
promising Pfair variants of scheduling algorithms can be studied from the available
literature and implemented in order to enhance the current version of the software.
The variant of Pfair scheduling algorithm known as ERfair is a work-conserving
scheduling algorithm which can be considered for the implementation [1, 2].

Once the system model has been loaded into the simulator, the elements of the
system model, e.g. a task and its attributes, a resource and its attributes etc.,
cannot be modified. Therefore a graphical user interface can be provided to view or
modify the elements of the system model.

The input of the simulator is file based. Thus, an XML file is prepared and provided
as a system model to the simulator. Therefore, all the elements in the system model

103

11. Conclusion and Future Work

need to be provided explicitly. The automatic task generation functionality can be
provided for the simulator so that an arbitrary number of tasks, resources and cores
can be generated from the necessary configuration for the simulation. The necessary
configuration for the task, resource and core generation can be provided by the user
explicitly before the system model generation.

The performance evaluation is still missing in the updated version of the simulator,
which may be an attractive feature that will compare the performance of the different
scheduling algorithms. A task set can be scheduled under two different scheduling
algorithms and then the performance can be evaluated according to some predefined
metric displaying the results to the user, it can be either in a text or graphical
format.

104

Bibliography

[1] James H Anderson and Anand Srinivasan. Early-release fair scheduling. In
Real-Time Systems, 2000. Euromicro RTS 2000. 12th Euromicro Conference
on, pages 35–43. IEEE, 2000.

[2] James H Anderson and Anand Srinivasan. Mixed pfair/erfair scheduling of
asynchronous periodic tasks. In Real-Time Systems, 13th Euromicro Conference
on, 2001., pages 76–85. IEEE, 2001.

[3] Björn Andersson, Sanjoy Baruah, and Jan Jonsson. Static-priority schedul-
ing on multiprocessors. In Real-Time Systems Symposium, 2001.(RTSS 2001).
Proceedings. 22nd IEEE, pages 193–202. IEEE, 2001.

[4] Neil C Audsley, Alan Burns, Mike F Richardson, and Andy J Wellings. Real-
time scheduling: the deadline-monotonic approach. In in Proc. IEEE Workshop
on Real-Time Operating Systems and Software. Citeseer, 1991.

[5] Neil C Audsley, Alan Burns, Robert I Davis, Ken W Tindell, and Andy J
Wellings. Fixed priority pre-emptive scheduling: An historical perspective.
Real-Time Systems, 8(2-3):173–198, 1995.

[6] Theodore P. Baker. Stack-based scheduling of realtime processes. Real-Time
Systems, 3(1):67–99, 1991.

[7] Theodore P Baker. A comparison of global and partitioned edf schedulability
tests for multiprocessors. In In International Conf. on Real-Time and Network
Systems. Citeseer, 2005.

[8] M. Barr. Embedded systems glossary, 2007. URL http://www.barrgroup.
com/Embedded-Systems/Glossary.

[9] Sanjoy K Baruah, Aloysius K Mok, and Louis E Rosier. Preemptively schedul-
ing hard-real-time sporadic tasks on one processor. In Real-Time Systems Sym-
posium, 1990. Proceedings., 11th, pages 182–190. IEEE, 1990.

[10] Sanjoy K Baruah, Louis E Rosier, and Rodney R Howell. Algorithms and
complexity concerning the preemptive scheduling of periodic, real-time tasks
on one processor. Real-Time Systems, 2(4):301–324, 1990.

105

http://www.barrgroup.com/Embedded-Systems/Glossary
http://www.barrgroup.com/Embedded-Systems/Glossary

Bibliography

[11] Sanjoy K Baruah, Johannes E Gehrke, and C Greg Plaxton. Fast scheduling
of periodic tasks on multiple resources. In Parallel Processing Symposium,
International, pages 280–280. IEEE Computer Society, 1995.

[12] Sanjoy K Baruah, Neil K Cohen, C Greg Plaxton, and Donald A Varvel. Pro-
portionate progress: A notion of fairness in resource allocation. Algorithmica,
15(6):600–625, 1996.

[13] Marko Bertogna, Michele Cirinei, and Giuseppe Lipari. Schedulability analy-
sis of global scheduling algorithms on multiprocessor platforms. Parallel and
Distributed Systems, IEEE Transactions on, 20(4):553–566, 2009.

[14] Aaron Block, Hennadiy Leontyev, Björn B Brandenburg, and James H Ander-
son. A flexible real-time locking protocol for multiprocessors. In Embedded
and Real-Time Computing Systems and Applications, 2007. RTCSA 2007. 13th
IEEE International Conference on, pages 47–56. IEEE, 2007.

[15] Björn B Brandenburg and James H Anderson. Optimality results for multi-
processor real-time locking. In Real-Time Systems Symposium (RTSS), 2010
IEEE 31st, pages 49–60. IEEE, 2010.

[16] Björn B Brandenburg, Hennadiy Leontyev, and James H Anderson. An
overview of interrupt accounting techniques for multiprocessor real-time sys-
tems. Journal of Systems Architecture, 57(6):638–654, 2011.

[17] A. Burns and A. Wellings. Real-Time Systems and Programming Languages.
Addison Wesley, MA, 4th edition, 2009.

[18] G. Buttazzo. Hard Real-Time Computing Systems Predictable Scheduling Al-
gorithms and Applications. Springer, Berlin, Germany., 2nd edition, 2005.

[19] John Carpenter, Shelby Funk, Philip Holman, Anand Srinivasan, James Ander-
son, and Sanjoy Baruah. A categorization of real-time multiprocessor scheduling
problems and algorithms. Handbook on Scheduling Algorithms, Methods, and
Models, pages, pages 30–1, 2004.

[20] Chia-Mei Chen, Satish K Tripathi, and Alex Blackmore. A resource synchro-
nization protocol for multiprocessor real-time systems. In Parallel Processing,
1994. Vol. 1. ICPP 1994. International Conference on, volume 3, pages 159–
162. IEEE, 1994.

[21] Sadegh Davari and Sudarshan K Dhall. An on line algorithm for real-time tasks
allocation. In RTSS, pages 194–200, 1986.

[22] Robert I. Davis and A. Burns. A survey of hard real-time scheduling for mul-
tiprocessor systems. ACM Computing Surveys, 43(4):1–44, October 2011.

[23] Robert I Davis, Attila Zabos, and Alan Burns. Efficient exact schedulability
tests for fixed priority real-time systems. Computers, IEEE Transactions on,
57(9):1261–1276, 2008.

106

Bibliography

[24] ML Dertouzos. Control robotics: the procedural control of physical processes,"
information processing 74, 1974.

[25] Umamaheswari C Devi. Soft real-time scheduling on multiprocessors. PhD
thesis, University of North Carolina, 2006.

[26] UmaMaheswari C Devi, Hennadiy Leontyev, and James H Anderson. Efficient
synchronization under global edf scheduling on multiprocessors. In Real-Time
Systems, 2006. 18th Euromicro Conference on, pages 10–pp. IEEE, 2006.

[27] Sudarshan K Dhall and CL Liu. On a real-time scheduling problem. Operations
Research, 26(1):127–140, 1978.

[28] Colin J. Fidge. Real-time schedulability tests for preemptive multitasking. Real-
Time Systems, 14(1):61–93, 1998.

[29] Paolo Gai, Giuseppe Lipari, and Marco Di Natale. Minimizing memory utiliza-
tion of real-time task sets in single and multi-processor systems-on-a-chip. In
Real-Time Systems Symposium, 2001.(RTSS 2001). Proceedings. 22nd IEEE,
pages 73–83. IEEE, 2001.

[30] Mike Holenderski. Real-time system overheads: a literature overview. Computer
Science Report, 8:26, 2008.

[31] Philp L. Holman. On the Implementation of Pfair-scheduled Multiprocessor
Systems. Phd thesis, Chapel Hill, 2004.

[32] Kevin Jeffay and Donald Stone. Accounting for interrupt handling costs in
dynamic priority task systems. In Real-Time Systems Symposium, 1993., Pro-
ceedings., pages 212–221. IEEE, 1993.

[33] J. T. Kao and A. P. Chandrakasan. Dual-threshold voltage techniques for low-
power digital circuits. IEEE Journal of Solid-State Circuits, 35:1009–1018, July
2000.

[34] Karthik Lakshmanan and Ragunathan Rajkumar. Scheduling self-suspending
real-time tasks with rate-monotonic priorities. In Real-Time and Embedded
Technology and Applications Symposium (RTAS), 2010 16th IEEE, pages 3–12.
IEEE, 2010.

[35] John P Lehoczky. Fixed priority scheduling of periodic task sets with arbitrary
deadlines. In RTSS, volume 90, pages 201–209, 1990.

[36] Joseph Y-T Leung and MLMerrill. A note on preemptive scheduling of periodic,
real-time tasks. Information processing letters, 11(3):115–118, 1980.

[37] C. L. Liu. Scheduling algorithms for multiprocessors in a hard real-time envi-
ronment. JPL Space Programs Summary, 37–60:28–31, 1969.

107

Bibliography

[38] Chung Laung Liu and James W Layland. Scheduling algorithms for multipro-
gramming in a hard-real-time environment. Journal of the ACM (JACM), 20
(1):46–61, 1973.

[39] Cong Liu and James H Anderson. Task scheduling with self-suspensions in soft
real-time multiprocessor systems. In Real-Time Systems Symposium, 2009,
RTSS 2009. 30th IEEE, pages 425–436. IEEE, 2009.

[40] J. W. S. Liu. Real Time Systems. Prentice Hall, Englewood Cliffs, NJ., 2000.

[41] Peter Munk. Visualization of scheduling in real-time embedded systems. Master
thesis, University of Stuttgart, 2013.

[42] Geoffrey Nelissen, Dragomir Milojevic, and Joël Goossens. Efficient Optimal
Multiprocessor Scheduling Algorithms for Real-Time Systems. PhD thesis, PhD
thesis, Université Libre de Bruxelles, 2013.

[43] Farhang Nemati. Partitioned Scheduling of Real-Time Tasks on Multi-core Plat-
forms. School of Innovation, Design and Engineering, Mälardalen University,
2010.

[44] Nimal Nissanke. Realtime systems. Prentice-Hall, Inc., 1997.

[45] Ragunathan Rajkumar. Synchronization in real-time systems: A Priority In-
heritance Approach. Kluwer Academic Publishers, 1991.

[46] Ragunathan Rajkumar, Lui Sha, and John P Lehoczky. Real-time synchroniza-
tion protocols for multiprocessors. In RTSS, pages 259–269, 1988.

[47] Frederic Ridouard, Pascal Richard, and Francis Cottet. Negative results for
scheduling independent hard real-time tasks with self-suspensions. In Real-
Time Systems Symposium, 2004. Proceedings. 25th IEEE International, pages
47–56. IEEE, 2004.

[48] Frédéric Ridouard, Pascal Richard, Francis Cottet, and Karim Traore. Some
results on scheduling tasks with self-suspensions. Journal of Embedded Com-
puting, 2(3):301–312, 2006.

[49] Ismael Ripoll, Alfons Crespo, and Aloysius K Mok. Improvement in feasibility
testing for real-time tasks. Real-Time Systems, 11(1):19–39, 1996.

[50] K. Roy, S. Mukhopadhyay, and H. Mahmoodi-Meimand. Leakage current mech-
anisms and leakage reduction techniques in deep-submicrometer cmos circuits.
Proceedings of the IEEE, 91(2):305–327, February 2003.

[51] Lui Sha, Ragunathan Rajkumar, and John P Lehoczky. Priority inheritance
protocols: An approach to real-time synchronization. IEEE Transactions on
computers, 39(9):1175–1185, 1990.

108

Bibliography

[52] Robert E Shannon. Introduction to the art and science of simulation. In
Proceedings of the 30th conference on Winter simulation, pages 7–14. IEEE
Computer Society Press, 1998.

[53] Ian Sommerville. Software Engineering. Addison Wesley, 9 edition, 2011.

[54] A. Srinivasan, P. Holman, J. Anderson, and S. Baruah. The case for fair multi-
processor scheduling. Proceedings of the 11th International Workshop on Par-
allel and Distributed Real-time Systems, 2003.

[55] Anand Srinivasan. Efficient and Flexible Fair Scheduling of Real-time Tasks on
Multiprocessors. Phd thesis, Chapel Hill, 2003.

[56] Ken Tindell and John Clark. Holistic schedulability analysis for distributed
hard real-time systems. Microprocessing and microprogramming, 40(2):117–
134, 1994.

[57] David A Wood and Mark D Hill. Cost-effective parallel computing. Technical
report, DTIC Document, 1994.

[58] Jianjia Wu, Jyh-Charn Liu, and Wei Zhao. On schedulability bounds of static
priority schedulers. In Real Time and Embedded Technology and Applications
Symposium, 2005. RTAS 2005. 11th IEEE, pages 529–540. IEEE, 2005.

[59] K.-S. Yeo and K. Roy. Low Voltage, Low Power VLSI Subsystems. McGraw-
Hill, Inc, New York, NY, USA, 1 edition, 2005.

109

List of Figures

2.1 State transitions of a real-time task 19

4.1 An overview of the system, software design [41] 25
4.2 An overview of the system model . 27

10.1 The simulation result of a task set scheduled under RMS where some
tasks contain self-suspension delays. 96

10.2 The simulation result of a task set scheduled under EDF where a task
contains a non-preemptive section. 96

10.3 An example task set taken from Baruah et al. [12] is scheduled using
algorithm PF. The task set only contains execution without using any
resource. 97

10.4 The same task set scheduled under PD, which has been scheduled
under PF in the previous simulation, figure 10.3. 97

10.5 The simulation result of a task set scheduled under PF with shared
resources. 98

10.6 The notification of the violation of Pfair lag constraint due to task
being blocked to access shared resources. 98

10.7 The simulation result of a task set scheduled under GSN-EDF with
the default resource access protocol. 99

10.8 The simulation result of a task set scheduled under GSN-EDF with
FMLP where a task gets blocked while accessing a shared resource
that is a long resource. The resource is free but the group to which
this resource belongs to is locked by another task, thus, the requested
task is blocked. 99

10.9 The simulation result of a task set scheduled under P-EDF with the
default resource access protocol. 100

110

List of Tables

4.1 The attributes of the task model with a default value and short de-
scription . 29

4.2 The attributes of the core model with default value and short description 31
4.3 The attributes of the resource model with default value and short

description . 32

5.1 Schedulability analysis summary . 43

8.1 Algorithm PF . 62
8.2 Task categorization used by the algorithm PD 65

111

Listings

9.1 Update all tasks in the task model by setting up the executionTime
attribute . 73

9.2 Checking the period and deadline of every task is not zero, if zero
then schedulability analysis will not be done 74

9.3 Checking the necessary condition for schedulability 75
9.4 Exact schedulability analysis without task synchronization for shared

resource access inside CheckSystemModel() 76
9.5 Blocking time calculation for simple priority inheritance 76
9.6 Blocking time calculation for priority ceiling protocol 76
9.7 Schedulability analysis with task synchronization for shared resource

access inside CheckSystemModel() 76
9.8 Exact schedulability analysis for EDF without task synchronization

for shared resource access inside CheckSystemModel() 77
9.9 Representing self-suspension in the system model 78
9.10 Creation of TerminateSelfSuspensionJob from TaskMonitor 78
9.11 Representing non-preemptive section in the system model 79
9.12 Checking non-preemptive execution inside the dispatch method of the

scheduler taken from global-EDF . 80
9.13 Task partitioning in the system model for multiprocessor partitioned

scheduling approach . 80
9.14 P-EDF initializes a single core EDF algorithm for each core 81
9.15 Generating a dispatch job from Pfair for every time unit t 82
9.16 Calculation of characteristic string in Pfair 83
9.17 Categorize tasks into urgetTasks, tnegruTasks and contendingTasks 83
9.18 Calculating six parameters for the implementation of algorithm 1,

NaiveCompare [12] . 84
9.19 Updating lag multiplied by period value when a task is scheduled [12] 85
9.20 Updating lag multiplied by period value when a task is not scheduled

[12] . 85
9.21 Calculate PD attributes for heavy tasks 86
9.22 Calculate PD attributes for light tasks 86
9.23 Dispatch method calls itself to process ready tasks 90
9.24 Resource nested type in RequestResource and ReleaseResource . . 90
9.25 Providing resource group in the system model 91
9.26 Update ResourceManager on FMLP group lock 91

112

Listings

9.27 Update ResourceManager on FMLP group lock release 91

113

Abbreviations

CSIs Cycle-stealing Interrupts

DIs Device Interrupts
DMS Deadline Monotonic Scheduling

EDF Earliest Deadline First
EMF Eclipse Modeling Framework

FIFO First In First Out
FMLP Flexible Multiprocessor Locking Protocol

G-EDF Global Earliest Deadline First
GPS Global Positioning System
GSN-EDF Global Suspendable Non-Preemptive EDF

IPIs Inter-processor Interrupts
ISR Interrupt Service Routine

MPCP Multiprocessor Priority Ceiling Protocol
MRI Magnetic Resonance Imaging
MSRP Multiprocessor Stack Resource Protocol

NMIs Non Maskable Interrupts

P-DMS Partitioned Deadline Monotonic Scheduling
P-EDF Partitioned Earliest Deadline First
Pfair Proportionate Fairness

RCP Rich Client Platform
RMS Rate Monotonic Scheduler

SAVORS Simulation And Visualization of Real-time Scheduling

TIs Timer Interrupts

UML Unified Modeling Language

WCET Worst Case Execution Time

114

	Introduction
	Motivation
	Previous Work
	Contributions
	Organization

	Definitions
	An Embedded System
	A Real-Time System
	Classification of Multiprocessor Systems
	Tasks
	Periodicity
	Deadlines
	State Transitions

	Schedulability Tests

	Project Management and Software Engineering
	Project Management
	Software Engineering
	System Prototyping
	Incremental Delivery
	Continuous Integration

	Design
	System Model
	Tasks
	Commands
	Resource Usage

	Cores
	Resources
	Events

	Simulation Parameters
	Simulator
	Task Monitor
	Resource Monitor
	Exception Handling

	Schedulability Analysis
	Utilization Based Schedulability Analysis
	Rate Monotonic Scheduling
	Deadline Monotonic Scheduling
	Earliest Deadline First

	Response Time Analysis
	Exact Schedulability Test
	Sufficient Schedulability Test

	Demand Bound Analysis
	Summary

	Self Suspension, Non-Preemptive Execution and Interrupt Handling
	Self Suspension
	Non-Preemptive Execution
	Interrupt Handling

	Scheduling on Multiprocessor Systems
	Taxonomy of Multiprocessor Scheduling Algorithms
	Allocation
	No Migration
	Task Level Migration
	Job Level Migration

	Priority
	Fixed Task Priority
	Fixed Job Priority
	Dynamic Priority

	Work-conserving and non-work-conserving

	Schedulability, Feasibility and Optimality
	Multiprocessor Scheduling Approaches
	Partitioned Scheduling
	Global Scheduling
	Hybrid Scheduling

	Resource Sharing

	Multiprocessor Scheduling Policies
	Partitioned Earliest Deadline First
	Proportionate Fairness
	Algorithm PF
	The Comparison Algorithm
	A Naive Implementation
	An Efficient Implementation

	Algorithm PD

	Multiprocessor Resource Access Protocol
	The GSN-EDF Algorithm
	Flexible Multiprocessor Locking Protocol
	Resource Request Rules
	Blocking under GSN-EDF with FMLP

	Implementation
	Schedulability Analysis
	Utilization Based Analysis
	Response Time Analysis
	Demand Bound Analysis

	Self Suspension
	Non-preemptive Execution
	Partitioned EDF
	Proportionate Fairness
	Algorithm PF
	Algorithm PD

	Global Suspendable Non-Preemptive EDF
	Flexible Multiprocessor Locking Protocol
	Clusters and Group of Task

	Validation, Test and Results
	Validation and Test
	Development Testing
	Unit Testing
	Component Testing
	System Testing

	Results

	Conclusion and Future Work
	Conclusion
	Future Work

	Bibliography
	List of Figures
	List of Tables
	List of Listings
	Abbreviations

