
 

 

Institute of Parallel and Distributed Systems                                                                         

University of Stuttgart                                                                                             

Universitätsstraße 38                                                                                                                                

D–70569 Stuttgart 

 

 

   

Bachelor Thesis Nr. 98 

Vision and SLAM on a                                                     

highly dynamic mobile                                                  

two-wheeled robot 

Patrick Suhm 

 

 

Course of Study:   Technische Kybernetik 

 

Examiner:    Prof. Dr. rer. nat. Marc Toussaint 

First Supervisor:   Prof. Dr. rer. nat. Marc Toussaint 

Second Supervisor:  M. Sc. Stefan Otte 

 

 

Commenced:   18.07.13 

Completed:   17.12.13 

  CR-Classification:  I.2.9, I.4.3, I.4.8, B.1.0 

 

 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Publikationen der Universität Stuttgart

https://core.ac.uk/display/147542596?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 

 

 

 

 

 

Abstract 

This thesis examines a sparse feature based visual monocular simultaneous localization and 

mapping (SLAM) approach with the intension of stabilizing a two-wheeled balancing robot. 

The first part introduces the basics like camera geometry, image processing and filtering. 

Further on, the thesis treats the details of a monocular SLAM system and shows some 

specialties to keep the computational effort low. The last part deals with Andrew Davison’s 

“SceneLib” library and how it can be used to obtain the camera state vector.    

 

 

Zusammenfassung 

Die vorliegende Arbeit gibt einen Einblick in das Thema der auf wenigen Bildfeatures 

basierenden simultanen Lokalisierung und Karten Erstellung (SLAM) mittels monokularer 

Kamera zum Zwecke der Regelung eines zweirädrigen balancierenden Roboters. Im ersten 

Teil werden grundlegende Themen wie die Kamerageometrie, Bildverarbeitung und 

Filtertechniken besprochen. Darauf aufbauend werden im zweiten Abschnitt Details und 

effizienzsteigernde Maßnahmen erläutert, die ein monokulares Echtzeit-Kamera-SLAM 

System möglich machen. Im letzten Teil der Arbeit wird beschrieben wie mittels Andrew 

Davisons „SceneLib“ Bibliothek die aktuelle Kamera Pose bestimmt werden kann. 
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Chapter 1 

Introduction 

 

1.1 Motivation 
  

The American company "Segway Inc." is known all over the world. They manufacture a two-

wheeled self-balancing electrical vehicle called "Segway PT". These devices are quiet 

successful in niche markets such as transportation for police departments, military bases, 

warehouses, corporate campuses and industrial sites. The control strategy of a Segway can 

be compared to the one of the human body. In order to move forward, the center of gravity is 

shifted in front. After reaching the targeted speed or to stop its motion, the human body, 

takes action and positions its feet back under the torso. The Segway does pretty much the 

same thing, except it has wheels instead of legs, a motor instead of muscles, a collection of 

microprocessors instead of a brain and a set of tilt sensors instead of an inner ear balance 

system. The Segway's sensors for tilt measurement are gyroscopes and accelerometers. This 

so called inertial measurement unit (IMU) is the most widely used approach for devices that 

perform inertial navigation through dead reckoning. They are used in cars for electronic 

stability control, in aircrafts, satellites and many other technical devices.  

The human body, though, shows another way to keep balance. With a bit of training it’s 

possible to maintain balance, only through visual information, even when, for example 

through a disease, the inner ear balance system doesn’t work correctly.  

This thesis, examines the visual approach. Unlike the human body which is due to its two 

eyes, able to get a stereoscopic sight of the world, the robot used in this thesis will only have 

a monocular camera serving as its sensor information. This limitation makes the pose data 

acquisition process a bit more challenging. To obtain depth information through one 

monocular camera, is only possible, when the camera is in motion and it observes the scene 

from more than one view. And even this is something the human body can do. People which 

lost one of their eyes are still able to estimate the depth and get a three dimensional 

impression of the world. In order to do this, the brain builds some sort of map and locates 

certain points or objects observed from different angels. This map is constantly updated and 

maintained so that these people are finally able to get an intention of their location and the 

three dimensional structure of their environment.  
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In the total awareness that a PC and a piece of code can hardly compare with the human 

brain, it’s quiet surprising that with some tricks and simplification to lower the 

computational effort, the localization and pose estimation with one monocular camera works 

pretty well.    

For means of just stabilizing a two wheeled mobile robot with a monocular camera, an 

approach like the one examined in this thesis, could seem a bit long winded. Especially when 

considering the fact that for an estimation of the angular velocity and tilt, it would be 

sufficient to analyze the optical flow, in a manner depicted in [Baraldi89]. But that would, at 

the best, be enough to keep the robot in balance.  

When dealing with the topic of localization and pose estimation in an unknown 

environment, one will inevitably encounter the theory of simultaneous localization and 

mapping (SLAM). The theory of SLAM is well understood in mobile robotics research and 

despite the fact that there would probably have been an easier and faster approach, with 

respect to only controlling the robots tilt, with the help of visual monocular SLAM, the 

ability of localization and environmental exploration comes on top.  

 

 

1.2 Why Monocular SLAM? 
 

For a lot of applications laser range finders are the sensor of choice when it comes to 

localization and dense map building in robotics. However, for determining the pose of a 

balancing robot, it is neither necessary to have a dense map, nor would it be appropriate to 

lug a heavy and expansive laser scanner. So, apart from rangefinders (including sonar, laser, 

infrared and time-of-flight cameras), normal cameras can be used, to construct 3 dimensional 

spars maps in real-time. 

In this regard, basically 2 different types of cameras can be distinguished: Stereo and 

monocular cameras. Stereo systems consist of two cameras which are arranged in a fixed 

position to each other and observe the scene. Via triangulation stereo cameras are able to 

obtain 3D information from the 2 dimensional data they perceive. But there are some 

disadvantages. First of all stereo cameras are more expansive. Furthermore two cameras are 

heavier than one and the necessity of a stiff connection between them must also not be 

neglected. When the frame is not stiff enough, errors occur through vibration and 

deformation in general. This can be especially important in mobile robotics. Aligning and 

calibrating (rectifying) two cameras is tricky and the results will depend on the accuracy of 

that work.  
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Besides this, a stereo camera is always designed for a specific range, depending on the 

resolution and the distance of the camera centers. So they’re not very adaptable to 

surroundings with far and near objects. 

All these disadvantages bring up another idea in vision based pose estimation. In this 

approach 3D information is obtained through motion. If the pose of a monocular camera is 

known at every time step, moving the camera can deliver 3D information. In case of cameras 

mounted on top of a robot, the current camera pose is normally not known, but can roughly 

be estimated by other sensor information like odometry. Cameras which are hand held and 

freely maneuvered don't have this additional information.  

Pose estimation is crucial for single camera approaches because depth measurement depends 

on the camera pose. That's why single camera SLAM is even harder than SLAM with a laser-

rangefinder or a stereo camera. A correct localization and pose estimation is not only 

necessary to build a consistent map, but also to obtain measurements in the first place.  

A properly working real time monocular SLAM algorithm consists of many steps which 

were all tuned and adapted with respect to computational efficiency. This thesis was highly 

inspired by the work of Andrew Davison, who is a pioneer in the visual monocular SLAM. 

He presented the first real-time monocular camera SLAM algorithm in 2003 [Davison03]. In 

this publication, Davison’s method of choice for camera pose and landmark estimation is the 

Extended-Kalman-Filter (EKF). Image patches serve as landmark description. The so called 

inverse depth parameterization [Davison07] allows initializing features in the EKF without 

delay. A detailed explanation of Davison’s monoSLAM system is given in chapter 5.2. 

 

Before dealing with the actual monocular SLAM topic, some basics have to be discussed in 

the Camera Geometry, Image Processing and Filtering chapters below. The information 

presented in these basic chapters are, as long as not declared differently, taken from one of 

the following sources: [MultViewGeo], [CVAlgoAndApplic], [Sola07]. 
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Chapter 2 

Camera Geometry 
 

This section shows the relation between 2D pixel-coordinates on the camera sensor and their 

counterpart in the 3D world scene. The first part deals with the projection of a 3D scene point 

onto the 2D image plane, which will turn out as the easier of both directions.  For this 

purpose a pinhole camera model is introduced and the basic projection equations are given 

with the help of homogeneous coordinates. Furthermore a distortion model is explained, to 

take the processes into account which are occurring in a real lens. The second part of the 

Camera Geometry chapter will deal with the inverse projection, trying to make up for the 

loss of one dimension and showing how to get 3D information back from 2D pixel-

coordinates.   

 

2.1 Pinhole Camera Model  
  

 

 

Figure 1: Pinhole Camera Model 
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The pinhole camera model is the basic camera model in computer vision. It consists of an 

infinitely small hole at the optical center  . The optical center is located on the pinhole plane, 

at the intersection point with the optical axis  . The image plane   ̅ is situated behind the 

pinhole plane in a distance    called the focal distance. The intersection of the   -Axis with 

the image plane is called the principle point  ̅  or the image center. Light rays, were projected 

through the optical center into the 2D image plane. This image is mirror-inverted and upside 

down. That’s why one considers a virtual image plane   which is located in front of the 

pinhole plane at the distance  . 

 

For the virtual image plane the following holds: 
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 )  ( 

  
  
  
  

 )     
      
→      . 

  
  
 /    ( 

  
  
  
  

 ) 

    (2.1) 

        

          are the distances in   direction.   completes   and   to a right handed orthogonal 

coordinate frame. 

(2.1) is a mapping from           so that point     (          ) is projected in point    

(      ). But also every other point    on that straight line is mapped in   .  

A naïve approach to get the position of the 3D point     from the virtual image point    could 

simply be, to invert formula (2.1). 

 

   ( 

  
  
   
 )  

  
 
 ( 

  
  
  
 ) 

            (2.2) 

 

(2.2) shows, that point     depends on    and  . The focal distance    is a characteristic of the 

camera and not a problem to determine. To find the depth    is the tricky part and that’s 

what later explanations will be about. In the following the easy 3D to 2D camera projection is 

further treated. 
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2.2 Pixel Coordinates 
 

Till now all distances were considered in metric units. The camera chip however consists of 

pixels.  These pixels, not necessarily, have the same dimensions in  - and  -direction. To deal 

with this, the focal distances          and          are introduced.     and    are the 

pixel densities in u and v direction and have the unit 
     

 
  

Another point that hasn’t been considered yet is the position of the image origin  .  If it’s not 

identical with the principle point,    and    have to be added. In this context    and    can 

also be used to correct a badly placed image sensor. The unit of    and    is pixel and from 

now on the coordinates   and   will also have the unit pixel. They are built as shown in 

formula (2.3). 
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Figure 2: Intrinsic Parameters 
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Note that the pixel coordinates   and   are integer values and only perceivable of the image 

sensor if,                                                                     holds. Of 

course formula (2.3) doesn’t deliver the rounded integer values for   and  . The result of 

(2.3) would be for example (    )    (                ) pixel. The rounding could now be 

modeled with a function  (    ) which would deliver the result: (    )   (        ) pixel.  

For reasons of convenience and due to the fact that in the interesting direction, from 2D -> 

3D, modeling of rounding isn’t an issue, it will also not be modeled in the direction 3D ->2D. 

Keep in mind that in the following the perceived values for (u; v) are considered as integer 

values even if it’s not explicitly modeled.  

 

The new parameters              used in (2.3) are called intrinsic parameters. Besides these 

there are other parameters which influence the projection in a pinhole camera. The next 

section shows an elegant approach to handle perspective camera projections and introduces 

the six, so called extrinsic camera parameters. 

 

 

2.3 Perspective Projection with Homogeneous Coordinates 
 

A point in an n-dimensional projective space can be constructed through the points on a line, 

crossing the origin in the n+1-dimensional space. A 3D point (        )  has the 4D 

homogeneous coordinates  (           )  or (          ), with     * + .The advantages 

of this notation are that points at infinity can be represented with finite numbers and the 

whole process of camera projection can be represented with linear algebra. With the help of 

homogenous coordinates it’s possible to describe a scene point in different coordinate frames 

in an elegant way.  

Now formula (2.3) can be rewritten in homogeneous coordinates:  

 

  (
 
 
 
)  [
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) 

  

       (2.4) 
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  [
     
     
   

]           [
    
    
    

] 

(2.5) 

 

  is the matrix of intrinsic parameters. It’s also called camera calibration matrix.   is the 

projection matrix and        produces the matrix shown in formula (2.4). 

 

Figure 3 shows the virtual image plane, the camera coordinate frame with origin O and 

optical axis Z, a world coordinate frame with origin W and a 3D scene point P.  

 

 

 

 

Figure 3: Camera Rotation and Translation 
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The scene point   with respect to the camera frame   written in homogeneous coordinates 

is     (             ).   with respect to the world frame is     (             )   

The transformation from          can be written as:             with     

[ 
     

   
]   Where     is a     rotation matrix and     is a     translation vector.  

 

Now it’s possible to write down the complete transformation from scene point   in the world 

coordinate frame to coordinates in the image plane  :   
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)  [

     
     
   

] [
    
    
    

] [ 
     

   
](

  

  

  

 

) 

     (2.6) 

 

Neglecting distortion and skew there are four intrinsic parameters              three rotation 

angles defined in     and three parameters of translational displacement, defined in    . 

The six parameters defined in     and      are called extrinsic camera parameters. This 

makes a total of 10 parameters to describe the perspective projection in a basic pinhole 

camera. 

 

2.4 Lens Distortion 
 

The infinitely small hole of a pinhole camera makes sure that the light, coming from a point 

in the external world, will impact within a very tiny region of the image plane. However, the 

smaller the pinhole, the less light reaches the sensor. This means extremely sensitive, and 

therefore noisy, sensors are necessary or the exposure time has to be very high. For most 

applications these limitations are not acceptable. This is why lens cameras are used. The 

equations which describe the pinhole camera can still be used to describe a perfect lens 

camera. This chapter introduces a simple distortion model to handle the radial distortion of 

real lenses. 
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Radial distortion is caused by imperfections of the lens. Usually the effects of radial 

distortion become stronger the larger the distance between a projected point and the image 

center R is. The following basic radial distortion model can be regarded as a function  ( ):  

 

          (  
    

 )   (  
    

 )  (   
     

 ) 

       (2.7) 

 

(
   
 

   
 )  (     

     
   )  (

  
 

  
 )          √(  

 )  (  
 )  

    (2.8)  

 

Where (  
    

 ) is the tuple of coordinates depicting image point   with respect to the 

camera coordinate frame  . (   
     

 ) is the tuple of distorted coordinates with respect to the 

camera coordinate frame. 

Note that the distortion doesn’t model integer values but real numbers. It is applied in the 

modeling process before the intrinsic matrix is applied.  

The number of coefficients  *      + which are necessary to fulfill the requirements depend 

on the used lens. Wide angle lenses can require up to three coefficients, while in most cases 

less than three will be enough.  

 

Figure 4: Radial Distortion 
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2.5 Camera Calibration 
 

In the chapters “Pixel coordinates” and “lens distortion” a total of at least 12 parameters were 

introduced to describe the internal and external processes of a real camera in contrast to an 

ideal one. The method to determine these parameters is called camera calibration. It’s a 

crucial step in image processing and there are special tools for this purpose. As one of the 

most powerful tools for all vision related topics, the OpenCV library also contains methods 

for camera calibration purposes. In chapter 6 of this thesis, the camera calibration is done by 

using the Matlab toolbox [Calib]. It is worth noting that the computation of the internal 

camera calibration parameters can occur simultaneously with the extrinsic parameters which 

describe the pose of the camera relative to the calibration target. 

A classical approach like the “Roger Y. Tsai Algorithm" [Tsai87] uses a calibration pattern, 

which is oftentimes a flat chequered rectangular plate much like a chessboard. This plate 

needs to be photographed from different angles. The set of distorted images can then be used 

to determine the camera parameters.  The quality of the calibration process will increase with 

the number of images taken from the calibration pattern. Note that, through the 

simultaneous estimation of extrinsic and intrinsic parameters, the arrangement of camera 

and calibration pattern is arbitrary as long as the whole pattern is depicted in each image. 

Another approach which needs no special calibration target is called camera auto-calibration. 

Auto calibration means that the intrinsic camera parameters are determined directly from 

multiple distorted images showing unstructured scenes. It is also possible to auto-calibrate a 

sensor from a single image, when for example, parallel lines or concentric circles are 

identified and information about the parallelism or concentricity of these objects is available. 

 To describe the calibration process in detail would definitely go beyond the scope of this 

thesis. For further information, the calibration chapters of [MultViewGeo] and 

[CVAlgoAndApplic] are highly recommended. 
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2.6 The Perspective Camera Model  
 

The basic camera model, developed in the previous sections can now be presented as the 

following. 

At the beginning, a scene point    with respect to world frame     is transformed to the 

camera frame    Afterwards it’s projected in the image plane. The next step is to apply the 

nonlinear distortion function. And in the last step, the distorted coordinates were 

transformed into pixel-coordinates through a multiplication with the intrinsic matrix. 

 

Projection:  

 (

  
 

  
 

 

)  
 

  
       

       

(2.9) 

 

Distortion: 

(   
     

 )   (  
    

 ) 

                   (2.10) 

 

Pixel Mapping: 

   (
 
 
 
)    (

   
 

   
 

  

) 

                    (2.11) 
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2.7 The Inverse Perspective Camera Model  
 

Now that a basic camera model exists and the equations of the projection into the camera 

plane are announced, it’s time to depict the inverse projection process. In the following this 

process will be called back projection. Back projection will be executed through the following 

step. Firstly, the pixel mapping will be reversed. The next step will be to revoke the 

nonlinear process of distortion. The first two steps were invertible, the third, namely the 

projection process, is not.  

Formula (2.2) already gives an intuition of that problem. It shows that, due to the loss of one 

dimension, the back projection process can only be defined up to an unknown scale factor. 

An approach to find this factor is described in the Triangulation chapter.   

The inversion of the pixel mapping is simply done by an inversion of the intrinsic camera 

matrix. 

(

   
 

   
 

  

)         
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   ]
 
 
 
 

 (
 
 
 
) 

       (2.12) 

The correction of the distortion is, due to the nonlinear function of 4th grade and higher, a bit 

more challenging. The naïve approach to simply invert formula (2.8) isn’t feasible for 

polynomial higher 4th grade. 

 

       (   
     

 )  (  
    

 )     (   
     

 ) 

      (2.13) 

Fortunately there are other possibilities to un-distort an image. Probably the most commonly 

used method is to create a lookup table which relates every distorted pixel coordinate to its 

ideal relative. Note that within the monocular SLAM system described later on, distortion 

correction is done only for the interesting feature points and not for the whole picture in 

advance. This is simply because the un-distortion of the whole picture would need too much 

time. Operations, like feature matching and feature finding, are also possible within the 

distorted image. 
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The last step of 2D->3D process is the back projection: 

 

             
  (

  
 

  
 

 

) 

         (2.14) 

 

Entry (    ) of the projection matrix      has to be modified with 
 

  
  in order to prevent a 

back-projection to infinity.    is the feature depth with respect to the camera coordinate 

frame. 
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(2.16) 

  

So, according to formula (2.14) the point P with respect to the world coordinate frame is: 

       

(

 
 
     

 

     
 

  

 )

 
 

 

  (2.17)    

The next chapter will show how, with the means of triangulation, it’s possible to gather 

depth information.      
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2.8 Triangulation 
 

For a static environment it’s not important whether the obtained images are sampled by one 

camera at two different positions (and therefor at two different times) or by two cameras at 

the same time, known as stereo vision. The triangulation process with one camera is depicted 

in figure 5. 

 

 

 

Neglecting the fact that, in the special case of visual monocular SLAM the camera pose      

isn’t available and therefor has to be estimated together with the depth of the scene point, the 

following equations describe the triangulation process.  

 

 

Figure 5: Triangulation 
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Observing feature    at the time    yields with respect to the world coordinate frame the 

following line equation: 

              
           (

   
   

   
   

 

)     
     

         (2.15) 

 

 .   
       

     /
 

is the vector of real valued coordinates with respect to     after the inverse 

intrinsic matrix was applied.  

 

Observing    at the time    yields with respect to the world coordinate frame: 

              
           (

   
   

   
   

 

)     
     

       (2.16) 

 

For a static environment we obtain the two unknown parameters     and     by finding the 

intersection between     and    . Note that the method of directly intersecting two lines and 

therefor defining     and     remains a theoretical wish. In reality, through several 

uncertainties, it’s only possible to find an estimation for a scene point which minimizes the 

distance to both lines. Later chapters will depict the triangulation process in a probabilistic 

manner. It will be shown that a completely static environment isn’t necessary under all 

circumstances and that there’s no need to model the triangulation process explicitly. The 

state of the camera center and the involved landmarks will be handled within the EKF.  
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Chapter 3 

Image Processing 

 

The geometric considerations done in the previous chapter were based on the assumption 

that features, observed by the camera, are from infinitely small spatial size and 

unambiguously perceptible and identifiable, from the current camera pose. How realistic 

these assumptions were and how features can be found within an image will be content of 

the following section.     

 

3.1 Feature Detection 
 

Gray scale images, and those are the images which are used in visual SLAM, can be seen as a 

function       (   )   (   ) .  In most cases, the intensity function  (   ) has a 

codomain of 8 bit. That means every pixel can represent 256 different gray values. After the 

image had been acquired from the camera and converted to gray scale, it can be thought of 

as a matrix with           columns and           rows.  

For sparse feature based visual monocular SLAM systems, collecting information in an 

image means, determine a set of locally distinguishable and unique points, the so called 

feature points or interest points, and find them in another image, taken from the same scene 

but from a slightly different pose. Speaking of the uniqueness of a point, what does that 

mean? In a gray scale image it’s possible to have hundreds of pixels with the same intensity. 

Describing an interesting pixel only by means of its intensity is by far not enough to create a 

valuable feature. It is therefore necessary to regard an area around the promising pixel, it’s 

so called neighborhood.  

It shows that edges, in the sense of sudden Intensity changes along a line, are quiet good 

features. However, they still have a disadvantage regarding their spatial indetermination. It 

is therefore that corners, the intersection of edges, are used as interest points.  

The basic idea to detect edges and corners in an image is to choose points where the spatial 

derivatives are locally maximal. If the derivative is locally maximal in more than one 

direction, the investigated point is likely to be a corner.  
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One way to approximate a partial derivative is to convolve the image with the following 

masks.   

   
 

  
(      )       

 

  
 (
 

 

  

) 

        (3.1) 

 

Expressed in coordinates of an image    the approximation of a derivative in direction   and 

  can be written as:  

   (   )   (     )   (     ) 

        (3.2) 

 

  (   )   (     )   (     ) 

        (3.3) 

 

An improved version of (3.1) would be the perpendicular smoothing Scobel mask: 
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      (3.4) 
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[
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     (3.5) 

 

In the equations above,   is the grid size or pixel distance and   is the convolution operator. 

So far, these masks produce an approximation for a derivative, but no corner detection.  
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In order to gather information about the structure direction within a neighborhood   (   ) 

of radius     the structure tensor    is introduced: 

 

  (   )     *
  
 (   )    (   )

   (   )   
 (   )

+ 

 (3.6) 

   is a 2D Gaussian mask with standard deviation  .  

The orthonormal eigenvectors       of    specify the main structure direction within some 

integration scale    The corresponding eigenvalues        describe the average contrast along 

these directions.  

 The eigenvalues of    allow the following assumptions for the local image structure  

          no structure 

          straight edges 

         corners 

 

Since eigenvalue determination is computationally expansive, [Harris88] and [Shi94] 

introduced other methods to find corners. One of these methods is depicted in (3.7). Let   be 

a tunable threshold and m be a local maximum, it’s likely to obtain a corner were the 

following holds: 

 

     (  (   ))       
 (   )       

 (   )              
   (  (   ))

     (  (   ))
   

  (3.7) 
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3.2 Feature Descriptors  
 

The last section has shown how to find corners in an image. This chapter will describe how 

they were actually used as features, with respect to the ability of finding them again in 

another image. Once a corner has been found its location can be described as   
   

(   )  This description, however, is useless in terms of finding   
    in an image taken from 

another, unknown pose. If the pose was precisely known, it would be easy to find   
   within 

the second image. It would simply be a transformation from one camera pose to another. 

Unfortunately the second camera pose is either fraught with uncertainty or not known at all 

and it’s only possible to specify a region for the appearance of the feature. Therefor it’s 

unavoidable to provide some sort of description which allows regaining a previously 

observed interest point from a new pose.  

A feature descriptor is basically a vector which contains abstract information which allows to 

compare two interest points. Unlike image patches, which will be described later, the 

descriptor doesn’t contain raw image data. It provides higher level information that is, 

depending on the used algorithms, invariant against scale variation, rotation, illumination 

changes, perspective and shift.   

As there are many possibilities to describe a feature, a whole bunch of descriptors have been 

developed in computer vision. The “Scale Invariant Feature Transform” (SIFT) [Lowe99] and 

the “Speed Up Robust Feature” (SURF) [Bay06], are probably the two algorithms for feature 

description which are most commonly used. For means of visual monocular SLAM, such 

feature descriptors are rarely used, simply because they are quite computational expensive. 

Therefore they are not further regarded in this thesis. Instead the image patches are 

described now.  

A patch   is a rectangular region of an image containing   pixels and the interest point as 

central pixel. The standard deviation of the patches luminosity values is   and the mean is  .̅ 

It’s possible to find features in two different images, with the help of image patches, by 

executing the following steps. The first step is to determine a set of interest points in an 

image     by applying a corner detection algorithm with a certain threshold. Afterwards, 

image patches around the interest points are defined. The final step is then, to choose one 

patch of image   and compare it to an area in Image  , which is, regarding the actual camera 

motion, most likely for the appearance of the corresponding interest point. This procedure is 

described in the chapter 5.2.7.  
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3.3 Feature Matching 
 

Two patches           are likely to represent the same feature, when their similarity 

measure function  (     ) is extreme. Similarity can for example be examined by the 

following measures.  

Sum of Squared Differences: 

     ∑ ( (   )
(   )  

  (   ))  

 (3.8) 

A small      indicates similarity. It shows however, that the      has some drawbacks with 

patches under different illumination. A      comparison of two Images which show exactly 

the same scene but under different illumination  (   )     (   ) (k represents the 

illumination change) would deliver that the images aren’t matching.    

That’s why another similarity measure is used for patch matching. The cross correlation is a 

widely used similarity measure in signal processing.  The normalized and centered version 

is: 

      
 

 
∑

(   )̅  (   )̅

     
(   )  

 

 (3.9) 

A maximum in the zero-mean normalized cross correlation indicates similarity. The 

normalization leads to:       (   )  ,    -.  

        means a perfect match whereas           is a perfect mismatch. 

The       is a robust measure over long sequences where lighting conditions can change.  

A computational more efficient implementation [Sola07] of the       is shown in (3.10). 

 

      
           

√(        
 )(        

 ) 

 

        (3.10) 
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With: 

   ∑  (   )    ∑  (   ) 

(   )  

          ∑   (   ) 

(   )  (   )  

 

 

          ∑   (   ) 

(   )  

            ∑  (   ) (   )

(   )  

 

 

It is worth noting that    and     have to be computed only once for each patch of image   in 

the whole comparison process. So these two measures can be saved together with the image 

patch and serve as some kind of feature descriptor. In comparison to a SIFT feature 

descriptor, which has in general dimension 128, storing the whole patch plus    and    , 

needs in the case of reasonable patch sizes only few more memory size, but the generation of 

this descriptor is much more computational efficient.   

A nice overview about available methods is given in the “Feature detection and matching” 

chapter of [CVAlgoAndApplic]. 
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Chapter 4 

Filtering 
 

Estimating the state of a dynamical system is an important task not only in monocular 

SLAM. But why estimating and not measuring directly? Simply because oftentimes the 

measurements obtained from the system are noisy and the system description is inaccurate. 

It will be shown that an estimate can be produced by applying a filter which combines 

measurements and initially available system information.    

In case of monocular SLAM, the system is the camera itself with its six degrees of freedom 

and the location of the landmarks with three degrees of freedom. All measurements obtained 

by the camera and therefor all calculations of the actual state of the system are larded with 

uncertainties. Fortunately, the theory of probability permits to take these uncertainties into 

account and solve the task of refining prior estimates through current, noisy measurements. 

So, the system state and the measurements can be described through a specific probability 

density function and not through deterministic values.  

This chapter will give an explanation of a system under stochastic and deterministic 

influence and depict a solution of the filtering problem for the case of Gaussian uncertainties.  

 

4.1 System Description  
 

The behavior of a dynamic system can be described by mathematically expressing the 

available information. One possible way to formulate this is the discrete state space 

formalism.    

The state      of a system   transitions to the state    under the influence of the uncertain 

control input    as depicted in (4.1): 

Transition/Evolution Equation: 

     (        )  

      (4.1) 
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The measurements    obtained at time   which are influenced by the measurements 

uncertainty    can be described with the help of function     

Measurement Equation: 

     (      ) 

       (4.2) 

As introduced in the section above, the knowledge about the probabilistic character in the 

modeling process can be described through density functions. The density function  (  ) 

expresses the perturbation which enters the system and is called system noise.  (  ) is called 

measurement noise and the density function which describes the uncertainties of the initial 

state is given through  (  )  

 

4.2 The Filtering Problem 
 

In the theory of stochastic processes, the filtering problem can be formulated as:  

Finding, at each time step   the best, or optimal estimate for the state of a system by 

regarding the whole history of noisy measurements obtained since the time    .  

At the beginning of the filtering process there is an initial guess    for the systems state. This 

initial guess has an uncertainty which is modeled by the density function  (  )  As it’s the 

beginning of the process there are no previous values for   and so  (  ) can be called the 

prior density at time    .  Now, that the procedure goes on and the first measurement of 

the system state is received, this prior can be corrected and is now called posterior density 

 (  |  ) of time    . The prior density  (  ) for     is estimated with the help of the 

system equations and the knowledge about the perturbation which influence the system. 

After the next measurement process, the posterior density  (  |  ) at time     is calculated. 

This procedure is repeated to the time     where it’s the goal to receive  (  |  ) from the 

prior  (    )  

Filtering can be interpreted as a series of prediction and correction steps. The terms posterior 

and prior are related to the arrival time of a measurement, which is the important event 

within filtering.  

Normally the filtering process is synchronized to the reception of measurement data. When, 

for example, a camera is capable of delivering 30 frames per second, it makes sense to 

operate the prediction process at about 30Hz synchronous to the image input. Between two 

measurements the filter uses the dynamic of the perturbation free system equation. 
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Note that the posterior density function at time     implicitly depends on all the previous 

measurements. For a real time application, like the visual monocular SLAM, it’s crucial that 

the amount of necessary operations is quiet constant and doesn’t increase over time. Luckily 

an incremental implementation considers all information from the beginning, but can be 

implemented in a recursive way, so that the state    is refined by the state      and the 

measurement   . 

The best state estimation  ̂  received from the correction step, should then be the result of the 

application of an arbitrary quality criterion. The Kalman-Filter which is introduced in the 

next chapter is a minimum variance estimator. It returns the estimate  ̂   that minimizes the 

following expression. 

 ,(    ̂ )(    ̂ )
 -  

         (4.3) 

 , - is the expectation operator. It can be shown that the estimate  ̂  which results from a 

minimization of expression (4.3) is equal to the conditioned mean of  (  |  )  [Sola07] 

 

4.3 The Kalman-Filter 
 

The recursive solution of the filtering problem for a linear time-discrete system under 

Gaussian uncertainties is delivered by the Kalman-Filter. [Kalman60]     

The discrete evolution and measurement equation of a linear Gaussian system are:  

 

                          (4.4) 

                   (4.5) 

 (  )   (    ̅     )           (4.6) 

 (  )   (       )          (4.7) 

 (  )   (       )          (4.8) 

 

F, G and H are constant system and measurement matrices of suitable size. P, Q and R are 

the so called covariance matrices and    is the deterministic control input. 
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 (   ̅   ) denotes the density function of a normal distributed n-dimensional variable 

  with mean  ̅   , -  and covariance matrix    ,(   ̅)(   ̅) - and is determined as 

shown in (4.9). 

 (   ̅   )  
 

√(  ) | |
     (    (   ̅)    (   ̅)) 

     (4.9) 

 

The Kalman-Filter can be divided in a prediction and correction step: 

 

4.3.1 KF Prediction 

 

At time step      according to the dynamic of the perturbation free and through 

   controlled system, the temporal estimate is received as: 

 

 ̂ 
    ̂       ̂  ,  |    -          (4.10) 

  
        

       ̂  ,(    ̂ 
 )(    ̂ 

 ) -       (4.11) 

 

So expressed in the terms prior and posterior which were mentioned above,  ̂ 
  is the prior of 

time step     and is received through applying the perturbation free transition equation to 

the posterior of time step      . 
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4.3.2 KF Correction 

 

As the measurement has been received from the system, it can now be compared to the 

measurement expectation. At the time    , the difference of the measurement expectation 

according to the perturbation free measurement equation and the real measurement is called 

innovation   :  

         
           (4.12) 

The covariance matrix of    is: 

      
               (4.13) 

The prior of time step     can now be improved by applying the follow equation which 

yields the posterior for the time    :  

 ̂   ̂ 
                (4.14) 

The posterior covariance matrix     ,(    ̂ )(    ̂ )
 - of the state estimation error is 

computed as: 

   (     )  
           (4.15) 

  is the identity matrix. The matrix   is called the Kalman gain and corrects the prior 

proportionally to the innovation. It is computed as: 

     
   (   

     )
  
   

     
          (4.16) 

With  ̂  and    it’s now possible to start the next filter run and estimate the prior for the time 

     . 

 

It shows that the Kalman-Filter produces the optimal estimation according to the equations 

above, when the assumptions (4.6) … (4.8) are fulfilled.  

When  ̂   ,  - it’s likely that the estimations  ̂  will be as expected from  , ̂ -   ,  -.  

Note that a lot of computational effort can be saved by computing the matrices    and    

offline because they don’t depend on the measurements   . Furthermore the matrices 

        and   are often constant and known at the beginning of the filtering process in the 

majority of cases.  
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 The offline computation of    and    can be achieved from the initial    through: 

     
          

          
          

When all these matrices are known at the beginning, the Kalman-Filter can be reduced to one 

equation which yields the optimal estimate at the time t=k from the estimate at time t=k-1 

and the control input    as: 

 ̂  (     )(  ̂      )              (4.17) 

 

 

4.4 The Extended-Kalman-Filter 
 

In reality hardly any system is linear and therefore the Kalman-Filter can’t be applied in the 

majority of cases. An estimation-filter which can cope with nonlinear transition and 

measurement equations is the Extended-Kalman-Filter. It provides a solution of the filtering 

problem for nonlinear systems. Note that, while the Kalman-Filter is an optimal estimator, 

the Extended-Kalman-Filter is due to some linearization error not. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: Linear Transformation of Gaussian 
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The transformation of a Gaussian distribution through a linear function results in a Gaussian 

distribution. An example for the 1-dimensional case of such a transformation is depicted in 

figure 6. 

In the case of a nonlinear function the previously Gaussian distribution is not transformed 

into a Gaussian distribution any more. In figure 7, the nonlinear function  ( ) is almost 

linear in the region of confidence of the Gaussian-distributed x variable. However, even a 

weak nonlinearity in this interval, leads to a non-Gaussian probability density function for  .  

In this case, the Kalman-Filter would probably not deliver satisfying results. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: Nonlinear Transformation of Gaussian 
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In figure 8, the normal distributed density  ( ) is transformed through the nonlinear 

function into the non-Gaussian distribution a.). The idea for a filter algorithm that can be 

applied to nonlinear systems is to linearize around the operating point. This operating point 

is chosen for every time step as the state of the system which is most likely. After 

linearization, the Gaussian distribution is transformed through the linear function into the 

distribution labeled with b.). 

 

 

 

 

 

 

 

Figure 8: Linearization 
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After these considerations, the linear system depicted in equation (4.4) … (4.8) is now 

extended to a general nonlinear system which can be described with the following equations: 

 

    (        )          (4.18) 

    (  )             (4.19) 

 (  )   (    ̅     )          (4.20) 

 (  )   (    ̅    )          (4.21) 

 (  )   (       )          (4.22) 

 

The general case for the measurement equation would be:      (      ). But normally it’s a 

quiet realistic assumption that the measurement noise    is additive [Sola07]. This leads to 

equation (4.19). Furthermore it is noticeable that the system perturbation    has mean 0. 

Therefore  ̅  shown in (4.21) turns out to be the deterministic control input which was 

called    in the section about the Kalman-Filter.  

In order to linearize the system, its Jacobian matrices are built: 

   
  

   
  | ̂   ̅           (4.23) 

   
  

   
  | ̂   ̅           (4.24) 

  
  

  
 | ̂   

 ̂       ̅  are the last best estimate of the system state and the current control input.  

Now it’s possible to process the prediction correction pattern as known from the Kalman-

Filter.  
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4.4.1 EKF Prediction 

 

A temporal system state estimation is achieved through:  

 

 ̂ 
   ( ̂     ̅)          (4.25) 

  
          

       
           (4.26) 

 

4.4.2 EKF Correction 

 

       (  
 )          (4.27) 

      
               (4.28) 

     
   (   

     )
  
   

     
          (4.29) 

 ̂   ̂ 
                (4.30) 

   (     )  
           (4.31) 

 

Note that similar to the Kalman-Filter, all Extended-Kalman-Filter matrices that are 

independent of the current measurement    can be computed offline at the beginning of the 

filtering process.  

After linearization, the Extended-Kalman-Filter equations basically correspond to the ones 

known from the Kalman-Filter chapter. As mentioned above, the difference is that due to 

linearization errors, the EKF, unlike the KF, isn’t an optimal state estimator any more. For 

most applications it will none the less deliver good enough performance and its easy and fast 

structure makes the EKF a widely used approach to estimate nonlinear system states. 
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4.5 The SLAM Problem 

 

One of the basic problems in mobile robotics is called simultaneous localization and 

mapping. Before addressing more advanced tasks like reasoning or path planning, a mobile 

robot needs to know how its environment looks like and where it is located in this 

environment. If a map of the environment is available, the robot is, with the help of its 

sensors, able to localize itself in this map and afterwards use it to navigate in the unknown 

environment. If the robot knows its position relative to a fixed coordinate system, it can build 

a map by sensing features and relating them to the fixed coordinate system.  

So, without the methods of simultaneous localization and mapping, a robot either needs to 

have a map at the beginning of its exploration or needs access to his absolute position. An 

estimate of the absolute position can be obtained through GPS for example. However, there 

are situations where neither an absolute position nor a map is available. Another point which 

should be regarded is that a map which isn’t up to date, is quiet useless. So if a map of the 

environment is available, but not valid anymore because some obstacles for example 

changed their position, this can be dangerous. With the SLAM approach, the map is built 

incrementally and therefor contains the newest available data of the environment.  

SLAM can be thought of as a chicken or egg problem: An unbiased map is needed for 

localization, while an accurate pose estimate is needed to build that map.  

At the beginning of the SLAM process no map is available and the position of the robot is 

unknown. This scenario is mentioned in literature as the “kidnaped robot” scenario. The 

position at the beginning defines the origin of the navigation coordinate system, respectively 

the map. The next step would be to take a measurement. This measurement provides, 

depending on the used sensors, a more or less dense description of the environment. This 

description can then be related to the coordinate system defined at the beginning. When the 

robot moves it observes the same scene, but from a slightly different pose. The overlap of the 

observed field permits to estimate the robots movement. Additionally other sensors like 

odometry or an inertial measurement unit can deliver information about the robots 

movement. With the new position estimate, the robot is able to update the map and 

implement the new measurement data. So a map can be built incrementally and the position 

of the robot is estimated simultaneously.  
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The SLAM process verbally described above can be implemented in a lot of different ways. 

All approaches can basically be structured into the three parts: perception, estimation and 

decision [Sola07].  

In visual SLAM, the perception part is about finding interest points in different images. This is 

called correspondence problem and was described in chapter 3 of this thesis. After this 

problem is solved, the estimation process depicted in chapter 4 can start. How many and 

which landmarks are stored in the map and the landmark initialization, conversion and 

deletion process is part of the decision step of a SLAM algorithm.  
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Chapter 5 

Visual Monocular SLAM  
 

The previous chapters have shown some basics which are necessary to understand the visual 

monocular SLAM. This section will now show the missing parts, put all components 

together and give a more detailed description of the necessary steps to yield a working 

visual monocular SLAM system. 

 

 

5.1 Literature  

 

SLAM is still an active field in mobile robotics. The estimation and filtering side is nowadays 

well understood and no knew methods are expected in this area. Therefore recent researches 

concentrate on the decision and perception area. The launch of Microsofts RGB-D (red green 

blue and depth) Kinect camera in 2010 enormously stimulated the research on the perception 

side. With the Kinect camera it’s possible to build dense 3D maps in real time and render 

them with the image data. Besides the RGB-D SLAM, there are rangefinder (sonar, laser or 

infrared), visual monocular- and visual stereo- based SLAM approaches which have been 

developed over the last 15 years. As this work is about monocular camera SLAM, in the 

following mainly monocular systems are introduced.  

An area which is closely related to camera based SLAM is the one called Structure form 

Motion (SfM). As SfM has so much in common with camera based SLAM, it is also briefly 

introduced in the section below. 

 

5.1.1 Structure from Motion 

 

The intention of visual SLAM algorithms is most often the localization in an unknown 

environment. Therefor only a sparse map is created and besides the localization task, this 

map is seldom used to solve high level problems like path planning or manipulation. So the 

creation of a map is a necessity to support the localization but not the goal itself.  
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There is another vision based technique, which shares a lot of the methods of visual SLAM, 

but with a slightly different goal. Structure from Motion systems aim at a, preferably 

accurate, reconstruction of the observed scene. In contrast to a visual SLAM system, SfM 

systems don’t need to work in real time. The model of the environment produced by SfM 

systems usually is generated from an image sequence which shows a static scene from 

different positions. Not needing to work in real time also provides the possibility to optimize 

the structure estimation globally. This means an image sequence not necessarily has to be 

investigated sequentially, frame to frame, as it’s the case in visual SLAM, but separated parts 

of the whole sequence, can be used together for the optimization. This optimization process 

is known as “bundle adjustment”. With SfM it’s possible to build 3D models of a scene, 

which can then be further examined with object recognition algorithms to yield a 

comprehension of the scene. Another application could be to model the inside of buildings 

and render it with the RGB information to receive an intuitive map for human orientation 

and navigation. This could be an expansion of google maps for the inside of buildings. There 

are quiet powerful applications conceivable and so the visual SLAM benefits from the 

development in the SfM area. A good overview about the SfM topic is given in 

[CVAlgoAndApplic]. 

 

5.1.2 Visual Monocular SLAM 

 

The earliest approach in the field of monocular SLAM was probably the DROID system in 

1987 by [Harris87]. This system was far ahead of its time and the authors continuously 

improved it, so that they could present a real-time implementation view years later. 

Although the DROID system was able to perform visual monocular SLAM with long image 

sequences and build 3D maps with many features, it had one big disadvantage. It neglected 

correlation between features and handled the estimation of every feature position in a 

separate EKF. That meant, loop closures didn’t improve the estimation of all features and 

therefore the DROID system suffers from drift. Later approaches by [Ayache91] or 

[Beardsley95] also presented working visual monocular SLAM systems but they also 

neglected correlation. [Smith87] and [Moutarlier89] were the first who came up with the idea 

of one single state vector together with one covariance matrix. In the early 1990s, the believe 

that estimates obtained by regarding correlations between features through one covariance 

matrix wouldn’t converge, limited the efforts to implement a so called “joint state” approach.  

 

 

 



42 
 

The breakthrough for visual SLAM systems with joint state came with the evidence of the 

convergence of this procedure in 1995 [Durrant06]. Not least through the increase in 

computational power, most recent approaches in the visual monocular SLAM area all use 

joint state approaches.  

Among the latest systems the so called monoSLAM system [Davison07] is quiet popular. This 

system enables to localize a monocular freely moved camera in real-time and is based on the 

EKF. It is a further development of Davison’s active stereo camera system [Davison98] and 

his publication from 2003 [Davison03]. [Chekhlov06] presented a solution of the monocular 

SLAM problem which is quiet similar to Davison’s approach but uses Histograms of 

Oriented Gradients (HOG) as feature descriptor. Another recent system is the vSLAM 

[Karlsson05] which bases on a particle filter and the SIFT feature descriptor.  

 

A comparison of some interesting visual SLAM approaches is given in the following table: 

 

 

Approach 

 

 

Year Camera- 

type 

Feature 

Descriptor 

Joint State Filter DoF Specific 

features 

DROID 

[Harris87] 

 

1993 monocular 

and stereo 

edges uncorrelated EKF 6 - 

Active Vision 

[Davison89] 

 

1998 stereo patches correlated EKF 3 actuated 

cameras 

MonoSLAM 

[Davison03] 

 

2003 monocular patches correlated EKF 6 real-time 

capable 

Mono-

Camera-

Tracking 

[Pupilli05] 

2005 monocular patches partly 

correlated 

particle 

filter 

6 - 

vSLAM 

[Karlson05] 

 

2005 monocular SIFT correlated Fast-

SLAM 

3 odometry 

Monocular 

SLAM 

[Chekhlov06] 

2006 monocular HOG correlated Un-

scented 

KF 

6 odometry 

MonoSLAM 

[Davison07] 

 

2007 monocular patches correlated EKF 6 inverse-

depth 
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5.1.3 Camera Pose Tracking with Dense Methods 

 

All systems presented above are based on features and sparse maps. Monocular systems that 

use dense maps but still rely on feature based tracking of the camera pose are for example 

[Newcombe10] or [Stuehmer10]. Besides these, there are other methods, completely 

relinquishing feature extraction by using dense methods that consider all pixels in an image 

and exploiting all available information through global optimization.  

One of these systems is the so called “Parallel Tracking and Mapping” (PTAM) [Klein07]. 

The authors present a system which splits tracking and mapping into two separate tasks, 

which can then be processed in parallel threads on a multicore processor. This procedure 

allows them to use batch optimization techniques (Bundle Adjustment) which are, due to 

their computational effort, usually not found in real time systems. The results are detailed, 

dense maps with thousands of landmarks and real time camera tracking with high accuracy.  

Another approach in the field of dense tracking is the “Dense Tracking and Mapping” 

(DTAM) system presented by [Newcombe11] in 2011. Their system, unlike any other real-

time monocular SLAM system, creates a dense 3D surface model and immediately uses it for 

dense camera tracking via whole image registration.  

 

 

5.2 The MonoSLAM System from Davison 

 

There are various possibilities how to realize a visual monocular SLAM system in detail. 

Besides the obvious big topics like filter algorithm or feature descriptors, a whole bunch of 

other problems have to be solved. Andrew Davison’s monoSLAM system offers some 

interesting detail solutions which help to make it computational efficient and therefore real-

time capable. The basics introduced in the chapters above are now supplemented to get to a 

working system.  
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5.2.1 State Representation 

 

As depicted in chapter 4.1, the mathematical expression of the behavior of a dynamical 

system can be obtained by using a discrete state space formalism. Davison suggest using the 

state vector     depicted in (5.1), to represent the state of the camera and the vector      

depicted in (5.2), to represent the state of the landmark i. This vectors need to encode all 

necessary information to describe the system completely.  

 

   (

  

  

  

  

) 

         (5.1) 

  

The    component of (5.1) denotes the position of the camera optical center in the world 

coordinate system W.    is the unit quaternion which depicts the camera orientation relative 

to the world frame. Note that the redundancy in the quaternion part of the state vector 

means that a normalization needs to be performed at each update step of the EKF 

[Davison03]. This normalization also influences the covariance matrix through a 

corresponding Jacobian calculation and multiplication according to formula (4.23) and (4.26) 

in the EKF chapter.  

   encodes the linear velocities of the camera along the coordinate axes of W and    is the 

vector of angular velocities between world and camera coordinate frame. This means    is a 

13 dimensional vector. 

    (

  
  
   
) 

         (5.2) 

 

The landmark state vector     consists of the              component of the landmark i 

relative to the world coordinate system.  
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So the total state vector of the whole system is: 

  

  (

  
   
 
    

) 

        (5.3) 

 

Note that the size of   is time-variant and depends on the number of landmarks which are 

stored in the map. 

 

5.2.2 Joint State 

 

An important discovery in the field of SLAM was made in the early 1980th. Till then, 

researchers in the SLAM area mainly avoided algorithms which use correlations between 

state variables. The fact, that there are strong correlations between different landmarks and 

the robot position and that this information is important and shouldn’t be neglected, had 

been noticed before. However, due to the computational effort and the insecurity of the 

convergence of a correlation based approach, it remained mainly unused until the early 

1990th [Durrant06]. An intuition of these correlations can be obtained by regarding that an 

uncertainty in the estimate of the current robot position influences not only the next robot 

position, but also all the observed landmarks and all landmarks that will be observed later 

on. So it’s profitable to combine the robot position and the landmark’s position in one state-

vector and express the correlations in one matrix. 

 

 

  

[
 
 
 
 
           

      
 

      
       

       
 

      
       

       
 

    ]
 
 
 
 

 

        (5.4) 
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5.2.3 System Model and State Transition 

 

Modeling the motion of a hand held monocular camera is different from modeling a camera 

mounted on top of a wheeled robot, moving on a plane. In the case of a wheeled robot, the 

control inputs which drive the motion are available whereas in the case of a freely 

maneuvered camera, this information is missing. Furthermore, through the lack of any 

geometric constraints which would simplify the motion model, or in the case of a robot 

moving on a plane, would remove one dimension, no simplification is possible here.   

Theoretically, the behavior of a dynamical system can be modeled with infinite precision. 

With such a perfect system model, it would be possible to calculate even future states of a 

system with no uncertainty. In practice, however, it’s only possible to model a system with 

limited precision. In order to take these modeling uncertainties, the so called process noise, 

into account, a probabilistic system consideration is beneficial. The EKF approach described 

above, like every other probabilistic approach, needs a transition function a measurement 

function and some information about the kind of uncertainties, provided through the 

covariance matrices. The way how one state transitions to another state is depicted below. 

There is an infinite amount of possibilities to model the camera motion.  

[Davison03] proposes the following approach for the nonlinear system model. In each time 

step       an unknown, zero-mean, Gaussian-distributed accelerations    and angular 

acceleration  ̇  affect the camera. These accelerations cause an impulse of velocity which 

can be depicted with the following noise vector: 

 

  . 
 

  
/  . 

 

 ̇ 
/     

          (5.4) 
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A state transition from   to     under a disturbance   can be modeled through: 
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 .(  
    

 )  / is the quaternion which depicts the rotation of the camera frame C around 

the rotation vector (  
    

 )    

 

5.2.4 Inverse Depth Feature Parameterization 

 

The easy and intuitive landmark description depicted in (5.2) shows some drawbacks when 

it comes to initializing a new landmark and adding it to the EKF.  This is why the inverse 

depth parameterization is introduced now. 

It would be possible to use the XYZ representation of a landmark when the initial depth 

estimate would be quiet accurate and the measurement equation would be tolerably linear. 

In fact, the more linear the measurement equation is and the better the initial guess was, the 

better is the performance of the Extended-Kalman-Filter. Or in other words: If the initial 

estimate of the state is terribly wrong and the measurement equation is highly nonlinear, the 

linearization error ensures that the filter will quickly diverge. 

The first few frames that show a new landmark, especially in low parallax situations, deliver 

little information about the landmarks depth. The depth can only be modeled through a 

distribution that rises sharply at a well-defined minimum depth to a peak, but then declines 

very slowly [Montiel06]. That means it is quiet hard to tell whether a landmark has depth 10 

units or depth 1000 units. The only possible statement is that the landmark is likely to be 

farther than 10 units. This is way to less when considering that ideally a narrow Gaussian 

distribution is aimed. A commonly used approach to get a quite accurate initial (with respect 

to the time when a new feature is inserted in the EKF) depth is the delayed initialization. 

This means, after the first observation of the landmark, it is not inserted into the EKF 

immediately, but further information is collected till the depth uncertainty is low enough 

and the depth can be modeled as a Gaussian distribution.  
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So, newly observed landmarks are treated differently from the others and special algorithms, 

independent from the main EKF estimation loop, are applied to reduce depth uncertainty. In 

his earlier approaches, Davison used a particle filter to explicitly refine the depth estimate of 

new landmarks over several frames, before inserting them in the EKF loop. The particle filter 

is more robust when it comes to initializing new landmarks with a depth which is far from 

the real depth.  

No matter which algorithm is used to refine the depth at the beginning, the disadvantage of 

all delayed initialization approaches is that, while held outside the main loop, the landmarks 

cannot contribute to the estimation of the camera state for some serious amount of time. 

Furthermore, some of the landmarks, that show little or no parallax during motion, such as 

far ones or ones that are close to the motion epipole, never reach the point where their depth 

uncertainty is low enough and therefor never contribute to the state estimation with the EKF.  

 

 

Figure 9: Inverse Depth Parameterization 
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This is why [Montiel06] suggested to use the inverse depth feature parameterization which 

has two main benefits. It shows that, in inverse depth coding, the measurement equation 

linearization error at low parallax is lower than in XYZ coding. The second advantage is that 

inverse depth coding allows handling landmarks at all depth, from very close to infinity, 

within the standard EKF framework and with no special treatment. Besides these great 

advantages, the only drawback of this kind of feature representation is the increased state 

vector size and therefor, the increase in computational effort. But the authors of [Montiel06] 

also proposed a solution for this problem. They introduce a linearity threshold that allows 

switching from inverse depth to XYZ representation. 

 

A landmark in inverse depth parameterization has the following appearance: 
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 is the camera position from which the feature was observed at the first 

time.       are the azimuth and elevation of the vector  (     ) obtained in the initial 

camera frame      . The depth of the landmark from its first observation to the current 

position along the vector  (     ) is encoded with        . So the landmark description in 

XYZ coding can be obtained from the inverse depth representation with the following 

formula. 
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5.2.5 Measurement Equation 

 

If    is the measurement vector depicted in the camera coordinate system and     is the 

rotation matrix transforming a vector from the world system to the Camera system, the 

following equation holds: 

XYZ-Coding: 
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         (5.7) 

Inverse Depth Coding: 
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       (5.8) 

 

Note that the camera doesn’t observe    directly, but its projection in the image plane, 

according to formula (2.2) from chapter 2.  

The difference between (5.7) and (5.8) is that in (5.8) a point at infinity can be modeled 

through        

A modification of equation (5.9) would be to substitute 
 

  
 with    and therefore get the ability 

to code a point at zero depth. 
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The parallax angle   is defined between  (     )
  and   . If the parallax angel is small, 

both rays are almost parallel. This is the case for distant landmarks or when the camera 

moves slowly or not at all. Rewriting equation (5.8) yields: 
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)    
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   (     )
 ) 

      (5.9) 

 

For a low parallax angle    the term      
     is close to zero and    can be approximated 

as: 

      ( (     )
 ) 

         (5.10) 

This means, no information about the camera translation can be obtained from this 

landmark  . The measurement equation only provides information about the camera 

orientation and the direction of   . The low parallax of landmark   is coded in a shifting of 

   towards zero which decreases depth uncertainty and leads to the conclusion of, either a far 

landmark, or one that lies next to the motion epipole. If   is distant, the inverse depth 

   confirms this by decreasing further and further. So, even when the depth cannot be 

estimated because of a distant landmark, some information about its depth has been coded.  

If the landmark is nearby the motion epipole, some parallax will eventually be detectable 

which then leads to a narrowing Gaussian distribution.   

 

5.2.6 Feature Conversion and Linearity 

 

Despite all the advantages when it comes to initialization, the inverse depth 

parameterization leads to a doubled landmark state vector size. This is a big drawback 

because it means that that the computational costs for landmark handling are four times 

higher than in XYZ parameterization. So while the XYZ coding shows drawbacks in the 

initialization without prior knowledge, inverse depth coding isn’t suitable to discribe the 

landmark in the long term. 
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The solution, suggested in [Civera07], is to switch between different parameterizations. 

Therefore a threshold which allows to distinguish the moment where it is save to convert 

from one to another depth coding needs to be found.  

As depicted in the EKF chapter, it shows, that when a function, for example the 

measurement function, is linear within an interval around the mean of a Gaussian 

distributed random variable, the projection of this random variable is also Gaussian. So, in 

order to switch to the XYZ parameterization and still obtain Gaussian distributed 

measurements, the moment has to be determined, when the measurement function is linear 

enough.  

The linearity of a function f can be determined by examining its first derivative. If a function 

is linear in an interval, its first derivative is constant in that interval.  

Let x be a Gaussian random variable in the notation of (4.9). The interesting interval in which 

about 95% of all values lie is then:  , ̅      ̅    - 

The Taylor expansion for the first derivative is: 
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         (5.11) 

An idea of the linearity of a function within a certain interval is given through the following 

dimensionless quotient: 
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         (5.12) 

This quotient compares the derivative at the interval center  ̅  with the derivative at the 

interval extremes  ̅      

When     the function can be considered linear and the Gaussianity is preserved.  

This means, in order to compare the inverse depth with the depth parameterization, this 

linearity index has to be calculated for the measurement function of each representation. 
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Therefore, the authors of [Civera07] simplified the measurement model as depicted in figure 

10. The landmark, located in distance    is observed by camera 1 in the distance        

with the Gaussian distributed location error    (    
 ).  

The simplified measurement equation for a camera with normalized focal length shows how 

the error   is propagated to the image taken with camera 2: 

  
      

         
  

         (5.13) 

 

 

Figure 10: Simplified Camera Model for Depth Coding 
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When the linearity quotient (5.12) of   is calculated, the following results:  

   
   
  
|    | 

         (5.14) 

This means,    is only close to zero when the parallax angle   is very high (which for 

initialization is impossible) or when the initial uncertainty is very low in contrast to the 

distance     

For the inverse depth coding, the simplified camera model is depicted in figure 11. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11: Simplified Camera Model for Inverse Depth coding 
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The landmark in distance 
 

  
 is observed by camera 1 in the distance     (    ) with the 

Gaussian distributed location error    (    
 ). With    

 

  
 follows:         

 

  (    )
 

 

The measurement equation for the inverse depth coding for camera 2 is then: 

  
      

     (    )        
  

         (5.15) 

This leads to the linearity quotient for the inverse depth:  

   
   

  
|  

  
  
    | 

         (5.16) 

 

So    will be automatically close to zero for low parallax, because then,  
  

  
     will be close 

to 1 due to a small   and due to         This means, inverse depth is perfectly suitable for 

initialization, when low parallax is obtained. Therefor it’s not important whether the initial 

uncertainty    is high or how far or close a landmark is. 

(5.14) and (5.16) deliver information about the linearity of the particular parameterization. 

The next step is to define a threshold which can be compared with the linearity quotient 

(5.14) and allows determining a point in time, from where the XYZ parameterization can be 

used.  

In order to define this threshold, some information about the dependency of the real 

distribution from the linearity quotient has to be collected. [Civera07] applied a Kolmogorov-

Smirnov test for a number of sets (         ) to verify the Gaussianity of   and at the same 

time they computed the linearity quotient for these sets. The result of their simulation was 

that a linearity quotient smaller 0.1 indicates an acceptable Gaussianity for   and therefore its 

save to switch from inverse depth to depth parameterization when: 
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56 
 

5.2.7 Active Search 

 

The idea of active search is to use all available information about the landmark and the 

current camera pose, to speed up the feature matching process. An intuition of the active 

feature search can be obtained by considering a projection of the probabilistic state vector 

into the image plane. When applied intelligently, the idea of active feature search leads to an 

enormous decrease in computation time. The dramatically decreased computation time 

originates not only from a smaller search region, but mainly from the fact that very simple 

appearance-based feature descriptors, like patches, together with correlation-based 

matching, are applicable together with active feature search. Active feature search or guided 

matching, how it’s sometimes called, allows relinquishing processor burdening feature 

descriptors like SIFT or SURF. But, depending on the sort of implementation, it also 

considers scale and or rotation changes through “affine patch warping” or other advanced 

methods [Davison07] [Molton04]. In order to shrink the search region, the region of 

confidence of the landmark position is projected into the image plane. This means, instead of 

searching the whole image for a particular landmark, with active search, only an elliptical 

region, representing for example the 2  confidence interval, has to be searched. Furthermore, 

because of the Gaussianity of this interval, by searching the inside of the elliptical region 

first, the matching time is further decreased. Another consideration which shouldn’t be 

neglected is that by considering only a tiny search region through active search, the number 

of false feature matches sinks dramatically.  

 

 

5.2.8 Feature Deletion 

 

Computational power is a rare resource in real time applications, so it’s crucial to have a 

mechanism to delete features and keep the map dimension reasonable. Davison’s monoSlam 

system works with map sizes somewhere around 100 landmarks. It has to be distinguished 

between reliable features, which can be matched in many frames and always appear in 

places where they are predicted, and between features which haven’t been matched 

repeatedly. One possibility to detect unreliable features is to compare the number of 

successful matches with the number of match attempts. Of course, this measure only makes 

sense, when a particular number of match attempts was made.   
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Besides the decreased map size, this deletion mechanism also provides some robustness in 

terms of a non-static environment. When for example, a landmark was initialized at a 

moving object, the corresponding feature will soon be deleted because it will never show up 

in the predicted search region. The result is that non-static objects in the environment remain 

automatically disregarded. 

 

5.2.9 MonoSLAM Summary 

 

The following sequence plan orientates on Davison’s monoSLAM system. This is only one 

possibility to concretize a monocular SLAM system. Although the points below are quite 

coarse and fuzzy, they give an overview about the most important steps in monocular 

camera SLAM. 

 

1. get new image from camera 

2. for every feature stored in the map, search the region in which its appearance in the 

new image is most likely 

3. match features through image patches, regarding scale and transformation  

4. if necessary, search new features in the current image 

5. for every new feature, define a semi-infinite ray from the camera optical center to the 

landmarks according to the pinhole camera model and initialize it with its inverse 

depth 

6. decide for all features in the map to switch from inverse depth to XYZ coding 

7. delete features which haven’t been appeared in their predicted area for several 

measurements 

8. refine camera position through an update of the state vector considering the changes 

in covariance matrices and state vector size in the EKF framework 

9. Start from 1. 

 

Note that these steps suite a running system and that a different start-up procedure is 

needed.  

 

 



58 
 

Chapter 6 

Practical Part 
 

 

The theoretical considerations of the previous chapters have shown how a visual monocular 

SLAM system works in detail. This part introduces Andrew Davison’s “SceneLib” and 

describes how it can be used to perform the visual monocular SLAM procedure. 

 
 

 

6.1 The Setup 

 

The monocular SLAM system examined in this work is intended for controlling a two-

wheeled balancing robot. The hardware is quiet simple. Besides the obvious components 

depicted in figure 12, the robot possesses a powerful ODROIDX2 mini PC with a Linux 

operating system which makes real-time image processing accessible.  A standard low-cost 

USB digital camera provides the images. Although it would be possible to use the data from 

the IMU and the odometry sensors to support pose estimation, this will not be part of this 

thesis. For further information about the topic of visual- and IMU data fusion see for 

example [Bleser08]. An interesting approach of a lightweight SLAM alternative using optical 

flow and an IMU is introduced in [Bleser07].  
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Since the monoSLAM system was designed to work with six degrees of freedom and doesn’t 

depend on a model of the robot or any other motion constraints, a changed dynamic of the 

robot or the position of the mounted camera, shouldn’t bother the pose estimation. This 

would provide the possibility to create a redundant system. Failure of one of the two 

available sensors (IMU or camera) will not endanger the stability of the robot. It also ensures 

that the robot stays highly adaptable to different tasks and designs. Note that visual 

monocular SLAM is not able to deliver absolute distances. That means the data provided by 

the algorithm will depend on an unknown scale factor. To determine this factor is important 

for a proper control. [Davison03] proposes to fix this issue by using an initialization template 

of known geometry. Another interesting approach, which uses the IMU data to obtain the 

missing scale factor, is presented in [Nützi07]. 

 
 

Figure 12: Robot setup 
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6.2 The SceneLib SLAM library 

 

The first version of SceneLib was released in May 2006 and was called SceneLib1.0 [SceneLib]. 

It was an open-source C++ library for SLAM in general and mainly designed and 

implemented by Andrew Davison with the intention to separate the core algorithms of 

probability propagation from the details of a particular robot application.  Andrew Davison 

is a Professor of Robot Vision at the Imperial College in London. He also leads the Imperial 

College Robot Vision Research Group at the Department of Computing. 

 

Together with the SceneLib library, Davison presented the so called monoSLAMGlow 

application. This program had an interactive GUI which used the GLOW toolkit and 

OpenGL and was able to take images in real-time from an IEEE1394 camera and perform 

monocular camera SLAM. Some more advanced features like “affine patch warping” 

[Davison07], [Molton04] or “relocalization” [Williams07], were not implemented in this 

version, nor are they provided in later open-source implementations of the monoSLAM 

system. So when the application demands a system, which can cope with significant rotation 

or strong camera shakes, the user needs to extend the open source version of SceneLib.  

SceneLib2 [Kim13] is a reimplementation of Davison’s system and the one used in this thesis. 

Hanme Kim, the author of SceneLib2, is currently a PhD student at Imperial College London. 

He created the new version to make the monoSLAM system available for USB cameras 

instead of IEEE1394 cameras and to replace some older libraries (VW34, GLOW, VNL) with 

new ones (Pangolin, Eigen3, Boost). 

 

The installation process of SceneLib2 is very easy. After installing the various development 

related packages, and the four important libraries OpenCV, Eugen3, Boost and Pangolin, the 

SceneLib2 can be built with the help of CMake. After the building process, much like in 

SceneLib1, a graphical user interface (GUI) is available which visualizes the results.  
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Within the program, there are four main control areas. The “Graphics Toggles” allow 

displaying uncertainty regions or the camera trajectory. The “Main Controls” area is used to 

switch between “continuous” and frame to frame depiction of the camera images by clicking 

the “Next” button. By clicking the “Stop” button, the image sequence stops and new features 

can be initialized manually by clicking “Initialize Manual Feature” in the “Action Controls” 

area. The “Action Controls” section provides some other additional features to print the 

current robot state or save a particular image patch.  These features are optional and can in 

some cases improve the localization or deliver additional information about the system. In 

order to start the mapping and localization process, it’s only necessary to click the 

“Continuous” button in the “Main Controls“ and then start tracking by clicking the “Enable 

Mapping” and “Toggle Tracking” buttons in the “Controls Toggles” section while pointing the 

camera at the initialization pattern. This initialization template, mentioned in the chapter 

above, is important to determine the scale factor in a monocular SLAM system and to be able 

to display absolute measures for the camera position. The template also provides reliable 

features within the first seconds of the process. It is beneficial for the tracking performance 

when the initialization frame displayed in the camera image on the right bottom side, fits the 

initialization template quite accurately. So the patches depicted in the image should ideally 

overlay the template corners.    

Figure 13: SceneLib2 GUI 
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Before using the program, the configuration parameters have to be adapted. This can be 

done by editing the file SceneLib2.cfg which is in the data folder of the SceneLib2 directory.  

The SceneLib2.cfg file provides all information for the initialization process. So besides the 

initial uncertainty regions, the initial values for the camera state vector and data concerning 

the geometry of the initialization template, the configuration file mainly contains information 

about the used camera.   

 

6.3  Calibrating the Camera 

 

The SceneLib2 can either be used with an example image sequence or with a USB camera. In 

this thesis, a Logitech HD C270 webcam was used.  

The first attempts with the SceneLib2 were made with a non-calibrated camera. Apart from 

this, it showed that the used camera, as almost any low cost CMOS USB webcam, is not very 

suitable for monocular SLAM. First of all, the operations, which are applied by the hardware 

and software of the camera like jpeg-compression, interpolation or noise reduction, can be 

very contra productive. A smoothing operation, for example, can destroy some important 

image features. The biggest drawback of such a camera is, however, the distortion caused by 

the rolling shutter effect which means that not all parts of the image are recorded at exactly 

the same time.  

So after the first attempts with the SceneLib2, it manifests that a non-calibrated camera in 

addition to a cheap camera consequently led to a system state vector that diverged within the 

first view seconds.  

The next step was to find the intrinsic camera parameters as they were introduced in chapter 

2. In order to do this the Matlab toolbox [Calib] was used. This toolbox provided by Jean-

Yves Bouguet from California Institute of Technology is open source and identical to the C-

code version which is part of the OpenCV library.  

Before the calibration process can start, sample images have to be taken. The Logitech HD 

C270 is capable of delivering 640x480 pixels at 30 frames per second and images with up to 

three Megapixels. As the SceneLib2 uses images with 320x240 pixels, the calibration process 

was also performed with images of the size 320x240 pixel. So, capturing images of the 

calibration target from different camera poses, in this case 10 images, and providing them to 

the toolbox were the next steps.  
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Afterwards, the outer grid corners had to be chosen manually and the program needed to 

know how many squares are displayed along the grid boundaries. Another parameter that 

had to be provided was the size of the squares. This geometric information was then used to 

display the assumed location of the corners in the calibration target. When these points 

weren’t close to the real corners, an initial guess for the first distortion coefficient had to be 

entered. In most of the cases, the displayed corners were quite accurate and the corner 

extraction algorithm was able to find the corner location in an area around that assumed 

points. This process was then repeated for every image. Finally, the main calibration step 

which consists of an initialization and a nonlinear optimization was executed and the 

calibration results were obtained. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14: Extrinsic Parameters 
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The reprojection error corresponds to the image distance between a measured point and a 

point which is projected according to the camera model.  

After the first optimization process the following results were obtained. 

 

Focal Length:  [ 407.52491   404.93005 ] ± [ 6.35612   6.94583 ] 

Principal Point: [ 171.77256   101.44741 ] ± [ 8.95702   10.01769 ] 

Skew:              [ 0.00000 ] ± [ 0.00000  ]    

Distortion:        [ 0.07079   -0.54587   -0.01676   0.00832  0.00000 ] ±  

 [ 0.12484   0.92908   0.00946   0.00847  0.00000 ] 

Pixel Error:           [ 0.41433   0.52834 ] 

 

A further improvement of these parameters could then have been obtained, by using the 

projected corner points as initial location for corner extraction and passing the calibration 

process another time.  

 

Figure 15: Reprojection Error 
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6.4 Results and Conclusion 

 

With a calibrated camera, the SceneLib2 was then tested again. The fact that in the open 

source version of the library, “affine patch warping” is not implemented makes it very 

vulnerable for large rotations. Additionally, the rolling shutter of the camera leads to 

distortion in dynamic situations. These two points were then probably the reason why even 

with a calibrated camera, the performance of the system was not significantly improved. By 

preventing camera shakes and moving very slowly with few rotations, it was finally possible 

to get a trajectory over more than 20 seconds that seemed to be quiet accurate.  

However, a stabilization of a mobile two wheeled robot is definitely far beyond the 

possibilities of the unimproved, current system. On a mobile robot, rotation and shaky 

movements are daily business and therefore, the attempts performed with the hand held 

camera led finally to the conclusion, that it wouldn’t make sense to use this system together 

with the balancing robot without supplementing the code with approaches presented in 

[Davison07] or [Williams07] and using a global shutter camera.  
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