Institut für Visualisierung und Interaktive Systeme

Universität Stuttgart Universitätsstraße 38 D–70569 Stuttgart

Diplomarbeit Nr. 3482

Bestimmung des optischen Flusses mit bilateralen Datenund Glattheitstermen

Ewgeni Nachbauer

Studiengang: Informatik

Prüfer/in: Prof. Dr.-Ing. Andrés Bruhn

Betreuer/in: Prof. Dr.-Ing. Andrés Bruhn

Beginn am: 4. September 2013

Beendet am: 6. März 2014

CR-Nummer: I.5.4, I.4.8, I.4.3, G.1.8

Zusammenfassung

Die folgende Arbeit beschäftigt sich mit Variationsansätzen zur Berechnung des optischen Flusses. Dazu wird ein bereits bestehendes Verfahren, das Verfahren von Zimmer *et al.*, mit einem Bilateralfilter erweitert, welcher die optischen Flusskanten verbessern soll. Dazu werden vier neue Variationsansätze vorgestellt, in denen sowohl der Daten- als auch der Glattheitsterm bilaterale Anteile enthält. Die Euler-Lagrange-Gleichungen der jeweiligen Energiefunktionale werden über eine Multiskalenhierachie (Warping), Linearisierung und Anwendung der *Lagged-Nonlinearity*-Methode mit Hilfe des SOR-Verfahrens berechnet. Die Auswirkungen der bilateralen Terme auf den optischen Fluss werden in zahlreichen Testreihen untersucht und dessen Vor- und Nachteile erläutert.

Nach mehreren Testreihen konnte aufgezeigt werden, dass die bilateralen Daten- und Glattheitsterme die Kanten der Flussfelder deutlich verbessern, wodurch die Fehlerwerte des AAE und des AEE in allen getesteten Sequenzen sinken. In einigen Sequenzen entstand jedoch ein unerwünschtes Verhalten bei Variation der α -Werte: Bei kleinen Änderungen von α änderte sich das Flussbild zum Teil sehr stark. Hier besteht unter anderem ein Zusammenhang mit der Multiskalenhierachie (Warping), in der auch die Bildinformationen zur Gewichtung der bilateralen Terme aus groben Auflösungsstufen verwendet werden. Ein solch sensitives Verhalten konnte durch die Skalierung bestimmter Einstellungsparameter für jede Auflösungsstufe und durch Anpassung der maximalen Warping-Tiefe behoben werden. Wie auch bei anderen bild- und flussgetriebenen Glattheitstermen sind an strukturierten Flächen weiterhin Artefakte zu erkennen. Neben dem bilateralen Glattheitsterm konnten auch die Erweiterung der Variationsansätze mit bilateralen Datentermen das optische Flussfeld verbessern. Insgesamt konnte durch den Einsatz von bilateralen Termen das optische Flussfeld für die AAE- und die AEE-Werte um durchschnittlich mehr als 20 Prozent gesenkt und somit das Verfahren von Zimmer $et\ al.$ verbessert werden.

Inhaltsverzeichnis

1.	Einle	eitung	5
2.	Grui	ndlagen	9
	2.1.	Optischer Fluss	9
		2.1.1. Das Aperturproblem	11
		2.1.2. Qualitätsmaße / Fehlermaße	11
	2.2.	Variationsrechnung	13
		2.2.1. Variationsansätze für den optischen Fluss	14
		2.2.2. Minimierung	14
	2.3.	Variationsansätze zur Bestimmung des optischen Flusses	15
		2.3.1. Verfahren von Lucas und Kanade	15
		2.3.2. Verfahren von Horn und Schunck	17
		2.3.3. Verfahren von Brox et al	20
		2.3.4. Verfahren von Zimmer et al	22
	2.4.	Diskretisierung	26
	2.5.	Lösung linearer und nichtl-inearer Gleichungssysteme	28
		2.5.1. Lineare Gleichungssysteme	29
		2.5.2. Nicht-lineare Gleichungssysteme für konvexe Optimierungsprobleme	31
		2.5.3. Nicht-lineare Gleichungssysteme für nicht-konvexe Optimierungsprobleme	32
	2.6.	Bilateralfilter und andere Glättungsverfahren	36
		2.6.1. Anwendung im optischen Fluss	38
3.	Opti	scher Fluss mit bilateralen Daten- und Glattheitstermen	41
	3.1.	D_0 - Datenterm "Zimmer"	41
	3.2.	S_1 - Bilateraler Glattheitsterm "Steigung"	44
	3.3.	D_{1a} - Bilateraler Datenterm "Gradient"	47
	3.4.	D_{1b} - Bilateraler Datenterm "Zimmer (zentral)"	49
	3.5.	D_{1c} - Bilateraler Datenterm "Zimmer"	52
	3.6.	Symmetrie und positiv Definitheit der Systemmatrizen	54
	3.7.	Variationsansätze im Überblick	58

Inhaltsverzeichnis

4.	Implementierungsdetails	61
	4.1. Framework	61
	4.2. Einstellungsparameter	61
	4.3. Bilateralfilter	62
5.	Evaluation	65
	5.1. Evaluation V_0	69
	5.2. Evaluation V_1	74
	5.3. Evaluation V_{2a}	91
	5.4. Evaluation V_{2b}	98
	5.5. Evaluation V_{2c}	105
	5.6. Evaluation mit JTF und CBU	110
	5.7. Rauschen und Bildglättung	117
	5.8. Vergleich mit aktuellen Verfahren (Middelbury)	126
6.	Zusammenfassung und Ausblick	129
A.	Anhang	133
Lit	eraturverzeichnis	159

1. Einleitung

Werden zwei aufeinander folgende Bilder einer Bildsequenz betrachtet, so können sich Bildinhalte von einem Frame zum anderen verschieben. Der Grund hierfür kann aus Bewegung der Objekte, der Kamera selbst oder einer Kombination aus beidem resultieren. Eine solche zur Kameraposition relative und auf eine Bildfläche projizierte zweidimensionale Bewegung soll in dieser Arbeit berechnet werden. Die einzelnen Verschiebungen werden dabei durch Vektoren repräsentiert und bilden zusammen ein Vektorfeld welches als optischer Fluss bezeichnet wird.

Ein Anwendungsgebiet für den optischen Fluss ist unter anderem die Berechnung von Bewegungsinformationen zur Videokompression, welches als Motion Estimation bezeichnet wird. Durch die Übertragung eines Bildframes (Keyframe) und dem optischen Fluss (Vektorfeld/er) sollen kommende Bildframes rekonstruiert werden ohne das weitere Bilder übertragen oder gespeichert werden müssen. Die Erkennung von Bewegungen ist ebenso im Bereich der Robotik eine wichtige Aufgabenstellung. Neben der autonomen Steuerung und Kollisionserkennung kann der optische Fluss auch zur Identifizierung einzelner Objekte genutzt werden.

In den vergangenen drei Jahrzehnten wurden zahlreiche Ansätze zur Berechnung des optischen Flusses vorgestellt. Besonders gute Ergebnisse erzielten dabei Variationsansätze, in denen durch die Minimierung eines Energiefunktionals der optische Fluss berechnet wird. Das Energiefunktional selbst beschreibt durch verschiedene Annahmen Eigenschaften von Objekten und deren Bewegungen. Durch die Minimierung eines solchen Energiefunktionals für eine gegebene Bildfolge lässt sich der optische Fluss errechnen, der die Bedingungen des Modells am besten wiederspiegelt.

Die Suche nach möglichst optimalen Modellen brachte zahlreiche Verfahren hervor, siehe Middlebury Optical Flow Benchmark [BSL⁺11] (vision.middlebury.edu/flow/). Mit Annahmen wie der Helligkeits- und Gradientenkonstanz, der stückweisen Glattheit des Flussfeldes, unterschiedlichen Gewichtungsfunktion uvm., sowie der Wahl passender numerischer Verfahren zur Minimierung der Energiefunktionale konnte die Qualität des optischen Flusses schrittweise verbessert werden. Da im Allgemeinen bei der Berechnung der Verschiebungen durch unterschiedliche Konstanzannahmen Mehrdeutigkeiten vorhanden sind, ist eine geeignete Forderung bezüglich der Glattheit des Flussfeldes von zentraler Bedeutung und wird

üblicherweise über einen Glattheitsterm beschrieben. In den ersten Ansätzen (z.B. Lucas und Kanade [LK82]) wurde der Fluss in einer kleinen Nachbarschaft als konstant angenommen und Abweichungen von dieser Annahme vermieden. Dadurch wurde das gesamte Flussfeld implizit geglättet und damit auch die Bewegungsinformationen verwischt. Modernere Verfahren kombinieren die Glattheitsannahme mit Bildinformationen (z.B. Bildkanten), um scharfe Flussfelder erzeugen und die Bewegungen einzelner Objekte besser abgrenzen zu können. Ein Beispiel dafür ist das Verfahren von Zimmer *et al.* [ZBW11].

Ziel dieser Arbeit ist es genau solche scharfen Flusskanten, die bei Bewegungen von Objekten entstehen, durch die Erweiterung des Glattheitsterms mit einen Bilateralfilter zu berechnen. Ein Bilateralfilter wird in der Bildverarbeitung zur Glättung von Bildinformationen verwendet. Durch seine kantenerhaltenden Eigenschaften soll der optische Fluss an Objektkanten verbessert werden. Desweiteren kann der Filter zur Vorverarbeitung der Eingangsbilder und zur Interpolation und Nachbearbeitung der Teillösungen (Flussfelder) Anwendung finden.

Bereits im Jahre 2006 stellten Xiao *et al.* [XCS+06] einen Ansatz für die Integration eines Bilateralfilters als Glattheitsterm in einem einfachen Variationsansatz vor. Wie erfolgreich die Implementierung des Filters war, ist jedoch schwer einzuschätzen, da nur wenige Testreihen evaluiert wurden und Implementierungsdetails unzureichend beschrieben worden sind. Ziel dieser Arbeit ist es deshalb, einen solchen Bilateralfilter in ähnlicher Weise in ein aktuelles Verfahren (Zimmer et al. [ZBW11]) zur Berechnung des optischen Flusses zu integrieren und geeignet zu erweitern. Dazu werden neben einem bilateralen Glattheitsterm ebenfalls mögliche Verbesserungen des optischen Flusses durch den Einsatz des Bilateralfilters im Datenterm untersucht.

Gliederung

Kapitel 2 beschreibt zunächst die Grundlagen zur Berechnung des optischen Flusses mit Hilfe von Variationsansätzen. Dazu werden schrittweise verschiedene Verfahren zur Modellierung des optischen Flusses vorgestellt und schließlich das Basisverfahren von Zimmer et al. [ZBW11] erläutert. Anschließend werden wichtige Ansätze zur Lösung von linearen und nicht-linearen Gleichungssystemen vorgestellt. Den Abschluss des Kapitels bildet der Bilateralfilter. Neben den Modellen und Formeln werden die kantenerhaltenden Eigenschaften und die bisherigen Ansätze zur Integration des Filters in die Berechnung des optischen Flusses erläutert. In Kapitel 3 werden dann insgesamt vier neue Modelle über die Erweiterung des Zimmer et al. Verfahrens mit bilateralen Termen im Daten- sowie Glattheitsterm vorgestellt und die Gleichungen zur Minimierung der Energiefunktionale hergeleitet. Das nächste Kapitel beschreibt anschließend einige Implementierungsdetails. Hierzu zählen das verwendete Framework, ebenso wie Funktionen zur Skalierung und Anpassung von Einstellungsparametern in den verwendeten Variationsansätzen. In Kapitel 5 werden vier neue Variationsansätze, ebenso wie das Zimmer et al. Verfahren, evaluiert. Verschiedene Testreihen mit bis zu acht Testsequenzen werden mit unterschiedlichen Parametern durchlaufen und die Ergebnisse miteinander verglichen und interpretiert. Zur Optimierung der einzelnen Verfahren werden erweiterte Methoden wie die Skalierung der α - oder σ -Werte, die Beschränkung der Warping-Tiefe, sowie die Verfahren JTF und CBU [SVB13] untersucht. Auch der Einfluss von Bildrauschen auf die jeweiligen Variationsansätze wird in einem separaten Abschnitt mit und ohne Vorfilterung über den Bilateralund Gaußfilter getestet. Das letzte Kapitel liefert eine Zusammenfassung der vorgestellten Verfahren und der erzielten Evaluationsergebnisse.

2. Grundlagen

In diesem Kapitel werden die Grundlagen und Methoden beschrieben, die zum Verständis der nachfolgenden Kapitel wichtig sind. Im ersten Abschnitt wird der Begriff "optischer Fluss" definiert, sowie grundlegende Probleme beschrieben, welche bei bei der Schätzung des optischen Flusses auftreten können. Da fast alle vorgestellten Verfahren zur Berechnung des optischen Flusses auf Methoden der Variationsrechnung beruhen, wird anschließend eine kurze Einführung in dieses Themengebiet gegeben. In Abschnitt 2.3 – "Variationsansätze zur Bestimmung des optischen Flusses" werden chronologisch relevante und bekannte Verfahren zur Berechnung der Flussfelder vorgestellt. Der letzte dort vorgestellte Ansatz, das Verfahren von Zimmer et al., dient als Basisverfahren, das im Verlauf der Arbeit erweitert und verbessert wird. In Abschnitt 2.3 liegt der Fokus auf den Modellen und Formeln hinter den einzelnen Verfahren. Wie die Formeln gelöst und der optische Fluss letztendlich numerisch berechnet werden kann, wird in Kapitel 2.5 – "Lösung linearer und nichtl-inearer Gleichungssysteme" ausführlich behandelt. Der letzte Abschnitt des Kapitels beschreibt schließlich Glättungsverfahren, welche bei der Vorverarbeitung von Bildsequenzen eingesetzt werden und so bereits zur Verbesserung des optischen Flusses beitragen. Der Fokus liegt hier auf dem Bilateralfilter, der in dieser Arbeit auf vielfältige Weise Einzug in die Berechnung des optischen Flusses finden soll.

2.1. Optischer Fluss

Der optische Fluss stellt im Bereich des maschinellen Sehens ein Vektorfeld dar, das Bewegungsinformationen in Form von Bewegungsrichtung und Bewegungslänge für jeden Bildpunkt angibt. Zur Berechnung des optischen Flusses wird eine Bildsequenz, bestehend aus mindestens zwei Bildern, benötigt. Betrachtet man zwei aufeinander folgende Bilder einer Sequenz, so entsteht bei der Bewegung von Objekten oder der Kamera eine Verschiebung von Bildinformationen. Eine solche Verschiebung der Objekte oder genauer der Grauwertoder Farbinformationen eines jeden Bildpunktes wird mit Hilfe eines Vektors beschrieben – dem optischen Fluss. Die Verschiebung wird für jeden einzelnen Bildpunkt durch einen Vektor $\vec{v} = [u, v]^T$ repräsentiert. Dabei beschreibt u die Verschiebung in x-Richtung und v die

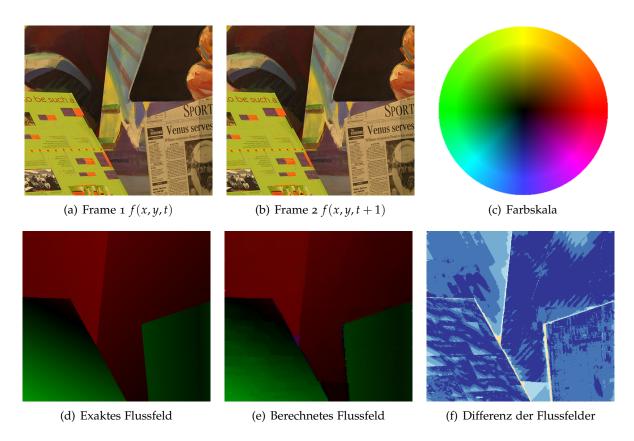


Abbildung 2.1.: Visualisierung des optischen Flusses

Verschiebung in y-Richtung. Das Vektorfeld lässt sich auch als eine Funktion interpretieren, welche von der Position x, y sowie der Zeit t abhängt:

$$\vec{v}(x,y,t) = [u(x,y,t), v(x,y,t)]^T.$$
 (2.1)

Die zugehörige Bildsequenz wird durch die Funktion f(x,y,t) dargestellt, wobei x,y die Position innerhalb eines typischerweise rechteckigen Bildbereichs $\Omega = \{(x,y)|x \in [0;N],y \in [0;M]\}$ angibt und $t \in [0;T]$ den Zeitpunkt beschreibt.

Ein Beispiel für den optischen Fluss liefert Abbildung 2.1: Aus der Middlebury Sequenz - *Venus* wurden zwei direkt aufeinander folgende Frames (a) und (b) ausgewählt. Bei dieser Sequenz dreht sich die Kamera um einen bestimmten, im Raum liegenden Punkt nach rechts. Dadurch bewegen sich die Objekte, die vor diesem Punkt liegen (Zeitung und Grafik) nach rechts und die Objekte, die hinter diesem Punkt liegen (Hintergrund) nach links. Zur Visualisierung der Vektoren wird eine Farbzuordnung (Farbplot) durch eine Farbskala (c) verwendet. Dabei wird die Bewegungsrichtung als Farb- und die Bewegungslänge oder Geschwindigkeit als Helligkeitswert angegeben. Ein solcher Farbplot wird in (d) für das exakte Flussfeld (*engl. ground*

truth) und in (e) für ein berechnetes Flussfeld gezeigt. Die Differenz zwischen dem exakten und berechneten Flussfeld wird in (f) dargestellt, wobei helle Farben auf große Differenzen und dunkle Farben auf eine gute Flussschätzung hinweisen.

2.1.1. Das Aperturproblem

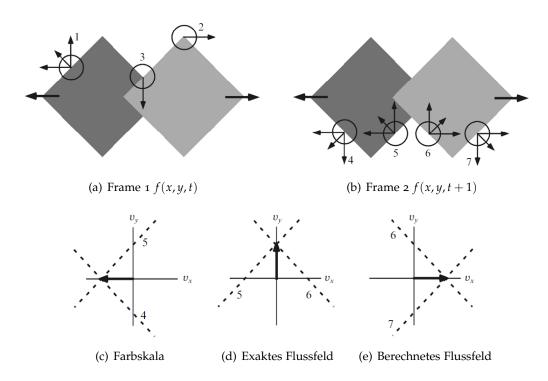

Ein grundlegendes Problem im Bereich der Computer Vision wird als das Aperturproblem [MWA01] bezeichnet. Die Apertur (Blendenöffnung) illustriert das inutitive Vorgehen bei der Erkennung von Bewegungen zwischen zwei oder mehreren Frames. Dabei wird ein kleiner Bildausschnitt (Apertur) verwendet, um Bewegungen zu erkennen. Bewegt sich die Struktur oder Kontur des jeweiligen Bildausschnittes von einem Frame zum anderen, so sollte sich die Bewegung erkennen und berechnen lassen. Das Aperturproblem soll darauf hinweisen das diese Annahme im Allgemeinen falsch ist. Der Vergleich eines einzelnen Bildausschnittes führt in vielen Fällen zu mehrdeutigen Ergebnissen, womit sich die Bewegungen eines Objektes nicht immer eindeutig bestimmen lassen. Bei Verschiebung einer Objektkante von einem Frame zum anderen kann der optische Fluss nur orthogonal zur Kante berechnet werden. Entlang der Kante sind alle Verschiebungen möglich.

Abbildung 2.2 illustriert diesen Sachverhalt: Zwei Rechtecke bewegen sich in entgegengesetzte Richtungen. Die Bewegungen der Ausschnitte 1, 4, 5, 6, 7 können nicht bestimmt werden, da die Informationen in diesen Bildbereichen (Kanten) zur Berechnung der Bewegungsrichtung nicht ausreichen. Eckpunkte hingegen und somit auch Ausschnitt 2 liefern ausreichende Strukturinformation um eine Bewegung eindeutig zu identifizieren. Dies führt bei Ausschnitt 3 allerdings zu einer falschen Annahme der Bewegungsrichtung, welche auf die Überdeckung der Objekte und der entgegengesetzen Bewegungsrichtungen zurückzuführen ist.

Mehrdeutigkeiten im optischen Fluss lassen sich durch die Kombination einzelner Bildausschnitte reduzieren. Die Ausschnitte 4 und 5, sowie 6 und 7 ergeben jeweils gemeinsam den richtigen Bildfluss, siehe Abbildung 2.2 (c) und (e). Die Kombination von 5 und 6 resultiert weiterhin in einer falschen Bewegungsrichtung (d). Durch die Betrachtung nicht nur eines einzelnen lokalen Ausschnittes, sondern durch die Hinzunahme globaler Bildinformationen lässt sich der optische Fluss somit verbessern. Fehlen hingegen jegliche Strukturinformationen (weder Kanten noch Ecken), so sind globale Informationen unerlässlich um eine passende Bewegung zu errechnen.

2.1.2. Qualitätsmaße / Fehlermaße

Zur Beurteilung des errechneten Flussfeldes haben sich in der Fachliteratur zwei Evaluationsmethoden etabliert [Zim11]. Die Voraussetzung für eine solche Evaluierung ist ein exaktes

Abbildung 2.2.: Das Aperturproblem. Bewegung zweier Rechtecke nach links und rechts, die Kreise sind die betrachteten Bildausschnitte (Apertur) [MWA01].

Flussfeld \vec{w}_{gt} (engl. ground truth) der jeweiligen Sequenz, welches bei einigen künstlich erstellten Ssequenzen zur Verfügung steht. Das errechnete bzw. geschätzte (engl. estimated) Flussfeld \vec{w}_e kann anschließend über einen Vergleich von \vec{w}_{gt} beurteilt werden. Das Flussfeld \vec{w}_{gt} und \vec{w}_e besteht aus den Vektoren $\vec{w}(x,y,t) = [u(x,y,t),v(x,y,t),1]^T$ und beschreibt die Bewegung zwischen zwei Frames zum Zeitpunkt t an der Position (x,y).

Das erste Fehlermaß ist der durchschnittliche Winkelfehler (engl. average angular error (AAE)), bei dem die räumlich zeitlichen Winkelabweichungen über den gesamten Bildbereich Ω aufsummiert und normiert werden. Abweichungen in der Länge der Vektoren werden deshalb ebenfalls berücksichtigt. Jedoch ist der maximale Fehlerwert auf das Intervall $[0;\pi]$ beschränkt. Bei Verwendung der euklidischen Norm $|\vec{w}| = \sqrt{u^2 + v^2 + 1}$, ist der durchschnittliche Winkelfehler wie folgt definiert:

$$AAE(w_{gt}, w_e) = \frac{1}{|\Omega|} \iint_{\Omega} arccos\left(\frac{\vec{w}_e^T \vec{w}_{gt}}{|\vec{w}_e||\vec{w}_{gt}|}\right) dxdy. \tag{2.2}$$

Eine Alternative ist die Berechnung der durchschnittlichen Abweichung zwischen den Vektoren des errechneten und optimalen Flusses (*engl. average endpoint error (AEE*)). Die euklidische Norm verhindert dabei, dass sich die Fehlerwerte ausgleichen können. Im Unterschied zum

AAE können die einzelnen Abweichungen zu sehr großen Fehlern führen (Intervall $[0, \infty]$), sodass der durchscnittliche Fehler selbst durch wenige ungenau geschätzte Vektoren stark ansteigen kann. Der AAE ist wie folgt definiert:

$$AEE(\vec{w}_{gt}, \vec{w}_e) = \frac{1}{|\Omega|} \iint_{\Omega} |\vec{w}_{gt} - \vec{w}_e| \, dxdy. \tag{2.3}$$

2.2. Variationsrechnung

Der Großteil der in dieser Arbeit vorgestellten Verfahren bedient sich dem mathematischen Konzept der Variationsrechnung [BSMMo6]. Ausgangspunkt ist ein Integralausdruck, welcher Funktionen einen skalaren Wert zuordnet. Ein solcher Ausdruck wird als Energiefunktional oder kurz Funktional bezeichnet, der im Allgemeinen maximiert oder minimiert werden soll. Dabei ist das Funktional selbst von einer oder mehreren unbekannten Funktionen abhängig. Die Aufgabe in der Variationsrechnung besteht darin, die unbekannten Funktionen zu bestimmen, für welche das Funktional einen Extremwert annimmt. Energiefunktionale, wie sie in der Variationsrechnung vorkommen, sind beispielsweise

$$E(y) = \int_{a}^{b} F(x, y(x), y'(x)) dx, \qquad (2.4)$$

$$E(y_1, y_2, ..., y_n) = \int_a^b F(x, y_1(x), ..., y_n(x), y_1'(x), ..., y_n'(x)) dx, \qquad (2.5)$$

$$E(u) = \iint_{\Omega} F(x, y, u, u_x, u_y) \, dxdy, \qquad (2.6)$$

$$E(u,v) = \iint_{\Omega} F(x,y,u,v,u_x,u_y,v_x,v_y) dxdy.$$
 (2.7)

Ein Energiefunktional mit einer unbekannten Funktion y(x) kann die in Gleichung (2.4) beschriebene Form aufweisen, wobei das Funktional auch von der Ableitung der gesuchten Funktion y'(x) abhängt. Wird das Energiefunktional hingegen von mehreren unbekannten Funktionen beeinflusst, so kann der Integralausdruck aus Gleichung (2.5) entstehen. Sind die unbekannten Funktionen von mehreren Variablen abhängig, entsteht ein Doppelintegral, wie es in Gleichung (2.6) beschrieben wird. Für die einzelnen Funktionale können **Randbedingungen** gefordert werden; für eindimensionale Gleichungen wie (2.4) oder (2.5) Bedingungen an den Rändern des Integrationsbereichs ($y(a) = c_1$, $y(b) = c_2$) und für zweidimensionale Funktionen wie (2.6) oder (2.7) Bedingungen am Rand der Integrationsfläche Ω für die gesuchten Funktionen u, v.

2.2.1. Variationsansätze für den optischen Fluss

Ein typisches Energiefunktional für die Berechnung des optischen Flusses enthält zwei unbekannte Funktionen u(x,y) und v(x,y), die jeweils von den zwei Variablen x,y abhängig sind. Neben den Funktionen u(x,y) und v(x,y) sind auch deren Ableitungen in x- und y-Richtung im Funktional enthalten, so dass man die in Gleichung (2.7) beschriebene Form erhält. Dabei beschreibt u die Verschiebung in x-Richtung und v die Verschiebung in y-Richtung.

Für zukünftige Betrachtungen sollen alle Energiefunktionale E(u,v) für den optischen Fluss in zwei Terme unterteilt werden E(u,v) = D(u,v) + S(u,v): Der **Datenterm** D(u,v) bezieht sich hauptsächlich auf die Bildinformationen, der **Glattheitsterm** S(u,v) reagiert auf Änderungen des Flussfelds.

2.2.2. Minimierung

Grundlegend sollen zur Berechnung des optischen Flusses in einem solchen Energiefuntkional die Abweichungen des Flusses von vorgegebenen Modellannahmen aufsummiert werden. Durch die Minimierung des Funktionals soll ein zum Modell möglichst passendes Flussfeld gefunden werden. Eine notwendige Bedingungen zur Minimierung des Funktionals aus Gleichung (2.7) liefert der Euler-Lagrange-Formalismus, mit dem ein System partieller Differentialgleichungen (engl. coupled differential equations (PDE)) beschrieben wird

$$\frac{\partial F}{\partial u} - \frac{\partial}{\partial x} \left(\frac{\partial F}{\partial u_x} \right) - \frac{\partial}{\partial y} \left(\frac{\partial F}{\partial u_y} \right) = 0,$$

$$\frac{\partial F}{\partial v} - \frac{\partial}{\partial x} \left(\frac{\partial F}{\partial v_x} \right) - \frac{\partial}{\partial y} \left(\frac{\partial F}{\partial v_y} \right) = 0,$$
(2.8)

mit den **Neumann Randwertbedingungen** $\vec{n}^T (\frac{\partial F}{\partial u_x}, \frac{\partial F}{\partial u_y})^T = 0$ und $\vec{n}^T (\frac{\partial F}{\partial v_x}, \frac{\partial F}{\partial v_y})^T = 0$, bei dem die Ableitungen über die Bildrändern hinweg, richtung \vec{n} verschwinden. Eine Lösung der Euler-Lagrange-Differentialgleichungen führt zu den gesuchten Funktionen u(x,y) und v(x,y). Diese Funktionen minimieren das Energiefunktional nicht zwingend, da die Euler-Lagrange-Gleichung eine notwendige, aber keine hinreichende Bedingung liefert. Dies kann analog mit der Suche des Minimums einer Funktion in der Analysis gesehen werden: Lösungen der Nullstelle erster Ableitung können Minimum, Maximum oder Sattelpunkt liefern.

Ist das Energiefunktional **strikt-konvex**, so liefert die Berechnung der Euler-Lagrange-Gleichung eine eindeutige Lösung die das Funktional minimiert. Fehlt diese Eigenschaft muss bei Lösungen unterschieden werden ob ein lokales oder globales Minimum vorliegt. Zur numerischen Lösung der Euler-Lagrange-Gleichung wird die Gleichung (2.8) diskretisiert,

wodurch ein lineares oder nicht-lineares Gleichungssystem entsteht [Zim11]. Wie solche Gleichungssysteme gelöst werden können, wird in Kapitel 2.5 – "Lösung linearer und nichtl-inearer Gleichungssysteme" ausführlich beschrieben.

2.3. Variationsansätze zur Bestimmung des optischen Flusses

Im folgenden Kapitel werden einige Ansätze und Ideen zur Berechnung des optischen Flusses vorgestellt. Dabei werden nur wichtige Merkmale der jeweiligen Verfahren beschrieben. Das Verfahren von Zimmer *et al.* [Zim11] wird ausführlich behandelt, da es sich um das Basisverfahren handelt, welches in dieser Arbeit erweitert und verbessert werden soll.

2.3.1. Verfahren von Lucas und Kanade

Modell

Dieser Abschnitt basiert auf den Informationen aus [LK82] und [BM04]. 1981 wurde von Lucas und Kanade ein Verfahren vorgestellt, das zwei wichtige Annahmen verfolgt: Erstens ändern sich die Grauwertinformation bzw. Helligkeitswerte der einzelnen Bildpunkte bei kleinen zeitlichen Änderungen nicht oder nur geringfügig (Grauwertkonstanz), d.h.

$$f(x,y,t) - f(x+u,y+v,t+1) = 0. (2.9)$$

Zweitens wird angenommen, dass sich das Flussfeld innerhalb einer bestimmten Umgebung $\mathcal{N}_{\rho}(x,y)$ ebenfalls nicht oder nur geringfügig ändert. Verschiebt sich ein Bildpunkt in eine bestimmte Richtung, so ist die Wahrscheinlichkeit groß, dass sich seine Nachbarschaft ebenfalls in die gleiche Richtung bewegt, falls die benachbarten Bildpunkte zum selben Objekt gehören. Alle Abweichungen von diesen beiden Annahmen werden über ein Fehlerquadrat bestraft. Der Einsatz des Fehlerquadrates verhindert den Ausgleich von Fehlerwerten und gewichtet zudem größere Abweichungen stärker. Anschließend wird durch die Minimierung der Energiefunktion, für jeden Bildpunkt getrennt, ein möglichst optimaler Verschiebungsvektor berechnet:

$$E(u(x_0,y_0),v(x_0,y_0)) = \iint_{\mathcal{N}_{\rho}(x_0,y_0)} (f(x,y,t) - f(x+u,y+v,t+1))^2 dxdy.$$
 (2.10)

Zu beachten ist, dass es sich bei dem Verfahren von Lucas und Kanade im klassischen Sinne um keinen Variationsansatz handelt, da u,v keine Funktionen sondern Variablen sind. Statt einem dichten Flussfeld werden einzelne Verschiebungen unabhängig von einander berechnet.

Im Allgemeinen sind die Werte von f(x,y) nicht-linear von (x,y) abhängig, vielmehr stehen sogar die Koordinaten (x,y) in keinerlei Zusammenhang mit den Bildwerten f(x,y). Damit beschreibt die Energiefunktion ein nichtlineares Optimierungsproblem, welches die Berechnung einer Lösung erschwert. Mit der Annahme, dass sich f(x,y) entlang der Bewegung \vec{v} nur linear ändert, lässt sich mit der Taylor-Reihe erster Ordnung die Grauwertkonstanz-Annahme wie folgt approximieren:

$$f(x+u,y+v,t+1) \approx f(x,y,t) + f_x(x,y,t)u + f_y(x,y,t)v + f_t(x,y,t). \tag{2.11}$$

Das Einsetzen der linearisierten Form in Gleichung (2.9) ergibt die linearisierte Form der Grauwertkonstanz-Annahme:

$$0 = f_x u + f_y v + f_t = \nabla_3 f^T w (2.12)$$

mit $\nabla_3 = (\partial_x, \partial_y, \partial_t)^T$, $\vec{w} = (u, v, 1)^T$ und führt zu dem Optimierungsproblem

$$E(u(x_0, y_0), v(x_0, y_0)) = \iint_{\mathcal{N}_{\rho}(x_0, y_0)} (f_x u + f_y v + f_t))^2 dxdy$$

$$= \iint_{\mathcal{N}_{\rho}(x_0, y_0)} (\nabla_3 f^T \vec{w})^2 dxdy$$

$$= \iint_{\mathcal{N}_{\rho}(x_0, y_0)} w J w^T dxdy$$
(2.13)

mit dem **Bewegungstensor** $J := \nabla_3 f \nabla_3 f^T$ der als 3×3 Matrix dargestellt werden kann [BWKSo6]. Die **Bewegungstensor-Notation** erlaubt eine vereinfachte und übersichtliche Darstellung verschiedener Konstanzannahmen und wird in Hauptteil eingesetzt.

Minimierung

Indem die Gleichung (2.13) nach u und v abgeleitet wird, erhält man für jeden Bildpunkt ein lineares Gleichungssystem der Größe 2×2 :

$$0 = \frac{dE}{du} = 2 \cdot \iint_{\mathcal{N}_{\rho}(x_0, y_0)} f_x(f_x u + f_y v + f_t) \, dx dy,$$

$$0 = \frac{dE}{dv} = 2 \cdot \iint_{\mathcal{N}_{\rho}(x_0, y_0)} f_y(f_x u + f_y v + f_t) \, dx dy$$
(2.14)

In Matrixschreibweise $A \cdot \vec{x} = \vec{b}$ lässt sich das Gleichungssystem wie folgt schreiben:

$$\begin{pmatrix} \iint_{\mathcal{N}_{\rho}} f_{x} f_{x} \, dx dy & \iint_{\mathcal{N}_{\rho}} f_{x} f_{y} \, dx dy \\ \iint_{\mathcal{N}_{\rho}} f_{x} f_{y} \, dx dy & \iint_{\mathcal{N}_{\rho}} f_{y} f_{y} \, dx dy \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix} = \begin{pmatrix} -\iint_{\mathcal{N}_{\rho}} f_{x} f_{t} \, dx dy \\ -\iint_{\mathcal{N}_{\rho}} f_{y} f_{t} \, dx dy \end{pmatrix}. \tag{2.15}$$

Wie viele Lösungen ein solches Gleichungssystem besitzt, hängt von der Matrix A bzw. dessen Eigenwerten ab. Betrachtet man eine homogene Bildfläche, so ist $f_x = f_y \approx 0$ und damit A eine Nullmatrix. Damit ist jeder Vektor $\vec{v} \in \Re^2$ eine Lösung des Gleichungssystems. Desweiteren lässt sich bei Strukturen wie Kanten der optische Fluss nur orthogonal zur Kante berechnen. Entlang der Kante sind alle Verschiebungen möglich (siehe Aperturproblem). Ein solcher Fluss wird als **Normalenfluss** bezeichnet und ist definiert mit:

$$(u,v)_n^T = \frac{-f_t \nabla f}{|\nabla f| |\nabla f|}.$$
 (2.16)

Ein Vorteile des Verfahrens von Lucas und Kanade ist die einfache Implementierung und schnelle Berechnung des optischen Flusses, da für jeden Bildpunkt lediglich ein 2×2 großes Gleichungssystem gelöst werden muss. Zudem ist das Verfahren auf Grund der Nachbarschaftsinformationen $\mathcal{N}_{\rho}(x,y)$ robust gegenüber Bildrauschen. Nachteile ergeben sich hingegen durch die Linearisierung und der damit verbundenen Beschänkung auf kleine Flussänderungen. Auch die Wahl der Nachbarschaftsgröße gestaltet sich schwierig. In Bildbereichen mit wenig Struktur ist eine große Nachbarschaft vorzuziehen, bei Objektübergängen hingegen ist eine kleine Nachbarschaft zielführender, da ansonsten mögliche Flussänderungen verwischt werden.

2.3.2. Verfahren von Horn und Schunck

Modell

Das Verfahren von Lucas und Kanade errechnet anhand lokaler Bildinformationen um jeden Bildpunkt den dazu gehörigen Fluss \vec{v} . Dabei wird die Annahme verfolgt, das benachbarte Bildpunkte ein ähnliches Flussfeld aufweisen. Dennoch wird die Berechnung der einzelnen Verschiebungsvektoren unabhängig vom benachbarten Flussfeld durchgeführt. Aus diesem Grund wird es als **lokales Verfahren** bezeichnet. Das Verfahren von Horn und Schunk [HS81] erweitert diesen Ansatz: Die Grauwertkonstanz bleibt weiterhin ein Bestandteil der Formel, durch einen zusätzlichen Term werden jedoch Änderungen des lokalen Flussfeldes bestraft (**Glattheit des Flussfeldes**) und damit das sich umgebende Flussfeld mit in die Berechnung einzelner Verschiebungen einbezogen. Ein solcher Ansatz wird als **globales Verfahren** bezeichnet. Über ein Energiefunktional kann anschließend ein dichtes Flussfeld wie folgt berechnet werden:

$$E(u,v) = \iint_{\Omega} (f_x u + f_y v + f_t)^2 + \alpha (|\nabla u|^2 + |\nabla v|^2) \, dx dy.$$
 (2.17)

Der Parameter α regelt dabei die Glattheit des Flussfeldes. Der Unterschied zwischen den beiden Verfahren soll an einer homogenen Fläche erläutert werden; bei Anwendung von Lucas und Kanade (Gleichung (2.13)) entstehen unendlich viele Lösungsmöglichkeiten ($f_x = f_y \approx 0$, damit ist A eine Nullmatrix). Solange keine weiteren Annahmen getroffen werden, kann der Bildfluss für benachbarte Bildpunkte in völlig unterschiedliche Richtungen zeigen. Wendet man hingegen den Ansatz von Horn und Schunk an, so wird ein solches Verhalten durch den Glattheitsterm verhindert. Der erste Teil des Terms wird unabhängig von (u,v) zu 0 ausgewertet, da keine Strukturinformationen zur Verfügung stehen. Dadurch beeinflusst alleine der zweite Term $|\nabla u|^2 + |\nabla v|^2$ das Flussfeld, indem Flussänderungen vermieden werden.

Minimierung

Auf Grund der Konvexität des Energiefunktional, Gleichung (2.17), liefert der Euler-Lagrange Formalismus, Gleichung (2.8), eine hinreichende Bedingung für ein globales Minimum

$$0 = \frac{\partial F}{\partial u} - \frac{\partial}{\partial x} \left(\frac{\partial F}{\partial u_x} \right) - \frac{\partial}{\partial y} \left(\frac{\partial F}{\partial u_y} \right) = f_x (f_x u + f_y v + f_t) - \alpha (u_{xx} + u_{yy}))$$

$$0 = \frac{\partial F}{\partial v} - \frac{\partial}{\partial x} \left(\frac{\partial F}{\partial v_x} \right) - \frac{\partial}{\partial y} \left(\frac{\partial F}{\partial v_y} \right) = f_y (f_x u + f_y v + f_t) - \alpha (v_{xx} + v_{yy})).$$
(2.18)

Damit werden bei diesem Verfahren nicht nur lokale Bildinformationen betrachtet, sondern indirekt durch die Einbindung von u und v in den Glattheitsterm globale Bildinformationen mit einbezogen. Dadurch wird der optische Fluss verbessert, allerdings wird die Berechnung aufwendiger. Nach der Diskretisierung der Euler-Lagrange-Gleichung muss ein $2NM \times 2NM$ großes lineares Gleichungssystem gelöst werden. Bei Lucas und Kanade waren es $N \times M$ je (2 × 2) große lineare Gleichungssysteme. Da Verfahren wie das Gaußsche-Eliminationsverfahren eine super-lineare Komplexität aufweisen, ist die Lösung für Horn und Schunk in jedem Fall deutlich aufwendiger.

Gradientenkonstanz

Neben dem ursprünglichen Ansatz (Gleichung (2.17)) lassen sich verschiedene Variationen der Horn und Schunck Methode erzeugen. So lässt sich durch die Kombination der lokalen Gradientenkonstanzannahme von Uras et al. [UGVT88] und dem globalen Ansatz von Horn und Schunk [HS81] ein ebenfalls globales Verfahren erzeugen, das invariant gegenüber Helligkeitsänderungen ist. Dabei wird die urspüngliche Grauwertkonstanz durch eine Gradientenkonstanz ersetzt, mit der Annahme, das sich der Gradient mit der Zeit nicht oder nur geringfügig ändert. Durch die Gradientenkonstanz wird die lokale Struktur um den jeweiligen

Bildpunkt mit in die Berechnung des Energiefunktionals einbezogen. Mit dieser Änderung wird das Verfahren robuster gegenüber Grauwert- bzw. Helligkeitsänderungen, was bereits bei leichten Beleuchtungsänderungen auftreten kann. Die Gradientenkonstanzannahme lässt sich wie folgt formulieren:

$$f_x(x,y,t) - f_x(x+u,y+v,t+1) = 0,$$

$$f_y(x,y,t) - f_y(x+u,y+v,t+1) = 0.$$
(2.19)

Nach der Linearisierung mit Hilfe der Taylor Reihe erste Ordnung führt dies zur **linearisierten Gradientenkonstanzannahme**

$$f_{xx}u + f_{xy}v + f_{xt} = 0,$$

$$f_{yx}u + f_{yy}v + f_{yt} = 0,$$
(2.20)

und damit zu dem folgenden Energiefunktional

$$E(u,v) = \iint_{\Omega} (f_{xx}u + f_{xy}v + f_{xt})^{2} + (f_{yx}u + f_{yy}v + f_{yt})^{2} dxdy + \iint_{\Omega} \alpha (|\nabla u|^{2} + |\nabla v|^{2}) dxdy$$

$$= \iint_{\Omega} (\nabla_{3}f_{x}^{T}w)^{2} + (\nabla_{3}f_{y}^{T}w)^{2} + \alpha (|\nabla u|^{2} + |\nabla v|^{2}) dxdy$$

$$= \iint_{\Omega} (wJ_{\nabla}w^{T})^{2} + \alpha (|\nabla u|^{2} + |\nabla v|^{2}) dxdy,$$
(2.21)

mit dem Bewegungstensor $J_{\nabla} = \nabla_3 f_x \nabla_3 f_x^T + \nabla_3 f_y \nabla_3 f_y^T$. Das entsprechende Euler-Lagrange Gleichungssystem ist gegeben durch:

$$0 = f_{xx}(f_{xx}u + f_{xy}v + f_{xt}) + f_{yx}(f_{yx}u + f_{yy}v + f_{yt}) - \alpha(u_{xx} + u_{yy}),$$

$$0 = f_{xy}(f_{xx}u + f_{xy}v + f_{xt}) + f_{yy}(f_{yx}u + f_{yy}v + f_{yt}) - \alpha(v_{xx} + v_{yy}),$$
(2.22)

mit den Neumann Randwertbedingungen $\vec{n}^T(\frac{\partial F}{\partial u_x},\frac{\partial F}{\partial u_y})^T=0$ und $\vec{n}^T(\frac{\partial F}{\partial v_x},\frac{\partial F}{\partial v_y})^T=0$.

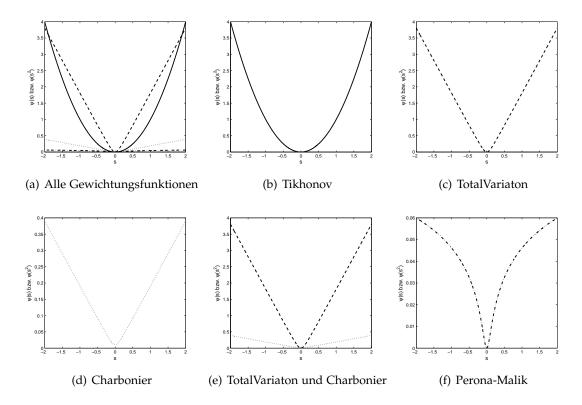
Robuste Gewichtungsfunktionen

Eine weitere Variation wurde in [BA91] vorgestellt und betrifft die quadratischen Terme des Energiefunktionals. Nachteile ergeben sich vor allem bei Ausreißern. Der Fehlerwert wächst quadratisch und führt bereits bei wenigen Ausreißern zu einem hohen Wert, womit die Schätzung des Flusses durch Ausreißer stark beeinflusst wird. Um das Verfahren robuster gegenüber Ausreißern zu formulieren, wird eine sub-quadratische **Gewichtungsfunktion** $\psi(s^2)$ eingeführt. An die Gewichtungsfunktionen wird gewöhnlich die Anforderung gestellt

Bezeichnung	Funktionsformel	Ableitung nach s^2	Quelle
Tikhonov	$\psi(s^2) = s^2$	$\psi'(s^2) = 1$	[TA ₇₇]
TotalVariaton	$\psi(s^2) = 2\sqrt{s^2 + \varepsilon^2} - 2\varepsilon$	$\psi'(s^2) = \left(\varepsilon^2 + s^2\right)^{-\frac{1}{2}}$	[ROF92]
Charbonnier	$\psi(s^2) = 2\varepsilon\sqrt{s^2 + \epsilon^2} - 2\varepsilon^2$	$\psi'(s^2) = (1 + s^2/\varepsilon^2)^{-\frac{1}{2}}$	[CBFAB94]
Perona-Malik	$\psi(s^2) = \varepsilon^2 \ln(1 + s^2/\varepsilon^2)$	$\psi'(s^2) = \left(1 + s^2/\varepsilon^2\right)^{-1}$	[PM90]

Tabelle 2.1.: Gewichtungsfunktionen ψ und zugehörige Ableitungen ψ' mit $\varepsilon > 0$

das diese positiv, steigend und differenzierbar sind. Zudem soll $\psi(s^2)$ strikt-konvex in s sein [WSo1]. Sind die Funktion ψ_D und ψ_S konvex, so hat das Funktional eine eindeutige Lösung. Durch die subquadratische Gewichtung im Glattheitsterm werden zudem Bewegungskanten besser erhalten. Ein solches allgemeines Funktional ist gegeben durch:


$$E(u,v) = \iint_{\Omega} \psi_{D}(|f_{x}u + f_{y}v + f_{t}|^{2}) + \alpha \psi_{S}(|\nabla u|^{2} + |\nabla v|^{2}) dxdy.$$
 (2.23)

Beispiele für mögliche Gewichtungsfunktionen wie sie in der Fachliteratur vorgestellt wurden, sind in Tabelle 5.12 aufgelistet und die entsprechenden Funktionsverläufe in der Abbildung 2.3 veranschaulicht. Die "Thikonov" Funktion ist dabei die bisher verwendete (quadratische) Gewichtungsfunktion. "TotalVariation" ist eine Approximation der L_1 Norm und "Charbonnier" unterscheidet sich von "TotalVariation" nur um den Faktor ε . Man beachte das bis auf "Perona-Malik" alle Funktionen konvex sind.

2.3.3. Verfahren von Brox et al.

Das Verfahren von Brox *et al.* [BBPWo4] kombiniert alle bisher vorgestellten Ansätze. Die Grauwert- und Gradientenkonstanz, den Glattheitsterm zur Glättung des Flussfeldes sowie nicht-quadratische Gewichtungsfunktionen $\psi(s^2)$ um gegenüber Ausreißern robuster zu sein.

Mit der Annahme das sich f(x,y) entlang \vec{v} nur linear ändert, wurden bisher Grauwert- und Gradientenkonstanz mit der Taylor Reihe approximiert. Da diese Annahme im Allgemeinen

Abbildung 2.3.: Gewichtungsfunktionen im Vergleich mit $\varepsilon = 0.1$

nicht zutrifft, wurden für das Modell von Brox *et al.* die nicht-linearisierten Konstanzannahmen verwendet. Das Energiefunktional hat die Form

$$E(u,v) = \int_{\Omega} \psi(|f(\vec{x}+\vec{w}) - f(\vec{x})|^2 + \gamma |\nabla f(\vec{x}+\vec{w}) - \nabla f(\vec{x})|^2) \, dxdy + \int_{\Omega} \alpha \cdot \psi(|\nabla u|^2 + |\nabla v|^2) \, dxdy$$
(2.24)

mit $\vec{x}=(x,y,t)^T$, $\vec{w}=(u,v,1)^T$, $\psi(s^2)=\sqrt{(s^2+\epsilon)}$, $\epsilon>0$ und α , γ als Gewichtungsparameter zwischen Daten- und Glattheitsterm sowie Grauwert- und Gradientenkonstanz.

Durch die nicht-linearisierten Konstanzannahmen ist das Energiefunktional nicht mehr konvex, so dass eine Lösung nicht zwingend ein globales Minimum liefert. Desweiteren ergibt eine Diskretisierung der Euler-Lagrange-Gleichungen ein nicht-lineares Gleichungssystem. Mit welchem Verfahren ein solches Gleichungssystem gelöst und ein sinnvolles Minimum gefunden werden kann, wird in Kapitel 2.5.3 – "Nicht-lineare Gleichungssysteme für nicht-konvexe Optimierungsprobleme" beschrieben.

2.3.4. Verfahren von Zimmer et al.

Das Verfahren von Brox et al. [BBPWo4] lieferte gute Ergebnisse und übertraf alle zuvor entwickelten Variationsansätze. Dennoch waren die Ergebnisse noch verbesserungsfähig. Der bisher verwendete Glattheitsterm (nach Horn und Schunk) reguliert den Fluss gleichmäßig. Abrupte Änderungen im Flussfeld wurden bestraft und damit unterdrückt. Genau solche Änderungen können im optischen Fluss bei Objektkanten auftreten, siehe exaktes Flussfeld Abbildung 2.1 (d). Durch das Verfahren von Brox et al., mit sub-quadratischen Gewichtungsfunktionen, bleiben die Flusskanten besser erhalten, allerdings oft nicht sehr scharf. Eine Alternative sind Bildgetriebene Glattheitsterme, welche bereits in der Literatur vorgestellt wurden, und den Fluss entlang von Bildkanten, jedoch nicht über sie hinweg glätten [NE11]. Damit wurden zwar die gewünschten scharfen Flusskanten erreicht, allerdings führte dies auch zu Problemen innerhalb texurierter Bildregionen. Ein Unterschied zwischen einer Objekt- und einer Texturkante besteht nicht, so dass auch dort leichte Flusskanten erzeugt werden und zu Artefakten führen.

Der Glattheitsterm von Zimmer et~al.~ [ZBW11] liefert einen alternativen Ansatz für scharfe Flusskanten, der in einem geringeren Ausmaß zu Artefakten oder segmentierte Flächen führt. Darüber hinaus wird der Datenterm durch eine Normalisierung der Grauwert- und Gradientenkonstanz Terme angepasst, womit eine Übergewichtung stark texturierter Regionen vermieden wird. Die Konstanzannahmen sollen wie bereits bei Brox et~al.~ nicht-linearisiert und mit sub-quadratischen Funktionen $\psi(s^2)$ gewichtet werden. Eine weitere Veränderung betrifft den Farbraum. Auf Grund invarianter Eigenschaften unter Helligkeitsänderungen wird der HSV-Farbraum mit einer separaten Gewichtung jedes einzelnen Farbkanals verwendet.

Normalisierung des Datenterms

Die linearisierte Grauwertkonstanz-Gleichung (2.12) wurde bereits durch die GLeichung 0 = $f_x u + f_y v + f_t = \nabla_3 f^T \vec{w}$ beschrieben, ebenso wie der Normalfluss, siehe Gleichung (2.16). Betrachtet man die quadrierte linearisierte Grauwertkonstanz wie sie in Gleichung (2.17) auftritt, so lässt sich diese wie folgt umformen

$$|f_x u + f_y v + f_t|^2 = (\nabla_3 f^T \vec{w})^2$$

$$= (\nabla f^T \vec{v} + f_t)^2$$

$$= |\nabla f|^2 \left(\left(\frac{\nabla f}{|\nabla f|} \right)^T (\vec{v} - \vec{v}_n) \right)^2$$

$$= |\nabla f|^2 d^2,$$
(2.25)

wobei d eine "Projektion der Differenz zwischen dem berechneten und dem Normalfluss \vec{v}_n in die Richtung des Bildgradienten ∇f darstellt" [ZBW11]. Im Idealfall soll genau diese Differenz d bestraft werden. Wie die Umformung zeigt, wird diese Differenz durch den Bildgradienten $|\nabla f|$ gewichtet, welcher je nach Bildregion völlig unterschiedlich ausfallen kann. Eine Normalisierung mit dem Gradienten des Bildes wurde deshalb vorgeschlagen

$$\theta_0 = \frac{1}{|\nabla f|^2 + \zeta'} \tag{2.26}$$

mit $\zeta > 0$, wodurch bei Wegfall des Bildgradienten eine Division durch 0 verhindert wird. Die Normalisierung der Gradientenkonstanz Terme wird dementsprechend mit

$$\theta_x = \frac{1}{|\nabla f_x|^2 + \zeta'}$$

$$\theta_y = \frac{1}{|\nabla f_y|^2 + \zeta'}$$
(2.27)

durchgeführt, so dass der Datenterm mit einer separaten Gewichtungsfunktion $\psi_D(s^2)$ für Grauwert- und Gradientenkonstanz folgende Form erhält

$$D_{1}(u,v) = \iint_{\Omega} \left(\psi_{D} \left(|\sqrt{\theta_{0}} (f(\vec{x} + \vec{w}) - f(\vec{x}))|^{2} \right) + \gamma \cdot \psi_{D} \left(|\sqrt{\theta_{x}} \quad 0 \atop 0 \quad \sqrt{\theta_{y}} \right) \left(\nabla f(\vec{x} + \vec{w}) - \nabla f(\vec{x}) \right) |^{2} \right) dxdy.$$
(2.28)

Farbraum

Bisher wurde das Thema **Farbraum** in keinem der hier vorgestellten Verfahren erwähnt. Die Funktion f(x,y,t) lieferte Bildinformationen die nicht näher spezifiziert wurden. Dies konnten unter anderem skalare (z.B. Grauwerte) oder vektorielle Bildinformationen (Farbwerte) sein.

Der gängigste Farbraum zur digitalen Darstellung von Farbinformationen bei Bildern ist RGB mit insgesamt drei Farbkanälen für rot, grün und blau. CMYK, YUV, HSV, HSL sind andere Darstellungs- und Interpretationsformen mit ebenfalls mehreren Farbkanälen [GW07].

Für Grauwertbilder können die bisherigen Formeln genauso beibehalten werden, da nur ein Farbkanal zur Darstellung benötigt wird. Bei mehrere Farbkanälen wie dem RGB können die bisherigen Formeln mit f als vektorieller Funktion wie folgt interpretiert werden: die

Funktion $\vec{f}(x,y,t)$ liefert Informationen der Form $(r,g,b)^T=(f^1,f^2,f^3)^T$, bei Anwendung auf Gleichung (2.23) ergibt sich folgende Form

$$E(u,v) = \iint_{\Omega} \psi(|\vec{f}_{x}u + \vec{f}_{y}v + \vec{f}_{t}|^{2}) + \alpha(|\nabla u|^{2} + |\nabla v|^{2}) \, dxdy$$

$$= \iint_{\Omega} \psi(|\begin{pmatrix} r_{x} \\ g_{x} \\ b_{x} \end{pmatrix} u + \begin{pmatrix} r_{y} \\ g_{y} \\ b_{y} \end{pmatrix} v + \begin{pmatrix} r_{t} \\ g_{t} \\ b_{t} \end{pmatrix}|^{2}) + \alpha(|\nabla u|^{2} + |\nabla v|^{2}) \, dxdy$$

$$= \iint_{\Omega} \psi(\sum_{i=1}^{3} |f_{x}^{i}u + f_{y}^{i}v + f_{t}^{i}|^{2}) + \alpha(|\nabla u|^{2} + |\nabla v|^{2}) \, dxdy.$$
(2.29)

Damit werden Abweichungen in den einzelnen Farbkanäle gemeinsam über ψ bestraft. Für RGB-Farbkanäle ist dies auch angebracht, da Ausreißer in den einzelnen Bildkanälen typischerweise korrelieren.

Wechselt man hingegen den Farbraum zu HSV, so ist eine separate Gewichtung der einzelnen Farbkanäle sinnvoll, da jeder Kanal verschiedene Eigenschaften aufweist. Die Farbkanäle beschreiben den Farb-, Helligkeits- und den Farbsättigungswert. "Der Farbkanal für den Farbwert ist invariant gegenüber multiplikativen Helligkeitänderungen und insbesondere gegenüber Schatten, Schattierung, hellen Bildbereichen und Glanz (Glanzlichter). Der Sättigungskanal ist lediglich invariant gegenüber Schatten und Schattierung" [ZBW11]. Somit erhalten wir:

$$E(u,v) = \iint_{\Omega} \sum_{i=1}^{3} \psi(|f_x^i u + f_y^i v + f_t^i|^2) + \alpha(|\nabla u|^2 + |\nabla v|^2) \, dx dy.$$
 (2.30)

Durch die Anwendung einer separaten Gewichtung jedes einzelnen HSV-Farbkanals auf die Gleichung (2.28) entsteht der endgültige Datenterm des Verfahrens Zimmer *et al.*:

$$D(u,v) = \iint_{\Omega} \sum_{i=1}^{3} \left(\psi_{D} \left(|\sqrt{\theta_{0}^{i}} (f^{i}(\vec{x} + \vec{w}) - f^{i}(\vec{x}))|^{2} \right) + \gamma \cdot \psi_{D} \left(|\sqrt{\theta_{x}^{i}} \quad 0 \\ 0 \quad \sqrt{\theta_{y}^{i}} \right) \left(\nabla f^{i}(\vec{x} + \vec{w}) - \nabla f^{i}(\vec{x}) \right) |^{2} \right) dxdy.$$

$$(2.31)$$

Wie bereits am Anfang des Kapitels erwähnt wurde führen flussgetriebene Glattheitsterme wie $|\nabla u|^2 + |\nabla v|^2$ zu verschwommenen Kanten. Dagegen erzeugen bildgetriebene Verfahren wie $g(|\nabla f|)^2(|\nabla u|^2 + |\nabla v|^2)$ scharfe Flusskanten, neigen jedoch zur Segmentierung bei texturierten Bildbereichen. Die Funktion $g(s^2) = \psi'(s^2)$ ist positiv fallend gegen o. Sun *et al.* [SLBo8] stellte 2008 einen Glattheitsterm vor, der die Vorteile der fluss- und bildgetriebenen Verfahren vereint. Dazu wurde ein Strukturtensor $S_\rho = K_\rho * [\nabla f \nabla f^T]$ verwendet, dessen Eigenvektoren \vec{s}_1 und \vec{s}_2 über Bildstrukturen hinweg und entlang diesen zeigen. Mit $g(|\nabla f|^2)(|\nabla u|^2 + |\nabla v|^2)$ wird

jede Änderung von u und v bestraft, unabhängig in welche Richtung sich diese Änderungen ergeben. Nun sollen Flussänderungen ausschließlich dann bestraft werden, sofern diese entlang oder über Bildkanten hinweg auftreten.

$$S(u,v) = \iint_{\Omega} \psi((\vec{s}_1^T \nabla u)^2) + \psi((\vec{s}_1^T \nabla v)^2) + \psi((\vec{s}_2^T \nabla u)^2) + \psi((\vec{s}_2^T \nabla v)^2) \, dxdy \qquad (2.32)$$

Zimmer *et al.* schlugen eine Anpassung des Strukturtensors S_{ρ} , passend zum aufgestellten Datenterm vor, siehe Gleichung (2.31), indem die Strukturinformationen zudem noch normalisiert werden:

$$R_{\rho} = \sum_{i=1}^{3} K_{\rho} * \left[\theta_0^i \nabla f^i (\nabla f^i)^T + \gamma \left(\theta_x^i \nabla f_x^i (\nabla f_x^i)^T + \theta_y^i \nabla f_y^i (\nabla f_y^i)^T \right) \right]. \tag{2.33}$$

Die zugehörigen Eigenvektoren zum Regularisierungstensors R_{ρ} sollen mit \vec{r}_1 und \vec{r}_2 Einzug in den folgenden Glattheitsterm finden, wobei Flussänderungen in Richtung r_1 stärker gewichtet (Gewichtung über den quadratischen Term) werden als Änderungen in Richtung \vec{r}_2 (Gewichtung über ψ). Um eine Rotationsinvarianz zu ermöglichen werden $(\vec{r}_1^T \nabla u)^2 + (r_1^T \nabla v)^2$ zudem über ψ gemeinsam gewichtet:

$$S(u,v) = \iint_{\Omega} \psi((\vec{r}_1^T \nabla u)^2 + (\vec{r}_1^T \nabla v)^2) + (\vec{r}_2^T \nabla u)^2 + (\vec{r}_2^T \nabla v)^2 \, \mathrm{d}x \mathrm{d}y. \tag{2.34}$$

Das gesamte Energiefunktional des Zimmer et al. Verfahrens hat damit die folgende Form

$$E(u,v) = \iint_{\Omega} \left\{ \sum_{i=1}^{3} \left(\psi_{D} \left(|\sqrt{\theta_{0}^{i}} (f^{i}(\vec{x} + \vec{w}) - f^{i}(\vec{x}))|^{2} \right) + \right.$$

$$\gamma \cdot \psi_{D} \left(|\sqrt{\theta_{x}^{i}} \quad 0 \\ 0 \quad \sqrt{\theta_{y}^{i}} \right) \left(\nabla f^{i}(\vec{x} + \vec{w}) - \nabla f^{i}(\vec{x}) |^{2} \right) \right) +$$

$$\alpha \cdot \psi_{S} \left((\vec{r}_{1}^{T} \nabla u)^{2} + (\vec{r}_{1}^{T} \nabla v)^{2} \right) + (\vec{r}_{2}^{T} \nabla u)^{2} + (\vec{r}_{2}^{T} \nabla v)^{2} \right\} dxdy,$$

$$(2.35)$$

mit den Gewichtungsparametern γ und α , den Gewichtungsfunktionen ψ_D und ψ_S , wobei die Funktionen TotalVariation für den Datenterm ($\psi_D = \psi_{tv}$) und Perona-Malik für den Glattheitsterm ($\psi_S = \psi_{pm}$) verwendet werden.

Abbildung 2.4.: Räumliche Auflösung eines Bildes in Pixeln.

2.4. Diskretisierung

Ein großer Anteil aller digitalen Bilder wird über eine Projektion der kontinuierlichen Welt (Umwelt) auf einen zweidimensionalen Sensor erzeugt. Dieser Sensor erstellt aus einem analogen Bild f(x,y,t) durch die räumliche (und zeitliche) Abtastung des Signals und der anschließenden Quantisierung der Messwerte das digitale Abbild $f_{i,j}$. Ein solches Bild besteht aus einem Array von diskretisierten Messwerten. Die Größe des Arrays und damit auch die Auflösung des digitalen Bildes wird durch die räumliche Abtastung (Schrittweite in x-Richtung h_x und in y-Richtung h_y) bzw. der Größe des Sensors bestimmt, siehe Abbildung 2.4.

Damit besteht ein digitales Bild aus einem zweidimensionalen Array aus Pixeln. Der Grauoder Farbwert für einen quantisierten Bildbereich werden für jeden Pixel gespeichert. Die einzelnen Pixel eines diskreten Bildes der Größe $N \times M$ lassen sich über die Positionen (i,j) mit i=1,...,N und j=1,...,M aufrufen. Der quantisierte Grau- oder Farbwert kann entsprechend mit $f_{i,j}$ abgefragt werden.

Da die Berechnung des optischen Flusses numerisch mit Hilfe von Computern durchgeführt wird, stehen keine kontinuierlichen Bildinformationen zur Verfügung. Die Gleichungen aus Kapitel 2.3 können entweder von Grund auf neu diskret beschrieben oder alternativ die Euler-Lagrange Gleichungen diskretisiert werden. Die Bilddaten sind bereits mit $f_{i,j,t} = f(i \cdot h_x, j \cdot h_y, t)$ gegeben (t = 0, 1, 2, ...). Die bisher kontinuierlichen Flussfeld-Funktionen u und v werden mit der Schrittweite h_x in x-Richtung und h_y in y-Richtung diskretisiert

$$u_{i,j} = u(i \cdot h_x, j \cdot h_y)$$

$$v_{i,j} = v(i \cdot h_x, j \cdot h_y)$$
(2.36)

Bei der Berechnung der Ableitungen stehen verschiedene Varianten zur Verfügung: Vorwärtsdifferenz, Rückwärtsdifferenz oder die zentrale Differenz. Diese drei Varianten sowie die Anzahl der verwendeten Bildpunkte sind entscheidend für die Genauigkeit der approximierten Ableitungen. Approximiert man die Funktion f(x, y, t) in x-Richtung mit Hilfe der Taylorentwicklung um den Punkt $\vec{x}_{i,j,t} = (i \cdot h_x, j \cdot h_y, t)^T$ erhält man:

$$f(\vec{x}_{k,l,t}) = f(\vec{x}_{i,j,t}) + ((k \cdot h_x) - (i \cdot h_x))^1 f_x(\vec{x}_{i,j,t})$$

$$+ \frac{1}{2} ((k \cdot h_x) - (i \cdot h_x))^2 f_{xx}(\vec{x}_{i,j,t})$$

$$+ \frac{1}{6} ((k \cdot h_x) - (i \cdot h_x))^3 f_{xxx}(\vec{x}_{i,j,t}) + \mathcal{O}((k \cdot h_x) - (i \cdot h_x)).$$
(2.37)

Approximiert man anschließend damit den Funktionswert des Punktes $\vec{x}_{i+1,j,t}$, so erhält man

$$f(\vec{x}_{i+1,j,t}) = f(\vec{x}_{i,j,t}) + h_x f_x(\vec{x}_{i,j,t}) + \frac{1}{2} h_x^2 f_{xx}(\vec{x}_{i,j,t}) + \frac{1}{6} h_x^3 f_{xxx}(\vec{x}_{i,j,t}) + \mathcal{O}(h_x^4)$$

$$f_{i+1,j,t} = f_{i,j,t} + h_x [f_x]_{i,j,t} + \frac{1}{2} h_x^2 [f_{xx}]_{i,j,t} + \frac{1}{6} h_x^3 [f_{xxx}]_{i,j,t} + \mathcal{O}(h_x^4).$$
(2.38)

Mit den Funktionswerten $f_{i+1,j,t}$ und $f_{i,j,t}$ lässt sich dann eine diskrete Ableitung (Vorwärtsdifferenz) wie folgt berechnen

$$f_{i+1,j,t} - f_{i,j,t} = f_{i,j,t} + h_x[f_x]_{i,j,t} + \frac{1}{2}h_x^2[f_{xx}]_{i,j,t} + \frac{1}{6}h_x^3[f_{xxx}]_{i,j,t} + \mathcal{O}(h_x^4) - f_{i,j,t}$$

$$h_x[f_x]_{i,j,t} = f_{i+1,j,t} - f_{i,j,t} - \frac{1}{2}h_x^2[f_{xx}]_{i,j,t} - \frac{1}{6}h_x^3[f_{xxx}]_{i,j,t} + \mathcal{O}(h_x^4)$$

$$[f_x]_{i,j,t} = \frac{f_{i+1,j,t} - f_{i,j,t}}{h_x} - \frac{1}{2}h_x[f_{xx}]_{i,j,t} - \frac{1}{6}h_x^2[f_{xxx}]_{i,j,t} + \mathcal{O}(h_x^3)$$

$$[f_x]_{i,j,t} = \frac{f_{i+1,j,t} - f_{i,j,t}}{h_x} + \mathcal{O}(h_x). \qquad (Vorwärtsdifferenz)$$

Der führende Fehlerterm $\mathcal{O}(h_x)$ hat die Ordnung eins, was sich bei der Rückwärtsdifferenz ebenfalls nicht ändert, jedoch bei der zentralen Differenz zu einer Verbesserung um eine Ordnung führt:

$$[f_x]_{i,j,t} = \left(\frac{f_{i,j,t} - f_{i-1,j,t}}{h_x}\right) + \mathcal{O}(h_x) \qquad (R\"{u}ckw\"{a}rtsdifferenz)$$

$$[f_x]_{i,j,t} = \frac{1}{2} \left(\frac{f_{i+1,j,t} - f_{i-1,j,t}}{2h_x}\right) + \mathcal{O}(h_x^2). \qquad (zentrale\ Differenz)$$
(2.40)

Durch die Hinzunahme von weiteren Punkten $f_{i,j,t}$ lässt sich die Genauigkeit der Approximation der Ableitungen verbessern. Dabei handelt es sich erneut um eine zentrale Differenz, jedoch mit dem führenden Fehlerterm $\mathcal{O}(h_x^4)$ und einer verbesserten Ordnung von vier:

$$[f_x]_{i,j,t} = 8 \cdot \frac{f_{i+1,j,t} - f_{i-1,j,t}}{12h_x} - \frac{f_{i+2,j,t} - f_{i-2,j,t}}{12h_x} + \mathcal{O}(h_x^4). \quad (zentrale \ Differenz)$$
(2.41)

Ableitungen für f_y , f_t , u_x , u_y , v_x , v_y oder höhere Ableitungen für f, u, v können analog dazu berechnet werden (für u, v ohne die zeitliche Domäne). In dieser Arbeit sollen die folgenden diskreten Ableitungen Anwendung finden, wobei für die Ableitung f_* die Wahl zwischen den Ableitung zum Zeitpunkt t mit $[f_*]_{i,j,t}$ oder zum Zeitpunkt t+1 mit $[f_*]_{i,j,t+1}$ besteht. Hier soll der Mittelwert beider Funktionen verwendet werden.

$$[f_x]_{i,j} = \frac{[f_x]_{i,j,t} + [f_x]_{i,j,t+1}}{2}$$

$$[f_y]_{i,j} = \frac{[f_y]_{i,j,t} + [f_y]_{i,j,t+1}}{2}$$

$$[f_x]_{i,j,t} = 8 \cdot \frac{f_{i+1,j,t} - f_{i-1,j,t}}{12h_x} - \frac{f_{i+2,j,t} - f_{i-2,j,t}}{12h_x}$$

$$[f_y]_{i,j,t} = 8 \cdot \frac{f_{i,j+1,t} - f_{i,j-1,t}}{12h_y} - \frac{f_{i,j+2,t} - f_{i,j-2,t}}{12h_y}$$

$$[f_t]_{i,j} = \left(\frac{f_{i,j,t+1} - f_{i,j,t}}{h_t}\right).$$
(2.42)

2.5. Lösung linearer und nichtl-inearer Gleichungssysteme

In Kapitel 2.3 - "Variationsansätze zur Bestimmung des optischen Flusses" wurden verschiedene Energiefunktionale vorgestellt. Wie die notwendigen Bedingungen für jeden Minimierer – die Euler-Lagrange-Gleichungen – diskretisiert werden können, haben wir im vorherigen Abschnitt gesehen. Diese diskrete Euler-Lagrange-Gleichungen müssen nun über numerische Verfahren gelöst werden. Welche numerischen Verfahren und Konzepte zur Lösung der Gleichungen verwendet werden können, ist von dem Energiefunktional selbst abhängig.

Grundlegend unterscheidet man zwischen konvexen und nicht-konvexen Optimierungsproblemen. Ist ein Energiefunktional konvex, so liefert die Berechnung der Lösung der Euler-Lagrange Gleichung eine eindeutige Lösung, die das Funktional minimiert. Handelt es sich um ein nicht konvexes Optimierungsproblem, so muss zwischen einem lokalen und globalen Minimum unterschieden werden. Daneben muss abgegrenzt werden ob es sich um lineares oder nichtlineares Optimierungsproblem handelt und ein passendes numerschies Verfahren zur Lösung gewählt werden.

2.5.1. Lineare Gleichungssysteme

Zur Berechnung des optischen Flusses mittels Variationsansätzen müssen im Allgemeinen große Gleichungssysteme gelöst werden, die durch die Diskretisierung der Euler-Lagrange-Gleichungen zustande kommen. Für lineare Systeme existieren bereits zahlreiche Verfahren zur direkten Lösung. Beispiele dafür sind das Gauß-Verfahren oder die Cholesky-Zerlegung, welche beide eine Laufzeit von $\mathcal{O}(n^3)$ aufweisen.

Gleichungssysteme die auf Basis von Variationsansätzen entstehen, enthalten je nach Bildgröße üblicherweise mehr als eine Milliarde Einträge, wovon sich nur wenige von 0 unterscheiden. Diese Eigenschaft können direkte Verfahren nur unzureichend ausnutzen, so dass die Lösung des Gleichungssystems nicht effizient berechnet werden kann.

Bei dünn besetzte Matrizen, also bei Matrizen mit nur wenigen sich von 0 unterscheidenden Einträgen eignen sich oft iterative Lösungsverfahren. Dabei wird schrittweise eine Lösung $\vec{x}^{(i)}$ für das System $A\vec{x}=\vec{b}$ approximiert. Beginnend mit einem Startvektor $\vec{x}^{(0)}$ wird $\vec{x}^{(1)}, \vec{x}^{(2)}, \ldots, \vec{x}^{(k)}$ berechnet, bis die Folge gegen eine Lösung konvergiert. Mit in die Berechnung der Lösung fließen lediglich die Matrixeinträge a_{ij} ungleich 0 ein. In diesem Abschnitt 2.5.1 sollen drei iterative Verfahren zur Lösung von linearen Gleichungssystemen vorgestellt werden. Dabei handelt es sich um die Jacobi-Iteration, die Gauß-Seidel-Iteration und das SOR-Verfahren [Saao3].

Die aus den Euler-Lagrange-Gleichung entstandenen linearen Gleichungssysteme können in der Form

$$A\vec{x} = \vec{b} \tag{2.43}$$

beschrieben werden. Dabei ist A eine $n \times n$ Matrix und \vec{x}, \vec{b} sind Vektoren der Größe n. Einzelne Einträge der Matrix A werden durch a_{ij} , die Einträge des gesuchten Lösungsvektors \vec{x} durch x_i und die von \vec{b} entsprechend mit b_i beschrieben. Für die im Folgenden beschriebenen Iterationsverfahren wird vorausgesetzt, dass das Gleichungssystem (2.43) eine eindeutige Lösung \vec{x}^* besitzt und die Diagonaleinträge $a_{ii} \neq 0$ sind. Die i-te Gleichung des Systems (2.43) lässt sich wie folgt beschreiben

$$0 = (\vec{b} - A\vec{x})_i = b_i - \sum_{j=1}^n a_{ij} x_j, \tag{2.44}$$

womit sich die erste Gleichung nach x_1 , die zweite nach x_2 usw. umformen lässt

$$x_{1} = \frac{1}{a_{11}} \left(b_{1} - \sum_{j=1, j \neq 1}^{n} a_{1j} x_{j} \right)$$

$$x_{2} = \frac{1}{a_{22}} \left(b_{2} - \sum_{j=1, j \neq 2}^{n} a_{2j} x_{j} \right)$$
...
$$x_{n} = \frac{1}{a_{nn}} \left(b_{n} - \sum_{j=1, j \neq n}^{n} a_{nj} x_{j} \right).$$
(2.45)

Für einen Startvektor $\vec{x}^{(0)} = [x_1^{(0)}, x_2^{(0)}, ..., x_n^{(0)}]$ lässt sich die Gleichung (2.45) verwenden um die nächste Näherung $\vec{x}^{(1)} = [x_1^{(1)}, x_2^{(1)}, ..., x_n^{(1)}]$ zu berechnen:

$$x_{1}^{(1)} = \frac{1}{a_{11}} \left(b_{1} - \sum_{j=1, j \neq 1}^{n} a_{1j} x_{j}^{(0)} \right)$$

$$x_{2}^{(1)} = \frac{1}{a_{22}} \left(b_{2} - \sum_{j=1, j \neq 2}^{n} a_{2j} x_{j}^{(0)} \right)$$
...
$$x_{n}^{(1)} = \frac{1}{a_{nn}} \left(b_{n} - \sum_{j=1, j \neq n}^{n} a_{nj} x_{j}^{(0)} \right).$$
(2.46)

Die Näherung $\vec{x}^{(1)}$ wird anschließend verwendet um $\vec{x}^{(2)}$ zu berechnen usw. bis $\vec{x}^{(k)}$ die Lösung beliebig genau annähert. Der beschriebene Algorithmus wird als **Jacobi-Verfahren** bezeichnet und lässt sich kompakt wie folgt darstellen:

$$x_i^{(k+1)} = \frac{1}{a_{ii}} \left(b_i - \sum_{j=1, j \neq i}^n a_{ij} x_j^{(k)} \right). \tag{2.47}$$

Wählt man eine feste Reihenfolge bei der Berechnung von $x_i^{(k+1)}$ mit i=1,2,...,n und betrachtet eine beliebige Position i, so wird deutlich das $x_i^{(k+1)}$ alleine durch die Lösung $\vec{x}^{(k)}$ bestimmt wird, obwohl bei der Berechnung der i-ten Komponente $x_i^{(k+1)}$ bereits die Lösungen $x_l^{(k+1)}$ mit l < i existieren. Mit dem **Gauß-Seidel-Verfahren** fließen alle Werte $x_l^{(k+1)}$ mit l < i direkt in die Berechnung ein, wodurch das Verfahren in der Regel schneller konvergiert als die Jacobi-Iteration. Das Gauß-Seidel-Verfahren lässt sich beschreiben durch:

$$x_i^{(k+1)} = \frac{1}{a_{ii}} \left(b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{(k+1)} - \sum_{j=i+1}^{n} a_{ij} x_j^{(k)} \right). \tag{2.48}$$

Das Konvergenzverhalten kann erneut verbessert werden, indem ein Relaxationsparameter $\omega \in [1,2)$ gewählt und der nächste Iterationswert $\vec{x}^{(k+1)}$ durch $\vec{x}^{(k-1)} + \omega(\vec{x}^{(k)} - \vec{x}^{(k-1)})$ berechnet wird. Vom Startpunkt $\vec{x}^{(k-1)}$ soll in die Richtung der Lösung des Gauss-Seidel-Verfahrens $\vec{x}^{(k)} - \vec{x}^{(k-1)}$ um den Faktor ω extrapoliert werden. Das sogenannte **SOR-Verfahren** (engl. Successive Over-Relaxation) ist gegeben durch:

$$x_{i}^{(k+1)} = \omega \underbrace{\frac{1}{a_{ii}} \left(b_{i} - \sum_{j=1}^{i-1} a_{ij} x_{j}^{(k+1)} - \sum_{j=i+1}^{n} a_{ij} x_{j}^{(k)} \right)}_{Gaub-Seidel-Verfahren} + (1 - \omega) x_{i}^{(k)}.$$
(2.49)

Für $\omega=1$ entspricht das SOR-Verfahren dem Gauß-Seidel-Verfahren. Durch $\omega>1$ lässt sich die Schrittweite extrapolieren und das Konvergenzverhalten verbessern. Zudem lässt sich zeigen, dass das SOR-Verfahren für jede symmetrische und positiv definite Matrix A, sowie $0<\omega<2$ und einen beliebigen Startvektor $\vec{x}^{(0)}$ konvergiert.

2.5.2. Nicht-lineare Gleichungssysteme für konvexe Optimierungsprobleme

Führt ein Variationsansatz zu einem nicht-linearen konvexen Optimierungsproblem, so lässt sich die Lösung des nicht-linearen Gleichungssystems, welches aus der Euler-Lagrange-Gleichung hervorgeht, nicht mehr direkt über das SOR- oder Gauß-Seidel-Verfahren lösen. Für die nicht-linearen Anteile in den Gleichungssystemen können unter anderem die nicht-quadratischen und nichtlinearen Gewichtungsfunktionen $\psi(...)$ bzw. deren Ableitung $\psi'(...)$ verantwortlich sein, siehe Kapitel 2.3.3. Nach Diskretisierung der Euler Lagrange Gleichungen lassen sich die nichtlinearen Gleichungssysteme sich wie folgt beschreiben [Bruo6]:

$$A(\vec{x}) - \vec{b} = \hat{A}(\vec{x})\vec{x} - c(\vec{x}) - \vec{b}.$$
 (2.50)

 \hat{A} ist dabei eine symmetrische positiv definite Matrix und c ein Vektor. Das Gleichhungssystem lässt sich anschließend durch eine Serie von linearen Systemen lösen indem die nicht-linearen Terme $\hat{A}(\vec{x})$ und $c(\vec{x})$ linearisiert werden. Das erste lineare Gleichungssystem wird erzeugt indem der Startvektor $x^{(0)}$ aus dem ersten Zeitschritt verwendet wird. Das System $\hat{A}^{(0)}\vec{x}=\hat{d}^{(0)}$ lässt sich z.B. über das SOR-Verfahren lösen.

$$0 = \underbrace{\left(\hat{A}(\vec{x}^{(m)})\right)}_{\hat{A}^{(m)}} \vec{x}^{(m+1)} - \underbrace{\left(\vec{b} + c(\vec{x}^{(m)})\right)}_{\hat{d}^{(m)}})$$
(2.51)

Der durch das SOR-Verfahren erzeugte Lösungsvektor $\vec{x}^{(1)}$ wird verwendet um die nichtlinearen Matrizen zu aktualisieren, so dass im Anschluss die Lösung von $\hat{A}^{(1)}\vec{x} - \hat{d}^{(1)} = 0$ be-

rechnet werden kann, gefolgt von $\hat{A}^{(2)}\vec{x}-\hat{d}^{(2)}=0$ usw. bis $\hat{A}^{(p)}\vec{x}-\hat{d}^{(p)}=0$ für ein beliebiges p konvergiert. Diese Vorgehensweise wird als "**Lagged-Diffusivity**" oder "**Lagged-Nonlinearity**" [CM99] bezeichnet. Zur Lösung eines linearen Gleichungssystems $\hat{A}^{(m)}\vec{x}-\hat{d}^{(m)}=0$ lässt sich zwar jeder beliebige Startvektor $\vec{x}^{(0)}$ verwenden (konvexes Energiefunktional liefert eindeutige Lösung), mit dem Startvektor $\vec{x}^{(m)}$ aus der Lösung des letzten Gleichungssystems (m) konvergiert das SOR-Verfahren unter Umständen schneller. Das SOR Verfahren wird wie bisher angewendet, wobei $\hat{a}_{i,j}^{(m)}$ Elemente der Matrix $\hat{A}^{(m)}$ und $\hat{d}_{i}^{(m)}$ Elemete des Vektors $\hat{d}^{(m)}$ sind.

$$x_{i}^{(k+1)} = \omega \underbrace{\frac{1}{\hat{a}_{ii}^{(m)}} \left(\hat{d}_{i} - \sum_{j=1}^{i-1} \hat{a}_{ij}^{(m)} x_{j}^{(k+1)} - \sum_{j=i+1}^{n} \hat{a}_{ij}^{(m)} x_{j}^{(k)} \right)}_{Gau-Seidel-Verfahren} + (1 - \omega) x_{i}^{(k)}$$
(2.52)

Der Ablauf soll an dem folgenden Energiefunktional demonstriert werden:

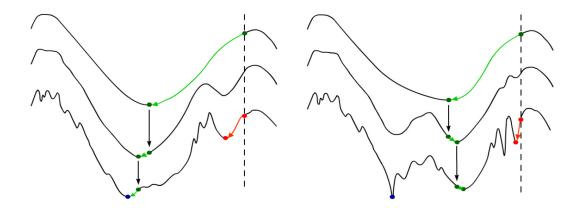
$$E(u,v) = \int_{\Omega} \psi(|f_x u + f_y v + f_t|^2) + \alpha(|\nabla u|^2 + |\nabla v|^2) \, dx \, dy.$$
 (2.53)

Die entsprechende Euler-Lagrange-Gleichungen mit den zugehörigen Neumann Randwertbedingungen $\vec{n}^T(\frac{\partial F}{\partial u_x},\frac{\partial F}{\partial u_y})^T=0$ und $\vec{n}^T(\frac{\partial F}{\partial v_x},\frac{\partial F}{\partial v_y})^T=0$ lauten

$$\psi'(|f_x u + f_y v + f_t|^2) f_x(f_x u + f_y v + f_t) - \alpha (u_{xx} + u_{yy}) = 0,$$

$$\psi'(|f_x u + f_y v + f_t|^2) f_y(f_x u + f_y v + f_t) - \alpha (v_{xx} + v_{yy}) = 0.$$
(2.54)

Die Serie von linearen Gleichungssystemen m = 0, 1, 2, ... wird beschrieben mit:


$$\psi'(|f_{x}u^{(m)} + f_{y}v^{(m)} + f_{t}|^{2})f_{x}(f_{x}u^{(m+1)} + f_{y}v^{(m+1)} + f_{t}) - \alpha(u_{xx}^{(m+1)} + u_{yy}^{(m+1)}) = 0,$$

$$\psi'(|f_{x}u^{(m)} + f_{y}v^{(m)} + f_{t}|^{2})f_{y}(f_{x}u^{(m+1)} + f_{y}v^{(m+1)} + f_{t}) - \alpha(v_{xx}^{(m+1)} + v_{yy}^{(m+1)}) = 0.$$
(2.55)

Der nicht-lineare Term $\psi'(...)$ bleibt dabei für jedes Gleichungssystem m konstant, so dass die einzelnen linearen Gleichungssystem mit dem SOR-Verfahren gelöst werden können.

2.5.3. Nicht-lineare Gleichungssysteme für nicht-konvexe Optimierungsprobleme

Auf Grund der nicht-linearisierten Konstanzannahmen und nicht-linearen Gewichtungsfunktionen im Verfahren von Brox et al. oder Zimmer et al. liefern die Energiefunktionale ein nicht-lineares und nicht-konvexes Optimierungsproblem. Mit Hilfe der Laggend-Nonlinearity-Methode und dem SOR-Verfahren lässt sich eine Lösung der Euler-Lagrange-Gleichung berechen. Auf Grund der fehlenden Konvexität wird es sich dabei im Allgemeinen jedoch um keine eindeutige Lösung handeln. Bei den Lösungen muss in einem solchen Fall zwischen einem lokalen und globalen Minimum unterschieden werden, siehe Abbildung 2.5.

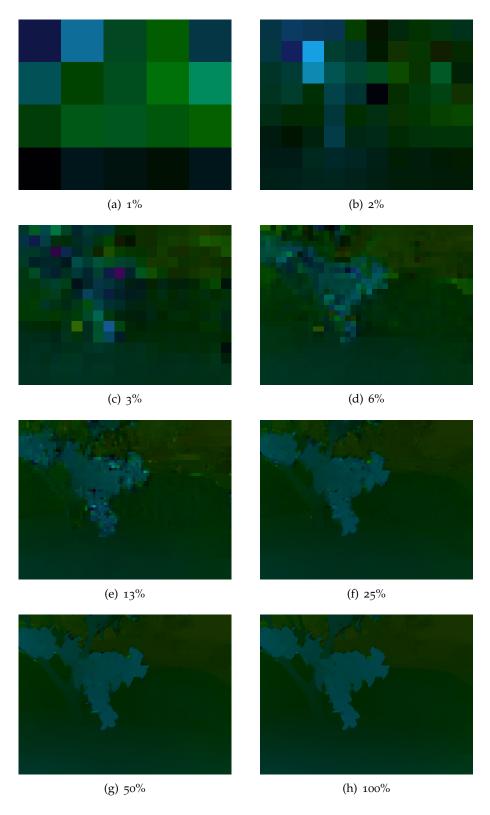


Abbildung 2.5.: Rot: Berechnung ohne Multiskalenstrategie. **Grün:** Multiskalenhierachie. **Blau:** Globales Minimum. **Links:** Globales Minimum wurde gefunden. **Rechts:** Nützliches lokales Minimum wurde gefunden [Bruo6].

Um ein globales Minimum zu finden oder diesem nahe zu kommen, soll eine Multiskalenstrategie [BBPWo4], welche als Warping bezeichnet wird, Anwendung finden. Dazu soll das ursprüngliche Problem vereinfacht werden, was sich Beispielsweise über die Glättung oder Verkleinerung der Bilder erzielen lässt. Dieses vereinfachte Problem soll gelöst und das Ergebnis als Startvektor einer genaueren Version des Problems Anwendung finden. Schrittweise sollen so Lösungen für die vereinfachten Probleme berechnet werden, bis letztendlich auch eine Lösung des ursprünglichen Problems gefunden wird. Ein Beispiel für den Verlauf einer Multiskalenstrategie zeigt die Abbildung 2.5. Für den optischen Fluss ist eine solche Strategie in Abbildung 2.6 zu sehen. Die vereinfachten Probleme sollen dabei wie in Kapitel 2.5.2 durch eine Serie von linearen Gleichungssystemen und dem SOR-Verfahren gelöst werden. "Dabei können die vereinfachten Probleme eine eindeutige Lösung besitzen, die hoffentlich nahe am globalen Minimum des ursprünglichen Problems liegt." [BBPWo4], siehe Abbildung 2.5.

Unabhängig von der Multiskalenhierachie müssen die Formeln der Euler-Lagrange-Gleichung angepasst und wie zuvor stellenweise linearisert werden, um anschließend durch ein lineares Verfahren gelöst werden zu können. Dies soll an der Euler-Lagrange-Gleichung des folgenden nicht-konvexen und nicht-linearen Energiefunktionals demonstriert werden (entsprechend dem Vorgehen in [BBPW04]):

$$E(u,v) = \int_{\Omega} \psi(|f(\vec{x}+w) - f(\vec{x})|^2) + \alpha(|\nabla u|^2 + |\nabla v|^2) \, dx \, dy.$$
 (2.56)

Abbildung 2.6.: Multiskalenhierachie (Warping) für die *Grove2* Sequenz mit Downsampling-Faktor $\eta=0.5$ und damit 8 Warping-Schritten. Angaben in % der ursprünglichen Bildgröße. In jedem Schritt wird der Bildfluss berechnet, die Lösung (der Fluss) hochskaliert und auf einer höheren Skala weiter gerechnet.

Die entsprechenden Euler-Lagrange-Gleichungen mit den Neumann Randwertbedingungen $\vec{n}^T (\frac{\partial F}{\partial u_r}, \frac{\partial F}{\partial u_y})^T = 0$ und $\vec{n}^T (\frac{\partial F}{\partial v_r}, \frac{\partial F}{\partial v_y})^T = 0$ lauten hier

$$\psi'(|f(\vec{x}+\vec{w})-f(\vec{x})|^2)f_x(\vec{x}+\vec{w})(f(\vec{x}+\vec{w})-f(\vec{x}))-\alpha(u_{xx}+u_{yy})=0,$$

$$\psi'(|f(\vec{x}+\vec{w})-f(\vec{x})|^2)f_y(\vec{x}+\vec{w})(f(\vec{x}+\vec{w})-f(\vec{x}))-\alpha(v_{xx}+v_{yy})=0.$$
(2.57)

Durch Einführung einer Fixpunktiteration mit den Variablen \vec{w}^k und \vec{w}^{k+1} (semi-implizites Schema für den Datenterm und implizites Schema für den Glattheitsterm) soll das Gleichungssystem berechnet werden, wobei \vec{w}^{k+1} die Lösung des folgenden Systems darstellt:

$$\psi'(|f(\vec{x}+\vec{w}^{k+1})-f(\vec{x})|^2)f_x(\vec{x}+\vec{w}^k)(f(\vec{x}+\vec{w}^{k+1})-f(\vec{x}))-\alpha(u_{xx}^{k+1}+u_{yy}^{k+1})=0,$$

$$\psi'(|f(\vec{x}+\vec{w}^{k+1})-f(\vec{x})|^2)f_y(\vec{x}+\vec{w}^k)(f(\vec{x}+\vec{w}^{k+1})-f(\vec{x}))-\alpha(v_{xx}^{k+1}+v_{yy}^{k+1})=0.$$
(2.58)

Da die unbekannten Funktionen u,v Argumente von f sind lässt sich die Gleichung in der Form nicht nach \vec{w}^{k+1} auflösen. Im nächsten Schritt soll deshalb \vec{w}^{k+1} aufgeteilt werden in

$$\vec{w}^{k+1} = \vec{w}^k + d\vec{w}^k = (u^k + du^k, v^k + dv^k, 1)$$
(2.59)

und anschließend alle Funktionen f die das Argument \vec{w}^{k+1} enthalten linearisiert werden

$$f_{*}(\vec{x} + \vec{w}^{k+1}) = f_{*}(x + u^{k} + du^{k}, y + v^{k} + dv^{k}, t + 1)$$

$$\approx f_{*}(x + u^{k}, y + v^{k}, t + 1) + f_{*x}(x + u^{k}, y + v^{k}, t + 1) du^{k} +$$

$$f_{*y}(x + u^{k}, y + v^{k}, t + 1) dv^{k}$$

$$= f_{*}(\vec{x} + \vec{w}^{k}) + f_{*x}(\vec{x} + \vec{w}^{k}) du^{k} + f_{*y}(\vec{x} + \vec{w}^{k}) dv^{k}.$$
(2.60)

Die Euler-Lagrange-Gleichung erhält anschließend die folgende iterative Form

$$\psi'\left(|f(\vec{x}+\vec{w}^{k})+f_{x}(\vec{x}+\vec{w}^{k})du^{k}+f_{y}(\vec{x}+\vec{w}^{k})dv^{k}-f(\vec{x})|^{2}\right)\cdot f_{x}(x+w^{k})$$

$$\left(f(\vec{x}+\vec{w}^{k})+f_{x}(\vec{x}+\vec{w}^{k})du^{k}+f_{y}(\vec{x}+\vec{w}^{k})dv^{k}-f(\vec{x})\right)-$$

$$\alpha\left((u^{k}+du^{k})_{xx}+(u^{k}+du^{k})_{yy}\right)=0,$$

$$\psi'\left(|f(\vec{x}+\vec{w}^{k})+f_{x}(\vec{x}+\vec{w}^{k})du^{k}+f_{y}(\vec{x}+\vec{w}^{k})dv^{k}-f(\vec{x})|^{2}\right)\cdot f_{y}(\vec{x}+\vec{w}^{k})$$

$$\left(f(\vec{x}+\vec{w}^{k})+f_{x}(\vec{x}+\vec{w}^{k})du^{k}+f_{y}(\vec{x}+\vec{w}^{k})dv^{k}-f(\vec{x})\right)-$$

$$\alpha\left((v^{k}+dv^{k})_{xx}+(v^{k}+dv^{k})_{yy}\right)=0$$
(2.61)

Die Gleichung für Warping-Level k ist nicht-linear, besitzt aber durch die Linearisierung eine eindeutige Lösung. Die Variable \vec{w}^k ist dabei aus dem letzten Warping Schritt und $d\vec{w}^k = (du^k, dv^k, 0)$ die gesuchte Lösung. Für den Warping Schritt k+1 lässt sich das Gleichungssystem z.B. mit dem SOR-Verfahren und dem Lagged-Nonlinearity-Verfahren nach $d\vec{w}^{k,l+1}$ lösen. Dabei ist $d\vec{w}^{k,l+1}$ die gesuchte Lösung im SOR-Verfahren und $d\vec{w}^{k,l}$ die Lösung aus der letzten SOR Berechnung. Zusammenfassend bescheibt k das Warping-Level und l die Iteration des numerischen Lösungs-Verfahrens:

$$\psi'\left(|f(\vec{x}+\vec{w}^{k})+f_{x}(\vec{x}+\vec{w}^{k})du^{k,l}+f_{y}(\vec{x}+\vec{w}^{k})dv^{k,l}-f(\vec{x})|^{2}\right)\cdot f_{x}(\vec{x}+\vec{w}^{k})$$

$$\left(f(\vec{x}+\vec{w}^{k})+f_{x}(\vec{x}+\vec{w}^{k})du^{k,l+1}+f_{y}(\vec{x}+\vec{w}^{k})dv^{k,l+1}-f(\vec{x})\right)-$$

$$\alpha\left((u^{k}+du^{k,l+1})_{xx}+(u^{k}+du^{k,l+1})_{yy}\right)=0,$$

$$\psi'\left(|f(\vec{x}+\vec{w}^{k})+f_{x}(\vec{x}+\vec{w}^{k})du^{k,l}+f_{y}(\vec{x}+\vec{w}^{k})dv^{k,l}-f(\vec{x})|^{2}\right)\cdot f_{y}(\vec{x}+\vec{w}^{k})$$

$$\left(f(\vec{x}+\vec{w}^{k})+f_{x}(\vec{x}+\vec{w}^{k})du^{k,l+1}+f_{y}(\vec{x}+\vec{w}^{k})dv^{k,l+1}-f(\vec{x})\right)-$$

$$\alpha\left((v^{k}+dv^{k,l+1})_{xx}+(v^{k}+dv^{k,l+1})_{yy}\right)=0.$$
(2.62)

2.6. Bilateralfilter und andere Glättungsverfahren

Innerhalb der Bildverarbeitung ist das Filtern von Bildern ein wichtiges Aufgabengebiet. Einen besonderen Stellenwert nehmen dabei Glättungsverfahren an, mit deren Hilfe Rauschen oder Bilddetails reduziert werden können. Neben dem Bilateralfilter [TM98] wird auch der Mittelwert- und Gaußfilter vorgestellt und die Unterschiede beschrieben.

Wie bereits im vergangenen Kapitel erwähnt sind im Allgemeinen die Werte von f(x,y) nicht-linear und stehen mit den Koordinaten (x,y) in keinerlei Zusammenhang. Dies gilt insbesondere bei wachsender Entfernung zwischen zwei Bildpunkten (x,y) und (\tilde{x},\tilde{y}) . Unabhängig davon ändern sich oft die Bildinformationen in unmittelbarer Nachbarschaft \mathcal{N} eines Punktes (x,y) kaum. Daher liegt es nahe Rauschen oder Bilddetails zu entfernen indem der Mittelwert aus \mathcal{N} berechnet wird (Mittelwert-Filter)

$$\hat{f}(x,y) = \frac{1}{N_m(x,y)} \iint_{\mathcal{N}(x,y)} f(\tilde{x},\tilde{y}) \, d\tilde{x} d\tilde{y},$$

$$N_m(x,y) = \iint_{\mathcal{N}(x,y)} 1 \, d\tilde{x} d\tilde{y},$$
(2.63)

mit N_m als Normalisierungs-Faktor. Gewichtet man zudem den Abstand zwischen zwei Bildpunkten mit einer Funktion $\overline{\psi}_{\sigma}(s) = e^{s^2/\sigma^2}$ (Gauß-Funktion), so erhält man einen häufig verwendeten Tiefpaßfilter (**Gaußfilter**).

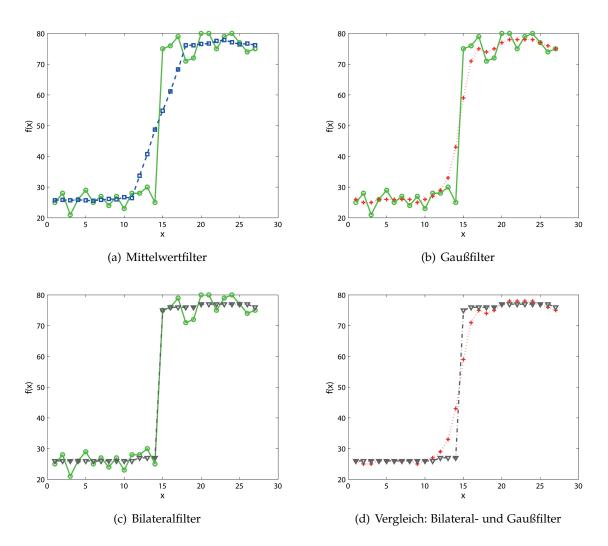
$$\hat{f}(x,y) = \frac{1}{N_g(x,y)} \iint_{\mathcal{N}} f(\tilde{x},\tilde{y}) \cdot \overline{\psi}_{\sigma}(|(x,y)^T - (\tilde{x},\tilde{y})^T|^2) \, d\tilde{x}d\tilde{y},$$

$$N_g(x,y) = \iint_{\mathcal{N}(x,y)} \overline{\psi}_{\sigma}(|(x,y)^T - (\tilde{x},\tilde{y})^T|^2) \, d\tilde{x}d\tilde{y},$$

$$\overline{\psi}_{\sigma}(d^2) = \exp\left(\frac{d^2}{2\sigma^2}\right).$$
(2.64)

Der Parameter σ regelt dabei den Einfluss der Nachbarschaft. Der zentrale Bildpunkt erhält die größte Gewichtung, alle anderen Bildpunkte eine kleinere, entsprechend dem Verlauf der e-Funktion. Ergebnisse für Gauß- und Mittelwertfilter, angewendet auf ein mit Rauschen gestörtes Signal (Kante), sind in Abbildung 2.7 (a) und (b) dargestellt. Das Rauschen wird bei beiden Verfahren reduziert, jedoch wird vor allem beim Mittelwert-Filter der Übergang stark geglättet. Durch die räumliche Gewichtung tritt dieser Effekt beim Gauß-Filter geschwächt auf. Rauschen und andere hochfrequente Details werden somit mit beiden Filtern verringert. Dazu zählen unter anderem auch Bildkanten, wie in Abbildung 2.7 (a) und (b) deutlich wird.

Unter der Annahme, das sich Bildinformationen in unmittelbarer Umgebung \mathcal{N} eines Punktes (x,y) kaum ändern, wurden Mittelwert- und Gaußfilter entworfen. An Bildkanten trifft diese Annahme jedoch selbst für kleine Bereiche \mathcal{N} nicht zu, siehe Übergang Abbildung 2.7. Durch das Hinzufügen einer weiteren Gewichtungsfunktion $\overline{\psi}_{\sigma_c}$, welche die Differenz zwischen Farbinformationen gewichtet, können Kanten erhalten werden, während sich Rauschen und andere Details reduzieren lassen. Ein solcher Filter wird als **Bilateralfilter** bezeichnet. Der Einstellungsparameter σ_d regelt dabei den Einfluss der Distanz, σ_c den der Farbwerte. Ein solcher Bilateralfilter ist gegeben durch


$$\hat{f}(x,y) = \frac{1}{N_b(x,y)} \iint_{\mathcal{N}} f(\tilde{x},\tilde{y}) \cdot G_b(x,y,\tilde{x},\tilde{y}) \, d\tilde{x}d\tilde{y},$$

$$G_b(x,y,\tilde{x},\tilde{y}) = \overline{\psi}_{\sigma_d}(|(x,y)^T - (\tilde{x},\tilde{y})^T|^2) \cdot \overline{\psi}_{\sigma_c}(|(f(x,y) - f(\tilde{x},\tilde{y}))|^2),$$

$$N_b(x,y) = \iint_{\mathcal{N}(x,y)} G_b(x,y,\tilde{x},\tilde{y}) \, d\tilde{x}d\tilde{y},$$

$$\overline{\psi}_{\sigma_*}(d^2) = \exp\left(\frac{d^2}{2\sigma_*^2}\right).$$
(2.65)

Beim Vergleich von Gauß- und Bilateralfilter in Abbildungen 2.7 (d) fällt auf, dass eine ähnliche Glättung in den homogenen Bereichen des Signals durch beide Filter erreicht wird, der Kantenverlauf jedoch beim Bilateralfilter nahezu unverändert bleibt. Dieser Effekt lässt sich ebenso bei zweidimensional Signalen bzw. Bildern beobachten, siehe Abbildung 2.8. Erneut

Abbildung 2.7.: Glättungsverfahren im Vergleich für ein diskretes verrauschtes eindimensionales Signal f(x), man beachte den Kantenverlauf des gefilterten Signals. **Grün**: Verrauschtes Signal. **blau**: Mittelwertfilter. **Rot**: Gaußfilter. **Grau**: Bilateralfilter.

bleiben die Kanteninformationen nach Anwendung des Bilateralfilters nahezu unverändert, siehe Abbildung 2.8 (e) und (f).

2.6.1. Anwendung im optischen Fluss

In Kapitel 2.3.4 "Verfahren von Zimmer *et al.*" wurde bereits darauf hingewiesen, dass bei der Berechnung des optischen Flusses in vielen Fällen scharfe Flusskanten resultieren sollten, die meisten Ansätze dies jedoch unzureichend erfüllen. Solche scharfen Flusskanten finden sich vor allem bei Übergängen zwischen Objekten bzw. an Objektkanten. Zwar konnten Verfahren

Abbildung 2.8.: Glättungsverfahren im Vergleich für ein diskretes zweidimensionales Signal.

mit bildgetriebenen Glattheitstermen den Fluss an solchen Übergängen verbessern, dennoch ist weiterhin Potential für Verbesserungen vorhanden. Um diese Anforderung zu erfüllen, wurde auf Grund der kantenerhaltenden Eigenschaften der Bilateralfilter bereits in mehreren Verfahren zur Berechnung bzw. Verbesserung des optischen Flusses verwendet [XCS+06] [SVB13].

Xiao $et\ al.\ [XCS^+o6]$ zeigen einen Variationsansatz auf, der den Bilateralfilter im Glattheitsterm implementiert. Neben der Gewichtung der Flussänderungen wurden zusätzlich Distanzwerte und auch Bildinformationen (Farbwerte) gewichtet. Erweitert wurde der Glattheitsterm weiterhin von einer Funktion, die entscheidet, ob ein Bildpunkt (x,y) in beiden Frames sichtbar ist oder von einem zum anderen Frame überdeckt ist. Dies wird als Verdeckungserkennung $(engl.\ occlusion\ detection)$ bezeichnet.

Einen alternativen Ansatz stellten Stoll *et al.* [SVB13] vor. Anstatt den Bilateralfilter in das Energiefunktional aufzunehmen, wie es bei Xiao der Fall war, wurde der Filter zur Nachbesserung der Kanten des optischen Flusses eingesetzt. Mit einem Trilateralfilter wurde der Fluss $\vec{w}(x,y)$

für jeden Bildpunkt durch die Gewichtung der räumlichen Distanz, der Farbwerte des Bildes und dem Fluss selbst verbessert:

$$\hat{w}(x,y) = \frac{1}{N_t(x,y)} \iint_{\mathcal{N}(x,y)} \vec{w}(\tilde{x},\tilde{y}) \cdot G_t(x,y,\tilde{x},\tilde{y}) \, d\tilde{x}d\tilde{y}$$

$$G_t(x,y,\tilde{x},\tilde{y}) = \overline{\psi}_{\sigma_d}(|(x,y)^T - (\tilde{x},\tilde{y})^T|^2) \cdot \overline{\psi}_{\sigma_c}(|(f(x,y) - f(\tilde{x},\tilde{y}))|^2) \cdot \overline{\psi}_{\sigma_w}(|(\vec{w}(x,y) - \vec{w}(\tilde{x},\tilde{y}))|^2)$$

$$N_t(x,y) = \iint_{\mathcal{N}(x,y)} G_t(x,y,\tilde{x},\tilde{y}) \, d\tilde{x}d\tilde{y}$$
(2.66)

Das Verfahren wird als Trilateraler Flussfilter (engl. Joint Trilateral Flow Filtering (JTF)) bezeichnet, $\overline{\psi}_{\sigma_*}$ ist dabei erneut die exponentielle Gewichtungsfunktion wie in Formel (2.64) und (2.67). Wie bereits in Kapitel 2.5.3 – "Nicht-lineare Gleichungssysteme für nicht-konvexe Optimierungsprobleme" beschrieben wurde, wird nach jedem Warping-Schritt das errechnete Flussfeld durch eine Interpolation hochgesampelt. Das interpolierte Flussfeld wird anschließend im nächsten Warping-Level als Ausgangsbasis für weitere Berechnungen und Verbesserung verwendet. Da viele Interpolationsverfahren Kanten unzureichend erhalten, führte Stoll ein Upsampling Verfahren (Cross Bilateral Upsampling (CBU)), basierend auf dem Bilateralfilter, ein. Das bereits von Kopf et al. [KCLU07] vorgestellte (Joint Bilateral Upsampling) führt ein Upsamling von Flussfeldern, Tiefeninformationen und anderen Daten durch, basierend auf den Informationen des Bildes in voller oder höherer Auflösungsstufe:

$$\hat{\vec{w}}_{\uparrow}(x,y) = \frac{1}{N_{t}(x,y)} \iint_{\mathcal{N}(x,y)} \vec{w}_{\downarrow}(\tilde{x},\tilde{y}) \cdot G_{u\uparrow}(x,y,\tilde{x},\tilde{y}) \, d\tilde{x}d\tilde{y},$$

$$G_{u\uparrow}(x,y,\tilde{x},\tilde{y}) = \overline{\psi}_{\sigma_{d}}(|(x,y)^{T} - (\tilde{x},\tilde{y})^{T}|^{2}) \cdot \overline{\psi}_{\sigma_{c}}(|(f(x,y) - f(\tilde{x},\tilde{y}))|^{2}),$$

$$N_{t}(x,y) = \iint_{\mathcal{N}(x,y)} G_{u}(x,y,\tilde{x},\tilde{y}) \, d\tilde{x}.d\tilde{y}$$
(2.67)

Die Pfeile beschreiben dabei die Informationen aus der höheren ↑ und niedrigen ↓ Auflösungsstufe.

3. Optischer Fluss mit bilateralen Daten- und Glattheitstermen

Nachdem im vergangenen Kapitel alle notwendigen Grundlagen zur Berechnung des optischen Flusses mit Variationsansätzen beschrieben worden sind, werden nun im Hauptteil neue bilaterale Daten- und Glatheitsterme vorgestellt. Vorab wird der Datenterm des Baseline-Verfahrens von Zimmer et al. ausführlich behandelt, da dieser abgewandelt auch in den bilateralen Variationsansätzen Einzug findet. Als nächstes wird ein bilateraler Glattheitsterm eingeführt, welcher durch eine größere Nachbarschaft und Gewichtung der Farbdifferenzen die optischen Flusskanten verbessert. Daraufhin werden neben dem bilateralen Glattheitsterm insgesamt drei bilaterale Datenterme vorgestellt und motiviert. Zur Berechnung des optischen Flusses mittels Variationsansätzen müssen die durch die Diskretisierung der Euler-Lagrange-Gleichungen entstandenen Gleichungssysteme gelöst werden. Das SOR-Verfahren fordert dazu symmetrische und positiv definite Systemmatrizen. Diese Eigenschaften werden in einem separaten Abschnitt untersucht. Der letzte Teil des Kapitels liefert anschließend einen Überblick über alle vorgestellten Variationsansätze.

Aus den Daten- und Glattheitstermen resultieren insgesamt fünf Variationsansätze, die in drei Gruppen gegliedert sind:

- 1. V_0 Basline-Verfahren (Zimmer *et al.*)
- 2. V_1 Datenterm von Zimmer *et al.* und bilateraler Glattheitsterm
- 3. V_{2a} , V_{2b} , V_{2c} Bilateraler Daten- und Glattheitsterm

3.1. D_0 - Datenterm "Zimmer"

Der Datenterm des Verfahrens von Zimmer *et al.* wurde in Kapitel 2.3.4 vorgestellt. Wie bereits erwähnt, soll er als Basis für weitere Variationsansätze dienen, die sich zum Teil nur geringfügig voneinander unterscheiden und bei bestimmten Parametereinstellungen sogar identische Ergebnisse liefern. Im diesem Abschnitt soll ausführlich gezeigt werden wie sich der Datenterm minimieren lässt. Im Gegensatz zu der ursprünglichen Variante (HSV) soll der

Datenterm durch die separate Gewichtung der RGB-Farbkanäle den optischen Fluss berechnen. Die bereits diskretisierte Form des Datenterms mit Gradienten- und Farbwertkonstanz lässt sich wie folgt beschreiben

$$D_{0}(u,v) = \sum_{i,j}^{N,M} \sum_{c=1}^{3} \gamma_{f} \psi_{D} (\left|\theta_{0}^{c}([f^{c}]_{i,j,t+u,v,1} - [f^{c}]_{i,j,t})\right|^{2}) + \gamma_{g} \psi_{D} (\left|\theta_{xy}^{c}([\nabla f^{c}]_{i,j,t+u,v,1} - [\nabla f^{c}]_{i,j,t})\right|^{2}),$$

$$= \sum_{\vec{z}}^{N,M} \sum_{c=1}^{3} \gamma_{f} \psi_{D} (\left|\theta_{0}^{c}([f^{c}]_{\vec{z}+\vec{w}} - [f^{c}]_{\vec{z}})\right|^{2}) + \gamma_{g} \psi_{D} (\left|\theta_{xy}^{c}([\nabla f^{c}]_{\vec{z}+\vec{w}} - [\nabla f^{c}]_{\vec{z}})\right|^{2}),$$

$$(3.1)$$

mit $\vec{z}=(i,j,t)$ und $\vec{w}=(u,v,1)$. Die Faktoren θ_0^c und θ_{xy}^c dienen zur Normierung der Farbwertund Gradientenkonstanz, siehe Gleichung (2.26) und (2.27). Die Gewichte γ_f und γ_g dienen als Einstellungsparameter um den Einfluss der beiden Terme zu steuern. Durch die partielle Ableitung nach $u_{\vec{z}}$ und $v_{\vec{z}}$ entsteht für $\vec{z}=(1,1,t),(2,1,t),...,(N,M,t)$ ein nicht-lineares Gleichungssystem, das zusammen mit einem passenden Glattheitsterm eine notwendige Bedingung zur Minimierung liefert $(\frac{\partial S_X}{\partial u_{\vec{z}}}+\frac{\partial D_0}{\partial u_{\vec{z}}}=0 \land \frac{\partial S_X}{\partial v_{\vec{z}}}+\frac{\partial D_0}{\partial v_{\vec{z}}}=0)$ und als Equivalent zu einer diskreten Euler-Lagrange-Gleichung angesehen werden kann. Der Anteil des Datenterms ist hierbei gegeben durch:

$$\frac{\partial D_{0}}{\partial u_{\vec{z}}} = \sum_{\vec{z}}^{N,M} \sum_{c=1}^{3} \gamma_{f} \psi_{D}^{\prime} (\left|\theta_{0}^{c}([f^{c}]_{\vec{z}+\vec{w}} - [f^{c}]_{\vec{z}})\right|^{2}) 2 \cdot \theta_{0}^{c} ([f^{c}]_{\vec{z}+\vec{w}} - [f^{c}]_{\vec{z}})[f_{x}^{c}]_{\vec{z}+\vec{w}} +
\gamma_{g} \psi_{D}^{\prime} (\left|\theta_{xy}^{c}([\nabla f^{c}]_{\vec{z}+\vec{w}} - [\nabla f^{c}]_{\vec{z}})\right|^{2}) 2 \cdot (\theta_{xy}^{c}([\nabla f^{c}]_{\vec{z}+\vec{w}} - [\nabla f^{c}]_{\vec{z}}))^{T} [\nabla f_{x}^{c}]_{\vec{z}+\vec{w}},
\frac{\partial D_{0}}{\partial v_{\vec{z}}} = \sum_{\vec{z}}^{N,M} \sum_{c=1}^{3} \gamma_{f} \psi_{D}^{\prime} (\left|\theta_{0}^{c}([f^{c}]_{\vec{z}+\vec{w}} - [f^{c}]_{\vec{z}})\right|^{2}) 2 \cdot \theta_{0}^{c} ([f^{c}]_{\vec{z}+\vec{w}} - [f^{c}]_{\vec{z}})[f_{x}^{c}]_{\vec{z}+\vec{w}} +
\gamma_{g} \psi_{D}^{\prime} (\left|\theta_{xy}^{c}([\nabla f^{c}]_{\vec{z}+\vec{w}} - [\nabla f^{c}]_{\vec{z}})\right|^{2}) 2 \cdot (\theta_{xy}^{c}([\nabla f^{c}]_{\vec{z}+\vec{w}} - [\nabla f^{c}]_{\vec{z}}))^{T} [\nabla_{2} f_{y}^{c}]_{\vec{z}+\vec{w}}.$$
(3.2)

Nach Einführung einer Iterationsvaribale k (semi-implizites Schema im Datenterm und implizit im Glattheitsterm) entsteht für jedes Warping-Level k die folgende Gleichung:

$$\frac{\partial D_{0}}{\partial u_{\vec{z}}} = \sum_{\vec{z}}^{N,M} \sum_{c=1}^{3} \left\{ \psi_{D}^{\prime} \left(\left| \theta_{0}^{c} ([f^{c}]_{\vec{z}+\vec{w}^{k+1}} - [f^{c}]_{\vec{z}}) \right|^{2} \right) 2 \cdot \theta_{0}^{c} ([f^{c}]_{\vec{z}+\vec{w}^{k+1}} - [f^{c}]_{\vec{z}}) [f_{x}^{c}]_{\vec{z}+\vec{w}^{k}} + \right. \\
\left. \gamma \cdot \psi_{D}^{\prime} \left(\left| \theta_{xy}^{c} (\nabla [f^{c}]_{\vec{z}+\vec{w}^{k+1}} - \nabla [f^{c}]_{\vec{z}}) \right|^{2} \right) 2 \cdot \left(\theta_{xy}^{c} ([\nabla f^{c}]_{\vec{z}+\vec{w}^{k+1}} - [\nabla f^{c}]_{\vec{z}}))^{T} [\nabla f_{x}^{c}]_{\vec{z}+\vec{w}^{k}} \right\}, \\
\frac{\partial D_{0}}{\partial v_{\vec{z}}} = \sum_{\vec{z}}^{N,M} \sum_{c=1}^{3} \left\{ \psi_{D}^{\prime} \left(\left| \theta_{0}^{c} ([f^{c}]_{\vec{z}+\vec{w}^{k+1}} - [f^{c}]_{\vec{z}}) \right|^{2} \right) 2 \cdot \theta_{0}^{c} ([f^{c}]_{\vec{z}+\vec{w}^{k+1}} - [f^{c}]_{\vec{z}}) [f_{x}^{c}]_{\vec{z}+\vec{w}^{k}} + \right. \\
\left. \gamma \cdot \psi_{D}^{\prime} \left(\left| \theta_{xy}^{c} (\nabla [f^{c}]_{\vec{z}+\vec{w}^{k+1}} - \nabla [f^{c}]_{\vec{z}}) \right|^{2} \right) 2 \cdot \left(\theta_{xy}^{c} ([\nabla f^{c}]_{\vec{z}+\vec{w}^{k+1}} - [\nabla f^{c}]_{\vec{z}}) \right)^{T} [\nabla f_{y}^{c}]_{\vec{z}+\vec{w}^{k}} \right\}. \tag{3.3}$$

Nach der Linearisierung entsprechend Gleichung (2.60) mittels

$$[f_*]_{(i,j,t)+(u^{k+1},v^{k+1},1)} = [f_*]_{(i,j,t)+(u^k+du^k,v^k+dv^k,1)} = [f_*]_{\vec{z}+\vec{w}^{k+1}} = [f_*]_{\vec{z}+(\vec{w}^k+d\vec{w}^k)}$$

$$\approx [f_*]_{\vec{z}+\vec{w}^k} + [f_{*x}]_{\vec{z}+\vec{w}^k} du^k + [f_{*y}]_{\vec{z}+\vec{w}^k} dv^k$$
(3.4)

erhalten wir die Gleichungen der Form:

$$\frac{\partial D_{0}}{\partial u_{\overline{z}}} = \sum_{\overline{z}}^{N,M} \sum_{c=1}^{3} \left\{ \psi'_{D} \left(|\theta_{0}^{c}([f_{x}^{c}]_{\overline{z}+\overline{w}^{k}} du^{k} + [f_{y}^{c}]_{\overline{z}+\overline{w}^{k}} dv^{k} + [f_{t}^{c}]_{\overline{z}+\overline{w}^{k}} \right) |^{2} \right) \cdot 2 \cdot \\
\theta_{0}^{c} ([f_{x}^{c}]_{\overline{z}+\overline{w}^{k}} du^{k} + [f_{y}^{c}]_{\overline{z}+\overline{w}^{k}} dv^{k} + [f_{t}^{c}]_{\overline{z}+\overline{w}^{k}}) [f_{x}^{c}]_{\overline{z}+\overline{w}^{k}} \right\} + \\
\left\{ \gamma \cdot \psi'_{D} \left(|\theta_{xy}^{c}([\nabla_{2}f_{x}^{c}]_{\overline{z}+\overline{w}^{k}} du^{k} + [\nabla_{2}f_{y}^{c}]_{\overline{z}+\overline{w}^{k}} dv^{k} + [\nabla_{2}f_{t}^{c}]_{\overline{z}+\overline{w}^{k}}) |^{2} \right) \cdot 2 \cdot \\
(\theta_{xy}^{c}([\nabla_{2}f_{x}^{c}]_{\overline{z}+\overline{w}^{k}} du^{k} + [\nabla_{2}f_{y}^{c}]_{\overline{z}+\overline{w}^{k}} dv^{k} + [\nabla_{2}f_{t}^{c}]_{\overline{z}+\overline{w}^{k}}))^{T} [\nabla_{2}f_{x}^{c}]_{\overline{z}+\overline{w}^{k}} \right\} \\
\frac{\partial D_{0}}{\partial v_{\overline{z}}} = \sum_{\overline{z}}^{N,M} \sum_{c=1}^{3} \left\{ \psi'_{D} \left(|\theta_{0}^{c}([f_{x}^{c}]_{\overline{z}+\overline{w}^{k}} du^{k} + [f_{y}^{c}]_{\overline{z}+\overline{w}^{k}} dv^{k} + [f_{t}^{c}]_{\overline{z}+\overline{w}^{k}}) |^{2} \right) \cdot 2 \cdot \\
\theta_{0}^{c} \left([f_{x}^{c}]_{\overline{z}+\overline{w}^{k}} du^{k} + [f_{y}^{c}]_{\overline{z}+\overline{w}^{k}} dv^{k} + [f_{t}^{c}]_{\overline{z}+\overline{w}^{k}} \right) |^{2} \right) \cdot 2 \cdot \\
\left\{ \gamma \cdot \psi'_{D} \left(|\theta_{xy}^{c}([\nabla_{2}f_{x}^{c}]_{\overline{z}+\overline{w}^{k}} du^{k} + [\nabla_{2}f_{y}^{c}]_{\overline{z}+\overline{w}^{k}} dv^{k} + [\nabla_{2}f_{t}^{c}]_{\overline{z}+\overline{w}^{k}} \right) |^{2} \right) \cdot 2 \cdot \\
\left(\theta_{xy}^{c}([\nabla_{2}f_{x}^{c}]_{\overline{z}+\overline{w}^{k}} du^{k} + [\nabla_{2}f_{y}^{c}]_{\overline{z}+\overline{w}^{k}} dv^{k} + [\nabla_{2}f_{t}^{c}]_{\overline{z}+\overline{w}^{k}} \right) |^{2} \right) \cdot 2 \cdot \\
\left(\theta_{xy}^{c}([\nabla_{2}f_{x}^{c}]_{\overline{z}+\overline{w}^{k}} du^{k} + [\nabla_{2}f_{y}^{c}]_{\overline{z}+\overline{w}^{k}} dv^{k} + [\nabla_{2}f_{t}^{c}]_{\overline{z}+\overline{w}^{k}}) |^{2} \right) \cdot 2 \cdot \\
\left(\theta_{xy}^{c}([\nabla_{2}f_{x}^{c}]_{\overline{z}+\overline{w}^{k}} du^{k} + [\nabla_{2}f_{y}^{c}]_{\overline{z}+\overline{w}^{k}} dv^{k} + [\nabla_{2}f_{t}^{c}]_{\overline{z}+\overline{w}^{k}}) |^{2} \right) \cdot 2 \cdot \\
\left(\theta_{xy}^{c}([\nabla_{2}f_{x}^{c}]_{\overline{z}+\overline{w}^{k}} du^{k} + [\nabla_{2}f_{y}^{c}]_{\overline{z}+\overline{w}^{k}} dv^{k} + [\nabla_{2}f_{t}^{c}]_{\overline{z}+\overline{w}^{k}}) |^{2} \right) \cdot 2 \cdot \\
\left(\theta_{xy}^{c}([\nabla_{2}f_{x}^{c}]_{\overline{z}+\overline{w}^{k}} du^{k} + [\nabla_{2}f_{y}^{c}]_{\overline{z}+\overline{w}^{k}} dv^{k} + [\nabla_{2}f_{t}^{c}]_{\overline{z}+\overline{w}^{k}}) |^{2} \right) \cdot 2 \cdot \\
\left(\theta_{xy}^{c}([\nabla_{2}f_{x}^{c}]_{\overline{z}+\overline{w}^{k}} du^{k} + [\nabla_{2}f_{y}^{c}]_{\overline{z}+\overline{w}^{k}} dv^{k} + [\nabla_{2}f_{t}^{c}]_$$

Die Gleichungen sind durch die ψ' -Faktoren weiterhin nicht-linear und werden deshalb durch die Lagged Nonlinearity-Methode vereinfacht. Dadurch entsteht eine Reihe linearer Gleichungssysteme, die jeweils über ein numerische Lösungsverfahren für lineare Gleichungen gelöst werden können. Im Grundlagenkapitel wurde das SOR-Verfahren beschrieben, welches in dieser Arbeit zur Lösung der linearen Gleichungssysteme verwendet werden soll. Dabei beschreibt l von (k,l) die l-te Iteration von SOR im k-ten Warping-Level. Die Terme $[f_*]_{z+w^k}$ werden durch die Lösung w^k des letzten Warping-Schrittes erzeugt und für die Lösung des Levels k+1 nicht verändert. Zur Berechnung der ψ' -Faktoren wird $du^{k,l}$ und $dv^{k,l}$ aus dem letzten Iterationsschritt des SOR Verfahrens verwendet und für die gesamte Iteration nicht aktualisiert:

$$\frac{\partial D_{0}}{\partial u_{\vec{z}}} = \sum_{\vec{z}}^{N,M} \sum_{c=1}^{3} \left\{ \psi_{D}^{\prime} \left(\left| \theta_{0}^{c} ([f_{x}^{c}]_{\vec{z}+\vec{w}^{k,l}} du^{k,l} + [f_{y}^{c}]_{\vec{z}+\vec{w}^{k,l}} dv^{k,l} + [f_{t}^{c}]_{\vec{z}+\vec{w}^{k}} \right) \right|^{2} \right) \cdot 2 \cdot \\
\theta_{0}^{c} ([f_{x}^{c}]_{\vec{z}+\vec{w}^{k}} du^{k,l+1} + [f_{y}^{c}]_{\vec{z}+\vec{w}^{k}} dv^{k,l+1} + [f_{t}^{c}]_{\vec{z}+\vec{w}^{k}}) [f_{x}^{c}]_{\vec{z}+\vec{w}^{k}} \right\} + \\
\left\{ \gamma \cdot \psi_{D}^{\prime} \left(\left| \theta_{xy}^{c} ([\nabla f_{x}^{c}]_{\vec{z}+\vec{w}^{k}} du^{k,l} + [\nabla f_{y}^{c}]_{\vec{z}+\vec{w}^{k}} dv^{k,l} + [\nabla f_{t}^{c}]_{\vec{z}+\vec{w}^{k}}) \right|^{2} \right) \cdot 2 \cdot \\
(\theta_{xy}^{c} ([\nabla f_{x}^{c}]_{\vec{z}+\vec{w}^{k}} du^{k,l+1} + [\nabla f_{y}^{c}]_{\vec{z}+\vec{w}^{k}} dv^{k,l+1} + [\nabla f_{t}^{c}]_{\vec{z}+\vec{w}^{k}}))^{T} [\nabla f_{x}^{c}]_{\vec{z}+\vec{w}^{k}} \right\} \\
\frac{\partial D_{0}}{\partial u_{\vec{z}}} = \sum_{\vec{z}}^{N,M} \sum_{c=1}^{3} \left\{ \psi_{D}^{\prime} \left(\left| \theta_{0}^{c} ([f_{x}^{c}]_{\vec{z}+\vec{w}^{k}} du^{k,l} + [f_{y}^{c}]_{\vec{z}+\vec{w}^{k}} dv^{k,l} + [f_{t}^{c}]_{\vec{z}+\vec{w}^{k}}) \right|^{2} \right) \cdot 2 \cdot \\
\theta_{0}^{c} ([f_{x}^{c}]_{\vec{z}+\vec{w}^{k}} du^{k,l+1} + [f_{y}^{c}]_{\vec{z}+\vec{w}^{k}} dv^{k,l+1} + [f_{t}^{c}]_{\vec{z}+\vec{w}^{k}}) [f_{y}^{c}]_{\vec{z}+\vec{w}^{k}} \right\} + \\
\left\{ \gamma \cdot \psi_{D}^{\prime} \left(\left| \theta_{xy}^{c} ([\nabla f_{x}^{c}]_{\vec{z}+\vec{w}^{k}} du^{k,l} + [\nabla f_{y}^{c}]_{\vec{z}+\vec{w}^{k}} dv^{k,l} + [\nabla f_{t}^{c}]_{\vec{z}+\vec{w}^{k}}) \right|^{2} \right) \cdot 2 \cdot \\
(\theta_{xy}^{c} ([\nabla f_{x}^{c}]_{\vec{z}+\vec{w}^{k}} du^{k,l+1} + [\nabla f_{y}^{c}]_{\vec{z}+\vec{w}^{k}} dv^{k,l+1} + [\nabla f_{t}^{c}]_{\vec{z}+\vec{w}^{k}})^{T} [\nabla f_{y}^{c}]_{\vec{z}+\vec{w}^{k}} \right\}.$$

3.2. S_1 - Bilateraler Glattheitsterm "Steigung"

Xiao [XCS⁺06] stellte bereits 2006 einen Ansatz für einen bilateralen Glattheitsterm vor. Nun soll durch die Kombination des Datenterms aus dem Verfahren von Zimmer et~al. und der Lösung über eine Multiskalenstrategie die Idee eines bilateralen Glattheitsterms unter verbesserten Konditionen untersucht werden. Dabei werden die Abweichungen des optischen Flusses von benachbarten Punkten nicht mehr in einer kleinen Umgebung ($|\nabla u|^2 + |\nabla v|^2$), sondern über eine deutlich größere Nachbarschaft $\mathcal{N}(i,j)$ und einer sub-quadratischen Funktion ψ_S gewichtet. Im Gegensatz zu Xiao sollen nicht direkt die Abweichungen im Fluss, sondern

Steigungsänderungen vermieden werden. Besteht $\mathcal{N}(z)$ aus der 4-er Nachbarschaft, so unterscheidet es sich im Glattheitsterm nicht vom ursprünglichen Ansatz von Horn und Schunk mit $|\nabla u|^2 + |\nabla v|^2$. Wird die Nachbarschaft vergrößert, so impliziert der Ansatz über Steigungsänderungen, dass der Fluss sich über eine Distanz hinweg leicht verändern kann. Dies ist vor allem bei der Multiskalenhierachie von Vorteil. Bei groben Auflösungsstufen ist die Berechnung der Flussdifferenzen einer großen Nachbarschaft nur begrenzt sinnvoll, da nur sehr wenige Bildinformationen zur Verfügung stehen. Eine Möglichkeit wäre die Nachbarschaftsgröße für die ersten Warping-Level zu verringern. Beim dem Ansatz über die Steigungsänderungen wird dies implizit berücksichtigt. Gewichtet wird ψ_S durch die Funktionen $\overline{\psi}_{\sigma_d}$ und $\overline{\psi}_{\sigma_c}$, welche den Einfluss der Nachbarschaft $\mathcal{N}(i,j)$ mit steigender Distanz und Differenz der Farbwerte verringern. Die Gewichtung der Farbkanäle (RGB) soll dabei gemeinsam über einen Term $|f_{i,j}^1 - f_{i,j}^2|^2 + |f_{i,j}^2 - f_{i,j}^3|^2 + |f_{i,j}^3 - f_{i,j}^3|^2$ erfolgen. Durch die Funktion $\overline{\psi}_{\sigma_c}$ sollen Flussänderungen in der Nachbarschaft tolleriert werden, falls sich die Farbwerte stark unterscheiden. Größere Farbunterschiede entstehen oft bei Objektkanten, was zur Berechnung scharfer Flusskanten genutzt werden soll.

Durch den Einsatz des bilateralen Glattheitsterms verändert sich bei der Wahl des Einstellungsparameters σ_d die Nachbarschaftsgröße und damit auch das Verhältnis zwischen Datenund Glattheitsterm, da sich die Summe und damit das gesamte Gewicht im Glattheitsterm vergrößert oder verkleinert. Um dieses Verhältnis konstant zu halten wird zusätzlich ein Normierungssfaktor N_S eingeführt. Somit erhalten wir

$$S_{1}(u,v) = \alpha \sum_{i,j}^{N,M} \frac{1}{N_{S}} \sum_{\tilde{i},\tilde{j}}^{N(i,j)} \psi_{S} \left(\frac{|u_{i,j} - u_{\tilde{i},\tilde{j}}|^{2} + |v_{i,j} - v_{\tilde{i},\tilde{j}}|^{2}}{|i - \tilde{i}|^{2} + |j - \tilde{j}|^{2}} \right) \cdot \overline{\psi}_{\sigma_{c}} (|[f]_{i,j} - [f]_{\tilde{i},\tilde{j}}|^{2}) \cdot \overline{\psi}_{\sigma_{d}} (|i,j - \tilde{i},\tilde{j}|^{2})$$

$$= \alpha \sum_{\tilde{z}}^{N,M} \frac{1}{N_{S}} \sum_{\tilde{z}}^{N(\tilde{z})} \psi_{S} \left(\underbrace{\frac{|u_{\tilde{z}} - u_{\tilde{z}}|^{2} + |v_{\tilde{z}} - v_{\tilde{z}}|^{2}}{|\vec{z} - \tilde{z}|^{2}}}_{Steigung} \right) \cdot \overline{\psi}_{\sigma_{c}} (|[f]_{\tilde{z}} - [f]_{\tilde{z}}|^{2}) \cdot \overline{\psi}_{\sigma_{d}} (|\vec{z} - \tilde{z}|^{2})$$

$$(3.7)$$

mit $\vec{z}=(i,j,t)$, $f=(f^1,f^2,f^3)^T$ und $N_S(\vec{z})=\sum_{\tilde{z}}^{\mathcal{N}(\vec{z})}\psi_{\sigma_d}(|\vec{z}-\tilde{z}|^2)$ als Normierungssfaktor. Durch die partielle Ableitung $\frac{\partial S_1}{\partial u_{\tilde{z}}}$ und $\frac{\partial S_1}{\partial v_{\tilde{z}}}$ ergibt sich der folgende nicht-lineare Glattheitsterm, der zusammen mit einem passenden Datenterm eine notwendige Bedingung zur Minimierung

liefert ($\frac{\partial S_1}{\partial u_z} + \frac{\partial D_x}{\partial u_z} = 0 \land \frac{\partial S_1}{\partial v_z} + \frac{\partial D_x}{\partial v_z} = 0$) und zu einem nicht-linearen Gleichungssystem führt. Der Anteil des Glattheitsterms ist hierbei gegeben durch:

$$\frac{\partial S_{1}}{\partial u_{\vec{z}}} = \frac{\alpha}{N_{S}} \sum_{\tilde{z}}^{N(\vec{z})} \psi_{S}' \left(\frac{|u_{\vec{z}} - u_{\tilde{z}}|^{2} + |v_{\vec{z}} - v_{\tilde{z}}|^{2}}{|\vec{z} - \tilde{z}|^{2}} \right) \cdot 4 \cdot \frac{(u_{\vec{z}} - u_{\tilde{z}})}{|\vec{z} - \tilde{z}|^{2}} \cdot \overline{\psi}_{\sigma_{c}} (|[f]_{\vec{z}} - [f]_{\tilde{z}}|^{2}) \cdot \overline{\psi}_{\sigma_{d}} (|\vec{z} - \tilde{z}|^{2}),$$

$$\frac{\partial S_{1}}{\partial v_{\vec{z}}} = \frac{\alpha}{N_{S}} \sum_{\tilde{z}}^{N(\vec{z})} \psi_{S}' \left(\frac{|u_{\vec{z}} - u_{\tilde{z}}|^{2} + |v_{\vec{z}} - v_{\tilde{z}}|^{2}}{|\vec{z} - \tilde{z}|^{2}} \right) \cdot 4 \cdot \frac{(v_{\vec{z}} - v_{\tilde{z}})}{|\vec{z} - \tilde{z}|^{2}} \cdot \overline{\psi}_{\sigma_{c}} (|[f]_{\vec{z}} - [f]_{\tilde{z}}|^{2}) \cdot \overline{\psi}_{\sigma_{d}} (|\vec{z} - \tilde{z}|^{2}).$$
(3.8)

Nach Einführen einer Iterationsvaribale k (implizites Schema für den Glattheitsterm und semi-implizites Schema für den Datenterm) folgt für den Anteil des Datenterms:

$$\frac{\partial S_{1}}{\partial u_{\vec{z}}} = \frac{\alpha}{N_{S}} \sum_{\tilde{z}}^{N(\vec{z})} \psi_{S}' \left(\frac{|u_{\vec{z}}^{k+1} - u_{\tilde{z}}^{k+1}|^{2} + |v_{\vec{z}}^{k+1} - v_{\tilde{z}}^{k+1}|^{2}}{|\vec{z}_{\uparrow} - \tilde{z}_{\uparrow}|^{2}} \right) \cdot 4 \cdot \frac{(u_{\vec{z}}^{k+1} - u_{\tilde{z}}^{k+1})}{|\vec{z}_{\uparrow} - \tilde{z}_{\uparrow}|^{2}} \cdot \overline{\psi}_{\sigma_{c}} (|[f]_{\vec{z}} - [f]_{\tilde{z}}|^{2}) \cdot \overline{\psi}_{\sigma_{d}} (|\vec{z} - \tilde{z}|^{2}),
\frac{\partial S_{1}}{\partial u_{\vec{z}}} = \frac{\alpha}{N_{S}} \sum_{\tilde{z}}^{N(\vec{z})} \psi_{S}' \left(\frac{|u_{\tilde{z}}^{k+1} - u_{\tilde{z}}^{k+1}|^{2} + |v_{\tilde{z}}^{k+1} - v_{\tilde{z}}^{k+1}|^{2}}{|\vec{z}_{\uparrow} - \tilde{z}_{\uparrow}|^{2}} \right) \cdot 4 \cdot \frac{(v_{\tilde{z}}^{k+1} - v_{\tilde{z}}^{k+1})}{|\vec{z}_{\uparrow} - \tilde{z}_{\uparrow}|^{2}} \cdot \overline{\psi}_{\sigma_{c}} (|[f]_{\vec{z}} - [f]_{\tilde{z}}|^{2}) \cdot \overline{\psi}_{\sigma_{d}} (|\vec{z} - \tilde{z}|^{2}).$$

Das Zeichen \uparrow beschreibt dabei die Position von z und \tilde{z} in der höchsten Auflösungsstufe (k=0). Diese Anpassung an die Multiskalenhierachie ist notwendig um weiterhin die korrekte Steigung zwischen z und \tilde{z} berechnen zu können. Mit $u^{k+1} = u^k + du^k$ und $v^{k+1} = v^k + du^k$

 dv^k und der *Lagged-Nonlinearity-*Methode entsteht ein Gleichungssystem, welches über die Multiskalenhierachie (k) und dem SOR-Verfahren (l+1) gelöst werden kann:

$$\frac{\partial S_{1}}{\partial u_{\vec{z}}} = \frac{1}{N_{S}} \sum_{\tilde{z}}^{\mathcal{N}(\tilde{z})} \psi_{S}' \left(\frac{|u_{\vec{z}}^{k} + du_{\vec{z}}^{k,l} - u_{\tilde{z}}^{k} - du_{\tilde{z}}^{k,l}|^{2} + |v_{\vec{z}}^{k} + dv_{\vec{z}}^{k,l} - v_{\tilde{z}}^{k} - dv_{\tilde{z}}^{k,l}|^{2}}{|\vec{z}_{\uparrow} - \tilde{z}_{\uparrow}|^{2}} \right) \cdot 4 \cdot \frac{(u_{\vec{z}}^{k} + du_{\vec{z}}^{k,l+1} - u_{\tilde{z}}^{k} - du_{\tilde{z}}^{k,l+1})}{|\vec{z}_{\uparrow} - \tilde{z}_{\uparrow}|^{2}} \cdot \overline{\psi}_{\sigma_{c}} (|[f]_{\vec{z}} - [f]_{\tilde{z}}|^{2}) \cdot \overline{\psi}_{\sigma_{d}} (|\vec{z} - \tilde{z}|^{2}), \\
\frac{\partial S_{1}}{\partial v_{\vec{z}}} = \frac{1}{N_{S}} \sum_{\tilde{z}}^{\mathcal{N}(\tilde{z})} \psi_{S}' \left(\frac{|u_{\vec{z}}^{k} + du_{\vec{z}}^{k,l} - u_{\tilde{z}}^{k} - du_{\tilde{z}}^{k,l}|^{2} + |v_{\vec{z}}^{k} + dv_{\vec{z}}^{k,l} - v_{\tilde{z}}^{k} - dv_{\tilde{z}}^{k,l}|^{2}}{|\vec{z}_{\uparrow} - \tilde{z}_{\uparrow}|^{2}} \right) \cdot 4 \cdot \frac{(v_{\vec{z}}^{k} + dv_{\vec{z}}^{k,l+1} - v_{\tilde{z}}^{k} - dv_{\tilde{z}}^{k,l+1})}{|\vec{z}_{\uparrow} - \tilde{z}_{\uparrow}|^{2}} \cdot \overline{\psi}_{\sigma_{c}} (|[f]_{\vec{z}} - [f]_{\tilde{z}}|^{2}) \cdot \overline{\psi}_{\sigma_{d}} (|\vec{z} - \tilde{z}|^{2}).$$

3.3. D_{1a} - Bilateraler Datenterm "Gradient"

Mit D_{1a} wird ein bilateraler Datenterm beschrieben, der die Differenzen der Farbwerte in seiner Nachbarschaft bestimmt und zwischen zwei Frames miteinander vergleicht. Damit besteht eine Ähnlichkeit zu der Gradientenkonstanz Annahme vom Zimmer et al. Datenterm, womit auch Beleuchtungsänderungen im Modell berücksichtigt werden können. Abweichungen von der Gradientenkonstanz werden erneut durch eine sub-quadratische Funktion ψ_D gewichtet. Der Einfluss von ψ_D wird durch die Funktionen $\overline{\psi}_{\sigma_d}$ und $\overline{\psi}_{\sigma_c}$, wie bereits beim Glattheitsterm, angepasst. Der Unterschied zur Gradientenkonstanz besteht im Verfahren von Zimmer et al. hauptsächlich darin, dass eine größere Umgebung bzw. Nachbarschaft berücksichtigt wird. Durch die $\overline{\psi}_{\sigma_d}$ Funktion werden nicht nur einzelne Punkte, sondern ganze Blöcke miteinander verglichen. Dabei wird eine Verformung der Blöcke von Frame 1 zu Frame 2 durch die Bewegung des optischen Flusses berücksichtigt. Mit der Farbgewichtung über die Funktion $\overline{\psi}_{\sigma_c}$ wandelt sich das Verhalten: Für hohe Einstellungswerte σ_c werden ganze Blöcke miteinander verglichen. Ist σ_c klein und die Differenz der Farbwerte groß, so wird der Einfluss des Datenterms herunter gewichtet. Für kleine Werte σ_c widerspricht das Verhalten der ursprünglichen Annahme, dass bei Struktur der Datenterm einen größeren Einfluss erhält und der Glattheitsterm bei homogenen Flächen, bei denen eine eindeutige Zuordnung der Bewegung nicht eindeutig ermittelt werden kann. Erste Testreihen zeigten aber das genau ein solcher Ansatz bessere Ergebnisse hervorbringt. Dabei ist die Wahl der Gewichtungsfunktion $\overline{\psi}_{\sigma_c}$ mit dem Einstellungsparameter σ_c ausschlaggebend. Diese müssen so gewählt werden, dass bei gewissen Strukturen (geringe bis mittlere Farbdifferenz) der Datenterm weiterhin eine große

Gewichtung erhält und bei Objektkanten (große Farbdifferenz) der Einfluss abgeschwächt wird.

$$D_{1a}(u,v) = \sum_{i,j}^{N,M} \frac{\alpha}{N_{S}} \sum_{\tilde{i},\tilde{j}}^{N(i,j)} \sum_{c=1}^{3} \psi(|([f^{c}]_{i,j,t+u,v,1} - [f^{c}]_{\tilde{i},\tilde{j},t+\tilde{u},\tilde{v},1}) - ([f^{c}]_{i,j,t} - [f^{c}]_{\tilde{i},\tilde{j},t})|^{2}) \cdot \overline{\psi}_{\sigma_{c}}(...) \cdot \overline{\psi}_{\sigma_{d}}(...)$$

$$= \sum_{\tilde{z}}^{N,M} \frac{\alpha}{N_{S}} \sum_{\tilde{z}}^{N(\tilde{z})} \sum_{c=1}^{3} \psi(|([f^{c}]_{\tilde{z}+\tilde{w}} - [f^{c}]_{\tilde{z}+\tilde{w}}) - ([f^{c}]_{\tilde{z}} - [f^{c}]_{\tilde{z}})|^{2}) \cdot \overline{\psi}_{\sigma_{c}}(...) \cdot \overline{\psi}_{\sigma_{d}}(...)$$

$$(3.11)$$

mit $\overline{\psi}_{\sigma_c}(...) = \overline{\psi}_{\sigma_c}(|[f^c]_{\vec{z}} - [f^c]_{\tilde{z}}|^2)$, $\overline{\psi}_{\sigma_d}(...) = \overline{\psi}_{\sigma_d}(|\vec{z} - \tilde{z}|^2)$ und dem Normierungsfaktor $N_S(\vec{z}) = \sum_{\tilde{z}}^{\mathcal{N}(\vec{z})} \psi_{\sigma_d}(|\vec{z} - \tilde{z}|^2)$. Wird das Energiefunktional nach $u_{\vec{z}}$ und $u_{\vec{v}}$ abgeleitet, ergibt sich folgende Form, die es zusammen mit der Ableitung des Datenterms $(\frac{\partial S_1}{\partial u_{\vec{z}}} + \frac{\partial D_{1a}}{\partial u_{\vec{z}}} = 0)$ zu lösen gilt:

$$\frac{\partial D_{1a}}{\partial u_{\vec{z}}} = \frac{\alpha}{N_{S}} \sum_{\tilde{z}}^{N(\tilde{z})} \sum_{c=1}^{3} \psi' \left(|([f^{c}]_{\vec{z}+\vec{w}} - [f^{c}]_{\tilde{z}+\tilde{w}}) - ([f^{c}]_{\vec{z}} - [f^{c}]_{\tilde{z}})|^{2} \right) \cdot 4 \cdot \\
\left\{ \left([f^{c}]_{\vec{z}+\vec{w}} - [f^{c}]_{\tilde{z}+\tilde{w}}) - ([f^{c}]_{\vec{z}} - [f^{c}]_{\tilde{z}}) \right\} [f_{x}^{c}]_{\vec{z}+\vec{w}} \overline{\psi}_{\sigma_{c}}(\dots) \cdot \overline{\psi}_{\sigma_{d}}(\dots) \\
\frac{\partial D_{1a}}{\partial v_{\vec{z}}} = \frac{\alpha}{N_{S}} \sum_{\tilde{z}}^{3} \sum_{c=1}^{3} \psi' \left(|([f^{c}]_{\vec{z}+\vec{w}} - [f^{c}]_{\tilde{z}+\tilde{w}}) - ([f^{c}]_{\vec{z}} - [f^{c}]_{\tilde{z}}) \right)^{2} \cdot 4 \cdot \\
\left\{ \left([f^{c}]_{\vec{z}+\vec{w}} - [f^{c}]_{\tilde{z}+\tilde{w}}) - ([f^{c}]_{\vec{z}} - [f^{c}]_{\tilde{z}}) \right\} [f_{y}^{c}]_{\vec{z}+\vec{w}} \overline{\psi}_{\sigma_{c}}(\dots) \cdot \overline{\psi}_{\sigma_{d}}(\dots) \right\}$$

Nach Einführung einer semi-expliziten Iteration für den Datenterm und einer impliziten Iteration für den Glattheitsterm, Linearisierung und Anwendung der Lagged-Nonlinearity-Methode lässt sich das Gleichungssystem mit der Multiskalenhierachie (k) und dem SOR-Verfahren (l+1) lösen. Die Herleitung des Iterationsschemas erfolgt dabei analog zum Datenterm D_0 . Somir erhalten wir:

$$\begin{split} \frac{\partial D_{1a}}{\partial u_{\vec{z}}} &= \frac{\alpha}{N_{S}} \sum_{\tilde{z}}^{\mathcal{N}(\vec{z})} \sum_{c=1}^{3} \psi' \left(|M_{\tilde{z}+\vec{w}^{k}}^{d\vec{w}^{k,l}} - M_{\tilde{z}+\vec{w}^{k}}^{d\tilde{w}^{k,l}}|^{2} \right) \cdot 4 \cdot [f_{x}^{c}]_{\vec{z}+\vec{w}} \, \overline{\psi}_{\sigma_{c}}\left(... \right) \cdot \overline{\psi}_{\sigma_{d}}\left(... \right) \cdot \left\{ M_{\tilde{z}+\vec{w}^{k}}^{d\vec{w}^{k,l+1}} - M_{\tilde{z}+\vec{w}^{k}}^{d\tilde{w}^{k,l+1}} \right\}, \\ \frac{\partial D_{1a}}{\partial v_{\vec{z}}} &= \frac{\alpha}{N_{S}} \sum_{\tilde{z}}^{3} \sum_{c=1}^{3} \psi' \left(|M_{\tilde{z}+\vec{w}^{k}}^{d\vec{w}^{k,l}} - M_{\tilde{z}+\vec{w}^{k}}^{d\tilde{w}^{k,l}}|^{2} \right) \cdot 4 \cdot [f_{y}^{c}]_{\vec{z}+\vec{w}} \, \overline{\psi}_{\sigma_{c}}\left(... \right) \cdot \overline{\psi}_{\sigma_{d}}\left(... \right) \cdot \\ &\left\{ \underbrace{\left([f_{x}^{c}]_{\vec{z}+\vec{w}^{k}} du^{k,l+1} + [f_{y}^{c}]_{\vec{z}+\vec{w}^{k}} dv^{k,l+1} + [f_{t}^{c}]_{\vec{z}+\vec{w}^{k}} \right) - M_{\tilde{z}+\vec{w}^{k}}^{d\tilde{w}^{k,l+1}}}_{\mathcal{Z}+\vec{w}^{k}} \right\}. \end{split}$$

(3.13)

3.4. D_{1b} - Bilateraler Datenterm "Zimmer (zentral)"

Der Datenterm " D_{1a} - Bilateral Gradient" gewichtet die Gradientenunterschiede zwischen zwei Frames, so dass unter anderem auch Beleuchtungsänderungen berücksicht werden. Es entsteht jedoch ein Nachteil bei der Verwendung der Gradientenkonstanz ohne den Einsatz der Farbwertkonstanz: Verschiebungen werden auf Bereiche ermöglicht, die zwar den gleichen Gradienten besitzen, jedoch zu unterschiedlichen Objekten oder Bildbereichen gehören. Ein Beispiel dafür wäre eine von schwarz nach weiss verlaufende Fläche. An jeder Position der Fläche ist der Gradient gleich, so dass eine korrekte Zuordnung des optischen Flusses bei der Verschiebung dieser Fläche sich als schwierig erweist.

Bei dem Datenterm D_{1b} sollen die Bildpunkte aus der Nachbarschaft $(\tilde{i}, \tilde{j}, t)$ mit den Bildpunkten im nächsten Zeitschritt $(\tilde{i}, \tilde{j}, t+1)$ verglichen und gewichtet werden, ebenso wie die zentralen Bildpunkte (i, j, t) und (i, j, t+1). Mit dem bilateralen Ansatz werden erneut ganze Blöcke mit einander verglichen, wobei im Gegensatz zu D_{1a} nicht die Differenzen in der Nachbarschaft sondern einzelne Punkte betrachtet werden. Für die Differenzen sollen neben der Farbwertkonstanz, die für jeden Farbkanal (RGB) seperat gewichtet wird, auch die Gradientenkonstanz berücksichtigt werden. Damit entspricht D_{1b} im Ansatz dem Datenterm aus dem Verfahren von Zimmer et al. Der Unterschied besteht darin, dass für jeden Bildpunkt auch die Nachbarschaft berücksichtigt und zusätzlich durch $\overline{\psi}_{\sigma_d}$ und $\overline{\psi}_{\sigma_c}$ gewichtet wird. Die Nachbarschaft $\mathcal{N}(i,j)$ kann wie auch bei allen anderen bilateralen Termen frei gewählt werden. Besteht diese lediglich aus dem zentralen Bildpunkt (i,j) so ist der Datenterm D_{1b} identisch mit dem Datenterm des Verfahrens von Zimmer et al. D_0 . Wie bereits beim ersten bilateralen Datenterm D_{1a} ist die Wahl der Funktion $\overline{\psi}_{\sigma_c}$ und des Einstellungsparamter σ_c ausschlaggebend. Wird σ_c groß gewählt, so werden einzelne Blöcke mit einander verglichen. Ist σ_c klein erhält der Datenterm hauptsächlich Einfluss bei homogenen Flächen. Somit erhalten wir:

$$\begin{split} D_{1b}(u,v) &= \sum_{i,j}^{N,M} \frac{\alpha}{N_S} \sum_{\tilde{i},\tilde{j}}^{N(i,j)} \sum_{c=1}^{3} \left(\left\{ \gamma_f \psi_D \left(\theta_0^c | [f^c]_{i,j,t+u,v,1} - [f^c]_{i,j,t} \right|^2 + \tilde{\theta}_0^c | [f^c]_{\tilde{i},\tilde{j},t+\tilde{u},\tilde{v},1} - [f^c]_{\tilde{i},\tilde{j},t} \right|^2 \right) + \\ &\qquad \gamma_g \psi_D \left(\theta_{xy}^c | [\nabla f^c]_{i,j,t+u,v,1} - [\nabla f^c]_{i,j,t} \right|^2 + \tilde{\theta}_{xy}^c | [\nabla f^c]_{\tilde{i},\tilde{j},t+\tilde{u},\tilde{v},1} - [\nabla f^c]_{\tilde{i},\tilde{j},t} \right|^2 \right) \right\} \cdot \\ &\qquad \overline{\psi}_{\sigma_c} \left(| [f^c]_{i,j,t} - [f^c]_{\tilde{i},\tilde{j},t} \right|^2 \right) \cdot \overline{\psi}_{\sigma_d} \left(| i,j-\tilde{i},\tilde{j} \right|^2 \right) \right), \\ &= \sum_{\vec{z}}^{N,M} \frac{\alpha}{N_S} \sum_{\tilde{z}}^{N(\vec{z})} \sum_{c=1}^{3} \left(\left\{ \gamma_f \psi_D \left(\theta_0^c | [f^c]_{\vec{z}+\vec{w}} - [f^c]_{\vec{z}} \right|^2 + \tilde{\theta}_0^c | [f^c]_{\tilde{z}+\tilde{w}} - [f^c]_{\tilde{z}} \right|^2 \right) + \\ &\qquad \gamma_g \psi_D \left(\theta_{xy}^c | [\nabla f^c]_{\vec{z}+\vec{w}} - [\nabla f^c]_{\vec{z}} \right|^2 + \tilde{\theta}_{xy}^c | [\nabla f^c]_{\tilde{z}+\tilde{w}} - [\nabla f^c]_{\tilde{z}} \right|^2 \right) \right\} \cdot \\ &\qquad \overline{\psi}_{\sigma_c} \left(| [f^c]_{\vec{z}} - [f^c]_{\tilde{z}} \right|^2 \right) \cdot \overline{\psi}_{\sigma_d} \left(|\vec{z} - \tilde{z}|^2 \right) \right). \end{split}$$

Die Faktoren θ_0^c und θ_{xy}^c dienen wie auch bereits beim Verfahren von Zimmer et~al. zur Normierung der Farbwert- und Gradientenkonstanz. Der Normierungsfaktor $N_S(z) = \sum_{\tilde{z}}^{\mathcal{N}(z)} \psi_{\sigma_d}(|z-\tilde{z}|^2)$ ist erneut Bestandteil des Energiefunktionals, ebenso wie die Einstellungsparameter α , γ_f , γ_g . Durch die partielle Ableitung von D_{1b} mit $\frac{\partial D_{1b}}{\partial u_{\tilde{z}}}$ und $\frac{\partial D_{1b}}{\partial v_{\tilde{z}}}$ erhält man zusammen mit einem Glattheitsterm und dessen Ableitung ($\frac{\partial S_1}{\partial u_{\tilde{z}}} + \frac{\partial D_{1b}}{\partial u_{\tilde{z}}} = 0 \wedge \frac{\partial S_1}{\partial v_{\tilde{z}}} + \frac{\partial D_{1b}}{\partial v_{\tilde{z}}} = 0$) erneut ein nicht-lineares Gleichungssystem, das eine notwendig Bedingung zur Minimierung des Energiefunktionals liefert:

$$\begin{split} \frac{\alpha}{N_{S}} \sum_{\tilde{z}}^{\mathcal{N}(\tilde{z})} \sum_{c=1}^{3} \left(\left\{ \gamma_{f} \psi_{D}' \left(\theta_{0}^{c} | [f^{c}]_{\tilde{z}+\tilde{w}} - [f^{c}]_{\tilde{z}} |^{2} + \tilde{\theta}_{0}^{c} | [f^{c}]_{\tilde{z}+\tilde{w}} - [f^{c}]_{\tilde{z}} |^{2} \right) \cdot \theta_{0}^{c} \cdot 4 \cdot \left([f^{c}]_{\tilde{z}+\tilde{w}} - [f^{c}]_{\tilde{z}} \right) [f_{x}^{c}]_{\tilde{z}+\tilde{w}} \\ &+ \gamma_{g} \psi_{D}' \left(\theta_{xy}^{c} | [\nabla f^{c}]_{\tilde{z}+\tilde{w}} - [\nabla f^{c}]_{\tilde{z}} |^{2} + \tilde{\theta}_{xy}^{c} | [\nabla f^{c}]_{\tilde{z}+\tilde{w}} - [\nabla f^{c}]_{\tilde{z}} |^{2} \right) \cdot \theta_{0}^{c} \cdot 4 \cdot \left([f^{c}]_{\tilde{z}+\tilde{w}} - [\nabla f^{c}]_{\tilde{z}} \right) (\theta_{xy}^{c} \cdot 4 \cdot \left([\nabla f^{c}]_{\tilde{z}+\tilde{w}} - [\nabla f^{c}]_{\tilde{z}} \right))^{T} [\nabla f_{x}^{c}]_{\tilde{z}+\tilde{w}} \right\} \cdot \overline{\psi}_{\sigma_{c}} \left(|[f^{c}]_{\tilde{z}} - [f^{c}]_{\tilde{z}} |^{2} \right) \cdot \overline{\psi}_{\sigma_{d}} \left(|\vec{z} - \tilde{z}|^{2} \right) \right) = \frac{\partial D_{1b}}{\partial u_{\tilde{z}}}, \\ \frac{\alpha}{N_{S}} \sum_{\tilde{z}} \sum_{c=1}^{3} \left(\left\{ \gamma_{f} \psi_{D}' \left(\theta_{0}^{c} | [f^{c}]_{\tilde{z}+\tilde{w}} - [f^{c}]_{\tilde{z}} |^{2} + \tilde{\theta}_{0}^{c} |[f^{c}]_{\tilde{z}+\tilde{w}} - [f^{c}]_{\tilde{z}} |^{2} \right) \cdot \theta_{0}^{c} \cdot 4 \cdot \left([f^{c}]_{\tilde{z}+\tilde{w}} - [f^{c}]_{\tilde{z}} \right) [f_{y}^{c}]_{\tilde{z}+\tilde{w}} \right. \\ \left. + \gamma_{g} \psi_{D}' \left(\theta_{xy}^{c} | [\nabla f^{c}]_{\tilde{z}+\tilde{w}} - [\nabla f^{c}]_{\tilde{z}} |^{2} + \tilde{\theta}_{xy}^{c} |[\nabla f^{c}]_{\tilde{z}+\tilde{w}} - [\nabla f^{c}]_{\tilde{z}} |^{2} \right) \cdot \theta_{0}^{c} \cdot 4 \cdot \left([f^{c}]_{\tilde{z}+\tilde{w}} - [f^{c}]_{\tilde{z}} \right) [f_{y}^{c}]_{\tilde{z}+\tilde{w}} \right. \\ \left. + \gamma_{g} \psi_{D}' \left(\theta_{xy}^{c} | [\nabla f^{c}]_{\tilde{z}+\tilde{w}} - [\nabla f^{c}]_{\tilde{z}} |^{2} + \tilde{\theta}_{xy}^{c} |[\nabla f^{c}]_{\tilde{z}+\tilde{w}} - [\nabla f^{c}]_{\tilde{z}} |^{2} \right) \cdot \theta_{0}^{c} \cdot 4 \cdot \left([f^{c}]_{\tilde{z}+\tilde{w}} - [f^{c}]_{\tilde{z}} \right) [f_{y}^{c}]_{\tilde{z}+\tilde{w}} \right. \\ \left. + \gamma_{g} \psi_{D}' \left(\theta_{xy}^{c} | [\nabla f^{c}]_{\tilde{z}+\tilde{w}} - [\nabla f^{c}]_{\tilde{z}} |^{2} + \tilde{\theta}_{xy}^{c} |[\nabla f^{c}]_{\tilde{z}+\tilde{w}} - [\nabla f^{c}]_{\tilde{z}} |^{2} \right) \cdot \theta_{0}^{c} \cdot 4 \cdot \left([f^{c}]_{\tilde{z}+\tilde{w}} - [f^{c}]_{\tilde{z}} \right) \right) \right] \\ \left. + \gamma_{g} \psi_{D}' \left(\theta_{xy}^{c} | [\nabla f^{c}]_{\tilde{z}+\tilde{w}} - [\nabla f^{c}]_{\tilde{z}} |^{2} + \tilde{\theta}_{xy}^{c} |[\nabla f^{c}]_{\tilde{z}+\tilde{w}} - [\nabla f^{c}]_{\tilde{z}} \right) \cdot \theta_{0}^{c} \cdot 4 \cdot \left([f^{c}]_{\tilde{z}+\tilde{w}} - [f^{c}]_{\tilde{z}} \right) \right) \right] \right] \\ \left. + \gamma_{g} \psi_{D}' \left(\theta_{xy}^{c} | [\nabla f^{c}]_{\tilde{z}+\tilde{w}} - [\nabla f^{c}]_{\tilde{z}+\tilde{w}} \right) \cdot \psi_{D}' \left([\nabla f^{c}]_{\tilde{z}+\tilde{w}} - [\nabla f^{c}]_{\tilde{z}} \right) \right) \right] \right]$$

Nach Einführung eines semi-expliziten Iterationschemas für den Datenterm und eines impliziten Iterationsschemas für den Glattheitsterm, Linearisierung und Anwendung der *Lagged-Nonlinearity*-Methode lässt sich das Gleichungssystem mit der Multiskalenhierachie (k) und dem SOR-Verfahren (l+1) lösen. Die Beschreibung in Bewegungstensor-Notation J und J_{∇} soll für eine verkürzte und übsichtliche Darstellung der Gleichungen dienen [BWKSo6]. Der Anteil des Datenterms ist hierbei gegeben durch:

$$\begin{split} \frac{\partial D_{1b}}{\partial u_{\vec{z}}} &= \frac{\alpha}{N_{S}} \sum_{\vec{z}}^{N(\vec{z})} \sum_{c=1}^{3} \left(\left\{ \gamma_{f} \psi_{D}' (\theta_{0}^{c} d\vec{w}^{k,l} [J^{c}]_{\vec{z}+\vec{w}^{k}} d\vec{w}^{k,l} + \tilde{\theta}_{0}^{c} d\tilde{\vec{w}}^{k,l} [J^{c}]_{\vec{z}+\vec{w}^{k}} d\vec{w}^{k,l} \right) \cdot 4 \cdot \theta_{0}^{c} \cdot \\ & ([J_{11}^{c}]_{\vec{z}+\vec{w}^{k}} du^{k,l+1} + [J_{12}^{c}]_{\vec{z}+\vec{w}^{k}} d\vec{w}^{k,l} + \tilde{\theta}_{xy}^{c} d\tilde{\vec{w}}^{k,l} [J^{c}_{\nabla}]_{\vec{z}+\vec{w}^{k}} d\vec{w}^{k,l}) \cdot 4 \cdot \theta_{xy}^{c} \cdot \\ & ([J_{\nabla,11}^{c}]_{\vec{z}+\vec{w}^{k}} du^{k,l+1} + [J_{\nabla,12}^{c}]_{\vec{z}+\vec{w}^{k}} dv^{k,l+1} + [J_{\nabla,13}^{c}]_{\vec{z}+\vec{w}^{k}}) \cdot 4 \cdot \theta_{xy}^{c} \cdot \\ & ([J_{\nabla,11}^{c}]_{\vec{z}+\vec{w}^{k}} du^{k,l+1} + [J_{\nabla,12}^{c}]_{\vec{z}+\vec{w}^{k}} dv^{k,l+1} + [J_{\nabla,13}^{c}]_{\vec{z}+\vec{w}^{k}}) \right\} \\ & \cdot \overline{\psi}_{\sigma_{c}} (|[f^{c}]_{\vec{z}} - [f^{c}]_{\vec{z}}]^{2}) \cdot \overline{\psi}_{\sigma_{d}} (|\vec{z} - \vec{z}|^{2}) \right), \end{split} \tag{3.16} \\ \frac{\partial D_{1b}}{\partial v_{\vec{z}}} &= \frac{\alpha}{N_{S}} \sum_{\vec{z}} \sum_{c=1}^{3} \left(\left\{ \gamma_{f} \psi_{D}' (\theta_{0}^{c} d\vec{w}^{k,l} [J^{c}]_{\vec{z}+\vec{w}^{k}} d\vec{w}^{k,l} + \tilde{\theta}_{0}^{c} d\tilde{\vec{w}}^{k,l} [J^{c}]_{\vec{z}+\vec{w}^{k}} d\tilde{\vec{w}}^{k,l}) \cdot 4 \cdot \theta_{0}^{c} \cdot \\ & ([J_{21}^{c}]_{\vec{z}+\vec{w}^{k}} du^{k,l+1} + [J_{22}^{c}]_{\vec{z}+\vec{w}^{k}} d\vec{w}^{k,l} + \tilde{\theta}_{xy}^{c} d\tilde{\vec{w}}^{k,l} [J_{\nabla}^{c}]_{\vec{z}+\vec{w}^{k}} d\tilde{\vec{w}}^{k,l}) \cdot 4 \cdot \theta_{xy}^{c} \cdot \\ & ([J_{\nabla,21}^{c}]_{\vec{z}+\vec{w}^{k}} du^{k,l+1} + [J_{\nabla,22}^{c}]_{\vec{z}+\vec{w}^{k}} d\vec{w}^{k,l+1} + [J_{\nabla,23}^{c}]_{\vec{z}+\vec{w}^{k}} d\tilde{\vec{w}}^{k,l}) \cdot 4 \cdot \theta_{xy}^{c} \cdot \\ & ([J_{\nabla,21}^{c}]_{\vec{z}+\vec{w}^{k}} du^{k,l+1} + [J_{\nabla,22}^{c}]_{\vec{z}+\vec{w}^{k}} dv^{k,l+1} + [J_{\nabla,23}^{c}]_{\vec{z}+\vec{w}^{k}}) \right\} \\ & \cdot \overline{\psi}_{\sigma_{c}} (|[f^{c}]_{\vec{z}} - [f^{c}]_{\vec{z}}]^{2}) \cdot \overline{\psi}_{\sigma_{d}} (|\vec{z} - \vec{z}|^{2}) \right). \end{split}$$

3.5. D_{1c} - Bilateraler Datenterm "Zimmer"

Beim Datenterm D_{1b} wird für jeden Bildpunkt (\tilde{i},\tilde{j}) aus der Nachbarschaft $\mathcal{N}(i,j)$ derselbe zentrale Punkt (i,j) mitberechnet. Die Variante D_{1c} soll auf diesen Punkt vollständig verzichten und lediglich die Differenzen der Nachbarschaft und einmalig den zentralen Bildpunkt berücksichtigen. Der zugehörige Datenterm lautet:

$$D_{1c}(u,v) = \sum_{i,j}^{N,M} \frac{\alpha}{N_{S}^{+}} \sum_{\tilde{i},\tilde{j}}^{N(i,j)^{+}} \sum_{c=1}^{3} \left(\left\{ \psi_{D}(\tilde{\theta}_{0}^{c} | [f^{c}]_{\tilde{i},\tilde{j},t+\tilde{u},\tilde{v},1} - [f^{c}]_{\tilde{i},\tilde{j},t}|^{2} \right) + \frac{\gamma \cdot \psi_{D}(\tilde{\theta}_{xy}^{c} | [\nabla f^{c}]_{\tilde{i},\tilde{j},t+\tilde{u},\tilde{v},1} - [\nabla f^{c}]_{\tilde{i},\tilde{j},t}|^{2}) \right\} \cdot \overline{\psi}_{\sigma_{c}}(|[f^{c}]_{i,j,t} - [f^{c}]_{\tilde{i},\tilde{j},t}|^{2}) \cdot \overline{\psi}_{\sigma_{d}}(|i,j-\tilde{i},\tilde{j}|^{2}) \right)$$

$$= \sum_{\tilde{z}}^{N,M} \frac{\alpha}{N_{S}^{+}} \sum_{\tilde{z}}^{3} \sum_{c=1}^{3} \left\{ \psi_{D}(\tilde{\theta}_{0}^{c} | [f^{c}]_{\tilde{z}+\tilde{w}} - [f^{c}]_{\tilde{z}}|^{2}) + \psi_{D}(\tilde{\theta}_{xy}^{c} | [\nabla f^{c}]_{\tilde{z}+\tilde{w}} - [\nabla f^{c}]_{\tilde{z}}|^{2}) \right\} \cdot \overline{\psi}_{\sigma_{c}}(|[f^{c}]_{\tilde{z}} - [f^{c}]_{\tilde{z}}|^{2}) \cdot \overline{\psi}_{\sigma_{d}}(|\vec{z} - \tilde{z}|^{2})$$

$$= \sum_{\tilde{z}}^{N,M} \frac{\alpha}{N_{S}^{+}} \sum_{c=1}^{3} \left\{ \psi_{D}(\theta_{0}^{c} | [f^{c}]_{\tilde{z}+\tilde{w}} - [f^{c}]_{\tilde{z}}|^{2}) + \psi_{D}(\tilde{\theta}_{xy}^{c} | [\nabla f^{c}]_{\tilde{z}+\tilde{w}} - [\nabla f^{c}]_{\tilde{z}}|^{2}) \right\} \cdot \overline{\psi}_{\sigma_{d}}(|\vec{z} - \tilde{z}|^{2})$$

$$= \sum_{\tilde{z}}^{N,M} \frac{\alpha}{N_{S}^{+}} \sum_{c=1}^{3} \left\{ \psi_{D}(\theta_{0}^{c} | [f^{c}]_{\tilde{z}+\tilde{w}} - [f^{c}]_{\tilde{z}}|^{2}) + \psi_{D}(\tilde{\theta}_{xy}^{c} | [\nabla f^{c}]_{\tilde{z}+\tilde{w}} - [\nabla f^{c}]_{\tilde{z}}|^{2}) \right\} \cdot \overline{\psi}_{\sigma_{d}}(|\vec{z} - \tilde{z}|^{2})$$

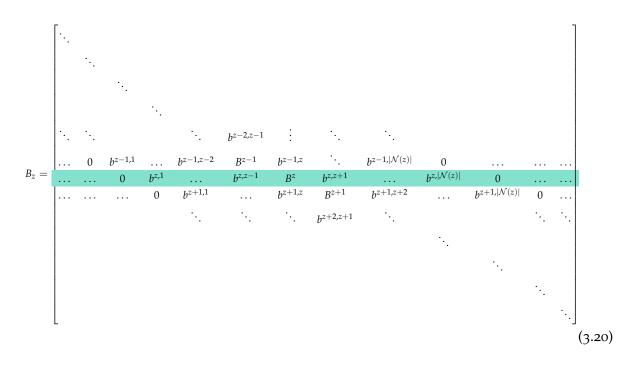
$$= \sum_{\tilde{z}}^{N,M} \frac{\alpha}{N_{S}^{+}} \sum_{c=1}^{3} \left\{ \psi_{D}(\theta_{0}^{c} | [f^{c}]_{\tilde{z}+\tilde{w}} - [f^{c}]_{\tilde{z}}|^{2}) + \psi_{D}(\tilde{\theta}_{xy}^{c} | [\nabla f^{c}]_{\tilde{z}+\tilde{w}} - [\nabla f^{c}]_{\tilde{z}}|^{2}) \right\} \cdot \overline{\psi}_{\sigma_{d}}(|\vec{z} - \tilde{z}|^{2})$$

$$= \sum_{\tilde{z}}^{N,M} \frac{\alpha}{N_{S}^{+}} \sum_{c=1}^{3} \left\{ \psi_{D}(\theta_{0}^{c} | [f^{c}]_{\tilde{z}+\tilde{w}} - [f^{c}]_{\tilde{z}}|^{2}) + \psi_{D}(\tilde{\theta}_{xy}^{c} | [\nabla f^{c}]_{\tilde{z}+\tilde{w}} - [\nabla f^{c}]_{\tilde{z}}|^{2}) \right\} \cdot \overline{\psi}_{\sigma_{d}}(|\vec{z} - \tilde{z}|^{2})$$

$$= \sum_{\tilde{z}}^{N,M} \frac{\alpha}{N_{S}^{+}} \sum_{c=1}^{3} \left\{ \psi_{D}(\theta_{0}^{c} | [f^{c}]_{\tilde{z}+\tilde{w}} - [f^{c}]_{\tilde{z}}|^{2}) + \psi_{D}(\tilde{\theta}_{xy}^{c} | [\nabla f^{c}]_{\tilde{z}+\tilde{w}} - [\nabla f^{c}]_{\tilde{z}}|^{2}) \right\} \cdot \overline{\psi}_{\sigma_{d}}(|\vec{z} - \tilde{z}|^{2})$$

Das + bei der Nachbarschaftsfunktion $\mathcal{N}(i,j)^+$ bedeutet, dass der zentrale Bildpunkt nur einmalig mitberücksichtigt wird. Der Normierungsfaktor ändert sicht entsprechend zu $N_S^+(z) = \sum_{\tilde{z}}^{\mathcal{N}^+(z)} \psi_{\sigma_d} \big(|z-\tilde{z}|^2\big)$. Man beachte beim letzten Umformungsschritt der Gleichung (3.17), im Argument der ψ_D Funktion, dass die Farb- und Gradientenkonstanzannahmen sowohl über die Nachbarschaftspunkte (\tilde{i},\tilde{j}) als auch über (i,j) beschrieben werden können. Beide Varianten liefern ein und dasselbe Energiefunktional, aus Performancegründen ist letztere jedoch vorzuziehen da die Abfrage der Bewegungstensorwerte $[J]_z$ und $[J_\nabla]_z$ nur einmalig erfolgt.

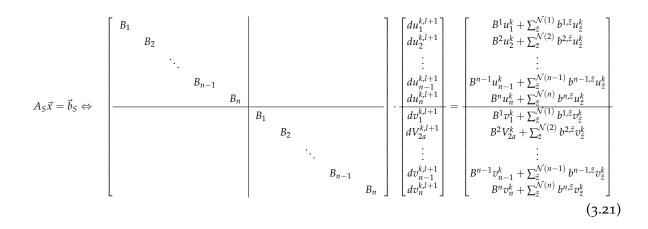
Durch die partielle Ableitung von D_{1c} nach $u_{\vec{z}}$ und $v_{\vec{z}}$ erhalten wir erneut zusammen mit dem Glattheitsterm S_1 ein nicht-lineares Gleichungssystem, das uns eine notwendig Bedingung zur Minimierung des Energiefunktionals liefert. Dies ist gegeben durch:


$$\frac{\partial D_{1c}}{\partial u_{\vec{z}}} = \frac{\alpha}{N_{S}^{+}} \sum_{c=1}^{3} \left(\left\{ \psi'(\theta_{0}^{c} | [f^{c}]_{\vec{z}+\vec{w}} - [f^{c}]_{\vec{z}} |^{2}) \cdot \theta_{0}^{c} \cdot 4 \cdot ([f^{c}]_{\vec{z}+\vec{w}} - [f^{c}]_{\vec{z}}) [f_{x}^{c}]_{\vec{z}+\vec{w}} + \right. \\
\left. \psi'(\theta_{xy}^{c} | [\nabla f^{c}]_{\vec{z}+\vec{w}} - [\nabla f^{c}]_{\vec{z}} |^{2}) \cdot (\theta_{xy}^{c} \cdot 4 \cdot ([\nabla f^{c}]_{\vec{z}+\vec{w}} - [\nabla f^{c}]_{\vec{z}}))^{T} [\nabla f_{x}^{c}]_{\vec{z}+\vec{w}} \right\} \cdot \\
\left. \sum_{\tilde{z}}^{N(\tilde{z})} \overline{\psi}_{\sigma_{c}} (|[f^{c}]_{\vec{z}} - [f^{c}]_{\tilde{z}} |^{2}) \cdot \overline{\psi}_{\sigma_{d}} (|\vec{z} - \tilde{z}|^{2}) \right), \\
\frac{\partial D_{1c}}{\partial v_{\vec{z}}} = \frac{\alpha}{N_{S}^{+}} \sum_{c=1}^{3} \left(\left\{ \psi'(\theta_{0}^{c} | [f^{c}]_{\vec{z}+\vec{w}} - [f^{c}]_{\vec{z}} |^{2}) \cdot \theta_{0}^{c} \cdot 4 \cdot ([f^{c}]_{\vec{z}+\vec{w}} - [f^{c}]_{\vec{z}}) [f_{y}^{c}]_{\vec{z}+\vec{w}} + \right. \\
\left. \psi'(\theta_{xy}^{c} | [\nabla f^{c}]_{\vec{z}+\vec{w}} - [\nabla f^{c}]_{\vec{z}} |^{2}) \cdot (\theta_{xy}^{c} \cdot 4 \cdot ([\nabla f^{c}]_{\vec{z}+\vec{w}} - [\nabla f^{c}]_{\vec{z}}))^{T} [\nabla f_{y}^{c}]_{\vec{z}+\vec{w}} \right\} \cdot \\
\left. \sum_{\tilde{z}}^{N(\tilde{z})} \overline{\psi}_{\sigma_{c}} (|[f^{c}]_{\vec{z}} - [f^{c}]_{\tilde{z}} |^{2}) \cdot \overline{\psi}_{\sigma_{d}} (|\vec{z} - \tilde{z}|^{2}) \right). \tag{3.18}$$

Nach Einführung einer semi-expliziten Iteration für den Datenterm, Linearisierung und Anwendung der *Lagged-Nonlinearity-*Methode lässt sich das Gleichungssystem mit der Multiskalenhierachie (k) und dem SOR-Verfahren (l+1) lösen:

$$\begin{split} \frac{\alpha}{N_{S}^{+}} \sum_{c=1}^{3} \left(\left\{ \psi' (\theta_{0}^{c} d\vec{w}^{k,l} [J^{c}]_{\vec{z} + \vec{w}^{k}} d\vec{w}^{k,l}) \cdot 4 \cdot \theta_{0}^{c} \cdot ([J_{11}^{c}]_{\vec{z} + \vec{w}^{k}} du^{k,l+1} + [J_{12}^{c}]_{\vec{z} + \vec{w}^{k}} dv^{k,l+1} + [J_{13}^{c}]_{\vec{z} + \vec{w}^{k}}) + \\ \psi' (\theta_{xy}^{c} d\vec{w}^{k,l} [J_{\nabla}^{c}]_{\vec{z} + \vec{w}^{k}} d\vec{w}^{k,l}) \cdot 4 \cdot \theta_{xy}^{c} \cdot ([J_{\nabla,11}^{c}]_{\vec{z} + \vec{w}^{k}} du^{k,l+1} + [J_{\nabla,12}^{c}]_{\vec{z} + \vec{w}^{k}} dv^{k,l+1} + [J_{\nabla,13}^{c}]_{\vec{z} + \vec{w}^{k}}) \right\} \cdot \\ \sum_{\tilde{z}}^{N(\tilde{z})} \overline{\psi}_{\sigma_{c}} (|[f^{c}]_{\vec{z}} - [f^{c}]_{\tilde{z}}^{2}|^{2}) \cdot \overline{\psi}_{\sigma_{d}} (|\vec{z} - \tilde{z}|^{2}) \right) &= \frac{\partial D_{1c}}{\partial u_{z}}, \\ \frac{\alpha}{N_{S}^{+}} \sum_{c=1}^{3} \left(\left\{ \psi' (\theta_{0}^{c} d\vec{w}^{k,l} [J^{c}]_{\vec{z} + \vec{w}^{k}} d\vec{w}^{k,l}) \cdot 4 \cdot \theta_{0}^{c} \cdot ([J_{21}^{c}]_{\vec{z} + \vec{w}^{k}} du^{k,l+1} + [J_{22}^{c}]_{\vec{z} + \vec{w}^{k}} dv^{k,l+1} + [J_{23}^{c}]_{\vec{z} + \vec{w}^{k}}) + \\ \psi' (\theta_{xy}^{c} d\vec{w}^{k,l} [J_{\nabla}^{c}]_{\vec{z} + \vec{w}^{k}} d\vec{w}^{k,l}) \cdot 4 \cdot \theta_{xy}^{c} \cdot ([J_{\nabla,21}^{c}]_{\vec{z} + \vec{w}^{k}} du^{k,l+1} + [J_{\nabla,22}^{c}]_{\vec{z} + \vec{w}^{k}} dv^{k,l+1} + [J_{\nabla,23}^{c}]_{\vec{z} + \vec{w}^{k}}) \right\} \cdot \\ \sum_{\tilde{z}}^{N(\tilde{z})} \overline{\psi}_{\sigma_{c}} (|[f^{c}]_{\vec{z}} - [f^{c}]_{\tilde{z}}^{2}|^{2}) \cdot \overline{\psi}_{\sigma_{d}} (|\vec{z} - \tilde{z}|^{2}) \right) = \frac{\partial D_{1c}}{\partial v_{z}}. \\ (3.19)$$

3.6. Symmetrie und positiv Definitheit der Systemmatrizen


Damit das SOR-Verfahren für das Gleichungssystem $\frac{\partial S_1}{\partial u_{\vec{z}}} + \frac{\partial D_x}{\partial u_{\vec{z}}} = 0 \land \frac{\partial S_1}{\partial v_{\vec{z}}} + \frac{\partial D_x}{\partial v_{\vec{z}}} = 0$ konvergiert, wird eine symmetrische und positiv definite Matrix A gefordert. Wie bereits im Grundlagen Kapitel beschrieben lässt sich das Gleichungssystem auf die folgende Form $A\vec{x} = \vec{b}$ umschreiben. Wobei die Matrix A in eine Matrix A_D und A_S , für Daten und Glattheitsterm, aufgeteilt werden kann $(A_D + A_S)\vec{x} = \vec{b}_D + \vec{b}_S$. Die Vektoren \vec{b}_D und \vec{b}_S entstehen dabei aus Teilen der Gleichung des Datenterms und Glattheitsterms die nicht von $du^{k,l+1}$ und $dv^{k,l+1}$ abhängig sind. Der Lösungsvektor \vec{x} liefert den optischen Fluss für jeden Bildpunkt in u- und v-Richtung.

Im ersten Schritt soll aufgezeigt werden, dass durch $\frac{\partial S_1}{\partial u_z}$ und $\frac{\partial S_1}{\partial v_z}$ eine symmetrische und positiv semidefinite Matrix A_S entsteht. Dazu soll die Gleichung (3.10) des bilateralen Glattheitsterms schematisch in Matrixschreibweise umgeformt werden. Zur einfachen Darstellung und übersichtlichen Nummerierung der Matrixeinträge sollen die Vektoren \vec{z} und \vec{z} als Skalare Werte z und \tilde{z} betrachtet werden. Zuerst werden alle Faktoren von $du^{k,l+1}$ und $dv^{k,l+1}$ mit $b^{z,\tilde{z}} = -\frac{\alpha}{N_S} \psi_S' \left(\frac{|...|^2+|...|^2}{|z_\uparrow-\tilde{z}_\uparrow|^2}\right) \cdot \frac{4}{|z_\uparrow-\tilde{z}_\uparrow|^2} \cdot \overline{\psi}_{\sigma_c} (|[f]_z-[f]_{\tilde{z}}|^2) \cdot \overline{\psi}_{\sigma_d} (|z-\tilde{z}|^2)$ beschrieben, ebenso wie die Summe aller dieser Faktoren für eine Nachbarschaft $\mathcal{N}(z)$ mit $B^z = -\sum_{\tilde{z}}^{\mathcal{N}(z)} b^{z,\tilde{z}}$. Man beachte das die Werte $b^{z,\tilde{z}}$ und $b^{\tilde{z},z}$ durch das Quadrieren der Funktionsargumente identisch sind. Eine einzelne Zeile z (ohne das Diagonalelement) der Matrix A_S soll durch B_z beschrieben werden (türkise Markierung). Alle weiteren umliegenden Werte sollen die **Symmetrie** der Matrix A_S

zeigen ($b^{z,\bar{z}}=b^{\bar{z},z}$). Es sollte beachtet werden, dass in der Matrix bzw. Matrixzeile B_z zwischen den Elementen $b^{z,1}$ und $b^{z,z-1}$ je nach Größe von $\mathcal{N}(z)$ weitere Werte liegen (ebenso zwischen $b^{z,z+1}$ und $b^{z,\mathcal{N}(z)}$). Dies Zeileneinträge treten gruppenweise auf, zwischen diesen Werten sind weitere Gruppen mit Nulleinträgen. Insgesamt enthält eine Zeile B_z genau $|\mathcal{N}(z)|+1$ Einträge, die restlichen $N\times M-(|\mathcal{N}(z)|+1)$ Zeilenwerte sind 0.

Jede Zeilensumme der Matrix A_S , ohne die jeweiligen Diagonalelement, liefert die Summe B^z . Dadurch ergeben sich $N\times M$ Gerschgorin-Kreise mit den Radien B^z für $z=1,...,N\times M$. Die Mittelpunkte der Kreise werden durch die Diagonalelemente der Matrix A_S bestimmt und lauten ebenfalls B^z . Nach Gerschgorin bewegen sich dadurch alle Eigenwerte $z=1,...,N\times M$ in den Intervallen $\lambda_z\in[0,2\cdot B^z]$. Damit sind alle Eigenwerte $\lambda_z\geq 0$, sodass die Matrix A_S positiv semidefinit ist.

Nun soll ebenfalls für einen bilateralen Datenterm gezeigt werden, dass dieser symmetrisch und positiv semidefinit ist. Dazu soll die Gleichung (3.16) des Datenterms D_{1b} schematisch in der Matrix Notation dargestellt werden. Für D_{1c} lässt sich analog zeigen, dass dieser eine symmetrische und positiv semidefinite Matrix bildet.

Erneut sollen dazu alle Faktoren, die von $du^{k,l+1}$ und $dv^{k,l+1}$ abhängen, mit $p_f^{z,\tilde{z}} = \gamma_f \psi_D'(...[J]_z + ...[J]_{\tilde{z}}) \cdot 4 \cdot \theta_0^c \cdot \overline{\psi}_{\sigma_c} \left(|[f^c]_z - [f^c]_{\tilde{z}}|^2\right) \cdot \overline{\psi}_{\sigma_d} \left(|z - \tilde{z}|^2\right)$ für die Farbwertkonstanz und $p_g^{z,\tilde{z}} = \gamma_g \psi_D'(...[J_{\nabla}]_z + ...[J_{\nabla}]_{\tilde{z}}) \cdot 4 \cdot \theta_{xy}^c \cdot \overline{\psi}_{\sigma_c} \left(|[f^c]_z - [f^c]_{\tilde{z}}|^2\right) \cdot \overline{\psi}_{\sigma_d} \left(|z - \tilde{z}|^2\right)$ für die Gradientenkonstanz beschrieben werden. Die Summen aus der Nachbarschaft $\mathcal{N}(z)$ sollen jeweils mit $P_f^z = \sum_{\tilde{z}}^{\mathcal{N}(z)} p_f^{z,\tilde{z}}$ und $P_g^z = \sum_{\tilde{z}}^{\mathcal{N}(z)} p_g^{z,\tilde{z}}$ und die Gesamtsumme mit den Bewegungstensor über $(J_*P)_z = J_{*,z}P^z = J_{*,z}P_f^z + J_{\nabla,*,z}P_g^z$ dargestellt werden. Die Symmetrie der Matrix A_D lässt sich deutlich erkennen, da bei allen vier Blöcken der Matrix A_D bis auf die Diagonalelemente alle Werte 0 und die Blöcke links unten und rechts oben identisch sind.

Eine Matrix ist positiv semidefinit, falls $x^TAx \ge 0$. Dies lässt sich für die Matrix A_D zeigen (siehe Umformung Gleichung (3.23)), wobei das Vorzeichen der Faktoren P^z_* von der Wahl der Gewichtungsfunktionen ψ_D' und $\overline{\psi}$ abhängt und für die in dieser Arbeit verwendeten Funktionen (für den Definitionsbereich $[0,\infty]$) positive Werte (≥ 0) liefert.

$$x^{T}A_{D}x \stackrel{!}{\geq} 0 \Leftrightarrow$$

$$\sum_{z=1}^{n} \vec{x}_{z}[(J_{11}P)_{z}\vec{x}_{z} + (J_{12}P)_{z}\vec{x}_{z+n}] + \vec{x}_{z+n}[(J_{12}P)_{z}\vec{x}_{z} + (J_{22}P)_{z}\vec{x}_{z+n}] \stackrel{!}{\geq} 0 \Leftrightarrow$$

$$\sum_{z=1}^{n} \vec{x}_{z}^{2}(J_{11}P)_{z} + 2\vec{x}_{z}\vec{x}_{z+n}(J_{12}P)_{z} + \vec{x}_{z+n}^{2}(J_{22}P)_{z} \geq 0 \Leftrightarrow$$

$$\sum_{z=1}^{n} \left[\vec{x}_{z}^{2}J_{11,z}P_{f}^{z} + 2\vec{x}_{z}\vec{x}_{z+n}J_{12,z}P_{f}^{z} + \vec{x}_{z+n}^{2}J_{22,z}P_{f}^{z} \right] +$$

$$\left[\vec{x}_{z}^{2}J_{\nabla,11,z}P_{g}^{z} + 2\vec{x}_{z}\vec{x}_{z+n}J_{\nabla,12,z}P_{g}^{z} + \vec{x}_{z+n}^{2}J_{\nabla,22,z}P_{g}^{z} \right] \geq 0 \Leftrightarrow$$

$$\sum_{z=1}^{n} \left[\vec{x}_{z}^{2}(f_{x})_{z}(f_{x})_{z}P_{f}^{z} + 2\vec{x}_{z}\vec{x}_{z+n}(f_{x})_{z}(f_{y})_{z}P_{f}^{z} + \vec{x}_{z+n}^{2}(f_{y})_{z}(f_{y})_{z}P_{f}^{z} \right] +$$

$$\left[\vec{x}_{z}^{2}(f_{xx})_{z}(f_{xx})_{z}P_{g}^{z} + 2\vec{x}_{z}\vec{x}_{z+n}(f_{xx})_{z}(f_{xy})_{z}P_{g}^{z} + \vec{x}_{z+n}^{2}(f_{xy})_{z}(f_{xy})_{z}P_{g}^{z} \right] +$$

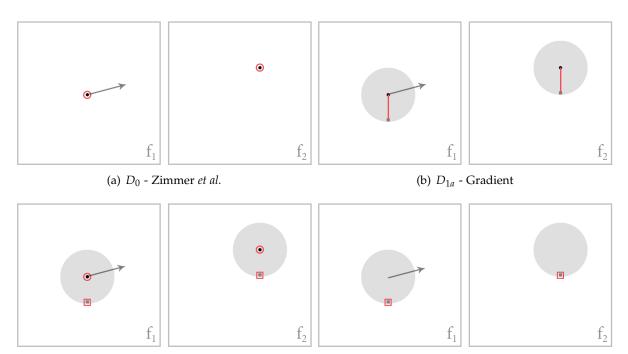
$$\left[\vec{x}_{z}^{2}(f_{yx})_{z}(f_{yx})_{z}P_{g}^{z} + 2\vec{x}_{z}\vec{x}_{z+n}(f_{yx})_{z}(f_{yy})_{z}P_{g}^{z} + \vec{x}_{z+n}^{2}(f_{yy})_{z}(f_{yy})_{z}P_{g}^{z} \right] \geq 0 \Leftrightarrow$$

$$\sum_{z=1}^{n} P_{f}^{z} \underbrace{\left[\vec{x}_{z}(f_{xx})_{z} + \vec{x}_{z+n}(f_{yy})_{z} \right]^{2}}_{\geq 0} + P_{g}^{z} \underbrace{\left[\vec{x}_{z}(f_{xx})_{z} + \vec{x}_{z+n}(f_{xy})_{z} \right]^{2}}_{\geq 0} + P_{g}^{z} \underbrace{\left[\vec{x}_{z}(f_{xx})_{z} + \vec{x}_{z+n}(f_{yy})_{z} \right]^{2}}_{\geq 0} + P_{g}^{z} \underbrace{\left[\vec{x}_{z}(f_{xx})_{z} + \vec{x}_{z+n}(f_{xy})_{z} \right]^{2}}_{\geq 0} + P_{g}^{z} \underbrace{\left[\vec{x}_{z}(f_{xx})_{z} + \vec{x}_{z+n}(f_{xy})_{z} \right]^{2}}_{\geq 0} + P_{g}^{z} \underbrace{\left[\vec{x}_{z}(f_{xx})_{z} + \vec{x}_{z}(f_{xx})_{z} + \vec{x}_{z}(f_{xy})_{z} + \vec{x}_{z}(f_{xy})$$

Nach der Addition von zwei symmetrischen Matrizen bleiben diese weiterhin symmetrisch. Gleiches gilt für die Addition von zwei positiv semidefiniten Matrizen $\vec{x}^T(A_D + A_S)\vec{x} = \underbrace{\vec{x}^T A_D \vec{x}}_{\geq 0} + \underbrace{\vec{x}^T A_S \vec{x}}_{\geq 0} \geq 0.$

Im Allgemeinen kann gezeigt werden, dass für Eingangsbilder mit minimaler Struktur die Nullvektoren von A_D und A_S von einander verschieden sind, also $Kern(A_D) \cap Kern(A_S) = \emptyset$, sodass durch die Addition der beiden Matrizen eine **symmetrische** und **positiv definite** Matrix entsteht.

Für den Datenterm D_{1a} konnte hingegen nicht gezeigt werden das eine positiv semidefinite Matrix erzeugt wird. Anders als bei D_{1b} und D_{1c} liefert D_{1a} eine Matrix mit deutlich mehr Einträgen, ähnlich zum bilateralen Glattheitsterm. Daneben lässt sich aus der Gleichung (3.13) erkennen, dass es sich mit D_{1a} um eine nicht-symmetrische Matrix handelt. Beim Lösen des linearen Gleichungssystems mit dem Datenterm D_{1a} kann deshalb nicht sichergestellt werden, dass das SOR-Verfahren konvergiert. Experimentell traten jedoch bis auf eine Ausnahme (Sequenz $Urban_3$) keine Probleme bei der Konvergenz auf.


3.7. Variationsansätze im Überblick

Insgesamt wurde in dem vorherigen Abschnitt drei neue Datenterme und ein Glattheitsterm mit jeweils einem bilateralen Ansatz vorgestellt. Neben dem Verfahren von Zimmer et~al. sollen daraus nun vier neue Variationsansätze V_1 , V_{2a} , V_{2b} , V_{2c} entstehen; siehe Tabelle 3.1. Der Variationsansatz V_1 besteht aus dem Datenterm des Verfahrens von Zimmer et~al. und wurde mit dem vorgestellten bilateralen Glattheitsterm erweitert. Ziel dieser Kombination ist es die Flusskanten durch den Einsatz des Bilateralfilters zu verbessern. Bei den Ansätzen V_{2a} , V_{2b} und V_{2c} bleibt der neue Glattheitsterm weiter bestehen. Mit V_{2a} soll ein bilateraler Datenterm getestet werden, der die Differenzen in der Nachbarschaft bestimmt und nach passenden Gradienten im nächsten Zeitschritt sucht. Bei V_{2b} und V_{2c} wurde der Datenterm des Zimmer et~al. Verfahrens mit einem Bilateralfilter erweitert. Während V_{2b} den zentralen- und Nachbarpixel vom Zeitschritt t und t+1 vergleicht und geimsam über eine nicht quadratische Funktion ψ gewichtet, wird in V_{2c} auf den zentralen Pixel verzichtet und lediglich die Nachbarpixel betrachtet. Die Abbildung 3.1 soll die Unterschiede zwischen V_{2a} , V_{2b} und V_{2c} verdeutlichen.

Interpretation von bilateralen Daten- und Glattheitstermen

Der bilaterale Glattheitsterms gestattet Flussänderungen über Kanten bzw. größere Farbunterschiede hinweg, was durch die Farbgewichtung ($\overline{\psi}_{\sigma_c}$) erfolgt. Der Einfluss nimmt zudem mit der Distanz der betrachteten benachbarten Bildpunkte ($\overline{\psi}_{\sigma_d}$) ab. Unterscheiden sich die Vektoren des Flussfeldes ähnlicher Bildbereiche (Farbwerte), so führt dies zu einem steigenden Fehlerwert im Energiefunktional. Damit sollen für den jeweiligen Verschiebungsvektor zur Glättung ausschließlich Vektoren aus der Umgebung verwendet werden die dem selben Objekt angehören.

Die Interpreation eines bilateralen Datenterms gestaltet sich schwieriger. In Bildbereichen mit vielen Bildkanten / Struktur wird der Einfluss des Datenterms auf das Energiefunktional durch die Farbgewichtung $\overline{\psi}_{\sigma_c}$ herunter gewichtet. Damit verhält es sich genau umgekehrt zu der ursprünglichen Annahme, dass bei Bereichen mit viel Struktur der Datenterm einen größeren Einfluss erhalten sollte. Gerade Strukturen mit vielen kleinen Kanten und Eckpunkten ermöglichen die Bestimmung des optischen Flusses, siehe Aperturproblem 2.1.1. An Objektkanten ist die Bestimmung der Verschiebungsvektoren für den Datenterm schwieriger, vor allem dann wenn sich eines der Objekte bewegt. Die Strukturen an den Objektkanten verändern sich von einem Frame zum anderen. Wie bereits erwähnt ist die Wahl der Funktion $\overline{\psi}_{\sigma_c}$ und der Einstellungsparameter σ_c ausschlaggebend. Diese sollten so gewählt werden das bei kleinen Strukturen der Datenterm weiterhin einen großen Einflusss erhält und bei Objektkanten abgeschwächt wird.

(c) D_{1b} - Farbkonstanz / Gradient Zentral und Nachbar- (d) D_{1c} - Farbkonstanz / Gradient Nachbarschaft

Abbildung 3.1.: Schematische Darstellung der vier Datenterme D_0 , D_{1a} , D_{1b} , D_{1c} - Jeweils links Frame 1 (f_1) und rechts Frame 2 (f_2), der Pfeil beschreibt eine Verschiebung von Bildinformationen von f_1 nach f_2 , der kleine schwarze Kreis den zentralen Pixel \vec{z} , der große graue Kreis die Nachbarschaft $\mathcal{N}(\vec{z})$ und das kleine graue Rechteck einen der Nachbarschaftspixel \tilde{z} . Die roten Markierungen beschreiben welche Wertepaare mit einander verglichen werden.

Name	D_x	G_x	Bezeichnung
V_0	D_0	S_0	Daten- und Glattheitsterm von Zimmer et al.
V_1	D_0	S_1	Bilateraler Glattheitsterm
V_{2a}	D_{1a}	S_1	Bilateraler Datenterm "Gradient" und bilateraler Glattheitsterm
V_{2b}	D_{1b}	S_1	Bilateraler Datenterm "Zimmer (zentral)" und bilateraler Glattheitsterm
V_{2c}	D_{1c}	S_1	Bilateraler Datenterm "Zimmer" und bilateraler Glattheitsterm

Tabelle 3.1.: Übersicht aller vorgestellten Variationsansätze

4. Implementierungsdetails

In diesem Kapitel sollen Details zum verwendeten Framework und Frontend beschrieben werden, ebenso wie die Implementierung einiger Einstellungsparameter.

4.1. Framework

Zur Implementierung der vorgestellten Variationsansätze wurde ein Framework der Abteilung Intelligente Systeme des Institutes für Visualisierung und Interaktive Systeme an der Universität Stuttgart verwendet. Darin enthalten waren Standardroutinen für das Einlesen und Speichern von Bildinformationen und Flussfeldern. Verschiedene Filter zur Vorverarbeitung der Bilder, ebenso wie Funktionen zur Skalierung und Interpolation von Bild und Flussinformationen. Die Berechnung der Ableitungen f_x , f_y , f_t , f_{xy} , usw., ebenso wie das Warping Verfahren waren bereits implementiert und konnten genutzt werden. Daneben standen verschiedene Gewichtungsfunktionen und Datentypen z.B. zur Nutzung der Bewegungstensornotation zur Verfügung.

Neben dem Framework stand ein ein Frontend zur Visualisierung des optischen Flusses, selektion der Bildframes, Eingabe der Einstellungsparameter sowie zur automatischen Berechnung der Fehlerwerte (bei Vorlage einer *Ground Truth*) zur Verfügung, siehe Abbildung 4.1.

Aus dem Verfahren von Stoll *et al.* [MS12] konnte das Verfahren von Zimmer *et al.* durch verschiedene Anpassungen gewonnen werden. Die bilateralen Variationsansätze V_1 bis V_4 wurden anschließend implementiert.

4.2. Einstellungsparameter

Durch die Anwendung der Multiskalenstrategie (Warping) wird der optische Fluss schrittweise bei unterschiedlichen Auflösungsstufen berechnet. Der Einstellungsparameter η_w skaliert das Bild in x- und y-Richtung um den Faktor η_w bis die kleinste Seitenlänge weniger als 4 Pixel beträgt. Für $\eta_w = 0.9$ und einem Bild von 640×640 Pixeln $(640 \cdot 0.9^{\lceil Level \rceil} = 4 - |\varepsilon|)$ müssen insgesamt 49 Warping-Level von 0 bis 48 durchlaufen werden. Mit dem Einstellungsparameter

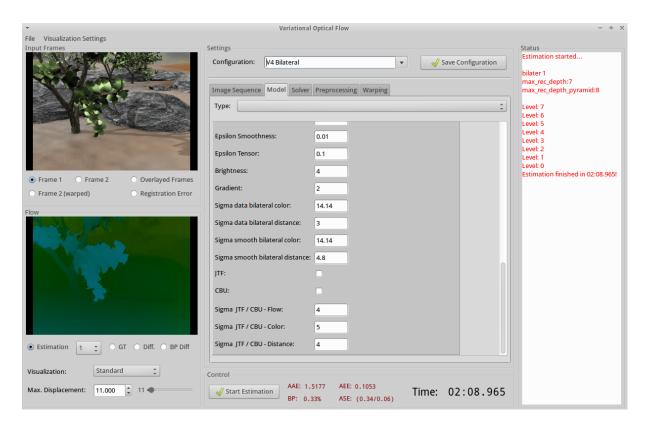


Abbildung 4.1.: Frontend zur Visualisierung und Parametereingabe.

 l_{max} soll das maximale Warping-Level bestimmt werden. Wird der Wert auf $l_{max} = 25$ gesetzt, so beginnt die Berechnung des optischen Flusses bei einem Bild der Größe von 640×480 Pixeln bereits bei einer Auflösung von 64×35 Pixeln.

In den vergangenen Kapiteln wurde bereits erwähnt das der Einstellungsparameter α einen großen Einfluss auf das berechnete Flussfeld hat. Da für jedes Warping-Level ein Flussfeld berechnet wird, könnte eine Anpassung des α -Wertes für jedes Warping-Level k das Ergebnis verbessern. Mit α^k für das Warping-Level k und der Funktion $\alpha^k = \alpha/(\eta_w^{\sqrt{0.5} \cdot Level})$ soll die Skalierung der Werte getestet werden. Durch den Einstellungsparameter $s_\alpha = true$ oder $\bar{s}_\alpha = false$ soll die Skalierung aktiviert oder deaktivert werden.

4.3. Bilateralfilter

Für die bilateralen Gewichtungsfunktionen muss aus Effizienzgründen die Nachbarschaftsgröße, passend zum σ_d -Wert, eingeschränkt werden. Für die Funktion $\overline{\psi}_d(s) = e^{s^2/\sigma_d^2}$ soll die Nachbarschaft berücksichtigt werden, bei der eine Gewichtung von mindestens 0.5 erreicht

wird, was sich mit $n_{size} = \sigma_d \cdot \sqrt{ln(1/p)}$ und p=0.5 berechnen lässt. Für die Größe der Nachbarschaft der bilateralen Terme für den Daten- und Glattheitsterm, sowie für die Verfahren CBU und JTF wird der Wert p=0.5 verwendet, zur bilateralen Vorfilterung von Eingangsbildern p=0.2.

Neben der Skalierung der α -Werte für jedes Warping-Level k soll auch der Einstellungsparameter σ_c mit $s_{\sigma_c} = true$ angepasst werden. Die Funktion $\sigma_c^k = \sigma_c + level \cdot 0.5$ soll den Einfluss von $\overline{\psi}_{\sigma_c}$, also den Beitrag der Bildinformationen zur Kantenerhaltung, bei groben Auflösungsstufen verringern.

5. Evaluation

Wie gut die im Hauptteil vorgestellten Verfahren $V_x = \{V_0, V_1, V_{2a}, V_{2b}, V_{2c}\}$ (siehe Tabelle 3.1) abschneiden, soll in diesem Kapitel untersucht und bewertet werden. Dabei lassen sich alle Verfahren V_x über einen Parametersatz $P_x = \{\alpha, \gamma_b, \gamma_g, \psi_D, \psi_S, \varepsilon_D, \varepsilon_S, \sigma_g, \sigma_n, \eta_w, ...\}$ konfigurieren und optimieren. Abhängig von den gewählten Parametern verändert sich das berechnete Flussfeld und beeinflusst damit auch die Fehlerwerte des AAE und des AEE. Zu beachten ist, dass beide Fehlerwerte korrelieren und zur Interpretation der Verfahren im Allgemeinen ein Fehlermaß ausreichend ist. Für jedes Verfahren wird ein optimaler Parametersatz P_x gesucht, der ein möglichst gutes Flussfeld für alle Sequenzen berechnet. Für die einzelnen Testreihen werden die Einstellungsparameter aus Tabelle A.27 mit conf(x) angegeben, wobei x die Zeile der Konfigurationstabelle beschreibt. Ergänzend hierzu werden zusätzliche Einstellungen gesondert bei den Tabellen der jeweiligen Testreihen angegeben. Eine Übersicht über alle Einstellungsparameter der jeweiligen Variationsansätze finden sich in Tabelle 5.1, 5.3, 5.7 und 5.9.

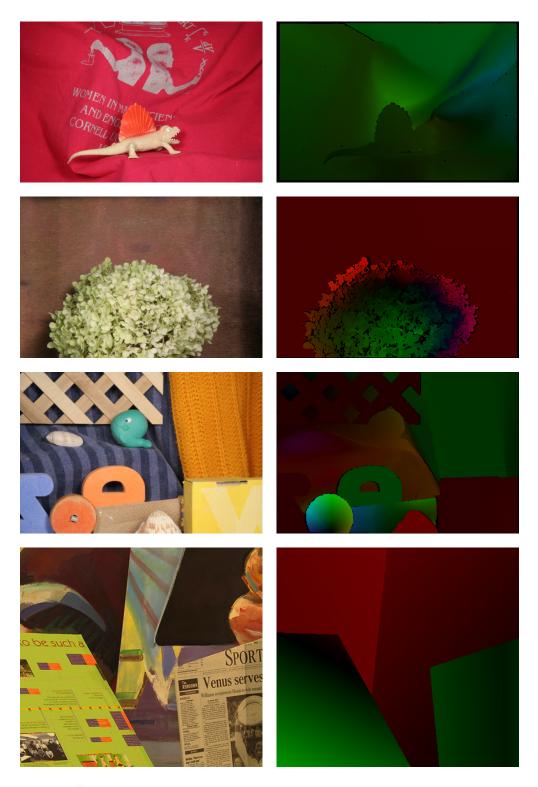
Von der Middlebury Datenbank [BSL⁺11] werden alle Sequenzen, bei denen ein exaktes Flussfeld (*engl. Ground Truth*) zur Verfügung steht, evaluiert. Dazu zählen die folgenden acht Sequenzen: *Rubberwhale, Hydrangea, Grove2, Grove3, Urban2, Urban3, Dimetrodon* und *Venus*, siehe Abbildung 5.1 und 5.2. Jede dieser Testsequenzen enthält unterschiedliche Bewegungen, Umgebungen, Texturen, Farben usw. wodurch die Qualität der Verfahren je nach Testsequenz variiert. Mit Hilfe der verschiedenen Sequenzen wird veranschaulicht, für welche Situationen die Verfahren geeignet sind bzw. welche Vor- und Nachteile auftreten können.

Bei jedem Evaluierungsschritt sollen maximal ein oder zwei Parameter angepasst werden: Zum einen auf Grund des exponentiellen Anstiegs der benötigten Rechenleistung bei Optimierung einer steigenden Anzahl von Parametern, zum anderen auf Grund von Visualisierungsbeschränkungen für höhere Dimensionen. Die Ergebnisse werden aufbereitet und graphisch dargestellt. Zudem wird eine Übersichtstabelle mit den für das jeweilige Verfahren besten Resultaten präsentiert. Für einen konstanten α -Wert soll der für alle Bildsequenzen minimale Fehlerwert verwendet werden (α_{\varnothing}). Die ausführlichen Wertetabellen sowie Parameter befinden sich im Anhang. Welche Parameter bei den einzelnen Testreihen variiert worden sind, lässt sich über die Beschriftungen in den jeweiligen Tabellen und Grafiken ablesen. Die restlichen Einstellungsparameter werden für jede Testreihe nummeriert im Anhang in Tabelle A.27 aufgelistet und

die jeweilige Referenznummer bei den Grafiken und Wertetabellen angegeben. Die wichtigsten Parametereinstellungen werden hochgestellt bei den einzelnen Verfahren angegeben, wie z.B. $V_x^{s_\alpha}$ (V_x mit dem Einstellungswert $s_\alpha = true$).

Nacheinander werden die Verfahren V_0 , V_1 , V_{2a} , V_{2b} , V_{2c} evaluiert. Dem Gewichtungsparameter α wird dabei der größte Stellenwert zugesprochen. Dieser regelt das Verhältnis zwischen dem Daten- und Glattheitsterm und beeinflusst das Flussfeld stark. Vereinzelt werden weitere Testreihen mit anderen Parametern durchgeführt. Alle anderen Einstellungswerte wurden empirisch gewonnen.

Beginnend mit dem Basisverfahren V_0 werden zwei Testreihen durchgeführt: Bei der ersten Berechnung soll α für alle Warping-Level konstant bleiben ($\bar{s}_{\alpha} = false$), bei der zweiten über eine exponential verlaufende Kurve für jedes Warping-Level angepasst werden ($s_{\alpha} = true$).


Für den Variationsansatz mit bilateralem Glattheitsterm V_1 werden Berechnungen für $\bar{s}_{\alpha}=false$ und $s_{\alpha}=true$ durchgeführt. Auch die Skalierung der σ_c Werte ($s_{\sigma_c}=true$) soll zusammen mit der Beschränkung des maximalen Warping-Levels (l_{max}) getestet werden. Zudem werden die optimalen Einstellungsparameter ε_c und ε_d für die bilateralen Gewichtungsfunktionen mit der Variation der α -Werte gesucht. Weiterhin soll geprüft werden ob und wie stark eine Normierung ($n_s=true$) des bilateralen Terms das Flussfeld beeinflusst und welche Funktionen für ψ_S , $\overline{\psi}_{\sigma_c}$ und $\overline{\psi}_{\sigma_d}$ gute Ergebnisse liefern. Auf Grund der umfangreichen Berechnungen werden in diesem Abschnitt zum Teil nur wenige Testsequenzen verwendet.

Die restlichen Verfahren V_{2a} , V_{2b} und V_{2c} werden mit jeweils einer Testsequenz für $s_{\alpha} = true$ und $n_s = true$ getestet und miteinander verglichen, ebenso wie mit den Einstellungsparametern $s_{\sigma_c} = true$ und l_{max} .

In einer weiteren Testreihe sollen alle fünf Variationsansätze mit dem trilateralen Flussfilter (engl. Joint Trilateral Flow Filtering JTF) und dem bilateralen Upsampling Verfahren (engl. Cross Bilateral Upsampling CBU) kombiniert werden.

In der letzten Testreihe wird die Leistungsfähigkeit der Verfahren unter Einfluss von Rauschen geprüft. Dabei sollen erneut die α -Werte variiert werden. Zur Reduktion von Rauschen wird der Gauß- und Bilateralefilter als Vorfilter verwendet und miteinander verglichen.

Gelöst werden die die linearisierten Gleichungen aller Variationsansätze mit Hilfe des SOR Verfahrens. Für alle Berechnungen werden, soweit nicht anders angegeben die folgenden Einstellungen verwendet: $\omega = 1.95$ (Relaxationsparameter), $i_{out} = 5$ (Anzahl äußerer Iterationen, Aktualisierung der ψ' Terme) und $i_{in} = 3$ (Anzahl innerer Iterationen).

Abbildung 5.1.: Übersicht der Middelberry Testsequenzen und Flussfelder I, links Frame 10, rechts Flussfeld zwischen Frame 10 und 11. Von oben nach unten: *Dimetrodon, Hydrangea, Rubberwhale, Venus.* Quelle: http://vision.middlebury.edu/flow/.

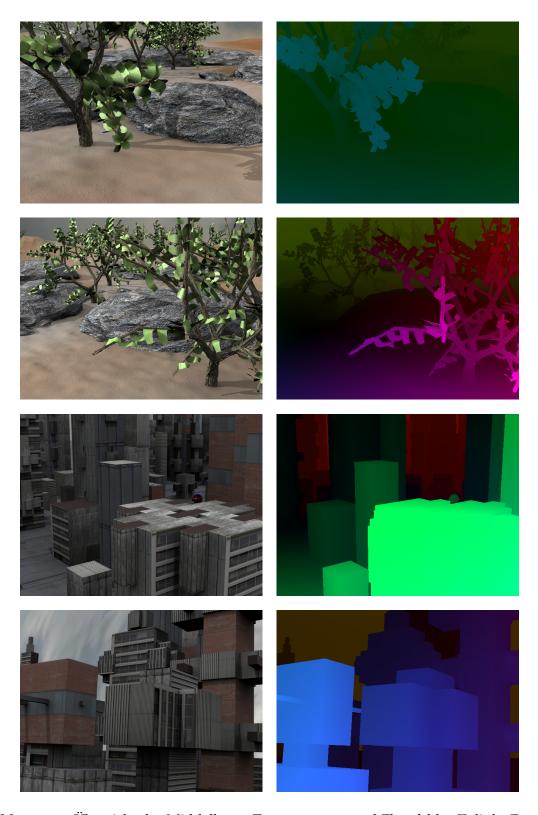
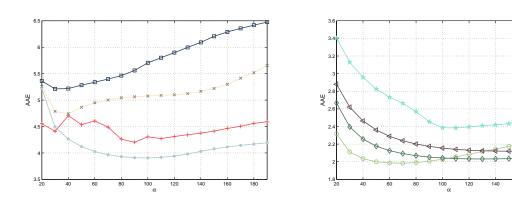
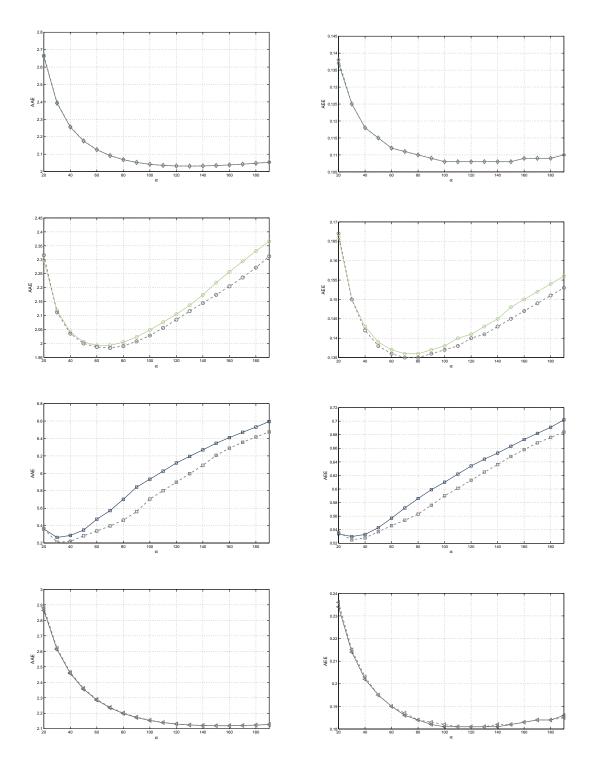


Abbildung 5.2.: Übersicht der Middelberry Testsequenzen und Flussfelder II, links Frame 10, rechts Flussfeld zwischen Frame 10 und 11. Von oben nach unten: *Grove2*, *Grove3*, *Urban2*, *Urban3*. Quelle: http://vision.middlebury.edu/flow/.

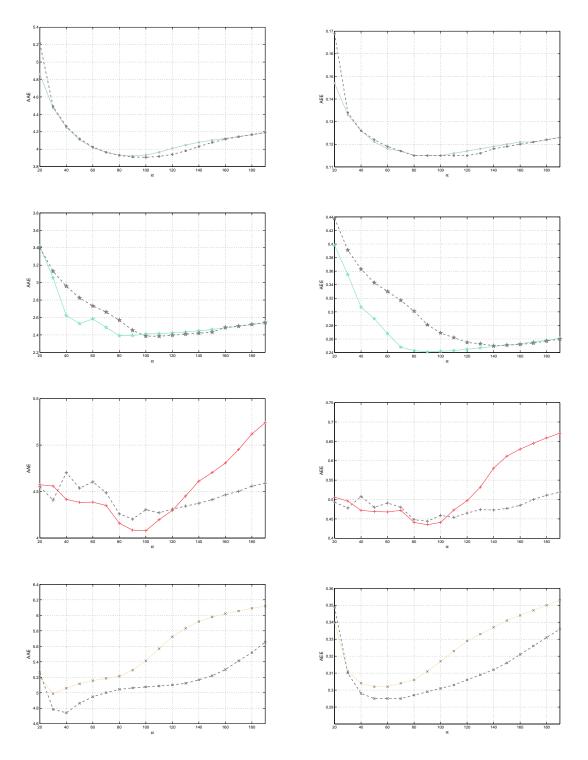
5.1. Evaluation V_0

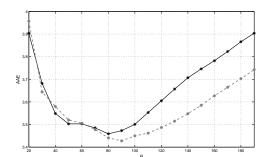

In einem ersten Experiment wurde das Basisverfahren V_0 (Zimmer $et\ al.$) mit (s_α) und ohne (\bar{s}_α) Skalierung der α -Werte für jedes Warping-Level getestet. Alle acht Testsequenzen wurden für α -Werte zwischen 20 und 190 berechnet. Auffällig ist eine Abgrenzung der Fehlerwerte nach je vier Testsequenzen, siehe Abbildung 5.4: $Grove_3$, Rubberwhale, $Urban_3$ und Venus liefern für nahezu alle α -Werte einen Fehlerwert oberhalb von 4 AAE, bei den restlichen Sequenzen sind die Fehlerwerte deutlich unter einem Fehlerwert von 4 AAE. Somit lässt sich erkennen, dass abhängig von der Umgebung und Bewegungen im Bild, Verfahren den optischen Fluss unterschiedlich gut berechnen. Desweiteren fallen die Fehlerwerte der Sequenzen Dimetrodon, Hydrangea, $Urban_2$ mit steigendem α -Wert. Bei den Sequenzen $Grove_3$ und Venus wächst der Fehlerwert hingegen gemeinsam mit dem α -Wert an. Somit liegen die minimalen Fehlerwerte für einige Sequenzen an einem Ende der Skala, für andere auf der anderen, wodurch sich der durchschnittlich beste Fehlerwert für alle Sequenzen (α_\varnothing) in der Mitte einpendelt. Würde der α -Wert automatisch für jede Bildsequenz angepasst werden, könnte der durchschnittliche Fehlerwert weiter gesenkt werden.

In einer weiteren Testreihe wurde die Skalierung der α -Werte geprüft. Im Vergleich der Ergebnisse von $V_0^{s_\alpha}$ und $V_0^{\bar{s}_\alpha}$, siehe Abbildung 5.4 und 5.5, bei dem die Skalierung der α -Werte aktiviert oder deaktiviert ist, lässt sich keine eindeutige Aussage treffen: Für die Sequenzen *Grove2*, *Grove3* und *Venus* liefert $V_0^{\bar{s}_\alpha}$ für nahezu alle α -Werte die besseren Ergebnisse. Bei *Urban2* und *Urban3* hat das Verfahren $V_0^{s_\alpha}$ für α zwischen 20 und 120 geringere Fehlerwerte. Alle anderen Sequenzen unterscheiden sich kaum. Betrachtet man die durchschnittlichen Fehlerwerte für alle Bildsequenzen, so ist der minimale Fehlerwert AAE für $V_0^{\bar{s}_\alpha}$ etwas besser, in AEE hingegen $V_0^{s_\alpha}$, siehe Tabelle 5.2 und Abbildung 5.6. Berücksichtigt man den gesamten Verlauf der durchschnittlichen Fehlerwerte, Abbildung 5.6, so könnte man $V_0^{\bar{s}_\alpha}$ auf Grund der insgesamt kleineren Fehlerwerte als besser einstufen.


Im ursprünglich Verfahren von Zimmer et. al. wurde als Gewichtungsfunktion des Glattheitsterms $\psi_s = \psi_{pm}$ (Perona-Malik) verwendet. Weitere Gewichtungsfunktion $\psi_s = \psi_{ch}$ (Charbonier), ψ_{tv} (TotalVariation) wurden ebenfalls getestet, lieferten jedoch höhere Fehlerwerte. Da der Fokus der Arbeit auf den bilateralen Variationsansätzen liegt wird auf eine Auflistung oder Visualisierung der Fehlerwerte verzichtet.

Parameter	Beschreibung	
α	Gewichtungsparameter zwischen Glattheitsterm und Datenterm	
s_{lpha}	Falls <i>true</i> wird α in jedem Warping-Level skaliert	
γ_f	Gewichtungsparameter Farbwertkonstanz	
γ_g	Gewichtungsparameter Gradientenkonstanz	
ψ_D	Funktion zur Gewichtung von Abweichungen im Datenterm	
ψ_S	Funktion zur Gewichtung von Abweichungen im Glattheitsterm	
$arepsilon_D$	Parameter von ψ_D	
ε_S	Parameter von ψ_S	
η_w	Schrittweite zur skalierung der Warping-Schritte	
l_{max}	Maximal erlaubtes Warping-Level	
σ_g	Bildglättung mit dem Gaußfilter, Standardabweichung	
σ_n	Gauß-Verteiltes Rauschen, Standardabweichung	
ω	Relaxationsparameter des SOR Verfahrens	
i_{out}	SOR Solver äußere Iterationen	
i_{in}	SOR Solver innere Iterationen	


Tabelle 5.1.: Übersicht aller Einstellungsparameter für V_0 .


Abbildung 5.3.: Ergebnisse von $V_0^{\overline{s}_\alpha}$ mit $\overline{s}_\alpha = false$ unter Variation von α . Gruppierung der Testsequenzen nach AAE > 4 und AAE < 4. Testsequenzen: $Dimetrodon \diamondsuit$, $Grove_2 \circ$, $Grove_3 \Box$, $Hydrangea \triangleleft$, $Rubberwhale \bullet$, $Urban_2 \overleftrightarrow{\bowtie}$, $Urban_3 +$, $Venus \times$. Ausführliche Wertetabelle siehe Anhang A.1. Einstellungsparameter conf(1) siehe Anhang Tabelle A.27.

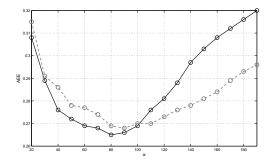


Abbildung 5.4.: Vergleich Ergebnisse von $V_0^{s_\alpha}$ (farbig) mit $s_\alpha = true$ und $V_0^{\bar{s}_\alpha}$ (grau) mit $\bar{s}_\alpha = false$ unter Variation von α . Testsequenzen von oben nach unten: $Dimetrodon \, \diamondsuit$, $Grove_2 \, \diamondsuit$, $Grove_3 \, \Box$, $Hydrangea \, \sphericalangle$. Fehlerwerte in AAE (links) und AEE (rechts). Ausführliche Wertetabelle siehe Anhang A.1 und A.2. Einstellungsparameter conf(2) und conf(1) siehe Anhang Tabelle A.27.

Abbildung 5.5.: Vergleich Ergebnisse von $V_0^{s_\alpha}$ (farbig) mit $s_\alpha = true$ und $V_0^{\bar{s}_\alpha}$ (grau) mit $\bar{s}_\alpha = false$ unter Variation von α . Testsequenzen von oben nach unten: $Rubberwhale \bullet$, $Urban2 \Leftrightarrow$, Urban3 +, $Venus \times$. Fehlerwerte in AAE (links) und AEE (rechts). Ausführliche Wertetabelle siehe Anhang A.1 und A.2. Einstellungsparameter conf(2) und conf(1) siehe Anhang Tabelle A.27.

Abbildung 5.6.: Vergleich der durchschnittlichen Ergebnisse von $V_0^{s_\alpha}$ (schwarz) und $V_0^{\bar{s}_\alpha}$ (grau) für alle Sequenzen unter Variation von α . AAE Fehlerwerte (links) und AEE Fehlerwerte (rechts). Ausführliche Wertetabelle siehe Anhang A.1 und A.2.

Verfahren	α_{\varnothing}	Error	Dime	Gro2	Gro3	Hydr	Rubb	Urb2	Urb3	Venu	Ø
$V_0^{ar{s}_lpha}$	90	AAE	2.053	2.007	5.561	2.175	3.910	2.453	4.203	5.063	3.428
$V_0^{s_lpha}$	80	AAE	2.068	2.004	5.703	2.198	3.932	2.392	4.160	5.214	3.459
$V_0^{ar{s}_lpha}$	90	AEE	0.109	0.136	0.576	0.183	0.115	0.281	0.444	0.299	0.268
$V_0^{s_lpha}$	80	AEE	0.110	0.136	0.586	0.184	0.115	0.243	0.441	0.306	0.265

Tabelle 5.2.: Übersicht der Ergebnisse für $V_0^{\overline{s}_\alpha}$ und $V_0^{s_\alpha}$. Für jedes Verfahren wird ein konstanter α -Wert verwendet, der durchschnittlich für alle Bildsequenzen den minimalen Fehlerwert liefert.

Parameter	Beschreibung
α	Gewichtungsparameter zwischen Glattheitsterm und Datenterm
s_{lpha}	Falls <i>true</i> wird α in jedem Warping-Level skaliert
s_{σ_c}	Falls true Anpassung der σ_c Werte für jedes Warping-Level
n_s	Falls true wird der Glattheitsterm normiert
γ_f	Gewichtungsparameter Grauwertekonstanz
γ_g	Gewichtungsparameter Gradientenkonstanz
ψ_D	Funktion zur Gewichtung von Abweichungen im Datenterm
ψ_S	Funktion zur Gewichtung von Abweichungen im Glattheitsterm
$arepsilon_D$	Parameter von ψ_D
ε_S	Parameter von ψ_S
$\overline{\psi}_c$	Gewichtungsfunktion der Farbdistanz für den bilateralen Filter
$\overline{\psi}_d$	Gewichtungsfunktion der Distanz für den bilateralen Filter
σ_{c}	Parameter von $\overline{\psi}_c$, Standardabweichung
σ_d	Parameter von $\overline{\psi}_d$, Standardabweichung
η_w	Schrittweite zur skalierung der Warping-Schritte
l_{max}	Maximal erlaubtes Warping-Level
σ_{g}	Bildglättung mit dem Gaußfilter, Standardabweichung
σ_n	Gauß-Verteiltes Rauschen, Standardabweichung
ω	Relaxationsparameter des SOR Verfahrens
i_{out}	SOR Solver äußere Iterationen
i_{in}	SOR Solver innere Iterationen

Tabelle 5.3.: Übersicht aller Einstellungsparameter für V_1 .

5.2. Evaluation V_1

Mit dem Variationsansatz V_1 wird weiterhin der Datenterm aus dem Zimmer et~al. Verfahren (D_0) , bestehend aus der normierten Gradienten- und Farbwertkonstanz, verwendet. Der Glattheitsterm wurde durch einen bilateralen Filterterm ersetzt, der neben Flussänderungen auch Farbunterschiede und die Distanzen einer bestimmten Umgebung berücksichtigt und gewichtet.

Auch bei diesem Verfahren wird in einer ersten Testreihe geprüft, welche Auswirkungen eine Skalierung ($s_{\alpha} = true$) der α -Werte auf den optischen Fluss und damit auch auf die Fehlerwerte hat: Ohne die Skalierung der α -Werte ($\bar{s}_{\alpha} = false$) schwankt der Verlauf der Fehlerwerte zum Teil sehr stark, siehe Abbildung 5.7 bei den Sequenzen *Grove2*, *Urban2* und *Urban3*. Bei der Skalierung der Werte ändert sich der qualitative Verlauf hin zu einem Verhalten ähnlich zu stetig kontinuierlicher polynomieller Funktionen. Kleine Änderungen am Wert für α bewirken ebenfalls kleine Veränderungen beim optischen Fluss und den Fehlerwerten AAE und AEE. Zudem verbessern sich die Fehlerwerte in nahezu allen Testsequenzen. Im Gegensatz zu V_0 profitiert der Ansatz V_1 mit dem bilateralen Glattheitsterm von der Skalierung der Werte für α .

Als nächstes werden die Ergebnisse von V_1 mit dem Basline-Verfahren V_0 verglichen, siehe Abbildung 5.8. Im direkten Vergleich verbessert sich der optische Fluss in allen acht Testsequenzen mit V_1 deutlich. Der durchschnittliche Fehlerwert sinkt von 3.428 AAE auf 2.717 AAE, siehe Tabelle 5.4. Die Verbesserung ist vor allem auf die genaueren Flusskanten durch den Bilateralfilter zurückzuführen, siehe Abbildung 5.10. Im Vergleich zu V_0 sind die Flusskanten deutlich schärfer und entsprechen mehr dem exakten Bildfluss, was sich bei der Grove2 und Grove3 Sequenz deutlich erkennen lässt. Mit dem bilateralen Term und einer größeren Nachbarschaft ($\sigma_d = 4.8$), womit für einen einzelnen Vektor eine deutlich größere Umgebung berücksichtigt wird, konnte das Verfahren von Zimmer et~al. eindeutig verbessert werden. Bei einem Einstellungswert $\sigma_d = 4.8$ wird eine quadratische Nachbarschaft von 9×9 Pixeln berücksichtigt.

Durch den Einsatz des bilateralen Glattheitsterms verändert sich bei der Wahl des Einstellungsparameters σ_d die Nachbarschaftsgröße und damit auch das Verhältnis zwischen Datenund Glattheitsterm, da sich die Summe und damit das gesamte Gewicht im Glattheitsterm vergrößert oder verkleinert. Um diesem Verhalten entgegen zu wirken muss entweder bei jeder Änderung der Nachbarschaftsgröße (σ_d) auch der Wert für α angepasst oder der Glattheitsterm durch die Größe der Nachbarschaft normiert werden. Bei einer fehlenden Normierung des bilateralen Glattheitsterms lässt sich mit einem α_{opt} Einstellungswert zwar das optimale¹ Verhältnis zwischen Daten und Glattheitsterm herstellen, jedoch nur für Bildpunkte die sich weit genug vom Bildrand entfernt befinden. Bei allen anderen Bildpunkten (Bildrand) verändert sich die Größe der Nachbarschaft und damit das optimale Verhältnis. Dies betrifft bei den verwendeten Testsequenzen und einer Nachbarschaftsgröße von 9×9 Pixeln ($\sigma_d = 4.8$) etwa drei Prozent aller Bildpunkte. Ob die Fehlerwerte AAE und AEE bei fehlender Normierung beeinflusst werden zeigt Abbildung 5.33: Der qualitative Verlauf ändert sich bei allen acht Testsequenzen

¹falls ein solches optimales Verhältnis existiert

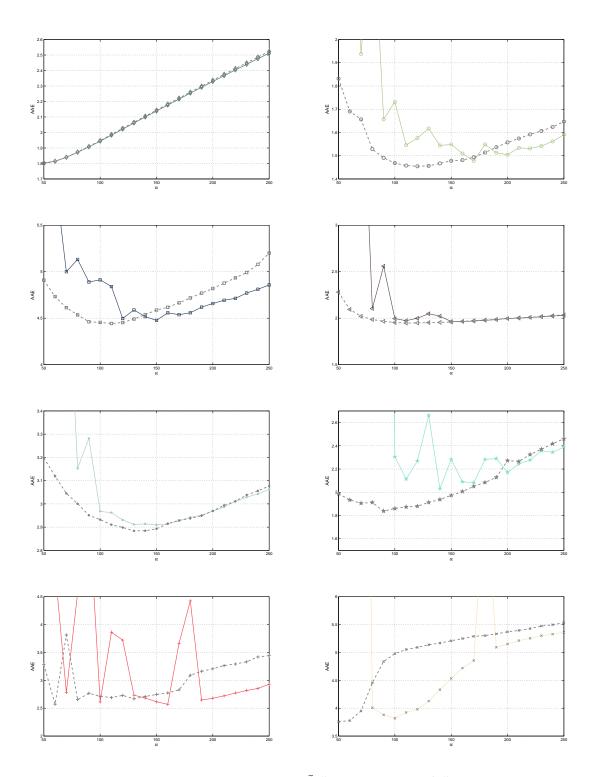
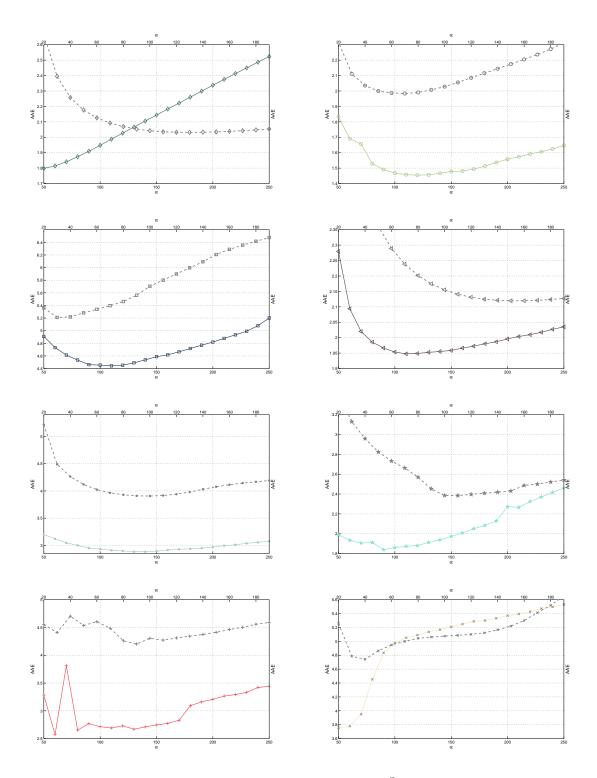
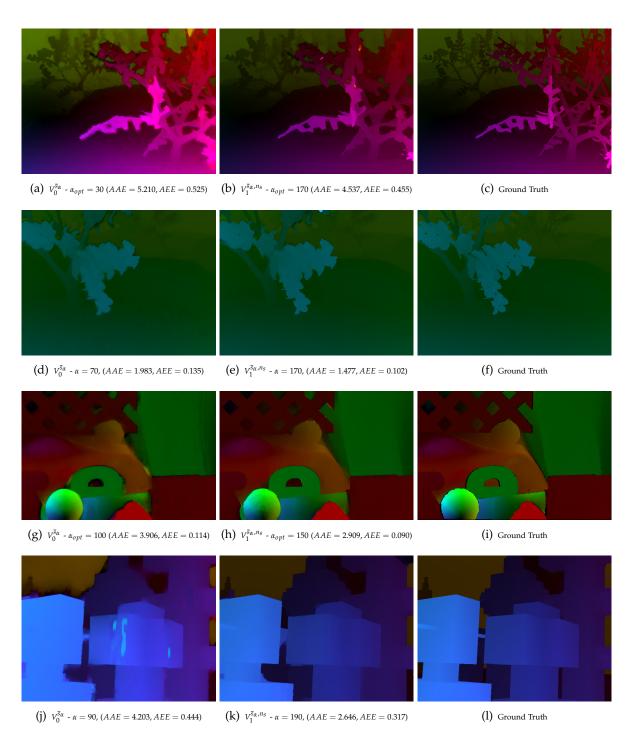

Verfahren	α_{\varnothing}	Error	Dime	Gro2	Gro3	Hydr	Rubb	Urb2	Urb3	Venu	Ø
$V_0^{ar{s}_lpha}$	90	AAE	2.053	2.007	5.561	2.175	3.910	2.453	4.203	5.063	3.428
$V_0^{s_lpha}$	80	AAE	2.068	2.004	5.703	2.198	3.932	2.392	4.160	5.214	3.459
$V_1^{ar{s}_{lpha},n_{\scriptscriptstyle S}}$	140	AAE	2.100	1.544	4.517	2.022	2.914	2.032	2.682	4.333	2.768
$V_1^{s_{lpha},n_s}$	60	AAE	1.814	1.691	4.732	2.094	3.119	1.934	2.572	3.777	2.717
$V_1^{s_lpha,\overline{n}_s}$	1.4	AAE	1.808	1.759	4.871	2.127	3.135	1.964	2.636	3.768	2.758
$V_1^{s_{\alpha},s_{\sigma_c},n_s,l_{max}=25}$	70	AAE	1.842	1.556	4.607	2.019	3.036	1.850	2.561	4.274	2.718
$V_0^{ar{s}_lpha}$	90	AEE	0.109	0.136	0.576	0.183	0.115	0.281	0.444	0.299	0.268
$V_0^{s_lpha}$	80	AEE	0.110	0.136	0.586	0.184	0.115	0.243	0.441	0.306	0.265
$V_1^{ar{s}_{lpha},n_s}$	160	AEE	0.116	0.112	0.457	0.157	0.091	0.249	0.312	0.310	0.226
$V_1^{s_{lpha},n_s}$	90	AEE	0.102	0.104	0.436	0.155	0.089	0.205	0.337	0.301	0.216
$V_1^{s_lpha,\overline{n}_s}$	2.6	AEE	0.105	0.101	0.440	0.155	0.089	0.211	0.319	0.313	0.216
$V_1^{s_{\alpha},s_{\sigma_c},n_s,l_{max}=25}$	70	AAE	0.098	0.109	0.449	0.157	0.091	0.205	0.325	0.285	0.215

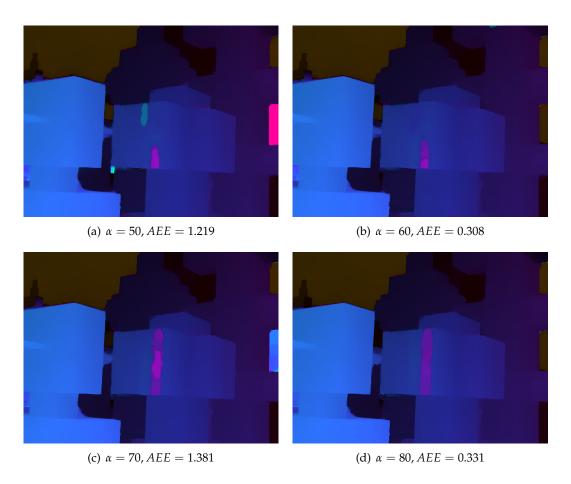
Tabelle 5.4.: Übersicht der Ergebnisse für $V_0^{\bar{s}_\alpha}$, $V_0^{s_\alpha}$, $V_1^{\bar{s}_\alpha,n_s}$, $V_1^{s_\alpha,n_s}$, $V_1^{s_\alpha,\bar{n}_s}$ und $V_1^{s_\alpha,s_{\sigma_c},n_s,l_{max}=25}$. Für jedes Verfahren wird ein konstanter α -Wert verwendet, der für alle Bildsequenzen den minimalen durchschnittlichen Fehlerwert liefert.

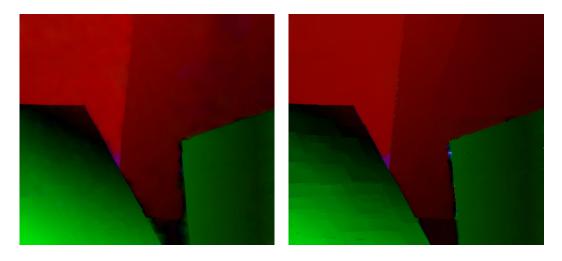

geringfügig. Auch der durchschnittliche Fehlerwert des AAE ist unwesentlich schlechter, der Werte des AEE ändert sich nicht.

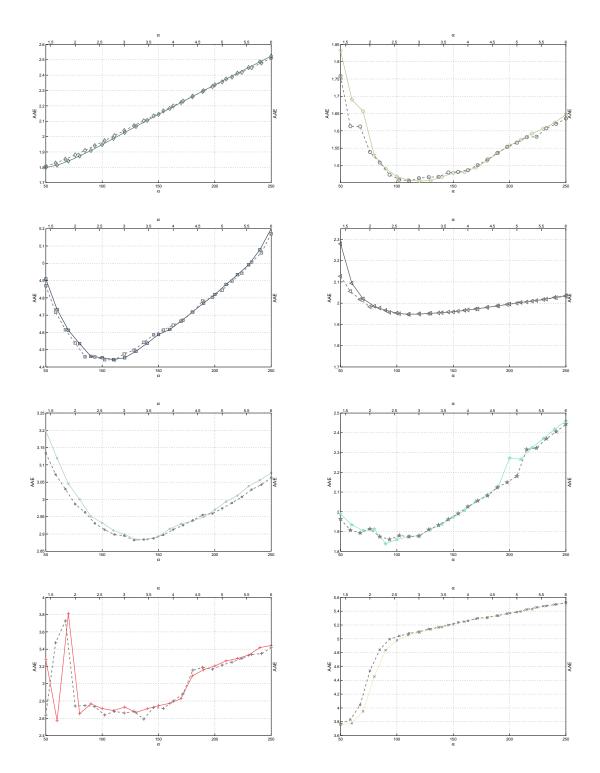
Ein weiterer Testlauf soll mit der Skalierung der σ_c -Werte ($s_{\sigma_c} = true$) und einer Beschränkung des maximalen Warping-Levels mit $l_{max} = 25$ durchgeführt werden. $V_1^{s_\alpha}$ mit und ohne Normierung (n_s) führte bei der *Urban3* Sequenz vereinzelt zu schlechten Ergebnissen, siehe Abbildung 5.11. Durch die Anwendung von $s_{\sigma_c} = true$ und $l_{max} = 25$ auf V_1 konnten die Ausreißer beseitigt werden. Die Fehlerwerte bei den anderen Sequenzen verschlechterten sich minimal.

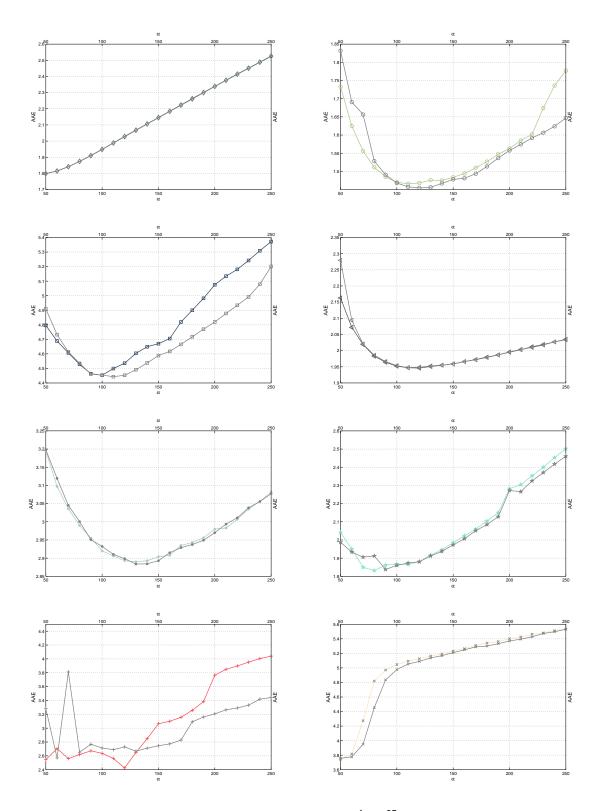
Obwohl bei allen Testsequenzen die Fehlerwerte sinken, lassen sich vor allem bei *Venus* Artefakte in den strukturierten Bildregionen beobachten. Dies lässt sich eindeutig auf die Gewichtung der Bildinformationen mit dem Bilateralfilter zurückführen. Trotz der Artefakte sinkt der Fehlerwert von 4.742 AAE auf 3.744 AEE ab.

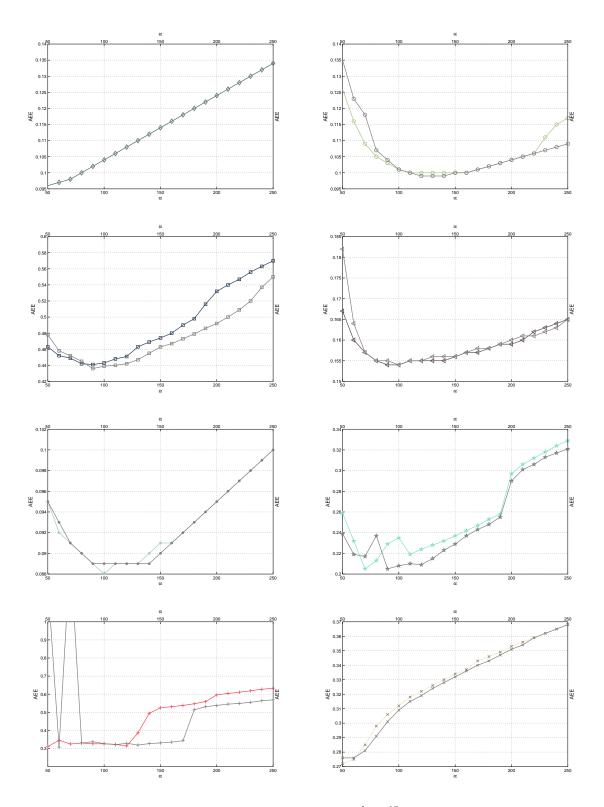

Abbildung 5.7.: Vergleich der Ergebnisse von $V_1^{\bar{s}_\alpha,n_s}$ (farbig) und $V_1^{s_\alpha,n_s}$ (grau) unter Variation von α . Testsequenzen von links nach rechts von oben nach unten: $Dimetrodon \diamondsuit$, $Grove_2 \diamondsuit$, $Grove_3 \square$, $Hydrangea \vartriangleleft$, $Rubberwhale \bullet$, $Urban_2 \not \bowtie$, $Urban_3 +$, $Venus \times$. Ausführliche Wertetabelle siehe Anhang A.3 und A.4. Einstellungsparameter conf(3) und conf(4) siehe Anhang Tabelle A.27.

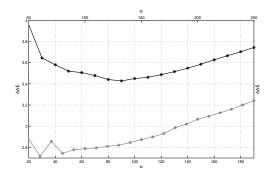

Abbildung 5.8.: Vergleich der Ergebnisse von $V_1^{s_\alpha,n_s}$ und $V_0^{\bar{s}_\alpha,n_s}$ unter Variation von α . Test-sequenzen von links nach rechts von oben nach unten: $Dimetrodon \, \diamondsuit, \, Grove2 \, \circ, \, Grove3 \, \Box, \, Hydrangea \, \triangleleft, \, Rubberwhale \, \bullet, \, Urban2 \, \stackrel{\wedge}{\bowtie}, \, Urban3 \, +, \, Venus \, \times. \,$ Ausführliche Wertetabelle siehe Anhang A.1 und A.4. Einstellungsparameter conf(4) und conf(1) siehe Anhang Tabelle A.27.


Abbildung 5.9.: Vergleich von $V_0^{s_\alpha}$ (links, $\alpha=70$, 2.21 AAE) und $V_1^{s_\alpha,n_s}$ (rechts, $\alpha=127$, 1.69 AAE) für die *Grove2* Sequenz mit $\eta_w=0.5$ und je acht Warping-Level (0-7). Von oben nach unten: Warping-Level 3, 2, 1 und 0.


Abbildung 5.10.: Vergleich der Flussfelder für $V_0^{\bar{s}_\alpha}$ und $V_1^{\bar{s}_\alpha,n_s}$ sowie der Ground Truth. Von oben nach unten: *Grove3*, *Grove2*, *Rubberwhale* und *Urban3*.


Abbildung 5.11.: Vergleich der Flussfelder mit $V_1^{s_\alpha,n_s}$ für verschiedene Werte für α für die *Urban*3 Sequenz. Die AEE-Fehlerwerte variieren durch Änderung der α -Werte stark.


Abbildung 5.12.: Vergleich $V_0^{\bar{s}_\alpha}$ (links mit $\alpha=40$, AAE 4.742) und $V_1^{s_\alpha,s_{\sigma_c},n_s,l_{max}}$ (rechts mit $\alpha=50$, AEE 3.744) für die *Venus* Sequenz.


Abbildung 5.13.: Vergleich der Ergebnisse von $V_1^{s_\alpha,n_s}$ (farbig) und $V_1^{s_\alpha,\overline{n}_s}$ (grau) unter Variation von α . Testsequenzen von links nach rechts von oben nach unten: $Dimetrodon \diamondsuit$, $Grove_2 \diamondsuit$, $Grove_3 \square$, $Hydrangea \vartriangleleft$, $Rubberwhale \bullet$, $Urban_2 \nwarrow$, $Urban_3 +$, $Venus \times$. Ausführliche Wertetabelle siehe Anhang A.4 und A.6. Einstellungsparameter conf(4) und conf(5) siehe Anhang Tabelle A.27.

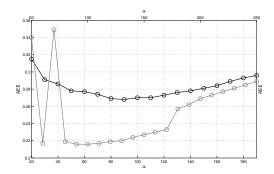
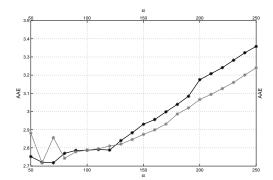
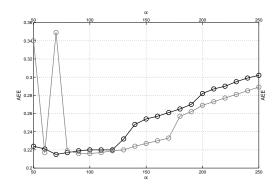


Abbildung 5.14.: Vergleich der Ergebnisse von $V_1^{s_\alpha,s_{\sigma_c},n_s,l_{max}=25}$ (farbig) und $V_1^{s_\alpha,n_s}$ (grau) unter Variation von α . Testsequenzen von links nach rechts von oben nach unten: $Dimetrodon \, \lozenge$, $Grove2 \, \circ$, $Grove3 \, \square$, $Hydrangea \, \triangleleft$, $Rubberwhale \, \bullet$, $Urban2 \, \stackrel{\searrow}{\searrow}$, $Urban3 \, +$, $Venus \, \times$. Ausführliche Wertetabelle siehe Anhang A.5 und A.1. Einstellungsparameter conf(4) siehe Anhang Tabelle A.27.




Abbildung 5.15.: Vergleich der Ergebnisse von $V_1^{s_\alpha,s_{\sigma_c},n_s,l_{max}=25}$ (farbig) und $V_1^{s_\alpha,n_s}$ (grau) unter Variation von α . Testsequenzen von links nach rechts von oben nach unten: $Dimetrodon \diamondsuit$, $Grove2 \circ$, $Grove3 \square$, $Hydrangea \triangleleft$, $Rubberwhale \bullet$, $Urban2 \not\bowtie$, Urban3 +, $Venus \times$. Ausführliche Wertetabelle siehe Anhang A.5 und A.1. Einstellungsparameter conf(4) siehe Anhang Tabelle A.27.

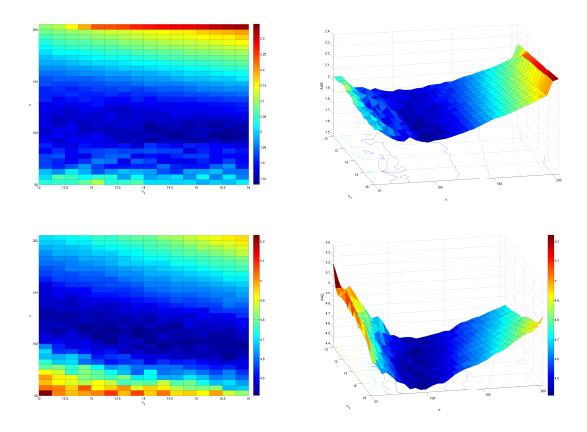


Abbildung 5.16.: Vergleich der durchschnittlichen Ergebnisse von $V_0^{\overline{s}_\alpha}$ (schwarz) und $V_1^{s_\alpha,n_s}$ (grau) unter Variation von α . Fehlerwerte des AAE (links) und des AEE (rechts). Ausführliche Wertetabelle siehe Anhang A.1 und A.4.

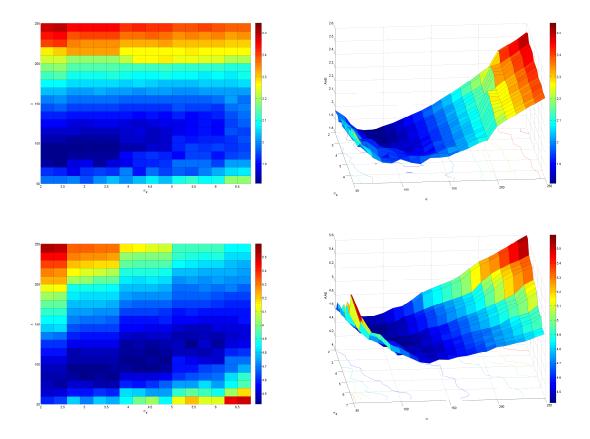
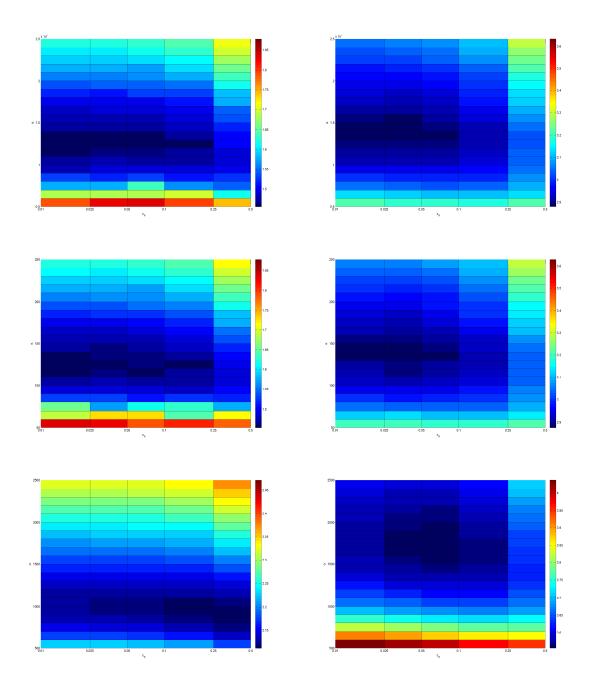

Abbildung 5.17.: Vergleich der durchschnittlichen Ergebnisse von $V_1^{s_\alpha,s_{\sigma_c},n_s,l_{max}=25}$ (schwarz) und $V_1^{s_\alpha,n_s}$ (grau) unter Variation von α . Fehlerwerte des AAE (links) und des AEE (rechts). Ausführliche Wertetabelle siehe Anhang A.5 und A.4.

Abbildung 5.18.: Ergebnisse für $V_1^{s_\alpha,n_s}$ unter Variation von α und σ_c (Farbgewichtung des Bilateralfilters). Bildzeile 1: *Urban2*, Bildzeile 2: *Grove3*. Fehlerwerte des AAE als 2D- (links) und 3D- (rechts) Heatmap. Ausführliche Wertetabelle siehe Anhang A.7 und A.8. Einstellungsparameter *conf*(6) siehe Anhang Tabelle A.27.

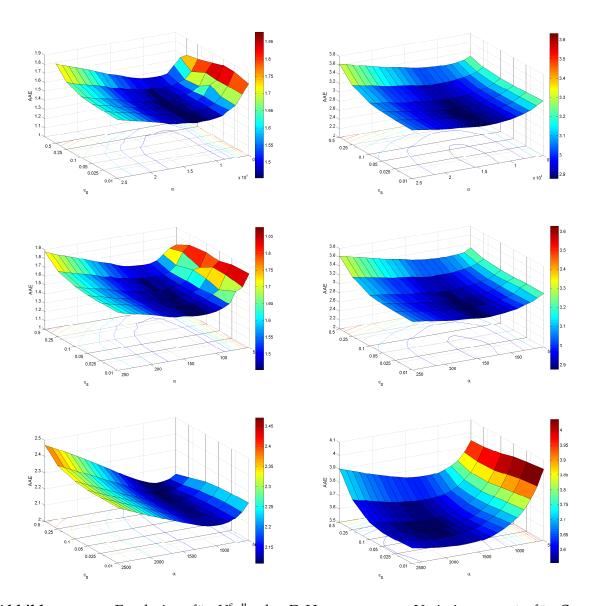
Mit den Testsequenzen *Urban*² und *Grove*³ soll der Einfluss der Parameter zur Farb- (σ_c) und Distanzgewichtung (σ_d) im bilateralen Glattheitsterm untersucht werden.

Der minimale Fehlerwert bei Variation der Farbgewichtung (σ_c) liegt mit AAE 1.832 an der Position $\alpha=95$ und $\sigma_c=14.5$. Bei anderen σ_c -Werten lassen sich durch Variation von α nur unwesentlich schlechtere Werte erzielen. Dies hängt mit dem nahezu linearen Verlauf von $\overline{\psi}_{b2}(s)=e^{-\frac{|s|}{\sigma_c}}$ im Intervall $[s_1,s_2]$ mit $\overline{\psi}_{b2}(s_1)=1$ und $\overline{\psi}_{b2}(s_2)=0.5$ zusammen. Bei Änderung der σ_c Werte lässt sich ein ähnlicher Verlauf durch die Anpassung der α -Werte erzielen, was sich an den Konturen im 3D Plot erkennen lässt, siehe Abbildung 5.18. Für die Urban2 Sequenz befinden sich die besten Fehlerwerte für $\alpha=95$ oder $\alpha=100$ im Intervall $\sigma_c\in[14,16]$. Bei Grove3 verschiebt sich der Bereich nach $\sigma_c\in[12.5,14.5]$. Die größten Veränderungen im Bildfluss verursachen bei beiden Sequenzen die Änderungen am α -Wert.

Abbildung 5.19.: Ergebnisse für $V_1^{s_\alpha,n_s}$ unter Variation von α und σ_d (Gewichtung der Distanz des Bilateralfilters). Bildzeile 1: *Urban2*, Bildzeile 2: *Grove3*. Fehlerwerte des AAE als 2D-(links) und 3D- (rechts) Heatmap. Ausführliche Wertetabelle siehe Anhang A.9 und A.10. Einstellungsparameter conf(7) siehe Anhang Tabelle A.27.


Ein ähnliches Verhalten ergibt sich bei Variation der Distanzwerte (σ_d). Die besten Resultate für die Urban2 Sequenz ergeben sich im Intervall $\sigma_d \in [2,3.5]$ und $\alpha \approx 100$. Für die *Grove3* Sequenz liefert ein größerer Intervallbereich $\sigma_d \in [2.5,5]$ (bei Variation der α -Werte) ähnlich gute Ergebnisse. Als guten Einstellungswert kann die Schnittmenge beider Intervalle verwendet werden, also $\sigma_d \in [2,3.5]$.

	Gro	ve2	Rubberw.			
$(\overline{\psi}_c,\overline{\psi}_d)$	α	AAE	α	AAE		
$\overline{(\overline{\psi}_{b1},\overline{\psi}_{b1})}$	140	1.498	140	2.905		
$(\overline{\psi}_{b1},\overline{\psi}_{b2})$	140	1.498	140	2.905		
$(\overline{\psi}_{b1},\overline{\psi}'_{ch})$	230	1.496	220	2.897		
$\overline{(\overline{\psi}_{b2},\overline{\psi}_{b1})}$	121	1.451	121	2.885		
$(\overline{\psi}_{b2},\overline{\psi}_{b2})$	121	1.456	121	2.880		
$\overline{(\overline{\psi}_{b2},\overline{\psi}'_{ch})}$	190	1.443	230	2.893		
$\overline{(\overline{\psi}'_{ch},\overline{\psi}_{b1})}$	70888	1.477	66444	2.958		
$(\overline{\psi}'_{ch}, \overline{\psi}_{b2})$	72445	1.478	66778	2.957		
$(\overline{\psi}_{ch}',\overline{\psi}_{ch}')$	106222	1.469	10000	2.972		


Tabelle 5.5.: Übersicht der Ergebnisse für $V_1^{s_\alpha,n_s}$ unter Variation der bilateralen Funktionen $\overline{\psi}_{\sigma_c}$ und $\overline{\psi}_{\sigma_d}$. Die Tabelle enthält die minimalen Fehlerwerte aus der gesamten Testreihe. Ausführliche Wertetabelle siehe Anhang A.11 und A.12. Einstellungsparameter conf(8) siehe Anhang Tabelle A.27.

In einer weiteren Testreihe sollen die Gewichtungsfunktionen $\overline{\psi}_c$ und $\overline{\psi}_d$ variiert werden. In den vorherigen Testreihen wurde sowohl für $\overline{\psi}_c$ und $\overline{\psi}_d$ die Gewichtungsfunktion $\overline{\psi}_{b2_{\sigma_*}}(s^2) = e^{-|s|/\sigma_*}$ verwendet. Zwei Alternativen $\overline{\psi}_{b1_{\sigma_*}}(s^2) = e^{-|s^2|/\sigma_*^2}$ und $\psi'_{ch}(s^2) = (\varepsilon^2 + s^2)^{-1/2}$ sollen jeweils für zwei Sequenzen (*Grove*2 und *Rubberwhale*) getestet und verglichen werden. Die minimalen Fehlerwerte für alle neun Kombinationsmöglichkeiten sind in Tabelle 5.5 aufgeführt. Auffällig ist, dass die Wahl der Funktion $\overline{\psi}_{\sigma_c}$ zur Farbgewichtung den minimalen Fehlerwert hauptsächlich beeinflusst und die Wahl der Funktion $\overline{\psi}_{\sigma_d}$ eine untergeordnete Rolle spielt. Die in der Literatur verwendete Gewichtungsfunktion $\psi_{b1_{\sigma_*}}$ des Bilateralfilters lieferte für beide Sequenzen etwas schlechtere Fehlerwerte.

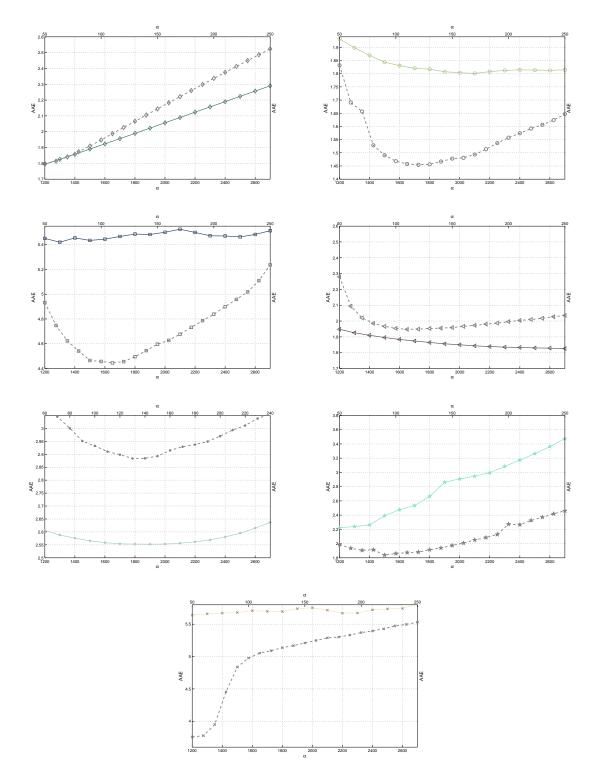
In der letzten Testreihe sollen verschiedene Funktionen für ψ_S getestet werden (ψ_{ch} , ψ_{tv} , $\psi_S' = \psi_{b1}$). Die Funktionen ψ_{ch} und ψ_{tv} liefern nahezu die selben Ergebnisse, ψ_{b1} deutlich schlechtere Werte. Der Einstellungsparameter ε_S sollte sowohl für ψ_{ch} als auch für ψ_{tv} auf einen Wert von $\varepsilon \approx 0.03$ eingestellt werden.

Abbildung 5.20.: Ergebnisse für $V_1^{s_\alpha,n_s}$ als 2D-Heatmap unter Variation von ψ_S für *Grove2* (links) und *Rubberwhale* (rechts). Von oben nach unten: Gewichtungsfunktionen $\psi_S = \psi_{ch}$, $\psi_S = \psi_{tv}$ und $\psi_S' = \psi_{b1}$. Darstellung der AAE Fehlerwerte als 2D-Heatmap unter Variation von α und ε_S (Parameter von ψ_S). Ausführliche Wertetabelle siehe Anhang A.13, A.14 und A.15. Einstellungsparameter *conf(9)* siehe Anhang Tabelle A.27.

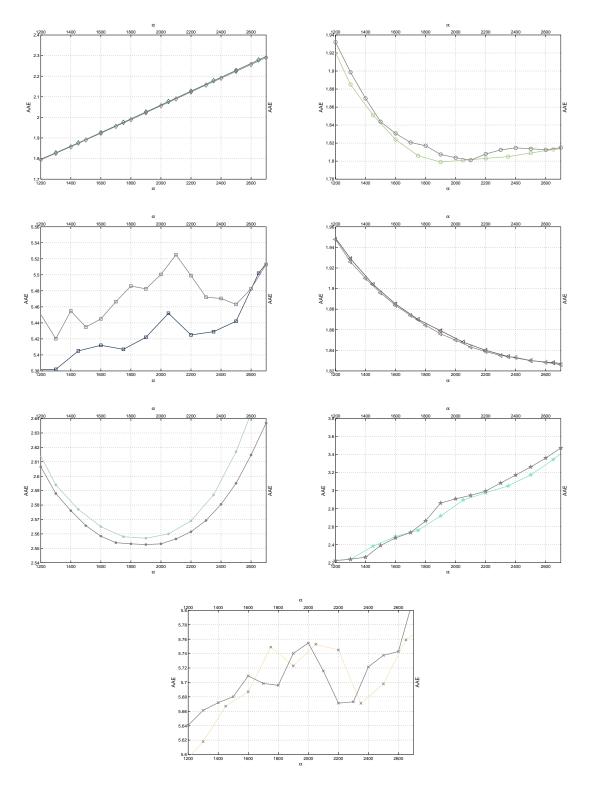
Abbildung 5.21.: Ergebnisse für $V_1^{s_\alpha,n_s}$ als 3D-Heatmap unter Variation von ψ_S für *Grove2* (links) und *Rubberwhale* (rechts). Von oben nach unten: Gewichtungsfunktionen $\psi_S = \psi_{ch}$, $\psi_S = \psi_{tv}$ und $\psi_S' = \psi_{b1}$. Darstellung der AAE Fehlerwerte als 3D-Heatmap unter Variation von α und ε_S (Parameter von ψ_S). Ausführliche Wertetabelle siehe Anhang A.13, A.14 und A.15. Einstellungsparameter conf(g) siehe Anhang Tabelle A.27.

Verfahren	α_{\varnothing}	Error	Dime	Gro2	Gro3	Hydr	Rubb	Urb2	Urb3	Venu	Ø
$V_0^{\overline{s}_lpha}$	90	AAE	2.053	2.007	5.561	2.175	3.910	2.453	4.203	5.063	3.428
$V_1^{s_{\alpha},n_s}$	60	AAE	1.814	1.691	4.732	2.094	3.119	1.934	2.572	3.777	2.717
$V_{2a}^{s_{\alpha},n_s}$	1300	AAE	1.826	1.899	5.420	1.926	2.588	2.239	-	5.661	3.080
$V_{2a}^{s_{\alpha},s_{\sigma_{\mathcal{C}}},n_{s},l_{max}}$	1300	AAE	1.828	1.885	5.382	1.929	2.594	2.238	-	5.618	3.068
$V_0^{\overline{s}_lpha}$	90	AEE	0.109	0.136	0.576	0.183	0.115	0.281	0.444	0.299	0.268
$V_1^{s_{\alpha},n_s}$	90	AEE	0.102	0.104	0.436	0.155	0.089	0.205	0.337	0.301	0.216
$V_{2a}^{s_{\alpha},n_s}$	1300	AEE	0.096	0.133	0.540	0.148	0.079	0.279	-	0.352	0.232
$V_{2a}^{s_{\alpha},s_{\sigma_{c}},n_{s},l_{max}}$	1150	AEE	0.094	0.137	0.529	0.150	0.080	0.277	-	0.346	0.230

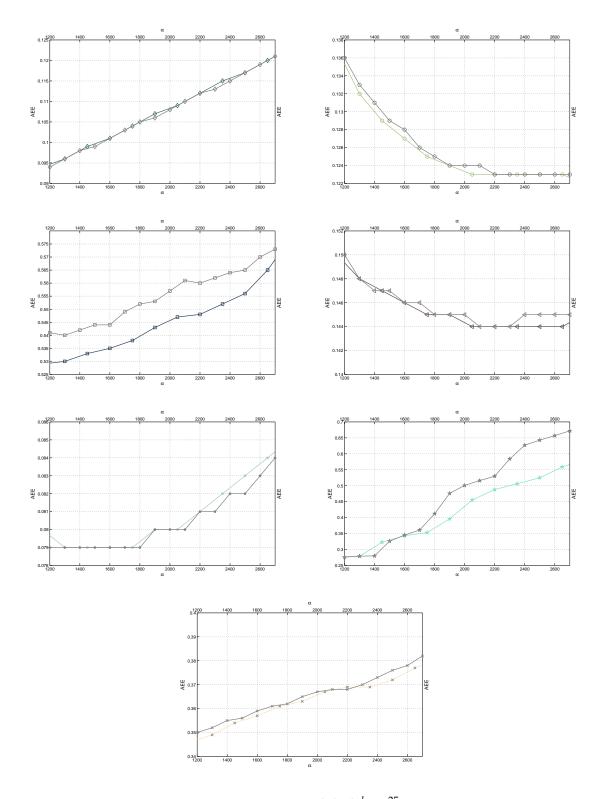
Tabelle 5.6.: Übersicht der Ergebnisse für $V_0^{\bar{s}_\alpha}$, $V_1^{s_\alpha,n_s}$, $V_{2a}^{s_\alpha,n_s}$ und $V_{2a}^{s_\alpha,s_{\sigma_c},n_s,l_{max}}$. Für jedes Verfahren wird ein konstanter α -Wert verwendet, der für alle Bildsequenzen den minimalen durchschnittlichen Fehlerwert liefert.

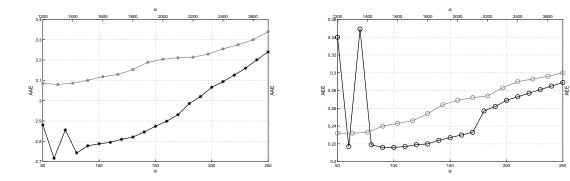

5.3. Evaluation V_{2a}

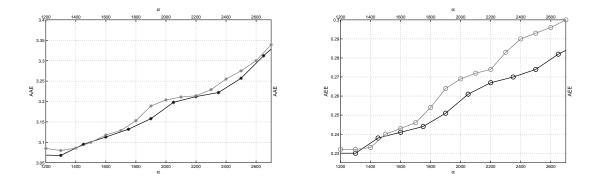
Mit dem ersten bilateralen Datenterm D_{1a} sind die Ergebnisse für V_{2a} im Vergleich zu V_1 sehr unterschiedlich: Während sich der optische Fluss für *Dimetrodon, Hydrangea* und *Rubberwhale* verbessert, steigen die Fehlerwerte für die anderen vier Testsequenzen stark an, so dass sich der durchschnittliche Fehlerwert für alle Sequenzen verschlechtert, siehe Tabelle 5.6. Die *Urban*3 Sequenz konnte mit dem Variationsansatz V_{2a} nicht berechnet werden. Das Programm stürzte auf Grund eines Fließkomma-Fehlers ab, was unter Umständen damit zusammen hängen könnte, dass durch die Diskretisierung der Euler-Lagrange-Gleichung von D_{1b} eine nicht-symmetrische Matrix erzeugt wird und das SOR-Verfahren nicht zwingend konvergiert.


Auch wenn für den Variationsansatz V_{2a} keine Ausreißer beobachtet werden konnten, wurde die Skalierung der σ_c -Werte, zusammen mit l_{max} getestet. Die AEE und AAE Fehlerwerte verbesserten sich im Durchschnitt minimal.

Parameter	Beschreibung
α	Gewichtungsparameter zwischen Glattheitsterm und Datenterm
s_{lpha}	Falls <i>true</i> wird α in jedem Warping-Level skaliert
s_{σ_c}	Falls true Anpassung der σ_c Werte für jedes Warping-Level
n_s	Falls true wird der Daten- und Glattheitsterm normiert
ψ_D	Funktion zur Gewichtung von Abweichungen im Datenterm
ψ_S	Funktion zur Gewichtung von Abweichungen im Glattheitsterm
$arepsilon_D$	Parameter von ψ_D
ε_S	Parameter von ψ_S
$\overline{\psi}_c$	Gewichtungsfunktion der Farbdistanz für den bilateralen Filter
$\overline{\psi}_d$	Gewichtungsfunktion der Distanz für den bilateralen Filter
σ_c^D	Parameter von $\overline{\psi}_c$ des Datenterms, Standardabweichung
σ_d^D	Parameter von $\overline{\psi}_d$ des Datenterms, Standardabweichung
σ_c^S	Parameter von $\overline{\psi}_c$ des Glattheitsterms, Standardabweichung
σ_d^S	Parameter von $\overline{\psi}_d$ des Glattheitsterms, Standardabweichung
η_w	Schrittweite zur Skalierung der Warping-Schritte
l_{max}	Maximal erlaubtes Warping-Level
σ_g	Bildglättung mit dem Gaußfilter, Standardabweichung
σ_n	Gauß-Verteiltes Rauschen, Standardabweichung
ω	Relaxationsparameter des SOR-Verfahrens
i_{out}	SOR-Solver, äußere Iterationen
i_{in}	SOR-Solver, innere Iterationen


Tabelle 5.7.: Übersicht aller Einstellungsparameter für V_{2a} .


Abbildung 5.22.: Vergleich der Ergebnisse für $V_{2a}^{s_{\alpha},n_s}$ (farbig) und $V_{1}^{s_{\alpha},n_s}$ (grau) unter Variation von α . Testsequenzen von links nach rechts von oben nach unten: $Dimetrodon \, \lozenge$, $Grove_2 \, \circ$, $Grove_3 \, \square$, $Hydrangea \, \triangleleft$, $Rubberwhale \, \bullet$, $Urban_2 \, \stackrel{\smile}{\bowtie}$, $Venus \, \times$. Ausführliche Wertetabelle siehe Anhang A.16 und A.4. Einstellungsparameter conf(10) und conf(4) siehe Anhang Tabelle A.27.


Abbildung 5.23.: Vergleich der Ergebnisse für $V_{2a}^{s_{\alpha},s_{\sigma_c},n_s,l_{max}=25}$ (farbig) und $V_{2a}^{s_{\alpha},n_s}$ (grau) unter Variation von α . Testsequenzen von links nach rechts von oben nach unten: $Dimetrodon \diamondsuit$, $Grove_2 \circ$, $Grove_3 \square$, $Hydrange_a \triangleleft$, $Rubberwhale \bullet$, $Urban_2 \nsim$, $Venus \times$. Ausführliche Wertetabelle siehe Anhang A.17 und A.16. Einstellungsparameter conf(10) siehe Anhang Tabelle A.27.

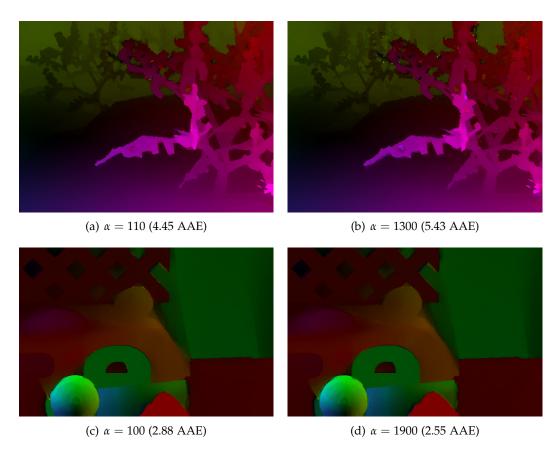
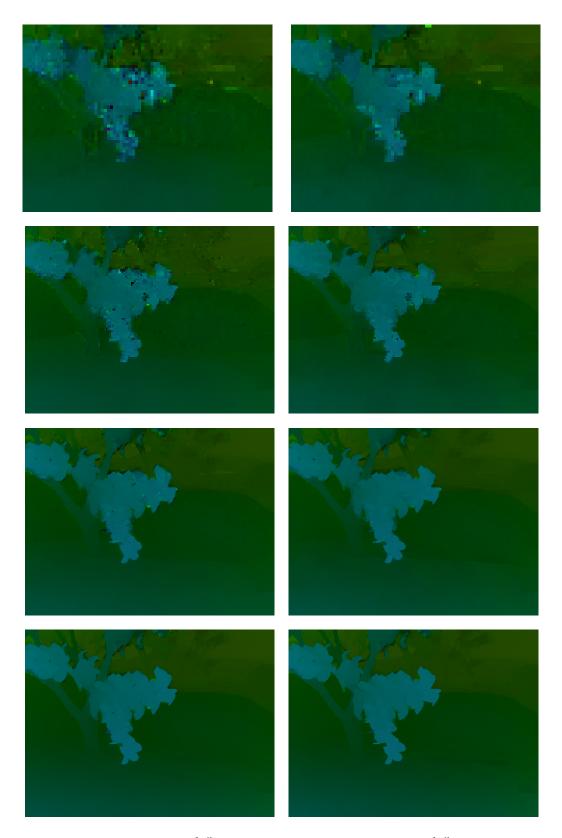

Abbildung 5.24.: Vergleich der Ergebnisse für $V_{2a}^{s_{\alpha},s_{\sigma_c},n_s,l_{max}=25}$ (farbig) und $V_{2a}^{s_{\alpha},n_s}$ (grau) unter Variation von α . Testsequenzen von links nach rechts von oben nach unten: $Dimetrodon \diamondsuit$, $Grove2 \circ$, $Grove3 \square$, $Hydrangea \triangleleft$, $Rubberwhale \bullet$, $Urban2 \overleftrightarrow{\bowtie}$, $Venus \times$. Ausführliche Wertetabelle siehe Anhang A.17 und A.16. Einstellungsparameter conf(10) siehe Anhang Tabelle A.27.

Abbildung 5.25.: Vergleich der durchschnittlichen Ergebnisse von $V_1^{s_\alpha,n_s}$ (schwarz) und $V_{2a}^{s_\alpha,n_s}$ (grau) unter Variation von α . Fehlerwerte des AAE (links) und des AEE (rechts). Ausführliche Wertetabelle siehe Anhang A.4 und A.16.

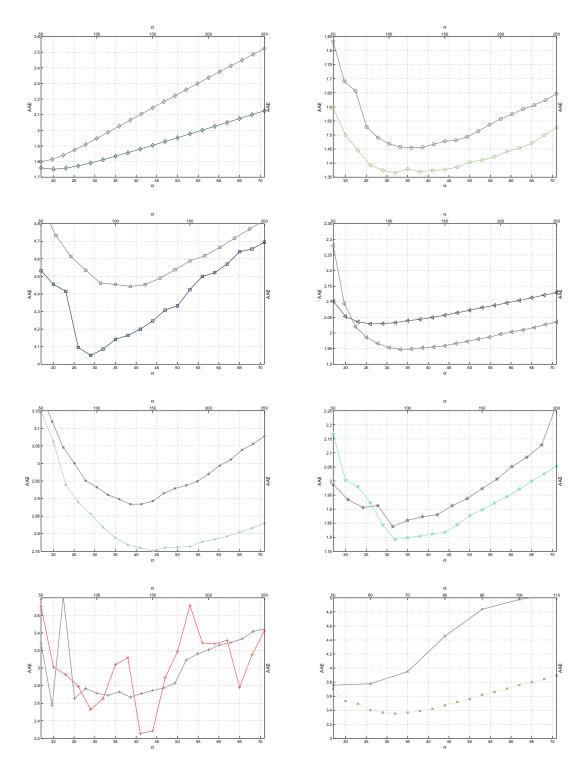
Abbildung 5.26.: Vergleich der durchschnittlichen Ergebnisse von $V_{2a}^{s_{\alpha},s_{\sigma_{\mathcal{C}}},n_{s},l_{max}=25}$ (schwarz) und $V_{2a}^{s_{\alpha},n_{s}}$ (grau) unter Variation von α . Fehlerwerte des AAE (links) und des AEE (rechts). Ausführliche Wertetabelle siehe Anhang A.17 und A.16.

Abbildung 5.27.: Vergleich der Flussfelder für $V_1^{s_\alpha,n_s}$ (links) und $V_{2a}^{s_\alpha,n_s}$ (rechts). Oben: *Grove3*. Unten: *Rubberwhale*.

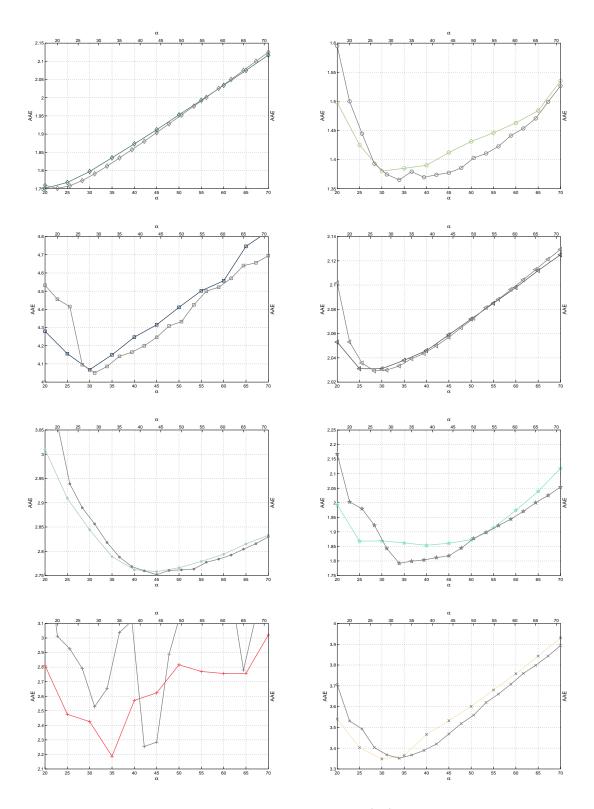
Verfahren	α_{\varnothing}	Error	Dime	Gro2	Gro3	Hydr	Rubb	Urb2	Urb3	Venu	Ø
$V_0^{\overline{s}_lpha}$	90	AAE	2.053	2.007	5.561	2.175	3.910	2.453	4.203	5.063	3.428
$V_1^{s_{\alpha},n_s}$	60	AAE	1.814	1.691	4.732	2.094	3.119	1.934	2.572	3.777	2.717
$V_{2a}^{s_{\alpha},s_{\sigma_{c}},n_{s},l_{max}}$	1300	AAE	1.828	1.885	5.382	1.929	2.594	2.238	-	5.618	3.068
$V_{2b}^{s_{lpha},n_s}$	41	AAE	1.880	1.374	4.199	2.050	2.760	1.812	2.255	3.420	2.469
$V_{2b}^{s_{\alpha},s_{\sigma_c},n_s,l_{max}}$	35	AAE	1.835	1.385	4.150	2.038	2.789	1.862	2.187	3.365	2.451
$V_0^{\overline{s}_lpha}$	90	AEE	0.109	0.136	0.576	0.183	0.115	0.281	0.444	0.299	0.268
$V_1^{s_{\alpha},n_s}$	90	AEE	0.102	0.104	0.436	0.155	0.089	0.205	0.337	0.301	0.216
$V_{2a}^{s_{\alpha},s_{\sigma_{c}},n_{s},l_{max}}$	1150	AEE	0.094	0.137	0.529	0.150	0.080	0.277	-	0.346	0.230
$V_{2b}^{s_{lpha},n_s}$	41	AEE	0.102	0.096	0.413	0.164	0.086	0.218	0.321	0.275	0.209
$V_{2b}^{s_{\alpha},n_{s},s_{\sigma_{c}},l_{max}}$	25	AAE	0.095	0.107	0.399	0.160	0.088	0.224	0.313	0.262	0.206

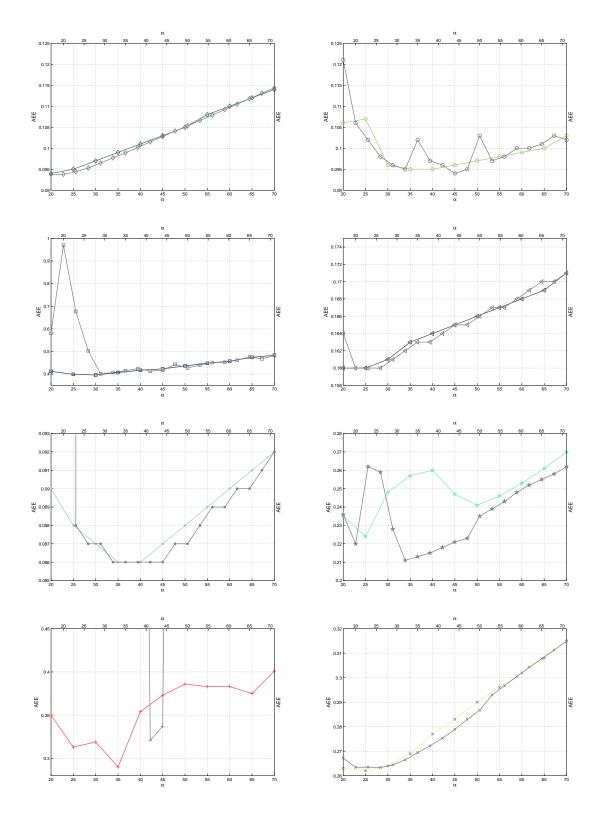

Tabelle 5.8.: Übersicht der Ergebnisse für $V_0^{\bar{s}_\alpha}$, $V_1^{s_\alpha,n_s}$, $V_{2a}^{s_\alpha,s_{\sigma_c},n_s,l_{max}}$, $V_{2b}^{s_\alpha,s_{\sigma_c},n_s,l_{max}}$. Für jedes Verfahren wird ein konstanter α-Wert verwendet, der für alle Bildsequenzen den minimalen durchschnittlichen Fehlerwert liefert.

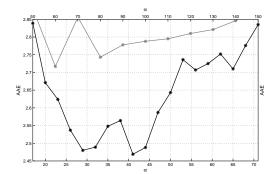
5.4. Evaluation V_{2h}


Mit dem zweiten Bilateralen Datenterm, der mit dem Parameter $\sigma_d^D=0$ identisch dem Datenterm D_0 ist, ließen sich die Fehlerwerte weiter senken. Mit Ausnahme der Hydrangea Testsequenz konnte der optische Fluss in allen anderen Testsequenzen verbessert werden. Ein zum Teil negatives Verhalten konnte bei der Urban3 Sequenz beobachtet werden: bei kleinen Veränderungen von α springen die Fehlerwerte zum Teil recht stark. Neben der Skalierung (s_α) und Normierung (n_s) des Verfahrens wurde ebenfalls eine Testreihe mit Skalierung der σ_c Werte und Beschränkung des maximalen Warping-Levels mit $l_{max}=25$ durchgeführt. Die schlechten Fehlerwerte bei der Urban3 Sequenz verschwanden vollständig. Der durchschnittliche Fehlerwert konnte mit V_{2b} somit weiter gesenkt werden. Im Vergleich zu V_0 um nahezu 1 AAE.

Parameter	Beschreibung
α	Gewichtungsparameter zwischen Glattheitsterm und Datenterm
s_{lpha}	Falls <i>true</i> wird α in jedem Warping-Level skaliert
s_{σ_c}	Falls true Anpassung der σ_{c} Werte für jedes Warping-Level
n_s	Falls $true$ wird der Daten und Glattheitsterm normiert (teilung durch N_s)
γ_b	Gewichtungsparameter Grauwertekonstanz
γ_g	Gewichtungsparameter Gradientenkonstanz
ψ_D	Funktion zur Gewichtung von Abweichungen im Datenterm
ψ_S	Funktion zur Gewichtung von Abweichungen im Glattheitsterm
$arepsilon_D$	Parameter von ψ_D
ϵ_S	Parameter von ψ_S
$\overline{\psi}_c$	Gewichtungsfunktion der Farbdistanz für den bilateralen Filter
$\overline{\psi}_d$	Gewichtungsfunktion der Distanz für den bilateralen Filter
σ_c^D	Parameter von $\overline{\psi}_c$ des Datenterms, Standardabweichung
σ_d^D	Parameter von $\overline{\psi}_d$ des Datenterms, Standardabweichung
σ_c^S	Parameter von $\overline{\psi}_c$ des Glattheitsterms, Standardabweichung
σ_d^S	Parameter von $\overline{\psi}_d$ des Glattheitsterms, Standardabweichung
η_w	Schrittweite zur Skalierung der Warping-Schritte
l_{max}	Maximal erlaubtes Warping-Level
σ_{g}	Bildglättung mit dem Gaußfilter, Standardabweichung
σ_n	Gauß-Verteiltes Rauschen, Standardabweichung
ω	Schrittweite des SOR-Verfahrens
i_{out}	SOR-Solver, äußere Iterationen
i_{in}	SOR-Solver, innere Iterationen


Tabelle 5.9.: Übersicht aller Einstellungsparameter für V_{2b} und V_{2c} .


Abbildung 5.28.: Vergleich von $V_1^{s_\alpha,n_s}$ (links, $\alpha=127,1.69$ AAE) und $V_{2b}^{s_\alpha,n_s}$ (rechts, $\alpha=35,1.49$ AAE) für die *Grove2* Sequenz mit $\eta_w=0.5$ und je acht Warping-Level (0-7). Von oben nach unten: Warping-Level 3, 2, 1 und 0.


Abbildung 5.29.: Vergleich der Ergebnisse von $V_{2b}^{s_{\alpha},n_s}$ (farbig) und $V_1^{s_{\alpha},n_s}$ (grau) unter Variation von α . Testsequenzen von links nach rechts von oben nach unten: $Dimetrodon \, \lozenge$, $Grove2 \, \circ$, $Grove3 \, \Box$, $Hydrangea \, \triangleleft$, $Rubberwhale \, \bullet$, $Urban2 \, \stackrel{\searrow}{\searrow}$, $Urban3 \, +$, $Venus \, \times$. Ausführliche Wertetabelle siehe Anhang A.18 und A.1. Einstellungsparameter conf(11) und conf(4) siehe Anhang Tabelle A.27.

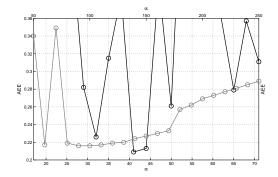
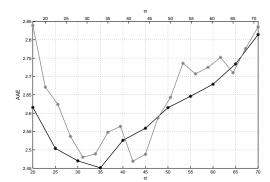


Abbildung 5.30.: Vergleich der Ergebnisse von $V_{2b}^{s_{\alpha},s_{\sigma_c},n_s,level_{max}=25}$ (farbig) und $V_{1}^{s_{\alpha},n_s}$ (grau) unter Variation von α . Testsequenzen von links nach rechts von oben nach unten: $Dimetrodon \diamondsuit$, $Grove2 \circ$, $Grove3 \square$, $Hydrangea \triangleleft$, $Rubberwhale \bullet$, $Urban2 \not \triangleright$, Urban3 +, $Venus \times$. Ausführliche Wertetabelle siehe Anhang A.19 und A.18. Einstellungsparameter conf(11) siehe Anhang Tabelle A.27.



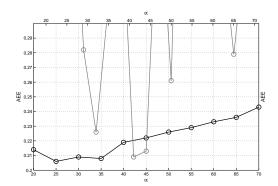
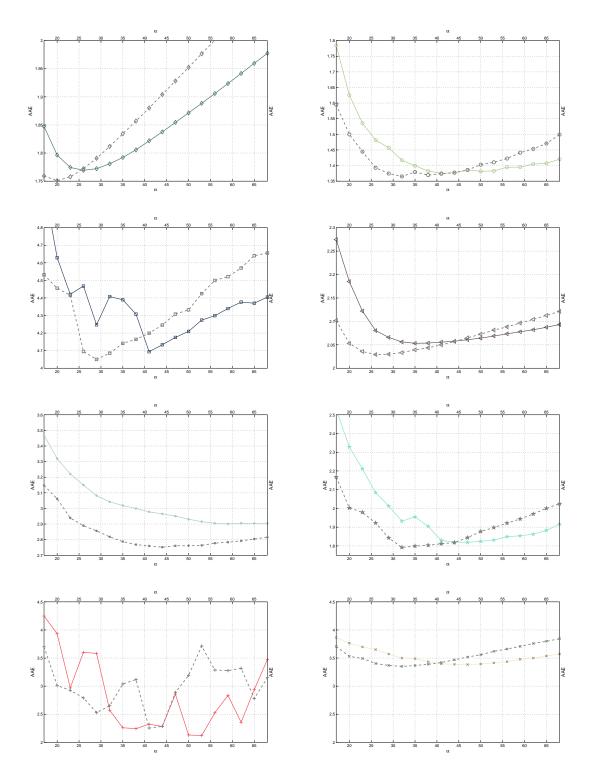
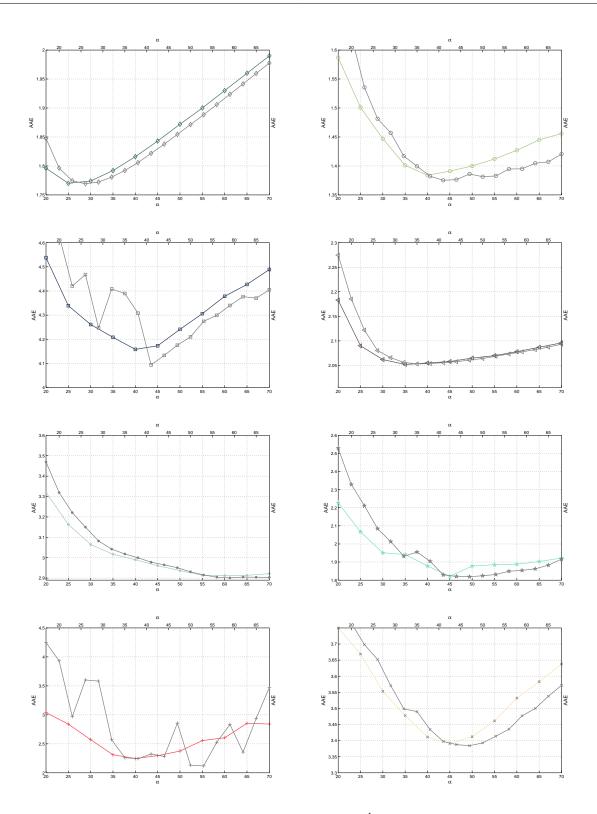

Abbildung 5.31.: Vergleich der Ergebnisse für $V_{2b}^{s_{\alpha},s_{o_c},n_s,level_{max}=25}$ (farbig) und $V_{1}^{s_{\alpha},n_s}$ (grau) unter Variation von α . Testsequenzen von links nach rechts von oben nach unten: $Dimetrodon \, \diamondsuit$, $Grove2 \, \circ$, $Grove3 \, \Box$, $Hydrangea \, \triangleleft$, $Rubberwhale \, \bullet$, $Urban2 \, \overleftrightarrow{\bowtie}$, $Urban3 \, +$, $Venus \, \times$. Ausführliche Wertetabelle siehe Anhang A.19 und A.18. Einstellungsparameter conf(11) siehe Anhang Tabelle A.27.

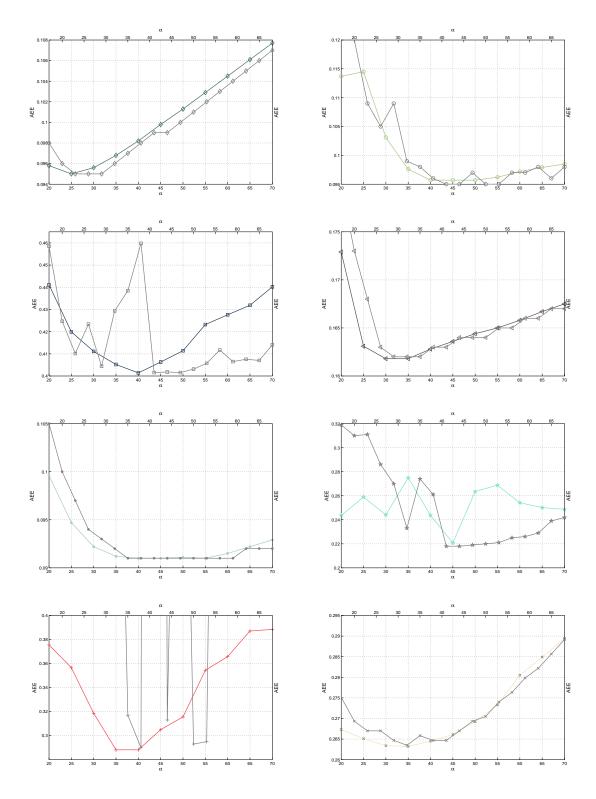
Abbildung 5.32.: Vergleich der durchschnittlichen Ergebnisse von $V_{2b}^{s_\alpha,n_s}$ (schwarz) und $V_1^{s_\alpha,n_s}$ (grau) unter Variation von α . Fehlerwerte des AAE (links) und des AEE (rechts). Ausführliche Wertetabelle siehe Anhang A.18 und A.1.

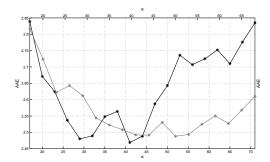

Abbildung 5.33.: Vergleich der durchschnittlichen Ergebnisse von $V_{2b}^{s_{\alpha},s_{\sigma_{c}},n_{s},level_{max}=25}$ (schwarz) und $V_{2b}^{s_{\alpha},n_{s}}$ (grau) unter Variation von α . Fehlerwerte des AAE (links) und des AEE (rechts). Ausführliche Wertetabelle siehe Anhang A.19 und A.18.

Verfahren	α_{\varnothing}	Error	Dime	Gro2	Gro3	Hydr	Rubb	Urb2	Urb3	Venu	Ø
$V_0^{ar{s}_lpha}$	90	AAE	2.053	2.007	5.561	2.175	3.910	2.453	4.203	5.063	3.428
$V_1^{s_{\alpha},n_s}$	60	AAE	1.814	1.691	4.732	2.094	3.119	1.934	2.572	3.777	2.717
$V_{2a}^{s_{\alpha},s_{\sigma_{c}},n_{s},l_{max}}$	1300	AAE	1.828	1.885	5.382	1.929	2.594	2.238	-	5.618	3.068
$V_{2b}^{s_{\alpha},s_{\sigma_{c}},n_{s},l_{max}}$	35	AAE	1.835	1.385	4.150	2.038	2.789	1.862	2.187	3.365	2.451
$V_{2c}^{s_{\alpha},n_s}$	50	AAE	1.871	1.381	4.210	2.064	2.931	1.824	2.131	3.393	2.476
$V_{2c}^{s_{\alpha},s_{\sigma_c},n_s,l_{max}}$	45	AAE	1.843	1.391	4.173	2.058	2.961	1.822	2.296	3.391	2.492
$V_0^{ar{s}_lpha}$	90	AEE	0.109	0.136	0.576	0.183	0.115	0.281	0.444	0.299	0.268
$V_1^{s_{\alpha},n_s}$	90	AEE	0.102	0.104	0.436	0.155	0.089	0.205	0.337	0.301	0.216
$V_{2a}^{s_{\alpha},s_{\sigma_{c}},n_{s},l_{max}}$	1150	AEE	0.094	0.137	0.529	0.150	0.080	0.277	-	0.346	0.230
$V_{2b}^{s_{\alpha},s_{\sigma_{c}},n_{s},l_{max}}$	25	AAE	0.095	0.107	0.399	0.160	0.088	0.224	0.313	0.262	0.206
$V_{2c}^{s_{\alpha},n_s}$	50	AEE	0.101	0.095	0.412	0.164	0.091	0.220	0.293	0.269	0.206
$V_{2c}^{s_{\alpha},s_{\sigma_{c}},n_{s},l_{max}}$	40	AEE	0.098	0.096	0.401	0.163	0.091	0.244	0.288	0.265	0.206


Tabelle 5.10.: Übersicht der Ergebnisse für $V_0^{\bar{s}_{\alpha}}$, $V_1^{s_{\alpha}, s_{\sigma_c}}$, $V_{2a}^{s_{\alpha}, s_{\sigma_c}}$, $V_{2b}^{s_{\alpha}, s_{\sigma_c}}$, $V_{2c}^{s_{\alpha}, n_s}$ und $V_{2c}^{s_{\alpha}, s_{\sigma_c}}$. Für jedes Verfahren wird ein konstanter α -Wert verwendet, der für alle Bildsequenzen den minimalen durchschnittlichen Fehlerwert liefert.

5.5. Evaluation V_{2c}


Die letzte Variante des bilateralen Datenterms V_{2c} soll ebenfalls evaluiert werden. V_{2c} unterscheidet sich zu dem Verfahren V_{2b} geringfügig: es wird lediglich auf den zentralen Bildpixel für die gesamte Nachbarschaft \mathcal{N} im Datenterm verzichtet, wodurch sich die Berechnung des optischen Flusses beschleunigen lässt. Welche Auswirkungen diese Änderung auf den optischen Fluss hat lässt sich aus den Abbildungen 5.34, 5.35 und 5.36 entnehmen: Für die *Grove2* und *Rubberwhale* Sequenz verschlechtern sich die Werte ein wenig. Die *Urban3* hingegen profitiert von der Änderungen, während sich die restlichen Sequenzen qualitativ nicht verändern. Die Sprünge in für die AAE Werte bei der *Urban3* Sequenz bleiben weiter bestehen, erneut lässt sich durch die die Begrenzung der Warping-Level und Skalierung der σ_c -Werte das Verhalten verbessern. Insgesamt verschlechtert sich der das Verfahren V_{2c} im Vergleich zu V_{2b} in den durchschnittlichen AAE Werten minimal, die AEE Werte bleiben unverändert.


Abbildung 5.34.: Vergleich der Ergebnisse von $V_{2c}^{s_\alpha,n_s}$ (farbig) und $V_{2b}^{s_\alpha,n_s}$ (grau) unter Variation von α . Testsequenzen von links nach rechts von oben nach unten: $Dimetrodon \diamondsuit$, $Grove_2 \diamondsuit$, $Grove_3 \square$, $Hydrangea \vartriangleleft$, $Rubberwhale \bullet$, $Urban_2 \not \bowtie$, $Urban_3 +$, $Venus \times$. Ausführliche Wertetabelle siehe Anhang (A.20) und (A.18). Einstellungsparameter conf(12) und conf(11) siehe Anhang Tabelle A.27.

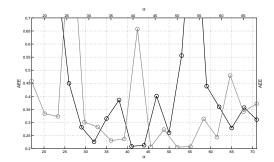
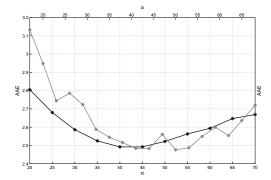


Abbildung 5.35.: Vergleich der Ergebnisse von $V_{2c}^{s_{\alpha},s_{\sigma_c},n_s,l_{max}}$ (farbig) und $V_{2c}^{s_{\alpha},n_s}$ (grau) unter Variation von α . Testsequenzen von links nach rechts von oben nach unten: $Dimetrodon \diamondsuit$, $Grove2 \circ$, $Grove3 \square$, $Hydrangea \triangleleft$, $Rubberwhale \bullet$, $Urban2 \trianglerighteq$, Urban3 +, $Venus \times$. Ausführliche Wertetabelle siehe Anhang A.21 und A.20. Einstellungsparameter conf(12) siehe Anhang Tabelle A.27.



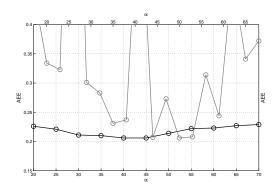
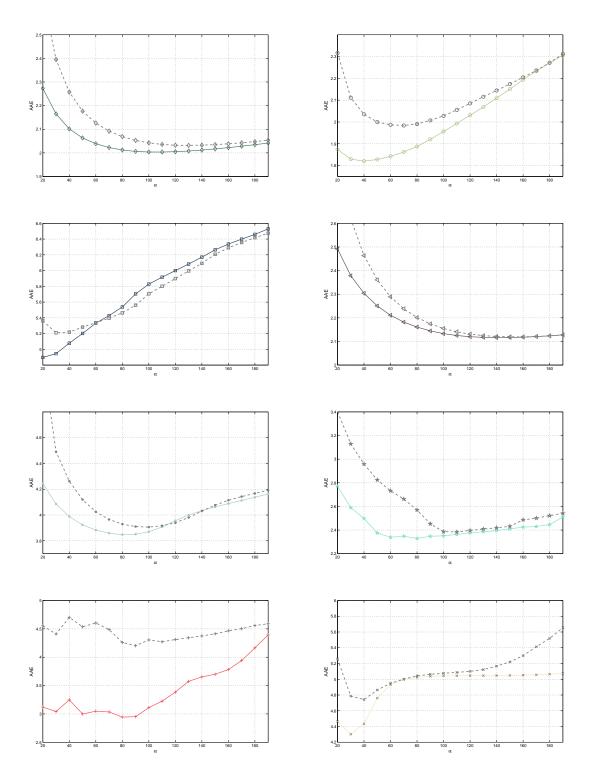
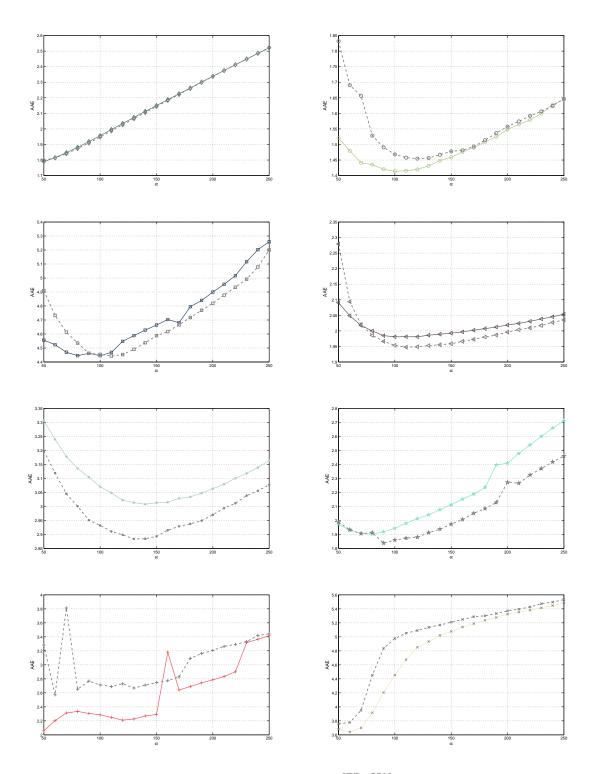

Abbildung 5.36.: Vergleich der Ergebnisse von $V_{2c}^{s_{\alpha},s_{\sigma_c},n_s,l_{max}}$ (farbig) und $V_{2c}^{s_{\alpha},n_s}$ (grau) unter Variation von α . Testsequenzen von links nach rechts von oben nach unten: $Dimetrodon \, \lozenge$, $Grove2 \, \circ$, $Grove3 \, \square$, $Hydrangea \, \triangleleft$, $Rubberwhale \, \bullet$, $Urban2 \, \stackrel{\hookrightarrow}{\bowtie}$, $Urban3 \, +$, $Venus \, \times$. Ausführliche Wertetabelle siehe Anhang A.21 und A.20. Einstellungsparameter conf(12) siehe Anhang Tabelle A.27.

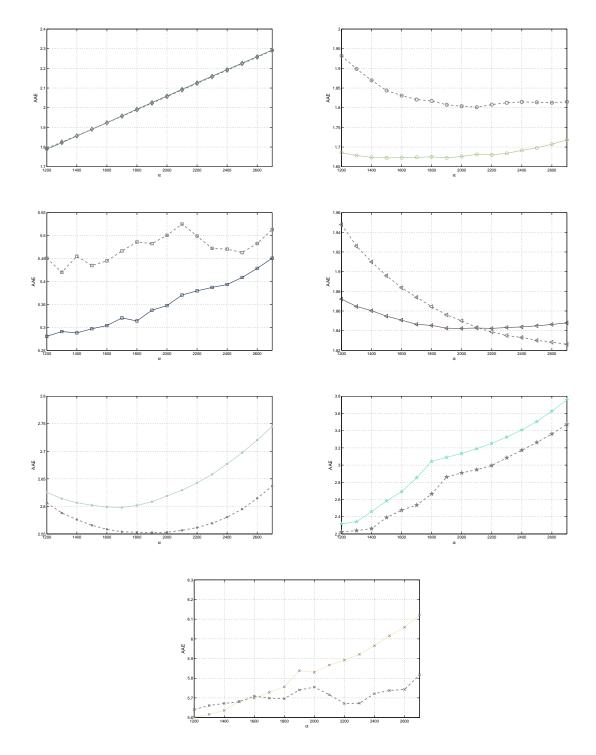
Abbildung 5.37.: Vergleich der durchschnittlichen Ergebnisse von $V_{2b}^{s_{\alpha},n_s}$ (schwarz) und $V_{2c}^{s_{\alpha},n_s}$ (grau) unter Variation von α . Fehlerwerte des AAE (links) und des AEE (rechts). Ausführliche Wertetabelle siehe Anhang A.20 und A.18.

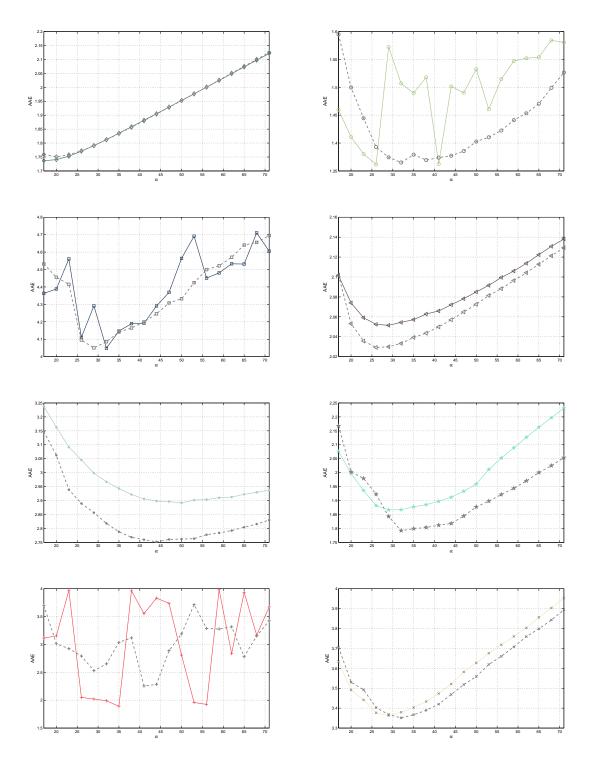

Abbildung 5.38.: Vergleich der durchschnittlichen Ergebnisse von $V_{2c}^{s_{\alpha},s_{\sigma_c},n_s,l_{max}}$ (schwarz) und $V_{2c}^{s_{\alpha},n_s}$ (grau) unter Variation von α . Fehlerwerte des AAE (links) und des AEE (rechts). Ausführliche Wertetabelle siehe Anhang A.21 und A.20.

Parameter	Beschreibung
$\sigma_f^{JTF+CBU}$	Parameter von $\overline{\psi}_f^{jc}$ für JTF und CBU, Standardabweichung des optischen Flusses
$\sigma_c^{JTF+CBU}$	Parameter von $\overline{\psi}^{jc}_c$ für JTF und CBU, Standardabweichung der Farbdifferenzen
$\sigma_d^{JTF+CBU}$	Parameter von $\overline{\psi}_d^{jc}$ für JTF und CBU, Standardabweichung der Distanzen


Tabelle 5.11.: Übersicht aller Einstellungsparameter für JTF und CBU. Die Funktionen $\overline{\psi}_*^{jc}$ werden zur Gewichtung in den Verfahren JTF und CBU eingesetzt und als $\overline{\psi}_f^{jc}(s^2) = \overline{\psi}_c^{jc}(s^2) = \overline{\psi}_d^{jc}(s^2) = e^{-|s|/\sigma_*^{JTF+CBU}}$ definiert. Für alle Testreihen werden die folgenden Einstellungsparameter verwendet: $\sigma_f^{JTF+CBU} = 4$, $\sigma_c^{JTF+CBU} = 5$ und $\sigma_d^{JTF+CBU} = 4$.

5.6. Evaluation mit JTF und CBU


Für alle fünf vorgestellten Verfahren soll geprüft werden ob sich die bisherigen Ergebnisse durch den "Joint Trilateral Flow Filter" und das "Cross Bilateral Upsampling" weiter verbessern lassen. Die Einstellungsparameter und -Werte für neide Verfahren lassen sich aus Tabelle 5.11 entnehmen. Durch JTF und CBU profitiert V_0 von allen Verfahren am meisten: Die ursprünglich leicht verschwommenen Flusskanten von V_0 werden schärfer. Dabei verbessert sich vor allem die *Urban*³ Sequenz (der AAE sinkt um 1°). Auch das Verfahren V_1 profitiert bei drei Sequenzen. Bei drei anderen verschlechtert sich das Ergebnis jedoch. Eine ähnliches Verhalten kann bei V_{2a} beobachtet werden: Bei zwei Sequenzen verbessert sich der optische Fluss, bei vier Sequenzen vergrößern sich die Fehlerwerte. Für die Verfahren V_{2b} und V_{2c} wirken sich JTF und CBU auf nahezu alle Sequenzen negativ aus. Dieses Verhalten lässt sich wie folgt erklären: Bei den Variationsansätzen mit bilateralen Termen (V_1 , V_{2a} , V_{2b} , V_{2c}) werden bereits scharfe Flusskanten erzeugt. Der Einsatz von CBF und CBU führt zum Teil zu einer Überanpassung des optischen Flusses an die Bildkanten. Beim Einsatz von JTF und CBU mit $\eta_w = 0.5$ und damit nur wenigen Warping Schritten profitieren alle Verfahren. Durch das Upsampling mit nur wenigen Warping-Schritten muss der Bildfluss stärker interpoliert werden. Die bisher verwendete flächenbasierte Interpolation bzw. flächenbasierte Mittelung verwischt die Flusskanten beim Hochskalieren. Mit JTB und CBU werden die scharfen Kanten beibehalten und zum Teil durch die Hinzunahme von Bildinformationen verbessert. Für $\eta_w = 0.9$ sind die Sprünge in den Bildgrößen und damit die "Interpolationsleistung" gering: Die Flusskanten werden duch die flächenbasierte Interpolation nur unwesentlich verschlechtert.


Abbildung 5.39.: Vergleich der Ergebnisse für $V_0^{s_\alpha,JTF+CBU}$ (farbig) und $V_0^{\overline{s}_\alpha}$ (grau) unter Variation von α . Testsequenzen von links nach rechts von oben nach unten: $Dimetrodon \diamondsuit$, $Grove_2 \diamondsuit$, $Grove_3 \square$, $Hydrangea \vartriangleleft$, $Rubberwhale \bullet$, $Urban_2 \not \bowtie$, $Urban_3 +$, $Venus \times$. Ausführliche Wertetabelle siehe Anhang A.22 und A.1. Einstellungsparameter conf(2) und conf(1) siehe Anhang Tabelle A.27.

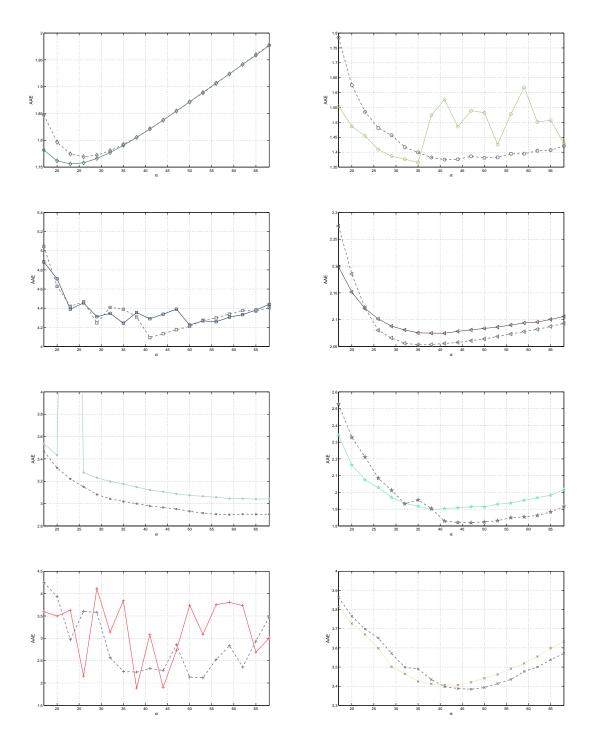

Abbildung 5.40.: Vergleich der Ergebnisse für $V_1^{s_\alpha,n_s,JTF+CBU}$ (farbig) und $V_1^{s_\alpha,n_s}$ (grau) unter Variation von α . Testsequenzen von links nach rechts von oben nach unten: $Dimetrodon \diamondsuit$, $Grove2 \diamondsuit$, $Grove3 \square$, $Hydrangea \diamondsuit$, $Rubberwhale \spadesuit$, $Urban2 \trianglerighteq$, Urban3 +, $Venus \times$. Ausführliche Wertetabelle siehe Anhang A.23 und A.4. Einstellungsparameter conf(4) siehe Anhang Tabelle A.27.

Abbildung 5.41.: Vergleich der Ergebnisse für $V_{2a}^{s_{\alpha},n_s,JTF+CBU}$ (farbig) und $V_{2a}^{s_{\alpha},n_s}$ (grau) unter Variation von α . Testsequenzen von links nach rechts von oben nach unten: $Dimetrodon \diamondsuit$, $Grove_2 \circ$, $Grove_3 \square$, $Hydrange_a \triangleleft$, $Rubberwhale \bullet$, $Urban_2 \not\curvearrowright$, $Venus \times$. Ausführliche Wertetabelle siehe Anhang A.24 und A.16. Einstellungsparameter conf(10) siehe Anhang Tabelle A.27.

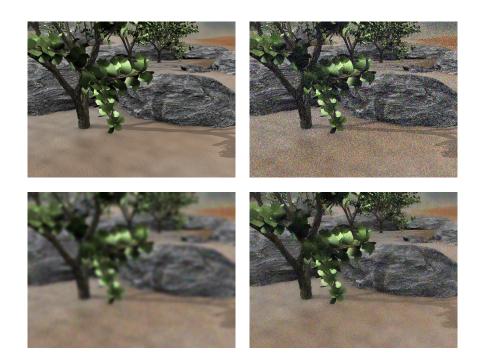

Abbildung 5.42.: Vergleich der Ergebnisse für $V_{2b}^{s_{\alpha},n_s,JTF+CBU}$ (farbig) und $V_{2b}^{s_{\alpha},n_s}$ (grau) unter Variation von α . Testsequenzen von links nach rechts von oben nach unten: $Dimetrodon \diamondsuit$, $Grove2 \circ$, $Grove3 \square$, $Hydrangea \triangleleft$, $Rubberwhale \bullet$, $Urban2 \not\bowtie$, Urban3 +, $Venus \times$. Ausführliche Wertetabelle siehe Anhang A.25 und A.18. Einstellungsparameter conf(11) siehe Anhang Tabelle A.27.

Abbildung 5.43.: Vergleich der Ergebnisse für $V_{2c}^{s_{\alpha},n_s,JTF+CBU}$ (farbig) und $V_{2c}^{s_{\alpha},n_s}$ (grau) unter Variation von α . Testsequenzen von links nach rechts von oben nach unten: $Dimetrodon \diamondsuit$, $Grove2 \circ$, $Grove3 \square$, $Hydrangea \triangleleft$, $Rubberwhale \bullet$, $Urban2 \trianglerighteq$, Urban3 +, $Venus \times$. Ausführliche Wertetabelle siehe Anhang A.26 und A.20. Einstellungsparameter conf(12) siehe Anhang Tabelle A.27.

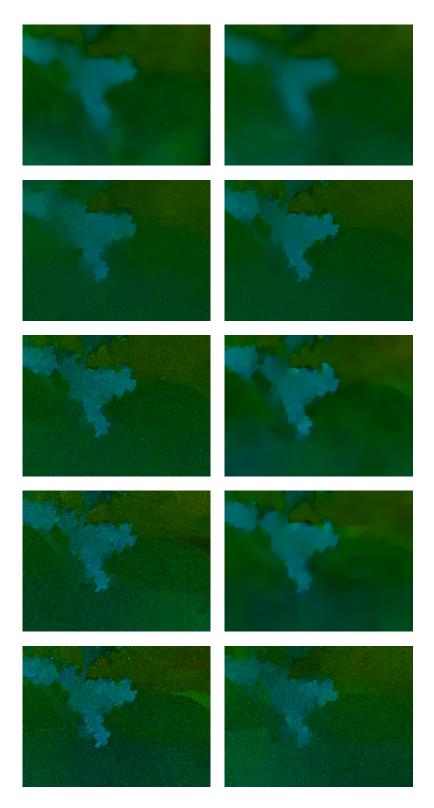
Verfahren	α_{\varnothing}	Error	Dime	Gro2	Gro3	Hydr	Rubb	Urb2	Urb3	Venu	Ø
$V_0^{\overline{s}_lpha}$	90	AAE	2.053	2.007	5.561	2.175	3.910	2.453	4.203	5.063	3.428
$V_0^{s_{lpha},JTF,CBU}$	30	AAE	2.165	1.830	4.945	2.378	4.086	2.590	3.041	4.302	3.167
$V_1^{s_{\alpha},n_s}$	60	AAE	1.814	1.691	4.732	2.094	3.119	1.934	2.572	3.777	2.717
$V_1^{s_{\alpha},n_s,JTF,CBU}$	70	AAE	1.847	1.441	4.470	2.018	3.178	1.909	2.312	3.700	2.609
$V_{2a}^{s_{\alpha},n_s}$	1200	AAE	1.826	1.899	5.420	1.926	2.588	2.239	-	5.661	3.080
$V_{2a}^{s_{\alpha},n_{s},JTF,CBU}$	1200	AAE	1.789	1.686	5.281	1.872	2.626	2.318	-	5.601	3.025
$V_{2b}^{s_{lpha},n_s}$	41	AAE	1.880	1.374	4.199	2.050	2.760	1.812	2.255	3.420	2.469
$V_{2b}^{s_{\alpha},n_{s},JTF,CBU}$	32	AAE	1.813	1.507	4.049	2.054	2.967	1.867	1.990	3.379	2.453
$V_{2c}^{s_{lpha},n_s}$	50	AAE	1.871	1.381	4.210	2.064	2.931	1.824	2.131	3.393	2.476
$V_{2c}^{s_{\alpha},n_{s},JTF,CBU}$	38	AAE	1.805	1.524	4.354	2.075	3.148	1.897	1.887	3.412	2.513
$V_0^{ar{s}_lpha}$	90	AEE	0.109	0.136	0.576	0.183	0.115	0.281	0.444	0.299	0.268
$V_0^{s_{lpha},JTF,CBU}$	50	AEE	0.110	0.125	0.534	0.186	0.117	0.243	0.387	0.284	0.248
$V_1^{s_{\alpha},n_s}$	90	AEE	0.102	0.104	0.436	0.155	0.089	0.205	0.337	0.301	0.216
$V_1^{s_{\alpha},n_s,JTF,CBU}$	50	AEE	0.096	0.112	0.454	0.166	0.102	0.228	0.288	0.270	0.214
$V_{2a}^{s_{\alpha},n_s}$	1200	AEE	0.094	0.136	0.541	0.150	0.079	0.276	-	0.350	0.232
$V_{2a}^{s_{\alpha},n_{s},JTF,CBU}$	1200	AEE	0.094	0.118	0.552	0.148	0.082	0.287	-	0.356	0.234
$V_{2b}^{s_{lpha},n_s}$	41	AEE	0.102	0.096	0.413	0.164	0.086	0.218	0.321	0.275	0.209
$V_{2b}^{s_{\alpha},n_{s},JTF,CBU}$	20	AEE	0.094	0.100	0.487	0.165	0.098	0.224	0.645	0.262	0.259
$V_{2c}^{s_{lpha},n_{s}}$	50	AEE	0.101	0.095	0.412	0.164	0.091	0.220	0.293	0.269	0.206
$V_{2c}^{s_{\alpha},n_{s},JTF,CBU}$	29	AEE	0.096	0.098	0.479	0.166	0.100	0.229	0.890	0.262	0.290

Tabelle 5.12.: Übersicht der Ergebnisse für $V_0^{\bar{s}_{\alpha}}$, $V_1^{s_{\alpha},n_s}$, $V_{2a}^{s_{\alpha},n_s}$, $V_{2b}^{s_{\alpha},n_s}$ und $V_{2c}^{s_{\alpha},n_s}$, jeweils mit und ohne JTF+CBU. Für jedes Verfahren wird ein konstanter α -Wert verwendet, der für alle Bildsequenzen den minimalen durchschnittlichen Fehlerwert liefert.

Abbildung 5.44.: *Grove* Sequenz (links oben Original), unter Einfluss von additivem gaußschen Rauschen mit der Standardabweichung $\sigma_n = 40$ (rechts oben), Filterung des verrauschten Bildes mit Gaußfilter (links unten) und Bilateralfilter (rechts unten).

5.7. Rauschen und Bildglättung

In diesem Abschnitt sollen die vorgestellten Verfahren unter Einfluss von Bildrauschen getestet werden. Auf Grund des Bildrauschens wird der Gauß- oder Bilateralfilter zur Vorfilterung der Eingangsbilder angewendet und die Auswirkungen auf den optischen Fluss miteinander verglichen. Über den Einstellungsparameter σ_n wird die Stärke des zufällig verteilten Rauschens geregelt. Der Parameter σ_g bestimmt die Größe und die Gewichtung des Gaußfilters. Für den Bilateralfilter regelt σ_d die Größe der Nachbarschaft und σ_c die Gewichtung der Farbdifferenz. Für jeden Paramtersatz wurden, wie bisher auch, die α -Werte variiert. Auf die Darstellung aller (mehr als 5000) Berechnungen wurde verzichtet. Stattdessen werden für jeden Paramtersatz der minimale Fehlerwert und der zugehörige α_{opt} -Wert aufgelistet. Alle Berechnungen wurden mit einer Warping-Schrittweite von $\eta_w = 0.5$ durchgeführt, wodurch Rechenzeit gespart werden konnte. Aus diesem Grund sind die Fehlerwerte für die jeweiligen Sequenzen etwas höher als in den vorherigen Berechnungen mit $\eta_w = 0.9$.


Alle vier neuen vorgestellten Verfahren (V_1 bis V_{2c}) liefern unter Einfluss von Rauschen und der Vorfilterung mit dem Gaußfilter weiterhin bessere Ergebnisse. Bei starkem Bildrauschen ($\sigma_n = 40$) und fehlender Bildglättung ($\sigma_g = 0$) sind die Fehlerwerte des Verfahrens von

Zimmer et~al. jedoch geringer, siehe Tabelle 5.13. Für die vier neuen Verfahren (V_1 bis V_{2c}) wird auf Grund der bilateralen Daten- und Glattheitsterme das Bildrauschen an die Flussfelder weitergereicht. Bei V_0 ist das Flussfeld auch ohne Vorfilterung stark geglättet und das gesamte Flussbild verwischt. Bei V_1 bis V_{2c} sind die Flusskanten dagegen gut erkennbar, dass gesamte Flussfeld wird jedoch durch ein additives gaußsches Rauschen mit der Standardabweichung σ_n überlagert, siehe Abbildung 5.45. Ein Unterschied zwischen V_1 , bei dem lediglich der Glattheitsterm einen Bilateralfilter enthält, und die Verfahren V_{2*} ist ebenfalls ersichtlich: Für V_1 wird das Rauschen abgeschwächter an das Flussfeld weitergegeben als für die Verfahren bei denen der Bilateralfilter in beiden Termen enthalten ist. Ohne Bildrauschen liefern alle Verfahren mit einer Bildglättung von $\sigma_g = 0.5$ (für Grove2) und $\sigma_g = 0.0$ (für Rubberwhale) die besten Fehlerwerte. Sobald die Bilder vom Rauschen überlagert werden ist bis auf wenige Ausnahmen $\sigma_g = 1$ ein guter Einstellungswert.

Beim Einsatz des Bilateralfilters zur Vorfilterung beeinflussen zwei Einstellungsparameter des Filters (σ_d , σ_c) das Resultat. Für die *Grove2* Sequenz und das Basisverfahren V_0 soll vorab getestet werden bei welchem Wert der Einstellungsparameter σ_c gute Ergebnisse liefert. Es ist zu beachten, dass für große Werte σ_c der Bilateralfilter dem Gaußfilter immer ähnlicher wird. Die besten Resultate konnten durch große σ_c -Werte (160, 320) erzielt werden, womit die Farbdifferenz nur einen geringen Einfluss hat. Der durchschnittliche Fehlerwert war bei der Gruppierung der σ_c -Werte jedoch bei Werten zwischen 10-80 am besten.

Für die Testreihe mit dem Bilateralfilter wurde $\sigma_c=80$ gewählt. Damit haben die Farbunterschiede keinen zu großen Einfluss, jedoch ist dieser noch groß genug um als Bilateralfilter interpretiert werden zu können, sowie klein genug um das Rauschen zu reduzieren. Wie auch beim Gaußfilter sollen auch hier bei unterschiedlich starkem Rauschen σ_n und Filtergröße σ_d alle Variationsansätze getestet werden. Ohne Bildrauschen $\sigma_n=0$ liefern alle Verfahren für $\sigma_d=1$, genauso wie beim Gaußfilter, die besten Ergebnisse bei der *Grove2* Sequenz (bei *Rubberwhale* $\sigma_d=0$). Mit steigendem Rauschen verschiebt sich der optimale Einstellungswert σ_d von 1 nach 4 und 7. Damit unterscheidet sich das Verhalten des Bilateralfilters zum Gaußfilter, bei dem $\sigma_d=1$ für jedes getestete Bildrauschen gute Ergebnisse hervorbrachte. Die Fehlerwerte von V_1 , V_{2a} , V_{2b} und V_{2c} sind besser als beim Basisverfahren V_0 , siehe türkise Markierung Tabelle 5.16 und 5.17.

In Tabelle 5.18 werden jeweils die besten Ergebnisse für den Gauß- und Bilateralfilter gegenüber gestellt. Für die *Grove*2 Sequenz liefert der Gaußfilter durchschnittlich die besseren Ergebnisse. Bei der *Rubberwhale* Sequenz ist das Ergebnis nicht ganz eindeutig. Zwei Verfahren profitieren im Schnitt durch die Vorfilterung mit dem Bilateralfilter, bei den drei anderen durch die Anwendung des Gaußfilters.

Abbildung 5.45.: Vergleich der Flussfelder für die *Grove*2 Sequenz. Von oben nach unten: $V_0^{s_\alpha}$, $V_1^{s_\alpha,n_s}$, $V_{2a}^{s_\alpha,n_s}$, $V_{2b}^{s_\alpha,n_s}$ und $V_{2c}^{s_\alpha,n_s}$ mit $\eta_w=0.5$. Eingangsbilder werden mit additivem gaußschem Rauschen mit der Standardabweichung $\sigma_n=40$ überlagert. Links $\sigma_g=0$, rechts $\sigma_g=4$. Eingangsbilder wurden mit dem Gaußfilter mit der Standardabweichung $\sigma_g=0$ (links) und Standardabweichung $\sigma_g=4$ (rechts) gefiltert.

			V_0		V_1	V	7 2a		V_{2b}	,	V_{2c}
σ_n	σ_g	α_{opt}	AAE	α_{opt}	AAE	α_{opt}	AAE	α_{opt}	AAE	α_{opt}	AAE
0	0.0	50	2.495	150	1.928	2600	2.609	35	1.665	47	1.682
0	0.5	50	2.307	150	1.772	2400	2.276	35	1.554	47	1.576
О	1.0	70	2.349	130	1.807	1400	2.091	35	1.622	55	1.631
0	1.5	90	2.770	110	2.215	1200	2.580	45	2.027	55	2.031
О	2.0	110	3.223	110	2.649	1200	3.255	45	2.484	63	2.502
О	3.0	150	3.982	130	3.427	1200	4.425	55	3.376	71	3.393
О	4.0	170	4.597	130	4.045	1200	5.309	65	4.056	71	4.100
10	0.0	70	3.806	150	3.287	1800	4.124	35	3.114	47	2.967
10	0.5	70	3.639	130	3.160	2000	3.685	25	2.877	31	2.819
10	1.0	90	3.579	90	3.152	1400	3.576	25	2.696	31	2.868
10	1.5	130	3.848	90	3.396	1200	3.988	45	3.204	39	2.997
10	2.0	130	4.265	70	3.731	1200	4.579	25	3.515	71	3.395
10	3.0	170	4.803	110	4.310	1200	5.482	45	4.274	63	4.207
10	4.0	150	5.420	90	4.609	1200	6.030	45	5.020	71	4.721
20	0.0	50	5.234	230	5.146	2200	5.892	55	5.653	63	5.810
20	0.5	70	4.894	170	4.385	2400	5.058	45	4.260	47	4.278
20	1.0	90	4.806	110	4.046	1200	4.583	25	3.926	47	4.053
20	1.5	110	4.757	110	4.325	1600	4.797	35	4.209	39	4.145
20	2.0	210	5.237	70	4.444	1400	5.127	45	4.495	55	4.256
20	3.0	190	5.688	110	5.056	1400	6.119	35	4.859	71	5.180
20	4.0	150	6.465	90	5.601	1200	6.344	65	5.645	47	5.493
40	0.0	70	6.696	250	10.721	2600	8.099	45	12.781	55	12.327
40	0.5	50	6.462	250	6.743	2200	6.815	65	8.281	71	8.711
40	1.0	150	6.192	110	5.426	2000	5.855	55	5.501	71	5.376
40	1.5	70	6.370	130	5.644	1200	6.048	55	5.513	55	5.341
40	2.0	170	6.635	90	5.484	1800	6.026	55	5.226	71	5.418
40	3.0	190	6.900	90	5.940	1200	6.587	55	6.295	63	5.809
40	4.0	170	7.282	90	6.580	1400	7.505	45	7.118	71	6.531
	Ø		4.811		4.394		4.959		4.473		4.415

Tabelle 5.13.: Übersicht der Ergebnisse für $V_0^{s_\alpha}$, $V_1^{s_\alpha,n_s}$, $V_{2a}^{s_\alpha,n_s}$, $V_{2b}^{s_\alpha,n_s}$ und $V_{2c}^{s_\alpha,n_s}$ unter Einfluss von Gauß-Rauschen mit $\sigma_n = \{0,10,20,40\}$ unter Variation von α für die *Grove2* Sequenz. Bildglättung durch den Gaußfilter mit Einstellungsparameter σ_g . Die minimalen Fehlerwerte und zugehörigen α -Werte (α_{opt}) sind aufgeführt.

			V_0		V_1	I	V_{2a}		V_{2b}		V_{2c}
σ_n	σ_g	α_{opt}	AAE	α_{opt}	AAE	α_{opt}	AAE	α_{opt}	AAE	α_{opt}	AAE
0	0.0	70	3.799	150	2.984	1600	2.624	45	2.741	63	2.794
О	0.5	70	3.996	130	3.052	1400	2.655	55	2.775	63	2.893
О	1.0	90	5.262	150	3.882	1200	3.472	55	3.468	71	3.654
О	1.5	90	7.125	130	4.977	1200	4.776	65	4.451	71	4.739
0	2.0	110	9.269	150	6.255	1200	6.408	65	5.646	71	6.026
0	3.0	190	13.166	190	8.880	1200	9.127	65	8.445	71	8.973
О	4.0	250	15.751	250	10.354	1200	10.588	65	10.641	71	11.463
10	0.0	50	10.093	150	7.560	1800	7.960	45	7.668	47	7.285
10	0.5	50	9.631	90	7.070	1600	7.249	35	7.038	47	7.046
10	1.0	70	9.416	70	6.864	1400	6.836	35	6.796	47	6.818
10	1.5	110	10.259	170	8.143	1200	7.927	45	7.607	55	8.006
10	2.0	130	11.768	130	8.984	1200	9.148	45	8.534	63	8.975
10	3.0	190	14.216	250	10.575	1200	10.743	45	10.722	63	10.602
10	4.0	250	16.206	230	11.257	1400	11.487	65	12.293	71	12.254
20	0.0	30	14.280	250	11.769	2200	11.072	65	13.092	71	14.728
20	0.5	50	13.649	150	10.106	2400	10.400	35	10.768	63	11.104
20	1.0	70	13.457	170	9.857	2400	9.685	65	11.282	71	10.487
20	1.5	110	13.598	70	10.151	1600	10.005	35	10.593	63	10.947
20	2.0	170	14.407	150	10.506	1400	10.935	65	11.083	55	11.686
20	3.0	230	15.673	150	12.024	2000	12.098	55	12.437	63	12.464
20	4.0	250	17.348	250	13.351	1400	13.398	35	15.275	71	14.196
40	0.0	70	17.852	250	25.692	2400	18.040	35	29.603	47	31.215
40	0.5	70	18.182	250	16.451	2600	14.180	65	21.826	71	22.863
40	1.0	90	17.369	230	13.540	1600	12.496	35	14.474	63	15.374
40	1.5	190	18.481	130	13.352	1600	12.728	55	14.475	47	16.930
40	2.0	170	17.889	230	14.369	2600	13.673	65	16.667	47	15.125
40	3.0	250	19.021	170	15.100	1400	13.920	25	20.104	71	16.931
40	4.0	150	19.751	190	14.929	2400	14.869	55	18.792	71	16.776
	Ø		13.247		10.430		9.946		11.403		11.513

Tabelle 5.14.: Übersicht der Ergebnisse für $V_0^{s_\alpha}$, $V_1^{s_\alpha,n_s}$, $V_{2a}^{s_\alpha,n_s}$, $V_{2b}^{s_\alpha,n_s}$ und $V_{2c}^{s_\alpha,n_s}$ unter Einfluss von Gauß-Rauschen mit $\sigma_n = \{0,10,20,40\}$ unter Variation von α für die *Rubberwhale* Sequenz. Bildglättung durch den Gaußfilter mit Einstellungsparameter σ_g . Die minimalen Fehlerwerte und zugehörigen α-Werte (α_{opt}) sind aufgeführt.

σ_n	σ_d	σ_c	= 10	σ_c	= 20	σ_c	= 40	σ_c	= 80	σ_c =	= 160	σ_c =	= 320
		α_{opt}	AAE										
0	О	50	2.495	50	2.495	50	2.495	50	2.495	50	2.495	50	2.495
0	1	50	2.495	50	2.467	50	2.403	70	2.299	70	2.224	70	2.211
0	2	50	2.530	50	2.534	70	2.533	70	2.515	90	2.542	90	2.624
0	4	50	2.543	50	2.575	50	2.640	70	2.869	90	3.231	130	3.562
0	7	50	2.550	50	2.581	50	2.649	50	3.021	90	3.666	150	4.253
0	10	50	2.548	50	2.580	50	2.643	50	3.019	90	3.799	130	4.626
10	О	50	3.775	50	3.809	50	3.704	70	3.846	50	3.701	50	3.771
10	1	50	3.765	50	3.671	70	3.649	50	3.520	70	3.532	70	3.447
10	2	50	3.762	50	3.558	50	3.656	90	3.598	110	3.678	110	3.763
10	4	70	3.841	70	3.694	70	3.630	90	3.728	110	4.204	130	4.455
10	7	50	3.678	50	3.620	70	3.809	70	3.902	190	4.509	170	4.980
10	10	50	3.631	50	3.607	50	3.660	110	3.941	110	4.735	170	5.422
20	О	50	5.038	70	5.100	50	4.874	50	5.125	50	5.120	90	5.078
20	1	70	5.149	90	5.075	90	5.037	70	4.781	90	4.735	90	4.767
20	2	70	5.195	70	4.915	50	4.845	110	4.791	130	4.613	110	4.838
20	4	90	5.071	70	4.939	70	4.979	110	4.941	170	5.029	210	5.345
20	7	90	5.257	50	4.945	90	4.740	90	4.809	170	5.407	150	5.782
20	10	70	4.935	90	5.048	70	4.795	70	4.930	130	5.203	130	5.996
40	О	50	6.764	50	6.846	50	6.846	70	6.879	70	6.532	90	6.358
40	1	110	6.738	70	6.922	130	6.740	90	6.676	50	6.941	130	6.522
40	2	110	7.060	110	6.804	110	7.021	90	6.692	110	6.683	70	6.470
40	4	130	7.031	90	6.889	90	6.350	110	6.713	90	6.235	150	6.966
40	7	50	6.558	50	6.700	90	6.449	90	6.399	130	6.489	170	6.952
40	10	70	6.635	90	6.561	50	6.774	130	6.536	150	6.557	130	7.274
	7		4.543		4.497		4.455		4.501		4.661		4.915

Tabelle 5.15.: Übersicht der Ergebnisse für $V_0^{s_\alpha}$ unter Einfluss von Gauß-Rauschen mit der Standardabweichung $\sigma_n = \{0, 10, 20, 40\}$. Zur Vorfilterung wird der Bilateralfilter mit unterschiedlichen Parametereinstellungen (σ_c, σ_d) unter Variation von α für die *Grove2* Sequenz getestet. Die minimalen Fehlerwerte und zugehörigen α -Werte (α_{opt}) sind aufgeführt.

σ_n	σ_d		V_0		V_1	V	7 2a		V_{2b}		V_{2c}
		α_{opt}	AAE	α_{opt}	AAE	α_{opt}	AAE	α_{opt}	AAE	α_{opt}	AAE
0	О	50	2.495	150	1.928	2600	2.609	35	1.665	47	1.682
0	1	70	2.299	130	1.767	2400	2.362	35	1.533	47	1.545
0	2	50	3.019	110	2.427	1200	3.936	35	1.687	47	1.688
0	4	70	2.515	130	1.921	1600	2.612	35	2.068	47	2.071
О	7	70	2.869	130	2.198	1200	3.365	35	2.243	47	2.256
0	10	50	3.021	110	2.374	1200	3.727	35	2.325	47	2.333
10	0	50	3.830	150	3.272	2600	4.186	35	3.079	47	3.057
10	1	50	3.572	110	3.125	2200	3.891	25	2.861	39	2.820
10	2	70	4.125	110	3.227	1400	4.927	25	2.708	39	2.652
10	4	70	3.636	110	3.169	1400	3.972	25	2.733	39	2.780
10	7	90	3.845	130	3.333	1400	4.655	35	2.873	39	2.871
10	10	90	3.905	90	3.330	1400	4.704	25	2.914	39	2.949
20	О	50	4.969	190	5.101	1800	5.678	65	5.563	55	5.741
20	1	90	4.977	110	4.529	2000	5.281	65	4.551	63	4.529
20	2	90	4.873	90	4.328	1600	5.797	65	4.388	47	3.853
20	4	70	4.852	110	4.198	2000	5.010	35	3.809	63	4.090
20	7	90	4.870	110	4.215	1200	5.219	25	4.136	47	3.650
20	10	50	4.924	130	4.375	1600	5.655	25	3.940	71	4.243
40	О	110	7.028	250	10.586	2600	8.196	65	11.949	71	12.098
40	1	70	6.695	230	8.442	2400	7.343	65	10.036	63	10.206
40	2	50	6.321	150	6.429	2600	6.938	25	9.808	15	11.669
40	4	110	6.631	210	6.843	2400	6.855	55	6.784	47	6.857
40	7	70	6.858	190	6.132	1800	6.604	45	6.628	71	6.396
40	10	50	6.430	230	6.263	2600	6.791	55	6.392	63	6.744
	Ø		4.523		4.313		5.013		4.445		4.532

Tabelle 5.16.: Übersicht der Ergebnisse für $V_0^{s_\alpha}$, $V_1^{s_\alpha,n_s}$, $V_{2a}^{s_\alpha,n_s}$, $V_{2b}^{s_\alpha,n_s}$ und $V_{2c}^{s_\alpha,n_s}$ unter Einfluss von Gauß-Rauschen $\sigma_n = \{0,10,20,40\}$ unter Variation von α für die *Grove*2 Sequenz. Bildglättung durch den Bilateralfilter mit den Einstellungsparameter σ_d und $\sigma_c = 80$. Die minimalen Fehlerwerte und zugehörigen α-Werte (α_{opt}) sind aufgeführt.

σ_n	σ_d		V_0		V_1	1	V_{2a}		V_{2b}		V_{2c}
		α_{opt}	AAE	α_{opt}	AAE	α_{opt}	AAE	α_{opt}	AAE	α_{opt}	AAE
0	О	70	3.799	150	2.984	1600	2.624	45	2.741	63	2.794
0	1	70	4.394	130	3.326	1400	2.880	55	3.042	63	3.180
0	2	90	6.348	130	4.427	1200	3.997	55	4.116	71	4.353
0	4	90	10.448	110	6.693	1200	6.890	55	6.375	71	6.791
0	7	90	12.693	130	7.899	1200	8.172	65	7.493	71	8.075
0	10	90	13.014	90	7.506	1200	7.901	45	6.878	63	7.465
10	О	50	9.711	190	7.722	2600	7.933	35	7.404	55	6.998
10	1	70	9.311	90	7.339	1600	7.092	35	6.716	47	7.079
10	2	90	10.063	90	7.708	1200	7.564	35	7.285	63	7.471
10	4	110	12.923	110	9.680	1200	9.351	55	9.653	47	9.845
10	7	130	14.179	230	10.670	1200	10.083	65	10.806	71	10.961
10	10	90	14.831	130	10.062	1200	9.897	55	10.785	71	9.880
20	О	70	14.129	190	11.809	2600	11.667	55	12.972	63	13.882
20	1	50	13.123	230	10.238	2200	10.122	65	11.720	63	11.808
20	2	70	13.755	170	10.776	1800	10.607	35	11.158	47	11.023
20	4	90	14.794	150	11.220	1400	11.470	45	11.534	47	12.157
20	7	130	16.000	250	11.848	1600	11.624	55	12.962	63	12.051
20	10	110	15.967	130	11.909	2400	11.559	55	12.532	55	13.119
40	О	130	18.492	250	25.386	2600	18.609	45	30.588	63	32.053
40	1	70	17.708	250	20.370	2600	15.663	55	24.914	71	25.790
40	2	150	18.313	230	16.665	2400	14.554	45	20.903	39	17.646
40	4	90	17.607	250	15.615	2400	14.585	45	22.861	39	13.123
40	7	110	18.803	230	14.049	2400	14.585	55	18.714	63	18.178
40	10	130	18.596	230	15.374	2200	14.765	45	14.508	55	16.520
<u> </u>	Ø		13.292		10.886		10.175		12.027		11.760

Tabelle 5.17.: Übersicht der Ergebnisse für $V_0^{s_\alpha}$, $V_1^{s_\alpha,n_s}$, $V_{2a}^{s_\alpha,n_s}$, $V_{2b}^{s_\alpha,n_s}$ und $V_{2c}^{s_\alpha,n_s}$ unter Einfluss von Gauß-Rauschen $\sigma_n=\{0,10,20,40\}$ unter Variation von α für die *Rubberwhale* Sequenz. Bildglättung durch den Bilateralfilter mit den Einstellungsparameter σ_d und $\sigma_c=80$. Die minimalen Fehlerwerte und zugehörigen α -Werte (α_{opt}) sind aufgeführt.

	V	70	V	7 1	V	, 2a	V	2 <i>b</i>	V	2 <i>c</i>
σ_n	Gauss	Bil.	Gauss	Bil.	Gauss	Bil.	Gauss	Bil.	Gauss	Bil.
0	2.307	2.299	1.772	1.767	2.091	2.362	1.554	1.533	1.576	1.545
10	3.579	3.572	3.152	3.125	3.576	3.891	2.696	2.708	2.819	2.652
20	4.757	4.852	4.046	4.198	4.583	5.010	3.926	3.809	4.053	3.650
40	6.192	6.321	5.426	6.132	5.855	6.604	5.501	6.392	5.341	6.396
Ø	4.209	4.261	3.599	3.806	4.026	4.467	3.419	3.611	3.447	3.561
О	3.799	3.799	2.984	2.940	2.624	2.624	2.741	2.741	2.794	2.794
10	9.416	9.311	6.864	7.722	6.836	7.092	6.796	6.716	6.818	6.998
20	13.457	13.123	9.857	10.238	9.685	10.122	10.593	11.158	10.487	11.023
40	17.369	17.607	13.352	14.049	12.496	14.554	14.474	14.508	15.374	13.123
Ø	11.010	10.960	8.264	8.737	7.910	8.598	8.651	8.781	8.871	8.485

Tabelle 5.18.: Vergleich der Ergebnisse für $V_0^{s_\alpha}$, $V_1^{s_\alpha,n_s}$, $V_{2a}^{s_\alpha,n_s}$, $V_{2b}^{s_\alpha,n_s}$ und $V_{2c}^{s_\alpha,n_s}$ für die *Grove2* Sequenz (oberer Tabellenteil), *Rubberwhale* (unterer Tabellenteil) unter Einfluss von Gauß-Rauschen mit $\sigma_n = \{0,10,20,40\}$. Die minimalen Fehlerwerte für den Gauß- und den Bilateralfilter aus den Tabellen 5.13, 5.14, 5.16 und 5.17 werden verglichen.

5.8. Vergleich mit aktuellen Verfahren (Middelbury)

Bisher wurden die vorgestellten Verfahren lediglich mit dem Basisverfahren von Zimmer et al. aus dem Jahr 2011 und untereinander verglichen. In diesem Abschnitt soll die Variante V_{2b} , welche im Vergleich zu den anderen Verfahren V_1 , V_{2a} und V_{2c} die besten Ergebnisse lieferte, mit aktuellen Verfahren verglichen werden. Für den Vergleich wurde die http://vision. middlebury.edu/ Webseite genutzt [BSL $^+$ 11]. Mit dem bilateralen Variationsansatz V_{2b} wurde von insgesamt 12 Sequenzen der optische Fluss berechnet und mit allen bisher veröffentlichten Verfahren verglichen. Die Ergebnisse und das Ranking lassen sich für die jeweiligen Fehlerwerte aus der Abbildung 5.46 und 5.47 entnehmen. Zusammenfassend lässt sich sagen, dass das Verfahren V_{2b} mit dem bilateralen Daten- und Glattheitsterm auf Grund der Fehlerwerte des AAE und des AEE im guten Mittelfeld landet und für die Interpolationsfehler sich sogar unter den besten 15 Verfahren positioniert. Wie bereits im Einführungskapitel erwähnt wurde, lassen sich Verfahren zur Brechnung des optischen Flusses auch zur Interpolation von Bildframes einsetzten. Als Ergebnis ist nicht mehr das Flussfeld, sondern das aus dem Flussfeld und dem Referenzbild erzeugte Frame von zentraler Bedeutung. Als Fehlmaß werden dazu die Abweichungen des quadratischen Mittels zwischen dem interpolierten Bild und dem Ground-*Truth-*Bild berechnet [BSL⁺11].

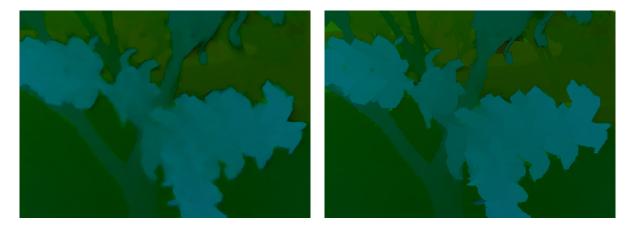
Average		(41:-	Army			Mequon			cheffle			Voode den tex			Grove Synthe			Urbai Synthe			osemit Syntheti			Teddy (Stereo	
angle error	avo.	(HIII		im1		oen textu im0 in		(HIG		ture) im1	GT		ture) im1	GT GT						GT (S		o) im1	GT		
61101	rank	all	disc	_	all		intext	all	_	untext	all	_	untext	_	disc	_	_	disc	_	all	_	untext	_	_	unte
IVANN [87]	3.5	2.69 1	7.56 2	1.98 2	1.97 s	7.013	1.594	2.18 1	5.36 2	1.53 3	1.87 2	9.143	1.06 4	2.28 1	2.94	1.57 1	2.39 5	6.78	2.156	2.00 10	3.36 12	1.62 11	0.99 1	2.16	0.57
NN-field [71]	7.1	2.89 6	8.13 1	2.114	2.10 5	7.15 6 1	.77 12	2.27 3	5.594	1.617	1.58 1	8.52 2	0.79 1	2.35 3	3.054	1.60 3	1.89 1	5.20	1.37 1	2.43 32	3.70 35	1.95 23	1.01 2	2.25 2	0.53
OFLAF [77]	8.6	3.04 12	7.80 6	2.40 11	2.146	7.024	1.728	2.25 2	5.32 1	1.564	2.62 12	13.7 14	1.37 15	2.35 3	3.13	1.624	2.98 13	7.731	2.57 12	2.08 13	3.27 8	2.05 25	1.33 s	2.434	1.40
nLayers [57]	11.5	2.80 4	7.42 1	2.206	2.71 21	7.247 2	.55 44	2.61 s	6.247	2.45 37	2.30 7	12.7 s	1.166	2.30 2	3.02	1.70 5	2.62 s	6.95	2.09 5	2.29 26	3.46 17	1.89 20	1.38 10	3.06 1	1.29
MDP-Flow2 [68]	12.9	3.23 25	7.939	2.60 16	1.92 1	6.641	1.52 1	2.46 6	5.916	1.56 4	3.05 30	15.8 34	1.51 28	2.77 18	3.50 1	4 2.16 18	2.86 11	8.581	2 2.70 18	2.00 10	3.50 22	1.599	1.286	2.677	0.89
MROF [90]	13.1	2.78 ₃	8.20 1	2.05 3	2.044	7.31 a	1.667	2.557	6.78 10	1.617	2.246	13.19	1.01 3	2.71 16	3.56 1	6 2.10 14	3.55 34	12.43	5 3.22 39	2.19 21	3.60 30	1.548	1.32 7	2.919	1.13
TC/T-Flow [76]	15.6	2.69 1	7.75 s	1.87 1	2.76 24	10.2 30	1.73 9	3.33 15	9.01 21	1.49 1	2.86 24	16.7 42	1.21 8	2.60 10	3.49 1	3 1.90 a	2.21 ₃	7.65	2.044	1.846	3.236	3.14 65	2.03 30	4.53 3	1.49
FC-2Layers-FF [74]	17.2	3.02 11	7.87 s	2.61 17	2.72 22	9.35 23 2	.29 28	2.36 4	5.47 3	2.15 22	2.48 s	12.67	1.289	2.49 7	3.19	2.03 13	3.39 24	8.921	3 2.83 26	2.83 51	3.92 46	2.80 47	1.25 s	2.57 €	1.20
Layers++ [37]	18.5	3.11 14	8.22 1	2.79 29	2.43 14	7.02 4 2	.24 23	2.43 5	5.77 5	2.18 25	2.13 5	9.714	1.15 s	2.35 s	3.02	1.969	3.81 37	11.43	0 3.22 39	2.74 47	4.01 51	2.35 34	1.45 11	3.05 1	1.79
Efficient-NL [60]	19.6	2.99 10	8.23 1	2.287	2.72 22	8.95 21 2	.25 26	3.81 27	9.87 26	2.07 20	2.77 22	14.3 20	1.46 23	2.61 11	3.48 1	2 1.96 9	3.31 at	8.33	2.59 14	2.60 40	3.75 36	2.54 39	1.60 16	3.02 1	1.66
LME [70]	19.6	3.15 18	8.04 1	2.319	1.95 2	6.652	1.594	4.03 32	9.31 22	4.57 66	2.69 17	13.6 12	1.42 17	2.85 24	3.61 1	9 2.42 32	3.47 31	12.83	s 3.17 ss	2.12 18	3.53 25	1.73 13	1.349	2.75	1.18
AGIF+OF [85]	19.6	3.06 13	8.20 1	2.55 15	3.17 40	10.6 33 2	.46 40	3.46 20	8.97 20	2.24 27	2.61 10	13.7 14	1.33 12	2.63 13	3.461	1 2.11 15	2.88 12	8.341	0 2.35 9	2.10 16	3.56 26	2.09 27	1.80 23	3.68 z	2.24
FESL [72]	19.9	2.96 8	7.70 3	2.54 13	3.26 48	10.4 31 2	.56 45	3.25 13	8.39 13	2.17 23	2.56 9	13.2 10	1.31 11	2.57 9	3.40 1	0 2.12 17	2.607	7.65	2.307	2.64 44	4.22 58	2.47 36	1.75 21	3.49 a	1.71
ALD-Flow [66]	20.4	2.82 5	7.867	2.16 5	2.84 28	10.1 28 1	.86 14	3.73 25	10.4 28	1.67 10	3.10 32	16.8 43	1.289	2.69 15	3.60 1	8 1.857	2.799	11.32	9 2.32 8	2.07 12	3.257	3.10 63	2.03 30	5.11 3	1.94
IROF++ [58]	21.0	3.17 20	8.69 2	2.61 17	2.79 25	9.61 24 2	.33 29	3.43 17	8.86 17	2.38 32	2.87 25	14.8 25	1.52 29	2.74 17	3.57 1	7 2.19 19	3.20 17	9.70 2	1 2.71 19	1.969	3.45 16	1.22 5	1.80 23	4.06 2	2.50
Classic+CPF [83]	21.9	3.14 16	8.60 1	2.63 21	3.03 38	10.6 33 2	.33 29	3,66 22	9.58 23	2.20 26	2.61 10	14.1 18	1.34 13	2.68 14	3.53 1	5 2.21 20	2.85 10	7.95	2.38 10	2.44 34	3,49 20	2.90 56	1.67 19	3.40 1	2.43
Sparse-NonSparse [56]	22.5	3.14 16	8.75 2	3 2.76 28	3.02 36	10.6 33 2	.43 35	3,45 19	8.96 18	2.36 30	2.66 14	13.7 14	1.42 17	2.85 24	3.75 2	6 2.33 24	3.28 19	9.40 1	8 2.73 20	2.42 31	3.319	2.69 44	1.47 12	3.07 1	1.66
TC-Flow [46]	_	_		2.34 10	_	8.77 18 1	_	_			_			_		5 1.96 9	_			_	3,43 15	_	_		
LSM [39]	24.1	3.12 15	8.62 2	2.75 27	3.00 35	10.5 32 2	.44 37	3.43 17	8.85 16	2.35 29	2.66 14	13.6 12	1.44 19	2.82 21	3.682	1 2.36 26	3.38 23	9.41 1	9 2.81 24	2.69 46	3.52 23	2.84 50	1.59 15	3.38 1	1.80
Correlation Flow [75]	24.8	3.38 31	8.40 1	2.64 22	2.238	7.54 10	1.56 s	5.14 42	13.1 43	1.60 6	2.094	8.151	1.35 14	3.12 34	4.09 3	8 2.34 25	4.01 44	11.53	2 4.00 55	2.59 39	3.61 31	3.00 61	1.49 13	3.04 1	1.42
Ramp [62]	_	_			_	10.1 28 2	_				_			_			_			_	3.38 14		_		
COFM [59]	26.1	3.17 20	9.90 4	2.46 12	2.41 13	8.34 16 1	.92 16	3.77 26	10.5 29	2.54 40	2.71 19	14.9 27	1.197	3.08 32	3.92 3	1 3.25 61	3.83 3	10.92	5 3.15 35	2.20 23	3.35 10	2.91 58	1.62 18	2.56 5	2.09
PMF [73]	26.4	3.61 35	9.07 2	2.62 19	2.40 11	8.05 12 1	.83 13	2.61 8	6.27 s	1.65 9	3.35 41	15.431	1.58 33	2.548	3.27	1.716	3.59 35	11,12	8 3,46 45	4.07 78	6.18 88	4.02 79	1.06 3	2.383	1.25
Classic+NL [31]	27.6	3.20 24	8.72 2	2.81 30	3.02 36	10.6 33 2	.44 37	3,46 20	8.84 15	2.38 32	2.78 23	14.3 20	1.46 23	2.83 23	3.68 2	1 2.31 23	3,40 25	9.091	5 2.76 22	2.87 53	3.82 41	2.86 53	1.67 19	3.53 2	2.26
TV-L1-MCT [64]	28.2	3.16 19	8.48 1	3 2.71 24	3.28 49	10.8 42 2	.60 49	3.95 31	10.5 29	2.38 32	2.69 17	13.9 17	1.45 22	2.94 28	3.792	7 2.63 43	3.50 32	9.752	2 3.06 33	2.08 13	3,35 10	2.29 31	1.95 27	3.89 2	2.71
SimpleFlow [49]	_	_			_	10.7 39 2	_	_			_			_			_			_	3,46 17	2.24 30	1.60 16	3.56 z	1.57
CostFilter [40]	31.9	3.84 39	9.64 3	3.06 38	2.55 19	8.09 13 2	.03 19	2.69 10	6.479	1.88 15	3.66 47	16.8 43	1.88 44	2.62 12	3.34	1.99 12	4.05 45	11.02	7 3,65 51	4.16 80	7.18 93	4.66 81	1.164	3.36 1	0.87
2DHMM-SAS [94]	_	_			_	11.5 49 2	_	5.19 43	12.2 37	2.73 45	2.92 27	15.2 29	1.53 30	2.79 20	3.65 2	0 2.27 21	3.45 29	9.34 1	7 2.78 23	2.66 45	3.56 26	3.07 62	2.34 36	5.123	2.97
MDP-Flow [26]	_	_			_	7.36 9 2	_	_			_			_		9 2.60 40	_			_			_		
MLDP OF I911	_	_		3.60 54	_	7.70 11 1	_	_			_			_			_		4 3.79 52	_	4.20 56		_		
S2D-Matching [84]	33.9	3.36 28	9.66 3	7 2.86 31	3.19 43	11.1 45 2	.46 40	4.86 3	12.9 42	2.47 38	2.67 16	13.2 10	1.44 19	2.87 26	3.722		_		3 2.95 30	_	3.79 39		1.95 27		
IROF-TV [53]	34.4	3.40 32	9.29 3	2.95 34	_	11.1 45 2	_	_			_			_			4.47 51	16.0 s	9 3.53 47	1.70 3	3.21 5	1.123	1.91 26	4.75 3	2.19
Nachbauer [95]	_	_			_	14.7 67 4	_	=			_			_		1.582	_		1.73 2	2.27 25			_		
NL-TV-NCC [25]	_	_		2.98 35	_	9.69 25 1	_	_			_			_		4 2.47 34	_			_	4.57 66	_	_		
Sparse Occlusion [54]	_					9.08 22 2											_				6.32 89				
OFH [38]	_	_			_	11.0 44 2		_			_			_			_			_	3,62 32		_		
Average			Army	,		Meauon		S	cheffle	ra	Ι ν	Voode	n		Grove	е		Urbai	n	Y	osemit	te		Tedd	,
endpoint		/Hid	iden te			den textu			iden tex			den tex			Synthe			Synthe			Syntheti			(Stered	

Average		Army (Hidden texture)	Mequon (Hidden texture)	Schefflera (Hidden texture)	Wooden (Hidden texture)	Grove (Synthetic)	Urban (Synthetic)	Yosemite (Synthetic)	Teddy (Stereo)
endpoint error	avo.	GT im0 im1	GT im0 im1	GT im0 im1	GT im0 im1	GT im0 im1	GT im0 im1	GT im0 im1	GT im0 im1
61101	rank	all disc untext		all disc untext	all disc untext		all disc untext		
IVANN [87]	2.6	0.07 1 0.20 2 0.05 1	0.15 1 0.51 3 0.12 s	0.18 1 0.37 1 0.14 1	0.10 2 0.49 3 0.06 2	0.41 1 0.61 1 0.21 2	0.232 0.662 0.192	0.104 0.128 0.17 11	
OFLAF [77]	6.6	0.087 0.213 0.065	0.16 5 0.53 4 0.12 5	0.192 0.371 0.141	0.147 0.7721 0.074	0.514 0.785 0.253	0.31 5 0.76 3 0.25 7	0.11 10 0.12 8 0.21 28	
MDP-Flow2 (68)	7.6	0.087 0.213 0.0713	0.15 0.48 0.11	0.204 0.404 0.141	0.15 16 0.80 27 0.08 10	0.63 14 0.93 14 0.43 15	0.264 0.763 0.236	0.11 10 0.12 8 0.17 11	0.383 0.793 0.444
NN-field [71]	8.4	0.087 0.2213 0.051	0.17 7 0.55 6 0.13 10	0.192 0.393 0.156	0.09 1 0.48 2 0.05 1	0.41 1 0.61 1 0.20 1	0.52 44 0.64 1 0.26 10	0.13 30 0.13 24 0.20 22	
MROF (90)	9.8	0.07 1 0.21 3 0.05 1	0.16 5 0.55 6 0.12 5	0.204 0.447 0.156			0.32 7 1.06 19 0.28 13		0.416 0.889 0.545
TC/T-Flow [76]	14.4		0.19 13 0.68 25 0.12 5	0.28 16 0.66 21 0.14 1		0.67 23 0.98 22 0.49 23			_
Layers++ [37]	15.8	2121	0.19 13 0.56 8 0.17 25	_	0.136 0.584 0.074	0.483 0.703 0.337	_	0.15 50 0.14 44 0.24 40	
LME [70]	16.0			0.30 24 0.64 16 0.31 66		0.66 to 0.96 to 0.53 28	0.33 8 1.18 30 0.28 13	0.12 20 0.12 8 0.18 15	_
IROF++ [58]	-		0.21 25 0.68 25 0.17 25			0.60 11 0.89 11 0.42 14			
nLayers [57]	16.8			0.25 12 0.54 11 0.20 36		0.53 s 0.78 s 0.34 s			
			0.21 25 0.70 29 0.17 25		_		0.49 38 1.02 14 0.33 33		
FC-2Layers-FF [74] Correlation Flow [75]	_	0.087 0.213 0.0713		0.43 42 0.99 46 0.15 6	0.15 16 0.76 20 0.08 10 0.11 3 0.47 1 0.08 10	0.53 5 0.77 4 0.37 10 0.75 32 1.08 32 0.56 32		0.16 59 0.13 24 0.29 62 0.14 39 0.13 24 0.27 54	
	20.0								
AGIF+OF [85]	21.8			0.28 16 0.66 21 0.18 17	0.14 7 0.70 9 0.08 10	0.57 7 0.85 7 0.38 11		0.13 30 0.13 24 0.22 32 0.14 39 0.12 8 0.30 66	
		2.22	0.22 30 0.73 33 0.17 25			0.63 14 0.93 14 0.45 17			
FESL [72]	22.0			0.27 13 0.61 13 0.18 17	0.14 7 0.68 7 0.08 10	0.61 13 0.89 11 0.44 16	0.47 32 1.03 17 0.32 28	0.14 39 0.15 54 0.25 46	
ALD-Flow [66]	22.1	0.07 1 0.213 0.065	0.19 13 0.64 20 0.13 10	0.30 24 0.73 27 0.15 6		0.78 35 1.14 36 0.59 35	0.33 8 1.30 37 0.21 4	0.12 20 0.12 8 0.28 57	
TC-Flow [46]	22.2	2022	0.15 1 0.59 11 0.11 1	0.31 29 0.78 32 0.14 1	0.16 28 0.86 33 0.08 10	0.75 32 1.11 34 0.54 30	0.42 20 1.40 46 0.25 7	0.11 10 0.12 8 0.29 62	
COFM [59]	22.4		0.18 9 0.62 16 0.14 15	0.30 24 0.74 29 0.19 28		0.79 36 1.14 36 0.74 51	0.35 13 0.87 8 0.28 13		
Sparse-NonSparse [56]				0.28 16 0.64 16 0.19 28	0.14 7 0.71 13 0.08 10	0.67 23 0.99 24 0.48 20	0.49 38 1.06 19 0.32 28	0.14 39 0.11 1 0.28 57	
Efficient-NL [60]	22.8		0.21 25 0.67 23 0.17 25	0.31 29 0.73 27 0.18 17	0.14 7 0.71 13 0.08 10	0.59 10 0.88 10 0.39 12	1.30 72 1.35 40 0.67 67		
LSM [39]	24.0					0.66 19 0.97 20 0.48 20	0.50 40 1.06 19 0.33 33	0.15 50 0.12 8 0.29 62	
Ramp [62]	24.4	_	0.21 25 0.72 31 0.18 34	0.27 13 0.62 14 0.19 28				0.15 so 0.12 s 0.30 ss	
Classic+NL [31]	26.2						_	0.16 59 0.13 24 0.29 62	
TV-L1-MCT [64]	26.5	0.08 7 0.23 17 0.07 13	0.24 46 0.77 41 0.19 43	0.32 32 0.76 31 0.19 28	0.14 7 0.69 8 0.09 21	0.72 28 1.03 25 0.60 36	0.54 45 1.10 24 0.35 40	0.11 10 0.12 8 0.20 22	0.54 31 1.04 30 0.84 43
PMF [73]	27.6	0.09 26 0.25 28 0.07 13	0.19 13 0.60 14 0.14 15	<u>0.23</u> 9 0.469 0.17 12	0.17 33 0.87 38 0.09 21	0.58 9 0.86 8 0.26 4	0.82 61 1.17 28 0.54 58	0.21 83 0.22 88 0.36 79	0.39 4 0.75 1 0.59 9
IROF-TV [53]	29.0	0.09 26 0.25 28 0.08 33	0.22 30 0.77 41 0.19 43	0.30 24 0.70 24 0.19 28	0.18 39 0.93 48 0.11 41	0.73 30 1.04 27 0.56 32	0.44 25 1.69 62 0.31 23	0.09 3 0.11 1 0.12 4	0.50 22 1.08 32 0.73 30
MDP-Flow [26]	30.0	0.09 26 0.25 28 0.08 33	0.19 13 0.54 5 0.18 34	0.24 10 0.55 12 0.20 36	0.16 28 0.91 42 0.09 21	0.74 31 1.06 30 0.61 38	0.46 29 1.02 14 0.35 40	0.12 20 0.14 44 0.17 11	0.78 58 1.68 61 0.97 56
2DHMM-SAS [94]	31.2	0.08 7 0.24 24 0.07 13	0.23 41 0.78 44 0.17 25	0.42 41 0.90 37 0.22 46	0.15 16 0.75 19 0.09 21	0.65 18 0.96 18 0.48 20	0.56 49 1.13 27 0.34 38	0.15 50 0.13 24 0.30 66	0.56 34 1.13 34 0.79 38
EPPM [88]	31.8	0.11 44 0.30 54 0.08 33	0.19 13 0.67 23 0.13 10	0.29 21 0.71 26 0.17 12	0.17 33 0.78 24 0.11 41	0.63 14 0.93 14 0.33 7	0.60 st 1.35 40 0.40 so	0.19 74 0.15 54 0.45 87	0.45 10 0.94 13 0.64 14
MLDP_OF [91]	31.9	0.11 44 0.28 43 0.09 47	0.18 9 0.56 8 0.13 to	0.34 34 0.79 33 0.17 12	0.16 28 0.82 29 0.09 21	0.72 28 1.05 29 0.50 25	0.34 11 1.10 24 0.27 12	0.18 71 0.15 54 0.44 86	0.76 s2 1.09 s3 0.69 22
Nachbauer [95]	32.0	0.10 37 0.27 40 0.08 33	0.38 70 0.95 63 0.27 65	0.43 42 0.92 39 0.29 61	0.19 43 0.86 33 0.11 41	0.57 7 0.879 0.316	0.23 2 0.78 5 0.15 1	0.12 20 0.13 24 0.24 40	0.56 34 1.03 28 0.70 24
OFH [38]	32.2	0.10 37 0.25 28 0.09 47	0.19 13 0.69 27 0.14 15	0.43 42 1.02 49 0.17 12	0.17 33 1.08 54 0.08 10	0.87 45 1.25 43 0.73 48	0.43 22 1.69 62 0.32 28	0.10 4 0.13 24 0.18 15	0.59 37 1.40 43 0.74 34
Sparse Occlusion [54]	32.5	0.09 26 0.24 24 0.08 33	0.22 30 0.63 17 0.19 43	0.38 37 0.91 38 0.18 17	0.17 33 0.85 32 0.09 21	0.75 32 1.09 33 0.47 18	0.34 11 1.00 12 0.26 10	0.22 85 0.22 88 0.28 57	0.53 30 1.13 34 0.67 19
S2D-Matching [84]	33.5	0.09 25 0.26 34 0.07 13	0.23 41 0.80 49 0.18 34	0.38 37 0.93 41 0.20 36	0.15 16 0.70 9 0.09 21	0.70 25 1.03 25 0.51 26	0.55 48 1.17 28 0.35 40	0.17 65 0.13 24 0.32 75	0.51 27 1.01 23 0.81 41
NL-TV-NCC [25]	33.5	0.10 37 0.26 34 0.08 33	0.22 30 0.72 31 0.15 19	0.35 35 0.85 35 0.16 10	0.15 16 0.70 9 0.09 21	0.79 36 1.16 39 0.51 26	0.78 59 1.38 43 0.48 55	0.16 59 0.15 54 0.26 48	0.55 33 1.16 36 0.55 7
CostFilter [40]	33.8	0.10 37 0.27 40 0.08 33	0.20 23 0.63 17 0.15 19	0.22 8 0.45 8 0.18 17	0.19 43 0.88 40 0.12 47	0.60 11 0.90 13 0.28 5	0.75 ss 1.19 st 0.50 ss	0.21 83 0.24 92 0.40 83	0.46 12 1.02 25 0.62 11
SimpleFlow [49]	35.8	0.09 26 0.24 24 0.08 33	0.24 46 0.78 44 0.20 52	0.43 42 0.96 44 0.21 41	0.16 28 0.77 21 0.09 21	0.71 26 1.04 27 0.55 31	1.47 77 1.59 58 0.76 71	0.13 30 0.12 8 0.22 32	
Aniso-Texture [82]	36.5	0.08 7 0.21 3 0.07 13	0.19 13 0.60 14 0.17 25	0.50 53 1.11 55 0.21 41	0.12 5 0.584 0.074	0.93 57 1.28 51 0.92 62	0.46 29 1.27 34 0.38 49	0.20 76 0.20 85 0.30 66	0.68 43 1.37 41 0.88 47

Abbildung 5.46.: Vergleich von V_{2b} mit aktuellen Verfahren über Middelbury.edu/flow. Statisitk: Durchschnitt, Fehlertyp AAE Rang 35.2 (oben), AEE Rang 32.0 (unten). Datum der bereitgestellten Testergebnisse 16.02.2014. Quelle: http://vision.middlebury.edu/flow/eval/results-nachbauer/.

Average interpolation			Mequo			cheffle			Urbar Synthet			Tedd:			ackya		Ba (High-si	sketl			mptru			ergre	
error	avo.		oen tex OGT			oente: DGT			gyntner GT			(Stered		im0		im1	im0		im1	im0		im1		GT	
CITO	rank	all	_	untext	_	_	untext	all		untext	all	_	untext	_	_	untext	all	_	untext	all	_	untext	all	_	untex
MDP-Flow2 [68]	10.0	2.89 4	_			5.07 7	_	_	_	2.48 51	_	_	3.146		_	_	6.13 13	_		7.36 4	_	_	7.75 16	_	_
DeepFlow [86]	15.0	2.98 12	5.67 16	1.22 2	3.88 31	5.78 3	1.52 41	3.624	5.93 z	1.34 2	5.39 1	7.20	3.17 11	11.0 23	13.9 a	5 3.63 28	5.913	11.3	2.299	7.141	16.3 1	1.49 1	7.80 18	12.21	s 1.70 t
CBF [12]	18.1	2.83 1	5.20 1	1.23 43	3.97 39	5.79 3	1.56 44	3.62 4	5.47 2	1.60 13	5.21 s	7.122	3.29 36	10.1 1	12.6	3.62 23	5.97 6	11.5	2.31 16	7.76 28	17.8 28	1.61 29	7.60 7	11.97	1.76
SuperFlow [81]	19.7	2.947	5.56 11	1.24 50	3.99 41	5.78 3	1.67 60	4.06 28	5.554	1.83 25	5.52 2	7.07	3.20 18	10.23	12.7 3	3.68 34	6.13 13	11.8 1	2.241	7.68 19	17.5 18	1.77 58	7.443	11.6	1.69
Aniso. Huber-L1 [22]	20.9	2.959	5.446	1.24 50	4.42 63	6.27 6	1.67 60	3.79 19	5.70	1.507	5.316	7.42	3.24 29	11.1 30	14.0 3	5 3.61 19	5.91 s	11.44	2.241	7.60 14	17.3 10	1.51 s	7.62 10	11.97	1.73
CLG-TV [48]	21.6	2.947	5.457	1.25 sa	4.26 54	6.17 5	1.60 50	3.68 13	5.73 1	1.73 20	5.36 1	7.417	3.32 48	<u>11.1</u> 30	14.0 3	3.57 5	5.88 ₂	11.3:	2.263	7.58 12	17.07	1.57 24	7.75 16	12.11	6 1.72 2
NN-field [71]	21.9	2.98 12	5.70 17	1.20 5	3.31 ₃	4.733	1.261	4.69 61	5.91 ₂	2.03 34	5.99 6	9.137	5 3.57 71	10.3 6	12.8 5	3.60 15	6.24 20	12.0 1	9 2.31 16	7.39 s	16.9 s	1.54 13	7.69 14	12.0 t	3 1.72 2
IVANN [87]	22.0	2.926	5.51 10	1.19 1	3.30 2	4.712	1.26 1	3.65 s	5.91 ₂	2.29 48	5.76 4	8.70 6	4 3.55 70	<u>10.3</u> 6	12.9	3.60 15	6.42 36	12.43	5 2.34 26	7.57 11	17.4 15	1.74 54	<u>7.61</u> 8	11.97	1.72
LME [70]	22.1	2.959	5.59 13	1.191	3.68 18	5.50 2	1.38 19	4.06 28	7.00 5	1.71 19	5.38 1	7.92 2	9 3.18 13	11.2 40	14.14	3 4.51 86	6.29 24	12.22	4 2.31 16	7.33 2	16.82	1.51 s	7.83 19	12.3 1	9 1.70 1
IROF-TV [53]	22.3	3.07 26	5.91 32	1.23 4	3.71 20	5.47 1	1.40 23	3.70 15	6.27 3	1.58 12	5.25 4	7.60 1	3 3.17 11	<u>11.0</u> 23	13.9 a	5 4.47 75	6.37 ss	12.43	5 2.30 13	7.79 30	17.9 30	1.50 s	7.63 11	11.97	1.66
IROF++ [58]	22.8	3.03 18	5.77 23	1.20 5	3.59 11	5.31 1	1.33 13	4.32 44	6.61 4	2.25 44	5.06 1	7.143	3.16 10	<u>11.0</u> 23	13.9 2	5 4.44 72	6.34 29	12.3 s	0 2.277	7.54 10	17.3 10	1.64 38	8.09 34	12.7 ₃	5 1.69
ALD-Flow [66]	25.2	3.28 64	6.45 66	1.24 50	3.81 26	5.73 2	1.41 27	3.62 4	6.28 3	1.35 3	5.58 3	8.39 5	2 3.04 2	10.8 14	13.5 1	4 4.15 58	5.96 s	11.44	2.299	7.34 s	16.8 ₂	1.51 s	8.25 46	12.9 4	3 1.70 1
Second-order prior [8]	25.6	2.91 5	5.39 5	1.24 50	4.26 54	6.21 5	1.56 44	3.82 21	6.343	1.62 14	5.39 11	7.68 1	5 3.04 2	<u>11.1</u> 30	13.9 2	3.599	6.14 15	11.9 1	6 2.31 16	7.61 15	17.4 15	1.63 37	7.90 24	12.42	6 1.78 6
p-harmonic [29]	26.9	3.00 15	5.72 19	1.21 14	4.33 57	6.246	1.69 65	3.60 s	6.07 a	1.39 4	5.70 4	7.87 2	4 3.29 36	11.0 23	13.8 z	3 3.63 28	6.02 s	11.6	2.34 26	7.67 17	17.5 18	1.70 48	7.92 27	12.4 2	6 1.72 2
Nachbauer [95]	26.9	3.17 sc	5.90 30	1.22 2	3.99 41	5.88 3	1.51 40	4.15 35	7.146	1.79 22	5.51 2	8.03 3	3 3.25 31	10.49	13.0 9	3.62 23	6.17 18	11.9 1	5 2.26 3	7.74 25	17.7 23	1.55 17	7.96 31	12.53	3 1.69
Brox et al. [5]	27.0	3.08 28	5.94 36	1.21 14	3.83 28	5.67 2	1.45 32	3.93 23	5.76 1	1.67 16	5.327	7.194	3.22 23	10.6 11	13.4 1	2 3.56 3	6.60 54	12.7 4	4 2.42 51	8.61 60	19.7 62	3.04 93	7.43 2	11.6	1.68
SIOF [67]	28.4	3.06 25	5.74 21	1.24 50	4.40 62	6.40 6	1.63 53	4.17 sa	7.43 6	1.93 28	5.40 20	7.75 2	0 3.44 60	10.1 t	12.61	3.587	6.10 11	11.81	1 2.29 9	7.52 s	17.29	1.53 11	7.96 31	12.53	3 1.73 3
Local-TV-L1 [65]	29.6	3.00 15	5.47 8	1.30 76	4.43 65	6.23 5	1.75 71	3.50 t	5.35	1.45 s	5.39 ti	7.56 1	1 3.29 36	11.2 40	14.1 4	3 3.91 49	6.16 16	11.8 1	1 2.47 61	7.67 17	17.6 21	1.55 17	<u>7.57</u> s	11.8	1.76
MDP-Flow [26]	30.9	2.86 ₂	5.343	1.20 5	3.49 s	5.159	1.34 16	4.01 27	5.513	2.28 46	5.58 s	7.912	8 3.33 51	11.2 40	14.0 s	5 4.49 80	6.72 62	13.16	3 2.54 78	7.71 22	17.7 23	1.74 54	7.83 19	12.3 1	9 1.70 1
Modified CLG [34]	33.6	2.87 s	5.32 ₂	1.24 50	4.51 69	6.21 5	1.96 as	4.15 as	6.45 4	2.67 54	5.56 s	7.69 1	6 3.64 76	10.8 14	13.5 1	4 3.63 28	6.36 32	12.3 s	0 2.39 39	7.467	17.1 8	1.56 22	7.86 22	12.3 1	9 1.75 8
F-TV-L1 [15]	34.0	3.30 66	6.36 61	1.29 74	4.39 61	6.32 6	1.62 52	3.80 20	5.90 a	1.76 21	5.61 40	7.973	0 3.31 47	10.9 20	13.6 1	7 3.599	5.841	11.2	2.33 25	7.70 20	17.6 21	1.79 60	7.61 s	11.97	1.78
Ad-TV-NDC [36]	34.1	3.23 50	5.70 17	1.44 8	4.78 83	6.46 7	1.92 80	3.67 10	5.86 1	1.507	5.97 6	8.144	1 3.51 67	10.8 14	13.5 1	4 3.63 28	6.24 20	12.0 1	9 2.40 41	7.70 20	17.3 10	1.51 s	7.48 4	11.7	1.73
2DHMM-SAS [94]	34.5	3.10 ss	5.91 32	1.21 14	4.10 47	6.05 4	1.46 36	4.38 48	7.10 5	2.07 35	5.38 1	7.782	2 3.22 23	11.3 47	14.3 5	1 4.42 69	6.33 26	12.22	4 2.26 3	7.95 35	18.2 36	1.64 38	8.19 39	12.83	9 1.70 1
TC/T-Flow [76]	35.6	3.21 55	6.24 57	1.22 2	3.90 34	5.86 3	1.43 30	3.69 14	5.83 1	1.507	5.88 5	8.937	0 3.15 8	<u>11.1</u> 30	13.9 a	5 4.50 82	6.23 19	12.0 1	9 2.26 3	8.61 60	19.0 49	1.93 67	8.16 37	12.83	9 1.70 1
COFM [59]	35.9	3.03 18	5.76 22	1.22 2	3.55 10	5.21 10	1.32 12	3.82 21	6.98 5	2.81 57	5.41 2	7.97 3	0 3.30 42	10.8 14	13.6 1	7 3.62 23	7.01 84	13.7 8	1 2.40 41	8.00 37	18.5 40	1.98 70	7.91 25	12.4 2	6 1.80 7
LDOF [28]	35.9	3.03 18	5.66 15	1.2870	4.06 45	5.53 z	2.40 93	4.32 44	6.43 3	2.00 31	5.45 2	7.56 1	1 3.60 74	<u>10.2</u> 3	12.7 3	3.599	6.39 34	12.43	5 2.29 9	8.36 51	19.4 57	2.21 80	7.57 s	11.8	1.86
ComplOF-FED-GPU [35]	36.8	3.23 58	6.40 62	1.22 2	3.73 23	5.62 2	1.44 31	5.23 69	6.06 ₂	3.23 68	5.53 2	8.25 4	3 3.29 36	<u>11.1</u> 30	13.9 a	5 4.21 59	6.11 12	11.8 1	1 2.32 23	8.16 42	18.5 40	1.61 29	8.29 51	12.9 4	3 1.71 2
TV-L1-MCT [64]	37.2	3.17 sc	6.05 47	1.22 2	3.87 so	5.82 3	1.40 23	4.48 55	7.75 7	2.24 43	5.37 1	7.76 2	1 3.24 29	11.6 76	14.7 8	1 4.31 63	6.089	11.7	2.31 16	8.07 39	18.6 42	2.15 79	7.68 13	12.0 ₁	3 1.68
Layers++ [37]	37.3	2.96 11	5.56 11	1.22 2	3.29 t	4.64 1	1.261	4.07 so	7.246	3.08 61	5.48 24	8.10 3	7 3.25 31	<u>12.0</u> 90	15.2 9	4.62 91	7.29 ss	14.3 s	8 2.44 54	7.63 16	17.5 18	1.54 13	7.84 21	12.3 1	9 1.70 1
nLayers [57]	37.8	3.03 18	5.72 19	1.21 14	3.48 s	5.09 a	1.31 11	5.60 73	7.527	4.26 82	5.61 4	8.33 4	8 3.29 36	11.6 76	14.6 7	6 4.31 63	6.66 57	12.9 5	8 2.40 41	7.58 12	17.3 10	1.59 26	7.94 28	12.4 2	6 1.69
CRTflow [80]	37.9	3.09 31	5.91 32	1.27 60	4.35 59	6.316	1.68 63	4.15 35	7.26 6	1.84 26	<u>5.33</u> 9	7.51 1	0 3.38 56	<u>11.0</u> 23	13.8 z	3 4.48 76	6.09 10	11.7	2.30 13	8.55 ss	19.863	1.55 17	8.19 39	12.83	9 1.72 2
TC-Flow [46]	39.0	3.31 68	6.70 73	1.22 2	3.91 36	5.95 4	1.45 32	3.647	5.84 1	1.28 1	5.70 4	8.50 5	7 3.22 23	11.2 40	14.14	3 4.44 72	6.34 29	12.33	0 2.41 49	7.79 30	17.9 30	1.55 17	8.42 61	13.26	3 1.74
AGIF+OF [85]	39.2	3.12 39	5.95 38	1.20 5	3.64 15	5.39 1	1.40 23	3.96 25	6.443	2.28 46	5.48 24	8.033	3 3.25 31	11.4 52	14.3 5	1 4.49 80	6.91 77	13.57	8 2.37 34	7.85 32	17.9 30	1.54 13	8.44 65	13.26	3 1.73 3
DPOF [18]	39.3	3.34 71	6.82 76	1.29 74	3.40 5	4.93 5	1.299	5.00 66	6.36 3	3.40 69	5.86 5	8.947	1 3.51 67	11.0 23	13.8 z	3.599	6.56 46	12.7 4	4 2.28 8	7.99 36	18.2 36	1.55 17	8.24 45	12.9 4	3 1.70 1
Classic++ [32]	39.3	3.05 23	5.85 26	1.24 50	4.08 46	6.084	1.52 41	3.74 17	5.587	1.53 11	5.72	8.123	9 3.21 20	11.4 52	14.3 5	1 3.74 41	6.68 59	13.06	0 2.42 51	8.35 50	19.2 52	1.62 35	8.21 42	12.9 4	3 1.73 3
Sparse-NonSparse [56]	39.9	3.07 26	5.88 2	1.21 14	3.61 12	5.33 1	1.33 13	4.29 43	7.47 7	2.19 42	5.37 1	7.74 1	8 3.21 20	11.5 63	14.5 6	8 4.36 66	6.66 57	12.9 5	8 2.41 49	8.69 64	20.166	1.67 44	8.27 49	13.0 5	1 1.70 1

Average normalized interpolation		Mequon (Hidden texture)	Schefflera (Hidden texture)	Urban (Synthetic)	Teddy (Stereo)	Backyard	Basketball	Dumptruck (High-speed camera)	Evergreen
error	avg.	im0 GT im1	im0 GT im1	im0 GT im1	im0 GT im1	im0 GT im1	im0 GT im1	im0 GT im1	im0 GT im1
	rank	all disc untext					all disc untext		
NN-field [71]	15.7	0.59 2 0.77 10 0.64 3	0.59 1 0.773 0.581	1.09 29 1.77 40 1.16 37	1.00 42 1.18 63 1.26 46	0.98 1 0.95 1 1.14 1	1.08 16 1.46 19 1.05 10	0.68 s 1.26 11 0.70 19	
MDP-Flow2 [68]	16.1	0.59 2 0.72 2 0.63 1	0.62 7 0.85 8 0.58 1	1.24 50 2.52 71 1.61 52	0.94 3 1.05 18 1.24 29	0.98 1 0.96 4 1.16 24	1.09 20 1.49 23 1.05 10	0.70 15 1.32 19 0.68 12	0.784 1.125 0.6
ALD-Flow [66]	20.9	0.62 33 0.81 34 0.66 50	0.70 27 0.99 28 0.62 2	0.87 3 1.28 6 0.65 2	0.943 1.014 1.217	1.09 38 1.12 38 1.54 59	1.03 3 1.24 2 1.07 25	0.64 3 1.12 3 0.65 2	0.97 51 1.44 50 0.6
SuperFlow [81]	21.0	0.62 33 0.84 47 0.66 50	0.76 42 1.04 41 0.69 5	0.90 5 1.17 2 0.74 6	1.05 61 1.04 15 1.25 34	0.99 5 0.96 4 1.16 24	1.05 s 1.36 7 1.03 s	0.69 12 1.26 11 0.70 19	0.82 to 1.18 to 0.6
DeepFlow [86]	21.6	0.62 33 0.84 47 0.65 28	0.74 38 1.04 41 0.66 4	0.862 1.338 0.652	0.99 39 1.02 7 1.23 25	1.04 18 1.05 18 1.16 24	1.02 1 1.23 1 1.05 to	0.63 1 1.07 1 0.65 2	0.96 45 1.43 45 0.6
IVANN [87]	22.1	0.58 1 0.71 1 0.63 1	0.59 1 0.76 1 0.58 1	1.21 44 2.31 65 1.51 51	0.98 29 1.13 49 1.25 34	0.98 1 0.95 1 1.14 1	1.13 34 1.61 39 1.07 25	0.75 31 1.45 36 0.88 73	0.77 s 1.10 s 0.6
LME [70]	23.5	0.59 2 0.72 2 0.64 3	0.66 16 0.90 16 0.62 2	0.99 18 1.78 41 0.92 22	0.96 15 1.09 30 1.24 29	1.20 74 1.30 74 1.70 88	1.12 28 1.57 32 1.05 10	0.64 s 1.12 s 0.68 tz	0.797 1.148 0.6
IROF++ [58]	25.3	0.59 2 0.744 0.643	0.65 14 0.89 12 0.59 4	1.15 36 1.71 34 1.17 38	0.92 1 0.96 1 1.21 7	1.17 sp 1.26 sp 1.69 76	1.11 24 1.54 25 1.04 4	0.68 s 1.23 s 0.70 ts	1.07 st 1.62 ss 0.6
CLG-TV [48]	25.8	0.63 so 0.86 ss 0.66 so	0.81 55 1.12 55 0.66 4	0.96 15 1.43 15 0.96 24	0.97 20 1.03 11 1.25 34	1.06 28 1.08 30 1.15 6	1.02 1 1.25 3 1.04 4	0.63 1 1.09 2 0.66 s	0.97 51 1.45 52 0.6
Nachbauer [95]	26.2	0.62 33 0.78 18 0.65 28	0.74 38 1.03 39 0.65 4	1.03 22 1.69 33 0.91 20	0.98 29 1.15 54 1.28 55	1.00 7 0.98 7 1.17 32	1.10 22 1.50 24 1.06 21	0.72 22 1.37 24 0.67 9	0.88 25 1.29 25 0.6
Aniso. Huber-L1 [22]	27.0	0.62 33 0.80 27 0.66 50	0.84 62 1.13 57 0.66 4	1.03 22 1.44 16 0.93 23	0.97 20 1.03 11 1.26 46	1.06 28 1.09 31 1.15 6	1.08 16 1.46 19 1.03 1	0.64 s 1.12 s 0.66 s	0.99 56 1.48 59 0.6
Second-order prior [8]	27.8	0.61 16 0.78 18 0.66 sc	0.80 ss 1.11 sz 0.64 s	1.05 25 1.85 46 0.99 26	0.96 15 1.04 15 1.21 7	1.05 24 1.07 26 1.15 6	1.05 s 1.38 s 1.05 to	0.69 12 1.28 14 0.65 2	1.00 61 1.50 63 0.6
SIOF [67]	28.0	0.63 so 0.81 s4 0.66 so	0.84 62 1.16 69 0.70 6	1.14 33 2.04 57 1.00 27	0.99 39 1.11 36 1.25 34	0.98 1 0.95 1 1.15 6	1.07 12 1.40 13 1.04 4	0.68 s 1.24 to 0.72 so	0.83 13 1.20 15 0.6
IROF-TV [53]	28.6	0.62 33 0.84 47 0.65 28	0.67 20 0.92 20 0.60 t	0.92 11 1.49 21 0.79 11	0.94 3 1.02 7 1.22 19	1.18 62 1.28 64 1.70 88	1.12 28 1.58 33 1.05 10	0.79 42 1.57 44 0.70 19	0.85 16 1.24 17 0.6
TV-L1-MCT [64]	29.2	0.62 33 0.81 34 0.65 26	0.71 32 1.00 31 0.63 3	1.21 44 2.34 66 1.25 42	0.95 10 1.04 15 1.22 19	1.19 71 1.29 71 1.61 66	1.07 12 1.39 10 1.05 10	0.71 18 1.32 19 0.69 14	0.82 to 1.18 to 0.6
p-harmonic [29]	29.3	0.61 16 0.83 41 0.64 3	0.82 59 1.14 61 0.68 5	0.91 9 1.49 21 0.77 8	1.04 59 1.11 35 1.28 55	1.05 24 1.07 25 1.15 6	1.06 10 1.39 10 1.07 25	0.70 15 1.31 16 0.76 47	0.96 45 1.44 50 0.6
TC/T-Flow [76]	29.8	0.62 33 0.80 27 0.65 26	0.70 27 1.00 31 0.62 2	0.90 5 1.41 14 0.84 13	0.95 10 1.014 1.217	1.18 62 1.27 61 1.69 76	1.07 12 1.42 15 1.04 4	0.86 53 1.68 51 0.88 73	0.95 43 1.41 43 0.6
ComplOF-FED-GPU [35]	30.0	0.62 33 0.86 53 0.65 26	0.69 25 0.98 25 0.61 1	1.63 69 1.15 1 2.12 68	0.94 3 1.03 11 1.21 7	1.14 51 1.21 51 1.52 58	1.07 12 1.41 14 1.06 21	0.74 29 1.36 23 0.71 25	0.96 46 1.43 46 0.6
CBF [12]	30.8	0.61 16 0.79 23 0.66 50	0.77 46 1.07 47 0.66 4	1.00 19 1.50 24 0.90 17	0.98 29 1.02 7 1.31 70	0.99 5 0.96 4 1.18 34	1.05 5 1.33 5 1.06 21	0.80 45 1.59 46 0.74 39	0.89 28 1.29 25 0.6
TC-Flow [46]	31.4	0.60 9 0.77 to 0.65 28	0.70 27 1.01 34 0.62 2	0.82 1 1.21 4 0.62 1	0.98 29 1.11 36 1.25 34	1.17 ss 1.26 ss 1.65 ss	1.12 28 1.56 30 1.10 45	0.70 15 1.29 15 0.69 14	1.00 61 1.50 63 0.6
nLayers [57]	31.9	0.60 s 0.76 s 0.65 as	0.62 7 0.84 7 0.60 t	2.15 so 4.10 st 2.76 sz	0.97 20 1.11 35 1.21 7	1.18 62 1.28 64 1.61 66	1.14 36 1.64 45 1.10 45	0.68 a 1.23 a 0.67 s	0.762 1.072 0.6
OFLAF [77]	32.9	0.59 2 0.75 6 0.64 s	0.60 4 0.79 5 0.59 4	0.92 11 1.34 9 0.77 8	0.93 2 0.99 2 1.20 3	1.21 at 1.32 at 1.69 76	1.18 52 1.75 59 1.13 64	1.00 76 2.14 77 0.81 65	0.91 33 1.33 33 0.6
MLDP_OF [91]	32.9	<u>0.60</u> 9 0.77 to 0.64 s	0.73 35 1.03 39 0.62 2	0.90 5 1.38 13 0.70 4	1.03 52 1.10 31 1.31 70	1.10 43 1.15 44 1.33 50	1.16 47 1.58 33 1.15 73	0.73 24 1.38 27 0.78 54	0.86 19 1.26 19 0.6
PMF [73]	33.8	0.59 2 0.75 6 0.64 s	0.64 10 0.89 12 0.59 4	1.85 72 3.91 89 2.44 77	0.98 29 1.12 45 1.25 34	1.03 13 1.03 14 1.15 6	1.09 20 1.44 16 1.08 32	0.95 70 2.02 72 0.79 58	0.88 25 1.30 29 0.6
COFM [59]	34.5	0.61 16 0.77 10 0.65 28	0.64 10 0.88 10 0.60 1	1.32 53 2.95 78 1.79 61	0.97 20 1.12 45 1.19 1	1.01 to 1.00 to 1.16 24	1.18 52 1.76 61 1.09 38	0.89 ss 1.85 se 1.03 as	0.797 1.148 0.6
MDP-Flow [26]	34.9	0.59 2 0.744 0.643	0.64 10 0.90 16 0.60 1	1.16 38 1.18 3 1.43 48	1.03 52 1.17 60 1.27 48	1.18 62 1.28 64 1.69 76	1.26 79 1.97 82 1.18 83	0.73 24 1.39 28 0.71 25	0.797 1.137 0.6
2DHMM-SAS [94]	35.0	0.61 16 0.77 10 0.64 3	0.77 46 1.07 47 0.65 4	1.16 38 2.02 53 1.12 35	0.98 29 1.10 31 1.22 19	1.18 62 1.28 64 1.65 69	1.05 5 1.37 8 1.03 1	0.76 36 1.48 37 0.77 49	1.01 66 1.51 68 0.6
TCOF [69]	36.5	0.61 16 0.78 18 0.64 3	0.88 73 1.22 82 0.72 7	1.08 28 1.90 49 1.09 32	0.98 29 1.11 36 1.24 29	1.07 31 1.10 34 1.15 6	1.12 28 1.58 33 1.07 25	0.95 70 2.02 72 0.73 34	0.87 21 1.27 23 0.6
Layers++ [37]	37.3	0.60 9 0.76 8 0.65 28	0.59 1 0.76 1 0.59 4	1.43 60 3.28 83 1.95 63	0.97 20 1.13 49 1.23 25	1.31 91 1.48 91 1.79 94	1.26 79 1.97 82 1.11 52	0.72 22 1.35 22 0.64 1	0.784 1.114 0.6
Brox et al. [5]	38.0	0.67 73 1.04 84 0.65 28	0.72 34 1.02 37 0.63 3	0.96 15 1.34 9 0.83 12	0.98 29 0.99 2 1.24 29	1.02 11 1.02 13 1.15 6	1.20 62 1.78 65 1.11 52	1.67 93 3.86 93 2.48 94	0.86 19 1.26 19 0.6
MROF [90]	38.0	0.60 9 0.80 27 0.64 3	0.64 to 0.88 to 0.59 4	1.41 58 2.74 73 1.63 54	0.95 10 1.08 25 1.20 3	1.13 49 1.19 48 1.35 51	1.11 24 1.55 28 1.08 32	1.23 91 2.74 91 1.51 91	0.95 43 1.41 43 0.6
LSM [39]	38.0	<u>0.61</u> 16 0.78 18 0.64 3	0.66 16 0.89 12 0.61 1	1.16 38 2.21 60 1.17 38	<u>0.94</u> 3 1.014 1.217	1.20 74 1.30 74 1.65 69	1.18 52 1.73 55 1.08 32	0.92 64 1.94 67 0.80 63	1.00 61 1.50 63 0.6
EPPM [88]	38.1	0.60 9 0.80 27 0.64 3	0.67 20 0.95 24 0.59 4	2.36 ss 3.43 ss 2.13 ss	1.01 47 1.22 68 1.23 25	1.00 7 0.999 1.156	1.14 36 1.61 39 1.09 38	1.18 as 2.63 as 1.25 as	0.87 21 1.27 23 0.6
CostFilter [40]	38.2	0.60 9 0.79 23 0.64 3	0.63 9 0.87 9 0.59 4	1.89 74 3.95 90 2.39 75	0.96 15 1.07 23 1.20 3	1.07 31 1.09 31 1.32 48	1.14 36 1.55 28 1.10 45	1.02 79 2.20 79 0.85 71	0.93 35 1.38 36 0.6
Sparse-NonSparse [56]	38.4	0.61 16 0.79 23 0.64 3	0.65 14 0.89 12 0.61 1	1.23 47 2.49 69 1.38 47	0.94 3 1.03 11 1.20 3	1.18 62 1.28 64 1.58 62	1.18 52 1.73 55 1.09 38	0.95 70 2.00 71 0.79 58	0.99 56 1.49 62 0.6
Modified CLG [34]	39.2	0.61 16 0.77 10 0.66 50	0.90 79 1.16 69 0.80 8	1.26 52 1.67 32 1.61 52	1.01 47 1.10 31 1.27 48	1.03 13 1.03 14 1.15 6	1.14 35 1.61 39 1.09 38	<u>0.65</u> 6 1.136 0.679	1.09 as 1.64 as 0.6


Abbildung 5.47.: Vergleich von V_{2b} mit aktuellen Verfahren über Middelbury.edu/flow. Statisitk: Durchschnitt, Fehlertyp AIE Rang 26.9 (oben), ANE Rang 26.2 (unten). Datum der bereitgestellten Testergebnisse 16.02.2014. Quelle: http://vision.middlebury.edu/flow/eval/results-nachbauer/.

6. Zusammenfassung und Ausblick

In dieser Diplomarbeit wurde der Einsatz des Bilateralfilters in Variationsansätzen zur Berechnung des optischen Flusses untersucht. Dabei sollten vor allem die Flusskanten an den Übergängen zwischen zwei Objekten verbessert werden. Schrittweise, beginnend mit dem Verfahren von Zimmer et~al., konnte gezeigt werden, dass der Ansatz eines bilateralen Glattheitssowie Datenterms vielversprechende Ergebnisse liefert. Mit dem besten bilateralen Variationsansatz V_{2b} verbesserten sich die Fehlerwerte, im Vergleich zum Verfahren von Zimmer et~al., um 28 Prozent für den AAE und 23 Prozent für den AEE. Diese Verbesserung lässt sich vor allem auf die schärferen Flusskanten an den Objektübergängen zurückführen.

Mit dem Verfahren V_1 konnte gezeigt werden, dass der Einsatz eines bilateralen Glattheitsterms sinnvoll ist. Für alle getesteten Sequenzen wurden deutliche Verbesserungen in den AAE- und den AEE-Werten beobachtet. Damit ist die Betrachtung einer größeren Nachbarschaft und Gewichtung über die Farbdifferenzen definitiv empfehlenswert.

Auch die Erweiterung des Datenterms von Zimmer *et al.* mit einem Bilateralfilter konnte die Berechnung des optischen Flusses verbessern. Auch wenn die Motivation hinter den vorgestellten bilateralen Datentermen schwierig zu fassen ist, so sprechen die Ergebnisse für sich.

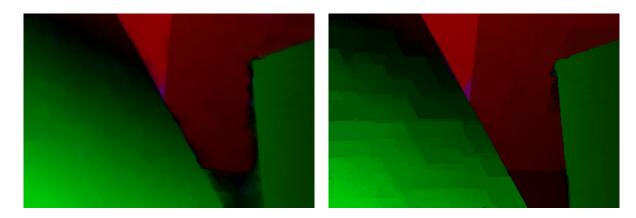


Abbildung 6.1.: Vergleich eines Ausschnitts der *Grove2* Sequenz für V_0 (links mit einem Fehlerwert des AEE von 1.985) und V_{2b} (rechts mit einem Fehlerwert des AAE von 1.353).

Neben den verbesserten Flusskanten und Fehlerwerten bringen die bilateralen Terme auch Probleme mit sich. Bei allen vier vorgestellten bilateralen Variationsansätzen kam es teilweise zu großen Sprüngen bei den Fehlerwerten. Vor allem bei der Urban3 Sequenz resultierten durch kleine Änderungen der α -Werte schlechte Schätzungen des optischen Flusses. Eine Verbesserung konnte unter anderem durch die Beschränkung der Anzahl der Warping-Level erreicht werden, womit für die ersten Warping-Schritte deutlich mehr Bildinformationen zur Gewichtung der Farbdifferenzen zur Verfügung standen. Auch durch die Anpassung des Einstellungsparameters σ_c für jedes Warping-Level konnte der unstetige Verlauf der Fehlerwerte beseitigt werden, womit der Einfluss der Farbdifferenzen für die ersten Warping-Level deutlich reduziert wird. In beiden Fällen wird die Gewichtung der Farbdifferenzen für kleine Bilder bzw. hohe Warping-Level vermieden. Dies liegt unter anderem daran, dass Bilder mit nur wenigen Pixeln kaum einen Informationsgehalt besitzen um Struktur, Objektübergänge oder Kanten zu identifizieren und dadurch Flussschätzungen durch Fehlgewichtungen in den ersten Warping-Leveln in ein schlechtes lokales Minima führen. Daneben kann auch die Interpolationsmethode zur Skalierung der Bildgrößen für die jeweiligen Wapring-Level das Ergebnis beeinflussen, was jedoch nicht näher untersucht worden ist.

Mit den von Stoll et~al.~ [SVB13] vorgeschlagenen Verfahren JTF und CBU wurden die Sprünge bei den Fehlerwerten für die bilateralen Variationsansätze zum Teil verstärkt. Die Testreihen wurden ohne die Beschränkung der Warping-Level und auch ohne die Skalierung der σ_c -Werte durchgeführt. Dadurch kam es bei den ersten Warping-Leveln zu einer unpassenden Gewichtung der Farbinformationen über die Funktion $\overline{\psi}_{\sigma_c}$, welches erneut durch eine grobe Auflösung der Bilder begünstigt wurde. Nutzt man die Verfahren JTF und CBU mit der Beschränkung für Warping-Level (l_{max}), so sind die beschriebenen Sprünge in den Fehlerwerten nicht mehr zu erkennen. Bei Sequenzen mit vielen kleinen Objekten, z.B. bei Grove2 mit vielen kleinen Blättern, profitieren die bilateralen Variationsansätze von von JTB und CBU. Bei anderen Sequenzen verschlechtern sich die Werte sogar. Im Allgemeinen lässt sich sagen, dass JTB und CBU in Kombination mit bilateralen Variationsansätzen nur bei wenigen Sequenzen die Ergebnisse verbessern konnten. Dies hängt unter anderem damit zusammen, das durch die bilateralen Ansätze bereits scharfe Flusskanten erzeugt werden.

Durch weitere Testreihen wurde der Einfluss von Bildrauschen auf alle vorgestellten Variationsansätze getestet. Das Basisverfahren von Zimmer *et al.* berechnet durch den Einfluss des Bildrauschens ein sehr verschwommenes Flussfeld. Bei den bilateralen Variationsansätzen sind die Strukturen und Kanten des optischen Flusses weiterhin deutlich zu erkennen, jedoch wird das Rauschen an den optischen Fluss weiter gereicht. Durch eine Mittelung von mehreren zeitlich angrenzenden Flussfeldern sollte sich das Rauschen entfernen lassen und ein Flussbild mit scharfen Kanten berechnet werden können. Diese Möglichkeit besteht für das Basisverfahren von Zimmer *et al.* nicht, da das Flussfeld durch den Einfluss von Rauschen verwischt

Abbildung 6.2.: Vergleich eines Ausschnitts der *Venus* Sequenz für V_0 (links mit einem Fehlerwert des AEE von 5.050) und V_{2b} (rechts mit einem Fehlerwert des AAE von 3.260).

wird. Die Fehlerwerte verlaufen bei allen Verfahren bei steigendem Rauschen ähnlich. Bei sehr starkem Rauschen ($\sigma_n=40$) steigen die Fehlerwerte der bilateralen Ansätze ohne vorherige Bildglättung stark an. Zur Bildglättung wurde neben dem Gauß- auch der Bilateralfilter getestet. Die Verfahren V_1 , V_{2a} , V_{2b} profitieren für beide getesteten Bildsequenzen vom Gaußfilter. Für V_0 und V_{2c} ist das Ergebnis nicht eindeutig: während für eine Sequenz der Bilateralfilter die durchschnittlich besseren Ergebnisse liefert, ist es bei der anderen der Gaußfilter. Zudem sollte beachtet werden, dass zur Vorglättung über den Bilateralfilter bereits ein hoher $\sigma_c=80$ Wert verwendet worden ist, um das Rauschen hinreichend gut entfernen zu können. Unter diesem Aspekt und dem zusätzlich erhöhtem Rechenaufwand ist der Gaußfilter zur Vorverarbeitung vorzuziehen.

Insgesamt lässt sich feststellen, dass der Einsatz des Bilateralfilters in Kombination mit dem Basisverfahren von Zimmer *et al.* das optische Flussfeld und vor allem die Flusskanten an den Objektübergängen deutlich verbessert. Artefakte an strukturierten Objektflächen werden jedoch auf Grund der bilateralen Gewichtung zum Teil verstärkt, obwohl sich die Fehlerwerte verbessern, siehe Abbildung 6.2. Wird die Warping-Tiefe bei der Multiskalenhierachie berücksichtigt, liefern die Variationsansätze, aus denen positiv definite Systemmatrizen resultieren, für alle getesteten Sequenzen stabile und gute Schätzungen für das optische Flussfeld.

Ausblick / Weitere Fragestellungen

Im Rahmen dieser Diplomarbeit konnten bereits viele Aspekte von Variationsansätzen mit bilateralen Termen untersucht werden. Dennoch gibt es eine große Anzahl verbleibender Fragestellungen und Ideen die es zu erforschen gilt, um die Qualität als auch die Geschwindigkeit der bilateralen Ansätze zu verbessern. Zum einen sollten alternative Farbkanäle zur Gewichtung der Farbdifferenzen näher untersucht werden. Dazu könnten die HSV-Farbkanäle die RGB-Farbkanäle ersetzen, wie es bereits im ursprünglichen Zimmer et al. Verfahren erfolgreich durchgeführt worden ist. Auch eine Kombination von mehreren Bildkanälen, welche zu sogenannten multilateralen Filtern führen würde, wäre ein Ansatzpunkt der die Qualität der bilateralen Terme verbessern könnte. Daneben können die Farbdifferenzen der bilateralen Filter anstatt multiplikativ über eine additive Gewichtung Einzug in das Energiefunktional finden. Darüber hinaus sollte eine effiziente Implementierung des Bilateralfilters näher untersucht werden. Mit wachsender Nachbarschaft erhöht sich die Berechnungszeit des Bilateralfilters quadratisch $\mathcal{O}(n^2)$. Andere Methoden zur Approximation oder einer schnellen Berechnung wurden in der Literatur vorgestellt und sollten im Zusammenhang mit bilateralen Variationsansätzen näher untersucht werden, um den Rechenaufwand zu reduzieren. Durch den Einsatz der bilateralen Terme im Daten- und Glattheitsterm kann es je nach Wahl des Energiefunktionals, nach Diskretisierung der Euler-Lagrange-Gleichung, zu nicht-symmetrischen Systemmatrizen kommen. Anstatt dem SOR-Verfahren müssen alternative iterative numerische Verfahren zur Lösung nicht-symmetrischer Matrizen wie das GMRES-Verfahren oder das BICG-Verfahren zur Berechnung des optischen Flusses getestet werden. Dies zeigt, dass sowohl im Bereich der Modellierung als auch im Bereich der effizienten Implementierung viele Fragestellungen offen sind.

A. Anhang

α	Dime	Gro2	Gro3	Hydr	Rubb	Urb2	Urb3	Venu	Ø
20	2.667	2.316	5.362	2.880	5.217	3.403	4.553	5.258	3.957
30	2.395	2.111	5.210	2.619	4.490	3.129	4.409	4.786	3.644
40	2.257	2.035	5.219	2.463	4.263	2.959	4.703	4.742	3.580
50	2.177	2.000	5.282	2.361	4.119	2.824	4.537	4.864	3.520
60	2.126	1.987	5.338	2.289	4.025	2.733	4.605	4.949	3.506
70	2.092	1.984	5.397	2.238	3.965	2.663	4.488	5.001	3.478
80	2.069	1.991	5.462	2.201	3.929	2.570	4.260	5.044	3.441
90	2.053	2.007	5.561	2.175	3.910	2.453	4.203	5.063	3.428
100	2.042	2.028	5.705	2.155	3.906	2.386	4.305	5.076	3.450
110	2.036	2.056	5.801	2.141	3.917	2.384	4.272	5.087	3.462
120	2.032	2.085	5.898	2.131	3.940	2.396	4.311	5.101	3.487
130	2.032	2.116	5.996	2.125	3.980	2.409	4.344	5.123	3.515
140	2.033	2.145	6.092	2.121	4.031	2.419	4.374	5.167	3.548
150	2.035	2.174	6.206	2.120	4.077	2.432	4.413	5.220	3.585
160	2.038	2.205	6.289	2.120	4.114	2.486	4.464	5.300	3.627
170	2.043	2.236	6.356	2.121	4.143	2.500	4.503	5.413	3.665
180	2.048	2.272	6.417	2.124	4.168	2.521	4.559	5.519	3.703
190	2.054	2.312	6.475	2.127	4.192	2.542	4.590	5.655	3.743
20	0.138	0.167	0.536	0.236	0.169	0.438	0.493	0.349	0.315
30	0.125	0.150	0.525	0.215	0.134	0.391	0.478	0.310	0.291
40	0.118	0.142	0.528	0.203	0.126	0.363	0.508	0.298	0.286
50	0.115	0.138	0.537	0.195	0.122	0.343	0.480	0.295	0.278
60	0.112	0.136	0.546	0.190	0.119	0.330	0.491	0.295	0.277
70	0.111	0.135	0.554	0.187	0.117	0.317	0.480	0.295	0.274
80	0.110	0.135	0.563	0.184	0.115	0.301	0.448	0.297	0.269
90	0.109	0.136	0.576	0.183	0.115	0.281	0.444	0.299	0.268
100	0.108	0.137	0.590	0.182	0.115	0.269	0.459	0.301	0.270
110	0.108	0.138	0.601	0.181	0.115	0.262	0.454	0.303	0.270
120	0.108	0.140	0.613	0.181	0.115	0.255	0.465	0.306	0.273
130	0.108	0.141	0.625	0.181	0.116	0.253	0.474	0.309	0.276
140	0.108	0.143	0.636	0.182	0.118	0.250	0.473	0.312	0.278
150	0.108	0.145	0.648	0.182	0.119	0.251	0.477	0.316	0.281
160	0.109	0.147	0.658	0.183	0.120	0.252	0.485	0.321	0.284
170	0.109	0.149	0.668	0.184	0.121	0.254	0.500	0.326	0.289
180	0.109	0.151	0.676	0.184	0.122	0.257	0.511	0.331	0.293
190	0.110	0.153	0.684	0.185	0.123	0.260	0.519	0.336	0.296

Tabelle A.1.: Ergebnisse für $V_0^{\bar{s}_\alpha}$ (Zimmer *et al.*) unter Variation von α . Fehlerwerte des AAE (oberer Tabellenteil) und des AEE (unterer Tabellenteil).

α	Dime	Gro2	Gro3	Hydr	Rubb	Urb2	Urb3	Venu	Ø
20	2.660	2.298	5.362	2.864	4.863	3.413	4.573	5.200	3.904
30	2.392	2.118	5.264	2.611	4.472	3.054	4.560	4.989	3.682
40	2.255	2.041	5.287	2.457	4.250	2.623	4.416	5.059	3.549
50	2.175	2.005	5.349	2.356	4.108	2.529	4.384	5.116	3.503
60	2.125	1.993	5.474	2.285	4.018	2.584	4.386	5.157	3.503
70	2.091	1.993	5.572	2.235	3.963	2.486	4.351	5.186	3.485
80	2.068	2.004	5.703	2.198	3.932	2.392	4.160	5.214	3.459
90	2.053	2.023	5.842	2.172	3.922	2.393	4.085	5.291	3.473
100	2.042	2.048	5.932	2.153	3.933	2.411	4.079	5.413	3.501
110	2.036	2.076	6.025	2.140	3.964	2.416	4.198	5.569	3.553
120	2.033	2.104	6.119	2.130	4.010	2.423	4.297	5.724	3.605
130	2.032	2.137	6.195	2.124	4.048	2.434	4.452	5.832	3.657
140	2.033	2.174	6.270	2.121	4.078	2.447	4.613	5.920	3.707
150	2.035	2.218	6.345	2.119	4.103	2.463	4.704	5.979	3.746
160	2.038	2.256	6.410	2.120	4.124	2.480	4.808	6.022	3.782
170	2.043	2.294	6.471	2.121	4.145	2.499	4.953	6.056	3.823
180	2.048	2.331	6.531	2.124	4.166	2.518	5.120	6.091	3.866
190	2.054	2.366	6.594	2.128	4.189	2.539	5.242	6.118	3.904
20	0.137	0.166	0.534	0.234	0.147	0.398	0.506	0.340	0.308
30	0.125	0.150	0.530	0.214	0.133	0.355	0.496	0.311	0.289
40	0.118	0.143	0.533	0.202	0.126	0.307	0.472	0.304	0.276
50	0.115	0.139	0.543	0.195	0.121	0.290	0.469	0.302	0.272
60	0.112	0.137	0.557	0.190	0.118	0.268	0.468	0.302	0.269
70	0.111	0.136	0.572	0.186	0.117	0.248	0.472	0.304	0.268
80	0.110	0.136	0.586	0.184	0.115	0.243	0.441	0.306	0.265
90	0.109	0.137	0.599	0.182	0.115	0.241	0.435	0.311	0.266
100	0.108	0.138	0.610	0.181	0.115	0.242	0.441	0.317	0.269
110	0.108	0.140	0.622	0.181	0.116	0.243	0.473	0.323	0.276
120	0.108	0.141	0.634	0.181	0.117	0.245	0.497	0.329	0.281
130	0.108	0.143	0.644	0.181	0.118	0.247	0.532	0.333	0.288
140	0.108	0.145	0.653	0.181	0.119	0.249	0.581	0.337	0.297
150	0.108	0.148	0.663	0.182	0.120	0.251	0.612	0.341	0.303
160	0.109	0.150	0.673	0.183	0.121	0.253	0.630	0.344	0.308
170	0.109	0.152	0.682	0.184	0.121	0.256	0.645	0.347	0.312
180	0.109	0.154	0.691	0.184	0.122	0.258	0.659	0.350	0.316
190	0.110	0.156	0.702	0.186	0.123	0.261	0.671	0.353	0.320

Tabelle A.2.: Ergebnisse für $V_0^{s_\alpha}$ (Zimmer *et al.*) unter Variation von α . Fehlerwerte des AAE (oberer Tabellenteil) und des AEE (unterer Tabellenteil).

α	Dime	Gro2	Gro3	Hydr	Rubb	Urb2	Urb3	Venu	l ø
				, ,	I				
50	1.804	3.075	7.464	4.655	20.080	9.792	16.309	10.300	9.185
60	1.839	2.949	6.023	4.018	11.155	3.143	4.991	14.651	6.093
70 80		1.938	5.000	5.104	4.175	2.897	2.782	22.789	5.815
	1.872	2.599	5.132	2.104	3.153	10.625	4.564 6.103	4.007 3.882	4.257
90	1.907	1.657	4.890	2.560	3.282 2.968	8.322		3.818	4.075
100	1.944	1.731 1.546	4.913	1.996	2.962	2.306	2.613		2.786
120	1.983 2.022		4.840	1.973		2.114	3.863	3.923 3.980	2.900
-	2.022	1.576 1.617	4.497 4.588	1.999 2.048	2.931	2.270	3.720	- /	2.843
130	2.100			2.040			2.733 2.682	4.127	2.768
140		1.544	4.517		2.914	2.032	2.616	4.333	2.809
150 160	2.138	1.549	4.477	1.963				4.533	2.813
-	2.177	1.510	4.558	1.964	2.914	2.091	2.569	4.719	
170	2.216	1.478	4.538	1.969	2.927	2.082	3.663	4.855	2.966
	2.254	1.549	4.558	1.977	2.943		4.424	7.964	3.494
190	2.292	1.513	4.619	1.984	2.951	2.290	2.646	5.092	2.923
200	2.329	1.505	4.658	1.997	2.969	2.171	2.678	5.150	2.932
210	2.367	1.534	4.693	2.000	2.987	2.245	2.721	5.213	2.970
220	2.403	1.531	4.713	2.008	3.011	2.277	2.771	5.253	2.996
230	2.440	1.542	4.771	2.015	3.029	2.357	2.817	5.301	3.034
240	2.476	1.562	4.811	2.022	3.043	2.345	2.854	5.328	3.055
250	2.512	1.591	4.857	2.030	3.062	2.389	2.929	5.361	3.091
50	0.096	0.610	1.040	0.801	25.573	8.896	16.384	21.144	9.318
60	0.097	0.556	0.721	0.601	10.468	2.032	1.218	10.930	3.328
70	0.098	0.226	0.569	5.200	0.706	0.921	0.358	28.827	4.613
8o	0.100	0.352	0.652	0.172	0.111	12.539	2.348	0.367	2.080
90	0.102	0.141	0.540	0.346	0.146	4.051	4.593	0.295	1.276
100	0.104	0.157	0.612	0.165	0.090	0.518	0.376	0.283	0.288
110	0.106	0.117	0.508	0.158	0.092	0.258	1.246	0.298	0.348
120	0.108	0.110	0.454	0.160	0.090	0.502	0.633	0.290	0.293
130	0.110	0.188	0.475	0.193	0.090	1.920	0.355	0.294	0.453
140	0.112	0.111	0.450	0.201	0.090	0.246	0.329	0.299	0.230
150	0.114	0.155	0.451	0.157	0.090	0.419	0.318	0.304	0.251
160	0.116	0.112	0.457	0.157	0.091	0.249	0.312	0.310	0.226
170	0.118	0.103	0.456	0.158	0.092	0.251	1.597	0.316	0.386
180	0.120	0.106	0.453	0.158	0.092	0.339	3.751	2.560	0.947
190	0.122	0.104	0.466	0.159	0.093	0.578	0.317	0.329	0.271
200	0.124	0.101	0.471	0.163	0.094	0.260	0.324	0.333	0.234
210	0.126	0.102	0.477	0.161	0.095	0.263	0.331	0.337	0.236
220	0.128	0.102	0.478	0.161	0.096	0.266	0.342	0.341	0.239
230	0.129	0.103	0.487	0.162	0.097	0.297	0.351	0.346	0.246
240	0.131	0.104	0.491	0.163	0.098	0.270	0.355	0.349	0.245
250	0.133	0.105	0.498	0.164	0.099	0.286	0.363	0.352	0.250

Tabelle A.3.: Ergebnisse für $V_1^{\bar{s}_{\alpha},n_s}$ unter Variation von α . Fehlerwerte des AAE (oberer Tabellenteil) und des AEE (unterer Tabellenteil).

α	Dime	Gro2	Gro3	Hydr	Rubb	Urb2	Urb3	Venu	Ø
50	1.799	1.832	4.909	2.280	3.198	1.988	3.284	3.757	2.881
60	1.814	1.691	4.732	2.094	3.119	1.934	2.572	3.777	2.717
70	1.841	1.657	4.613	2.021	3.045	1.906	3.812	3.951	2.856
80	1.874	1.528	4.535	1.986	3.001	1.913	2.653	4.454	2.743
90	1.909	1.491	4.461	1.966	2.951	1.838	2.768	4.836	2.778
100	1.948	1.468	4.454	1.954	2.932	1.860	2.713	4.977	2.788
110	1.988	1.458	4.443	1.948	2.910	1.873	2.690	5.053	2.795
120	2.027	1.455	4.453	1.949	2.899	1.880	2.730	5.090	2.810
130	2.066	1.456	4.491	1.953	2.884	1.913	2.669	5.137	2.821
140	2.105	1.467	4.538	1.955	2.884	1.938	2.711	5.168	2.846
150	2.144	1.478	4.588	1.959	2.893	1.973	2.746	5.210	2.874
160	2.183	1.481	4.617	1.966	2.915	2.007	2.773	5.249	2.899
170	2.222	1.494	4.665	1.973	2.929	2.051	2.828	5.288	2.931
180	2.260	1.514	4.718	1.980	2.937	2.085	3.091	5.301	2.986
190	2.299	1.537	4.770	1.987	2.949	2.128	3.162	5.333	3.020
200	2.337	1.558	4.820	1.996	2.970	2.272	3.207	5.370	3.066
210	2.375	1.574	4.878	2.004	2.994	2.266	3.265	5.395	3.094
220	2.413	1.592	4.934	2.010	3.011	2.325	3.292	5.428	3.126
230	2.450	1.606	4.991	2.017	3.038	2.371	3.332	5.473	3.160
240	2.487	1.624	5.079	2.027	3.056	2.418	3.419	5.497	3.201
250	2.524	1.647	5.201	2.035	3.077	2.461	3.443	5.532	3.240
50	0.096	0.135	0.478	0.182	0.095	0.239	1.219	0.276	0.340
60	0.097	0.123	0.458	0.164	0.093	0.219	0.308	0.276	0.217
70	0.098	0.118	0.452	0.157	0.091	0.217	1.381	0.281	0.349
<u>8</u> o	0.100	0.107	0.445	0.155	0.090	0.237	0.331	0.291	0.219
90	0.102	0.104	0.436	0.155	0.089	0.205	0.337	0.301	0.216
100	0.104	0.101	0.439	0.154	0.089	0.208	0.327	0.309	0.216
110	0.106	0.100	0.440	0.155	0.089	0.210	0.321	0.315	0.217
120	0.108	0.099	0.442	0.155	0.089	0.209	0.329	0.319	0.219
130	0.110	0.099	0.447	0.156	0.089	0.215	0.319	0.324	0.220
140	0.112	0.099	0.455	0.156	0.089	0.223	0.327	0.328	0.224
150	0.114	0.100	0.463	0.156	0.090	0.229	0.331	0.332	0.227
160	0.116	0.100	0.467	0.157	0.091	0.237	0.335	0.336	0.230
170	0.118	0.101	0.473	0.158	0.092	0.243	0.343	0.340	0.233
180	0.120	0.102	0.479	0.158	0.093	0.248	0.514	0.343	0.257
190	0.122	0.103	0.486	0.159	0.094	0.255	0.531	0.347	0.262
200	0.124	0.104	0.492	0.160	0.095	0.290	0.538	0.351	0.269
210	0.126	0.105	0.500	0.161	0.096	0.301	0.545	0.354	0.273
220	0.128	0.106	0.509	0.161	0.097	0.306	0.549	0.359	0.277
230	0.130	0.107	0.520	0.162	0.098	0.313	0.555	0.362	0.281
240	0.132	0.108	0.537	0.163	0.099	0.317	0.564	0.365	0.285
250	0.134	0.109	0.550	0.165	0.100	0.321	0.569	0.368	0.289

Tabelle A.4.: Ergebnisse für $V_1^{s_\alpha,n_s}$ unter Variation von α . Fehlerwerte des AAE (oberer Tabellenteil) und des AEE (unterer Tabellenteil).

α	Dime	Gro2	Gro3	Hydr	Rubb	Urb2	Urb3	Venu	Ø
50	1.799	1.733	4.796	2.163	3.195	2.042	2.545	3.744	2.752
60	1.815	1.625	4.688	2.072	3.097	1.950	2.705	3.817	2.721
70	1.842	1.556	4.607	2.019	3.036	1.850	2.561	4.274	2.718
80	1.875	1.511	4.528	1.983	2.990	1.832	2.619	4.819	2.770
90	1.911	1.485	4.464	1.964	2.955	1.862	2.673	4.970	2.786
100	1.949	1.470	4.453	1.952	2.920	1.868	2.637	5.046	2.787
110	1.989	1.466	4.499	1.947	2.906	1.865	2.563	5.093	2.791
120	2.029	1.468	4.536	1.946	2.893	1.881	2.426	5.127	2.788
130	2.068	1.476	4.604	1.951	2.890	1.917	2.650	5.163	2.840
140	2.107	1.475	4.649	1.955	2.893	1.946	2.848	5.192	2.883
150	2.146	1.484	4.670	1.959	2.904	1.985	3.064	5.232	2.930
160	2.185	1.494	4.705	1.966	2.908	2.023	3.100	5.265	2.956
170	2.224	1.510	4.819	1.972	2.935	2.060	3.157	5.309	2.998
180	2.263	1.527	4.900	1.979	2.943	2.104	3.257	5.342	3.039
190	2.301	1.547	4.982	1.987	2.956	2.150	3.384	5.363	3.084
200	2.339	1.563	5.075	1.995	2.980	2.282	3.765	5.401	3.175
210	2.377	1.585	5.134	2.003	2.983	2.304	3.850	5.426	3.208
220	2.415	1.602	5.181	2.012	3.007	2.353	3.898	5.464	3.241
230	2.452	1.674	5.242	2.019	3.035	2.400	3.953	5.482	3.282
240	2.489	1.736	5.309	2.027	3.056	2.453	4.004	5.511	3.323
250	2.526	1.777	5.372	2.034	3.082	2.502	4.040	5.535	3.358
50	0.096	0.126	0.463	0.167	0.095	0.259	0.311	0.272	0.224
60	0.097	0.116	0.452	0.160	0.092	0.232	0.345	0.275	0.221
70	0.098	0.109	0.449	0.157	0.091	0.205	0.325	0.285	0.215
80	0.100	0.105	0.442	0.155	0.090	0.213	0.330	0.298	0.217
90	0.102	0.103	0.441	0.154	0.089	0.229	0.326	0.306	0.219
100	0.104	0.101	0.443	0.154	0.088	0.235	0.326	0.312	0.220
110	0.106	0.100	0.448	0.155	0.089	0.219	0.323	0.318	0.220
120	0.108	0.100	0.451	0.155	0.089	0.224	0.314	0.322	0.220
130	0.110	0.100	0.463	0.155	0.089	0.228	0.386	0.326	0.232
140	0.112	0.100	0.469	0.155	0.090	0.232	0.494	0.330	0.248
150	0.114	0.100	0.474	0.156	0.091	0.237	0.525	0.334	0.254
160	0.116	0.100	0.480	0.157	0.091	0.242	0.531	0.337	0.257
170	0.118	0.101	0.490	0.157	0.092	0.247	0.538	0.343	0.261
180	0.120	0.102	0.498	0.158	0.093	0.253	0.547	0.346	0.265
190	0.122	0.103	0.516	0.159	0.094	0.258	0.559	0.349	0.270
200	0.124	0.104	0.532	0.159	0.095	0.297	0.596	0.353	0.282
210	0.126	0.105	0.540	0.160	0.096	0.306	0.604	0.356	0.287
220	0.128	0.106	0.547	0.162	0.097	0.312	0.611	0.359	0.290
230	0.130	0.111	0.556	0.163	0.098	0.318	0.619	0.362	0.295
240	0.132	0.115	0.563	0.164	0.099	0.324	0.627	0.365	0.299
250	0.134	0.117	0.570	0.165	0.100	0.329	0.633	0.368	0.302

Tabelle A.5.: Ergebnisse für $V_1^{s_{\alpha},s_{\alpha_c},n_s,l_{max}=25}$ unter Variation von α . Fehlerwerte des AAE (oberer Tabellenteil) und des AEE (unterer Tabellenteil).

α	Dime	Gro2	Gro3	Hydr	Rubb	Urb2	Urb3	Venu	Ø
1.400	1.808	1.759	4.871	2.127	3.135	1.964	2.636	3.768	2.758
1.600	1.827	1.613	4.718	2.056	3.072	1.907	3.474	3.831	2.812
1.800	1.853	1.613	4.616	2.018	3.030	1.893	3.728	4.043	2.849
2.000	1.881	1.539	4.539	1.983	2.986	1.913	2.742	4.538	2.765
2.200	1.910	1.508	4.459	1.977	2.963	1.874	2.748	4.843	2.785
2.400	1.941	1.473	4.458	1.957	2.931	1.860	2.735	4.995	2.794
2.600	1.974	1.459	4.442	1.950	2.912	1.880	2.639	5.041	2.787
2.800	2.006	1.455	4.441	1.948	2.899	1.875	2.680	5.078	2.798
3.000	2.039	1.463	4.475	1.950	2.895	1.877	2.662	5.103	2.808
3.200	2.071	1.466	4.498	1.951	2.882	1.909	2.679	5.142	2.825
3.400	2.103	1.467	4.543	1.954	2.884	1.932	2.591	5.166	2.830
3.600	2.135	1.480	4.586	1.958	2.887	1.962	2.727	5.200	2.867
3.800	2.167	1.481	4.614	1.962	2.897	1.991	2.715	5.238	2.883
4.000	2.199	1.486	4.642	1.968	2.913	2.026	2.799	5.260	2.912
4.200	2.231	1.501	4.671	1.973	2.925	2.056	2.884	5.298	2.942
4.400	2.263	1.517	4.718	1.980	2.940	2.082	3.157	5.311	2.996
4.600	2.294	1.536	4.782	1.988	2.955	2.123	3.190	5.336	3.025
4.800	2.326	1.554	4.804	1.994	2.959	2.149	3.168	5.365	3.040
5.000	2.357	1.566	4.845	2.000	2.974	2.180	3.217	5.387	3.066
5.200	2.388	1.582	4.897	2.006	2.990	2.316	3.251	5.425	3.107
5.400	2.419	1.583	4.943	2.012	3.007	2.323	3.293	5.455	3.129
5.600	2.449	1.607	5.007	2.019	3.028	2.370	3.339	5.476	3.162
5.800	2.480	1.620	5.060	2.026	3.043	2.406	3.349	5.498	3.185
6.000	2.510	1.635	5.171	2.032	3.063	2.444	3.417	5.517	3.224
1.400	0.096	0.126	0.478	0.166	0.094	0.224	0.335	0.275	0.224
1.600	0.097	0.115	0.466	0.161	0.092	0.216	1.458	0.277	0.360
1.800	0.099	0.115	0.447	0.158	0.091	0.223	1.577	0.282	0.374
2.000	0.100	0.108	0.446	0.156	0.090	0.233	0.335	0.292	0.220
2.200	0.102	0.105	0.437	0.157	0.090	0.212	0.335	0.303	0.217
2.400	0.103	0.102	0.439	0.155	0.089	0.208	0.334	0.309	0.217
2.600	0.105	0.101	0.440	0.155	0.089	0.211	0.319	0.313	0.216
2.800	0.107	0.100	0.440	0.155	0.089	0.210	0.327	0.318	0.218
3.000	0.109	0.100	0.444	0.155	0.089	0.211	0.325	0.321	0.219
3.200	0.110	0.100	0.449	0.155	0.089	0.215	0.323	0.325	0.221
3.400	0.112	0.100	0.456	0.156	0.089	0.219	0.321	0.328	0.222
3.600	0.114	0.100	0.462	0.156	0.090	0.227	0.330	0.331	0.226
3.800	0.115	0.100	0.466	0.157	0.091	0.235	0.332	0.335	0.229
4.000	0.117	0.100	0.470	0.157	0.091	0.240	0.340	0.338	0.232
4.200	0.119	0.101	0.474	0.158	0.092	0.244	0.357	0.346	0.236
4.400	0.120	0.102	0.480	0.158	0.093	0.248	0.523	0.344	0.259
4.600	0.122	0.103	0.487	0.159	0.094	0.255	0.532	0.346	0.262
4.800	0.124	0.104	0.491	0.160	0.094	0.258	0.534	0.350	0.264
5.000	0.125	0.104	0.496	0.160	0.095	0.260	0.540	0.352	0.267
5.200	0.127	0.105	0.504	0.161	0.096	0.297	0.545	0.356	0.274
5.400	0.129	0.105	0.510	0.161	0.097	0.308	0.550	0.360	0.277
5.600	0.130	0.107	0.519	0.162	0.098	0.314	0.556	0.362	0.281
5.800	0.132	0.107	0.531	0.163	0.098	0.315	0.559	0.365	0.284
6.000	0.133	0.108	0.547	0.164	0.100	0.320	0.567	0.367	0.288

Tabelle A.6.: Ergebnisse für $V_1^{s_{\alpha},\overline{n}_s}$ unter Variation von α . Fehlerwerte des AAE (oberer Tabellenteil) und des AEE (unterer Tabellenteil).

$\alpha/\sigma_c \parallel$	12	12.25	12.5	12.75	13	13.25	13.5	13.75	14	14.25	14.5	14.75	15	15.25	15.5	15.75	16	Ø
50	2.035	2.042	2.041	2.070	2.112	2.040	2.047	2.063	2.004	2.007	1.997	2.005	1.982	2.001	1.985	2.012	1.991	2.025
55	2.001	2.059	2.056	2.018	2.034	2.035	1.975	2.023	1.970	1.987	2.004	1.962	2.022	1.960	2.011	1.953	1.974	2.002
90	1.990	1.962	2.009	1.984	1.931	1.968	1.991	1.979	1.969	1.936	1.913	1.972	1.974	1.986	1.949	1.951	1.931	1.964
65	1.922	1.905	1.936	1.971	1.924	1.898	1.898	1.911	1.907	1.951	1.905	1.902	1.900	1.939	1.96.1	1.901	1.899	1.919
70	1.925	1.911	1.895	1.919	1.959	1.948	1.886	1.942	1.921	1.880	1.883	1.882	1.907	1.894	1.928	1.889	1.876	1.909
75	1.923	1.930	1.881	1.882	1.922	1.940	1.941	1.883	1.900	1.895	1.907	1.921	1.925	1.889	1.894	1.891	1.868	1.905
80	1.889	1.918	1.888	1.919	1.928	1.930	1.924	1.926	1.933	1.924	1.923	1.879	1.912	1.890	1.918	1.899	1.902	1.912
85	1.909	1.886	1.877	1.903	1.892	1.882	1.897	1.871	1.912	1.903	1.886	1.907	1.901	1.893	1.889	1.877	1.873	1.892
96	1.889	1.864	1.889	1.891	1.885	1.879	1.854	1.867	1.841	1.858	1.858	1.847	1.853	1.857	1.843	1.859	1.857	1.864
95	1.877	1.893	1.874	1.876	1.890	1.860	1.864	1.851	1.862	1.850	1.832	1.853	1.861	1.837	1.839	1.842	1.842	1.859
100	1.871	1.885	1.881	1.861	1.859	1.863	1.857	1.861	1.846	1.845	1.850	1.851	1.862	1.853	1.846	1.850	1.861	1.859
105	1.888	1.864	1.880	1.863	1.869	1.865	1.878	1.870	1.845	1.864	1.861	1.853	1.864	1.848	1.858	1.853	1.865	1.864
110	1.877	1.850	1.868	1.871	1.868	1.872	1.867	1.870	1.865	1.865	1.868	1.858	1.861	1.861	1.864	1.879	1.871	1.867
115	1.876	1.878	1.864	1.878	1.868	1.885	1.866	1.874	1.867	1.872	1.886	1.883	1.877	1.888	1.883	1.887	1.883	1.877
120	1.886	1.879	1.866	1.883	1.883	1.870	1.863	1.879	1.877	1.880	1.882	1.881	1.887	1.886	1.890	1.897	1.899	1.882
125	1.888	1.888	1.883	1.890	1.900	1.882	1.887	1.884	1.892	1.881	1.887	1.896	1.890	1.900	1.896	1.907	1.912	1.892
130	1.906	1.887	1.899	1.906	1.901	1.892	1.891	1.907	1.896	1.908	1.909	1.912	1.915	1.914	1.921	1.926	1.930	1.907
135	1.910	1.909	1.913	1.911	1.909	1.913	1.904	1.914	1.920	1.923	1.924	1.932	1.929	1.937	1.940	1.949	1.950	1.923
140	1.912	1.914	1.911	1.912	1.922	1.923	1.929	1.927	1.935	1.938	1.941	1.951	1.953	1.958	1.963	1.967	1.972	1.937
145	1.931	1.928	1.927	1.930	1.932	1.939	1.943	1.945	1.957	1.953	1.956	1.961	1.970	1.973	1.983	1.982	1.996	1.953
150	1.932	1.943	1.944	1.943	1.946	1.954	1.957	1.964	1.969	1.972	1.979	1.986	1.991	1.997	1.997	2.011	2.018	1.971
155	1.950	1.948	1.960	1.964	1.963	1.970	1.974	1.980	1.979	1.990	1.997	2.002	2.005	2.012	2.018	2.027	2.036	1.987
160	1.966	1.968	1.974	1.975	1.982	1.988	1.993	1.998	2.005	2.013	2.015	2.025	2.026	2.037	2.041	2.045	2.050	2.006
165	1.977	1.982	1.992	1.996	2.001	2.001	2.013	2.018	2.022	2.030	2.038	2.042	2.047	2.056	2.058	2.066	2.068	2.024
170	1.992	1.999	2.004	2.011	2.021	2.025	2.032	2.040	2.042	2.053	2.060	2.064	2.068	2.072	2.077	2.082	2.090	2.043
175	2.006	2.017	2.020	2.029	2.036	2.042	2.048	2.058	2.063	2.070	2.072	2.084	2.085	2.094	2.097	2.101	2.111	2.061
180	2.025	2.034	2.043	2.049	2.052	2.064	2.069	2.078	2.084	2.089	2.096	2.098	2.106	2.111	2.120	2.124	2.134	2.081
185	2.039	2.052	2.060	2.063	2.074	2.075	2.089	2.093	2.101	2.111	2.114	2.118	2.128	2.135	2.140	2.148	2.155	2.100
190	2.057	2.066	2.074	2.084	2.091	2.098	2.108	2.115	2.124	2.130	2.135	2.139	2.150	2.156	2.161	2.170	2.179	2.120
195	2.077	2.087	2.093	2.105	2.116	2.122	2.128	2.135	2.141	2.146	2.156	2.161	2.174	2.180	2.189	2.197	2.202	2.142
200	2.097	2.106	2.149	2.191	2.237	2.237	2.249	2.260	2.270	2.276	2.283	2.289	2.297	2.310	2.318	2.326	2.330	2.248
205	2.226	2.234	2.240	2.243	2.258	2.258	2.271	2.274	2.281	2.289	2.299	2.303	2.313	2.322	2.329	2.338	2.347	2.284
Ø	1.958	1.959	1.962	1.969	1.974	1.972	1.972	1.977	1.975	1.978	1.979	1.982	1.989	1.989	1.994	1.994	1.996	

Tabelle A.7.: Ergebnisse für $V_1^{s_{\kappa}n_s}$ unter Variation von α und der bilateralen Farbgewichtung σ_c für die *Urban*2 Sequenz. Fehlerwerte des AAE sind angegeben.

Tabelle A.8.: Ergebnisse für $V_1^{s_\kappa,n_s}$ unter Variation von α und der bilateralen Farbgewichtung σ_c für die *Grove*3 Sequenz. Fehlerwerte des AAE sind angegeben.

Ø	205	200	195	190	185	180	175	170	165	160	155	150	145	140	135	130	125	120	115	110	105	100	95	90	85	80	75	70	65	60	55	50	α/σ_c
4.639	4.713	4.687	4.672	4.653	4.631	4.610	4.595	4.575	4.565	4.534	4.491	4.490	4.476	4.466	4.455	4.446	4.437	4.454	4.457	4.453	4.483	4.484	4.618	4.683	4.659	4.747	4.788	4.913	4.995	4.963	5.033	5.230	12
4.626	4.719	4.699	4.681	4.660	4.648	4.623	4.605	4.581	4.572	4.565	4.520	4.494	4.509	4.472	4.474	4.464	4.448	4.451	4.453	4.432	4.463	4.508	4.533	4.552	4.655	4.680	4.822	4.878	4.926	4.920	5.016	5.018	12.25
4.619	4.733	4.715	4.700	4.668	4.655	4.624	4.609	4.606	4.577	4.568	4.554	4.515	4.484	4.465	4.455	4.464	4.440	4.442	4.450	4.468	4.479	4.484	4.490	4.566	4.671	4.683	4.757	4.753	4.907	4.896	4.958	4.971	12.5
4.621	4.742	4.729	4.706	4.681	4.667	4.648	4.631	4.611	4.587	4.570	4.552	4.512	4.504	4.484	4.482	4.457	4.456	4.455	4.415	4.435	4.456	4.494	4.497	4.526	4.623	4.602	4.801	4.820	4.823	4.850	5.060	4.990	12.75
4.612	4.767	4.748	4.737	4.697	4.671	4.657	4.635	4.609	4.587	4.573	4.557	4.545	4.520	4.499	4.473	4.453	4.451	4.443	4.440	4.437	4.423	4.454	4.467	4.491	4.522	4.580	4.716	4.789	4.793	4.916	4.920	5.021	13
4.611	4.778	4.756	4.737	4.709	4.681	4.664	4.646	4.619	4.607	4.580	4.570	4.545	4.520	4.502	4.475	4.465	4.455	4.448	4.439	4.425	4.438	4.426	4.456	4.523	4.545	4.523	4.625	4.726	4.771	4.865	4.962	5.089	13.25
4.616	4.795	4.780	4.751	4.721	4.701	4.670	4.672	4.640	4.627	4.593	4.579	4.550	4.535	4.513	4.474	4.489	4.463	4.448	4.454	4.435	4.455	4.465	4.468	4.459	4.564	4.548	4.656	4.660	4.817	4.767	5.009	4.967	13.5
4.612	4.794	4.792	4.761	4.740	4.716	4.701	4.672	4.654	4.629	4.612	4.588	4.567	4.551	4.523	4.505	4.480	4.473	4.456	4.439	4.425	4.426	4.470	4.438	4.474	4.502	4.560	4.600	4.590	4.697	4.792	4.898	5.075	13.75
4.618	4.838	4.796	4.779	4.761	4.735	4.718	4.683	4.660	4.650	4.622	4.607	4.587	4.562	4.539	4.495	4.479	4.464	4.442	4.462	4.434	4.431	4.422	4.455	4.451	4.488	4.502	4.606	4.720	4.717	4.777	4.959	4.951	14
4.627	4.856	4.829	4.794	4.779	4.743	4.728	4.695	4.671	4.649	4.627	4.609	4.597	4.579	4.554	4.523	4.501	4.484	4.467	4.452	4.433	4.476	4.446	4.425	4.453	4.480	4.546	4.598	4.602	4.652	4.865	4.925	5.035	14.25
4.626	4.880	4.847	4.816	4.793	4.767	4.743	4.722	4.688	4.660	4.649	4.629	4.612	4.584	4.577	4.532	4.495	4.485	4.466	4.440	4.442	4.446	4.435	4.444	4.455	4.458	4.526	4.599	4.617	4.653	4.781	4.848	4.946	14.5
4.633	4.897	4.868	4.842	4.807	4.784	4.756	4.726	4.703	4.677	4.647	4.630	4.607	4.588	4.567	4.551	4.514	4.474	4.485	4.480	4.444	4.450	4.423	4.430	4.445	4.456	4.531	4.563	4.632	4.697	4.810	4.814	4.958	14.75
4.634	4.911	4.888	4.860	4.835	4.797	4.769	4.748	4.709	4.692	4.669	4.637	4.611	4.604	4.577	4.561	4.503	4.509	4.481	4.465	4.454	4.453	4.431	4.455	4.453	4.443	4.516	4.555	4.599	4.661	4.724	4.820	4.914	15
4.638	4.926	4.906	4.889	4.844	4.817	4.780	4.767	4.735	4.698	4.674	4.654	4.628	4.607	4.588	4.560	4.545	4.501	4.490	4.473	4.461	4.439	4.432	4.436	4.446	4.455	4.484	4.525	4.566	4.611	4.658	4.834	4.990	15.25
4.640	4.960	4.928	4.898	4.865	4.833	4.808	4.765	4.749	4.726	4.699	4.666	4.640	4.608	4.617	4.597	4.560	4.516	4.491	4.472	4.446	4.448	4.440	4.433	4.435	4.427	4.468	4.534	4.607	4.628	4.686	4.663	4.880	15.5
4.646	4.985	4.950	4.931	4.882	4.863	4.819	4.790	4.768	4.726	4.705	4.677	4.652	4.639	4.608	4.591	4.567	4.550	4.510	4.492	4.471	4.462	4.441	4.426	4.444	4.461	4.495	4.491	4.549	4.593	4.641	4.681	4.824	15.75
4.659	5.082	4.982	4.928	4.917	4.885	4.852	4.805	4.772	4.751	4.723	4.685	4.661	4.637	4.617	4.603	4.579	4.551	4.506	4.476	4.478	4.462	4.435	4.425	4.452	4.443	4.494	4.517	4.569	4.627	4.603	4.714	4.853	16
	4.846	4.818	4.793	4.765	4.741	4.716	4.692	4.668	4.646	4.624	4.600	4.577	4.559	4.539	4.518	4.498	4.480	4.467	4.456	4.445	4.452	4.452	4.464	4.489	4.521	4.558	4.632	4.682	4.739	4.795	4.889	4.983	Ø

α/σ_d	2	2.3	2.6	2.9	3.2	3.5	3.8	4.1	4.4	4.7	5	5.3	5.6	5.9	6.2	6.5	8.9	Ø
50	1.974	1.973	1.989	1.957	1.997	2.030	1.998	2.033	2.065	2.036	2.090	2.110	2.084	2.090	2.185	2.185	2.170	2.057
09	1.926	1.917	1.887	1.937	1.949	1.937	1.986	1.910	1.978	1.944	1.966	1.957	1.992	2.027	2.052	2.069	2.077	1.971
20	1.826	1.815	1.878	1.892	1.831	1.871	1.886	1.922	1.921	1.928	1.974	1.972	1.972	1.946	2.008	5.009	1.993	1.920
80	1.813	1.812	1.828	1.827	1.824	1.826	1.898	1.918	1.928	1.924	1.895	1.942	1.946	1.912	1.944	1.950	1.955	1.891
90	1.816	1.820	1.813	1.814	1.814	1.822	1.840	1.841	1.861	1.865	1.921	1.944	1.936	1.948	1.935	1.940	1.948	1.875
100	1.843	1.842	1.823	1.826	1.825	1.834	1.863	1.863	1.855	1.866	1.916	1.907	1.926	1.921	1.935	1.951	1.980	1.881
110	1.864	1.865	1.861	1.857	1.853	1.855	1.861	1.871	1.854	1.863	1.892	1.898	1.913	1.896	1.951	1.939	1.949	1.885
120	1.894	1.897	1.875	1.878	1.882	1.884	1.880	1.866	1.877	1.883	1.886	1.898	1.904	1.903	1.945	026.1	1.936	1.898
130	1.926	1.923	1.907	1.912	016.1	1.910	1.904	1.899	1.906	1.898	1.916	1.900	1.911	1.915	1.950	1.975	1.980	1.920
140	1.955	1.962	1.943	1.946	1.947	1.949	1.931	1.937	1.936	1.936	1.954	1.945	1.945	1.935	1.975	1.989	1.980	1.951
150	1.991	1.997	1.973	1.978	626.1	1.979	1.971	1.969	1.969	1.969	1.968	1.968	1.969	1.978	2.008	1.982	1.988	1.979
160	2.036	2.040	2.013	2.017	2.018	2.016	2.008	2.005	2.008	2.012	2.003	1.996	2.008	2.009	2.014	2:00	2.021	2.014
170	2.078	2.082	2.054	2.056	2.060	2.057	2.047	2.053	2.048	2.040	2.040	2.038	2.046	2.041	2.049	2.059	2.046	2.053
180	2.125	2.133	2.097	2.097	2.097	2.099	2.087	2.084	2.085	2.086	2.082	2.080	2.075	2.080	2.070	2.097	2.081	2.091
190	2.172	2.180	2.142	2.141	2.140	2.143	2.125	2.124	2.127	2.127	2.112	2.118	2.113	2.113	2.107	2.109	2.106	2.129
200	2.224	2.230	2.184	2.186	2.187	2.187	2.215	2.263	2.267	2.273	2.255	2.254	2.245	2.242	2.212	2.204	2.212	2.226
210	2.275	2.294	2.327	2.332	2.334	2.334	2.264	2.265	2.263	2.266	2.263	2.272	2.265	2.267	2.266	2.258	2.258	2.283
220	2.396	2.410	2.351	2.344	2.341	2.338	2.319	2.322	2.325	2.327	2.307	2.310	2.312	2.310	2.296	2.305	2.299	2.330
230	2.437	2.441	2.394	2.397	2.397	2.398	2.370	2.371	2.372	2.369	2.348	2.350	2.348	2.351	2.336	2.340	2.340	2.374
240	2.480	2.491	2.445	2.447	2.449	2.449	2.415	2.420	2.417	2.416	2.393	2.393	2.399	2.394	2.376	2.378	2.380	2.420
250	2.531	2.544	2.494	2.495	2.497	2.499	2.462	2.464	2.463	2.463	2.437	2.436	2.436	2.437	2.420	2.420	2.419	2.466
Ø	2.075	2.079	2.061	2.064	2.063	2.067	2.063	2.067	2.073	2.071	2.077	2.080	2.083	2.082	2.097	2.102	2.101	

Tabelle A.9.: Ergebnisse für $V_1^{S_{\alpha},n_s}$ unter Variation von α und der bilateralen Distanzgewichtung σ_d für die *Urbanz* Sequenz. Fehlerwerte des AAE sind angegeben.

 α/σ_d 230 150 130 250 210 200 120 220 180 170 190 160 140 110 100 90 80 70 60 50 5.523 4.859 4.910 5.594 5.363 5.284 5.033 4.957 4.910 4.8014.700 4.612 4.520 4.585 5.230 12 4.903 4.861 4.693 4.462 5.587 5.438 5.360 5.281 5.018 4.578 4.533 4.909 5.228 5.137 4.955 4.8114.618 4.487 5.284 5.028 4.880 4.743 4.699 4.595 4.465 4.452 4.790 5.144 4.826 4.784 4.648 4.549 4.475 4.435 2.6 5.268 4.8684.736 4.6855.324 5.206 4.573 4.542 4.487 4.475 5.371 4.822 4.783 4.436 5.100 5.009 4.637 2.9 4.961 4.726 4.682 4.467 4.793 5.367 5.267 5.186 5.092 4.8684.821 4.574 4.547 4.480 4.457 4.611 5.312 4.776 4.441 4.626 3.2 4.678 4.961 4.726 4.758 5.361 5.317 5.250 5.185 5.060 4.862 4.819 4.570 4.465 4.604 4.767 4.539 4.486 4.443 4.435 4.468 4.780 4.630 3.5 4.855 4.627 4.586 4.566 5.160 5.025 4.892 4.838 4.498 4.458 5.225 4.779 4.735 4.6844.5254.959 4.456 4.425 4.456 3.8 4.953 4.824 4.587 4.974 4.728 4.495 4.516 5.230 4.992 4.639 4.890 4.780 4.676 4.565 4.475 4.453 4.423 4.427 4.584 4.792 4.721 4.1 4.826 4.583 4.996 4.941 4.881 4.616 4.742 5.107 4.773 4.637 4.511 4.453 5.207 4.731 4.673 4.453 4.438 4.434 4.522 5.036 4.719 4.537 4.4 4.624 4.937 4.860 5.187 5.092 5.008 4.814 4.593 4.547 4.501 4.434 4.448 4.544 4.747 4.713 4.721 4.466 4.453 4.879 4.764 4.672 4.679 4.7 4.853 4.585 4.565 4.708 4.935 4.899 4.584 4.912 5.118 4.774 4.731 4.674 4.629 4.461 4.488 4.479 4.573 5.037 4.697 4.508 4.620 5 4.566 4.826 4.740 4.589 4.535 4.966 4.934 4.897 4.686 4.664 4.627 4.481 4.474 4.435 4.487 4.655 4.750 5.221 4.773 4.709 5.009 4.580 5.3 4.876 4.821 4.721 4.585 4.545 4.931 5.118 4.489 4.625 4.813 4.708 4.996 4.927 4.713 4.666 4.489 4.501 4.461 4.6654.767 4.629 4.533 5.6 4.584 4.550 4.891 4.767 5.112 4.737 4.686 4.617 4.469 4.445 4.660 5.016 4.929 4.817 4.654 4.515 4.511 4.502 4.690 5.9 4.582 4.507 4.894 4.598 4.848 4.815 4.777 4.753 4.719 4.699 4.639 4.598 4.544 4.520 4.522 4.680 4.694 4.814 4.855 6.2 4.585 4.518 4.536 4.696 4.8984.765 4.740 4.724 4.679 4.629 4.589 4.570 4.616 4.912 4.945 5.179 5.503 4.764 4.810 4.533 4.763 4.855 6.5 4.760 4.561 4.901 4.856 4.799 4.775 4.743 4.726 4.669 4.644 4.597 4.568 4.518 4.538 4.603 4.662 4.719 4.859 4.983 5.125 5.495 4.612 6.8 4.631 4.997 4.930 4.669 4.587 4.538 4.509 4.520 4.536 4.872 4.513 4.590 4.804 4.754 4.708 5.003 Ø

des AAE sind angegeben. **Tabelle A.10.:** Ergebnisse für $V_1^{s_\alpha n_s}$ unter Variation von α und der bilateralen Distanzwerte σ_d für die *Grove*3 Sequenz. Fehlerwerte

(ψ_c,ψ_d)											
	α	130	140	150	160	170	180	190	200	210	220
(ψ_{b1},ψ_{b1})	AAE	1.495	1.498	1.499	1.507	1.509	1.529	1.560	1.571	1.585	1.601
(ψ_{b1},ψ_{b2})	AAE	1.498	1.496	1.502	1.499	1.514	1.528	1.554	1.572	1.580	1.594
	α	220	230	240	250	260	270	280	290	300	310
(ψ_{b1},ψ_{ch})	AAE	1.507	1.496	1.508	1.498	1.504	1.515	1.516	1.528	1.540	1.549
	α	95	108	121	133	146	159	172	184	197	210
(ψ_{b2},ψ_{b1})	AAE	1.476	1.455	1.451	1.460	1.472	1.483	1.503	1.530	1.558	1.579
(ψ_{b2},ψ_{b2})	AAE	1.478	1.461	1.456	1.460	1.474	1.484	1.495	1.520	1.554	1.573
	α	150	170	190	210	230	250	270	290	310	330
(ψ_{b2},ψ_{ch})	AAE	1.479	1.451	1.443	1.458	1.461	1.474	1.490	1.506	1.533	1.547
	α	62000	64222	66444	68666	70888	73110	75332	77554	79776	81998
(ψ_{ch},ψ_{b1})	AAE	1.480	1.479	1.479	1.479	1.477	1.480	1.482	1.483	1.490	1.489
	α	63000	64889	66778	68667	70556	72445	74334	76223	78112	80001
(ψ_{ch},ψ_{b2})	AAE	1.483	1.481	1.482	1.481	1.481	1.478	1.482	1.485	1.490	1.487
	α	100000	103111	106222	109333	112444	115555	118666	121777	124888	127999
(ψ_{ch},ψ_{ch})	AAE	1.474	1.472	1.469	1.474	1.470	1.472	1.476	1.476	1.479	1.482

Tabelle A.11.: Ergebnisse für $V_1^{s_\alpha,n_s}$ unter Variation von $\overline{\psi}_c$, $\overline{\psi}_d$ und α für die *Grove*2 Sequenz. Fehlerwerte des AAE sind angegeben.

(ψ_c, ψ_d)											
	α	130	140	150	160	170	180	190	200	210	220
(ψ_{b1},ψ_{b1})	AAE	2.912	2.905	2.913	2.931	2.938	2.963	2.967	2.977	3.007	3.021
(ψ_{b1},ψ_{b2})	AAE	2.921	2.905	2.908	3.013	2.928	2.946	2.957	2.980	2.997	3.013
	α	220	230	240	250	260	270	280	290	300	310
(ψ_{b1},ψ_{ch})	AAE	2.897	2.913	2.916	2.911	2.929	2.929	2.942	2.952	4.984	2.970
	α	95	108	121	133	146	159	172	184	197	210
(ψ_{b2},ψ_{b1})	AAE	2.905	2.892	2.885	2.888	2.913	2.924	2.947	2.969	2.998	2.940
(ψ_{b2},ψ_{b2})	AAE	2.917	2.894	2.880	2.887	2.911	2.930	2.943	2.961	2.992	2.948
	α	150	170	190	210	230	250	270	290	310	330
(ψ_{b2},ψ_{ch})	AAE	2.963	2.934	2.910	2.897	2.893	2.904	2.920	2.935	2.959	2.979
	α	62000	64222	66444	68666	70888	73110	75332	77554	79776	81998
(ψ_{ch},ψ_{b1})	AAE	2.960	2.960	2.958	2.960	2.963	2.968	2.974	2.974	2.982	2.981
	α	63000	64889	66778	68667	70556	72445	74334	76223	78112	80001
(ψ_{ch},ψ_{b2})	AAE	2.964	2.964	2.957	2.963	2.963	2.967	2.966	2.975	2.979	2.984
	α	100000	103111	106222	109333	112444	115555	118666	121777	124888	127999
(ψ_{ch},ψ_{ch})	AAE	2.972	2.974	2.977	2.975	2.981	2.982	2.987	2.992	2.993	3.000

Tabelle A.12.: Ergebnisse für $V_1^{s_\alpha,n_s}$ unter Variation von $\overline{\psi}_c$, $\overline{\psi}_d$ und α für die *Rubberwhale* Sequenz. Fehlerwerte des AAE sind angegeben.

α/ϵ_S	0.01	0.03	0.05	0.10	0.25	0.50	Ø
5000	1.788	1.831	1.832	1.794	1.742	1.716	1.784
6000	1.680	1.685	1.681	1.696	1.616	1.704	1.677
7000	1.574	1.578	1.640	1.562	1.543	1.628	1.588
8000	1.532	1.520	1.529	1.511	1.522	1.550	1.527
9000	1.481	1.493	1.489	1.491	1.495	1.538	1.498
10000	1.469	1.475	1.470	1.474	1.492	1.538	1.486
11000	1.459	1.463	1.464	1.471	1.494	1.542	1.482
12000	1.460	1.455	1.457	1.459	1.502	1.549	1.480
13000	1.456	1.460	1.458	1.469	1.502	1.567	1.485
14000	1.469	1.473	1.472	1.484	1.516	1.587	1.500
15000	1.479	1.476	1.480	1.493	1.535	1.617	1.513
16000	1.483	1.489	1.489	1.500	1.546	1.639	1.524
17000	1.496	1.500	1.501	1.513	1.577	1.659	1.541
18000	1.518	1.514	1.528	1.532	1.582	1.688	1.560
19000	1.537	1.541	1.544	1.552	1.617	1.715	1.584
20000	1.556	1.559	1.564	1.578	1.636	1.744	1.606
21000	1.574	1.576	1.571	1.594	1.656	1.769	1.623
22000	1.590	1.590	1.599	1.611	1.674	1.793	1.643
23000	1.606	1.606	1.615	1.628	1.693	1.819	1.661
24000	1.622	1.622	1.628	1.643	1.711	1.842	1.678
25000	1.643	1.647	1.656	1.669	1.740	1.878	1.706
Ø	1.546	1.550	1.556	1.558	1.590	1.671	
		22					
5000	3.217	3.195	3.187	3.183	3.212	3.298	3.215
5000			_	_	I		3.215 3.140
	3.217	3.195	3.187	3.183	3.212	3.298	
6000	3.217 3.135	3.195 3.116	3.187 3.109	3.183 3.103	3.212 3.137	3.298 3.239	3.140
6000 7000	3.217 3.135 3.046	3.195 3.116 3.035	3.187 3.109 3.030	3.183 3.103 3.033	3.212 3.137 3.096	3.298 3.239 3.215	3.140 3.076
6000 7000 8000	3.217 3.135 3.046 2.996	3.195 3.116 3.035 2.986	3.187 3.109 3.030 2.986	3.183 3.103 3.033 2.995	3.212 3.137 3.096 3.069	3.298 3.239 3.215 3.201	3.140 3.076 3.039
6000 7000 8000 9000	3.217 3.135 3.046 2.996 2.959	3.195 3.116 3.035 2.986 2.956	3.187 3.109 3.030 2.986 2.952	3.183 3.103 3.033 2.995 2.964	3.212 3.137 3.096 3.069 3.051	3.298 3.239 3.215 3.201 3.196	3.140 3.076 3.039 3.013
6000 7000 8000 9000 10000	3.217 3.135 3.046 2.996 2.959 2.925	3.195 3.116 3.035 2.986 2.956 2.923 2.902 2.894	3.187 3.109 3.030 2.986 2.952 2.922	3.183 3.103 3.033 2.995 2.964 2.942	3.212 3.137 3.096 3.069 3.051 3.032	3.298 3.239 3.215 3.201 3.196 3.194	3.140 3.076 3.039 3.013 2.990
6000 7000 8000 9000 10000	3.217 3.135 3.046 2.996 2.959 2.925 2.909	3.195 3.116 3.035 2.986 2.956 2.923 2.902	3.187 3.109 3.030 2.986 2.952 2.922 2.909	3.183 3.103 3.033 2.995 2.964 2.942 2.927	3.212 3.137 3.096 3.069 3.051 3.032 3.033	3.298 3.239 3.215 3.201 3.196 3.194 3.207	3.140 3.076 3.039 3.013 2.990 2.981
6000 7000 8000 9000 10000 11000	3.217 3.135 3.046 2.996 2.959 2.925 2.909 2.897	3.195 3.116 3.035 2.986 2.956 2.923 2.902 2.894	3.187 3.109 3.030 2.986 2.952 2.922 2.909 2.896	3.183 3.103 3.033 2.995 2.964 2.942 2.927 2.917	3.212 3.137 3.096 3.069 3.051 3.032 3.033 3.030	3.298 3.239 3.215 3.201 3.196 3.194 3.207 3.219	3.140 3.076 3.039 3.013 2.990 2.981 2.976
6000 7000 8000 9000 10000 11000 12000	3.217 3.135 3.046 2.996 2.959 2.925 2.909 2.897 2.887	3.195 3.116 3.035 2.986 2.956 2.923 2.902 2.894 2.878	3.187 3.109 3.030 2.986 2.952 2.922 2.909 2.896 2.887	3.183 3.103 3.033 2.995 2.964 2.942 2.927 2.917 2.918	3.212 3.137 3.096 3.069 3.051 3.032 3.033 3.030 3.029	3.298 3.239 3.215 3.201 3.196 3.194 3.207 3.219 3.235	3.140 3.076 3.039 3.013 2.990 2.981 2.976
6000 7000 8000 9000 10000 11000 12000 13000	3.217 3.135 3.046 2.996 2.959 2.925 2.909 2.897 2.887 2.886	3.195 3.116 3.035 2.986 2.956 2.923 2.902 2.894 2.878 2.884	3.187 3.109 3.030 2.986 2.952 2.922 2.909 2.896 2.887 2.891	3.183 3.103 3.033 2.995 2.964 2.942 2.927 2.917 2.918 2.920	3.212 3.137 3.096 3.069 3.051 3.032 3.033 3.030 3.029 3.048	3.298 3.239 3.215 3.201 3.196 3.194 3.207 3.219 3.235 3.261	3.140 3.076 3.039 3.013 2.990 2.981 2.976 2.972 2.982
6000 7000 8000 9000 10000 11000 12000 13000 14000 15000	3.217 3.135 3.046 2.996 2.959 2.925 2.909 2.897 2.886 2.893	3.195 3.116 3.035 2.986 2.956 2.923 2.902 2.894 2.878 2.884 2.889	3.187 3.109 3.030 2.986 2.952 2.922 2.909 2.896 2.887 2.891 2.903	3.183 3.103 3.033 2.995 2.964 2.942 2.927 2.917 2.918 2.920 2.938	3.212 3.137 3.096 3.069 3.051 3.032 3.033 3.030 3.029 3.048 3.067	3.298 3.239 3.215 3.201 3.196 3.194 3.207 3.219 3.235 3.261 3.294	3.140 3.076 3.039 3.013 2.990 2.981 2.976 2.972 2.982 2.997
6000 7000 8000 9000 10000 11000 12000 13000 14000 15000	3.217 3.135 3.046 2.996 2.959 2.925 2.909 2.897 2.887 2.886 2.893 2.912	3.195 3.116 3.035 2.986 2.956 2.923 2.902 2.894 2.878 2.884 2.889 2.903	3.187 3.109 3.030 2.986 2.952 2.922 2.909 2.896 2.887 2.891 2.903 2.916	3.183 3.103 3.033 2.995 2.964 2.942 2.927 2.917 2.918 2.920 2.938 2.951	3.212 3.137 3.096 3.069 3.051 3.032 3.033 3.030 3.029 3.048 3.067 3.095	3.298 3.239 3.215 3.201 3.196 3.194 3.207 3.219 3.235 3.261 3.294 3.323	3.140 3.076 3.039 3.013 2.990 2.981 2.976 2.972 2.982 2.997 3.017
6000 7000 8000 9000 10000 11000 12000 13000 14000 15000 16000 17000	3.217 3.135 3.046 2.996 2.959 2.925 2.909 2.897 2.886 2.893 2.912	3.195 3.116 3.035 2.986 2.956 2.923 2.902 2.894 2.878 2.884 2.889 2.903	3.187 3.109 3.030 2.986 2.952 2.909 2.896 2.887 2.891 2.903 2.916 2.936	3.183 3.103 3.033 2.995 2.964 2.942 2.927 2.917 2.918 2.920 2.938 2.951 2.975	3.212 3.137 3.096 3.069 3.051 3.032 3.033 3.030 3.029 3.048 3.067 3.095 3.115	3.298 3.239 3.215 3.201 3.196 3.194 3.207 3.219 3.235 3.261 3.294 3.323 3.350	3.140 3.076 3.039 3.013 2.990 2.981 2.976 2.972 2.982 2.997 3.017 3.037
6000 7000 8000 9000 10000 11000 12000 13000 14000 15000 16000 17000 18000	3.217 3.135 3.046 2.996 2.959 2.925 2.909 2.887 2.886 2.893 2.912 2.927 2.942	3.195 3.116 3.035 2.986 2.956 2.923 2.902 2.878 2.884 2.889 2.903 2.921	3.187 3.109 3.030 2.986 2.952 2.922 2.909 2.896 2.887 2.903 2.916 2.936 2.947	3.183 3.103 3.033 2.995 2.964 2.942 2.927 2.917 2.918 2.920 2.938 2.951 2.975 2.993	3.212 3.137 3.096 3.069 3.051 3.032 3.033 3.030 3.029 3.048 3.067 3.095 3.115 3.136	3.298 3.239 3.215 3.201 3.196 3.194 3.207 3.219 3.235 3.261 3.294 3.323 3.350 3.372	3.140 3.076 3.039 3.013 2.990 2.981 2.976 2.972 2.982 2.997 3.017 3.037 3.054
6000 7000 8000 9000 10000 11000 12000 14000 15000 16000 17000 18000 19000	3.217 3.135 3.046 2.996 2.959 2.925 2.909 2.887 2.886 2.893 2.912 2.927 2.942 2.952	3.195 3.116 3.035 2.986 2.956 2.923 2.902 2.894 2.878 2.884 2.889 2.903 2.921 2.933 2.949	3.187 3.109 3.030 2.986 2.952 2.922 2.909 2.896 2.887 2.903 2.916 2.936 2.947 2.967	3.183 3.103 3.033 2.995 2.964 2.942 2.927 2.917 2.918 2.920 2.938 2.951 2.975 2.993 3.000	3.212 3.137 3.096 3.069 3.051 3.032 3.033 3.030 3.029 3.048 3.067 3.095 3.115 3.136 3.152	3.298 3.239 3.215 3.201 3.196 3.194 3.207 3.219 3.235 3.261 3.294 3.323 3.350 3.372 3.409	3.140 3.076 3.039 3.013 2.990 2.981 2.976 2.972 2.982 2.997 3.017 3.037 3.054 3.072
6000 7000 8000 9000 10000 11000 12000 13000 14000 15000 16000 17000 18000 19000 20000	3.217 3.135 3.046 2.996 2.959 2.925 2.909 2.887 2.886 2.893 2.912 2.927 2.942 2.952	3.195 3.116 3.035 2.986 2.923 2.902 2.894 2.878 2.884 2.889 2.903 2.921 2.933 2.949 2.962	3.187 3.109 3.030 2.986 2.952 2.922 2.909 2.896 2.887 2.903 2.916 2.936 2.947 2.967 2.982	3.183 3.103 3.033 2.995 2.964 2.942 2.927 2.917 2.918 2.920 2.938 2.951 2.975 2.993 3.000 3.016	3.212 3.137 3.096 3.069 3.051 3.032 3.033 3.030 3.029 3.048 3.067 3.095 3.115 3.136 3.152 3.179	3.298 3.239 3.215 3.201 3.196 3.194 3.207 3.219 3.235 3.261 3.294 3.323 3.350 3.372 3.409 3.443	3.140 3.076 3.039 3.013 2.990 2.981 2.976 2.972 2.982 2.997 3.017 3.037 3.054 3.092
6000 7000 8000 9000 10000 11000 12000 14000 15000 16000 17000 18000 19000 20000 21000	3.217 3.135 3.046 2.996 2.959 2.925 2.909 2.887 2.886 2.893 2.912 2.927 2.942 2.952 2.970 2.984	3.195 3.116 3.035 2.986 2.923 2.902 2.894 2.878 2.884 2.889 2.903 2.921 2.933 2.949 2.962 2.985	3.187 3.109 3.030 2.986 2.952 2.922 2.909 2.896 2.887 2.903 2.916 2.936 2.947 2.967 2.982 3.007	3.183 3.103 3.033 2.995 2.964 2.942 2.927 2.917 2.918 2.920 2.938 2.951 2.975 2.993 3.000 3.016 3.041	3.212 3.137 3.096 3.069 3.051 3.032 3.033 3.030 3.029 3.048 3.067 3.095 3.115 3.136 3.152 3.179 3.208	3.298 3.239 3.215 3.201 3.196 3.194 3.207 3.219 3.235 3.261 3.294 3.323 3.350 3.372 3.409 3.443 3.484	3.140 3.076 3.039 3.013 2.990 2.981 2.976 2.972 2.982 2.997 3.017 3.037 3.054 3.072 3.092 3.118
6000 7000 8000 9000 10000 11000 12000 13000 14000 15000 16000 17000 18000 19000 20000 21000	3.217 3.135 3.046 2.996 2.959 2.925 2.909 2.887 2.886 2.893 2.912 2.927 2.942 2.952 2.970 2.984 3.010	3.195 3.116 3.035 2.986 2.956 2.923 2.902 2.894 2.878 2.884 2.889 2.903 2.921 2.933 2.949 2.962 2.985 3.011	3.187 3.109 3.030 2.986 2.952 2.922 2.909 2.896 2.887 2.903 2.916 2.936 2.947 2.967 2.982 3.007 3.034	3.183 3.103 3.033 2.995 2.964 2.942 2.927 2.917 2.918 2.920 2.938 2.951 2.975 2.993 3.000 3.016 3.041 3.077	3.212 3.137 3.096 3.069 3.051 3.032 3.033 3.030 3.029 3.048 3.067 3.095 3.115 3.136 3.152 3.179 3.208	3.298 3.239 3.215 3.201 3.196 3.194 3.207 3.219 3.235 3.261 3.294 3.323 3.350 3.372 3.409 3.443 3.484 3.511	3.140 3.076 3.039 3.013 2.990 2.981 2.976 2.972 2.982 2.997 3.017 3.037 3.054 3.072 3.092 3.118
6000 7000 8000 9000 10000 11000 12000 13000 14000 15000 16000 17000 18000 20000 21000 22000 23000	3.217 3.135 3.046 2.996 2.959 2.925 2.909 2.887 2.886 2.893 2.912 2.927 2.942 2.952 2.970 2.984 3.010	3.195 3.116 3.035 2.986 2.956 2.923 2.902 2.894 2.878 2.884 2.889 2.903 2.921 2.933 2.949 2.962 2.985 3.011 3.034	3.187 3.109 3.030 2.986 2.952 2.922 2.909 2.896 2.887 2.903 2.916 2.936 2.947 2.967 2.982 3.007 3.034 3.050	3.183 3.103 3.033 2.995 2.964 2.942 2.927 2.918 2.920 2.938 2.951 2.975 2.993 3.000 3.016 3.041 3.077 3.092	3.212 3.137 3.096 3.069 3.051 3.032 3.033 3.030 3.029 3.048 3.067 3.095 3.115 3.136 3.152 3.179 3.208 3.240 3.263	3.298 3.239 3.215 3.201 3.196 3.194 3.207 3.219 3.235 3.261 3.294 3.323 3.350 3.372 3.409 3.443 3.511 3.561	3.140 3.076 3.039 3.013 2.990 2.981 2.976 2.972 2.982 2.997 3.017 3.037 3.054 3.072 3.092 3.118 3.147 3.172
6000 7000 8000 9000 10000 11000 12000 14000 15000 16000 17000 18000 20000 21000 22000 24000	3.217 3.135 3.046 2.996 2.925 2.925 2.909 2.887 2.886 2.893 2.912 2.927 2.942 2.952 2.970 2.984 3.010 3.031 3.054	3.195 3.116 3.035 2.986 2.923 2.902 2.894 2.878 2.889 2.903 2.921 2.933 2.949 2.962 2.985 3.011 3.034 3.058	3.187 3.109 3.030 2.986 2.952 2.922 2.909 2.896 2.891 2.903 2.916 2.936 2.947 2.967 2.982 3.007 3.034 3.050 3.075	3.183 3.103 3.033 2.995 2.964 2.942 2.927 2.917 2.918 2.920 2.938 2.951 2.975 2.993 3.000 3.016 3.041 3.077 3.092 3.111	3.212 3.137 3.096 3.069 3.051 3.032 3.033 3.030 3.029 3.048 3.067 3.095 3.115 3.136 3.152 3.179 3.208 3.240 3.263 3.294	3.298 3.239 3.215 3.201 3.196 3.194 3.207 3.219 3.235 3.261 3.294 3.323 3.350 3.372 3.409 3.443 3.484 3.511 3.561 3.596	3.140 3.076 3.039 3.013 2.990 2.981 2.976 2.972 2.982 2.997 3.017 3.037 3.054 3.072 3.092 3.118 3.147 3.198

Tabelle A.13.: Ergebnisse für $V_1^{s_\alpha,n_s}$ mit $\psi_S=\psi_{ch}$ unter Variation von α und ε_S für die *Grove*2 Sequenz (oberer Tabellenteil) und für die *Rubberwhale* Sequenz (unterer Tabellenteil). Fehlerwerte des AAE sind angegeben.

α/ϵ_S	0.01	0.03	0.05	0.10	0.25	0.50	Ø
	l l		1		1		1
50	1.832	1.826	1.786	1.807	1.779	1.701	1.789
60	1.691	1.727	1.730	1.645	1.717	1.676	1.698
70	1.657	1.568	1.614	1.632	1.578	1.623	1.612
80	1.528	1.531	1.512	1.520	1.517	1.561	1.528
90	1.491	1.489	1.488	1.483	1.502	1.542	1.499
100	1.468	1.474	1.470	1.469	1.489	1.537	1.485
110	1.458	1.462	1.459	1.469	1.492	1.544	1.481
120	1.455	1.453	1.461	1.458	1.498	1.550	1.479
130	1.456	1.462	1.460	1.471	1.500	1.563	1.485
140	1.467	1.465	1.470	1.484	1.519	1.587	1.499
150	1.478	1.478	1.479	1.488	1.535	1.618	1.513
160	1.481	1.481	1.490	1.502	1.546	1.640	1.523
170	1.494	1.495	1.503	1.514	1.578	1.661	1.541
180	1.514	1.523	1.526	1.535	1.584	1.687	1.562
190	1.537	1.538	1.547	1.553	1.615	1.716	1.584
200	1.558	1.560	1.561	1.578	1.635	1.744	1.606
210	1.574	1.575	1.571	1.596	1.656	1.770	1.624
220	1.592	1.591	1.598	1.611	1.673	1.795	1.643
230	1.606	1.604	1.613	1.628	1.693	1.817	1.660
240	1.624	1.624	1.628	1.642	1.713	1.845	1.679
250	1.647	1.649	1.656	1.669	1.742	1.878	1.707
			-		-		
Ø	1.553	1.551	1.553	1.560	1.598	1.669	
Ø 50	1.553 3.198			1.560 3.183	-	1.669 3.314	3.214
	_	1.551	1.553		1.598		3.214 3.140
50	3.198	1.551 3.194	1.553 3.182	3.183	1.598 3.212	3.314	
50 60	3.198 3.119	1.551 3.194 3.133	1.553 3.182 3.106	3.183 3.104	1.598 3.212 3.143	3.314 3.235	3.140
50 60 70	3.198 3.119 3.045	1.551 3.194 3.133 3.032	1.553 3.182 3.106 3.028	3.183 3.104 3.039	1.598 3.212 3.143 3.091	3.314 3.235 3.213	3.140 3.075
50 60 70 80	3.198 3.119 3.045 3.001	3.194 3.133 3.032 2.980	1.553 3.182 3.106 3.028 2.987	3.183 3.104 3.039 2.994	1.598 3.212 3.143 3.091 3.073	3.314 3.235 3.213 3.208	3.140 3.075 3.041
50 60 70 80 90	3.198 3.119 3.045 3.001 2.951	3.194 3.133 3.032 2.980 2.950	1.553 3.182 3.106 3.028 2.987 2.950	3.183 3.104 3.039 2.994 2.970	3.212 3.143 3.091 3.073 3.052	3.314 3.235 3.213 3.208 3.196	3.140 3.075 3.041 3.012
50 60 70 80 90	3.198 3.119 3.045 3.001 2.951 2.932	3.194 3.133 3.032 2.980 2.950 2.919	1.553 3.182 3.106 3.028 2.987 2.950 2.926	3.183 3.104 3.039 2.994 2.970 2.944	3.212 3.143 3.091 3.073 3.052 3.031	3.314 3.235 3.213 3.208 3.196 3.193	3.140 3.075 3.041 3.012 2.991
50 60 70 80 90 100	3.198 3.119 3.045 3.001 2.951 2.932 2.910	3.194 3.133 3.032 2.980 2.950 2.919 2.892	1.553 3.182 3.106 3.028 2.987 2.950 2.926 2.909 2.899	3.183 3.104 3.039 2.994 2.970 2.944 2.925	3.212 3.143 3.091 3.073 3.052 3.031 3.033	3.314 3.235 3.213 3.208 3.196 3.193 3.209	3.140 3.075 3.041 3.012 2.991 2.980
50 60 70 80 90 100 110	3.198 3.119 3.045 3.001 2.951 2.932 2.910 2.899	3.194 3.133 3.032 2.980 2.950 2.919 2.892 2.886	1.553 3.182 3.106 3.028 2.987 2.950 2.926 2.909 2.899	3.183 3.104 3.039 2.994 2.970 2.944 2.925 2.914	3.212 3.143 3.091 3.073 3.052 3.031 3.033 3.039	3.314 3.235 3.213 3.208 3.196 3.193 3.209 3.215	3.140 3.075 3.041 3.012 2.991 2.980 2.975
50 60 70 80 90 100 110 120 130	3.198 3.119 3.045 3.001 2.951 2.932 2.910 2.899 2.884	1.551 3.194 3.133 3.032 2.980 2.950 2.919 2.892 2.886 2.874	1.553 3.182 3.106 3.028 2.987 2.950 2.926 2.909 2.899	3.183 3.104 3.039 2.994 2.970 2.944 2.925 2.914 2.920	1.598 3.212 3.143 3.091 3.073 3.052 3.031 3.033 3.039 3.028	3.314 3.235 3.213 3.208 3.196 3.193 3.209 3.215 3.238	3.140 3.075 3.041 3.012 2.991 2.980 2.975 2.971
50 60 70 80 90 100 110 120 130	3.198 3.119 3.045 3.001 2.951 2.932 2.910 2.899 2.884 2.884	1.551 3.194 3.133 3.032 2.980 2.950 2.919 2.892 2.886 2.874 2.881	1.553 3.182 3.106 3.028 2.987 2.950 2.926 2.909 2.899 2.883 2.887	3.183 3.104 3.039 2.994 2.970 2.944 2.925 2.914 2.920 2.923	1.598 3.212 3.143 3.091 3.073 3.052 3.031 3.033 3.039 3.028 3.044	3.314 3.235 3.213 3.208 3.196 3.193 3.209 3.215 3.238 3.259	3.140 3.075 3.041 3.012 2.991 2.980 2.975 2.971 2.980
50 60 70 80 90 100 110 120 130 140	3.198 3.119 3.045 3.001 2.951 2.932 2.910 2.899 2.884 2.884 2.893	1.551 3.194 3.133 3.032 2.980 2.950 2.919 2.892 2.886 2.874 2.881 2.891	1.553 3.182 3.106 3.028 2.987 2.950 2.926 2.909 2.899 2.883 2.887 2.899	3.183 3.104 3.039 2.994 2.970 2.944 2.925 2.914 2.920 2.923 2.931	1.598 3.212 3.143 3.091 3.073 3.052 3.031 3.033 3.039 3.028 3.044 3.070	3.314 3.235 3.213 3.208 3.196 3.193 3.209 3.215 3.238 3.259 3.295	3.140 3.075 3.041 3.012 2.991 2.980 2.975 2.971 2.980 2.997
50 60 70 80 90 100 110 120 130 140 150	3.198 3.119 3.045 3.001 2.951 2.932 2.910 2.899 2.884 2.884 2.893 2.915	1.551 3.194 3.133 3.032 2.980 2.950 2.919 2.892 2.886 2.874 2.881 2.891 2.908	1.553 3.182 3.106 3.028 2.987 2.950 2.926 2.909 2.899 2.883 2.887 2.899	3.183 3.104 3.039 2.994 2.970 2.944 2.925 2.914 2.920 2.923 2.931 2.952	1.598 3.212 3.143 3.091 3.073 3.052 3.031 3.033 3.039 3.028 3.044 3.070 3.099	3.314 3.235 3.213 3.208 3.196 3.193 3.209 3.215 3.238 3.259 3.295 3.327	3.140 3.075 3.041 3.012 2.991 2.980 2.975 2.971 2.980 2.997 3.019
50 60 70 80 90 100 110 120 130 140 150 160	3.198 3.119 3.045 3.001 2.951 2.932 2.910 2.899 2.884 2.884 2.893 2.915 2.929	1.551 3.194 3.133 3.032 2.980 2.950 2.919 2.892 2.886 2.874 2.881 2.991	1.553 3.182 3.106 3.028 2.987 2.950 2.926 2.909 2.889 2.887 2.899 2.914 2.940	3.183 3.104 3.039 2.994 2.970 2.944 2.925 2.914 2.920 2.923 2.931 2.952 2.971	1.598 3.212 3.143 3.091 3.073 3.052 3.031 3.039 3.028 3.044 3.070 3.099 3.116	3.314 3.235 3.213 3.208 3.196 3.193 3.209 3.215 3.238 3.259 3.295 3.327 3.352	3.140 3.075 3.041 3.012 2.991 2.980 2.975 2.971 2.980 2.997 3.019 3.038
50 60 70 80 90 100 110 120 130 140 150 160 170 180	3.198 3.119 3.045 3.001 2.951 2.932 2.910 2.899 2.884 2.884 2.893 2.915 2.929	1.551 3.194 3.133 3.032 2.980 2.950 2.919 2.892 2.886 2.874 2.881 2.908 2.921 2.930	1.553 3.182 3.106 3.028 2.987 2.950 2.926 2.909 2.883 2.887 2.899 2.914 2.940	3.183 3.104 3.039 2.994 2.970 2.944 2.925 2.914 2.920 2.923 2.931 2.952 2.971 2.992	1.598 3.212 3.143 3.091 3.073 3.052 3.031 3.033 3.039 3.028 3.044 3.070 3.099 3.116 3.137	3.314 3.235 3.213 3.208 3.196 3.193 3.209 3.215 3.238 3.259 3.259 3.327 3.352 3.373	3.140 3.075 3.041 3.012 2.991 2.980 2.975 2.971 2.980 2.997 3.019 3.038 3.053
50 60 70 80 90 100 110 120 130 140 150 160 170 180	3.198 3.119 3.045 3.001 2.951 2.932 2.910 2.899 2.884 2.884 2.893 2.915 2.929 2.937 2.949	1.551 3.194 3.133 3.032 2.980 2.950 2.919 2.892 2.886 2.874 2.881 2.908 2.921 2.930 2.950	1.553 3.182 3.106 3.028 2.987 2.950 2.926 2.909 2.883 2.887 2.899 2.914 2.940 2.947 2.972	3.183 3.104 3.039 2.994 2.970 2.944 2.925 2.914 2.920 2.923 2.931 2.952 2.971 2.992 3.000	1.598 3.212 3.143 3.091 3.073 3.052 3.031 3.033 3.028 3.044 3.070 3.099 3.116 3.137 3.151	3.314 3.235 3.213 3.208 3.196 3.193 3.209 3.215 3.238 3.259 3.295 3.327 3.373 3.412	3.140 3.075 3.041 3.012 2.991 2.980 2.975 2.971 2.980 2.997 3.019 3.038 3.053 3.072
50 60 70 80 90 100 110 120 130 140 150 160 170 180	3.198 3.119 3.045 3.001 2.951 2.932 2.910 2.899 2.884 2.884 2.893 2.915 2.929 2.937 2.949	1.551 3.194 3.133 3.032 2.980 2.950 2.919 2.892 2.886 2.874 2.881 2.908 2.921 2.930 2.950 2.963	1.553 3.182 3.106 3.028 2.987 2.950 2.926 2.909 2.899 2.883 2.887 2.940 2.947 2.947 2.978	3.183 3.104 3.039 2.994 2.970 2.944 2.925 2.914 2.920 2.923 2.931 2.952 2.971 2.992 3.000 3.017	1.598 3.212 3.143 3.091 3.073 3.052 3.031 3.033 3.039 3.028 3.044 3.070 3.099 3.116 3.137 3.151 3.181	3.314 3.235 3.213 3.208 3.196 3.193 3.209 3.215 3.238 3.259 3.295 3.327 3.373 3.412 3.443	3.140 3.075 3.041 3.012 2.991 2.980 2.975 2.971 2.980 2.997 3.019 3.038 3.053 3.072 3.092
50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210	3.198 3.119 3.045 3.001 2.951 2.932 2.910 2.899 2.884 2.893 2.915 2.929 2.937 2.949 2.970 2.994	1.551 3.194 3.133 3.032 2.980 2.950 2.919 2.892 2.886 2.874 2.891 2.908 2.921 2.930 2.950 2.963 2.987	1.553 3.182 3.106 3.028 2.987 2.950 2.926 2.909 2.899 2.887 2.899 2.914 2.940 2.947 2.972 2.978	3.183 3.104 3.039 2.994 2.970 2.944 2.925 2.914 2.920 2.923 2.931 2.952 2.971 2.992 3.000 3.017 3.043	1.598 3.212 3.143 3.091 3.073 3.052 3.031 3.033 3.039 3.028 3.044 3.070 3.099 3.116 3.137 3.151 3.181 3.207	3.314 3.235 3.213 3.208 3.196 3.193 3.209 3.215 3.238 3.259 3.295 3.327 3.352 3.373 3.412 3.443 3.481	3.140 3.075 3.041 3.012 2.991 2.980 2.975 2.971 2.980 2.997 3.019 3.038 3.053 3.072 3.092 3.119
50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210	3.198 3.119 3.045 3.001 2.951 2.932 2.910 2.899 2.884 2.893 2.915 2.929 2.937 2.949 2.970 2.994 3.011	1.551 3.194 3.133 3.032 2.980 2.950 2.919 2.892 2.886 2.874 2.881 2.991 2.930 2.950 2.950 2.963 3.012	1.553 3.182 3.106 3.028 2.987 2.950 2.926 2.899 2.883 2.887 2.899 2.914 2.940 2.947 2.972 2.978 2.999 3.019	3.183 3.104 3.039 2.994 2.970 2.944 2.925 2.914 2.920 2.923 2.931 2.952 2.971 2.992 3.000 3.017 3.043 3.073	1.598 3.212 3.143 3.091 3.073 3.052 3.031 3.033 3.039 3.028 3.044 3.070 3.151 3.151 3.181 3.207 3.238	3.314 3.235 3.213 3.208 3.196 3.193 3.209 3.215 3.238 3.259 3.295 3.327 3.352 3.373 3.412 3.443 3.481 3.517	3.140 3.075 3.041 3.012 2.991 2.980 2.975 2.971 2.980 2.997 3.019 3.038 3.053 3.072 3.092 3.119 3.145
50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230	3.198 3.119 3.045 3.001 2.951 2.932 2.910 2.899 2.884 2.893 2.915 2.929 2.937 2.949 2.970 2.994 3.011 3.038	1.551 3.194 3.133 3.032 2.980 2.950 2.919 2.892 2.886 2.874 2.891 2.908 2.921 2.930 2.950 2.963 2.987 3.012 3.032	1.553 3.182 3.106 3.028 2.987 2.950 2.926 2.909 2.883 2.887 2.899 2.914 2.940 2.947 2.972 2.978 2.999 3.019	3.183 3.104 3.039 2.994 2.970 2.944 2.925 2.914 2.920 2.923 2.931 2.952 2.971 2.992 3.000 3.017 3.043 3.073 3.089	1.598 3.212 3.143 3.091 3.073 3.052 3.031 3.039 3.028 3.044 3.070 3.099 3.116 3.137 3.151 3.181 3.207 3.238 3.264	3.314 3.235 3.213 3.208 3.196 3.193 3.209 3.215 3.238 3.259 3.295 3.327 3.373 3.412 3.443 3.481 3.517 3.558	3.140 3.075 3.041 3.012 2.991 2.980 2.975 2.971 2.980 2.997 3.019 3.038 3.053 3.072 3.092 3.119 3.145 3.172
50 60 70 80 90 110 120 130 140 150 160 170 180 190 200 210 220 240	3.198 3.119 3.045 3.001 2.951 2.932 2.910 2.899 2.884 2.884 2.893 2.915 2.929 2.937 2.949 2.970 2.994 3.011 3.038 3.056	1.551 3.194 3.133 3.032 2.980 2.950 2.919 2.892 2.886 2.874 2.891 2.908 2.921 2.930 2.950 2.963 2.987 3.012 3.032 3.059	1.553 3.182 3.106 3.028 2.987 2.950 2.926 2.909 2.883 2.887 2.899 2.914 2.940 2.947 2.972 2.978 2.999 3.019 3.050	3.183 3.104 3.039 2.994 2.970 2.944 2.925 2.914 2.920 2.923 2.931 2.952 2.971 2.992 3.000 3.017 3.043 3.073 3.089 3.107	1.598 3.212 3.143 3.091 3.073 3.052 3.031 3.039 3.028 3.044 3.070 3.099 3.116 3.137 3.151 3.181 3.207 3.238 3.264 3.294	3.314 3.235 3.213 3.208 3.196 3.193 3.209 3.215 3.238 3.259 3.295 3.327 3.373 3.412 3.443 3.481 3.517 3.558 3.595	3.140 3.075 3.041 3.012 2.991 2.980 2.975 2.971 2.980 2.997 3.019 3.038 3.053 3.072 3.092 3.119 3.145 3.172 3.198

Tabelle A.14.: Ergebnisse für $V_1^{s_\alpha,n_s}$ mit $\psi_S=\psi_{tv}$ unter Variation von α und ε_S für die *Grove*2 Sequenz (oberer Tabellenteil) und für die *Rubberwhale* Sequenz (unterer Tabellenteil). Fehlerwerte des AAE sind angegeben.

	1	1	1		i .		i
α/ε_S	0.01	0.03	0.05	0.10	0.25	0.50	Ø
500	2.227	2.224	2.219	2.207	2.176	2.152	2.201
600	2.177	2.177	2.170	2.161	2.138	2.128	2.159
700	2.147	2.143	2.141	2.133	2.118	2.120	2.134
800	2.130	2.129	2.126	2.119	2.111	2.117	2.122
900	2.123	2.122	2.120	2.114	2.111	2.127	2.120
1000	2.123	2.122	2.119	2.116	2.119	2.143	2.124
1100	2.126	2.126	2.126	2.125	2.130	2.160	2.132
1200	2.134	2.137	2.135	2.135	2.144	2.181	2.144
1300	2.147	2.148	2.147	2.149	2.161	2.203	2.159
1400	2.162	2.163	2.163	2.165	2.181	2.228	2.177
1500	2.175	2.176	2.178	2.180	2.200	2.252	2.194
1600	2.190	2.192	2.194	2.197	2.219	2.275	2.211
1700	2.205	2.208	2.210	2.213	2.237	2.299	2.229
1800	2.221	2.224	2.225	2.229	2.256	2.321	2.246
1900	2.238	2.240	2.241	2.246	2.276	2.343	2.264
2000	2.253	2.256	2.257	2.263	2.295	2.365	2.282
2100	2.270	2.272	2.273	2.280	2.314	2.387	2.299
2200	2.286	2.288	2.290	2.298	2.333	2.409	2.317
2300	2.303	2.305	2.308	2.316	2.352	2.430	2.336
2400	2.320	2.322	2.324	2.334	2.371	2.451	2.354
2500	2.338	2.339	2.342	2.352	2.390	2.471	2.372
Ø	2.205	2.205	2.205	2.206	2.221	2.265	
Ø 500	2.205 4.036	2.205 4.018	2.205 4.001		2.221 3.952	2.265 3.946	3.988
		I -		2.206			3.988 3.877
500	4.036	4.018	4.001	2.206 3.972	3.952	3.946	
500 600	4.036 3.914	4.018 3.899	4.001 3.878	2.206 3.972 3.856	3.952 3.850	3.946 3.863	3.877
500 600 700	4.036 3.914 3.823	4.018 3.899 3.806	4.001 3.878 3.791	2.206 3.972 3.856 3.775	3.952 3.850 3.778	3.946 3.863 3.810	3.8 ₇₇ 3.797
500 600 700 800	4.036 3.914 3.823 3.755	4.018 3.899 3.806 3.740	4.001 3.878 3.791 3.726	2.206 3.972 3.856 3.775 3.717	3.952 3.850 3.778 3.730	3.946 3.863 3.810 3.782	3.8 ₇₇ 3.797 3.742
500 600 700 800 900	4.036 3.914 3.823 3.755 3.705	4.018 3.899 3.806 3.740 3.690	4.001 3.878 3.791 3.726 3.676	2.206 3.972 3.856 3.775 3.717 3.670	3.952 3.850 3.778 3.730 3.690	3.946 3.863 3.810 3.782 3.762	3.877 3.797 3.742 3.699
500 600 700 800 900	4.036 3.914 3.823 3.755 3.705 3.667	4.018 3.899 3.806 3.740 3.690 3.654	4.001 3.878 3.791 3.726 3.676 3.641	2.206 3.972 3.856 3.775 3.717 3.670 3.638	3.952 3.850 3.778 3.730 3.690 3.665	3.946 3.863 3.810 3.782 3.762 3.746	3.877 3.797 3.742 3.699 3.669
500 600 700 800 900 1000	4.036 3.914 3.823 3.755 3.705 3.667 3.639	4.018 3.899 3.806 3.740 3.690 3.654 3.623	4.001 3.878 3.791 3.726 3.676 3.641 3.612	2.206 3.972 3.856 3.775 3.717 3.670 3.638 3.614	3.952 3.850 3.778 3.730 3.690 3.665 3.647	3.946 3.863 3.810 3.782 3.762 3.746 3.740	3.877 3.797 3.742 3.699 3.669 3.646
500 600 700 800 900 1000 1100	4.036 3.914 3.823 3.755 3.705 3.667 3.639 3.616	4.018 3.899 3.806 3.740 3.690 3.654 3.623 3.600	4.001 3.878 3.791 3.726 3.676 3.641 3.612 3.594	2.206 3.972 3.856 3.775 3.717 3.670 3.638 3.614 3.595	3.952 3.850 3.778 3.730 3.690 3.665 3.647 3.636	3.946 3.863 3.810 3.782 3.762 3.746 3.740 3.739	3.877 3.797 3.742 3.699 3.669 3.646 3.630
500 600 700 800 900 1000 1100 1200 1300	4.036 3.914 3.823 3.755 3.705 3.667 3.639 3.616 3.597	4.018 3.899 3.806 3.740 3.690 3.654 3.623 3.600 3.585	4.001 3.878 3.791 3.726 3.676 3.641 3.612 3.594 3.579	2.206 3.972 3.856 3.775 3.717 3.670 3.638 3.614 3.595 3.584	3.952 3.850 3.778 3.730 3.690 3.665 3.647 3.636 3.630	3.946 3.863 3.810 3.782 3.762 3.746 3.740 3.739 3.741	3.877 3.797 3.742 3.699 3.669 3.646 3.630 3.619
500 600 700 800 900 1000 1100 1200 1300 1400	4.036 3.914 3.823 3.755 3.705 3.667 3.639 3.616 3.597 3.585	4.018 3.899 3.806 3.740 3.690 3.654 3.623 3.600 3.585 3.575	4.001 3.878 3.791 3.726 3.676 3.641 3.612 3.594 3.579 3.569	2.206 3.972 3.856 3.775 3.717 3.670 3.638 3.614 3.595 3.584 3.576	3.952 3.850 3.778 3.730 3.690 3.665 3.647 3.636 3.630 3.630	3.946 3.863 3.810 3.782 3.762 3.746 3.740 3.739 3.741 3.745	3.877 3.797 3.742 3.699 3.669 3.646 3.630 3.619 3.613
500 600 700 800 900 1000 1100 1200 1300 1400	4.036 3.914 3.823 3.755 3.705 3.667 3.639 3.616 3.597 3.585 3.578	4.018 3.899 3.806 3.740 3.690 3.654 3.623 3.600 3.585 3.575 3.566	4.001 3.878 3.791 3.726 3.676 3.641 3.612 3.594 3.579 3.569 3.569	2.206 3.972 3.856 3.775 3.717 3.670 3.638 3.614 3.595 3.584 3.576 3.570	3.952 3.850 3.778 3.730 3.690 3.665 3.647 3.636 3.630 3.630 3.631	3.946 3.863 3.810 3.782 3.762 3.746 3.740 3.739 3.741 3.745 3.752	3.877 3.797 3.742 3.699 3.669 3.646 3.630 3.619 3.613 3.610
500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600	4.036 3.914 3.823 3.755 3.705 3.667 3.639 3.616 3.597 3.585 3.578	4.018 3.899 3.806 3.740 3.690 3.654 3.623 3.600 3.585 3.575 3.566 3.561	4.001 3.878 3.791 3.726 3.676 3.641 3.612 3.594 3.579 3.569 3.562 3.558	2.206 3.972 3.856 3.775 3.670 3.638 3.614 3.595 3.584 3.576 3.570 3.566	3.952 3.850 3.778 3.730 3.690 3.665 3.636 3.630 3.630 3.631 3.634	3.946 3.863 3.810 3.782 3.762 3.746 3.740 3.739 3.741 3.745 3.752 3.764	3.877 3.797 3.742 3.699 3.669 3.646 3.630 3.619 3.610 3.610
500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700	4.036 3.914 3.823 3.755 3.705 3.667 3.639 3.616 3.597 3.585 3.578 3.574 3.572	4.018 3.899 3.806 3.740 3.690 3.654 3.623 3.600 3.585 3.575 3.566 3.561	4.001 3.878 3.791 3.726 3.676 3.641 3.612 3.594 3.579 3.569 3.562 3.558 3.555	2.206 3.972 3.856 3.775 3.717 3.670 3.638 3.614 3.595 3.584 3.576 3.570 3.566 3.566	3.952 3.850 3.778 3.730 3.690 3.665 3.636 3.630 3.630 3.631 3.634 3.641	3.946 3.863 3.810 3.782 3.762 3.746 3.740 3.739 3.741 3.745 3.752 3.764 3.776	3.877 3.797 3.742 3.699 3.669 3.646 3.630 3.619 3.610 3.610 3.610
500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800	4.036 3.914 3.823 3.755 3.705 3.667 3.639 3.616 3.597 3.585 3.578 3.578 3.572 3.572	4.018 3.899 3.806 3.740 3.690 3.654 3.623 3.600 3.585 3.575 3.566 3.561 3.561 3.562	4.001 3.878 3.791 3.726 3.676 3.641 3.612 3.594 3.579 3.569 3.562 3.558 3.555 3.558	2.206 3.972 3.856 3.775 3.717 3.670 3.638 3.614 3.595 3.584 3.576 3.570 3.566 3.566 3.571	3.952 3.850 3.778 3.730 3.690 3.665 3.647 3.636 3.630 3.631 3.634 3.641 3.644	3.946 3.863 3.810 3.782 3.762 3.746 3.740 3.739 3.741 3.745 3.752 3.764 3.776 3.776	3.877 3.797 3.742 3.699 3.669 3.630 3.619 3.613 3.610 3.610 3.612 3.616
500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900	4.036 3.914 3.823 3.755 3.705 3.667 3.639 3.616 3.597 3.585 3.578 3.574 3.572 3.572 3.576	4.018 3.899 3.806 3.740 3.690 3.654 3.623 3.600 3.585 3.575 3.566 3.561 3.561 3.562 3.564	4.001 3.878 3.791 3.726 3.676 3.641 3.612 3.594 3.579 3.569 3.562 3.558 3.555 3.558 3.560	2.206 3.972 3.856 3.775 3.717 3.670 3.638 3.614 3.595 3.584 3.576 3.576 3.566 3.571 3.575	3.952 3.850 3.778 3.730 3.690 3.665 3.647 3.636 3.630 3.631 3.634 3.641 3.653	3.946 3.863 3.810 3.782 3.762 3.746 3.740 3.739 3.741 3.745 3.752 3.764 3.776 3.790 3.804	3.877 3.797 3.742 3.699 3.669 3.630 3.619 3.613 3.610 3.610 3.612 3.616 3.622
500 600 700 800 900 1000 1100 1200 1400 1500 1600 1700 1800 1900 2000	4.036 3.914 3.823 3.755 3.667 3.639 3.616 3.597 3.585 3.578 3.574 3.572 3.576 3.578 3.578	4.018 3.899 3.806 3.740 3.690 3.654 3.623 3.600 3.585 3.575 3.566 3.561 3.561 3.561 3.562 3.564 3.564	4.001 3.878 3.791 3.726 3.676 3.641 3.612 3.594 3.579 3.569 3.562 3.558 3.555 3.558 3.560 3.564	2.206 3.972 3.856 3.775 3.717 3.670 3.638 3.614 3.595 3.584 3.576 3.570 3.566 3.571 3.575 3.580	3.952 3.850 3.778 3.690 3.665 3.647 3.636 3.630 3.630 3.631 3.634 3.641 3.653 3.664	3.946 3.863 3.810 3.782 3.762 3.746 3.740 3.739 3.741 3.745 3.752 3.764 3.776 3.790 3.804 3.818	3.877 3.797 3.742 3.699 3.669 3.646 3.630 3.619 3.613 3.610 3.610 3.612 3.616 3.622 3.629
500 600 700 800 900 1000 1100 1200 1400 1500 1600 1700 1800 1900 2000 2100	4.036 3.914 3.823 3.755 3.667 3.639 3.616 3.597 3.585 3.578 3.574 3.572 3.576 3.576	4.018 3.899 3.806 3.740 3.690 3.654 3.623 3.600 3.585 3.575 3.566 3.561 3.561 3.562 3.564 3.567 3.572 3.578	4.001 3.878 3.791 3.726 3.676 3.641 3.612 3.594 3.579 3.569 3.562 3.558 3.555 3.558 3.560 3.564 3.570	2.206 3.972 3.856 3.775 3.670 3.638 3.614 3.595 3.584 3.576 3.566 3.570 3.586 3.571 3.575 3.580 3.587	3.952 3.850 3.778 3.730 3.690 3.665 3.636 3.630 3.631 3.634 3.641 3.644 3.653 3.664 3.675	3.946 3.863 3.810 3.782 3.746 3.740 3.739 3.741 3.745 3.752 3.764 3.776 3.804 3.818 3.836	3.877 3.797 3.742 3.699 3.646 3.630 3.619 3.610 3.610 3.610 3.612 3.616 3.622 3.629 3.637
500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 2100 2200	4.036 3.914 3.823 3.755 3.705 3.667 3.639 3.616 3.597 3.585 3.578 3.574 3.572 3.572 3.576 3.578 3.578 3.578	4.018 3.899 3.806 3.740 3.690 3.654 3.623 3.600 3.585 3.575 3.566 3.561 3.561 3.562 3.564 3.567 3.572	4.001 3.878 3.791 3.726 3.676 3.641 3.594 3.579 3.569 3.558 3.555 3.558 3.5560 3.564 3.570 3.578	2.206 3.972 3.856 3.775 3.670 3.638 3.614 3.595 3.584 3.576 3.566 3.570 3.586 3.571 3.575 3.580 3.587	3.952 3.850 3.778 3.730 3.690 3.665 3.636 3.630 3.631 3.634 3.641 3.653 3.664 3.675 3.687 3.699	3.946 3.863 3.810 3.782 3.762 3.746 3.740 3.739 3.741 3.745 3.752 3.764 3.776 3.790 3.804 3.818 3.836 3.854	3.877 3.797 3.797 3.699 3.669 3.646 3.630 3.619 3.610 3.610 3.612 3.616 3.622 3.629 3.637 3.647
500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 2100 2300	4.036 3.914 3.823 3.755 3.705 3.667 3.639 3.616 3.597 3.585 3.578 3.572 3.572 3.576 3.578 3.578 3.578 3.578 3.578 3.578 3.579 3.578	4.018 3.899 3.806 3.740 3.690 3.654 3.623 3.600 3.585 3.575 3.566 3.561 3.562 3.564 3.572 3.572 3.578 3.585 3.594	4.001 3.878 3.791 3.726 3.676 3.641 3.579 3.569 3.569 3.558 3.555 3.558 3.560 3.570 3.578 3.578 3.578	2.206 3.972 3.856 3.775 3.717 3.670 3.638 3.614 3.595 3.584 3.576 3.576 3.566 3.571 3.575 3.580 3.587 3.596 3.605 3.614	3.952 3.850 3.778 3.690 3.665 3.636 3.630 3.630 3.631 3.634 3.641 3.653 3.664 3.675 3.687 3.699 3.708	3.946 3.863 3.810 3.782 3.762 3.746 3.740 3.739 3.741 3.745 3.752 3.764 3.776 3.790 3.804 3.818 3.836 3.854 3.870	3.877 3.797 3.742 3.699 3.669 3.630 3.619 3.613 3.610 3.612 3.616 3.622 3.629 3.637 3.647 3.657
500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 2100 2300 2400	4.036 3.914 3.823 3.755 3.705 3.667 3.639 3.616 3.597 3.585 3.578 3.574 3.572 3.576 3.578 3.578 3.578 3.578 3.578 3.578 3.578 3.578 3.578 3.578 3.578 3.578 3.578 3.578 3.578	4.018 3.899 3.806 3.740 3.690 3.654 3.623 3.600 3.585 3.575 3.566 3.561 3.562 3.564 3.567 3.572 3.578 3.578	4.001 3.878 3.791 3.726 3.676 3.641 3.594 3.579 3.569 3.562 3.558 3.555 3.558 3.5560 3.570 3.570 3.578 3.578 3.578 3.593	2.206 3.972 3.856 3.775 3.670 3.638 3.614 3.595 3.584 3.576 3.566 3.570 3.566 3.571 3.575 3.580 3.587 3.596 3.596 3.596	3.952 3.850 3.778 3.730 3.690 3.665 3.636 3.630 3.631 3.634 3.641 3.653 3.664 3.675 3.687 3.699	3.946 3.863 3.810 3.782 3.762 3.746 3.740 3.739 3.741 3.745 3.752 3.764 3.790 3.804 3.818 3.836 3.854 3.870 3.886	3.877 3.797 3.742 3.699 3.669 3.646 3.630 3.619 3.610 3.610 3.610 3.612 3.616 3.622 3.629 3.637 3.647 3.657 3.667

Tabelle A.15.: Ergebnisse für $V_1^{s_\alpha,n_s}$ mit $\psi_S=\psi_{b1}$ unter Variation von α und ε_S für die *Grove*2 Sequenz (oberer Tabellenteil) und für die *Rubberwhale* Sequenz (unterer Tabellenteil). Fehlerwerte des AAE sind angegeben.

α	Dime	Gro2	Gro3	Hydr	Rubb	Urb2	Venu	Ø
1200	1.794	1.932	5.451	1.948	2.607	2.224	5.641	3.085
1300	1.826	1.899	5.420	1.926	2.588	2.239	5.661	3.080
1400	1.857	1.870	5.455	1.910	2.576	2.262	5.672	3.086
1500	1.890	1.844	5.435	1.896	2.566	2.391	5.680	3.100
1600	1.923	1.831	5.445	1.884	2.558	2.476	5.709	3.118
1700	1.956	1.821	5.467	1.874	2.554	2.535	5.699	3.129
1800	1.989	1.817	5.486	1.864	2.553	2.665	5.696	3.153
1900	2.023	1.807	5.483	1.856	2.553	2.862	5.740	3.189
2000	2.056	1.804	5.501	1.850	2.553	2.909	5.755	3.204
2100	2.090	1.801	5.525	1.843	2.557	2.947	5.716	3.211
2200	2.124	1.808	5.499	1.839	2.562	2.996	5.671	3.214
2300	2.157	1.813	5.472	1.835	2.569	3.085	5.673	3.229
2400	2.190	1.815	5.471	1.833	2.581	3.173	5.722	3.255
2500	2.224	1.814	5.463	1.830	2.595	3.263	5.738	3.275
2600	2.257	1.813	5.483	1.828	2.615	3.363	5.743	3.300
2700	2.290	1.815	5.513	1.826	2.637	3.474	5.817	3.339
1200	0.094	0.136	0.541	0.150	0.079	0.276	0.350	0.232
1300	0.096	0.133	0.540	0.148	0.079	0.279	0.352	0.232
1400	0.098	0.131	0.542	0.147	0.079	0.280	0.355	0.233
1500	0.099	0.129	0.544	0.147	0.079	0.326	0.356	0.240
1600	0.101	0.128	0.544	0.146	0.079	0.345	0.359	0.243
1700	0.103	0.126	0.549	0.146	0.079	0.361	0.361	0.246
1800	0.105	0.125	0.552	0.145	0.079	0.412	0.362	0.254
1900	0.106	0.124	0.553	0.145	0.080	0.476	0.365	0.264
2000	0.108	0.124	0.557	0.145	0.080	0.501	0.367	0.269
2100	0.110	0.124	0.561	0.144	0.080	0.516	0.368	0.272
2200	0.112	0.123	0.560	0.144	0.081	0.530	0.368	0.274
2300	0.113	0.123	0.562	0.144	0.081	0.584	0.370	0.283
2400	0.115	0.123	0.564	0.145	0.082	0.627	0.373	0.290
2500	0.117	0.123	0.565	0.145	0.082	0.643	0.376	0.293
2600	0.119	0.123	0.570	0.145	0.083	0.657	0.378	0.296
2700	0.121	0.123	0.573	0.145	0.084	0.672	0.382	0.300

Tabelle A.16.: Ergebnisse für $V_{2a}^{s_{\alpha},n_s}$ unter Variation von α . Fehlerwerte des AAE (oberer Tabellenteil) und des AEE (unterer Tabellenteil).

α	Dime	Gro2	Gro3	Hydr	Rubb	Urb2	Venu	Ø
1000	1.738	2.008	5.453	1.998	2.665	2.195	5.583	3.091
1150	1.781	1.938	5.382	1.959	2.624	2.219	5.583	3.069
1300	1.828	1.885	5.382	1.929	2.594	2.238	5.618	3.068
1450	1.876	1.851	5.405	1.904	2.577	2.384	5.667	3.095
1600	1.926	1.824	5.412	1.885	2.565	2.492	5.687	3.113
1750	1.976	1.806	5.407	1.870	2.558	2.560	5.749	3.132
1900	2.026	1.799	5.422	1.859	2.557	2.719	5.723	3.158
2050	2.077	1.801	5.452	1.848	2.560	2.896	5.753	3.198
2200	2.127	1.803	5.425	1.840	2.569	2.977	5.745	3.212
2350	2.178	1.805	5.429	1.834	2.587	3.053	5.671	3.222
2500	2.228	1.809	5.442	1.830	2.617	3.175	5.698	3.257
2650	2.279	1.813	5.502	1.828	2.657	3.346	5.759	3.312
2800	2.330	1.815	5.538	1.826	2.701	3.539	5.781	3.361
2950	2.381	1.812	5.607	1.825	2.745	3.750	5.788	3.415
3100	2.431	1.816	5.649	1.826	2.790	3.952	5.798	3.466
3250	2.481	1.831	5.718	1.827	2.838	4.137	5.764	3.514
3400	2.531	1.850	5.798	1.828	2.890	4.299	5.747	3.563
3550	2.581	1.874	5.857	1.831	2.946	4.451	5.748	3.613
3700	2.630	1.904	5.912	1.834	3.005	4.583	5.757	3.661
3850	2.678	1.938	5.987	1.838	3.070	4.710	5.763	3.712
4000	2.726	1.968	6.044	1.842	3.137	4.823	5.789	3.761
1000	0.091	0.142	0.534	0.153	0.081	0.274	0.343	0.231
1150	0.094	0.137	0.529	0.150	0.080	0.277	0.346	0.230
1300	0.096	0.132	0.530	0.148	0.079	0.279	0.349	0.230
1450	0.099	0.129	0.533	0.147	0.079	0.323	0.354	0.238
1600	0.101	0.127	0.535	0.146	0.079	0.343	0.357	0.241
1750	0.104	0.125	0.538	0.145	0.079	0.353	0.361	0.244
1900	0.107	0.124	0.543	0.145	0.080	0.396	0.363	0.251
2050	0.109	0.123	0.547	0.144	0.080	0.455	0.367	0.261
2200	0.112	0.123	0.548	0.144	0.081	0.488	0.369	0.267
2350	0.115	0.123	0.552	0.144	0.082	0.506	0.369	0.270
2500	0.117	0.123	0.556	0.144	0.083	0.525	0.372	0.274
2650	0.120	0.123	0.565	0.144	0.084	0.559	0.377	0.282
2800	0.123	0.122	0.577	0.145	0.085	0.582	0.381	0.288
2950	0.126	0.122	0.586	0.145	0.087	0.595	0.383	0.292
3100	0.128	0.122	0.594	0.145	0.088	0.618	0.387	0.297
3250	0.131	0.123	0.603	0.146	0.089	0.637	0.388	0.303
3400	0.134	0.124	0.612	0.147	0.091	0.655	0.390	0.307
3550	0.137	0.126	0.620	0.148	0.093	0.673	0.393	0.313
3700	0.139	0.128	0.628	0.148	0.095	0.691	0.396	0.318
3850	0.142	0.129	0.642	0.149	0.097	0.707	0.400	0.324
4000	0.145	0.131	0.653	0.150	0.099	0.720	0.404	0.329

Tabelle A.17.: Ergebnisse für $V_{2a}^{s_{\alpha},s_{\sigma_c}n_s,level=25}$ unter Variation von α . Fehlerwerte des AAE (oberer Tabellenteil) und des AEE (unterer Tabellenteil).

α	Dime	Gro2	Gro3	Hydr	Rubb	Urb2	Urb3	Venu	Ø
17	1.759	1.595	4.532	2.102	3.148	2.168	3.701	3.706	2.839
20	1.751	1.500	4.455	2.053	3.062	2.003	3.012	3.531	2.671
23	1.758	1.445	4.415	2.036	2.939	1.979	2.925	3.492	2.624
26	1.772	1.393	4.095	2.029	2.890	1.923	2.791	3.403	2.537
29	1.791	1.374	4.050	2.030	2.856	1.843	2.528	3.368	2.480
32	1.812	1.365	4.086	2.033	2.818	1.792	2.652	3.351	2.489
35	1.834	1.379	4.142	2.039	2.788	1.799	3.038	3.367	2.548
38	1.857	1.370	4.164	2.044	2.768	1.803	3.118	3.389	2.564
41	1.880	1.374	4.199	2.050	2.760	1.812	2.255	3.420	2.469
44	1.904	1.377	4.246	2.057	2.752	1.818	2.284	3.469	2.488
47	1.928	1.386	4.308	2.065	2.761	1.844	2.889	3.518	2.587
50	1.952	1.403	4.332	2.073	2.762	1.877	3.189	3.559	2.643
53	1.977	1.410	4.425	2.081	2.763	1.898	3.713	3.620	2.736
56	2.001	1.423	4.500	2.088	2.777	1.922	3.287	3.660	2.707
59	2.026	1.441	4.522	2.096	2.784	1.944	3.276	3.708	2.725
62	2.050	1.453	4.570	2.104	2.792	1.971	3.317	3.759	2.752
65	2.075	1.471	4.640	2.113	2.804	2.000	2.780	3.798	2.710
68	2.100	1.499	4.656	2.121	2.816	2.025	3.151	3.843	2.776
71	2.125	1.527	4.695	2.129	2.830	2.054	3.424	3.894	2.835
17	0.094	0.121	0.580	0.164	0.094	0.236	13.364	0.267	1.865
20	0.094	0.106	0.970	0.160	10609	0.220	4.396	0.263	1326
23	0.094	0.102	0.677	0.160	0.088	0.262	5.346	0.264	0.874
26	0.095	0.098	0.503	0.160	0.087	0.259	2.136	0.263	0.450
29	0.097	0.096	0.401	0.161	0.087	0.228	0.918	0.264	0.282
32	0.098	0.095	0.407	0.162	0.086	0.211	0.484	0.267	0.226
35	0.099	0.102	0.415	0.163	0.086	0.213	1.172	0.269	0.315
38	0.100	0.097	0.424	0.163	0.086	0.215	1.733	0.272	0.386
41	0.102	0.096	0.413	0.164	0.086	0.218	0.321	0.275	0.209
44	0.103	0.094	0.417	0.165	0.086	0.221	0.337	0.279	0.213
47	0.104	0.095	0.443	0.165	0.087	0.223	1.805	0.283	0.401
50	0.105	0.103	0.427	0.166	0.087	0.235	0.675	0.287	0.261
53	0.107	0.097	0.440	0.167	0.088	0.239	3.015	0.293	0.556
56	0.108	0.098	0.451	0.167	0.089	0.243	8.172	0.297	1.203
59	0.109	0.100	0.452	0.168	0.089	0.248	2.045	0.301	0.439
62	0.111	0.100	0.461	0.169	0.090	0.252	1.398	0.304	0.360
65	0.112	0.101	0.476	0.170	0.090	0.255	0.723	0.308	0.279
68	0.113	0.103	0.467	0.170	0.091	0.258	1.344	0.311	0.357
71	0.114	0.102	0.482	0.171	0.092	0.262	0.950	0.315	0.311

Tabelle A.18.: Ergebnisse für $V_{2b}^{s_\alpha,n_s}$ unter Variation von α . Fehlerwerte des AAE (oberer Tabellenteil) und des AEE (unterer Tabellenteil).

	l D:	١.٥			l D 11			l * *	l
α	Dime	Gro2	Gro3	Hydr	Rubb	Urb2	Urb3	Venu	Ø
20	1.751	1.498	4.279	2.053	3.010	1.993	2.810	3.540	2.616
25	1.767	1.425	4.156	2.031	2.909	1.868	2.476	3.403	2.504
30	1.797	1.380	4.068	2.031	2.844	1.869	2.425	3.348	2.470
35	1.835	1.385	4.150	2.038	2.789	1.862	2.187	3.365	2.451
40	1.873	1.390	4.247	2.046	2.762	1.854	2.571	3.466	2.526
45	1.912	1.412	4.315	2.059	2.758	1.861	2.623	3.532	2.559
50	1.953	1.431	4.411	2.072	2.766	1.873	2.816	3.601	2.615
_ 55	1.993	1.446	4.502	2.085	2.779	1.914	2.770	3.680	2.646
60	2.034	1.463	4.557	2.098	2.794	1.974	2.756	3.758	2.679
65	2.075	1.484	4.746	2.112	2.815	2.039	2.757	3.843	2.734
70	2.117	1.535	4.829	2.125	2.833	2.118	3.021	3.931	2.814
_ 75	2.158	1.563	4.925	2.138	2.849	2.200	3.079	4.020	2.866
80	2.198	1.601	5.005	2.150	2.871	2.273	3.443	4.121	2.958
85	2.239	1.637	5.070	2.164	2.896	2.340	3.501	4.230	3.010
90	2.279	1.710	5.145	2.176	2.920	2.405	3.554	4.353	3.067
95	2.318	1.763	5.237	2.189	2.945	2.467	3.598	4.487	3.126
100	2.358	1.804	5.318	2.203	2.974	2.528	3.642	4.638	3.183
105	2.397	1.845	5.411	2.215	3.001	2.626	3.694	4.791	3.248
110	2.435	1.874	5.481	2.227	3.027	2.789	3.733	4.945	3.314
115	2.474	1.900	5.536	2.238	3.059	2.811	3.784	5.105	3.363
120	2.512	1.930	5.595	2.250	3.092	2.869	3.829	5.259	3.417
20	0.094	0.106	0.412	0.160	0.090	0.235	0.350	0.263	0.214
25	0.095	0.107	0.399	0.160	0.088	0.224	0.313	0.262	0.206
30	0.097	0.096	0.396	0.161	0.087	0.248	0.319	0.264	0.209
35	0.099	0.095	0.407	0.163	0.086	0.257	0.290	0.269	0.208
40	0.101	0.095	0.417	0.164	0.086	0.260	0.354	0.277	0.219
45	0.103	0.096	0.423	0.165	0.087	0.247	0.373	0.283	0.222
50	0.105	0.097	0.436	0.166	0.088	0.241	0.386	0.290	0.226
55	0.108	0.098	0.448	0.167	0.089	0.246	0.383	0.296	0.229
60	0.110	0.099	0.457	0.168	0.090	0.253	0.383	0.302	0.233
65	0.112	0.100	0.474	0.169	0.091	0.261	0.375	0.308	0.236
70	0.114	0.103	0.483	0.171	0.092	0.270	0.401	0.315	0.243
75	0.116	0.104	0.500	0.172	0.093	0.276	0.410	0.321	0.249
80	0.118	0.107	0.510	0.173	0.094	0.282	0.594	0.327	0.276
85	0.120	0.109	0.517	0.175	0.095	0.287	0.609	0.333	0.281
90	0.122	0.114	0.524	0.176	0.097	0.293	0.618	0.340	0.285
95	0.125	0.117	0.537	0.178	0.098	0.298	0.626	0.348	0.291
100	0.127	0.120	0.546	0.179	0.099	0.305	0.633	0.355	0.295
105	0.129	0.122	0.559	0.180	0.100	0.364	0.640	0.363	0.307
110	0.131	0.124	0.570	0.182	0.102	0.410	0.648	0.370	0.317
115	0.133	0.125	0.578	0.183	0.103	0.424	0.657	0.378	0.323
120	0.135	0.127	0.588	0.184	0.105	0.432	0.665	0.385	0.327

Tabelle A.19.: Ergebnisse für $V_{2b}^{s_{\alpha},s_{\sigma_c}}n_{s,level=25}$ unter Variation von α . Fehlerwerte des AAE (oberer Tabellenteil) und des AEE (unterer Tabellenteil).

α Dime Gro2 Gro3 Hydr Rubb Urb2 Urb3 Venu ∅ 17 1.848 1.785 5.046 2.275 3.469 2.529 4.248 3.865 3.133 20 1.796 1.626 4.629 2.185 3.319 2.328 3.933 3.765 2.948 23 1.774 1.536 4.421 2.122 3.221 2.211 2.969 3.692 2.744 26 1.772 1.457 4.247 2.066 3.082 2.013 3.583 3.571 2.724 32 1.781 1.417 4.408 2.056 3.042 1.932 2.570 3.499 2.588 35 1.792 1.399 4.390 2.053 3.018 1.952 2.259 3.490 2.545 38 1.866 1.382 4.308 2.054 3.000 1.904 2.244 3.434 2.516 41 1.822 1.336 4										
20 1.796 1.626 4.629 2.185 3.319 2.328 3.933 3.765 2.948 23 1.774 1.536 4.421 2.122 3.221 2.211 2.969 3.698 2.744 26 1.769 1.481 4.468 2.080 3.150 2.084 3.602 3.652 2.786 29 1.772 1.457 4.247 2.066 3.082 2.013 3.583 3.571 2.724 32 1.791 1.417 4.408 2.056 3.042 1.932 2.570 3.499 2.585 38 1.806 1.382 4.308 2.054 3.000 1.904 2.244 3.434 2.516 41 1.822 1.375 4.094 2.056 2.965 1.821 2.282 3.388 2.483 47 1.838 1.376 4.133 2.056 2.965 1.821 2.282 3.384 2.561 50 1.871 1.381	α	Dime	Gro2	Gro3	Hydr	Rubb	Urb2	Urb3	Venu	Ø
23 1.774 1.536 4.421 2.122 3.221 2.211 2.969 3.698 2.744 26 1.769 1.481 4.468 2.080 3.150 2.084 3.602 3.652 2.786 29 1.772 1.457 4.247 2.066 3.082 2.013 3.583 3.571 2.724 32 1.781 1.417 4.408 2.056 3.042 1.932 2.570 3.499 2.588 35 1.792 1.399 4.390 2.053 3.018 1.955 2.259 3.490 2.566 41 1.822 1.375 4.094 2.056 2.978 1.829 2.324 3.398 2.484 44 1.838 1.376 4.133 2.058 2.965 1.821 2.282 3.388 2.483 47 1.851 1.381 4.210 2.064 2.931 1.821 2.282 3.384 2.561 50 1.871 1.381	17	1.848	1.785	5.046		3.469	2.529	4.248	3.865	3.133
26 1.769 1.481 4.468 2.080 3.150 2.084 3.602 3.652 2.786 29 1.772 1.457 4.247 2.066 3.082 2.013 3.583 3.571 2.724 32 1.781 1.417 4.408 2.056 3.042 1.932 2.570 3.499 2.588 35 1.792 1.399 4.390 2.053 3.018 1.955 2.259 3.490 2.545 38 1.806 1.382 4.308 2.054 3.000 1.904 2.244 3.434 2.516 41 1.822 1.375 4.094 2.056 2.978 1.829 2.324 3.398 2.456 41 1.822 1.385 4.333 2.058 2.965 1.821 2.282 3.384 2.561 50 1.871 1.381 4.210 2.064 2.931 1.824 2.131 3.393 2.476 53 1.888 1.383	20	1.796	1.626	4.629	2.185	3.319	2.328	3.933	3.765	2.948
29 1.772 1.457 4.247 2.066 3.082 2.013 3.583 3.571 2.724 32 1.781 1.417 4.408 2.056 3.042 1.932 2.570 3.499 2.588 35 1.792 1.399 4.390 2.053 3.018 1.955 2.259 3.490 2.545 38 1.866 1.382 4.308 2.054 3.000 1.904 2.244 3.434 2.516 41 1.822 1.375 4.094 2.056 2.978 1.829 2.324 3.398 2.484 44 1.881 1.376 4.133 2.056 2.965 1.821 2.282 3.388 2.484 47 1.855 1.386 4.175 2.061 2.991 1.819 2.856 3.384 2.2661 50 1.871 1.381 4.210 2.064 2.931 1.824 2.131 3.393 2.2476 53 1.888 1.383	23	1.774	1.536	4.421	2.122	3.221	2.211	2.969	3.698	2.744
32 1.781 1.417 4.408 2.056 3.042 1.932 2.570 3.499 2.588 35 1.792 1.399 4.390 2.053 3.018 1.955 2.259 3.490 2.545 38 1.806 1.382 4.308 2.054 3.000 1.904 2.244 3.434 2.516 41 1.822 1.375 4.094 2.056 2.978 1.829 2.324 3.398 2.484 44 1.838 1.376 4.133 2.058 2.965 1.821 2.282 3.388 2.483 47 1.855 1.386 4.175 2.061 2.951 1.819 2.856 3.384 2.561 50 1.871 1.381 4.210 2.064 2.931 1.824 2.131 3.393 2.476 53 1.888 1.383 4.274 2.069 2.915 1.831 2.120 3.414 2.487 56 1.960 1.395	26	1.769	1.481	4.468	2.080	3.150	2.084	3.602	3.652	2.786
35 1.792 1.399 4.390 2.053 3.018 1.955 2.259 3.490 2.545 38 1.806 1.382 4.308 2.054 3.000 1.904 2.244 3.434 2.516 41 1.822 1.375 4.094 2.056 2.978 1.829 2.324 3.398 2.484 44 1.838 1.376 4.133 2.058 2.965 1.821 2.282 3.388 2.483 47 1.855 1.386 4.175 2.061 2.951 1.819 2.856 3.384 2.561 50 1.871 1.381 4.210 2.064 2.931 1.824 2.311 3.393 2.476 53 1.888 1.383 4.274 2.069 2.9915 1.831 2.120 3.414 2.487 56 1.906 1.395 4.299 2.073 2.995 1.849 2.526 3.436 2.549 59 1.924 1.495	29	1.772	1.457	4.247	2.066	3.082	2.013	3.583	3.571	2.724
38 1.806 1.382 4.308 2.054 3.000 1.904 2.244 3.434 2.516 41 1.822 1.375 4.094 2.056 2.978 1.829 2.324 3.398 2.484 44 1.838 1.376 4.133 2.058 2.965 1.821 2.282 3.388 2.483 47 1.855 1.386 4.175 2.061 2.951 1.819 2.856 3.384 2.561 50 1.871 1.381 4.210 2.064 2.931 1.824 2.131 3.393 2.476 53 1.888 1.383 4.274 2.069 2.915 1.831 2.120 3.414 2.487 56 1.906 1.395 4.340 2.078 2.901 1.849 2.526 3.436 2.549 59 1.924 1.405 4.377 2.082 2.905 1.863 2.357 3.500 2.554 65 1.960 1.407	32	1.781	1.417	4.408	2.056	3.042	1.932	2.570	3.499	2.588
38 1.806 1.382 4.308 2.054 3.000 1.904 2.244 3.434 2.516 41 1.822 1.375 4.094 2.056 2.978 1.829 2.324 3.398 2.484 44 1.838 1.376 4.133 2.058 2.965 1.821 2.282 3.388 2.483 47 1.855 1.386 4.175 2.061 2.951 1.819 2.856 3.384 2.561 50 1.871 1.381 4.210 2.064 2.931 1.824 2.131 3.393 2.476 53 1.888 1.383 4.274 2.069 2.915 1.831 2.120 3.414 2.487 56 1.906 1.395 4.340 2.078 2.901 1.854 2.835 3.477 2.600 62 1.942 1.405 4.377 2.082 2.905 1.863 2.357 3.500 2.554 65 1.960 1.477	35	1.792	1.399	4.390	2.053	3.018	1.955	2.259	3.490	2.545
44 1.838 1.376 4.133 2.058 2.965 1.821 2.282 3.388 2.483 47 1.855 1.386 4.175 2.061 2.951 1.819 2.856 3.384 2.561 50 1.871 1.381 4.210 2.064 2.931 1.824 2.131 3.393 2.476 53 1.888 1.383 4.274 2.069 2.915 1.831 2.120 3.414 2.487 56 1.906 1.395 4.299 2.073 2.905 1.849 2.526 3.436 2.549 59 1.924 1.395 4.340 2.078 2.901 1.854 2.835 3.477 2.600 62 1.942 1.405 4.377 2.082 2.905 1.863 2.357 3.500 2.554 65 1.960 1.407 4.370 2.082 2.904 1.883 2.938 3.538 2.636 68 1.978 1.421		1.806	1.382	4.308	2.054	3.000	1.904	2.244	3.434	2.516
47 1.855 1.386 4.175 2.061 2.951 1.819 2.856 3.384 2.561 50 1.871 1.381 4.210 2.064 2.931 1.824 2.131 3.393 2.476 53 1.888 1.383 4.274 2.069 2.915 1.831 2.120 3.414 2.487 56 1.906 1.395 4.299 2.073 2.905 1.849 2.526 3.436 2.549 59 1.924 1.395 4.340 2.078 2.901 1.854 2.835 3.477 2.600 62 1.942 1.405 4.377 2.082 2.905 1.863 2.357 3.500 2.554 65 1.960 1.407 4.370 2.082 2.904 1.883 2.938 3.538 2.636 68 1.978 1.421 4.405 2.093 2.904 1.916 3.473 3.572 2.720 17 0.098 0.137	41	1.822	1.375	4.094	2.056	2.978		2.324	3.398	2.484
50 1.871 1.381 4.210 2.064 2.931 1.824 2.131 3.393 2.476 53 1.888 1.383 4.274 2.069 2.915 1.831 2.120 3.414 2.487 56 1.906 1.395 4.299 2.073 2.905 1.849 2.526 3.436 2.549 59 1.924 1.395 4.340 2.078 2.901 1.854 2.835 3.477 2.600 62 1.942 1.405 4.377 2.082 2.905 1.863 2.357 3.500 2.554 65 1.960 1.407 4.370 2.087 2.904 1.883 2.938 3.538 2.636 68 1.978 1.421 4.405 2.093 2.904 1.916 3.473 3.572 2.720 17 0.098 0.137 0.625 0.180 0.105 0.319 1.926 0.273 0.458 20 0.096 0.109	44	1.838	1.376	4.133	2.058	2.965	1.821	2.282	3.388	2.483
53 1.888 1.383 4.274 2.069 2.915 1.831 2.120 3.414 2.487 56 1.906 1.395 4.299 2.073 2.905 1.849 2.526 3.436 2.549 59 1.924 1.395 4.340 2.078 2.901 1.854 2.835 3.477 2.600 62 1.942 1.405 4.377 2.082 2.905 1.863 2.357 3.500 2.554 65 1.960 1.407 4.370 2.087 2.904 1.883 2.938 3.538 2.636 68 1.978 1.421 4.405 2.093 2.904 1.916 3.473 3.572 2.720 17 0.098 0.137 0.625 0.180 0.105 0.319 1.926 0.273 0.458 20 0.096 0.120 0.495 0.173 0.100 0.310 1.112 0.268 0.334 23 0.095 0.109	47	1.855	1.386	4.175	2.061	2.951	1.819	2.856	3.384	2.561
56 1.906 1.395 4.299 2.073 2.905 1.849 2.526 3.436 2.549 59 1.924 1.395 4.340 2.078 2.901 1.854 2.835 3.477 2.600 62 1.942 1.405 4.377 2.082 2.905 1.863 2.357 3.500 2.554 65 1.960 1.407 4.370 2.087 2.904 1.883 2.938 3.538 2.636 68 1.978 1.421 4.405 2.093 2.904 1.916 3.473 3.572 2.720 17 0.098 0.137 0.625 0.180 0.105 0.319 1.926 0.273 0.458 20 0.096 0.120 0.495 0.173 0.100 0.310 1.112 0.268 0.334 23 0.095 0.109 0.439 0.168 0.097 0.311 1.099 0.266 0.323 26 0.095 0.109	50	1.871	1.381	4.210	2.064	2.931		2.131	3.393	
59 1.924 1.395 4.340 2.078 2.901 1.854 2.835 3.477 2.600 62 1.942 1.405 4.377 2.082 2.905 1.863 2.357 3.500 2.554 65 1.960 1.407 4.370 2.087 2.904 1.883 2.938 3.538 2.636 68 1.978 1.421 4.405 2.093 2.904 1.916 3.473 3.572 2.720 17 0.098 0.137 0.625 0.180 0.105 0.319 1.926 0.273 0.458 20 0.096 0.120 0.495 0.173 0.100 0.310 1.112 0.268 0.334 23 0.095 0.109 0.439 0.168 0.097 0.311 1.099 0.266 0.323 26 0.095 0.105 0.490 0.163 0.094 0.286 7.212 0.266 0.323 26 0.095 0.109	53	1.888	1.383	4.274	2.069	2.915	1.831	2.120	3.414	2.487
62 1.942 1.405 4.377 2.082 2.905 1.863 2.357 3.500 2.554 65 1.960 1.407 4:370 2.087 2.904 1.883 2.938 3.538 2.636 68 1.978 1.421 4:405 2.093 2.904 1.916 3.473 3.572 2.720 17 0.098 0.137 0.625 0.180 0.105 0.319 1.926 0.273 0.458 20 0.096 0.120 0.495 0.173 0.100 0.310 1.112 0.268 0.334 23 0.095 0.109 0.439 0.168 0.097 0.311 1.099 0.266 0.323 26 0.095 0.105 0.490 0.163 0.094 0.286 7.212 0.266 0.323 26 0.095 0.109 0.417 0.162 0.093 0.270 0.999 0.264 0.301 32 0.096 0.099	56	1.906	1.395	4.299	2.073	2.905	1.849	2.526	3.436	2.549
65 1.960 1.407 4.370 2.087 2.904 1.883 2.938 3.538 2.636 68 1.978 1.421 4.405 2.093 2.904 1.916 3.473 3.572 2.720 17 0.098 0.137 0.625 0.180 0.105 0.319 1.926 0.273 0.458 20 0.096 0.120 0.495 0.173 0.100 0.310 1.112 0.268 0.334 23 0.095 0.109 0.439 0.168 0.097 0.311 1.099 0.266 0.323 26 0.095 0.105 0.490 0.163 0.094 0.286 7.212 0.266 0.323 26 0.095 0.109 0.417 0.162 0.093 0.270 0.999 0.264 0.301 32 0.096 0.099 0.513 0.162 0.092 0.233 0.810 0.263 0.283 35 0.097 0.098	59	1.924	1.395	4.340	2.078	2.901	1.854	2.835	3.477	2.600
68 1.978 1.421 4.405 2.093 2.904 1.916 3.473 3.572 2.720 17 0.098 0.137 0.625 0.180 0.105 0.319 1.926 0.273 0.458 20 0.096 0.120 0.495 0.173 0.100 0.310 1.112 0.268 0.334 23 0.095 0.109 0.439 0.168 0.097 0.311 1.099 0.266 0.323 26 0.095 0.105 0.490 0.163 0.094 0.286 7.212 0.266 1.089 29 0.095 0.109 0.417 0.162 0.093 0.270 0.999 0.264 0.301 32 0.096 0.099 0.513 0.162 0.092 0.233 0.810 0.263 0.283 35 0.097 0.098 0.548 0.162 0.091 0.274 0.317 0.265 0.231 38 0.098 0.096	62	1.942	1.405	4.377		2.905	1.863	2.357	3.500	2.554
17 0.098 0.137 0.625 0.180 0.105 0.319 1.926 0.273 0.458 20 0.096 0.120 0.495 0.173 0.100 0.310 1.112 0.268 0.334 23 0.095 0.109 0.439 0.168 0.097 0.311 1.099 0.266 0.323 26 0.095 0.105 0.490 0.163 0.094 0.286 7.212 0.266 1.089 29 0.095 0.109 0.417 0.162 0.093 0.270 0.999 0.264 0.301 32 0.096 0.099 0.513 0.162 0.092 0.233 0.810 0.263 0.283 35 0.097 0.098 0.548 0.162 0.091 0.274 0.317 0.265 0.231 38 0.098 0.096 0.630 0.163 0.091 0.261 0.290 0.264 0.237 41 0.099 0.095	65	1.960	1.407	4.370	2.087	2.904	1.883	2.938	3.538	2.636
20 0.096 0.120 0.495 0.173 0.100 0.310 1.112 0.268 0.334 23 0.095 0.109 0.439 0.168 0.097 0.311 1.099 0.266 0.323 26 0.095 0.105 0.490 0.163 0.094 0.286 7.212 0.266 1.089 29 0.095 0.109 0.417 0.162 0.093 0.270 0.999 0.264 0.301 32 0.096 0.099 0.513 0.162 0.092 0.233 0.810 0.263 0.283 35 0.097 0.098 0.548 0.162 0.091 0.274 0.317 0.265 0.231 38 0.098 0.096 0.630 0.163 0.091 0.261 0.290 0.264 0.237 41 0.099 0.095 0.406 0.163 0.091 0.218 3.927 0.264 0.658 44 0.099 0.095	68	1.978	1.421	4.405	2.093	2.904	1.916	3.473	3.572	2.720
23 0.095 0.109 0.439 0.168 0.097 0.311 1.099 0.266 0.323 26 0.095 0.105 0.490 0.163 0.094 0.286 7.212 0.266 1.089 29 0.095 0.109 0.417 0.162 0.093 0.270 0.999 0.264 0.301 32 0.096 0.099 0.513 0.162 0.092 0.233 0.810 0.263 0.283 35 0.097 0.098 0.548 0.162 0.091 0.274 0.317 0.265 0.231 38 0.098 0.096 0.630 0.163 0.091 0.261 0.290 0.264 0.237 41 0.099 0.095 0.406 0.163 0.091 0.218 3.927 0.264 0.658 44 0.099 0.095 0.407 0.164 0.091 0.218 0.313 0.266 0.207 47 0.100 0.097	17		0.137	0.625	0.180	0.105	0.319	1.926		0.458
26 0.095 0.105 0.490 0.163 0.094 0.286 7.212 0.266 1.089 29 0.095 0.109 0.417 0.162 0.093 0.270 0.999 0.264 0.301 32 0.096 0.099 0.513 0.162 0.092 0.233 0.810 0.263 0.283 35 0.097 0.098 0.548 0.162 0.091 0.274 0.317 0.265 0.231 38 0.098 0.096 0.630 0.163 0.091 0.261 0.290 0.264 0.237 41 0.099 0.095 0.406 0.163 0.091 0.218 3.927 0.264 0.658 44 0.099 0.095 0.407 0.164 0.091 0.218 0.313 0.266 0.207 47 0.100 0.097 0.406 0.164 0.091 0.219 0.840 0.268 0.273 50 0.101 0.095	20	0.096	0.120	0.495		0.100	0.310	1.112	0.268	0.334
29 0.095 0.109 0.417 0.162 0.093 0.270 0.999 0.264 0.301 32 0.096 0.099 0.513 0.162 0.092 0.233 0.810 0.263 0.283 35 0.097 0.098 0.548 0.162 0.091 0.274 0.317 0.265 0.231 38 0.098 0.096 0.630 0.163 0.091 0.261 0.290 0.264 0.237 41 0.099 0.095 0.406 0.163 0.091 0.218 3.927 0.264 0.658 44 0.099 0.095 0.407 0.164 0.091 0.218 0.313 0.266 0.207 47 0.100 0.097 0.406 0.164 0.091 0.218 0.313 0.266 0.207 50 0.101 0.095 0.412 0.164 0.091 0.2219 0.840 0.268 0.273 50 0.101 0.095	23	0.095	0.109	0.439	0.168	0.097	0.311	1.099	0.266	0.323
32 0.096 0.099 0.513 0.162 0.092 0.233 0.810 0.263 0.283 35 0.097 0.098 0.548 0.162 0.091 0.274 0.317 0.265 0.231 38 0.098 0.096 0.630 0.163 0.091 0.261 0.290 0.264 0.237 41 0.099 0.095 0.406 0.163 0.091 0.218 3.927 0.264 0.658 44 0.099 0.095 0.407 0.164 0.091 0.218 0.313 0.266 0.207 47 0.100 0.097 0.406 0.164 0.091 0.219 0.840 0.268 0.273 50 0.101 0.095 0.412 0.164 0.091 0.220 0.293 0.269 0.206 53 0.102 0.095 0.422 0.165 0.091 0.221 0.295 0.272 0.208 56 0.103 0.097	26	0.095	0.105	0.490	0.163	0.094	0.286	7.212	0.266	1.089
35 0.097 0.098 0.548 0.162 0.091 0.274 0.317 0.265 0.231 38 0.098 0.096 0.630 0.163 0.091 0.261 0.290 0.264 0.237 41 0.099 0.095 0.406 0.163 0.091 0.218 3.927 0.264 0.658 44 0.099 0.095 0.407 0.164 0.091 0.218 0.313 0.266 0.207 47 0.100 0.097 0.406 0.164 0.091 0.219 0.840 0.268 0.273 50 0.101 0.095 0.412 0.164 0.091 0.220 0.293 0.269 0.206 53 0.102 0.095 0.422 0.165 0.091 0.221 0.295 0.272 0.208 56 0.103 0.097 0.445 0.165 0.091 0.225 1.112 0.274 0.314 59 0.104 0.097	29	0.095	0.109	0.417	0.162	0.093	0.270	0.999	0.264	0.301
38 0.098 0.096 0.630 0.163 0.091 0.261 0.290 0.264 0.237 41 0.099 0.095 0.406 0.163 0.091 0.218 3.927 0.264 0.658 44 0.099 0.095 0.407 0.164 0.091 0.218 0.313 0.266 0.207 47 0.100 0.097 0.406 0.164 0.091 0.219 0.840 0.268 0.273 50 0.101 0.095 0.412 0.164 0.091 0.220 0.293 0.269 0.206 53 0.102 0.095 0.422 0.165 0.091 0.221 0.295 0.272 0.208 56 0.103 0.097 0.445 0.165 0.091 0.225 1.112 0.274 0.314 59 0.104 0.097 0.425 0.166 0.091 0.226 0.563 0.277 0.244 62 0.105 0.098	32	0.096	0.099	0.513	0.162	0.092	0.233	0.810	0.263	0.283
41 0.099 0.095 0.406 0.163 0.091 0.218 3.927 0.264 0.658 44 0.099 0.095 0.407 0.164 0.091 0.218 0.313 0.266 0.207 47 0.100 0.097 0.406 0.164 0.091 0.219 0.840 0.268 0.273 50 0.101 0.095 0.412 0.164 0.091 0.220 0.293 0.269 0.206 53 0.102 0.095 0.422 0.165 0.091 0.221 0.295 0.272 0.208 56 0.103 0.097 0.445 0.165 0.091 0.225 1.112 0.274 0.314 59 0.104 0.097 0.425 0.166 0.091 0.226 0.563 0.277 0.244 62 0.105 0.098 0.429 0.166 0.092 0.229 2.440 0.279 0.480 65 0.106 0.096	35	0.097	0.098	0.548	0.162	0.091	0.274	0.317	0.265	0.231
44 0.099 0.095 0.407 0.164 0.091 0.218 0.313 0.266 0.207 47 0.100 0.097 0.406 0.164 0.091 0.219 0.840 0.268 0.273 50 0.101 0.095 0.412 0.164 0.091 0.220 0.293 0.269 0.206 53 0.102 0.095 0.422 0.165 0.091 0.221 0.295 0.272 0.208 56 0.103 0.097 0.445 0.165 0.091 0.225 1.112 0.274 0.314 59 0.104 0.097 0.425 0.166 0.091 0.226 0.563 0.277 0.244 62 0.105 0.098 0.429 0.166 0.092 0.229 2.440 0.279 0.480 65 0.106 0.096 0.427 0.167 0.092 0.239 1.323 0.282 0.341	38	0.098	0.096	0.630	0.163	0.091	0.261	0.290	0.264	0.237
47 0.100 0.097 0.406 0.164 0.091 0.219 0.840 0.268 0.273 50 0.101 0.095 0.412 0.164 0.091 0.220 0.293 0.269 0.206 53 0.102 0.095 0.422 0.165 0.091 0.221 0.295 0.272 0.208 56 0.103 0.097 0.445 0.165 0.091 0.225 1.112 0.274 0.314 59 0.104 0.097 0.425 0.166 0.091 0.226 0.563 0.277 0.244 62 0.105 0.098 0.429 0.166 0.092 0.229 2.440 0.279 0.480 65 0.106 0.096 0.427 0.167 0.092 0.239 1.323 0.282 0.341	41	0.099	0.095	0.406	0.163	0.091	0.218	3.927	0.264	0.658
50 0.101 0.095 0.412 0.164 0.091 0.220 0.293 0.269 0.206 53 0.102 0.095 0.422 0.165 0.091 0.221 0.295 0.272 0.208 56 0.103 0.097 0.445 0.165 0.091 0.225 1.112 0.274 0.314 59 0.104 0.097 0.425 0.166 0.091 0.226 0.563 0.277 0.244 62 0.105 0.098 0.429 0.166 0.092 0.229 2.440 0.279 0.480 65 0.106 0.096 0.427 0.167 0.092 0.239 1.323 0.282 0.341	44	0.099	0.095	0.407	0.164	0.091	0.218	0.313	0.266	0.207
53 0.102 0.095 0.422 0.165 0.091 0.221 0.295 0.272 0.208 56 0.103 0.097 0.445 0.165 0.091 0.225 1.112 0.274 0.314 59 0.104 0.097 0.425 0.166 0.091 0.226 0.563 0.277 0.244 62 0.105 0.098 0.429 0.166 0.092 0.229 2.440 0.279 0.480 65 0.106 0.096 0.427 0.167 0.092 0.239 1.323 0.282 0.341	47	0.100	0.097	0.406	0.164	0.091	0.219	0.840	0.268	0.273
56 0.103 0.097 0.445 0.165 0.091 0.225 1.112 0.274 0.314 59 0.104 0.097 0.425 0.166 0.091 0.226 0.563 0.277 0.244 62 0.105 0.098 0.429 0.166 0.092 0.229 2.440 0.279 0.480 65 0.106 0.096 0.427 0.167 0.092 0.239 1.323 0.282 0.341	50	0.101	0.095	0.412	0.164	0.091	0.220	0.293	0.269	0.206
59 0.104 0.097 0.425 0.166 0.091 0.226 0.563 0.277 0.244 62 0.105 0.098 0.429 0.166 0.092 0.229 2.440 0.279 0.480 65 0.106 0.096 0.427 0.167 0.092 0.239 1.323 0.282 0.341	53	0.102	0.095	0.422		0.091	0.221	0.295	0.272	0.208
62 0.105 0.098 0.429 0.166 0.092 0.229 2.440 0.279 0.480 65 0.106 0.096 0.427 0.167 0.092 0.239 1.323 0.282 0.341	56	0.103	0.097	0.445	0.165	0.091	0.225	1.112	0.274	0.314
65 0.106 0.096 0.427 0.167 0.092 0.239 1.323 0.282 0.341	59	0.104	0.097	0.425	0.166	0.091	0.226	0.563	0.277	0.244
	62	0.105	0.098	0.429	0.166	0.092	0.229	2.440	0.279	0.480
68 0.107 0.098 0.454 0.167 0.092 0.242 1.530 0.285 0.372	65	0.106		0.427	0.167	0.092	0.239	1.323	0.282	0.341
	68	0.107	0.098	0.454	0.167	0.092	0.242	1.530	0.285	0.372

Tabelle A.20.: Ergebnisse für $V_{2c}^{s_{\alpha},n_s}$ unter Variation von α . Fehlerwerte des AAE (oberer Tabellenteil) und des AEE (unterer Tabellenteil).

α	Dime	Gro2	Gro3	Hydr	Rubb	Urb2	Urb3	Venu	Ø
20	1.796	1.587	4.538	2.183	3.320	2.227	3.040	3.750	2.805
25	1.770	1.501	4.339	2.090	3.163	2.067	2.840	3.669	2.680
30	1.774	1.447	4.261	2.062	3.065	1.951	2.572	3.553	2.586
35	1.792	1.401	4.208	2.052	3.017	1.942	2.311	3.478	2.525
40	1.816	1.384	4.158	2.055	2.990	1.878	2.247	3.411	2.492
45	1.843	1.391	4.173	2.058	2.961	1.822	2.296	3.391	2.492
50	1.872	1.400	4.241	2.065	2.937	1.878	2.375	3.412	2.522
_55	1.900	1.412	4.306	2.070	2.914	1.885	2.556	3.461	2.563
60	1.930	1.427	4.378	2.078	2.912	1.888	2.604	3.532	2.594
65	1.960	1.445	4.427	2.087	2.914	1.903	2.855	3.583	2.647
70	1.990	1.456	4.489	2.096	2.922	1.922	2.841	3.638	2.669
_ 75	2.020	1.470	4.600	2.105	2.933	1.955	2.847	3.697	2.703
<u>80</u>	2.050	1.482	4.713	2.115	2.944	1.984	2.867	3.756	2.739
85	2.081	1.499	4.784	2.124	2.955	2.028	2.865	3.824	2.770
90	2.112	1.530	4.836	2.135	2.970	2.091	2.734	3.894	2.788
95	2.142	1.561	4.892	2.144	2.990	2.152	2.754	3.993	2.828
100	2.173	1.580	4.960	2.153	3.006	2.209	3.044	4.079	2.900
105	2.203	1.601	5.000	2.161	3.020	2.262	3.482	4.185	2.989
110	2.234	1.627	5.053	2.171	3.038	2.316	3.551	4.293	3.035
115	2.264	1.651	5.113	2.179	3.057	2.366	3.594	4.412	3.080
120	2.294	1.675	5.162	2.189	3.074	2.417	3.624	4.528	3.120
20	0.096	0.114	0.441	0.173	0.100	0.244	0.376	0.267	0.226
25	0.095	0.115	0.420	0.163	0.095	0.259	0.357	0.265	0.221
30	0.096	0.103	0.411	0.162	0.092	0.244	0.319	0.263	0.211
35	0.097	0.098	0.405	0.162	0.091	0.275	0.288	0.263	0.210
40	0.098	0.096	0.401	0.163	0.091	0.244	0.288	0.265	0.206
45	0.100	0.096	0.406	0.164	0.091	0.221	0.305	0.266	0.206
50	0.101	0.096	0.411	0.164	0.091	0.264	0.316	0.269	0.214
55	0.103	0.096	0.423	0.165	0.091	0.269	0.354	0.273	0.222
60	0.105	0.097	0.428	0.166	0.092	0.254	0.366	0.281	0.223
65	0.106	0.098	0.432	0.167	0.092	0.250	0.387	0.285	0.227
70	0.108	0.099	0.440	0.168	0.093	0.249	0.388	0.289	0.229
75	0.109	0.099	0.451	0.168	0.094	0.253	0.389	0.294	0.232
8o	0.111	0.100	0.463	0.169	0.095	0.259	0.392	0.299	0.236
85	0.113	0.101	0.471	0.170	0.095	0.264	0.393	0.303	0.239
90	0.114	0.103	0.477	0.170	0.096	0.270	0.370	0.308	0.239
95	0.116	0.104	0.485	0.171	0.097	0.275	0.373	0.313	0.242
100	0.117	0.105	0.498	0.172	0.098	0.279	0.401	0.318	0.249
105	0.119	0.106	0.504	0.173	0.099	0.284	0.577	0.323	0.273
110	0.120	0.108	0.513	0.174	0.100	0.288	0.604	0.328	0.279
115	0.122	0.110	0.518	0.175	0.101	0.291	0.611	0.333	0.282
120	0.124	0.111	0.523	0.176	0.102	0.295	0.618	0.338	0.286
115	0.122	0.110	0.518	0.175	0.101	0.291	0.611	0.333	0.282

Tabelle A.21.: Ergebnisse für $V_{2c}^{s_{\alpha},s_{\sigma_c},n_s,level=25}$ unter Variation von α . Fehlerwerte des AAE (oberer Tabellenteil) und des AEE (unterer Tabellenteil).

α	Dime	Gro2	Gro3	Hydr	Rubb	Urb2	Urb3	Venu	Ø
20	2.273	1.874	4.897	2.492	4.244	2.770	3.120	4.465	3.267
30	2.165	1.830	4.945	2.378	4.086	2.590	3.041	4.302	3.167
40	2.101	1.821	5.078	2.304	3.989	2.498	3.247	4.434	3.184
50	2.063	1.828	5.202	2.250	3.924	2.375	2.999	4.761	3.175
60	2.039	1.843	5.332	2.211	3.884	2.339	3.048	4.932	3.203
70	2.023	1.862	5.428	2.182	3.859	2.348	3.035	4.997	3.217
80	2.012	1.888	5.538	2.161	3.847	2.329	2.943	5.025	3.218
90	2.006	1.921	5.704	2.145	3.851	2.347	2.951	5.037	3.245
100	2.004	1.956	5.829	2.133	3.870	2.351	3.110	5.044	3.287
110	2.004	1.993	5.917	2.125	3.908	2.363	3.224	5.045	3.322
120	2.005	2.031	6.000	2.120	3.956	2.376	3.385	5.046	3.365
130	2.008	2.069	6.083	2.117	3.999	2.385	3.575	5.046	3.410
140	2.012	2.110	6.171	2.116	4.035	2.395	3.652	5.048	3.442
150	2.017	2.151	6.264	2.117	4.064	2.410	3.700	5.049	3.471
160	2.022	2.194	6.337	2.118	4.089	2.425	3.782	5.052	3.502
170	2.028	2.234	6.399	2.121	4.113	2.429	3.942	5.057	3.540
180	2.035	2.271	6.460	2.124	4.138	2.446	4.165	5.065	3.588
190	2.042	2.305	6.529	2.128	4.164	2.510	4.393	5.075	3.643
20	0.119	0.133	0.497	0.203	0.127	0.267	0.411	0.299	0.257
30	0.114	0.127	0.505	0.195	0.122	0.255	0.411	0.282	0.251
40	0.111	0.126	0.520	0.189	0.119	0.251	0.423	0.279	0.252
50	0.110	0.125	0.534	0.186	0.117	0.243	0.387	0.284	0.248
60	0.108	0.126	0.551	0.183	0.115	0.239	0.389	0.288	0.250
70	0.108	0.126	0.564	0.182	0.115	0.241	0.393	0.291	0.252
80	0.107	0.128	0.578	0.181	0.114	0.241	0.382	0.294	0.253
90	0.107	0.129	0.593	0.180	0.114	0.242	0.391	0.297	0.257
100	0.107	0.131	0.606	0.180	0.114	0.243	0.426	0.300	0.263
110	0.107	0.134	0.617	0.180	0.115	0.244	0.451	0.302	0.269
120	0.107	0.136	0.628	0.180	0.116	0.246	0.487	0.304	0.275
130	0.107	0.138	0.639	0.181	0.117	0.248	0.537	0.306	0.284
140	0.107	0.141	0.650	0.181	0.119	0.249	0.563	0.308	0.290
150	0.108	0.143	0.663	0.182	0.120	0.250	0.576	0.310	0.294
160	0.108	0.145	0.673	0.183	0.121	0.252	0.589	0.311	0.298
170	0.108	0.148	0.682	0.184	0.121	0.254	0.606	0.313	0.302
180	0.109	0.150	0.690	0.185	0.122	0.260	0.623	0.315	0.307
190	0.109	0.152	0.700	0.186	0.123	0.282	0.639	0.318	0.314

Tabelle A.22.: Evaluierung für $V_0^{s_\alpha}$ mit JTB und CBU unter Variation von α . Fehlerwerte des AAE (oberer Tabellenteil) und des AEE (unterer Tabellenteil).

α	Dime	Gro2	Gro3	Hydr	Rubb	Urb2	Urb3	Venu	Ø
						I			
50	1.789	1.521	4.556	2.091	3.307	1.973	2.058	3.680	2.622
60	1.815	1.480	4.523	2.049	3.240	1.930	2.203	3.644	2.610
70	1.847	1.441	4.470	2.018	3.178	1.909	2.312	3.700	2.609
80	1.882	1.435	4.446	2.000	3.136	1.902	2.334	3.917	2.631
90	1.919	1.421	4.462	1.985	3.104	1.919	2.306	4.205	2.665
100	1.957	1.414	4.445	1.981	3.070	1.944	2.287	4.454	2.694
110	1.996	1.416	4.469	1.981	3.048	1.980	2.250	4.675	2.727
120	2.035	1.420	4.548	1.981	3.022	2.013	2.210	4.851	2.760
130	2.074	1.432	4.588	1.986	3.014	2.040	2.226	4.933	2.787
140	2.112	1.448	4.628	1.989	3.008	2.077	2.269	5.021	2.819
150	2.150	1.459	4.664	1.993	3.013	2.112	2.292	5.077	2.845
160	2.188	1.476	4.703	1.997	3.015	2.152	3.181	5.139	2.982
170	2.226	1.489	4.681	2.002	3.029	2.189	2.641	5.189	2.931
180	2.263	1.508	4.795	2.007	3.034	2.235	2.691	5.236	2.971
190	2.301	1.525	4.840	2.012	3.047	2.396	2.742	5.277	3.018
200	2.339	1.548	4.899	2.019	3.063	2.409	2.786	5.324	3.049
210	2.375	1.565	4.955	2.024	3.079	2.479	2.834	5.354	3.083
220	2.413	1.579	5.016	2.031	3.101	2.539	2.901	5.381	3.120
230	2.449	1.599	5.116	2.038	3.118	2.600	3.318	5.415	3.207
240	2.485	1.627	5.203	2.045	3.139	2.660	3.365	5.447	3.246
250	2.521	1.645	5.259	2.054	3.164	2.711	3.415	5.482	3.281
50	0.096	0.112	0.454	0.166	0.102	0.228	0.288	0.270	0.214
60	0.097	0.108	0.453	0.163	0.100	0.225	0.315	0.270	0.216
70	0.099	0.101	0.451	0.161	0.098	0.222	0.325	0.274	0.216
80	0.101	0.103	0.448	0.160	0.098	0.222	0.327	0.279	0.217
90	0.102	0.102	0.450	0.159	0.097	0.223	0.325	0.287	0.218
100	0.104	0.100	0.453	0.159	0.096	0.228	0.322	0.293	0.219
110	0.106	0.097	0.457	0.159	0.096	0.233	0.313	0.301	0.220
120	0.108	0.097	0.463	0.159	0.096	0.238	0.306	0.308	0.222
130	0.111	0.097	0.468	0.160	0.096	0.243	0.308	0.314	0.225
140	0.113	0.098	0.475	0.160	0.096	0.247	0.314	0.319	0.228
150	0.114	0.099	0.480	0.161	0.097	0.252	0.317	0.324	0.230
160	0.116	0.099	0.485	0.161	0.097	0.257	0.709	0.329	0.282
170	0.118	0.100	0.486	0.162	0.098	0.261	0.500	0.332	0.257
180	0.120	0.101	0.496	0.162	0.098	0.266	0.513	0.337	0.262
190	0.122	0.102	0.502	0.163	0.099	0.303	0.520	0.341	0.269
200	0.124	0.103	0.510	0.164	0.100	0.312	0.526	0.346	0.273
210	0.126	0.104	0.517	0.164	0.101	0.319	0.532	0.349	0.277
220	0.128	0.105	0.525	0.165	0.102	0.324	0.540	0.353	0.280
230	0.130	0.106	0.543	0.166	0.103	0.330	0.580	0.356	0.289
240	0.132	0.108	0.557	0.167	0.103	0.337	0.587	0.360	0.294
250	0.134	0.100	0.564	0.168	0.105	0.343	0.594	0.363	0.297
	0.±J 4	3.109	J 51.70 4	3.100	0.10)	\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \	3.505	J.27

Tabelle A.23.: Ergebnisse für $V_1^{s_\alpha,n_s}$ mit JTB und CBU unter Variation von α . Fehlerwerte des AAE (oberer Tabellenteil) und des AEE (unterer Tabellenteil).

α	Dime	Gro2	Gro3	Hydr	Rubb	Urb2	Venu	Ø
1200	1.789	1.686	5.281	1.872	2.626	2.318	5.601	3.025
1300	1.822	1.679	5.291	1.865	2.614	2.342	5.616	3.033
1400	1.856	1.674	5.288	1.860	2.607	2.461	5.636	3.055
1500	1.890	1.673	5.297	1.855	2.602	2.584	5.683	3.083
1600	1.924	1.673	5.304	1.851	2.599	2.691	5.699	3.106
1700	1.958	1.674	5.321	1.846	2.598	2.853	5.728	3.140
1800	1.992	1.675	5.314	1.845	2.602	3.044	5.756	3.175
1900	2.026	1.673	5.338	1.843	2.609	3.091	5.838	3.202
2000	2.060	1.676	5.348	1.842	2.619	3.136	5.830	3.216
2100	2.093	1.681	5.371	1.843	2.629	3.191	5.867	3.239
2200	2.127	1.680	5.380	1.842	2.643	3.253	5.892	3.259
2300	2.160	1.684	5.387	1.843	2.658	3.325	5.921	3.283
2400	2.193	1.692	5.393	1.844	2.677	3.410	5.965	3.311
2500	2.227	1.698	5.409	1.845	2.698	3.506	6.016	3.343
2600	2.260	1.707	5.429	1.846	2.720	3.629	6.059	3.379
2700	2.293	1.719	5.451	1.848	2.745	3.758	6.121	3.419
1200	0.094	0.118	0.552	0.148	0.082	0.287	0.356	0.234
1300	0.096	0.117	0.553	0.148	0.082	0.290	0.358	0.235
1400	0.098	0.116	0.553	0.148	0.082	0.328	0.361	0.241
1500	0.100	0.115	0.553	0.148	0.082	0.357	0.365	0.246
1600	0.101	0.115	0.554	0.148	0.082	0.374	0.368	0.249
1700	0.103	0.115	0.556	0.148	0.082	0.414	0.371	0.256
1800	0.105	0.115	0.556	0.148	0.082	0.472	0.374	0.264
1900	0.107	0.114	0.559	0.148	0.083	0.489	0.378	0.268
2000	0.108	0.114	0.561	0.148	0.083	0.505	0.380	0.271
2100	0.110	0.114	0.564	0.149	0.084	0.524	0.383	0.275
2200	0.112	0.114	0.565	0.149	0.084	0.541	0.385	0.279
2300	0.114	0.114	0.566	0.149	0.085	0.552	0.388	0.281
2400	0.116	0.115	0.568	0.150	0.086	0.564	0.391	0.284
2500	0.117	0.115	0.571	0.150	0.086	0.576	0.394	0.287
2600	0.119	0.115	0.574	0.150	0.087	0.634	0.397	0.297
2700	0.121	0.116	0.579	0.150	0.088	0.662	0.400	0.302

Tabelle A.24.: Ergebnisse für $V_{2a}^{s_{\alpha},n_s}$ mit JTB und CBU unter Variation von α . Fehlerwerte des AAE (oberer Tabellenteil) und des AEE (unterer Tabellenteil).

α	Dime	Groz	Gro3	Hydr	Rubb	Urb2	Urb3	Venu	Ø
- u	Diffic	G102	-	Tiyai		ı		1	
17	1.737	1.459	4.363	2.101	3.238	2.076	3.113	3.634	2.715
20	1.740	1.411	4.388	2.074	3.163	1.997	3.154	3.491	2.677
23	1.753	1.380	4.561	2.059	3.092	1.936	3.968	3.441	2.774
26	1.771	1.362	4.111	2.052	3.046	1.882	2.049	3.377	2.456
29	1.791	1.572	4.291	2.052	2.999	1.866	2.021	3.363	2.494
32	1.813	1.507	4.049	2.054	2.967	1.867	1.990	3.379	2.453
35	1.835	1.490	4.147	2.057	2.943	1.878	1.892	3.403	2.456
38	1.858	1.518	4.190	2.063	2.922	1.885	3.961	3.434	2.729
41	1.882	1.363	4.192	2.066	2.906	1.897	3.551	3.473	2.666
44	1.905	1.502	4.291	2.072	2.898	1.912	3.831	3.521	2.742
47	1.929	1.490	4.369	2.078	2.896	1.934	3.737	3.582	2.752
50	1.953	1.533	4.564	2.085	2.892	1.959	2.808	3.627	2.678
53	1.976	1.461	4.692	2.092	2.902	2.011	1.959	3.676	2.596
56	2.001	1.515	4.451	2.100	2.904	2.053	1.925	3.718	2.583
59	2.025	1.547	4.481	2.106	2.910	2.089	3.982	3.760	2.863
62	2.049	1.552	4.533	2.114	2.913	2.127	2.835	3.803	2.741
65	2.073	1.554	4.532	2.122	2.922	2.163	3.935	3.856	2.895
68	2.097	1.584	4.711	2.131	2.929	2.197	3.166	3.903	2.840
71	2.121	1.581	4.605	2.138	2.938	2.231	3.673	3.954	2.905
17	0.093	0.104	221.171	0.167	0.100	0.225	0.636	0.264	27.845
20	0.094	0.100	0.487	0.165	0.098	0.224	0.645	0.262	0.259
23	0.095	0.097	0.593	0.164	0.096	0.221	0.902	0.263	0.304
26	0.096	0.096	11.404	0.164	0.095	0.219	0.304	0.264	1.580
29	0.097	7.938	19.752	0.164	0.094	0.219	0.306	0.266	3.605
32	0.098	8.251	220.228	0.165	0.094	0.222	0.302	0.269	28.703
35	0.099	8.073	115.122	0.165	0.093	0.225	0.289	0.272	15.542
38	0.101	5.840	39.547	0.166	0.093	0.229	1.025	0.275	5.909
41	0.102	0.094	0.435	0.166	0.093	0.232	9.919	0.279	1.415
44	0.103	0.243	19.794	0.167	0.093	0.236	1.221	0.283	2.767
47	0.104	3.752	35.720	0.167	0.094	0.239	1.254	0.287	5.202
50	0.106	5.038	19.183	0.168	0.094	0.242	0.787	0.291	3.238
53	0.107	0.473	92.186	0.169	0.094	0.247	0.328	0.296	11.737
56	0.108	2.970	0.456	0.170	0.095	0.251	0.325	0.300	0.584
59	0.109	1.497	1.557	0.170	0.095	0.255	66.645	0.304	8.829
62	0.111	2.328	0.483	0.171	0.096	0.261	1.216	0.307	0.621
65	0.112	2.743	1.559	0.172	0.096	0.265	2.079	0.311	0.917
68	0.113	2.348	0.562	0.173	0.097	0.269	340.134	0.315	43.001
71	0.114	0.525	0.472	0.173	0.097	0.272	0.990	0.318	0.370
/-	· · · T	1 5-5	_ ~: T / =	13	J1	/ -	¥-7,7×	- · · · · ·	2.572

Tabelle A.25.: Ergebnisse für $V_{2b}^{s_{\alpha},n_s}$ mit JTB und CBU unter Variation von α . Fehlerwerte des AAE (oberer Tabellenteil) und des AEE (unterer Tabellenteil).

α Dime Gro2 Gro3 Hydr Rubb Urb2 Urb3 Venu \varnothing 17 1.782 1.554 4.884 2.198 3.536 2.341 3.594 3.816 2.963 20 1.762 1.487 4.708 2.152 3.434 2.164 3.498 3.728 2.866 23 1.756 1.455 4.390 2.121 9.700 2.075 3.628 3.670 3.598 26 1.758 1.499 4.456 2.102 3.277 2.029 2.154 3.598 2.598 32 1.776 1.387 4.312 2.088 3.231 1.970 4.113 3.591 2.796 38 1.805 1.524 4.354 2.075 3.122 1.903 3.842 3.425 2.729 38 1.805 1.524 4.354 2.075 3.122 1.903 3.081 3.407 2.659 41 1.827 1.486 <			1	1						<u> </u>
20 1.762 1.487 4.708 2.152 3.434 2.164 3.498 3.728 2.866 23 1.756 1.455 4.390 2.121 9.700 2.075 3.628 3.670 3.599 26 1.758 1.409 4.456 2.102 3.277 2.029 2.154 3.598 2.598 29 1.766 1.387 4.312 2.088 3.231 1.970 4.113 3.591 2.796 32 1.777 1.376 4.347 2.081 3.198 1.935 3.140 3.464 2.665 35 1.791 1.366 4.244 2.076 3.175 1.918 3.842 3.425 2.729 38 1.805 1.524 4.354 2.075 3.148 1.897 1.887 3.421 2.513 41 1.821 1.577 4.290 2.075 3.122 1.903 3.081 3.407 2.659 47 1.852 1.533	α	Dime	Gro2	Gro3	Hydr	Rubb	Urb2	Urb3	Venu	Ø
23 1.756 1.455 4.390 2.121 9.700 2.075 3.628 3.670 3.599 26 1.758 1.409 4.456 2.102 3.277 2.029 2.154 3.598 2.598 29 1.766 1.387 4.342 2.088 3.231 1.970 4.113 3.501 2.796 32 1.777 1.366 4.244 2.076 3.175 1.918 3.842 3.425 2.729 38 1.805 1.524 4.354 2.075 3.148 1.887 3.412 2.513 41 1.821 1.577 4.290 2.075 3.122 1.903 3.081 3.407 2.659 44 1.837 1.486 4.338 2.078 3.106 1.908 1.904 3.406 2.508 47 1.885 1.539 4.391 2.081 3.087 1.915 2.727 3.421 2.627 50 1.872 1.533 4.225	17	1.782	1.554	4.884	2.198	3.536	2.341	3.594	3.816	2.963
26 1.758 1.409 4.456 2.102 3.277 2.029 2.154 3.598 2.598 29 1.766 1.387 4.312 2.088 3.231 1.970 4.113 3.501 2.796 32 1.777 1.366 4.347 2.081 3.198 1.935 3.140 3.464 2.665 35 1.791 1.366 4.244 2.076 3.175 1.918 3.842 3.425 2.729 38 1.807 1.524 4.354 2.075 3.122 1.903 3.081 3.422 2.729 38 1.837 1.486 4.338 2.078 3.106 1.908 1.904 3.466 2.508 44 1.857 1.486 4.338 2.078 3.106 1.908 1.904 3.462 2.565 47 1.872 1.533 4.225 2.084 3.074 1.915 3.740 3.412 2.627 50 1.872 1.528	20	1.762	1.487	4.708	2.152	3.434	2.164	3.498	3.728	2.866
29 1.766 1.387 4.312 2.088 3.231 1.970 4.113 3.501 2.796 32 1.777 1.376 4.347 2.081 3.198 1.935 3.140 3.464 2.665 35 1.791 1.366 4.244 2.076 3.175 1.918 3.842 3.425 2.729 38 1.805 1.524 4.354 2.075 3.148 1.897 1.887 3.412 2.513 41 1.821 1.577 4.290 2.075 3.122 1.903 3.081 3.407 2.2659 44 1.837 1.486 4.338 2.078 3.106 1.908 1.904 3.406 2.568 47 1.855 1.539 4.391 2.081 3.087 1.915 3.740 3.442 2.673 50 1.872 1.533 4.225 2.084 3.074 1.915 3.740 3.442 2.753 53 1.889 1.426	23	1.756	1.455	4.390	2.121	9.700	2.075		3.670	3.599
32 1.777 1.376 4.347 2.081 3.198 1.935 3.140 3.464 2.665 35 1.791 1.366 4.244 2.076 3.175 1.918 3.842 3.425 2.729 38 1.805 1.524 4.354 2.075 3.148 1.897 1.887 3.412 2.513 41 1.821 1.577 4.290 2.075 3.122 1.903 3.081 3.407 2.659 44 1.837 1.486 4.338 2.078 3.106 1.908 1.904 3.406 2.508 47 1.855 1.533 4.225 2.084 3.074 1.915 3.740 3.442 2.627 50 1.872 1.533 4.225 2.084 3.074 1.915 3.740 3.442 2.735 53 1.889 1.426 4.268 2.086 3.065 1.937 3.752 3.492 2.753 59 1.924 1.618	26	1.758	1.409	4.456	2.102	3.277	2.029	2.154	3.598	2.598
35 1.791 1.366 4.244 2.076 3.175 1.918 3.842 3.425 2.729 38 1.805 1.524 4.354 2.075 3.148 1.897 1.887 3.412 2.513 41 1.821 1.577 4.290 2.075 3.122 1.903 3.081 3.407 2.659 44 1.837 1.486 4.338 2.078 3.106 1.908 1.904 3.406 2.508 47 1.855 1.539 4.391 2.081 3.087 1.915 2.727 3.421 2.627 50 1.872 1.533 4.225 2.084 3.074 1.915 3.740 3.442 2.755 53 1.889 1.426 4.268 2.086 3.065 1.937 3.752 3.492 2.753 59 1.924 1.618 4.307 2.094 3.046 1.953 3.806 3.519 2.783 62 1.941 1.501	29	1.766	1.387	4.312	2.088	3.231	1.970	4.113	3.501	2.796
38 1.805 1.524 4.354 2.075 3.148 1.897 1.887 3.412 2.513 41 1.821 1.577 4.290 2.075 3.122 1.903 3.081 3.407 2.659 44 1.837 1.486 4.338 2.078 3.106 1.908 1.904 3.406 2.508 47 1.855 1.539 4.391 2.081 3.087 1.915 2.727 3.421 2.627 50 1.872 1.533 4.225 2.084 3.074 1.915 3.740 3.442 2.735 53 1.889 1.426 4.268 2.086 3.065 1.930 3.086 3.462 2.652 56 1.907 1.528 4.258 2.090 3.046 1.933 3.806 3.519 2.773 59 1.924 1.618 4.307 2.094 3.046 1.953 3.806 3.519 2.773 62 1.941 1.501	32	1.777	1.376	4.347	2.081	3.198	1.935	3.140	3.464	2.665
41 1.821 1.577 4.290 2.075 3.122 1.903 3.081 3.407 2.659 44 1.837 1.486 4.338 2.078 3.106 1.908 1.904 3.406 2.508 47 1.855 1.539 4.391 2.081 3.087 1.915 2.727 3.421 2.627 50 1.872 1.533 4.225 2.084 3.074 1.915 3.740 3.442 2.735 53 1.889 1.426 4.268 2.086 3.065 1.930 3.086 3.462 2.652 56 1.907 1.528 4.258 2.090 3.056 1.937 3.752 3.492 2.753 59 1.924 1.618 4.307 2.096 3.045 1.953 3.806 3.519 2.783 62 1.941 1.501 4.332 2.096 3.042 1.969 3.732 3.558 2.657 65 1.959 1.507	35	1.791	1.366	4.244	2.076	3.175	1.918	3.842	3.425	2.729
44 1.837 1.486 4.338 2.078 3.106 1.908 1.904 3.406 2.508 47 1.855 1.539 4.391 2.081 3.087 1.915 2.727 3.421 2.627 50 1.872 1.533 4.225 2.084 3.074 1.915 3.740 3.442 2.735 53 1.889 1.426 4.268 2.086 3.065 1.930 3.086 3.462 2.652 56 1.907 1.528 4.258 2.090 3.056 1.937 3.752 3.492 2.753 59 1.924 1.618 4.307 2.094 3.046 1.953 3.806 3.519 2.783 62 1.941 1.501 4.333 2.096 3.045 1.969 3.732 3.555 2.771 65 1.959 1.507 4.382 2.101 3.040 1.983 2.689 3.598 2.657 68 1.977 1.429	38		1.524	4.354	2.075	3.148	1.897	1.887	3.412	2.513
47 1.855 1.539 4.391 2.081 3.087 1.915 2.727 3.421 2.627 50 1.872 1.533 4.225 2.084 3.074 1.915 3.740 3.442 2.735 53 1.889 1.426 4.268 2.086 3.065 1.930 3.086 3.462 2.652 56 1.907 1.528 4.258 2.090 3.056 1.937 3.752 3.492 2.753 59 1.924 1.618 4.307 2.094 3.046 1.953 3.806 3.519 2.783 62 1.941 1.501 4.333 2.096 3.045 1.969 3.732 3.555 2.771 65 1.959 1.507 4.382 2.101 3.040 1.983 2.689 3.598 2.657 68 1.977 1.429 4.440 2.106 3.042 2.017 3.006 3.632 2.706 17 0.095 0.113	41	1.821	1.577	4.290	2.075	3.122	1.903	3.081	3.407	2.659
50 1.872 1.533 4.225 2.084 3.074 1.915 3.740 3.442 2.735 53 1.889 1.426 4.268 2.086 3.065 1.930 3.086 3.462 2.652 56 1.907 1.528 4.258 2.090 3.056 1.937 3.752 3.492 2.753 59 1.924 1.618 4.307 2.094 3.046 1.953 3.806 3.519 2.783 62 1.941 1.501 4.333 2.096 3.045 1.969 3.732 3.555 2.771 65 1.959 1.507 4.382 2.101 3.040 1.983 2.689 3.598 2.657 68 1.977 1.429 4.440 2.106 3.042 2.017 3.006 3.632 2.706 17 0.095 0.113 541.894 0.174 0.109 0.244 0.636 0.269 67.942 20 0.095 0.106 <td< td=""><td>44</td><td>1.837</td><td>1.486</td><td>4.338</td><td>2.078</td><td>3.106</td><td>1.908</td><td>1.904</td><td>3.406</td><td>2.508</td></td<>	44	1.837	1.486	4.338	2.078	3.106	1.908	1.904	3.406	2.508
53 1.889 1.426 4.268 2.086 3.065 1.930 3.086 3.462 2.652 56 1.907 1.528 4.258 2.090 3.056 1.937 3.752 3.492 2.753 59 1.924 1.618 4.307 2.094 3.046 1.953 3.806 3.519 2.783 62 1.941 1.501 4.333 2.096 3.045 1.969 3.732 3.555 2.771 65 1.959 1.507 4.382 2.101 3.040 1.983 2.689 3.598 2.657 68 1.977 1.429 4.440 2.106 3.042 2.017 3.006 3.632 2.706 17 0.095 0.113 541.894 0.174 0.109 0.244 0.636 0.269 67.942 20 0.095 0.106 245.779 0.171 0.106 0.233 0.577 0.266 30.916 23 0.095 0.100<	47	1.855	1.539	4.391	2.081	3.087	1.915	2.727	3.421	2.627
56 1.907 1.528 4.258 2.090 3.056 1.937 3.752 3.492 2.753 59 1.924 1.618 4.307 2.094 3.046 1.953 3.806 3.519 2.783 62 1.941 1.501 4.333 2.096 3.045 1.969 3.732 3.555 2.771 65 1.959 1.507 4.382 2.101 3.040 1.983 2.689 3.598 2.657 68 1.977 1.429 4.440 2.106 3.042 2.017 3.006 3.632 2.706 17 0.095 0.113 541.894 0.174 0.109 0.244 0.636 0.269 67.942 20 0.095 0.106 245.779 0.171 0.106 0.233 0.577 0.266 30.916 23 0.095 0.110 0.453 0.168 8.776 0.230 0.618 0.264 1.339 26 0.095 0.100<	50	1.872	1.533	4.225	2.084	3.074	1.915	3.740	3.442	2.735
59 1.924 1.618 4.307 2.094 3.046 1.953 3.806 3.519 2.783 62 1.941 1.501 4.333 2.096 3.045 1.969 3.732 3.555 2.771 65 1.959 1.507 4.382 2.101 3.040 1.983 2.689 3.598 2.657 68 1.977 1.429 4.440 2.106 3.042 2.017 3.006 3.632 2.706 17 0.095 0.113 541.894 0.174 0.109 0.244 0.636 0.269 67.942 20 0.095 0.106 245.779 0.171 0.106 0.233 0.577 0.266 30.916 23 0.095 0.100 84.005 0.167 0.101 0.231 0.307 0.263 10.659 29 0.096 0.098 0.479 0.166 0.100 0.229 0.890 0.262 0.290 32 0.096 0.09	53	1.889	1.426	4.268	2.086	3.065	1.930	3.086	3.462	2.652
62 1.941 1.501 4.333 2.096 3.045 1.969 3.732 3.555 2.771 65 1.959 1.507 4.382 2.101 3.040 1.983 2.689 3.598 2.657 68 1.977 1.429 4.440 2.106 3.042 2.017 3.006 3.632 2.706 17 0.095 0.113 541.894 0.174 0.109 0.244 0.636 0.269 67.942 20 0.095 0.106 245.779 0.171 0.106 0.233 0.577 0.266 30.916 23 0.095 0.110 0.453 0.168 8.776 0.230 0.618 0.264 1.339 26 0.095 0.100 84.005 0.167 0.101 0.231 0.307 0.263 10.659 29 0.096 0.098 0.479 0.166 0.100 0.229 0.890 0.262 24.352 35 0.097 0.0	56	1.907	1.528	4.258	2.090	3.056	1.937	3.752	3.492	2.753
65 1.959 1.507 4.382 2.101 3.040 1.983 2.689 3.598 2.657 68 1.977 1.429 4.440 2.106 3.042 2.017 3.006 3.632 2.706 17 0.095 0.113 541.894 0.174 0.109 0.244 0.636 0.269 67.942 20 0.095 0.106 245.779 0.171 0.106 0.233 0.577 0.266 30.916 23 0.095 0.110 0.453 0.168 8.776 0.230 0.618 0.264 1.339 26 0.095 0.100 84.005 0.167 0.101 0.231 0.307 0.263 10.659 29 0.096 0.098 0.479 0.166 0.100 0.229 0.890 0.262 0.290 32 0.096 0.097 6.323 0.166 0.099 0.226 0.885 0.263 0.312 38 0.098 12.3	59	1.924	1.618	4.307	2.094	3.046	1.953	3.806	3.519	2.783
68 1.977 1.429 4.440 2.106 3.042 2.017 3.006 3.632 2.706 17 0.095 0.113 541.894 0.174 0.109 0.244 0.636 0.269 67.942 20 0.095 0.106 245.779 0.171 0.106 0.233 0.577 0.266 30.916 23 0.095 0.110 0.453 0.168 8.776 0.230 0.618 0.264 1.339 26 0.095 0.100 84.005 0.167 0.101 0.231 0.307 0.263 10.659 29 0.096 0.098 0.479 0.166 0.100 0.229 0.890 0.262 0.290 32 0.096 0.097 6.323 0.166 0.099 0.226 187.546 0.262 24.352 35 0.097 0.095 0.663 0.166 0.099 0.226 0.885 0.263 0.312 41 0.099 9	62	1.941	1.501	4.333	2.096	3.045	1.969	3.732	3.555	2.771
17 0.095 0.113 541.894 0.174 0.109 0.244 0.636 0.269 67.942 20 0.095 0.106 245.779 0.171 0.106 0.233 0.577 0.266 30.916 23 0.095 0.110 0.453 0.168 8.776 0.230 0.618 0.264 1.339 26 0.095 0.100 84.005 0.167 0.101 0.231 0.307 0.263 10.659 29 0.096 0.098 0.479 0.166 0.100 0.229 0.890 0.262 0.290 32 0.096 0.097 6.323 0.166 0.099 0.226 187.546 0.262 24.352 35 0.097 0.095 0.663 0.166 0.099 0.226 0.885 0.263 0.312 38 0.098 12.322 9.901 0.166 0.098 0.226 0.280 0.265 2.919 41 0.099	65	1.959	1.507	4.382	2.101	3.040	1.983	2.689	3.598	2.657
20 0.095 0.106 245.779 0.171 0.106 0.233 0.577 0.266 30.916 23 0.095 0.110 0.453 0.168 8.776 0.230 0.618 0.264 1.339 26 0.095 0.100 84.005 0.167 0.101 0.231 0.307 0.263 10.659 29 0.096 0.098 0.479 0.166 0.100 0.229 0.890 0.262 0.290 32 0.096 0.097 6.323 0.166 0.099 0.226 187.546 0.262 24.352 35 0.097 0.095 0.663 0.166 0.099 0.226 0.885 0.263 0.312 38 0.098 12.322 9.901 0.166 0.098 0.226 0.280 0.265 2.919 41 0.099 9.898 0.491 0.166 0.098 0.228 0.927 0.267 1.522 44 0.100 0.1	68	1.977	1.429	4.440	2.106	3.042	2.017	3.006	3.632	2.706
23 0.095 0.110 0.453 0.168 8.776 0.230 0.618 0.264 1.339 26 0.095 0.100 84.005 0.167 0.101 0.231 0.307 0.263 10.659 29 0.096 0.098 0.479 0.166 0.100 0.229 0.890 0.262 0.290 32 0.096 0.097 6.323 0.166 0.099 0.226 187.546 0.262 24.352 35 0.097 0.095 0.663 0.166 0.099 0.226 0.885 0.263 0.312 38 0.098 12.322 9.901 0.166 0.098 0.226 0.280 0.265 2.919 41 0.099 9.898 0.491 0.166 0.098 0.228 0.927 0.267 1.522 44 0.100 0.119 7.053 0.166 0.098 0.230 0.286 0.269 1.040 47 0.101 7.109<	17	0.095	0.113	541.894	0.174	0.109	0.244	0.636	0.269	67.942
26 0.095 0.100 84.005 0.167 0.101 0.231 0.307 0.263 10.659 29 0.096 0.098 0.479 0.166 0.100 0.229 0.890 0.262 0.290 32 0.096 0.097 6.323 0.166 0.099 0.226 187.546 0.262 24.352 35 0.097 0.095 0.663 0.166 0.099 0.226 0.885 0.263 0.312 38 0.098 12.322 9.901 0.166 0.098 0.226 0.280 0.265 2.919 41 0.099 9.898 0.491 0.166 0.098 0.228 0.927 0.267 1.522 44 0.100 0.119 7.053 0.166 0.098 0.230 0.286 0.269 1.040 47 0.101 7.109 0.559 0.167 0.098 0.232 0.678 0.271 1.152 50 0.102 6.051<	20	0.095	0.106	245.779	0.171	0.106	0.233		0.266	30.916
29 0.096 0.098 0.479 0.166 0.100 0.229 0.890 0.262 0.290 32 0.096 0.097 6.323 0.166 0.099 0.226 187.546 0.262 24.352 35 0.097 0.095 0.663 0.166 0.099 0.226 0.885 0.263 0.312 38 0.098 12.322 9.901 0.166 0.098 0.226 0.280 0.265 2.919 41 0.099 9.898 0.491 0.166 0.098 0.228 0.927 0.267 1.522 44 0.100 0.119 7.053 0.166 0.098 0.230 0.286 0.269 1.040 47 0.101 7.109 0.559 0.167 0.098 0.232 0.678 0.271 1.152 50 0.102 6.051 0.468 0.167 0.098 0.235 1.003 0.273 1.049 53 0.103 4.619 <td>23</td> <td>0.095</td> <td>0.110</td> <td>0.453</td> <td>0.168</td> <td>8.776</td> <td>0.230</td> <td>0.618</td> <td>0.264</td> <td>1.339</td>	23	0.095	0.110	0.453	0.168	8.776	0.230	0.618	0.264	1.339
32 0.096 0.097 6.323 0.166 0.099 0.226 187.546 0.262 24.352 35 0.097 0.095 0.663 0.166 0.099 0.226 0.885 0.263 0.312 38 0.098 12.322 9.901 0.166 0.098 0.226 0.280 0.265 2.919 41 0.099 9.898 0.491 0.166 0.098 0.228 0.927 0.267 1.522 44 0.100 0.119 7.053 0.166 0.098 0.230 0.286 0.269 1.040 47 0.101 7.109 0.559 0.167 0.098 0.232 0.678 0.271 1.152 50 0.102 6.051 0.468 0.167 0.098 0.235 1.003 0.273 1.049 53 0.103 0.112 44.230 0.167 0.098 0.237 0.672 0.275 5.737 56 0.103 4.619 </td <td>26</td> <td>0.095</td> <td>0.100</td> <td>84.005</td> <td>0.167</td> <td>0.101</td> <td>0.231</td> <td>0.307</td> <td>0.263</td> <td>10.659</td>	26	0.095	0.100	84.005	0.167	0.101	0.231	0.307	0.263	10.659
35 0.097 0.095 0.663 0.166 0.099 0.226 0.885 0.263 0.312 38 0.098 12.322 9.901 0.166 0.098 0.226 0.280 0.265 2.919 41 0.099 9.898 0.491 0.166 0.098 0.228 0.927 0.267 1.522 44 0.100 0.119 7.053 0.166 0.098 0.230 0.286 0.269 1.040 47 0.101 7.109 0.559 0.167 0.098 0.232 0.678 0.271 1.152 50 0.102 6.051 0.468 0.167 0.098 0.235 1.003 0.273 1.049 53 0.103 0.112 44.230 0.167 0.098 0.237 0.672 0.275 5.737 56 0.103 4.619 0.433 0.168 0.098 0.240 1.074 0.278 0.877 59 0.104 5.525	29	0.096	0.098	0.479	0.166	0.100	0.229	0.890	0.262	0.290
38 0.098 12.322 9.901 0.166 0.098 0.226 0.280 0.265 2.919 41 0.099 9.898 0.491 0.166 0.098 0.228 0.927 0.267 1.522 44 0.100 0.119 7.053 0.166 0.098 0.230 0.286 0.269 1.040 47 0.101 7.109 0.559 0.167 0.098 0.232 0.678 0.271 1.152 50 0.102 6.051 0.468 0.167 0.098 0.235 1.003 0.273 1.049 53 0.103 0.112 44.230 0.167 0.098 0.237 0.672 0.275 5.737 56 0.103 4.619 0.433 0.168 0.098 0.240 1.074 0.278 0.877 59 0.104 5.525 201.426 0.168 0.098 0.242 1.089 0.280 26.117 62 0.105 3.441 </td <td>32</td> <td>0.096</td> <td>0.097</td> <td></td> <td>0.166</td> <td>0.099</td> <td>0.226</td> <td></td> <td>0.262</td> <td>24.352</td>	32	0.096	0.097		0.166	0.099	0.226		0.262	24.352
41 0.099 9.898 0.491 0.166 0.098 0.228 0.927 0.267 1.522 44 0.100 0.119 7.053 0.166 0.098 0.230 0.286 0.269 1.040 47 0.101 7.109 0.559 0.167 0.098 0.232 0.678 0.271 1.152 50 0.102 6.051 0.468 0.167 0.098 0.235 1.003 0.273 1.049 53 0.103 0.112 44.230 0.167 0.098 0.237 0.672 0.275 5.737 56 0.103 4.619 0.433 0.168 0.098 0.240 1.074 0.278 0.877 59 0.104 5.525 201.426 0.168 0.098 0.242 1.089 0.280 26.117 62 0.105 3.441 9.257 0.168 0.098 0.245 1.224 0.286 0.499 65 0.106 1.903 <td></td> <td>0.097</td> <td>0.095</td> <td>0.663</td> <td>0.166</td> <td>0.099</td> <td>0.226</td> <td></td> <td>0.263</td> <td>0.312</td>		0.097	0.095	0.663	0.166	0.099	0.226		0.263	0.312
44 0.100 0.119 7.053 0.166 0.098 0.230 0.286 0.269 1.040 47 0.101 7.109 0.559 0.167 0.098 0.232 0.678 0.271 1.152 50 0.102 6.051 0.468 0.167 0.098 0.235 1.003 0.273 1.049 53 0.103 0.112 44.230 0.167 0.098 0.237 0.672 0.275 5.737 56 0.103 4.619 0.433 0.168 0.098 0.240 1.074 0.278 0.877 59 0.104 5.525 201.426 0.168 0.098 0.242 1.089 0.280 26.117 62 0.105 3.441 9.257 0.168 0.098 0.245 1.224 0.283 1.853 65 0.106 1.903 0.470 0.169 0.098 0.246 0.712 0.286 0.499	38	0.098	12.322	9.901	0.166	_	0.226	0.280	0.265	2.919
47 0.101 7.109 0.559 0.167 0.098 0.232 0.678 0.271 1.152 50 0.102 6.051 0.468 0.167 0.098 0.235 1.003 0.273 1.049 53 0.103 0.112 44.230 0.167 0.098 0.237 0.672 0.275 5.737 56 0.103 4.619 0.433 0.168 0.098 0.240 1.074 0.278 0.877 59 0.104 5.525 201.426 0.168 0.098 0.242 1.089 0.280 26.117 62 0.105 3.441 9.257 0.168 0.098 0.245 1.224 0.283 1.853 65 0.106 1.903 0.470 0.169 0.098 0.246 0.712 0.286 0.499	41	0.099	9.898	0.491	0.166	0.098	0.228	0.927	0.267	1.522
50 0.102 6.051 0.468 0.167 0.098 0.235 1.003 0.273 1.049 53 0.103 0.112 44.230 0.167 0.098 0.237 0.672 0.275 5.737 56 0.103 4.619 0.433 0.168 0.098 0.240 1.074 0.278 0.877 59 0.104 5.525 201.426 0.168 0.098 0.242 1.089 0.280 26.117 62 0.105 3.441 9.257 0.168 0.098 0.245 1.224 0.283 1.853 65 0.106 1.903 0.470 0.169 0.098 0.246 0.712 0.286 0.499	44	0.100	0.119	7.053	0.166	0.098	0.230	0.286	0.269	1.040
53 0.103 0.112 44.230 0.167 0.098 0.237 0.672 0.275 5.737 56 0.103 4.619 0.433 0.168 0.098 0.240 1.074 0.278 0.877 59 0.104 5.525 201.426 0.168 0.098 0.242 1.089 0.280 26.117 62 0.105 3.441 9.257 0.168 0.098 0.245 1.224 0.283 1.853 65 0.106 1.903 0.470 0.169 0.098 0.246 0.712 0.286 0.499		0.101	7.109			0.098	0.232	0.678	0.271	1.152
56 0.103 4.619 0.433 0.168 0.098 0.240 1.074 0.278 0.877 59 0.104 5.525 201.426 0.168 0.098 0.242 1.089 0.280 26.117 62 0.105 3.441 9.257 0.168 0.098 0.245 1.224 0.283 1.853 65 0.106 1.903 0.470 0.169 0.098 0.246 0.712 0.286 0.499	50	0.102	6.051	0.468	0.167		0.235	1.003	0.273	1.049
59 0.104 5.525 201.426 0.168 0.098 0.242 1.089 0.280 26.117 62 0.105 3.441 9.257 0.168 0.098 0.245 1.224 0.283 1.853 65 0.106 1.903 0.470 0.169 0.098 0.246 0.712 0.286 0.499		0.103		44.230	0.167	0.098	0.237	0.672	0.275	5.737
62 0.105 3.441 9.257 0.168 0.098 0.245 1.224 0.283 1.853 65 0.106 1.903 0.470 0.169 0.098 0.246 0.712 0.286 0.499	56	0.103	4.619	0.433	0.168	0.098	0.240	1.074	0.278	0.877
65 0.106 1.903 0.470 0.169 0.098 0.246 0.712 0.286 0.499	59	0.104	5.525	201.426	0.168	0.098	0.242	1.089		
		0.105	3.441	9.257	0.168	0.098	0.245	1.224	0.283	1.853
68 0.107 0.101 33.133 0.169 0.099 0.250 0.803 0.289 4.369	65	0.106	1.903	0.470	0.169	0.098	0.246			0.499
	68	0.107	0.101	33.133	0.169	0.099	0.250	0.803	0.289	4.369

Tabelle A.26.: Ergebnisse für $V_{2c}^{s_{\alpha},n_s}$ mit JTB und CBU unter Variation von α . Fehlerwerte des AAE (oberer Tabellenteil) und des AEE (unterer Tabellenteil).

12	11	10	9	∞	7	6	5	4	3	2	1	Nr.
4	3	2	1	1	1	1	1	1	1	0	0	V_x
*	*	*	*	*	*	*	*	*	*	*	*	8
H	1	1	ı	1	1	1	ı	1	0	1	0	sα
н	н	1	н	н	1	н	0	н	1	ı	ı	η_s
4	4	4	4	4	4	4	4	4	4	1.3	1.3	γ_f
2	2	2	2	2	2	2	2	2	2	0.55	0.55	γ_g
ψ_{tv}	$ \psi_D $											
ψ_{tv}	ψ_{tv}	ψ_{tv}	*	ψ_{tv}	ψ_{tv}	ψ_{tv}	ψ_{tv}	ψ_{tv}	ψ_{tv}	ψ_{pm}	ψ_{pm}	ψ_S
0.2	0.01	0.3	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.1	0.1	$ $ ε_D
0.01	0.01	0.01	*	0.01	0.01	0.01	0.01	0.01	0.01	0.07	0.07	83
0.1	0.1	ı	0.1	0.1	0.1	0.1	0.1	0.1	0.1	1.5	1.5	$ \epsilon_T $
ψ_{b1}	ψ_{b1}	ψ_{b2}	ψ_{b2}	*	ψ_{b2}	ψ_{b2}	ψ_{b2}	ψ_{b2}	ψ_{b2}	ı	ı	$\overline{\psi}_c$
ψ_{b1}	ψ_{b1}	ψ_{b2}	ψ_{b2}	*	ψ_{b2}	ψ_{b2}	ψ_{b2}	ψ_{b2}	ψ_{b2}	ı	ı	$\overline{\psi}_d$
14	14	14		١.			١.		ı	١.	ı	σ_c^D
w	3.5	4		ı	ı	ı	ı	ı	ı	1	1	σ_d^D
14.14	14.14	14.14	14.14	14.14	14.14	*	14.14	14.14	14.14	,	ı	σ_c^S
4.8	4.8	4.8	4.8	4.8	*	4.8	4.8	4.8	4.8	1	1	σ_d^S
0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	σ_{g}
0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	η
1.95	1.95	1.95	1.95	1.95	1.95	1.95	1.95	1.95	1.95	1.95	1.95	ε
5	5	5	5	5	5	5	51	5	5	51	5	iout
3	S	ω	ω	ω	ω	ω	ω	သ	3	ω	3	i_{in}

der Zeile x. Die Einstellungsfelder für die jeweiligen Parameter mit dem Eintrag * werden in den Testreihen variiert. Anderungen oder weitere Einstellungsparameter wie l_{max} , s_{σ_c} sowie Parameter für die Verfahren JTF und CBU werden separat bei den (true) um boolsche Werte. jeweiligen Tabellen und Abbildungen angegeben. Bei den Parametern s_{α} und n_s handelt es sich mit den Werten 0 (false) und 1**Tabelle A.27.:** Einstellungsparameter für die verschiedenen Testreihen. Die Abkürzung conf(x) beschreibt die Einstellungsparameter

Literaturverzeichnis

- [BA91] M. J. Black, P. Anandan. Robust dynamic motion estimation over time. In *Computer Vision and Pattern Recognition CVPR* 1991, S. 296–302. IEEE Computer Society Press, 1991. (Zitiert auf Seite 19)
- [BBPW04] T. Brox, A. Bruhn, N. Papenberg, J. Weickert. High Accuracy Optical Flow Estimation Based on a Theory for Warping. In *8th European Conference on Computer Vision ECCV 2004, Part IV*, S. 25–36. Springer, 2004. (Zitiert auf den Seiten 20, 22 und 33)
- [BMo4] S. Baker, I. Matthews. Lucas-Kanade 20 Years On: A Unifying Framework. *International Journal of Computer Vision*, 56(3):221–255, 2004. (Zitiert auf Seite 15)
- [Bruo6] A. Bruhn. Variational Optic Flow Computation, Accurate Modelling and Efficient Numerics. Dissertation, Faculty of Mathematics and Computer Science Saarland University, 2006. (Zitiert auf den Seiten 31 und 33)
- [BSL⁺11] S. Baker, D. Scharstein, J. P. Lewis, S. Roth, M. J. Black, R. Szeliski. A Database and Evaluation Methodology for Optical Flow. *International Journal of Computer Vision*, 92:1–31, 2011. (Zitiert auf den Seiten 5, 65 und 126)
- [BSMMo6] I. Bronstein, K. Semendjajew, G. Musiol, H. Mühlig. *Taschenbuch der Mathematik*. Verlag Harri Deutsch, 2006. (Zitiert auf Seite 13)
- [BWKSo6] A. Bruhn, J. Weickert, T. Kohlberger, C. Schnörr. A Multigrid Platform for Real-Time Motion Computation with Discontinuity-Preserving Variational Methods. *International Journal of Computer Vision*, 70(3):257–277, 2006. (Zitiert auf den Seiten 16 und 51)
- [CBFAB94] P. Charbonnier, L. Blanc-Féraud, G. Aubert, M. Barlaud. Two deterministic half-quadratic regularization algorithms for computed imaging. In *IEEE International Conference on Image Processing ICIP 1994*, Band 2, S. 168–172. IEEE Signal Processing Society, 1994. (Zitiert auf Seite 20)
- [CM99] T. F. Chan, P. Mulet. On the Convergence of the Lagged Diffusivity Fixed Point Method in Total Variation Image Restoration. *SIAM Journal on Mumerical Analysis*, 36(2):354–367, 1999. (Zitiert auf Seite 32)

- [GWo7] R. C. Gonzalez, R. E. Woods. *Digital Image Processing*. Prentice Hall International, 2007. (Zitiert auf Seite 23)
- [HS81] B. K. P. Horn, B. G. Schunk. Determining optical flow. *Artificial Intelligence*, 17(1-3):185–203, 1981. (Zitiert auf den Seiten 17 und 18)
- [KCLU07] J. Kopf, M. F. Cohen, D. Lischinski, M. Uyttendaele. Joint Bilateral Upsampling. Association for Computing Machinery's Special Interest Group on Computer Graphics - SIGGRAPH 2007, 26(3):96, 2007. (Zitiert auf Seite 40)
- [LK82] B. D. Lucas, T. Kanade. An iterative image registration technique with an application to stereo vision. In 7th International Joint Conference on Artificial Intelligence IJCAI 1981, Band 2, S. 674–679. 1982. (Zitiert auf den Seiten 6 und 15)
- [MS12] A. B. M. Stoll, S. Volz. Adaptive Integration of Feature Matches into Variational Optical Flow Methods. In 11th Asian Conference on Computer Vision. Springer, 2012. (Zitiert auf Seite 61)
- [MWA01] J. McDermott, Y. Weiss, E. H. Adelson. Beyond junctions: nonlocal form constraints on motion interpretation. *Perception*, 30(8):905–923, 2001. (Zitiert auf den Seiten 11 und 12)
- [NE11] H.-H. Nagel, W. Enkelmann. A Database and Evaluation Methodology for Optical Flow. *International Journal of Computer Vision*, 92:1–31, 2011. (Zitiert auf Seite 22)
- [PM90] P. Perona, J. Malik. Scale-space and edge detection using anisotropic diffusion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 12(7):629–639, 1990. (Zitiert auf Seite 20)
- [ROF92] L. I. Rudin, S. Osher, E. Fatemi. Nonlinear Total Variation Based Noise Removal Algorithms. *Physica D*, 60(1-4):259–268, 1992. (Zitiert auf Seite 20)
- [Saao3] Y. Saad. *Iterative Methods for Sparse Linear Systems, Second Edition*. Society for Industrial and Applied Mathematics Philadelphia, 2003. (Zitiert auf Seite 29)
- [SLBo8] D. Sun, J. P. Lewis, M. Black. Learning optical flow. In 10th European Conference on Computer Vision ECCV 2008, Part III, S. 83–97. 2008. (Zitiert auf Seite 24)
- [SVB13] M. Stoll, S. Volz, A. Bruhn. Joint trilateral filtering for multiframe optical flow. In 20th IEEE International Conference on Image Processing ICIP 2013. IEEE Computer Society Press, 2013. (Zitiert auf den Seiten 7, 39 und 130)
- [TA77] A. N. Tikhonov, V. Y. Arsenin. *Solutions of Ill–Posed Problems*. Winston, 1977. (Zitiert auf Seite 20)

- [TM98] C. Tomasi, R. Manduchi. Bilateral filtering for gray and color images. In *6th International Conference on Computer Vision ICCV 1998*, S. 839–846. IEEE Computer Society Press, 1998. (Zitiert auf Seite 36)
- [UGVT88] S. Uras, F. Girosi, A. Verri, V. Torre. A computational approach to motion perception. *Biological Cybernetics*, 60(2):79–87, 1988. (Zitiert auf Seite 18)
- [WSo1] J. Weickert, C. Schnörr. Robust dynamic motion estimation over time. *International Journal of Computer Vision*, 45(3):245–264, 2001. (Zitiert auf Seite 20)
- [XCS+06] J. Xiao, H. Cheng, H. Sawhney, C. Rao, M. Isnardi, S. Corporation. Bilateral filtering-based optical flow estimation with occlusion detection. S. 211–224, 2006. (Zitiert auf den Seiten 6, 39 und 44)
- [ZBW11] H. Zimmer, A. Bruhn, J. Weickert. Optic Flow in Harmony. *International Journal of Computer Vision*, 93(3):368–388, 2011. (Zitiert auf den Seiten 6, 7, 22, 23 und 24)
- [Zim11] H. L. Zimmer. *Correspondence Problems in Computer Vision*. Dissertation, Faculty of Mathematics and Computer Science Saarland University, 2011. (Zitiert auf den Seiten 11 und 15)

Alle URLs wurden zuletzt am 04.03.2014 geprüft.

Erklärung

Ich versichere, diese Arbeit selbstständig verfasst zu haben. Ich habe keine anderen als die angegebenen Quellen benutzt und alle wörtlich oder sinngemäß aus anderen Werken übernommene Aussagen als solche gekennzeichnet. Weder diese Arbeit noch wesentliche Teile daraus waren bisher Gegenstand eines anderen Prüfungsverfahrens. Ich habe diese Arbeit bisher weder teilweise noch vollständig veröffentlicht. Das elektronische Exemplar stimmt mit allen eingereichten Exemplaren überein.

Ort, Datum, Unterschrift