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Abstract

Multibody robotic organisms are reconfigurable dynamic systems. Thus the shape
and the structure of a modular robot is not constant. Depending on the changing
environment or on the current task of the robot its structure can be rearranged
accordingly. Hence, that would also change the dynamic model of the robotic organism.
Thus the kinematics and dynamics of the current modular structure of the robot, and
with it also an appropriate control strategy, can not be calculated in advance.
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1 Introduction

Powerful microelectronic components, smaller drive mechanisms and high-
performance storage batteries allows the building of small and simple but also robust
and efficient robotic systems. In the last decades the modularity in the robotics has
increased in importance. Due to the possibility of changing the own structure modular
systems provide a high degree of flexibility and opens new fields of application in the
robotics. For the most robots which have a constant shape the dynamic models of their
systems are obtained manually in advance. Knowledge of the appropriate dynamic
model allows the derivation of a control method that match the desired behavior to
the highest degree. Such robots are developed for a certain purposes only. Figure 1.1
shows some examples of such robotic systems.

(a) Industrial robot [KUK12] (b) Mars rover Curiosity [NAS12]

Figure 1.1: Robotic modules developed in the projects SYMBRION and REPLICATOR.

However the modular self-reconfigurable robotic systems may change their shape and
structure accordingly to their tasks or the environment properties. An example for
modular self-reconfigurable robotic systems can be seen in the Figure 1.2. Hence, the
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1 Introduction

Figure 1.2: SuperBot [YSS+07].

dynamic model of the modular robot can not be considered as constant. Therewith
the kinematics and dynamics of the multibody system must be computed either for
each possible configuration in advance or each time the structure is changed. Due
to numerous possibilities in the combination of the particular modules it is rarely
realizable to prepare a dynamic model for each configuration. Calculating the models
each time by hand makes the robot highly dependent on the supervision. A reasonable
approach would be to let the robot acquire its own dynamic model and therewith
also the appropriate control mechanism autonomously. A method for automatic
model generation of the modular self-reconfigurable robotic system have been already
introduced by Chen and Yang [CY98].

This thesis describes several mechanisms of the classical control theory and control
strategies which can be implemented for use by the robots itself.
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1.1 Goals

1.1 Goals

The goals for this thesis are to analyze the control strategies for modular self-
reconfigurable robots and furthermore to implement the chosen approaches on real
robots. In order to reach this goal a software framework have to be developed, which
on the one hand is capable to deal with modeling techniques based on geometrical
approach, and on the other hand it should involve control design implementation
methods.

1.2 Previous Work

The implementation of the control mechanisms which are described in this thesis
extends the functionality of the existing C++ software framework that was proposed
in the previous work [Nos13]. The control implementation uses the functionality of
the existing framework for generation of the dynamic model of the multibody system.
The model generation in their case is based on the approach proposed by Chen and
Yang. The derivation of the appropriate control strategies is partly based on the work
of Meister and Gutenkunst [MGL13]. They propose the implementation of several
control strategies in a software framework based on MATLAB simulations.

1.3 Organization of this Thesis

This thesis is organized as follows:

Chapter 1 makes a brief introduction in short insight in current module-based robotic
systems.

Chapter 2 provides a theoretical background needed for derivation of closed-form
motion equations.

Chapter 3 describes several control strategies and gives appropriate examples.

Chapter 4 explains the implementation of the proposed control strategies.

Chapter 5 demonstrates several practical results that have been performed on the
real modular robotic system.

Chapter 6 finalizes the thesis and gives a short insight in future works.

11





2 Theoretical Background

This chapter gives a brief introduction in theoretical basics needed for derivation of
the closed-form motion equations of dynamic model. Each motion of a solid state
body can be divided in two components: translational part and rotational part. This is
the principle that was used by Sir Robert S. Ball for developing the screw theory. The
theory of screws is a powerful concept for description of kinematics and dynamics of
multi-body-systems.

2.1 Rigid Body Motion

The basis for dynamics and kinematics in the robotics is built with the concepts of rigid
body motion (Definition 2.1.1). The rigid body motion is the central component of the
screw theory.

Definition 2.1.1 (Rigid Motion)
A rigid motion of an object is a continuous movement of the particles in the object such
that the distance between any two particles remains fixed at all times [MSZ94].

The definition of the rigid body motion includes two major characteristics:

1. The distance between two arbitrary points of the transformed rigid body is
preserved.

2. The cross product of two arbitrary vectors constructed by the points of rigid body
is preserved.

This properties mean that each rigid body motion transforms an orthonormal coordi-
nate system again to an orthonormal coordinate system.

13



2 Theoretical Background

2.2 Lie Groups

As mentioned above each rigid body motion consists of translational and rotational
part. The translation part can be described as a movement along the vector connecting
the start and the end positions of the motion:

y

x

z

q2 = q1 + p. (2.1)

With q1 ∈ R3 and q2 ∈ R3 as start and end positions respectively and p ∈ R3 as
translation vector.

For rotation it is important to distinguish between the global coordinate frame and the
coordinate frame belonging to rotated body

qH2 = RqH1 . (2.2)

The basis vectors of the rotated frame H2 described in the global coordinates H1, build
the Rotation matrix R = [xH2 , yH2 , zH2 ]. In this case qH2 are the coordinates of the
point q described in the body coordinate frame H2 and qH1 denotes the same point
but relative to the global coordinate frame H1. Thus the rotation matrix R ∈ R3×3

represents the function that rotates a body relative to the global coordinate system.
Since rotation matrices build an orthonormal basis and their column vectors are
ordered in right hand manner they belongs to the special orthogonal group SO(3):

SO(3) = {R ∈ R3×3 : RRT = I, det R = +1}

Because of non-singularity rotation matrices build also a Lie group. More detailed in-
formation about the rotation matrices and their properties can be found in [MSZ94].
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2.3 Lie Algebras

Now the combination of the both motion parts produce a mapping that describes a
whole rigid body motion

y

x

z

q2 = Rq1 + p (2.3)

This mapping can be represented as a 4 × 4 matrix that includes both motion parts,
translation and rotation. Such form is also called homogeneous representation of rigid
body motion

g =
[
R p

0 1

]
. (2.4)

Homogeneous matrices belong to special Euclidean group SE(3). SE(3) is a further
important Lie group.

SE(3) = {(p, R) : p ∈ R3, R ∈ SO(3)}

Both Lie groups are essential for kinematic and dynamic calculation in robotics. [Sel05,
p. 4ff] provides further explanation of Lie groups used in robotics.

2.3 Lie Algebras

A further important concept in calculation of kinematic and dynamics are Lie algebras.
Lie algebra is defined together with the bilinear map called Lie bracket, which satisfy
following conditions:

• Skew-symmetry: [a, b] = −[b, a],

• Jacobi identity: [a, [b, c]] + [c, [a, b]] + [b, [c, a]] = 0.

If elements are square matrices, the Lie bracket is a matrix commutator [A, B] =
AB − BA. [MG12] Lie algebra of SO(3), denoted as so(3), is the space of the 3 × 3
skew-symmetric matrices:

so(3) = {ω̂ ∈ R3×3 : ω̂T = −ω̂}, (2.5)
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2 Theoretical Background

ω̂ =


0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

 , (2.6)

with the Lie bracket

[ω̂1, ω̂2] = ω̂1ω̂2 − ω̂2ω̂1, ω̂1, ω̂2 ∈ so(3),

where ω = [ωx, ωy, ωz]T is the angular velocity vector of the rigid body. As can be seen
on the structure of the elements of so(3), the product of â ∈ so(3) and an arbitrary
vector b ∈ R3 is equal to the cross product a × b (Equation 2.7)

âb =


0 −az ay

az 0 −ax

−ay ax 0



bx

by

bz

 =


aybz − azby

azbx − axbz

axby − aybx

 = a × b. (2.7)

Similar to so(3), se(3) is the Lie algebra of SE(3). It consists of 4 × 4 matrices of the
form

ŝ =
[
ω̂ v

0 0

]
∈ R4×4, (2.8)

with ω̂ ∈ so(3) and translational velocity of the body v ∈ R3. The derivations of Lie
algebras can be found in [Sel05].

2.4 Matrix Exponential

The relations between Lie groups and Lie algebras are provided by exponential map-
pings. In [MSZ94], Murray describes their derivation using exponential coordinates.
For SO(3) and so(3) it can be shown, that a rotation matrix can be calculated using
the direction ω and the absolute value q of the corresponding angular velocity

R(ω, q) = eω̂q. (2.9)
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2.4 Matrix Exponential

The exponential mapping eω̂q : so(3) → SO(3) is also called matrix exponent because
of the matrix form of ω̂ ∈ R3×3. The matrix exponent has a following form

eω̂q = I + ω̂

∥ω∥
sin(∥ω∥q) + ω̂2

∥ω∥2 (1 − cos(∥ω∥q)). (2.10)

Since the absolute value of the angular velocity is provided in separate quantity q it is
convenient to use a unit vector ω with ∥ω∥ = 1 to describe the axis of the rotational
motion

eω̂q = I + ω̂ sin q + ω̂2(1 − cos q). (2.11)

The above formulation, also called Rodrigues’ formula, allows an efficient computation
of matrix exponents.

The relation between SE(3) and se(3) is based on the matrix exponent eω̂ : se(3) →
SE(3). An element ŝ ∈ se(3) can be mapped in SE(3) with

eŝq =
[
eω̂q (I − eω̂)(ω × v) + ωωT vq

0 1

]
∈ SE(3). (2.12)

In case of pure translational motion of rigid body, where ω = 0, the formulation is
simplified to

eω̂q =
[
I vq

0 1

]
, ω = 0 (2.13)

and for rotations only to

eω̂q =
[
eω̂q 0
0 1

]
, v = 0. (2.14)
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2 Theoretical Background

2.5 Twist

The elements of the se(3) also referred to as Twists play a central role in the formulation
of the kinematics in robotics.A twist represents the infinitesimal version of a screw
motion. Since a twist contains information about translation and rotation it describes
a instantaneous motion of a solid state body completely. The matrix representation of
a twist can be transformed to a 6-dimensional vector which parametrizes the twist:

ŝ∨ =
[
ω̂ v

0 0

]∨

=
[
v

ω

]
= s. (2.15)

The ∨ (vee) operator provides the transformation of a twist from se(3) to R6. The ∧
(wedge) operator do the inverse transformation:

[
v

ω

]∧

=
[
ω̂ v

0 0

]
. (2.16)

In this thesis the term twist will denote the 6-dimensional representation s ∈ R6. On
positions where the other representation is meant it will be stated explicitly.

Representing particular motion parts, twists would look as follows

s =
[

0
ω

]
(2.17)

for pure rotation and

s =
[
v

0

]
(2.18)

for pure translation.
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2.6 Wrench

2.6 Wrench

Similar to twists the term wrench describes the forces and torques both internal and
external. A wrench is also a 6-dimensional vector

F =
[
f

τ

]
∈ R6, (2.19)

where f, τ ∈ R3 are a linear force and a rotational torque. While twists describe the
kinematics of rigid body motion, wrenches play the central role in description of the
dynamics.

2.7 Adjoint Mapping

Since the twists of the rigid body motion are often described in body coordinates it
is necessary to transform a twist from body coordinates to spatial coordinates. This
transformation is provided by adjoint mapping AdH : se(3) → se(3):

AdH =
[
R p̂R

0 R

]
∈ R6×6, (2.20)

which is associated with

H =
[
R p

0 1

]
∈ SE(3). (2.21)

The adjoint transformation is invertible

Ad−1
H =

RT −(̂RT p)RT

0 RT

 =
[
RT −RT p̂

0 RT

]
= AdH−1 . (2.22)
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2 Theoretical Background

It is also often necessary to transform a twist from body coordinates of a rigid body to
twist coordinates of an other body. Such adjoint mapping is denoted as ads : se(3) →
se(3)

ads =
[
ω̂ v̂

0 ω̂

]
∈ R6×6 (2.23)

and is associated with a twist

s =
[
v

ω

]
∈ se(3). (2.24)

The inverse of ads is given by

ad−1
s =

[
−ω̂ −v̂

0 −ω̂

]
= −ads = ad−s. (2.25)

2.8 Equations of Motion

Using the previuos theoretical background the motion equation that describes the
current dynamic model of the modular robotic system can be derived as shown in the
work of Chen and Yang [CY98]:

V = GSq̇, (2.26)

V̇ = TH0V̇0 + TSq̈ + TA1V, (2.27)

F = TTFe + TTMV̇ + TTA2MV, (2.28)

τττ = STF, (2.29)

where
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2.8 Equations of Motion

q̇ = column[q̇1, q̇2, . . . , q̇n] ∈ Rn×1 is the joint velocity vector;

q̈ = column[q̈1, q̈2, . . . , q̈n] ∈ Rn×1 is the joint acceleration vector;

V = column[V1, V2, . . . , Vn] ∈ R6n×1 is the generalized body velocity vector;

V̇ = column[V̇1, V̇2, . . . , V̇n] ∈ R6n×1 is the generalized body acceleration vector;

F = column[F1, F2, . . . , Fn] ∈ R6n×1 is the body wrench vector;

Fe = column[F e
1 , F e

2 , . . . , F e
n] ∈ R6n×1 is the external wrench vector;

τττ = column[τ1, τ2, . . . , τn] ∈ Rn×1 is the applied torque/forces vector;

S = diag[s1, s2, . . . , sn] ∈ R6n×n is the joint twist matrix;

M = diag[M1, M2, . . . , Mn] ∈ R6n×6n is the combined generalized mass matrix;

A1 = diag[−ads1q̇1 , −ads2q̇2 , . . . , −adsnq̇n ] ∈ R6n×6n;
A2 = diag[−adT

V1 , −adT
V2 , . . . , −adT

Vn
] ∈ R6n×6n;

TH0 =


AdH−1

01

AdH−1
02

...
AdH−1

0n

 ∈ R6n×6,

T =



I6×6 06×6 06×6 · · · 06×6

AdH−1
12

I6×6 06×6 · · · 06×6

AdH−1
13

AdH−1
23

I6×6 · · · 06×6
...

...
... . . . ...

AdH−1
1n

AdH−1
2n

AdH−1
3n

· · · I6×6


∈ R6n×6n.

The system model is described then by the following equation

M(q)q̈ + C(q, q̇)q̇ + N(q) = τττ , (2.30)

where

M(q) = STTTMTS, (2.31)

C(q, q̇) = STTT(MTA1 + A2M)TS, (2.32)

N(q) = STTTMTH0V̇0 + STTTFe. (2.33)

M(q) is the mass matrix, C(q, q̇) describes the Coriolis and centrifugal accelerations
and N(q) represents gravitational and external forces.
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3 Applied Control Strategies

The equations for kinematics and dynamics of a given multibody robotic organism
are automatically generated by the C++ framework that was described previously
[Nos13]. Thus the geometrical model for a given robot construction can be established.
With the knowledge of the system, which is represented by the geometrical model, a
control strategy need to be considered to achieve an optimal behavior of motions of
the robot. The object is that the motions of each joint module and the robotic organism
as a whole are as much as possible consistent with the desired trajectory. There are
many approved control design strategies that can be used for linear and nonlinear
systems. Optimal tracking problem or Internal Model Control (IMC) for example are
intended for control of linear systems. Nonlinear examples of control strategies are
exact linearization method, asymptotic set-point following control or sliding mode
control. The geometrical model generated by the framework represents a nonlinear
system. Therefore a linearization approach is necessary for reducing the complexity of
controller design. The most common linearization methods are based on the Jacobian
linearization at a certain point of operation. Another approved technique to control
nonlinear system is the use of observers. This method is particularly advantageous if
not system states or system outputs can be measured.

As described in the previous chapter the dynamics of the robotic organism is repre-
sented by the following equation of motion:

M(q)q̈ + C(q, q̇)q̇ + N(q) = τ. (3.1)

For motion control the equation is transformed by solving it for q̈, so that the system
to be controlled is described by

q̈ = M(q)−1(τ − C(q, q̇)q̇ − N(q)). (3.2)

The second-order differential equation can be transferred into a vector representation
of two first-order differential equations

˙[
q

q̇

]
=

[
q̇

−M(q)−1(C(q, q̇)q̇ + N(q))

]
+

[
0

M(q)−1

]
τ. (3.3)
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3 Applied Control Strategies

This version fits the form of representation that is commonly used in the classical
control theory for description of nonlinear systems:

ẋ = f(x) + g(x)τ, (3.4)

y = h(x), (3.5)

where

x =
[
x1

x2

]
=

[
q

q̇

]
, ẋ =

˙[
q

q̇

]
, (3.6)

f(x) =
[

x2

−M(x1)−1(C(x1, x2)x2 + N(x1))

]
, (3.7)

g(x) =
[

0
M(x1)−1

]
, (3.8)

h(x) = x1. (3.9)

x is the new system state that combines angles and angular velocities of the joints. The
output of the system is denoted by y.

This chapter describes several techniques of the control theory that can be applied for
control of the geometrically generated model:

• Open-loop control.

• Pure PID control.

• Local stabilization.

• Computed-torque control.

• State reconstruction using the extended Kalman filter.
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3.1 Structural Properties

3.1 Structural Properties

To be able to design a proper control mechanism, one needs a deeper understanding of
the system to be controlled. The Equation 3.2 describes a nonlinear, multivariable, time
invariant system. Its dimension equals the number of the modules which it consists of.
In the transformed representation in the Equation 3.3 the system dimension is doubled.
Although the system has a multivariable nature, in many cases it can be considered
as a singlevariable one using q and q̇ as scalar values. If the assumption makes a
significant difference, then the multivariable nature of the system is emphasized
explicitly. In the following, some significant structural properties of the nonlinear
system are specified.

3.1.1 Relative Degree

The term relative degree comes from the control theory of linear systems. It is defined
there as follows:

Definition 3.1.1 (Relative Degree (linear systems))
The difference between the numbers of pole and zeros of a linear system is called relative
degree.

Poles and zeros are determined using transfer function that is applicable only for linear
systems. For nonlinear dynamic systems relative degree is defined more generally so
that the concept of poles and zeros forms a special case of it. The definition is based
on Lie derivatives which are determined as follows:

Li
fh(x) =

∂Li−1
f h(x)
∂x

f(x), L0
fh(x) = h(x), (3.10)

LgLfh(x) = ∂Lfh(x)
∂x

g(x). (3.11)

Definition 3.1.2 (Relative Degree (nonlinear systems))
The relative degree of a system at the operating point xs = 0 is the natural number r for
which the following holds:

1. LgLi
fh(x) = 0 for i = 0, 1, . . . , r − 2,

2. LgLr−1
f h(x) ̸= 0

in the neighborhood of xs.
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Thereby relative degree r is the number of the first time derivative of the controlled
variable y that depends directly on the input signal τ . Using the upper definitions
the relative degree of the generated dynamic system (Equations 3.4 and 3.5) can be
determined. The appropriate Lie derivatives are calculated as follows:

LgL0
fh(x) = Lgh(x) = ∂h(x)

∂x
g(x) =

[
1 0

] [
0

M(x1)−1

]
= 0,

LgL1
fh(x) = ∂Lfh(x)

∂x
g(x) =

[
0 1

] [
0

M(x1)−1

]
= M(x1)−1 ̸= 0.

As a result r = 2. The mass matrix M(q) ̸= 0 at q = 0 as well in the neighborhood of
q = 0, thus the Lie derivative LgLfh(x) = M(x1)−1 ̸= 0 at xs and in its neighborhood.
For this reason the relative degree is also called well-defined. In addition r > 0
means that the controlled variable y does not depend explicitly on the input signal
τ . According to that, the dynamic system has no feed-through, such systems also
called strictly proper. In fact, the generated dynamic system is a multivariable one
with x and ẋ ∈ Rn, where n is the number of the joint modules that compose the
multi-body robotic organism. Thus the relative degree is actually a vector of dimension
n whose entries are relative degrees of each particular differential equation of the
n-dimensional multivariable system represented by the Equation 3.2. Due to Equations
3.7 and 3.8 it is obvious that all the entries of r have the same value:

r =


2
2
...
2

 ∈ Rn (3.12)

3.1.2 Zero Dynamics

A further basic structural property of a nonlinear dynamic system is the zero dynam-
ics.

Definition 3.1.3 (Zero Dynamics)
The zero dynamics describes the internal dynamics of a system in the case that the
controlled variable y(t) input signals u(t) and initial conditions x(0) for all the times
t ≥ 0 is null.

It is a crucial task in control design to determine the zero dynamics of a system because
it cannot be changed via state or output feedback and is invariant according the
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3.2 Open-Loop Control

coordinate transformation. The zero dynamics describes the internal dynamics of a
system when the output is equal null. After the Definition 3.1.3 the zero dynamics is
determined via setting the system output to zero:

y
!≡ 0 ⇒ xi

!≡ 0 i = 1, 2, . . . , r,

which includes that the first r time derivatives x1, x2, . . . , xr are also zero and particu-
larly:

ẋr = −M(x1)−1(C(x1, x2)x2 + N(x1)) + M(x1)−1τz
!≡ 0, (3.13)

where τz denotes the input signal that determines the zero dynamics of the system at
the operating point xs = 0. τz is calculated as follows:

τz = −
Lr

fh(x)
LgLr−1

f h(x)
= M(x1)−1(C(x1, x2)x2 + N(x1))

M(x1)−1
x1≡0,x2≡0= N(0)

(3.14)

The matrix N(0) contains the gravitational and external forces in an equilibrium state,
where there is no angular deflection in each joint module.

As shown above, in the case the relative degree is equal the system dimension r = n

the considered system has no zero dynamics and therefore is called minimum-phase
system. This property is essential for the desired control quality. There are several
control design strategies that require a controlled system to be minimum-phase for
successful exertion. For example the approach of exact input/output linearization
can only be applied for minimum-phase systems. With a deeper knowledge of the
dynamic system more adequate control strategies can be considered to achieves a
desired motion behavior of the robotic organism.

3.2 Open-Loop Control

If a desired trajectory qd(t) is known and its first and second derivatives q̇d(t) and q̈d(t)
exist as well then the necessary torques are calculated using the Equation 3.1:

τ = M(qd)q̈d + C(qd, q̇d)q̇d + N(qd). (3.15)

The received torque vector τ serves as input for the generated dynamic system (Equa-
tion 3.2). This method requires that the initial states of the system and desired
trajectory are exactly identical: q(0) = qd(0), q̇(0) = q̇d(0). Additionally the generated
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model (Equation 3.1) is assumed to perfectly describe the kinematics and dynamics of
the robot. Due to the uniqueness of the solutions of differential equations, it follows
that q(t) = qd(t) for all t ≥ 0. This approach is called open-loop control because the
current state or output are not used for composition of the system input [MSZ94]. The
appropriate block diagram is depicted in the Figure 3.1.

Nonlinear SystemDesired Input

Figure 3.1: Open-Loop Control

Since the controller does not use the current system state there is no need of the
appropriate sensors. But the lack of the system feedback results the small robustness
of the open-loop control strategy. There is no guarantee that the initial state of the
system q(0), q̇(0) exactly fits the initial state of the trajectory qd(0), q̇d(0). Each further
possible deviation qd − q also remains uncorrected.
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Figure 3.2: Open-loop control of double pendulum, disturbance behavior.

Figure 3.2 shows angular position trajectories of joint modules of a double pendulum.
The desired sinusoidal trajectory and the output signal of the system are simulated by
MATLAB R⃝. The two marked places denote the step-shaped disturbance of the system
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3.3 PID Control

state that may be caused by the robot environment. The error affects the system
output but it can not be corrected to the desired behavior due to the lack of the system
feedback. The accumulated difference qd − q would lead to an unpredictable and
chaotic behavior. For this reason, the input signal must be composed including the
feedback information of the current system state. Further sections describe feedback
based control strategies.

3.3 PID Control

A system feedback provides information about the current state of the dynamic system.
Thus the control task consist in measuring of the current system state or controlled
variable, comparing it with the desired value and changing the control signal if an
error occurs. The input value must be changed so that the error is minimal and the
desired and controlled values remain consistent. The PID control provides the error
compensation in a simple manner. The advantages of a PID controller are its simplicity
and clear physical meanings [Sic08]. The physical meanings of the PID control are
described as follows:

P : The proportional part lets the current deviation affect the next state directly.

I : The previous behavior affects the system through the integral component.

D : The differential component evaluates the relative change of the control error so
that the controller can respond to preceding behavior of the system.

Because of its simplicity and solid control characteristics, the PID control and its
variations are commonly used control methods. As shown in Figure 3.3, the PID
controller provides the calculation of the control signal τ depending on the deviation
e = xd − x = [eq, eq̇]T , where xd = [qd, q̇d]T is the reference signal and x = [q, q̇]T

denotes the current state vector.

3.3.1 PD Control

Although the system, which is described in the Equation 3.2 is nonlinear, under certain
conditions a linear approach can be used for control design. A simple variation of
PID control design is the PD control. PD controller is a linear controller, that is based
on the linearization of the system in the neighborhood of the operating point. It is
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Nonlinear System
PID+ -

Figure 3.3: Block diagram of the PID control.

assumed that the stability of the system linearization locally determines the stability of
the system itself. In its simplest form, a PD control law is described as follows:

τ = Kpeq + Kdeq̇ = Kp(qd − q) + Kd(q̇d − q̇), (3.16)

where Kp and Kd ∈ Rn×n are positive definite gain matrices. Combining the equation
terms 3.1 and 3.16 the closed-loop dynamic equation becomes

M(q)q̈ + C(q, q̇)q̇ + N(q) − Kd(q̇d − q̇) − Kp(qd − q) = 0. (3.17)

Siciliano [Sic08] has shown that the PD controlled dynamic system is stable in the
equilibrium state xs in the sense of Lyapunov. However it can not conclude that
the regulation error converges to zero by Lasalle’s theorem. It means that the PD
controlled system is not able to track the desired trajectory exactly. Thus there is
always a steady-state error in the PD motion control. The step response signal of the
PD controlled double pendulum demonstrates the steady-state error in the Figures 3.4
and 3.5.
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Figure 3.4: PD control: Step response of double pendulum.
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Figure 3.5: PD control: Step response of double pendulum, measurement noise.

The system response of the sinusoidal reference signal is shown in the Figure 3.6.
At the times t1 = 0.55 s and t2 = 1.0 s the state disturbances d1 = −0.15 rad and
d2 = 0.15 rad are simulated. As can be seen, in contrast to the open-loop approach, the
state deviations are corrected by the PD controller to match the reference trajectory.
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Figure 3.6: PD control of double pendulum, disturbance behavior.
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Figure 3.7: Position error of the PD controlled double pendulum.

It is also noticed that the disturbance that is acting on a joint module, is propagated
to the neighbor modules in a reduced extent. The Figure 3.7 shows the graph of
deviations between the reference signals and the calculated trajectory of the joint
modules of the double pendulum. The mutual action of the dynamics of the particular
modules becomes even more clear here.
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3.3.2 PD Control with Gravity Compensation

As can be seen the PD control provides a suitable method for motion control of the
multi-body robotic organisms. But as shown in the Figures 3.4 and 3.5 its set-point
regulation is not optimal because of the steady-state error that PD controller is not
able to to correct. Kelly [Kel97] proposes the inclusion of the gravitational component
for the calculation of the control signal:

τ = Kpeq + Kdeq̇ + N(q). (3.18)

In this case the closed-loop dynamic equation has the following form:

M(q)q̈ + C(q, q̇)q̇ − Kd(q̇d − q̇) − Kp(qd − q) = 0. (3.19)

Gravity compensation acts as a bias correction, compensating only for the amount of
forces that create overshooting and an asymmetric transient behavior [Sic08]. Siciliano
has also shown, that this form of the controlled system is asymptotically stable. Thus
the regulation error converges asymptotically to zero. A step response of the double
pendulum which is controlled by the PD control with gravity compensation, is depicted
in the Figure 3.8. As can be seen the steady-state error is neutralized in comparison to
the pure PD control method (Figure 3.4).
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Figure 3.8: Step responese of the double pendulum with PD control and gravity
compensation.
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Figure 3.9: PD control of double pendulum with gravity compensation, disturbance
behavior.
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Figure 3.10: Trajectory tracking of the double pendulum with PD control and gravity
compensation.

Due to the solid behavior against the steady-state errors PD control with the gravity
compensation is suitable for set-point motion regulation. Figure 3.9 demonstrate the
control approach for tracking of the desired trajectory. Although the disturbances
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d1(t1 = 0.55) = −0.15 rad and d2(t2 = 1.0) = 0.15 rad are quickly corrected and they
do not cause a steady-state error, the entire tracking properties are suboptimal in
comparison with the simple PD control method. The tracking error of the gravity
compensated PD controller is shown in the Figure 3.10. The error amplitude is
distinctly greater compared to the one of the pure PD control (Figure 3.7).

3.3.3 Augmented PD Control

Since it is advantageous to include the gravity vector N(q) for calculation of the control
signal τ , it is obvious that also the mass matrix M(q) and the Coriolis matrix C(q, q̇)
can be used for the same purpose. Murray et al. [MSZ94] propose the so called
augmented PD control law:

τ = M(q)q̈d + C(q, q̇)q̇d + N(q) + Kdeq̇ + Kpeq. (3.20)

Therewith the closed-loop dynamic system is described as follows:

M(q)eq̈ + C(q, q̇)eq̇ + Kdeq̇ + Kpeq = 0. (3.21)

With eq = qd − q, eq̇ = q̇d − q̇ = ėq and eq̈ = q̈d − q̈ = ëq the Equation 3.21 describes the
error dynamics of the controlled system.
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Figure 3.11: Trajectory tracking of the augmented PD control.

Murray et al. [MSZ94] have also shown that augmented PD control law results in
exponential trajectory tracking if Kv and Kp are positive definite. The trajectory
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tracking of double pendulum with the augmented PD control is shown in the Figure
3.11. The associated error tracking is depicted in Figure 3.12. Due to the high
robustness the augmented PD controller is proper for tracking regulation.
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Figure 3.12: Tracking error of the augmented PD control.

For set-point regulation, where q̈d ≡ q̇d ≡ 0, the augmented PD control low (Equation
3.20) simplifies to the PD control law with the gravity compensation that is described
in the section 3.3.2. Thus the augmented PD control strategy is a solid approach for
the set-point regulation as well as for tracking of the desired trajectory.

3.3.4 PID Control

An other approach for avoiding the steady-state errors is to upgrade the PD control
law with an integral component. The integral component provides the information
about the whole deviation that was made from the start of the control t = 0 until the
current moment. Including the integral component the control signal is evaluated as
follows:

τ = Kpeq + Ki

∫
eq dt + Kdeq̇, (3.22)

where Ki, just like Kp and Kd, is a positive definite gain matrix. The global asymptotic
stability of the PID controlled robotic motion systems was proven by Arimoto [Ari84].
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Step responses of the PID controlled double pendulum which are depicted in figures
3.13 and 3.14, demonstrate the robustness against the steady-state errors.
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Figure 3.13: PID step response of double pendulum
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Figure 3.14: PID step response of double pendulum, measurement noise.

Additionally the PID control shows a robust behavior against disturbances and mea-
surement noise as presented in Figures 3.15 and 3.16. Due to solid control properties
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the PID control strategy is suitable for both set-point regulation and trajectory tracking.
Analogically to the PD control variations the PID control design also can be upgraded by
additional components, for example gravity compensation or friction compensation.
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Figure 3.15: PID control of double pendulum, disturbance behavior.
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Figure 3.16: Position error of the PID controller
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3.3.5 Challenges of PID Control

In many cases the control strategies that are based on the PID control design are
considered to have solid control properties while still having relatively simple structure.
But this simplicity holds also several problems in use of the PID controls. Often the
difficulties are caused by the system itself which is to be controlled. This section gives
a small overview of some such problems and describes possible solutions.

PID Gain Tuning

Stability analysis requires that the matrices Kp, Kd and Ki are positive definite. But
the identification of the practical values of the matrices is a non-trivial task. Often
the finding of the values is a simple trial and error method. There are several tools
that can be used for identification of the gain matrices. For example step response,
Bode plot or Nyquist plot are common additives for obtaining the values. Ziegler and
Nichols [ZN42] as well as Chien et al. [CHR52] have introduced several rules which
are commonly used for tuning the gain parameters. The listed methods, however, are
suitable for specified systems whose structure is already known. The autonomous
multi-body robotic systems can change their structure depending on the number and
composition of the particular modules. Thus the gain parameters also should be
estimated autonomously. Åström and Hägglund [ÅH84] as well as Tor Steinar Schei
[Sch92] have proposed methods for automatic tuning of the PID controllers which are
based on phase and amplitude margins of the system to be controlled.

Integrator Windup

Applying the integral component in the PID control law also may cause problems
that can result in the instability of the controller. Most real systems are bounded in
their movement and so the most robotic systems have only a limited operating range.
Each Scout or Backbone module has a revolute joint that can operate only in the
range [−90◦, 90◦] in its surface of revolution relatively to its null position. Actually,
the maximal angles are limited to ±45◦ by software to avoid possible damages. Using
the integral component for control of a bounded system may results in growing of
the summarized error while the measured values do not change due to the operating
limits. This can be avoided by limiting the integral component so that the summarized
error remains unchanged if the measured values is stopped by its limits.
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Computing Time

The software implementation of a common PID control is very simple and are not
dependent on high computational capabilities. Some variations of the PID control,
however, may include expressions which can require more time for calculation. For
example gravity compensated or augmented PD controls need the matrices M(q),
C(q, q̇) and N(q) to be calculated in each loop run. This would take approximately the
same time as for the system evaluation, thus the calculation time of the each loop run
wold be doubled at least. Considering that the calculation time grows exponentially
with the number of modules included in the robotic organism, the computing time
of the control law evaluation may be critical. This can be avoided by using the once
calculated matrices in both expressions: control law (Equation 3.20) and system
evaluation (Equation 3.2). The more detailed implementation description is given in
the Chapter 4.

3.4 Local Stabilization

The idea consists in Jacobian linearization of the system in a certain point of operation
to obtain a linear calculation rule for the system input. The assumption is that the
linearized input signal can sufficiently fit the control of the nonlinear system for small
state variations about the operating point. Equilibrium states are mostly used as
operating points. Linearization of the system and input dynamics in the operating
point are evaluated as follows:

A = ∂f

∂x
|x=xs , b = g(xs)

!
̸= 0, (3.23)

where A is the Jacobian linearization of the system function f(x). Both values A and
b are calculated at the point of operation xs. The condition b ̸= 0 ascertains that the
system remains controllable in the rest position as well. Using the pair {A, b} the
nonlinear system in the Equation 3.4 is approximately described in the neighborhood
of the operating point xs by the linear equivalent:

ẋ = Ax + bτ. (3.24)

It is helpful for further analyze to assume that the operation point xs lies in zero. In
the case that the real equilibrium state differs from zero point, the system can be
transferred into one with xs = 0 using the following state transformation:

x∗ = x − xs, (3.25)
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where x∗ is the state of the new system which operating point lies in zero.

There are several conditions that a nonlinear system must satisfy, so that a linear
control is possible. The formulation of those conditions requires some definitions to be
made before.

Definition 3.4.1 (Controllability)
A linear time-invariant system is called controllable if a control function u(t) exists that
transfers the system from any initial state into any final state in any time.

The controllability of a system that is represented by the Equation 3.24, can be
determined by the Hautus-Test as described in the following theorem:

Theorem 3.4.1 (Hautus-Test for Controllability)
The pair {A, b} is called controllable if and only if the following holds

rank(λI − A|b) = n ∀λ ∈ C,

where n is the system dimension and λ denotes the eigenvalues of A.

Definition 3.4.2 (Stabilizability)
A system is called stabilizable if a control function u(t) exists that transfers the system in
the zero state (not necessarily in finite time).

Using the upper Definitions the following prerequisite for local stabilization can be
formulated:

Theorem 3.4.2 (Local Stabilization)
If the pair {A, b} is controllable then the linear controller that is based on {A, b} is
stabilizable.

In the next steps the dynamic 3.2 system is tested for controllability. First the Jacobian
matrix A of the function f(x) (Equation 3.7) and the input matrix b at the operating
point xs = 0 are evaluated as follows:

A = ∂f

∂x
|x=0 (3.26)

=
 0 I

∂[−M(x1)−1(C(x1,x2)x2+N(x1))]
∂x1

|x=0
∂[−M(x1)−1(C(x1,x2)x2+N(x1))]

∂x2
|x=0


=

[
0 I

− ∂
∂x1

[M(x1)−1N(x1)]|x=0 −M(0)−1C(0, 0)

]
∈ R2n×2n,
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b = g(0) (3.27)

=
[

0
M(0)−1

]
∈ R2n×n.

Since the original dynamic system (Equation 3.2) is multivariable, the dimension of
the square Jacobian matrix is equal the doubled number the joint modules. Now the
Hautus-Test (Theorem 3.4.1) can be applied for the pair {A, b}:

rank[λI − A | b] (3.28)

=
[

λI −I 0
∂

∂x1
[M(x1)−1N(x1)]|x=0 λI + M(0)−1C(0, 0) M(0)−1

]

The matrices −I and M(0)−1 have both the rank n independently of λ or each other.
Thus all row vectors of [λI − A | b] are linear independent so that the matrix has the
full rank:

rank[λI − A | b] = 2n ∀λ ∈ C. (3.29)

Hence, there is a stable linear control design based on the values of A and b. The block
diagram of the system with a linear controller is depicted in the Figure 3.17, where

A′ =
[
− ∂

∂q
[M(q)−1N(q)]|q=0 −M(0)−1C(0, 0)

]
. (3.30)

b′ = M(0), (3.31)

Nonlinear SystemLinear Controller
PID

-+

Figure 3.17: Local Stabilization
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Figure 3.18: Step response of locally stabilized double pendulum, small amplitude.

Often linear controls which are based on the Jacobian linearization run well enough
in the neighborhood of an operating point. But there is no guarantee for the global
stability. The Figures 3.18 and 3.19 demonstrate the step responses of double pendu-
lum with local stabilization. As expected, the controlled system have optimal stability
properties in the close neighborhood of the equilibrium state xs = 0 (Figure 3.18). But
with growing amplitudes the steady-state error grows significantly (Figure 3.19).
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Figure 3.19: Step response of locally stabilized double pendulum, large amplitude.
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Figure 3.20: Trajectory of locally stabilized double pendulum, small amplitude.
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Figure 3.21: Tracking error of locally stabilized double pendulum, small amplitude.
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Figure 3.22: Trajectory of locally stabilized double pendulum, large amplitude.

A similar behavior can be observed during the tracking of a desired trajectory. The
trajectories with different amplitudes are depicted in the Figures 3.20 and 3.22 and
the correspondent trajectory errors in the Figures 3.21 and 3.23. As can be seen, in
the close neighborhood of the equilibrium state the accurateness of the tracking of
the desired trajectory is very high. On the other side the error that occurs during
the larger deflections potentially may not be neglected. However, the local stabilized
system shows solid robustness against the outside influence. The disturbances at times
t1 = 0.55 s and t2 = 1.0 s are being corrected in the exponential manner.
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Figure 3.23: Tracking error of locally stabilized double pendulum, large amplitude.

The method of local stabilization can be considered for set-point regulations as well as
for trajectory tracking on condition that the system is moved in the close neighborhood
of the equilibrium sate. In that case the controlled system shows relatively solid
robustness and precision. For larger amplitudes the linearization does not match the
real system what leads to an inaccuracy in the regulation. Depending on the system
requirements the resulting error may not be neglected.

3.5 Computed Torque

In the section 3.2 an open-loop control method is introduced. The main disadvantage
of the approach is the lack of any system feedback which results in the fact that each
motion error remains uncorrected. This section describes a control design that use a
similar control law but includes a system feedback for calculation of the control signal.
Consider the following control law with the system state feedback

τ = M(q)q̈d + C(q, q̇)q̇ + N(q). (3.32)

With this control input the dynamic system (Equation 3.1) becomes

M(q)q̈ = M(q)q̈d. (3.33)
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Since the mass matrix is always positive definite, the equation simplifies to

q̈ = q̈d. (3.34)

This means that if the initial positions and velocities of the particular modules matches
the desired positions and velocities, the joint modules will follow the desired trajectory
which is given by q̈d. In the form given by the Equation 3.32 the control law is still
vulnerable to the initial conditions errors and outside disturbances. The control law
can be made more robust by adding the system state feedback to the calculation of the
desired acceleration q̈d:

v = q̈d + Kd(q̇d − q̇) + Kp(qd − q) = q̈d + Kdė + Kpe, (3.35)

where e = qd − q and Kd and Kp are positive definite gain matrices, analogously to the
PD control. v describes the new value that is used for calculation of the control input
instead of q̈d. Therewith the control law becomes

τ = M(q)v + C(q, q̇)q̇ + N(q) (3.36)

= M(q)(q̈d + Kdė + Kpe) + C(q, q̇)q̇ + N(q).

The Equation 3.36 describes the so called computed torque control law. Thus the error
dynamics of the closed-loop dynamic system is described as follows

M(q)(ë + Kdė + Kpe) = 0. (3.37)

Since M(q) is positive definite in q, the equation simplifies to

ë + Kdė + Kpe = 0. (3.38)

Murray et al. [MSZ94] have shown that the computed torque control law (Equation
3.36) applied to the dynamic system (Equation 3.1) results in exponential trajectory
tracking if the matrices Kd and Kp are positive definite The equation of the computed
torque control law can be written as follows

τ = M(q)q̈d + C(q, q̇)q̇ + N(q)︸ ︷︷ ︸
τff

+ M(q)(Kdė + Kpe)︸ ︷︷ ︸
τfb

. (3.39)

Therewith the control law of computed torque method can be considered as a compo-
sition of two components. The term τff is the feedforward component. It provides the
amount of torque necessary to drive the system along the desired trajectory. The term
τfb specifies the feedback component. It provides the correction torques for reducing
any error in the trajectory of modules [MSZ94]. The block diagram of the computed
torque approach is shown in the Figure 3.24.
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Figure 3.24: Computed Torque Method

The set-point and tracking properties of the computed torque control can be seen in the
Figures 3.25, 3.26 and 3.27. Double pendulum controlled by computed torque strategy
is resistant to steady-state errors and shows a solid robustness against the outside
influences and errors in initial conditions. The outside disturbances simulated on the
double pendulum are marked in the Figure 3.26. The trajectory error (Figure 3.27)
which is caused by those disturbances, is corrected to the desired value exponentially.
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Figure 3.25: Step response of double pendulum with computed torque control.
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Figure 3.26: Trajectory of double pendulum with computed torque control, distur-
bance behavior.
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Figure 3.27: Trajectory error of double pendulum with computed torque control,
disturbance behavior.

The computed torque strategy is an example of a more general control technique, the so
called feedback linearization, where a nonlinear system is rendered linear via full-state
nonlinear feedback. A large advantage of this technique is that it converts a nonlinear
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dynamic system into a linear one and thus allows the use of any synthesis tool known
from the linear control theory [MSZ94]. An important note about the computed
torque control is that it requires an accurate knowledge about the parameters of the
dynamical model. In addition, the control input is computed in real time which can be
problematic for large multi-body robotic organisms.

3.6 Extended Kalman Filter

The control strategies described in the previous sections are based on the full-state
feedback of the dynamic system. This requires that all state variable must be measur-
able anytime. But often some state values can not be measured according to missing
sensors or other reasons. In this case the missing state variables must be estimated
via so called observer. Based on the knowledge of the measurable state variables and
the system input and output an observer calculates the missing state values which are
used later in the control computation.

Each robot module, Backbone or Scout, has a revolute joint with one degree of freedom.
The absolute hinge angles of the modules can be measured using the hall sensors.
But there are no sensors for measuring of the angular velocities of the revolute joints.
Thus an observer is necessary to obtain the full set of states of the nonlinear system
model. One of the promising approaches to reconstruct the missing or noisy states
of the dynamic system is the Kalman filter. The Kalman filter estimates the system
dynamics using a form of feedback control. The operation cycle of the Kalman filter
can be devided in two steps. In the first step the filter estimates the system state. The
estimation quality is then improved in the second step using the measurements of the
feedback. The corrected state estimate is used then in the first step of the next loop
for preceding state estimation. The first step of the Kalman filter is called time update
or prediction step, the second step is the measurement update or correction step. Since
the classical Kalman filter is proposed to deal with linear systems, Welch and Bishop
[WB95] have introduced the extended Kalman filter (EKF) for use with the nonlinear
dynamic systems. The EKF use the Jacobian linearization of the dynamic model of the
system and the one of the system feedback. This section describes the functionality of
the EKF.

Assuming that the nonlinear discrete-time dynamic model is given in the state space
representation:

xk = f(xk−1, uk−1, wk−1) ∈ Rn, (3.40)

yk = h(xk, vk) ∈ Rm, (3.41)
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where x is the state vector of the system. Te time step is given by k. Thus the nonlinear
function f relates the state x at time step k to the state at time step k + 1. Further
parameters of the function f are the control input u and the zero-mean process noise w.
The nonlinear function h provides the measurement vector y according to the current
state and the measurement noise v. The zero-mean noises w and v are considered as
independent of each other, white, and with normal probability distributions:

p(w) ∼ N(0, Q), (3.42)

p(v) ∼ N(0, R), (3.43)

where Q ∈ Rn×n and R ∈ Rm×m denote the covariance matrices for measurement error
and system noise respectively. Since the particular values of w and v are not known,
the state and measurement vectors can be approximated by neglecting w and v:

x̂−
k = f(x̂k−1, uk−1, 0), (3.44)

ŷk = h(x̂−
k , 0), (3.45)

where x̂−
k is defined as a priori state estimate at time step k and x̂k as a posteriori state

estimate from the previous time step. The linearization of the dynamic system (3.40,
3.41) about the estimates x̂−

k+1 and ŷk is formulated as follows

xk ≈ x̂−
k + A(xk−1 − x̂k−1) + Wwk−1, (3.46)

yk ≈ ŷk + H(xk − x̂−
k ) + V vk, (3.47)

where

• xk and yk are the current state and measurement vectors,

• x̂−
k and ŷk are the approximate state and measurement vectors,

• x̂k is an a posteriori estimate of the state at step k,

• wk and vk are zero-mean process and measurement noises as described in the
Equations 3.42 and 3.43,

• A is the Jacobian matrix of partial derivatives of f relative to x:

Aij = ∂fi

∂xj

(x̂k−1, uk−1, 0) ∈ Rn×n

• W is the Jacobian matrix of partial derivatives of f relative to w:

Wij = ∂fi

∂wj

(x̂k−1, uk−1, 0) ∈ Rn×n

• H is the Jacobian matrix of partial derivatives of h relative to x:
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Hij = ∂hi

∂xj

(x̂−
k , 0) ∈ Rm×n

• V is the Jacobian matrix of partial derivatives of h relative to v:

Vij = ∂hi

∂vj

(x̂−
k , 0) ∈ Rm×m

Since the linearizations about x̂−
k and ŷk are performed in each time step, the matrices

Ak, Wk, Hk and Vk are in general not constant and must be calculated in each time
step anew.

Further the a priori state error and the measurement residual are defined as follows

ê−
xk

≡ xk − x̂−
k , (3.48)

êyk
≡ yk − ŷk. (3.49)

Since the actual state vector xk is the value to be estimated by the EKF, there is no
possibility to use it directly as defined in the Equation 3.48. As already mentioned
above, the system output or rather its measured value can be used for estimation of xk.
Substituting the linearized state and measurement vectors (Equations 3.46 and 3.47)
in the Equations 3.48 and 3.49 the error dynamics is described as follows

ê−
xk

≈ A(xk−1 − x̂k−1) + ϵk−1, (3.50)

êyk
≈ Hê−

xk
+ ηk, (3.51)

where ϵk−1 and ηk are independent, zero-mean, random variables with the covariance
matrices WQW T and V RV T . The measurement residual êyk

can be used in a separate
process for estimation of the prediction state error ê−

xk
. Using the Equation 3.48 the a

posteriori state estimate can be obtained in the original nonlinear process as follows

x̂k = x̂−
k + êxk

, (3.52)

where êxk
is an estimation of the actual prediction error ê−

xk
. The estimation of êxk

is
performed by the following Kalman filter equation

êxk
= Kkêyk

, (3.53)

where the matrix Kk ∈ Rn×m represent the factor that is intended to minimize the a
posteriori error covariance Pk = E[êxk

, êT
xk

] ∈ Rn×n. Substituting the Equation 3.53
back into Equation 3.52 and using the Equation 3.49 results in the following Equation
for a posteriori state estimate

x̂k = x̂−
k + Kkêyk

(3.54)

= x̂−
k + Kk(yk − ŷk)
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The calculation of the matrix K that was introduced by Welch and Bishop has the
following form

Kk = P −
k HT

k

HkP −
k HT

k + VkRkV T
k

, (3.55)

where P −
k = E[ê−

xk
, ê−T

xk
] denotes the a priori estimate error covariance. It is obvious

that in case of small measurement error covariance Rk the gain K weights the residual
more heavily and especially,

lim
Rk→0

Kk = H−1
k .

In case the a priori estimate error P −
k approaches zero, the residual is weighted less

heavily:

lim
P −

k
→0

Kk = 0.

The detailed derivations of K can be found in the works of Maybeck et al. [MS80],
Brown and Hwang [BH92] or Jacobs [Jac93].

Now the particular equations of the extended Kalman filter can be divided in two
groups as described in the beginning of the section. The time update equations provide
the a priori estimates x̂−

k and P −
k :

x̂−
k = f(x̂k−1, uk−1, 0),

P −
k = Ak−1Pk−1A

T
k−1 + Wk−1Qk−1W

T
k−1 (3.56)

Afterward the values x̂−
k and P −

k are used in the measurement update equations to
obtain the improved estimates x̂k and Pk:

Kk = P −
k HT

k

HkP −
k HT

k + VkRkV T
k

(3.57)

x̂k = x̂−
k + K(yk − h(x̂−

k , 0)) (3.58)

Pk = (I − KkHk)P −
k (3.59)
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Time Update / Prediction step
Measurement Update / Correction step

Initial estimates       and 

Figure 3.28: Functionality schema of the extended Kalman filter.

Figure 3.28 demonstrate the described steps of the operation loop of the EKF with the
appropriate equations.

Because of the nonlinearity of the observed system, the matrices Ak, Hk, Wk and Vk

in general are different in each calculation run of the EKF. Therefore they must be
calculated at each time step k anew. In many cases the measurement error and system
noise covariance matrices, Rk and Qk respectively, are constant and can be obtained in
advance using the knowledge about the system and sensor properties. But often Rk

and Qk depends on the system dynamics and must be recomputed at each time step
like other parameters.

Nonlinear SystemFeedback Linearization
PID

-+

Extended Kalman Filter

+ +

Measurement
Noise

Figure 3.29: Extended Kalman Filter
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Since the EKF serves only for reconstruction of the missing states, it can not replace
a control mechanism. For example, the EKF can be used with a computed torque
method to control a dynamic system. A combination of the dynamic model, EKF, PID
and computed torque control is represented in the Figure 3.29. A step response of a
simulated double pendulum with the computed torque control is shown in the Figure
3.30. The measurement of the system output is affected by a zero-mean white noise
with normal probability distribution N (0, 0.0003), where the variance σ2 = 0.0003 is set
for the standard deviation to be mostly in the in the interval of ±3◦. The measurement
noise graph is depicted in the Figure 3.31.
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Figure 3.30: Step response of double pendulum with EKF and computed torque.
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Figure 3.31: Simulated noise obtained during the measurement of the system output.
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Figure 3.32: Module velocities of double pendulum calculated by EKF.

The velocities of the modules of double pendulum are are represented in the Figure
3.32 and the difference between the velocities which are calculated by the system
model and velocities provided by EKF, is shown in the Figure 3.33.
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Figure 3.33: The difference between the modeled velocities and the velocities calcu-
lated by EKF: r = q̇ − q̇EKF .
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Figure 3.34: Trajectory tracking of double pendulum with EKF and computed torque
control.
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Figure 3.35: Trajectory error of double pendulum with EKF and computed torque
control.

The tracking of the desired trajectory of the double pendulum is shown in the Figure
3.34. The marked places denote again the simulated disturbances of 0.15 and -0.15
radian. The trajectory error of double pendulum with the EKF is depicted in the Figure
3.35. The parameters Q, W , R and V are chosen as constant in these examples with
the following values

Q =



0.1 0 0 0 0 0
0 0.1 0 0 0 0
0 0 0.1 0 0 0
0 0 0 0.0001 0 0
0 0 0 0 0.0001 0
0 0 0 0 0 0.0001


, (3.60)

W =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


, (3.61)
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R =


1 0 0
0 1 0
0 0 1

 , (3.62)

V =


1 0 0
0 1 0
0 0 1

 . (3.63)

The initial estimate x̂−
0 is set to the value of the initial state of the system model in

each example. The initial value P −
0 is set in all examples as

P =



0.1 0 0 0 0 0
0 0.1 0 0 0 0
0 0 0.1 0 0 0
0 0 0 0.0001 0 0
0 0 0 0 0.0001 0
0 0 0 0 0 0.0001


. (3.64)

Apart from the impreciseness caused by the measurement noise the extended Kalman
filter provides suitable properties needed for reconstruction of missing or noised states.
The accuracy of the EKF can be improved by a higher tuning of the parameters Q, W ,
R and V adapting them in each time step instead of using constant values.
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4 Implementation

This section describes the translation of the control strategies which are described in
the previous section, into a software implementation. The idea is that the implemented
control designs are accessible for a modular robotic organism. The robotic system
should be able to autonomously establish a control strategy depending on its current
dynamic model. Therewith the control step can be added to the procedure for the
generation of the dynamic model that was introduced by Chen and Yang [CY98]. The
updated diagram of the procedure is shown in the Figure 4.1.
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Figure 4.1: Dynamic model generation with control.
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A C++ software framework for generation of the dynamic model of a self-
reconfigurable robotic system was already implemented [Nos13]. At this point the
existing framework should be extended with components which are needed for control
realization. Before the implementation of the control mechanisms is described, several
general changes in the current version of the framework are proposed. The previous
version of the framework was based on the computer algebra system SymbolicC++
[Sym10]. Computer algebra systems allows the execution of symbolic calculations
which, in contrast to the numeric ones, are performed on variables that may not have
a certain value at the time of the calculation. On the one hand, symbolic calculations
can possibly simplify computational process before the real values are used. In the
procedure of the dynamic model generation the equation of motion (Equatinon 2.30)
must be derived once only. On the other hand, the time for the symbolic derivation
of the motion equations grows exponentially with dimension of the system. Thus
time that is required for large robotic structures can amount several hours and more.
Using numerical calculations The equation of motion must be derived each time when
the system is evaluated. This also requires more time for large topologies of robotic
structures. But the calculation time can be reduced by use of the Blackfin digital signal
process (DSP) library [Bla13]. The DSP library provides functions for basic vector
and matrix operations which are optimized for use with the Blackfin microprocessors.
The robot modules Scout and Backbone which are used in this project, are equipped
with a Blackfin CPU, thus it make sense to use the DSP library for vector and matrix
calculations of the framework.

Due to the changeover to the DSP library the basic classes Vector and Matrix and its
basic operations are redefined in the new version of the framework. The Listings 4.1
and 4.2 illustrate the internal structure of the classes Vector and Matrix.

1 class Vector {

2 public:

3 // constructors

4 Vector(void);

5 explicit Vector(const unsigned int n);

6 Vector(const unsigned int n, const double data[]);

7 Vector(const unsigned int n, const double d);

8 Vector(const Vector & v);

9 // destructor

10 ~Vector();

11

12 void swap(Vector & v) throw();

13

14 // operators

15 Vector & operator = (const Vector & v);

16 Vector operator + (const Vector & v) const;
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17 Vector & operator += (const Vector & v);

18 Vector operator - (const Vector & v) const;

19 Vector operator * (const double d) const;

20 Vector operator / (const double d) const;

21 double operator | (const Vector & v) const; // dot product

22 Vector operator % (const Vector & v) const; // cross product

23 double operator [] (const unsigned int i) const;

24 double & operator [] (const unsigned int i);

25

26 unsigned int size(void) const;

27

28 std::ostream & output(std::ostream & os) const;

29

30 friend class Matrix;

31

32 protected:

33 unsigned int dim;

34 double * data;

35 };

Listing 4.1: Class Vector

1 class Matrix {

2 public:

3 // constructors

4 Matrix(void);

5 Matrix(const unsigned int r, const unsigned int c);

6 Matrix(const unsigned int r, const unsigned int c, const double data[]);

7 Matrix(const unsigned int r, const unsigned int c, const double d);

8 Matrix(const Matrix & m);

9 // destructor

10 ~Matrix();

11

12 void swap(Matrix & m) throw();

13

14 // operators

15 Matrix & operator = (const Matrix & m);

16 Matrix operator + (const Matrix & m) const;

17 Matrix & operator += (const Matrix & m);

18 Matrix operator - (const Matrix & m) const;

19 Matrix operator * (const double d) const;

20 Matrix operator * (const Matrix & m) const;

21 Vector operator * (const Vector & v) const;

22 double operator () (const unsigned int r, const unsigned int c) const;

23 double & operator () (const unsigned int r, const unsigned int c);

24

25 static Matrix identity(const unsigned int dim);

26
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27 Matrix transpose(void) const;

28 Matrix inverse(void) const;

29

30 unsigned int rows(void) const;

31 unsigned int cols(void) const;

32

33 std::ostream & output(std::ostream & os) const;

34

35 friend class Vector;

36

37 protected:

38 unsigned int rows_;

39 unsigned int cols_;

40 double * data;

41 };

Listing 4.2: Class Matrix

The examples shown in the Listing 4.3 demonstrate the use of the DSP library. The
functions vecvadd, vecdot and matsmlt perform the operations for vector addition,
dot product and matrix-scalar multiplication respectively. The integration of the DSP
library proceeds very easily because the library functions and the classes Vector and
Matrix operate on the same primitive data objects.

1 // vector-vector addition

2 Vector Vector::operator +(const Vector & v) const {

3 assert(this->dim == v.dim);

4 Vector result(this->dim);

5 vecvadd(this->data, v.data, result.data, this->dim);

6 return result;

7 }

8

9 // dot product

10 double Vector::operator |(const Vector & v) const {

11 assert(this->dim == v.dim);

12 return vecdot(this->data, v.data, this->dim);

13 }

14

15 // matrix-scalar multiplication

16 Matrix Matrix::operator *(const double d) const {

17 Matrix result(this->rows_, this->cols_);

18 matsmlt(this->data, d, this->rows_, this->cols_, result.data);

19 return result;

20 }

Listing 4.3: Example use of the DSP library
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44class++

SE3

44class++

Plücker

44class++

Aim

OnJoints_6üint

OnLinks_6üint

Omatrix_6üint0

Omodules_6üModules0

44class++

ModelGenerator

Otopology_6üKinematics0

OS_6üPlücker[]

OV_6üPlücker[]

OdV_6üPlücker[]

O,_6üPlücker[]

O,e_6üPlücker[]

OMasses_6üMatrix[]

Ofb_6üMartix[]
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Figure 4.2: The class diagram of the C++ framework
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4 Implementation

Since the classes Vector and Matrix provide the similar functionality as the previous
symbolic implementations, the other classes of the framework did not have to be
greatly modified. The extension of the existing software framework that provides the
control realization are the classes PID, EKF and Control. These and the other classes
of the framework with their associations are illustrated in the class diagram shown in
the Figure 4.2.

As the names suggest the classes PID and EKF represent the particular control tools.
The PID controller is implemented by the class PID. The class saves the gain matrices
Kp, Kd and Ki and use them for signal processing. The Listing 4.4 shows the structure
of the PID class.

1 class PID {

2 public:

3 PID(const Matrix & Kp, const Matrix & Kd, const Matrix & Ki);

4 ~PID();

5

6 Vector run(const Vector & e, const Vector & de);

7

8 private:

9 Vector e_sum;

10 Matrix Kp_;

11 Matrix Kd_;

12 Matrix Ki_;

13 };

Listing 4.4: PID controller

Depending on the values of the particular gain matrices the class implements different
controller types. Table 4.1 lists the possible combination.

Controller type Kp Kd Ki

P > 0 = 0 = 0
I = 0 = 0 > 0
PI > 0 = 0 > 0
PD > 0 > 0 = 0
PID > 0 > 0 > 0

Table 4.1: Type of the PID controller depending on the values of the gain matrices.

Other combinations are possible but not reasonable, since there are no appropriate
control realizations.
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The numerous parameter which are used for state estimation in the extended Kalman
filter are stored in the class EKF. The two steps of the estimation process of the EKF are
implemented in the functions predict_step and correct_step which are represented
in the Listings 4.5 and 4.6 respectively.

1 void EKF::predict_step(const Vector & u)

2 {

3 Vector dx(x_pre.size());

4

5 System->f(x_post, u, dx);

6 Dynamics->rk4(x_post, dx, u, h, x_pre);

7

8 Control->jacobian(x_post, u, dx, A);

9 A = A * h;

10 P = A * P * A.transpose() + W * Q * W.transpose();

11 }

Listing 4.5: Prediction Step of EKF

1 void EKF::correct_step(const Vector & z)

2 {

3 K = P * H.transpose() * (H * P * H.transpose() + V * R * V.transpose()).inverse();

4 x_post = x_pre + K * (z - H * x_pre);

5 P = (I - K * H) * P;

6 }

Listing 4.6: Correction Step of EKF

Since the particular control tools are available for use, a mechanism is necessary which
would allow an ordered combination of them to obtain a desired closed-loop control
design. The class Control is intended for such task. The control strategies which are
described in this thesis, can be generalized by the diagram depicted in the following
Figure.

Nonlinear SystemControl Mechanism

PID,EKF, M(q), C(q, q̇), N(q), ...

Figure 4.3: Schematic diagram of the control mechanism.
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4 Implementation

The class Control provides the relevant functionality for realization of the certain
control mechanisms. It allow the use of the several control tools like PID con-
troller or extended Kalman filter. Additionally Control is associated with the classes
ModelGenerator and Dynamics which allow the calculation of the desired control sig-
nal τ , provided that the state [q, q̇]T is measured respectively estimated. The class is
provided with the currnet values of the desired motion trajectories qd, q̇d and q̈d. The
desired trajectory is then compared with the current measurements/estimates q and q̇.
Afterward the resulting trajectory error is propagated for the calculation of the desired
control signal τ . This step may contain the computations of several temporary values
like the signal v in the computed torque method. At least the the control signal τ is
sent to the controlled system. Hence, the class Control allows the building of a control
mechanism that is represented as a dynamic system with the inputs qd, q̇d, q̈d, q and q̇

and the output τ .
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5 Practical Results

This chapter summarizes the experience which was gained during the tests with the
real robots. The tests have been performed on the robotic modules developed in
the European research projects SYMBRION [SYM12] and REPLICATOR [REP12]. As
results of the both projects three types of the robotic modules have been created: Active
Wheel 5.1a, Scout 5.1b and Backbone 5.1c.

(a) Active Wheel [KSH+11].

(b) Scout [MGL13] (c) Backbone [MGL13].

Figure 5.1: Robotic modules developed in the projects SYMBRION and REPLICATOR.
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5 Practical Results

Since the Active Wheels in contrast to Scout and Backbone are developed to transport
the other modules and not for building the multibody organisms, they are not rele-
vant to the purposes described in this thesis. Both cube-shaped modules, Scout and
Backbone, have a revolute joint with one degree of freedom. They have four uniform
docking elements on the each side in the horizontal plane: front, rear, left and right.
The top and bottom sides are not equipped with docking elements because this would
prohibit the rotational motion. The docking elements allow an Ethernet connection
between the assembled modules thus the robots can communicate with each other.
The communication between the modules in the tests have been provided by the IPC
protocol that is implemented within the irobot middleware. Irobot provides the basic
functionality for hardware regulation like operating the actuators, obtaining sensor
data or Ethernet communication.

5.1 Preparations

The same test software have been running on each module of the example topologies.
Before the execution can be started the base module must be determined. In the real
environments it would be performed by the modular robot autonomously but in the
tests the base have been selected by hand. In order for the proper communication
each module have obtained its own IP address.

For the tests a two-dimensional snake-like topology and a H-shaped four-legged
organism have been chosen. All the topologies have been composed of the Backbone
modules. In both tests the robotic system have been controlled using the computed
torque method. The system output have been estimated by the extended Kalman
filter.

5.2 2-D Snake-Like Robot

The schematic composition of the snake-like example robot is represented in the Figure
5.2. The modules of the snake have been ordered so that all revolute joints have
operated in the same X-Y -plane. Each module have been provided with a sinus signal
with a constant difference in the phase as the desired motion trajectory.
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5.2 2-D Snake-Like Robot

Figure 5.2: Schematic of the two-dimensional snake-like modular organism. The base
module is denoted red.

The desired trajectory have been calculated by the base module. Te particular signals
then have been provided to the each slave module (including base itself) using the IPC
protocol and the Ethernet connection. After the estimation of the current angles and
applying the control functions each module send the computed control signal to the
irobot middleware for execution.

Each joint module and the multibody robotic organism as a whole have shown solid
tracking results. Since the operating plane of the modules have lied orthogonally to the
gravitational forces, the gravity have should not be greatly compensated. On the other
hand the friction between the modules and the surface have could not be neglected
due to the great mass of the whole organism. The friction disturbance have could be
reduced by equipping several modules with small wheels.

Figure 5.3: 2-D snake-like robotic organism.

The Figure 5.3 demonstrate the movement of the snake-like robotic organism at several
times. The sinus-like movement of the organism is clearly recognizable.
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5 Practical Results

5.3 Four-Legged Robot

In this example an other movement type of the modular robotic organism have
been tested. To be movable a four-legged (Figure 5.4) robot has to have at least
two orthogonally placed joints in each leg. Additionally the organism requires a
synchronization mechanism to move the legs in the appropriate order. At this point the
base have calculated the different signals for vertical and horizontal movements of the
legs. For simplicity the diagonally opposite legs have been moved simultaneously.

Figure 5.4: Schematic of the four-legged modular organism. The base module is
denoted red.

The movement of the four-legged modular robot is shown in the Figure 5.5. In contrast
to the previous example the gravitational forces have affected the motion of the robot
to a great extent, since the four vertical joints in the legs have had to bear the weight
of the complete organism. Apart from that the organism has executed the desired
movements only with a small inaccuracy.

Figure 5.5: Four-legged robot.
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6 Conclusion

This thesis has given an overview about the use of the method of the classical con-
trol theory for dynamic systems which are characterized by the modularity of their
structures. The presented control methods have been added to the C++ software
framework that have been developed in the previous work [Nos13]. The evaluation of
the particular control strategies has been performed by simulation in MATLAB and by
the execution of the test with the real modular robotic organisms. Therefore the robot
have been used which had been developed in the projects SYMBRION and REPLICA-
TOR. The results have shown the solid control properties of the applied strategies.
Although many operations like parameter tuning have must be done by hand now, the
future multibody robotic organisms will be able to derive a suitable control strategy for
a given configuration completely autonomous.
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