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Abstract

Corpora contain linguistically annotated data. Producing these annotations is a complex
process that easily leads to inconsistencies within the annotation. Since corpora are used to
evaluate automatic language processing systems the evaluation may suffer when there are too
many errors within the data.

This thesis focuses on finding erroneous annotations within corpora. To detect sequence
annotation errors within part-of-speech tags we implemented the algorithm introduced by
Dickinson and Meurers (2003). Additionally for structured annotations we choose the approach
shown in Boyd et al. (2008) that targets inconsistency within dependency structures.

We designed and built a graphical user interface (GUI) that is easy to handle and user-friendly.
Implementing state-of-the-art algorithms for error detection with an user-friendly interface
increase the operation domain because the algorithms can be used by a wider audience without
deeper knowledge of computers. It provides even non-expert users with the capability to find
inconsistent pos tags and dependency structures within a corpus. We evaluate the system
using the German TIGER corpus and the English Penn Treebank. For the TIGER corpus we
also perform a manual evaluation where we sample 115 6-grams and check manually if these
contain errors. We find that 94.96% are erroneous and it is easy to decide the correct tag as a
human. For 4.20% we can say that these are errors but determining the correct tag is very to
difficult. In total we detect errors with a precision of 99.16%. Only one case (0.84%) is not
caused by inconsistency but constitutes genuine ambiguity.
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1 Introduction and Motivation

Processing language requires a format to store text with useful information needed by linguists.
These datasets are called corpus. They contain structured language data of texts with linguistic
mark-up. For example words may have one or more of the following information assigned:
part-of-speech, lemma, morphology,... Corpora are important for evaluating algorithms and
methods. The evaluation quality depends on the given corpus. Therefore it is preferable that
the corpus data an algorithm is evaluated against has only few inconsistencies. In this thesis
we will work with algorithms that may help detecting these errors to assists human annotators
in finding and correcting them.

We distinguish between gold- and system-annotated data. Gold annotated data is produced
by humans, or to be more general the last decision which tag is assigned is done by human
annotators. An example for a gold standard corpus is the German TIGER Corpus (Brants
et al., 2004) and for English the Penn Treebank (Marcus et al., 1993) or the British National
Corpus (BNC) (Geoffrey et al., 1994). To evaluate our implementation we used the TIGER
Corpus and Penn Treebank.

Annotating a corpus involves different human annotators. The assumption that all annotators
assign every time the correct part-of-speech tag hold for simple constructions where the
annotation scheme is clear. But language is ambiguous and for one wordform the annotation
rules may allow more than one tag for the same context. Additionally, inconsistency may be
introduced by human errors.

If annotation is done by humans the decision for the correct tag may be less complicated.
While reading a sentence they subconsciously use information about the context and the
meaning of the sentence to determine the correct tag. Besides that they may have specific
language domain knowledge about the corpus. Nevertheless there is no guarantee that all
annotators pick the same tag in the same context.

Ratnaparkhi (1996) runs a consistency check on the Wall Street Journal (WSJ) looking at
words and how they were tagged by different annotators. He shows that human annotators
may introduce inconsistency because there is no guarantee that once the annotator corrects
something this correction is applied every time it appears in the corpus. The resulting corpus
may contain different annotations for one specific word usage.

An example of how difficult a tagging decision can be shows Example 1.1. The word Press
could be tagged as NN (noun, singular or mass) or NNP (noun, proper singular).
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1 Introduction and Motivation

(1.1) The
DT
DT

White
NNP
NNP

House
NNP
NNP

Press
NN
NNP

Secretary
NN
NN

.

.

.

Another example can be found in Example 1.2. The sentence occurs twice in the Penn Treebank.
One time married is tagged VBN (verb, past participle) and in the other case JJ (adjective).

(1.2) The margin of error for subgroups – for example, married women with children at
home – would be larger.

Example 1.3 shows one sentence (of the German TIGER Corpus) where Braque, the surname
of “Georges Braque” (french painter and developer of the art style cubism), is tagged as NE
(in total we found 12 sentences where Braque is tagged as NE). But there is one sentence
(Example 1.4) where Braque has misleadingly been tagged NN.

(1.3) 1 of 12 occurences where Braque is tagged as NE (proper noun)

• 1908 malt Braque, noch ganz unter dem Einfluß Cézannes, im südfranzösischen
L’Estaque die ersten Bilder mit kubisch vereinfachten Formen und einer auf Grün,
Braun und Ocker reduzierten Palette.

(1.4) Braque misleadingly tagged as NN (common noun)

• Der Kubismus, für Picasso letztlich ein Intermezzo, bleibt für Braque die
wegweisende Entdeckung, die es ermöglicht, “nicht eine anekdotische Tatsache
wiederzugeben, sondern eine malerische Tatsache zu geben”.

All these words have something in common: they have more than one tag assignment in the
corpus. Words with more than one tag may occur because of the following two possibilities as
Dickinson and Meurers (2003) pointed out: First there is language ambiguity allowing multiple
tags for one wordform which will lead to variation. Secondly there is an erroneous tagging
which means that one word has at least two different tag assignments across comparable corpus
instances. But it is not sufficient just to look at a single word when determining the correct
tag as we show this in Example 1.5 and Example 1.6. The word vage has two different pos
tags ADJA and ADJD. Both tags are proper for the given context. The variation is caused by
genuine language ambiguity.
To determine if the tagging was erroneous we need comparable instances, which means the
word can be found in at least two or more sentences within the same word context.

(1.5) 1 of 3 occurences vage tagged as ADJA:

• Zwar gibt es vage Pläne, die Kopenhagener Anlage mit der Kockums-Werft im
schwedischen Malmö zu fusionieren.

(1.6) 1 of 7 vage tagged as ADJD:

• Die Ankündigung für das California Institute for European-American Relations
liest sich ehrenwert und etwas vage, und so klingt es auch aus den Mündern der
Beteiligten.
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In Error mining, we are interested in finding the second case, the incorrectly assigned tags for
one word within the same context. But detecting these annotation errors is challenging and
for huge datasets this can only be done assisted by a computer. An algorithm to automatically
detect annotation errors was introduced by Dickinson and Meurers (2003) for part-of-speech
tags (henceforth pos tags) and was adapted later to dependency structures as well (proposed
in Boyd et al. (2008)). The authors use variation within n-grams. N-Grams are used to map
the same contexts together which is important since we want to compare strings only when
they occur in the same context. A uni-gram is called a variation nucleus, if it has at least two
different tag assignments. A list containing all nuclei in the entire corpus is generated during
the algorithm initialization. This list is used to discover the longest n-grams for each nucleus.
Bi-grams, or larger n-grams may contain more than just one nucleus. The n-grams generated
with at least one nucleus are expected to be possible error candidates. Filter heuristics are
further used to increase the precision of the algorithm.

Figure 1.1: Error mining result presentation for the 3-gram <in den Alpen>. N-gram
coloured green, variation nucleus is marked red.

Most of the tools for finding errors are script based (pearl, python,...) and have no graphical
user interface. Using them requires some expertise since there must be knowledge of the
particular script language to execute them. Likewise the results are often unclear to non-expert
users, because the script’s output is often only text with numbers and words which is difficult
for humans to read and interpret.

This thesis focuses on finding differently tagged words in a treebank for part-of-speech tags
and for dependency structures, using the algorithm proposed in (Dickinson, 2005, p. 33-39).
Secondly, we build a clear graphical user interface (GUI) to help the user error-mine his corpus,
with only a few mouse interactions. We build the program “office” look-a-like so that the menu
structure is clear and handling can be adopted from known programs. Besides the algorithm
implementation itself we integrated both algorithms into the ICARUS search engine introduced
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1 Introduction and Motivation

by Gärtner et al. (2013) to allow an easy usage and clear structured result presentation of the
prospect error candidates.

The developed error-mining plug-in lets the user interact graphically with the error mining
algorithms without the need of a specific script language and produces a graphical output of
the data. We implemented an n-gram structure that contains information about all sentences
where a given n-gram occurs and stores information about all nuclei within. This is essential
for the result highlighting we do later on. An example screenshot of the program is shown in
Figure 1.1.

We developed a query mechanism that uses lookup tables to allow the user to redefine/overwrite
existing tags during the search process. Modifying tags allows more general results e.g. by
mapping all verb pos-tags (VVFIN, VVIMP, VVINF,...) to a simple verb-tag. Such a mapping
is useful to detect words which were tagged as verbs but cannot be verbs since all words which
are tagged as verbs can be found within the specified verb-tag class.

ICARUS is a fully portable application (only requirement installed Java 1.71 or higher) and is
an easy way to provide non-expert users with a stable environment to work with the error
mining plug-in. This thesis shows an easy way to detect erroneous tagged items in corpora
within just a few mouse clicks.

The evaluation was done using the implemented algorithms with different parameters, for
part-of-speech and dependency structure error mining. For German we used the TIGER
Corpus and for English the training part of the Penn Treebank. We modified tags during the
search to generalize or restrict the results to one phenomenon. Last we did manual evaluation
where we sampled a fixed number of n-grams the algorithm delivered and manually determined
if these are true errors, language ambiguity, or too difficult to determine the correct tag. We
find out that our algorithm works with a precision of 99.16%.

The thesis is organized as follows: Chapter 2 introduces Dickinson’s error detection algorithm
for part-of-speech tags proposed in (Dickinson, 2005, p. 33-34). It also presents the error
detection algorithm for dependency structures introduced by Boyd et al. (2008) and describes
the implementation of both algorithms. We also describe the new features e.g. the tag query
editor or the number replacement option. In Chapter 3, we evaluate the algorithm using the
German TIGER Corpus and the English Penn Treebank. The evaluation was done using
part-of-speech and dependency structure error mining. For the German TIGER Corpus we
also carried out a manual evaluation. In Chapter 4, we discuss other work and how it relates
to our own. We conclude with Chapter 5 including a short outlook on future work.

1www.java.com/de/download/
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2 Graphical Error Mining

As we mentioned before in the introduction, corpora may contain inconsistencies and finding
these is difficult. One possibility is to hire a few annotators and let them validate a corpus and
then decide the correct tag by majority decision. But this would be a very expensive process.
We need automated systems that assist us in finding errors or at least deliver us with a set of
possible error candidates that can be reviewed manually.

At this point we want to introduce our automated error mining pipeline. The Figure 2.1
shows a simplified overview of the error mining process as it is implemented. The user chooses
between the search-modes for error mining (part-of-speech / dependency structures) then
specifies the target corpus. Secondly, further constraints can be set using the query editor (see
Figure 2.5). These queries are used to redefine tags during the execution but do not change
the treebank data. Finally search parameters can be set. When all desired settings are made
the search can be executed.

Figure 2.1: Workflow error mining

The illustration in Figure 2.2 show an instance of the error mining search. Before starting a
new error mining search, in the upper left of the window, the type must be set (error mining
dependency structure or part-of-speech). Afterwards the target corpus is specified.
In this example we did not specify a query. Finally the search parameter (detailed options are
explained in Section 2.5.5). The program is very close to the error pipeline as described above
to keep the error mining process as simple as possible.

The right part of the window shows the resulting dependency graph for the first sentence that
include the variation 3-gram <in den Alpen, {APPR ART NE}>. The nucleus <Alpen> is
colored red, <in den> is coloured green since it is part of the 3-gram but has no variation.
Below the graph is a list containing all sentences with one n-gram. By clicking on the other
sentences the corresponding result graph including the appropriate highlight will show up.

In the following Section 2.1 we give a general description of the error mining algorithm
introduced by (Dickinson, 2005, p. 33-38). In Section 2.2 we talk about the use of n-grams and

13



2 Graphical Error Mining

Figure 2.2: Screenshot Error Mining Search Perspective

their benefits for error mining. After that we will discuss our implementation for part-of-speech
tags (Section 2.3) and dependency structure error mining (Section 2.4). In the final part of
this chapter we will talk about the filters, query editor and further search parameters.

2.1 Error Mining Algorithm

Before we go into details we describe the general idea behind the algorithm described in
Dickinson and Meurers (2003). The authors use a simple algorithm to compare two strings and
find variation between pairs of <wordform, tag> (tag = e.g. part-of-speech). Variation occurs
if one type has at least two different tags assigned <type,{taga, tagb}> (taga 6= tagb) in the
same corpus. Wordforms with variation are named variation nuclei (uni-gram). The Example
2.1 shows a slice of a sentence and below each word the corresponding part-of-speech tag. The
word higher is a variation nucleus since it has two different tags assigned. Our notation would
be <higher, {JJR (adjective, comperative), RBR (adverb, comperative) }>.

14



2.2 N-Grams

(2.1) share
NN

prices
NNS

closed
VBD

higher
JJR/RBR

in
IN

Finding these variations is not limited to part-of-speech tags, the possibility for adapting
the algorithm was shown for dependency structures by Boyd et al. (2008) or discontinuous
structures proposed in Dickinson and Meurers (2005). The necessary changes to use the
algorithm for dependency structures will be explained later in Section 2.4.

As we mentioned in chapter 1 using only uni-grams in the error mining process is not sufficient
because of language ambiguity (shown in Example 1.4, 1.5 and 1.6). We need to find variation
that occurs within the same context. If one word form occurs twice within the same context,
and has at least two different tag assignments the probability that this was caused by erroneous
tagging is higher than only looking at the nucleus itself. To discover varying tags in the same
context Dickinson uses n-grams which we will explain in the next section.

2.2 N-Grams

For each sentence the algorithm tries to build the longest varying n-gram which is equivalent to
the largest matching context. An n-gram is a sequence of tokens. The n-gram length grows for
each iteration step. Depending on its size we speak of a uni-gram (1-gram), bi-gram (2-gram),
tri-gram (3-gram) and so on. The (n+1)-grams are build incremental using the n-grams. The
largest possible n-gram for each sentence is limited by the number of words per sentence.
SentenceLength = |Sentence|

Dickinson (2005) states that if we can create the (n+1)-gram of a given n-gram and if this
(n+1)-gram still full-fills the constraint that there is still variation within the (n+1)-gram, its
sufficient to continue the algorithm using only the (n+1)-grams for the n+2 iteration.

Assume we have two different sentences A and B and ax = WordformAtIndex(x) as stated
in 2.2:

(2.2)
A : (a1, ..., a|A|)
B : (b1, ..., b|B|)

These two sentences contain one nucleus N (one type with at least two different tag assignments
as shown in 2.3):

(2.3)
NA ∈ a1, ..., a|A|

NB ∈ b1, ..., b|B|

Both nuclei have different tags but the same wordform.

(2.4) Tag(aNA
) 6= Tag(aNB

) and aNA
= aNB

15



2 Graphical Error Mining

The first assumption in 2.4 ensures that the assigned tags are different for sentence A and
B whereas the second ensures that the wordform is equal (definition for variation nucleus).
The algorithm would try to find the largest common n-gram for sentence A and B. Therefore
it extends both nuclei to the left (L) and/or right (R) until we reach the start/end of the
sentence A or B (see 2.5) or until we have no longer the same context.

(2.5)
Sentence start: L < NA, L < NB

Sentence end: R + NA < |A|, R + NB < |B|

The largest varying n-gram (with the same context) we can find is:

(2.6) n− gramA = (aNA−L, ...aNA
, ...aNA+R) = (bNB−L, ...bNB

, ...bNB+R) = n− gramB

It follows that every smaller n-gram’ is part of the largest n-gram (see 2.7 ):

(2.7)

Sentence start’: L′ < L < NA, L′ < L < NB

Sentence end’: R′ < R + NA < |A|, R′ < R + NB < |B|
n− gram′A = (aNA−L′ , ...aNA

, ...aNA+R′) = (bNB−L′ , ...bNB
, ...bNB+R′) = n− gram′B

⇒ (n− gram′A = n− gram′B) ⊆ (n− gramA = n− gramB) �

We have shown that the resulting (n+1)-gram always covers the smaller n-gram (no information
is lost). This is important when running the algorithm. It is sufficient when generating the
(n+1)-grams to only use all n-grams from the immediately proceeding step, i.e. to create the
(n+2)-grams using only the (n+1)-grams and so on.

N-grams are used to find words within the same context, and as we already mentioned before
for larger contexts the probability that we have found an error is higher. This fact is useful
when examining the results because it may be enough to start with the largest n-grams per
sentence that the algorithm has found for one variation nucleus to detect errors. However,
sometimes smaller n-grams must be reviewed as well. This may occur when no “number
wildcards” (introduced in Section 2.5.2) are used and therefore sentences which contain the
same words but different numbers no longer have the same context. We will show this during
the evaluation in section 3.1.2.

The Example 2.8 shows that every (n+1)-gram contains its parent n-grams. We picked an
11-gram from the German TIGER Corpus (Example 2.8 a) with the variation nucleus (bold)
“enger”. Below each word are the corresponding part-of-speech tags and the translation. The
nucleus “enger” has two tag-assignments ADJD (adjective, adverbial or predicative) and
ADJA (adjective, attributative). This 11-gram contains two variation 10-grams. They can be
reconstructed by elimination of the first b) or last word c) of the variation 11-gram shown in
Example 2.8 a).
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2.3 Part-Of-Speech Error Mining

(2.8) a) insbesondere
ADV
particularly

der
ART
the

Gefahr
NN
risk

einer
ART
of

weltweiten
ADJA
global

Klimakatastrophe
NN
climate catastrophe

,
$,
,

besteht
VVFIN
there is

ein
ART
a

enger
ADJD/ADJA
close

Zusammenhang
NN
connection

b) der Gefahr einer weltweiten Klimakatastrophe , besteht ein enger Zusammenhang

c) insbesondere der Gefahr einer weltweiten Klimakatastrophe , besteht ein enger

2.3 Part-Of-Speech Error Mining

Part-Of-Speech tags are used for grammatical classification of words. The most simple tag
assignments would be to classify words using the following classes: noun, verbs, adjectives or
adverbs. However pos-tags used by linguists are wider partitioned and use sub-categories as
well (e.g. verbs can be partitioned by their tenses, numerus,...). The decision which tag is
assigned depends on the word definition (morphology) and the surrounding context (syntax).

Part-of-speech tags are assigned to every token (words and punctuation marks) within a
sentence. Example pos-tag sets can be found in the appendix for both treebanks that we will
use later on.

We start with the part-of-speech error-mining implementation (The dependency structures
algorithm is slightly different. Details will be explained in Section 2.4). It is based on
(Dickinson, 2005, p. 33-34) which is an instance of the a priori algorithm proposed in Agrawal
and Srikant (1994).

During initialization (Alg. 2.1 line 2-6) the algorithm reads the whole corpus. All tokens
are stored with their corresponding pos-tags. This is done by the StoreTags() method. The
StoreTags() method distinguishes between three cases and works the following way:

1. For a given token there exists no entry within the ngramlist. We just add the <to-
ken,{tag}> pair to the ngramlist (line 15-18).

2. The <token,{tag}> combination is already in our list. Then we have to increase the
occurrence count for the given tag (line 9-10).

3. The token is already in the ngramslist but the given tag was never assigned before (line
11-13). In this case the algorithm will expand the current tag-set with the new tag using
the ExpandTag() method. Expanding the tag-set by a second tag leads to variation.

After the initialization and after each further n-gram processing step, the “variation filter”
method (Alg. 2.2) is applied to the ngramlist. It checks if there is any word with more than
one tag assignment (line 3). Other pairs (which have exactly one tag) are dropped because
they have no variation. The resulting ngramlist contains all uni-grams (1-grams) of the given
input corpus with at least two different tag assignments.
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2 Graphical Error Mining

Algorithm 2.1 Initialization for part-of-speech Error Mining:
tagOccurenceCount (tOC), numberOfDifferentTags (nODT)

1: ngramlist = null;

2: procedure initializeTags(corpus,parameters)
3: for all tokens ∈ corpus do
4: StoreTags(token, postag)
5: end for
6: end procedure

7: procedure StoreTags(ngramlist,token,postag )
8: if token ∈ ngramlist then
9: if postag == AlreadyKnownTag then

10: tOCnew = tOCold + 1
11: else
12: nODTnew = nODTold + 1
13: ExpandTag(tagnew)
14: end if
15: else
16: tOC = 1;
17: nODT = 1;
18: ngramlist = ngramlist(token, tag, nODT, tOC)
19: end if
20: end procedure

The procedure “FilterLength” shown in Algorithm 2.2 is a crucial part of the error mining
process and is called after every iteration. Basically this method checks if there is variation
within the given n-gramlist. Variation is found if one word contains more than one tag
(numberOfDifferentTags(nODT ) > 1 line 2). For the (n+1)-gram generation only words
with variation are interesting. All others are dropped (Alg. 2.2 line 5-6) from the result list
for the next iteration.

(2.9) a) interested
VBN

b) interested
JJ

Looking at Example 2.9, the Algorithm 2.1 would store <interested, {VBN}> when the word
“interested” occures for the first time and the algorithm continues with the following token.
Lets assume we found a second token with the wordform “interested” in our corpus. First we
check if there is already an n-gram for the specific token stored in the ngramlist (Alg. 2.1
line 8). Since we stored <interested, {VBN}> before, this is true. Now we verify if there is
already the {JJ} tag assigned. Since we only added <interested, {VBN}> we cannot find the
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Algorithm 2.2 Method checks if one n-gram has more than one tag assigned. Others were
dropped. This is done using the numberOfDifferentTags (nODT) calculated before.

1: procedure FilterLength(ngramlist)
2: for all ngram ∈ ngramlist do
3: if nODT > 1 then
4: Variation found⇒ keep in ngramlist;
5: else
6: Only one tag assigned⇒ no variation⇒ remove n-gram from ngramlist;
7: end if
8: end for
9: end procedure

{JJ} tag. The algorithm enlarges the tag-set to <interested, {VBN, JJ}> (line 13) and also
increase the number of varying tags we have found for the token “interested”. Assuming there
is no further varying tags for “interested” the algorithm would keep <interested, {VBN, JJ}>
and would pass the ngramlist to the FilterLength() method (Alg. 2.2) as soon as we reached
the last token in the corpus.

To generate (n+1)-grams the algorithm uses the constructed ngramlist as input. Then the
GenerateNGrams() (Alg. 2.3) checks if the n-grams can be extended to the left/right (line
4-9). This is done at most once for each iteration as long as we have not reached the
first/last token in the sentence. The resulting new (n+1)-grams are stored in a new ngramlist.
Then the FilterLength() method (Alg. 2.2) is executed since we only want to keep n-grams
that still have variation. If the filtered (n+1)-gramlist contains at least one (n+1)-gram
the GenerateNGrams() method (Alg. 2.3) is executed again iteratively using the filtered
(n+1)-gramlist as a new input for the (n+2)-grams.
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Algorithm 2.3 Method uses a former ngramlist as input and tries to extend the existing
n-grams to the left/right until we reach the sentence boundaries

1: procedure generateNGrams( ngramlist )
2: (n+1)-ngramlist = null;

3: for all ngram ∈ ngramlist do
4: if !(token− 1 = reachedSentenceBegin) then
5: ngram = token− 1 + token
6: StoreTags( (n+1)-ngramlist, ngram, tag)
7: else if !(token + 1 = reachedSentenceEnd) then
8: ngram = token + token + 1
9: StoreTags((n+1)-ngramlist, ngram, tag)

10: else
11: Can’t expand the current ngram⇒ continue with next ngram
12: end if

13: FilterLength( (n+1)-ngramlist )

14: if (n+1)-ngramlist > 1 then
15: generationNGrams( (n+1)-ngramlist )
16: else
17: Finished and Show Result
18: ShowResult(
19: end if)
20: end for
21: end procedure
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2.4 Dependency Structure Error Mining

Dependency grammars (DG) have become more popular over the last years since they are
especially useful for analysing languages with free word order (e.g. German, Czech). Modern
dependency grammars are based on the seminal work of Tesnière (1959). A theory how to
work with DGs was introduced by Mel’çuk and A. (1988). The hierarchical structure of DGs is
represented as trees that only consist of terminal nodes (words). The structure is determined
by the relation between two words, one word (head) governs the other word (dependent).

An example for a dependency tree is shown in Figure 2.3 a): both Mary and John depend
on kissed. The fact that no word governs kissed makes it head of the sentence. The relations
(edges) are labeled with syntactic functions. They may vary depending on the treebank
/ language. For example in Figure 2.3 we annotated the same sentence twice using the
“Penn Treebank II Tagset (Santorini, 1990)” for the English “Mary kissed John.” (2.3 a) and
the “STTS Tagset (Schiller et al., 1999)” for the translated German sentence “Mary küsste
John.” (2.3 b). The English sentence got the following labels assigned “Marry(SBJ=Subject)
kissed(root=head) John(OBJ=Object) .(P=Punctuation)”.
The German sentence is labeled “Marry(SB=Subject) küsste(root=head) John(OA=Accusative
Object) .(–)”. As we can see both sentences have the same edges (direction, source/target
node) but since the tagset differs the edge labels are not the same.

a) Mary kissed John .

SBJ

ROOT

OBJ P

b) Mary küsste John .

SB

ROOT

OA - -

Figure 2.3: Simple dependency structure example (English/German) that shows the different
dependency labels across different treebanks.

In this thesis we implemented the error detection mechanism for dependency treebanks
introduced in Boyd et al. (2008) but there are other approaches for (automated) error detection
(and correction) (e.g. Volokh and Neumann (2011) approach which is similar to van Halteren
(2000) ). A GUI-based solution was introduced by Agarwal et al. (2012b) to detect errors and
correct them on Hindi Dependency Treebanks based on the work of Ambati et al. (2010a),
Ambati et al. (2011) and Agarwal et al. (2012a).

We start discussing the differences between part-of-speech and dependency error-mining. In
general the algorithm works in the same way but the data structure changes. For part-of-speech
we only had a simple <token, {tag}> mapping. A dependency edge has a source node and a
target node as shown in Figure 2.4. Therefore we change the structure to <token1 token2,
{tag}>. Additionally to encode the edge direction a suffix is added to the tag (_Left / _Right)
to determine if we found an incoming or outgoing edge. This is implemented as described in
(Boyd et al., 2008, p. 14).

The Algorithm 2.4 shows the pseudo code for dependency structure error-mining. In comparison
with the pos-initialisation Algorithm 2.1 the dependency structure initialization is slightly
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Algorithm 2.4 Initialization for dependency structure error mining:
1: ngramlist = null;

2: procedure initializeTags(corpus,parameters)
3: for all words ∈ corpus do
4: dependencyItem = getDependencyTag(token);
5: relationTag = dependencyItem.getTag();
6: token = dependencyItem.getToken();
7: StoreTags(ngramlist, token, relationTag)
8: end for
9: end procedure

10: procedure getDependencyTag(token)
11: if token = rootnode then
12: //nothing to do because a rootnode has no incomming edges
13: return (token, “root′′);
14: else
15: if token = targetnode then
16: getSourceNode(
17: )relationTag = getRelationTag() + _Left
18: token = token + sourcenode
19: return (token, relationTag);
20: else
21: getTargetNode(
22: )relationTag = getRelationTag() + _Right
23: token = token + targetnode
24: return (token, relationTag);
25: end if
26: end if
27: end procedure

different. The InitializeTags() method change because we have to determine the specific
relation tag (including the edge direction). Therefore before calling StoreTags() we create the
appropriate tag. This is done using the GetDependencyTag method (Alg. 2.4 line 4). First
we check if the input node is a root node. Since we use as a mapping scheme <node1 node2,
{tag}>, a root node will result in <rootnode “empty”, {tag}>. If the input node is not a
root node, we further check if there are any incoming or outgoing edges (line 12). We then
up retrieve the specific edge label (line 13 / line 18) and add the suffix to encode the edge
direction. The computed token / relationTag are passed to the StoreTags() method which
works the same as described above in the Algorithm 2.1 for part-of-speech error mining.
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a)
Icarus was the son of daedalus .

source target

SBJ
ROOT PRD

NMOD NMOD PMOD

P

b)
Icarus was the son of daedalus .

source target

SBJ
ROOT PRD

NMOD NMOD PMOD

P

Figure 2.4: The figure shows two dependency trees for the sentence: Icarus was the son of
daedalus. Source/Target nodes are coloured green. Example b) shows a gap
between the source- and target node

Dependency nodes are not necessarily immediate neighbours. There may be a gap between
source- /target-node as shown in Figure 2.4 b). Running the InitializationTags() method would
result in the following tags: <of daedalus, {PMOD_Right}> and <was son, {PRD_Right}>.
As we already mentioned <was son, {PRD_Right}> shows a gap with the size of one caused
by the word “the”. While executing the GenerateNGrams() method shown in Algorithm 2.3
we first try to close those gaps. The algorithm tries to include the words between two nodes
before it starts expanding the n-gram using outlying words. This is done until it closed the
gap or until it is not possible to close the gap any further because of varying words within.
Then it will continue the normal way and build new n-grams using the outlying words. For
Example 2.4 the algorithm would first produce the n-gram <was the son, {PRD_Right}>
(then the gap is closed) before the n-grams <Icarus was son, {PRD_Right}> or <was son of,
{PRD_Right}>

2.5 Filters, Query Editor and Search Options

In this section we talk about the implemented filters. The result of the error mining algorithm
may contain n-grams which look like errors but they are not. The error mining plug-in
provides heuristics to filter out some of these “false” hits. These heuristics are implemented
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as introduced by (Dickinson, 2005, p. 34-39). The remaining hits, after filtering the results
using a heuristic, have a higher probability to be errors. As a side effect they could save time
when searching errors. Afterwards we introduce the query editor and give a description on its
features and how it can be used when error mining a treebank. Finally we take a look at the
implemented search options that could be set before starting an error mining process.

2.5.1 Long Context Filter

We talked about n-grams in Section 2.2 and the fact that a (n+1)-gram covers its parent
n-grams. The author (Dickinson, 2005, p. 39-43) pointed out that for the WSJ n-grams sized
n ≥ 6 deliver a sufficient context to determine the correct tag. This means when looking at
6-grams the provided context is wide enough for a human annotator to decide whether there
is an error or not. Our plug-in provides this functionality when viewing the results. The user
can set a minimum/maximum n-gram size. Then the algorithm will exactly complete n-passes,
and show all n-grams it has found within the nth iterations and that fulfil the minimum
constraint.

2.5.2 Number Wildcard Replacement

When the number wildcard replacement filter is enabled the algorithm checks for every word-
form during the error mining process if the current word is a number. This is done using a
regular expression that flags all words where the first letter is a number (0...9). These words
will be replaced with a “[NumberWildcard]” (NWC) later. As we will show later in Chapter 3
this filter is useful: It provides the error mining algorithm with the capability to compare
strings that contain different numbers and treat them equally in order to find variation within
the non-number word-forms. For example by using this filter we were able to compare the
strings <since 1985> and <since 1990> because both are mapped to <since [NWC]>. The
replacement is only conducted within the internal error mining data-structure. The filter does
not change any treebank data.

2.5.3 Fringe Heuristic

The fringe heuristic is used to filter n-grams where the nucleus occurs at the start/end of
the n-gram. This is done because when the nucleus is surrounded by words the probability
that we find an error is higher. For example see Figure 2.5. The figure shows three iteration
steps (N=1, N=2 and N=3) of the error mining algorithm for the variation nucleus <Put, NN,
VBN> (dashed with a red border), every token that is coloured orange is part of the current
n-gram. Starting with N=1 the algorithm first detects the variation for the word “put”. For
the N=2 step we can only extend the nucleus to the right as it is at the sentence start and
therefore no extension to the left is possible. The resulting bi-gram is <Put option, NN, VBN
NN>. In iteration n=3, we can only extend the bi-gram to the right. The resulting 3-gram is
<Put option in, NN, VBN NN IN>. We may continue this way until the sentence end. But
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this would end up in a n-gram where only the first token differs assuming that “put” is the
only variation nucleus within the whole sentence.

However we want to find variation for one nucleus that occurs multiple times within the same
context. When the nucleus is at the start/end of a sentence there is no surrounding context
to the left/right. With the heuristic enabled the 3-gram <Put option in, NN, VBN NN IN>
would be deleted from the result list and therefore not passed to the n=4 iteration step because
of its missing left context. This ensures that we have the nucleus embedded by at least one
word left and right when the fringe heuristic is switched on.

Figure 2.5: Fringe Heuristic Example. Variation nucleus is dashed and everything that is
part of the current n-gram orange

To explain our fringe heuristic implementation we use Figure 2.6 as a running example where
we show three steps of a error mining algorithm (N=1, N=2 , N=3). Every token that is part
of the current n-gram is coloured orange.
The initialization is completed and we found one nucleus <Children, {NN, NNP}> (nucleus
border red dashed). This nucleus is used as input for the next iteration (N=2). The algorithm
extends the uni-gram to the left and right. As a result we get two bi-grams <National Children,
{NNP} {NN, NNP}> and <Children ’s, {NN, NNP} {POS} >. At this point we cannot say
whether one of these two bi-grams should be filtered out because we only have two iteration
(left/right) done so far and therefore the nucleus must be at the fringe. Using the two bi-grams
as an input for the next step would create the two 3-grams shown in Example 2.10:
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(2.10) a) National
{NNP}

Children
{NN, NNP}

’s
{POS}

b) Children
{NN, NNP}

’s
{POS}

Cancer
{NNP}

Note that with the expansion “<National Children>” we have already reached the first word
in the sentence and therefore there is no further extension to the left possible.

When the fringe heuristic enabled it will remove the 3-gram <Children ’s Cancer, {NN, NNP}
{POS} {Cancer}> (Figure 2.6 n=3 purple dashed) from the result list before the next iteration
step because the nucleus is at the fringe of the given 3-gram. Assuming there are no further
3-grams the only input for n=4 would be <National Children ’s, {NNP} {NN, NNP} {POS}>.
Nevertheless we do not lose hits, this operation just prunes the search space because during the
n=4 step the Algorithm 2.3 would produce the 4-gram <National Children ’s Cancer,{NNP}
{NN, NNP} {POS} {NNP}> anyway.

Our implementation uses this observation and lets the user decide at which point he wants
to enable the fringe heuristic. For all algorithm iterations n ≥ 3 the fringe heuristic can be
triggered with the result that our search space is reduced for the next iterations since only the
necessary n-grams will be kept where at least one nucleus is not at the fringe.
Assume we have a 5-gram containing five words with their corresponding tags as shown in
Example 2.11:

(2.11) w1
t1a
t1a

w2
t2a
t2b

w3
t3a
t3a

w4
t4a
t4a

w5
t5a
t5b

The fringe heuristic implementation will only compare the tag-sequence t2at3at4a vs t2bt3at4a .
If we find variation within these tags we keep the result. We do not have to compare the whole
tag-sequence since even if there is variation as in the example above t5a 6= t5b these variation
would be at the fringe anyway and therefore deleted. It is sufficient only to compare the t2...t4
tags for the given 5-gram. Using a 3-gram we would only compare t2, for a given 10-gram only
t2...t9 and so on.

2.5.4 Query Editor

The query editor provides the functionality to group tags together, rename tags or exclude
tags from the error mining search. Figure 2.7 shows the editor view. It is organized in three
parts. On the left side there are buttons to create/edit or delete a single query. In the middle
there is an overview over all specified queries represented as a list. Below are three buttons to
manage the queries supporting save/load or reset.
The capability of saving a query to an extensible mark-up file (xml) and load it again later is
useful if the user specifies a query and wants to use it later in different corpora. Using reset
will delete all specified query items.
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Figure 2.6: Fringe Heuristic Example. Variation nucleus is dashed, n-grams orange. The
3-gram that would be filtered when fringe enabled has a purple border and occur
in step N=3

A single query item always has the following format: <Include Tag in Search, Tagclass, new
Tagclass>. It is processed in the following way as described in the query editor algorithm (Alg.
2.5). For a given <token, {currentTag}> combination the algorithm checks if one matching
query exists (line 4). A matching query is a query where Tagclass = currentTag. If this check
is successful the “include check” is next. Using the “include tag option” (boolean) the user
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Figure 2.7: Query Editor Screenshot

can specify if one tag shall be considered or ignored. All tags that are ignored are mapped
onto a [TagIgnoredTagclass]. This parameter has priority over the new tag assignment. But if
the current tag is not found within the query list it is neither ignored nor does it get a new
tag assigned and the algorithm just continues the normal way taking the current tag. The
benefit of this design is that there is no need to put the whole tag-set into the query system.
Otherwise if there is only one tag missing it would never be recognized, and therefore never
show up in the variation. The field Tagclass and new Tagclass use strings as a type. The
Tagclass itself has to be unique, e.g it is not possible to use <true, NN, NN1> and <true, NN,
NNE>. A invalid Tagclass will be signalled by a error message.

Assume that there is a query match (Alg. 2.5 line 2), and furthermore the tag shall be included
(line 5). Then the last query step takes place. The query will return either the current tag,
when there is no new tag assigned (line 6-7) or the new tag (line 8-9).

Example 2.12 a) with “VBN” as the currentTag (the tag we look up in the query list) is used
to illustrate the mechanism we described above. Using the query shown in Example 2.12 a)
will use the “VB” tag for all occurrences of “VBN”. No nucleus will contain any “VBN” tag
since it was replaced by “VB”.
If the user does not want to change the tag query Example 2.12 b) will do so. The algorithm
would find the “NN” tag within the query item list but since there is no new tag assigned
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Algorithm 2.5 Query Editor Algorithm
1: queryItemList;
2: The queryItemList includes all specified user querys

3: procedure Query(currentTag)

4: if currentTag ∈ queryItemList then
5: if include == true then
6: if newTag == null then
7: return currentTag
8: else
9: return newTag

10: end if
11: else
12: tag shall not be include drop <token,tag> and continue with the next
13: end if
14: else
15: continue normal way
16: end if
17: end procedure

(null) it will return the “NN” tag.
The last Example 2.12 c) will drop all occurrences of “NE” and replace them using the
[TagIgnoredTagclass] . The resulting n-grams will not contain any “NE” tag. The defined
“new tag” NN will of course show up since the include operator only affects the “old tag”.

(2.12) a) <true, VBN, VB>

b) <true, NN, null>

c) <false, NE, NN>

The xml structure of a query file is shown in Listing 2.1. Each Queryitem represents one
constraint. The include flag is works as explained above. The “Tagclass” must be unique so
editing should be done through the query editor, which is able to perform the appropriate
checks, and not manually. “Value” represents the new tagclass if there was a tagclass defined
before.
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Listing 2.1 Example XML Query File showing all three format types: Include (boolean),
Tagclass (= current Tag) (string), Value (= new Tagclass) (string)
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<NGram-Query>
<Queryitem Include="true" Tagclass="VBN" Value="VB"/>
<Queryitem Include="true" Tagclass="NN" Value=""/>
<Queryitem Include="true" Tagclass="NE" Value="NN"/>
<Queryitem Include="true" Tagclass="ADJA" Value="ADJ/ADJA"/>
</NGram-Query>

The query editor can be used to create a mapping between tags without changing the current
corpus data. We believe this kind of exploring a corpus may help finding ambiguity classes for
part-of-speech as proposed in Dickinson (2007). It may also be useful for dependency function
labels. If the user is only interested in a special phenomenon a query can be used to filter
n-grams, for example the distribution of <NN vs NE vs XY> for the German TIGER Corpus.
Another possible use is to map tags to one class (e.g. all verbs in a “verb-class”) and then run
the error mining. It may be easier to find mistakes for words that should be tagged as a verb
but apparently are not. Last but not least it could be used to compare tagging across different
treebanks. Assume treebank A got 60 tags and treebank B only 48. Using the mapping we
can try to map the 60 tags to our 48 tags and compare the results afterwards. The only
restriction is that this only works in one direction, limiting the treebank tag set that has more
tags. Introducing a richer tagging scheme does not work.

2.5.5 Error Mining Options

Using parameters allows the user to take influence on the results. The currently available
parameters are shown in Figure 2.8.

• Replace all Numbers by Special Token: This option enables the number replacement
filter as described in Section 2.5.2.

• Use Fringe Heuristic: the fringe heuristic we described earlier in Section 2.5.3 will
not change the longest n-grams, as long as their nucleus is not at the fringe. Nevertheless
using the fringe heuristic is recommended. It gives better results as Dickinson showed
in (Dickinson, 2005, p. 40-43) because it guarantees that we have surrounding context.
Eliminating fringe items can first be done in the third n-gram generation pass. Before
that we just have uni-grams (first-pass) and bigrams (second-pass). For both cases holds
that the nuclei must be at the fringe. But the concrete starting point for enabling the
heuristic is open to the user.

• Maximum NGram Size (passes): Another filtering option is the limitation of the
n-gram size ( size = algorithm iterations). By default this parameter is zero which is
equivalent to ∞ . Therefore by default the algorithm collects all n-grams it is able to
find. If the value was changed to e.g. 5 the algorithm will execute the n-gram generation
(Alg. 2.3) at most five times. Hence the maximum size for the n-grams that can be
found within the result are 5-grams.
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Figure 2.8: Search Parameters for NGrams

• Maximum Sentences for Input: The sentence limitation is used to limit the number
of sentences that are used for the error mining. Starting at sentence one until the
specified value x. For example with a limit of 10,000 at most the first 10,000 sentences of
the specified corpus will be used during the error mining process. This option may be
useful if there is a corpus with a lot of errors and the user first wants to correct a few
sentences or if the system would run out of memory when computing on all sentences.
But using this option has a strong influence on the results and should be used carefully,
because limiting the input data may leak the variation for one word. By default this
value is “0” (zero) and the engine will use all sentences of the given corpus.

• Show Only NGrams with a (minimum) size of: Even when the fringe heuristic is
enabled the results will still contain uni-/bi-grams. Using the “Show only NGrams with
a size of” option allows the user to filter the resulting n-grams. For example if the value
is set to “1”, the resulting list will contain 2-, 3-, n-grams, ...

• Create XML Output File: Using the “Output to File” option creates an xml-
formatted file with the format show in Listing 2.2. It contains information about
the word-forms, tags, tag-count and highlight information. It is formatted in a human-
readable way so that its possible to do error detection even without the graphical support
of the error mining plug-in.
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Listing 2.2 Example XML Result File
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<nGrams>

<WordForm form="manufacturing" nGram="1">
<PoSTag count="1" tag="NN">

<Sentence begin="8" end="8" nucleiCount="1" nucleiStartIndex="8" sentenceNr="7">
<NucleiIndex>8</NucleiIndex>

</Sentence>
</PoSTag>
<PoSTag count="1" tag="VBG">

<Sentence begin="3" end="3" nucleiCount="1" nucleiStartIndex="3" sentenceNr="14">
<NucleiIndex>3</NucleiIndex>

</Sentence>
</PoSTag>

</WordForm>
</nGrams>

2.6 Source code

The whole project was written in Java 1.7. For the concrete Java implementation please check
the binaries1 which are freely available under the GNU General Public License, version 3.

1http://www.ims.uni-stuttgart.de/data/icarus.html

32

http://www.ims.uni-stuttgart.de/data/icarus.html


3 Evaluation

In Chapter 2 we described the general error mining approach, followed by the description of
our own implementation and the new features we added to the process. To check how the
algorithm performs we made an evaluation on German and English.

The evaluation was done running four different error mining configurations. Fringe heuristic
will be executed if switched on and then always in the fourth (4-gram) iteration. The second
parameter we used is the number wildcard replacement. If number replacement option is
switched on the algorithm determines if a word begins with a number (0...9). All numbers
are replaced using a special number wild card (NWC). Using the number replacement we are
able to compare constructions like <since 1985> and <since 1990> because they both will be
mapped to <since [NWC]>. Varying these options we get the following four different error
mining configurations.

Fringe heuristic on, number replacement on (F; NWC)

Fringe heuristic off, number replacement on (no F; NWC)

Fringe heuristic on, number replacement off (F; no NWC)

Fringe heuristic off, number replacement off (no F; no NWC)

In the section for part-of-speech error mining (Section 3.1) we present our results for the
German TIGER and Penn Treebank. Additionally for the TIGER Corpus we performed a
manual result evaluation. For the English Penn Treebank an extensive manual evaluation
was done by (Dickinson, 2005, p. 39-44). The Dependency structure results are discussed in
Section 3.2. In the final Section 3.3 we compare the results we have found during the pos /
dependency error mining process.

3.1 Part-Of-Speech Tag Error Mining

3.1.1 PoS Error Mining Results for the German TIGER Corpus

The TIGER Corpus contains 50,472 sentences consisting of 888,239 tokens which have 87,423
different word-forms. In the following part we will discuss the results of our pos error mining
process. A complete table consisting of all result data can be found in Appendix A.7. During
the evaluation we will take a closer look especially on results with enabled fringe heuristic
(described in Section 2.5.3) and enabled number replacements.
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The largest n-gram we have found using the error mining options fringe heuristic on and
enabled number replacement on (no query was specified) contains 56 tokens and is shown in
Example 3.1. It has one variation nucleus <ebenso, {KON, ADV}>. The KON (coordinate
conjunction) was found in sentence No. 14948 and ADV (adverb) in sentence No. 18113. In
total the sentence contains 32 different uni-grams.

(3.1) Diese Ökonomie des Vermeidens läßt sich prinzipiell auch auf die Wärme- und
Primärenergiemärkte übertragen, zum Beispiel auf die energetische Sanierung des
Gebäudebestandes, wo das Marktvolumen auf rund [NWC] Milliarden Mark geschätzt
wird; ebenso auf die Vermeidung ökologisch bedenklicher Stoff- und Materialflüsse und
damit auf die Begrenzung von Abfall, Ressourcen und Mobilität.

In Example 3.2 we have two variation nuclei <bis> and <zu>. They were tagged in one
sentence both ADV (adverb) and in the other sentence APPR (preposition, circumposition
left). The [NWC] occurred during the number replacement process.

(3.2) 6-gram: sollen
VMFIN
VMFIN

künftig
ADJA
ADJA

Zinserträge
NN
NN

bis
APPR
ADV

zu
APPR
ADV

[NWC]
CARD
CARD

(english: will in the future interest income up to [NWC])

Sentence (occurs twice): Wie berichtet, sollen künftig Zinserträge bis zu 6000 Mark
bei Ledigen und 12 000 Mark bei Verheirateten steuerfrei bleiben.

In Example 3.3 we show a 6-gram with the variation nucleus <wie> tagged KOKOM (com-
perative conjunction) and PWAV (adverbial interrogative or relative pronoun). The PWAV
assignment for this example is wrong.

(3.3) 6-gram: doppelt
ADJD
ADJD

so
ADV
ADV

hoch
ADJD
ADJD

wie
KOKOM
PWAV

in
APPR
APPR

den
ART
ART

(english: twice as high as in the)

{KOKOM} Sie liegt laut Unicef doppelt so hoch wie in den USA, wo zehn Morde auf
100 000 Todesfälle kommen.

{PWAV} So beziffert das Institut für Arbeitsmarkt- und Berufsforschung die
Gesamtzahl der Erwerbslosen heute auf ungefähr sechs bis sieben Millionen -
doppelt so hoch wie in den Statistiken der Arbeitsverwaltung ausgewiesen.

To evaluate the German TIGER Corpus we used two different parameters fringe heuristic (F)
and Number Wild Card (NWC) in every combination resulting in four different configurations
shown in Table 3.1. Looking at row 1 we see that using the number wildcard (F; NWC and
no F; NWC) in column two and three we find 4059 uni-grams instead of 4148 (column four
and five) where we did not use the number replacement option. This is exactly what we
expected since replacing numbers results in a smaller set of word types. This phenomenon can
be observed within the next rows as well. For 8-grams or larger the difference between NWC
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3.1 Part-Of-Speech Tag Error Mining

Figure 3.1: Result for the German TIGER Corpus visualizing all four error mining configu-
rations we used during the evaluation (fringe heuristic on, number wildcards on),
(fringe heuristic off, number wildcards on), (fringe heuristic on, number wildcards
off) and (fringe heuristic off, number wildcards off) (x-axis = n-gramsize and
y-axis = number n-grams found)

enabled and NWC disabled slightly decreases. When reaching the 36-gram all of the 4 error
mining configurations contain the same resulting n-grams for the following iterations. This
implies that also the size of the longest n-gram we found does not vary no matter which error
mining parameters were set.

When the fringe heuristic is turned on we always execute it after the third iteration. Comparing
column 2 (F; NWC) and 3 (no F; NWC) we find out that for n=4 we only have 448 4-grams
left when the fringe heuristic is enabled as opposed to 948 grams with disabled fringe heuristic.
The same can be observed for column four (F; no NWC) and five (no F; no NWC) with the
corresponding values 369 vs 758. This can be monitored for the following n-grams (n>4). If
the fringe heuristic is disabled we always have more n-grams within the result set. Nevertheless
when reaching the 36-gram border the result n-gram count will not differ any more. This
is also a phenomenon we expect since both parameters fringe heuristic / number wild card
decrease the result n-grams. The fringe heuristic removes unwanted results and the NWC
reduces the token count from the start because all numbers are mapped together. Anyway we
were able to find the longest n-gram with any of the four configuration.
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We illustrate this in Figure 3.1 where for all n>36 (x-axis) all four configurations continue
to have an equal number of results (y-axis). We zoomed in on the part with the greatest
differences between fringe heuristic and non-fringe. As we can see the fringe heuristic curves
are always below the non-fringe curves until 36 when all coverage. This observations must not
hold for other treebanks. When using the number replacement option, there may be cases,
where the largest n-gram that can be found for enabled number wild-cards is larger compared
to the largest n-gram with disabled number wild-cards.

N-Gram F; NWC no F; NWC F; no NWC no F; no NWC
1 4059 4059 4148 4148
2 7004 7004 6870 6870
3 3434 3434 3093 3093
4 448 948 369 758
5 260 388 230 331
6 207 310 195 246
... ... ... ... ...
36 20 21 20 21
37 20 20 20 20
38 19 19 19 19
... ... ... ... ...
54 3 3 3 3
55 2 2 2 2
56 1 1 1 1
57 - - - -

Table 3.1: Result for the German TIGER Corpus showing parts of the four error mining
configurations we used during the evaluation (fringe heuristic on, number wildcards
on), (fringe heuristic off, number wildcards on), (fringe heuristic on, number
wildcards off) and (fringe heuristic on, number wildcards off)
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Querying Close Tag Classes (German TIGER Corpus)

Using only problematic tag classes in an n-gram query may help finding errors faster because
the resulting dataset is much smaller and easier to verify. We built a query where only variation
within NN (common noun), NE (proper noun) and XY (non-word containing non-letter) is
observed and every other tag is replaced by a [NULL-TAG]. This is useful if the user only
wants to take a look at a specific linguistic phenomenon or if he is only interested in the
distribution of specified query tags.

Running the algorithm (fringe heuristic enabled and number wildcard enabled) we get the
following results (illustrated in Table 3.2) where we show a slice of the resulting n-grams
(The complete result list containing all n-grams can be found in Appendix A.8 ). Using only
(NN + NE) as a query we received 1335 1-grams, 1018 2-grams, 474 3-gram and 169 4-grams.
Including XY to the query these values change to 1347 1-grams, 1023 2-grams, 476 3-gram
and 169 4-grams. As we can see in Table 3.2 the hits for the <NN + NE + XY> query in
column three are slightly higher compared to the n-grams in column two. This occurs because
we are recognizing a third tag (XY) in column three, which result in more variation. Reaching
n=4 both queries have the same result-set.

N-Gram Hits (NN + NE) Hits (NN + NE + XY)
1 1335 1347
2 1018 1023
3 474 476
4 169 169
5 159 159
6 140 140
... ... ...
29 2 2
30 1 1
31 - -

Table 3.2: Result for TIGER Corpus using two different queries: NN, NE and NN, NE,
XY executed with the error mining configuration (fringe heuristic on, number
wildcards on)

The largest n-gram we found (fringe heuristic on, enabled number replacement on and using
the query <NN, NE, XY>) is shown in Example 3.4. It contain 30 tokens with the variation
nucleus ECR-Tornados tagged NN (common noun) within sentence No. 33703 and NE (proper
name) in sentence No. 34192 case. The correct tag is NE.

(3.4) Das schließt den Einsatz von Kampfflugzeugen ( ECR-Tornados ) aus ”, heißt es dazu
in einer ergänzenden Formulierung, die der neue Parteichef Oskar Lafontaine
durchgesetzt hat.

37



3 Evaluation

A 3-gram we found during the process was <in den Alpen>. It was tagged four times {APPR
ART NN} (Example 3.5 a) whereas the tagging {APPR ART NE} (Example 3.5 b) only occurs
two times.

(3.5) a) {APPR ART NN}

• Zudem haben in den zurückliegenden Wintern viele Wintersportler mit der
Schneesicherheit in den Alpen schlechte Erfahrungen gemacht.

• Bis zur Fertigstellung des Mammutprojekts in den Alpen, mit dem die wichtigste
Nord-Süd-Verbindung entlastet werden soll, könne sich das Verkehrsverhalten der
Menschen geändert haben.

• Die zwei Spuren im Schnee finden, wenn man will, Anschluß an Fernloipen oder
enden nach ein paar Kilometern vor Hütten, in denen der Glühwein auf dem Herd
dampft und die Gäste wie auf den Almstadeln in den Alpen singen:
Bergvagabunden sind wir.

• Das hieß aber auch zunächst: Zoff mit den Alpinskifahrern und Teilen der Davoser
Bevölkerung, Politikern inklusive, die den “Chaoten” - wie überall in den Alpen -
weder Platz im Lift noch Raum auf den Pisten einräumen wollten.

b) {APPR ART NE}

• Nach Angaben des DNR findet ein Viertel des gesamten Welttourismus in den
Alpen statt.

• Umweltschützer wollen künftig weniger Autos in den Alpen

Another example is the 6-gram containing two news agency abbreviations “Agence France-
Presse (afp)” and “Deutsche Presse-Agentur (dpa)”. The 6-gram contains the following tokens
( afp / dpa ). We found variation within afp and dpa 13 times. They were both tagged as
NE and in 2 times as XY (“non-word”). The results are even worse when we look at the
corresponding uni-grams: the results in Table 3.3 show that dpa is tagged 559 as NE and 60
times XY. Same for afp where we have 223 NE and 45 XY instead of the correct pos tag NE.

Token NE (Count) XY (Count)
dpa 559 60
afp 223 45

Table 3.3: Tag distribution between part-of-speech tag NN and XY for the uni-grams <dpa>
and <afp> using the error mining configuration (fringe heuristic on, number
wildcards on) with the query <NN, NE and XY>. (Neither dpa or afp was tagged
NN therefore NN is missing in this table)

The examples above showed that even when it should be clear to distinguish between NN, NE
and XY there are many errors within the corpus. Running the error mining process using
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these three tags deliver a result set targeting these classes. In turn the resulting data could be
easily reviewed manually.

Manual PoS Error Mining Result Evaluation (German TIGER Corpus)

In this section we manually check if the algorithm finds errors and how much of them are false
positives. We picked the first 115 of the 207 6-grams we have found in total during the error
mining process (fringe heuristic on, number replacement on). Then we manually check for all
nuclei within the 115 n-grams if the variation is caused by erroneous tagging. If the tag is
erroneous we try to determine the correct tag. In total we count 119 variations. This is caused
by the effect that as long as we have find an n-gram that includes two or more nuclei we count
each nucleus separately if they are separated by at most one word that has no variation. Table
3.4 shows all variations we find sorted by their number of occurrence.

Count variation a variation b
41 NN NE
22 NE XY
7 APPR ADV
6 ADV ADJD
4 VVPP ADJD
3 ADJA PIS
3 APPR APPR ADV ADV
3 ART CARD
3 PDS ART
3 PDS PDAT
3 PIS PIAT
3 PWAV PROAV
3 FM NE
2 KON ADV
2 PIS ADV
2 NE NE FM FM
1 ADV PTKVZ
1 ADJA NE
1 ADJD ADJA
1 FM FM NE NE
1 FM FM FM NE NE NE
1 NN XY
1 PRELS ART
1 VAPP VAINF

Table 3.4: Results German TIGER Corpus manual evaluation for 119 sampled 6-grams (fringe
heuristic on, number wildcards on) correct tag is bold if we could determine it
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The high numbers for {NN vs NE} and {NE vs XY} are not that surprising although the
decision between NN and NE is complicated. As we found out during the tag query in
Section 3.1.1 there is a lot of variation especially in tagging of the news agency abbreviations
(dpa, afp,...), which is reflected in these numbers. In total we are able to detect errors and
determine the correct tag for 113 of the given 119 nuclei, a precision of 94.94%.
For NN vs NE variation is shown in (Example 3.6). We found the exact sentence twice but
with the variation <Mittelmeer, {NN , NE}> the correct pos-tag is NE (proper noun).

(3.6) 6-gram: des Mittelmeeres spezialisiert, zeigt aber

{NE, NN} Der jetzt eröffnete Unterwasser-Zoo ist auf die Unterwasserwelt des
Mittelmeeres spezialisiert, zeigt aber auch tropische Arten.

Example 3.7 shows inconsistency within the verb <worden>, the sentence occurs twice in the
corpus.

(3.7) 6-gram: eines EU-Mitgliedsstaates zugelassen worden sein.

{VAPP, VAINF} Das Saatgut muß von der zuständigen Behörde eines
EU-Mitgliedsstaates zugelassen worden sein.

We found 5 nuclei (4.20%) where the tagging is inconsistent but we are not able to find the
correct tag even using the tagging rules. In Example 3.8 and 3.9 we show five different sentences
where we cannot determine, using the 6-gram, the correct tag (6-gram is bold, nucleus red).
Nevertheless there should be only one correct solution how the word <plus> must be tagged
but the tagging guide lines do not cover this. Note that we would not be able to find these
n-grams without the number replacement.

(3.8) 6-gram: [NWC] Milliarden ( plus [NWC] Prozent

a) {APPR} Hoechst strich, auch dank Sondererträgen, 3,4 Milliarden ( plus 103
Prozent ) ein, Bayer “nur” 3,3 Milliarden ( 39 Prozent mehr ).

b) {ADV} Bayer schaffte 3,3 Milliarden ( plus 39 Prozent ), und BASF bleibt nach
einer rasanten Aufholjagd nur 200 Millionen dahinter zurück.

(3.9) 6-gram: Mark ( plus [NWC] Prozent )

a) {APPR} 337 000 Mark ( plus 18 Prozent ) setzte SNI zuletzt pro Beschäftigten um.

b) {APPR} Die Krankensparte erwartet ( mit Pflege ) 31,9 Milliarden Mark ( plus
12,8 Prozent ).

c) {ADV} Von Januar bis September verdiente Hoechst vor Abgaben an den Fiskus 3,4
Milliarden Mark ( plus 103 Prozent ).

Finally the nucleus <die, {PRELS, ART}> (0.84%) was no error at all but genuine ambiguity.
The two sentences are shown in Example 3.10 (6-gram is bold, nucleus red). Looking at the
first sentence (Example 3.10 a) the PRELS (substituting relative pronoun) tag is correct. For
the other sentence b) the ART (definite or indefinite article) part-of-speech tag is correct. This
example shows clearly that we cannot rely on the fact that the algorithm only predict errors.
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Such false errors may be removed if the fringe heuristic is changed, e.g. in the current
implementation the fringe heuristic ensure that we have exactly one word on each side of a
nucleus. If we change the heuristic in a-way that there must be at least two words on each
side this variation would no longer be in the result set because on the left we have:
<Asylbewerber ,> in sentence a) and <Tokio ,> in sentence b) and therefore no longer the
same context.

(3.10) 6-gram: , die in der Nacht zum

a) {PRELS} Drei afrikanische Asylbewerber, die in der Nacht zum Sonntag im
ostsächsischen Zittau nach einer Messerstecherei festgenommen worden waren,
haben offenbar in Notwehr gehandelt.

b) {ART} Ministerpräsident Ryutaro Hashimoto sagte in Tokio, die in der Nacht zum
Samstag erreichte Einigung bringe lediglich eine Atempause.

These results are not completely comparable to (Dickinson, 2005, p. 39-44) because he evaluated
on the Wall Street Journal Data and we used the German TIGER Corpus. Additionally he
sampled 125 n-grams within (6 < n < 224) of his 7141 distinct non-fringe n-grams and we took
115 non-fringe 6-grams into evaluation. The precision he detected for the WSJ was 92.8%.

3.1.2 PoS Error Mining Results for the Penn Treebank Data

To evaluate our implementation on English we used the Penn Treebank training data-set
(section 2-21), which is part of the Penn Treebank. The Penn Treebank training data consist
of 39,279 sentences that contains 958,166 tokens with 35,050 different word-forms.

Looking at the results in table 3.6 we can observe the impact of the fringe heuristic. The
fringe heuristic almost halved the 4-grams when switched on. We got 3845 hits (column 2 row
4 (no F, NWC)) versus 1959 hits within (column 1 row 4 (F, NWC)). The same observation
can be made when the number wildcard is turned off and fringe heuristic on/off. We found
(no F; no NWC) 3124 and (F; no NWC) 1609 n-grams.

Another interesting fact is that when using the number replacement option we are able to find
n-grams up to 64 while when switching off this option we only find n-grams with a maximum
length of 55. The Figure 3.2 and 3.3 visualize the results (x-axis = n-gramsize and y-axis =
number grams found). As we can see the curves are further apart from each other than before
in the TIGER results. However the fringe heuristic curves are still below the non-fringe curves
as in the TIGER Corpus. As mentioned before in Figure 3.3 there are no further n-grams after
55.

(3.11) LONDON LATE EURODOLLARS : [NWC] [NWC] % to [NWC] [NWC] % one
month ; [NWC] [NWC] % to [NWC] [NWC] % two months ; [NWC] [NWC] % to [NWC]
[NWC] % three months ; [NWC] [NWC] % to [NWC] [NWC] % four months ; [NWC]
[NWC] % to [NWC] [NWC] % five months ; [NWC] [NWC] % to [NWC] [NWC] % six
months
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Figure 3.2: Result for the Penn Treebank training data showing two curves for the configura-
tion (fringe heuristic on, number wildcards on) and (fringe heuristic off, number
wildcards on) (x-axis = n-gramsize and y-axis = n-number grams found)

Taking a closer look at the longest n-grams. In Example 3.11 we can see the longest n-gram we
have found in the Penn Treebank training data with fringe heuristic on, number replacement
on. No query was specified.

Every [NWC] stands for a number replacement which was done during error mining process.
We detect two variation nuclei <LATE EURODOLLARS> with four different taggings shown
in Table 3.5. Six times we discovered {JJ NNS}, two times {RB NNS}, {JJ NNPS} and
{RB NNPS} both occurred only once. In total the sentence contain 50 variation nuclei
(uni-grams).

{JJ NNS} {RB NNS} {JJ NNPS} {RB NNPS}
<LATE EURODOLLARS> 6 2 1 1

Table 3.5: Table showing the longest n-gram with its varying tags that we have found during
the error mining process for the Penn Treebank training data using the options
fringe heuristic on, number replacement on. No query was specified.
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Figure 3.3: Result for the Penn Treebank training data showing two curves for the configura-
tions (fringe heuristic on, number wildcards off) and (fringe heuristic on, number
wildcards off) (x-axis = n-gramsize and y-axis = number n-grams found)

The size of the largest n-gram changes when we disable number replacement. As we can see in
Example 3.12 (fringe heuristic on, number replacement off and no query specified). There are
still two variation nuclei but only two different tags for <LATE EURODOLLARS> remain:
{JJ NNS} and {RB NNPS}. Nevertheless the other variation still occurs within the result
set but their variation n-grams no longer cover the same context because there are different
numbers within the sentences. We would miss these variation when only looking at the largest
n-grams. For the same reason we were also no longer able to find all hits ({JJ NNS} occurs six
times when using number wild cards) without we only retrieve one hit count for the 55-gram.
We believe that this shows very clearly the benefit using number wild cards.

(3.12) LONDON LATE EURODOLLARS : 8 11\/16 % to 8 9\/16 % one month ; 8
11\/16 % to 8 9\/16 % two months ; 8 11\/16 % to 8 9\/16 % three months ; 8 5\/8 %
to 8 1\/2 % four months ; 8 9\/16 % to 8 7\/16 % five months ; 8

The resulting Table 3.6 also shows that it takes much longer until the number of n-grams
converges compared to the TIGER results. Using number replacements one step before the
final 55-gram the results collapse, that means that not until this point the algorithm would
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pass the same 54-grams to the next iteration step. For column 2 (F; NWC) and column 3 (no
F; NWC) we find the the same observation. The passed n-gram results are not the same until
the 63-gram which is again one step before the final 64-gram iteration.

N-Gram F; NWC no F; NWC F; no NWC no F; no NWC
1 5423 5423 5578 5578
2 11783 11783 11819 11819
3 7318 7318 6795 6795
4 1959 3845 1609 3124
5 1480 2456 1105 1744
6 1201 1795 840 1200
... ... ... ... ...
54 8 9 2 2
55 7 8 1 1
56 6 7 - -
57 5 6
... ... ...
62 2 3
63 2 2
64 1 1
65 - -

Table 3.6: Result for the Penn Treebank training data showing parts of the four error
mining configurations we used during the evaluation (fringe heuristic on, number
wildcards on), (fringe heuristic off, number wildcards on), (fringe heuristic on,
number wildcards off) and (fringe heuristic on, number wildcards off)

Querying Close Tag Classes (Penn Treebank)

For the English corpus we built a query which includes all of the following verb-classes: VB
(verb, base form), VBZ (verb, 3rd person singular present), VBP (verb, non-3rd person singular
present), VBD (verb, past tense), VBN (verb, past participle) and VBG (verb, gerung or
present participle). We will use V* as an abbreviation. Secondly we will switch on the
parameters fringe heuristic and number replacement.

The 34-gram showed in Example 3.13 is the longest we found. The variation nucleus (bold)
is <following, {VBN, JJ}>. We did not include {JJ} in our search but we are still able
to find this variation. The reason is that all other tag-classes are mapped to the same
[TagIgnoredTagclass] (e.g. DT, EX, NN,... and especially JJ). Running the algorithm we are
able to detect this variation since following was tagged {VBN} and therefore we compare it
with the [TagIgnoredTagclass] as well. When looking up the sentence in our result table we
find the {JJ} variation (because the [TagIgnoredTagclass] does not affect the corpus data). In
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total we counted two times <following, {VBN}> versus six occurrences of <following, {JJ}>.
This shows how the query mechanism could be used to fing errors within tagclasses.

(3.13) The following were among yesterday’s offerings and pricings in the U.S. and non -
U.S. capital markets, with terms and syndicate manager, as compiled by Dow Jones
Capital Markets Report:

Another case where we found variation within the V*-class is shown in the 5-gram Example
3.14. Here we found the variation nucleus <contribute, {VB, VBP}>. Both tagging occurs
exactly one. We determine that the correct tag for contribute is {VB}.

(3.14) 5-gram: administration
[TagIgnored]
[TagIgnored]

contends
VBZ
VBZ

contribute
VB
VBP

to
[TagIgnored]
[TagIgnored]

the
[TagIgnored]
[TagIgnored]

{VB} Officials familiar with the meeting said Mr. Bush cited the policy as an example
of the sort of congressional requirements the administration contends contribute
to the failure of such covert actions as this month’s futile effort to oust Panamanian
dictator Manuel Noriega.

{VBP} The existence of the policy became known after Bush disclosed it to seven GOP
senators last week, citing the plan as an example of congressional requirements the
administration contends contribute to the failure of covert actions, officials said.

Looking at Example 3.15, we have the nucleus <stand, {VBP, VBN}>. The tag distribution
was as follows: we counted 8 hits for <stand, {VBP}> in contrast to 4 hits by <stand,
{VBN}>. However {VBP} is the correct tag.

(3.15) 5-gram: that
[TagIgnored]
[TagIgnored]

stand
VBP
VBN

as
[TagIgnored]
[TagIgnored]

milestones
[TagIgnored]
[TagIgnored]

of
[TagIgnored]
[TagIgnored]

Sentence occurs 12 times with different taggings for <stand>: ( During its centennial
year, The Wall Street Journal will report events of the past century that stand as
milestones of American business history. )

A more general query might be useful where all V* tags are also internally mapped to a new
V*-class. Then we would no longer detect variation within (VBP, VBN, VB...). We would
only find variation between the V*-class and all other possible tags, which where mapped to
the [TagIgnoredTagclass].
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3.2 Dependency Structures Error Mining

In the following section we evaluate the dependency structure algorithm (Section 2.4) using
the German TIGER and English Penn Treebank. The evaluation was done using the number
wildcard replacement and switch it on/off. Varying these options we get the following two
different error mining configurations.

number replacement on (NWC)

number replacement off (no NWC)

3.2.1 Dependency Structure Error Mining Results for the German TIGER Corpus

The error mining settings are: disabled fringe heuristic and enabled number replacement.
Running this configuration the largest n-gram we found contains 55 tokens and is shown in
Example 3.16 (fringe heuristic off, number replacement on no query specified). We found two
variations both shown in Figure 3.4. The first variation is between the first auf linked to
ebenso conjunct (CJ) or auf coordinating conjunction (CD). The ingoing edge lead to another
variation. For sentence a) the first <auf> is head of <ebenso> and <ebenso> is dominating
the second <auf> (CJ). In the second sentence b) the first <auf> is head of the second <auf>
which is head of the word <ebenso> with the edge label modifier (MO) .

(3.16) Diese Ökonomie des Vermeidens läßt sich prinzipiell auch auf die Wärme- und
Primärenergiemärkte übertragen, zum Beispiel auf die energetische Sanierung des
Gebäudebestandes, wo das Marktvolumen auf rund [number-wildcard] Milliarden Mark
geschätzt wird; ebenso auf die Vermeidung ökologisch bedenklicher Stoff- und
Materialflüsse und damit auf die Begrenzung von Abfall, Ressourcen und Mobilität.

a)
... auf ... ebenso auf ...

APPR KON APPR

CD
CJ

b)
... auf ... ebenso auf ...

APPR ADV APPR

CJ

MO

Figure 3.4: Variation within the depenency structure and additional pos variation for
<ebenso> (coloured red)
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But this is not the only variation. We also have pos-tag variation (coloured red). And as
we showed in Section 3.1 for part-of-speech error mining we found the same sentence with
the nucleus ebenso tagged KON (coordinate conjunction) and ADV (adverb) in the other
case. This shows clearly how errors within a treebank may depend on each other. Since the
dependency were generated using the given morphology and part-of-speech tag information
these dependency variation might be the result of erroneous pos tagging.

However using dependency structure error mining we also find n-grams that we would not be
able to find running only the pos error mining algorithm. For example the 6-gram shown in
Example 3.17 and 3.5. For every different tag we picked one sentence (for APL_L we only
show 1 out of 6).

We found three differently tagged dependency structure labels all of them shown in Figure 3.5
relevant source/target nodes are coloured green. The nucleus <Gemeinschaft GUS, {APP_L}>
was found 6 times in contrast to <Gemeinschaft GUS, {OP_L}> and <Gemeinschaft GUS,
{PAR_L}> that both occur only once. The dependency structure labels may vary although
the pos-tags are the same in Example 3.17.

(3.17) 6-gram: Gemeinschaft
Commonwealth

Unabhängiger
of Independent

Staaten
States

(
(

GUS
CIS

)
)

{APP_L} Russische Staatsbürger in anderen Republiken der Gemeinschaft
Unabhängiger Staaten ( GUS ) müßten zwar beschützt werden, doch dürfe dies nur
mit politischen Mitteln geschehen, sagte Jelzin in Moskau.

{OP_L} Freilich: Bei allein 28 Frauenorganisationen in St. Petersburg sind die rund
200 in der Gemeinschaft Unabhängiger Staaten ( GUS ) geförderten
Tacis-Projekte nur ein Tropfen auf die schwache Pflanze Bürgergesellschaft.

{PAR_L} Und die Allianz - sicher ist sicher - widerstand nicht der Möglichkeit, ihre
Grenzen bis an die der Gemeinschaft Unabhängiger Staaten ( GUS )
auszudehnen.
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a)
... Gemeinschaft Unabhängiger Staaten ( GUS ) ...

NN ADJA NN $( NE $)

AG

APP

NK
- - - -

b)
... Gemeinschaft Unabhängiger Staaten ( GUS ) ...

NN ADJA NN $( NE $)

AG

OP

NK
- - - -

c)
... Gemeinschaft Unabhängiger Staaten ( GUS ) ...

NN ADJA NN $( NE $)

AG

PAR

NK
- - - -

Figure 3.5: The figure shows the dependency structure of the German sentence slice Gemein-
schaft Unabhängiger Staaten ( GUS ) The relevant nodes where variation occurs
are coloured green. Below each word-form is the corresponding part-of-speech
tag. Part-of-speech tag variation is coloured red.
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3.2 Dependency Structures Error Mining

3.2.2 Dependency Structure Error Mining Results for the Penn Treebank

The 47-gram in Example 3.18 is the largest n-gram we have found running the dependency
structure algorithm with fringe heuristic off, number replacement on and no query specified.
Below the 47-gram is the corresponding sentence of the Penn Treebank (without number
replacements). The Sentence occurs twice, in this case we would not need the number
replacement. The parts where we found varying dependency structure is bold.

(3.18) 47-gram: For each poll, the odds are [NWC] out of [NWC] that if pollsters had
sought to survey every household in the U.S. using the same questionnaire, the
findings would differ from these poll results by no more than [NWC] [NWC]
percentage points in either direction

Sentence as it is in the corpus (found twice): For each poll, the odds are 19 out of
20 that if pollsters had sought to survey every household in the U.S. using the
same questionnaire, the findings would differ from these poll results by no more
than 2 1\/2 percentage points in either direction

In total we found three different dependency structures within this sentence. Figure 3.6 shows
the first. The dependency structure varies greatly for the shown parts 1a) and 1b).

1a)
... odds are NWC out of NWC that ...

NNS VBP CD IN IN CD IN

NMOD

SBJ PRD NMOD PMOD PMOD

1b)
... odds are NWC out of NWC that ...

NNS VBP CD IN IN CD IN

NMOD

SBJ

PRD
DEP

DEP
DEP

Figure 3.6: The figure shows the first of three varying dependency structures of the example
sentence shown in Example 3.18. The relevant edges where variation occurs are
coloured green. Below each word-form is the corresponding part-of-speech tag.
NWC = numberwildcard
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3 Evaluation

On the other side in Figure 3.7 2a) and 2b) we only found different dependency relation tags
the edge direction is the same. The last varying part we found is shown in Figure 3.8 where
we have pos-tag variation <1\/2, {CD, NN}> (coloured red) in addition to the dependency
structure variation. The pos-variation was found during the pos error mining process as well.

2a)
... differ from ... by ...

VB IN IN

MNR

ADV

2b)
... differ from ... by ...

VB IN IN

EXT

ADV

Figure 3.7: The figure shows the second of three varying dependency structures of the example
sentence shown in Example 3.18. The relevant edges where variation occurs are
coloured green. Below each word-form is the corresponding part-of-speech tag.
NWC = numberwildcard
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3.2 Dependency Structures Error Mining

.

3a)
... by no more than 2 1\/2 percentage points ...

IN DT RBR IN CD CD NN NNS

PMOD
NMOD

DEP
DEP

DEP
DEP

NMOD

3b)
... by no more than 2 1\/2 percentage points ...

IN DT RBR IN CD NN NN NNS

PMOD

DEP
DEP

DEP
DEP

NMOD

NMOD

Figure 3.8: The figure shows third varying dependency structure of the Penn Treebank
sentence shown in Example 3.18. Below each word-form is the corresponding
part-of-speech tag. Contrasting to Figure 3.6 we discovered variation within the
dependency structure (green) and additional within the pos-tags for <1\/2, CD,
NN>
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3.3 Conclusion

Comparing the algorithm passes and looking at which point we have the same result-set varies
a lot. For the TIGER Corpus this occurs already in the 36-pass. A point where the algorithm
still would do 19 more pass before reaching the final 56-gram. As a side effect the results we
found mining TIGER do not differ for all passes>36 no matter which parameters were enabled.
This looks very different for the Penn Treebank where on one hand we get less results when
we disable the number wild cards (55 instead of 64) and even the result sets collapse for all
four options first when reaching the penultimate iteration step.

We have showed that using number wild cards is really a benefit during the error mining
process since the algorithm cannot miss any sentences that should be treated equal but aren’t
because of different numbers within. The results we found in the Penn Treebank shows this
very clearly, where we discovered longer n-grams when we turned number replacement on. We
take this is a side effect of the data. The Penn Treebank training data we used is part of the
Penn Treebank and the sentences originate from the Wall Street Journal, which includes a lot
of numbers. On the other hand for the German TIGER there were no hits that we would have
missed, but still the total count of different tags was decreased when number replacement was
switched on. The number replacement seems to be a very useful option to have enabled when
doing error mining.

An observation we have made using dependency structure error mining is, that erroneous pos-
tagging seems to propagate. Sentences with wrong pos tags seem to have a wrong dependency
structure. Nevertheless running the dependency algorithm also delivers erroneous sentences we
would not find by pos error mining. We believe that a sentence which full-fills the criteria that
there is both pos and dependency errors this be a strong indicator that there is something
wrong and may be useful when ranking the errors.

The manual evaluation for the TIGER Corpus showed that the algorithm performed well. We
were able to detect errors at a precision of at least 99.16% for 115 sampled 6-grams (118/119
variation nucleus are erroneous). Looking at n-grams with a size of 6 seems to be sufficient
when detecting errors within the TIGER Corpus.
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4 Related Work

As mentioned before, the algorithm of Dickinson and Meurers (2003) to detect errors using
variation within n-grams is still state of the art. Since the algorithm is flexible it can be used
for more than just pos error mining. For example for dependency structure error mining as
introduced by Boyd et al. (2008) which we implemented as well. Besides that, there exists
also a method for discontinuous structural annotation (Dickinson and Meurers, 2005). Like
the pos error mining they try to find strings annotated for constituents. Afterwards they
compare these strings to any other occurrences elsewhere whether annotated as a constituent
or not. For this they developed a method to find strings which are not treated as constituents.
These “non-constituents” were assigned with a special NIL category label. They never need to
search for NIL strings across sentence boundaries since syntactic annotation itself respects
them. For an efficient search they use a trie data structure which is generated in the first pass
when processing the corpus. To detect candidates in the following step they check if there is a
match for a given string within the tree (if there exists a path). If there exist a path for a
given string inside the trie data structure. Finally they run a filter that eliminates NIL tagged
strings that overlap with the identical constituent strings from consideration.

Dickinson (2007) shows a mechanism to determine ambiguity classes for pos-tags. He uses two
different filters, first for classes which only occur very rarely. Besides that, he only replaces
tags by ambiguity classes once they were flagged by an error detection phase as shown in
MacKinlay and Baldwin (2005). To determine if an ambiguity class is typical they use a
frequency-based criterion n, which is empirically determined. With this method they were
able to pick words or ambiguities. They pointed out that grouping words together using their
pos ambiguity classes is useful to improve pos tagging.
We adapted the idea of “re-tagging” in our query mechanism where we are able to replace tags
during the error mining process. We do not group words using their pos-tag classes. If one tag
class is modified the tag changes for all occurrences but no further grammar checks are made.
The query editor is rather used to filter the error mining results than improving pos tagging.

Another error detection method for error detection and correction in dependency treebanks
was introduced by Volokh and Neumann (2011). The authors use the graph-based MST-
Parser (McDonald et al., 2005) and transition-based MaltParser (Nivre et al., 2007) trying to
get as close to the gold standard which they were trained on. The two parsers have completely
different architectures hence they make different mistakes during the parsing process. The
accuracy they reached was 98% and 99%. The authors pointed out that reaching 100% is
impossible as far as some phenomena are either too rare that they can not be covered by
parsing rules or the prediction was correct but the gold-standard was wrong. They try to find
errors where both parsers deliver different dependency results compared to the gold-standard.
After this first step they substitute the dependencies by using the results of the MSTParser.
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Then they re-parse the resulting modified corpus with the transition-based MDParser. 1 The
use of MSTParser output for substitution is to prevent one parser having advantage over
another since MDParser and MaltParser are both transition-based, and more likely to make
the same mistakes. The modification is kept when the MDParser predicts the same otherwise
its undone. The author suggests that dependencies which were formerly wrong and became
correct after running the three steps are likely errors within the gold-standard. This is based
on the fact that two parsers deliver a result that differs from gold which is later approved by a
third parser. To compare their results they counted the dependency occurrences B −→

parser
A

(B is head of A, predicted by the parser) and C −→
gold

A (C head of A, proposed by the gold

standard). They say to detect variation both counts must be available. In case the parser
count outweighs the gold count this would be a strong indicator for erroneous tagging. They
found out that this would only work in 39.5% for their 3535 classified errors. They pointed out
that with their method they find different kind of errors compared to variation detection.

A GUI-based tool for error detecting was build by Agarwal et al. (2012b). It supports different
types of error detection for hindi dependency treebanks and is integrated within the Sanchay
tool introduced by Ambati et al. (2010b). Sanchay is an open source platform to work on
languages and developing Natural Language Processing (NLP). Sanachay is able to detect
errors on various levels e.g. pos, chunk, morphological and dependency level. After choosing a
method the user can correct erroneous instances manually. Detected errors are represented
in a table listing and clicking on a specific error instance shows the corresponding sentences
with the matching node highlight to the user. Additionally the table contains information
about the parent/sibling dependency labels and part-of-speech tags. The authors say that this
is often already enough information for the annotators to correct errors without viewing the
sentence. Our implementation only targets pos or dependency structure errors.

1http://mdparser.sb.dfki.de

54

http://mdparser.sb.dfki.de


5 Summary and Future Work

Our motivation was to develop a GUI-based tool to error-mine linguistically annotated corpora.
Since corpora are used to evaluate automatic language processing systems its worthwhile to
reduce the number of inconsistencies inside because this will improve the evaluation quality.
The approach implementing state-of-the-art computational linguistics algorithms for error
detection into a user-friendly interface increases the operation domain because the algorithms
can be used by a wider audience without deeper knowledge in computers. We built a GUI-based
tool to search for erroneous part-of-speech tags, using the algorithm shown in Dickinson and
Meurers (2003) for part-of-speech tags. To detect errors within dependency structures we
implemented the method introduced by Boyd et al. (2008). With the resulting system the
user is able to run the error mining algorithm with only a few mouse-clicks. The resulting
n-grams are represented graphically, providing an easy way to manually review the results.

As we showed in Chapter 3 finding errors systematically helps determining erroneously tagged
words within a given corpus. We evaluated our tool on the German TIGER Corpus and the
English Penn Treebank. This was done using all possible error mining search parameters
(fringe on/off, number replacement on/off). We showed in Section 3.2.1 that for the German
treebank it does not matter which configuration was chosen since all were able to find the
longest n-gram. This changed for the Penn Treebank where we are no longer able to find the
same n-gram length with disabled number replacement. We believe this to be a side effect
since the Penn Treebank contains a lot of sentences of the Wall Street Journal and so the
number replacement tends to be especially useful when comparing data with a lot of numbers.
To evaluate the dependency structures we switched the number replacement option on/off. For
both treebanks we were able to detect sentences that we have found before during the pos
error mining. They contain varying dependency structure and pos tags. Nevertheless there
were sentences which were not related to the sentences we found during the pos error mining
at all. Here nodes had the same pos tags but the dependency structure varies therefore they
only occur in the dependency structure result set.

We performed a manual evaluation where we sampled 115 6-grams (fringe heuristic on, number
replacement on). For 94.96% we can determine the correct tag. For 4.20% of these we only
can say that these were errors but determining the correct tag was too difficult because the
annotation guidelines did not cover them. Nevertheless we also found one false positive: both
tags were correct for the corresponding sentences. This happened because the current fringe
heuristic implementation only requires one word at each side of the nucleus. So as a future
work the fringe heuristic may be changed in a way that the user can specify how many words
must be left/right of a nucleus. The total precision we get is 99.16%.

55



5 Summary and Future Work

So far we cannot directly correct annotation errors. Generally, it is possible to turn ICARUS
into an annotation tool. The error-mining plug-in provides the user with a graphical exploring
mechanism to find complex linguistic phenomena inside the target corpus that could be useful
to detect difficult tag decisions and therefore may help improving tagging guidelines.
However a future work could be to write an extension to annotate and correct corpora. To
assist the annotator this could be improved by showing all tags (for one nucleus) that have
been found within the selected n-gram. This approach may help improve consistency during
the correction process and prevent further inconsistencies through a correction process.

As we have shown during the evaluation for dependency structure mining we detect sentences
that we already found when using part-of-speech error mining (same target corpus). It seems
that some errors occur in both subsets. It might be useful to build another query filter targeting
this phenomenon. For example running the part-of-speech error mining algorithm followed
up by the dependency structure algorithm. Of course as we showed during the dependency
evaluation we can not assume that all sentences occurring during pos-mining match with the
one found running dependency structure mining since there are inconsistencies that only show
up in one of them. Nevertheless a second “confirm” pass might be useful to give a higher error
ranking to those sentences that we detect in both algorithms. This could be useful when the
user starts manually reviewing the results.
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A Appendix

A.1 The STTS-Tagset

Table A.1: STTS Tagset as seen in Schiller et al. (1999)

Part-Of-Speech Description Example

ADJA attributives Adjektiv [das] große [Haus]
ADJD adverbiales oder prädikatives Adjektiv [er fährt] schnell, [er ist]

schnell
ADV Adverb schon, bald, doch
APPR Präposition; Zirkumposition links in [der Stadt], ohne [mich]
APPRART Präposition mit Artikel im [Haus], zur [Sache]
APPO Postposition [ihm] zufolge, [der Sache]

wegen
APZR Zirkumposition rechts [von jetzt] an
ART bestimmter oder unbestimmter Artikel der, die, das, ein, eine
CARD Kardinalzahl zwei [Männer], [im Jahre]

1994
FM Fremdsprachliches Material [Er hat das mit “] A big fish

[” übersetzt]
ITJ Interjektion mhm, ach, tja
KOUI unterordnende Konjunktion mit “zu”

und Infitiv
um [zu leben], anstatt [zu
fragen]

KOUS unterordnende Konjunktion mit Satz weil, daß, damit, wenn, ob
KON nebenordnende Konjunktion und, oder, aber
KOKOM Vergleichspartikel, ohne Satz als, wie
NN Appellativa Tisch, Herr, [das] Reisen
NE Eigennamen Hans, Hamburg, HSV
PDS substituierendes Demonstrativpronom dieser, jener
PDAT attribuierendes Demonstrativpronomen jener [Mensch]
PIS substituierendes Indefinitpronomen keiner, viele, man, niemand
PIAT attribuierendes Indefinitpronomen ohne

Determiner
kein [Mensch], irgendein
[Glas]

PIDAT attribuierendes Indefinitpronomen mit
Determiner

[ein] wenig [Wasser], [die]
beiden [Brüder]

57



A Appendix

Part-Of-Speech Description Example
PPER irreflexives Personalpronomen ich, er, ihm, mich, dir
PPOSS substituierendes Possessivpronome meins, deiner
PPOSAT attribuierendes Possessivpronomen mein [Buch], deine [Mutter]
PRELS substituierendes Relativpronomen [der Hund,] der
PRELAT attribuierendes Relativpronomen, Rela-

tivpronomen
[der Mann ,] dessen [Hund]

PRF reflexives Personalpronomen sich, einander, dich, mir
PWS substituierendes Interrogativpronomen wer, was
PWAT attribuierendes Interrogativpronomen welche [Farbe], wessen

[Hut]
PWAV adverbiales Interrogativ- oder Rela-

tivpronomen
warum, wo, wann, worüber,
wobei

PAV Pronominaladverb daür, dabei, deswegen,
trotzdem

PTKZU “zu” vor Infinitiv zu [gehen]
PTKNEG Negationspartikel nicht
PTKVZ abgetrennter Verbzusatz [er kommt] an, [er fährt] rad
PTKANT Antwortpartikel ja, nein, danke, bitte
PTKA Partikel bei Adjektiv oder Adverb am [schönsten], zu [schnell]
TRUNC Kompositions-Erstglied An- [und Abreise]
VVFIN finites Verb, voll [du] gehst, [wir] kommen

[an]
VVIMP Imperativ, voll komm [!]
VVINF Infinitiv, voll gehen, ankommen
VVIZU Infinitiv mit “zu”, voll anzukommen, loszulassen
VVPP Partizip Perfekt, voll gegangen, angekommen
VAFIN finites Verb, aux [du] bist, [wir] werden
VAIMP Imperativ, aux sei [ruhig !]
VAINF Infinitiv, aux werden, sein
VAPP Partizip Perfekt, aux gewesen
VMFIN finites Verb, modal dürfen
VMINF Infinitiv, modal wollen
VMPP Partizip Perfekt, modal [er hat] gekonnt
XY Nichtwort, Sonderzeichen enthaltend D2XW3
$, Komma ,
$. Satzbeendende Interpunktion . ? ! ; :
$( sonstige Satzzeichen; satzintern - [,]()
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A.1 The STTS-Tagset

Deviation from STTS in the TIGER Corpus:

PIDAT vs. PIAT No distinction is made between PIAT and PIDAT. PIAT is used for indefinite
pronouns in an attributive function both with and without determiner.

ADV Prepositions are tagged as ADV when the modify numerals.

PAV vs. PROAV The tag PROAV replaces the STTS tag PAV.

Table A.2: TIGER Corpus tagset for Node Labels shown in Smith (2003)

Node Tag Description

AA superlative phrase with am
AP adjective phrase
AVP adverbial phrase
CAC coordinated adposition
CAP coordinated adjective phrase
CAVP coordinated adverbial phrase
CCP coordinated complementiser
CH chunk
CNP coordinated noun phrase
CO coordination
CPP coordinated adpositional phrase
CS coordinated sentence
CVP coordinated verb phrase (non-finite)
CVZ coordinated infinitive with zu
DL discourse level constituent
ISU idiosyncratic unit
MTA multi-token adjective
NM multi-token number
NP noun phrase
PN proper noun
PP adpositional phrase
QL quasi-language
S sentence
VP verb phrase (non-finite)
VZ infinitive with zu
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Table A.3: TIGER Corpus tagset for edge labels as showed in Smith (2003)

Edge Tag Description

AC adpositional case marker
ADC adjective component
AG genitive attribute
AMS measure argument of adjective
APP apposition
AVC adverbial phrase component
CC comparative complement
CD coordinating conjunction
CJ conjunct
CM comparative conjunction
CP complementizer
CVC collocational verb construction (Funktionsverbgefüge)
DA dative
DH discourse-level head
DM discourse marker
EP expletive es
HD head
JU junctor
MNR postnominal modifier
MO modifier
NG negation
NK noun kernel element
NMC numerical component
OA accusative object
OA second accusative object
OC clausal object
OG genitive object
OP prepositional object
PAR parenthetical element
PD predicate
PG phrasal genitive
PH placeholder
PM morphological particle
PNC proper noun component
RC relative clause
RE repeated element
RS reported speech
SB subject
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A.2 Penn Treebank Tagset

Edge Tag Description
SBP passivised subject (PP)
SP subject or predicate
SVP separable verb prefix
UC unit component
VO vocative

A.2 Penn Treebank Tagset

Table A.4: Penn Treebank II Part-of-Speech tagset as shown in Santorini (1990)

Node Tag Description Example

CC conjunction, coordinating and, or, but
CD cardinal number five, three, 13%
DT determiner the, a, these
EX existential there there were six boys
FW foreign word mais
IN conjunction, subordinating or preposition of, on, before, unless
JJ adjective nice, easy
JJR adjective, comparative nicer, easier
JJS adjective, superlative nicest, easiest
LS list item marker
MD verb, modal auxillary may, should
NN noun, singular or mass tiger, chair, laughter
NNS noun, plural tigers, chairs, insects
NNP noun, proper singular Germany, God, Alice
NNPS noun, proper plural we met two Christmases ago
PDT predeterminer both his children
PRP pronoun, personal me, you, it
PRP$ pronoun, possessive my, your, our
RB adverb extremely, loudly, hard
RBR adverb, comparative better
RBS adverb, superlative best
RP adverb, particle about, off, up
SYM symbol %
TO infinitival to what to do?
UH interjection oh, oops, gosh
VB verb, base form think
VBZ verb, 3rd person singular present she thinks
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Node Tag Description Example
VBP verb, non-3rd person singular present I think
VBD Verb, past tense they thought
VBN verb, past participle a sunken ship
VBG verb, gerund or present participle thinking is fun
WDT wh-determiner which, whatever, whichever
WP wh-pronoun, personal what, who, whom
WP$ wh-pronoun, possessive whose, whosever
WRB wh-adverb where, when
. punctuation mark, sentence closer .;?*
, punctuation mark, comma ,
: punctuation mark, colon :
( contextual separator, left paren (
) contextual separator, right paren )

Table A.5: Penn Treebank II chunk tagset

Node Tag Description Words Example

NP noun phrase DT+RB+JJ+NN + PR the strange bird
PP prepositional phrase TO+IN in between
VP verb phrase RB+MD+VB was looking
ADVP adverb phrase RB also
ADJP adjective phrase CC+RB+JJ warm and cosy
SBAR subordinating conjunction IN whether or not
PRT particle RP up the stairs
INTJ interjection UH hello

Table A.6: Dependency Labels for the Penn Treebank as introduced by (Johansson, 2008,
p.145-146)

Node Tag Description

ADV General adverbial
AMOD Modifier of adjective or adverbial
APPO1 Apposition
BNF Benefactor complement (“for”) in dative shift
CONJ Between conjunction and second conjunct

1Only used in the CoNLL-2008 treebank
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Node Tag Description
COORD Coordination
DEP Unclassified
DIR Adverbial of direction
DTV Dative complement (“to”) in dative shift
EXT Adverbial of extent
EXTR Extraposed element in cleft
HMOD1 Between a head and a dependent inside a hyphenated word
HYPH1 Between a part of a hyphenated word and a following hyphen
IM Between infinitive marker (“to”) and a verb
LGS Logical subject of a passive verb
LOC Locative adverbial or nominal modifier
MNR Adverbial of manner
NAME1 Name-internal link
NMOD Modifier of nominal
OBJ Object
OPRD Predicative part of a small clause
P Punctuation
PMOD Modifier of preposition
POSTHON1 Posthonorific modifier of nominal
PRD Predicative complement
PRN Parenthetical
PRP Adverbial of purpose or reason
PRT Between verb and particle
PUT Prepositional phrase complement of the verb “put”
ROOT Root
SBJ Subject
SUB Between subordinating conj. and subordinated clause
SUFFIX1 Between possessor and possessive suffix
TITLE1 Between name and title
TMP Temporal adverbial or nominal modifier
VC Verb chain
VOC Vocative
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A.3 Error Mining Results

A.3.1 TIGER Corpus Results

The tables use the following abbreviations fringe heuristic (F), number wild-card (NWC)

Table A.7: Result for the German TIGER Corpus showing the results of the four error
mining configurations we used during the evaluation (fringe heuristic on, number
wildcards on), (fringe heuristic off, number wildcards on), (fringe heuristic on,
number wildcards off) and (fringe heuristic on, number wildcards off)

N-Gram F; NWC no F; NWC F; no NWC no F; no NWC

total 87423 87423 89383 89383
1 4059 4059 4148 4148
2 7004 7004 6870 6870
3 3434 3434 3093 3093
4 448 948 369 758
5 260 388 230 331
6 207 310 195 246
7 208 253 148 184
8 185 216 121 150
9 136 162 109 135
10 118 141 105 128
11 109 127 105 123
12 102 118 102 118
13 98 112 98 112
14 92 104 92 104
15 84 93 84 93
16 74 82 74 82
17 66 73 66 73
18 59 66 59 66
19 54 61 54 61
20 50 57 50 57
21 46 52 46 52
22 43 48 43 48
23 41 44 41 44
24 39 41 39 41
25 36 38 36 38
26 33 35 33 35
27 30 32 30 32
28 27 29 27 29
29 25 27 25 27
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N-Gram F; NWC no F; NWC F; no NWC no F; no NWC
30 23 25 23 25
31 21 23 21 23
32 20 22 20 22
33 20 21 20 21
34 20 21 20 21
35 20 21 20 21
36 20 21 20 21
37 20 20 20 20
38 19 19 19 19
39 18 18 18 18
40 17 17 17 17
41 16 16 16 16
42 15 15 15 15
43 14 14 14 14
44 13 13 13 13
45 12 12 12 12
46 11 11 11 11
47 10 10 10 10
48 9 9 9 9
49 8 8 8 8
50 7 7 7 7
51 6 6 6 6
52 5 5 5 5
53 4 4 4 4
54 3 3 3 3
55 2 2 2 2
56 1 1 1 1
57 - - - -
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Table A.8: Result for TIGER Corpus using two different queries: NN, NE and NN, NE, XY
both executed with the error mining configuration (fringe heuristic on, number
wildcards on)

N-Gram Hits (NN + NE) Hits (NN + NE + XY)

total 87423 87423
1 1335 1347
2 1018 1023
3 474 476
4 169 169
5 159 159
6 140 140
7 151 151
8 130 130
9 82 82
10 63 63
11 52 52
12 44 44
13 40 40
14 35 35
15 29 29
16 23 23
17 19 19
18 15 15
19 12 12
20 10 10
21 8 8
22 8 8
23 8 8
24 7 7
25 6 6
26 5 5
27 4 4
28 3 3
29 2 2
30 1 1
31 - -
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A.3.2 Penn Treebank Results

The tables use the following abbreviations fringe heuristic (F), number wild-card (NWC). In
the first row “total” are the total amount of word forms we have found.

Table A.9: Result for the Penn Treebank training data. Showing the results of the four error
mining configurations we used during the evaluation (fringe heuristic on, number
wildcards on), (fringe heuristic off, number wildcards on), (fringe heuristic on,
number wildcards off) and (fringe heuristic on, number wildcards off)

N-Gram F; NWC no F; NWC F; no NWC no F; no NWC

total 35050 35050 39782 39782
1 5423 5423 5578 5578
2 11783 11783 11819 11819
3 7318 7318 6795 6795
4 1959 3845 1609 3124
5 1480 2456 1105 1744
6 1201 1795 840 1200
7 984 1368 681 902
8 822 1105 551 714
9 716 928 473 595
10 612 777 399 498
11 540 679 347 429
12 493 614 209 377
13 438 536 278 334
14 388 473 253 303
15 346 421 228 273
16 313 375 205 242
17 285 336 185 214
18 256 300 165 188
19 228 264 145 163
20 198 233 124 142
21 174 207 105 122
22 151 180 87 102
23 132 157 76 88
24 112 136 63 75
25 94 116 52 63
26 77 96 43 54
27 63 81 36 47
28 54 69 32 41
29 47 61 29 38
30 42 54 27 35
31 38 45 26 32
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N-Gram F; NWC no F; NWC F; no NWC no F; no NWC
32 32 38 23 28
33 27 32 19 24
34 23 28 17 22
35 20 24 15 19
36 18 22 13 17
37 17 21 12 16
38 16 20 11 15
39 15 19 10 14
40 15 19 10 14
41 15 19 10 14
42 15 19 10 14
43 15 18 10 13
44 15 18 9 12
45 14 17 8 11
46 12 15 7 10
47 11 14 6 9
48 10 13 5 8
49 9 11 4 5
50 8 10 2 3
51 8 10 2 3
52 8 10 2 3
53 8 10 2 3
54 8 9 2 2
55 7 8 1 1
56 6 7 - -
57 5 6
58 4 5
59 3 4
60 2 3
61 2 3
62 2 3
63 2 2
64 1 1
65 - -
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N-Gram V*
total 35050

1 3326
2 5474
3 2255
4 320
5 190
6 159
7 144
8 140
9 132

10 123
11 117
12 108
13 94
14 83
15 73
16 65
17 57

N-Gram V*
18 51
19 46
20 40
21 36
22 32
23 28
24 23
25 18
26 12
27 8
28 5
29 4
30 3
31 3
32 2
33 1
34 1
35 -

Table A.10: Result for the Penn Treebank training data. Query: VB, VBZ, VBP, VBD,
VBN and VBG (abbreviated V*). (fringe heuristic on, number wildcards on)
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