
Institute of Architecture of Application Systems

University of Stuttgart
Universitätsstraße 38

D–70569 Stuttgart

Diploma Thesis Nr. 3504

An Extensible Application
Topology Definition and
Annotation Framework

Anja Reuter

Course of Study: Computer Science

Examiner: Prof. Dr. Frank Leymann

Supervisor: Dr. Vasilios Andrikopoulos

Commenced: 2013-05-29

Completed: 2013-11-28

CR-Classification: D.2.2; D.2.7; H.4.2

Abstract

This thesis introduces a framework for decision support during the design of applications
for the cloud, or migration of existing applications to a cloud environment. For this
purpose, a GENeralized Topology Language (GENTL) is introduced and mappings
from existing languages to GENTL are provided. An annotation scheme for GENTL,
which can capture annotations to topologies and topology elements is designed and
instantiations for different annotation types are given. A framework implementing
import functionalities for the topology languages Blueprint and TOSCA is presented.
The framework enables the annotation of topologies with documentation annotations,
references to external resources and incorporates a series of annotations which can be
used to retrieve cost calculations from the external decision support system Nefolog.

3

Contents

1 Introduction 11

2 Fundamentals and Related Work 13
2.1 Basic Terms in Cloud Computing and Web Services 13

2.1.1 Cloud Computing Terms . 13
2.1.2 Web Services Standards and Technologies 14

2.2 Application Topology Languages and Frameworks 15
2.2.1 Blueprint . 15
2.2.2 TOSCA . 18
2.2.3 Cafe and MOCCA . 22
2.2.4 Topology Frameworks in Cloud Management Tools 25
2.2.5 CloudML . 28
2.2.6 Descartes Meta-Model . 30
2.2.7 Unified Modeling Language . 31
2.2.8 Unified Service Description Language 32
2.2.9 Comparison . 33

2.3 Annotation Approaches for Application Topologies 35
2.3.1 Classification of Annotations . 35
2.3.2 Annotations in Presented Topology Languages and Frameworks 36
2.3.3 Discovery Annotations . 38
2.3.4 Management and Provisioning Annotations 40
2.3.5 Design Support Annotations . 43
2.3.6 Summary . 47

3 Generalization of Application Topology Languages 49
3.1 Common Fundamental Concepts in Application Topologies 49

3.1.1 Components . 49
3.1.2 Connectors . 50
3.1.3 Attributes . 51
3.1.4 Groups of Components . 51

3.2 GENTL - a GEneralized Topology Language 53
3.2.1 Requirements for a Generalized Application Topology Language 53
3.2.2 Realization of Topology Concepts 54
3.2.3 Mappings between GENTL and existing Topology Languages . 54

5

4 GENTL Annotations 59
4.1 Structures and Concepts in Topology Annotations 59
4.2 Requirements for GENTL Annotations 60

4.2.1 Annotations to be supported . 60
4.2.2 Attachment Mechanisms for Annotations 61
4.2.3 Assembled Requirements . 61

4.3 Annotation Model . 62
4.3.1 Annotation Structure . 62
4.3.2 Instantiation for Different Annotation Types 64

5 Implementation 65
5.1 Requirements . 65
5.2 Implementation Options . 66

5.2.1 Stand Alone Application . 66
5.2.2 Plugin for an existing Development Platform 67
5.2.3 Web Application . 68
5.2.4 Options Evaluation . 69

5.3 GENTL Environment Architecture . 69
5.3.1 Topology App . 70
5.3.2 Annotation Apps . 72
5.3.3 Transformation App . 75

5.4 User Interface . 75

6 Evaluation 79
6.1 Topology Import and Visualization . 79

6.1.1 TOSCA Import . 79
6.1.2 Blueprint Import . 81

6.2 Topology Annotations . 84
6.2.1 Static Annotations . 84
6.2.2 Dynamic Annotations . 84

6.3 Extending the Framework . 85

7 Conclusion 87

8 Appendix 89

Bibliography 93

6

List of Figures

2.1 Monolithic Cloud Stack Solutions vs. Syndicated Multi-channel Cloud
Delivery Model Introduced in the Blueprint Approach [NLPH12]. . . . 16

2.2 Fundamental Blueprint Structure [NLPH12]. 17
2.3 Structural Elements of a TOSCA Service Template and their Relations

[tos13]. 19
2.4 Requirements and Capabilities for Node Types and Templates in TOSCA

[tos13]. 20
2.5 Service Template Composition in Topology and Orchestration Specifica-

tion for Cloud Applications (TOSCA) [tos13]. 21
2.6 Ingredients of a Cafe Application Template [Mie10]. 22
2.7 Cafe Application Metamodel [Mie10]. 23
2.8 The Model Types and Metamodel used for MOCCA [LFM+11] 24
2.9 Structure of AWS CloudFormation Templates [clo13]. 26
2.10 Structure of the OpenStack Software [ope13b]. 27
2.11 Architecture of CloudML [BMM12b] . 29
2.12 Metamodel of Pim4Cloud DSL [BMM12a] 29
2.13 Structure of the Descartes Meta-Model [KBH12]. 30
2.14 UML Package Diagram of USDL [USD11]. 33
2.15 Role of a Web Service Level Agreement in Service Interactions [LKD+02]. 41
2.16 Overview of main WSLA Concepts [LKD+02]. 42
2.17 Concept for policy-aware Provisioning of Cloud Applications [BBK+13]. 43
2.18 Cloud Pattern Framework [FLR+11]. 44
2.19 The CAP Properties of a Distributed System [ASFL13]. 46
2.20 CAP Extension of the Cloud Pattern Framework [ASFL13]. 47

5.1 Attributes Datamodel . 70
5.2 Datamodel of Topology Elements . 71
5.3 Datamodel for static Annotations . 72
5.4 Nefolog Annotation Datamodel . 74
5.5 Index Page of the GENTL Environment 76
5.6 Topology Overview . 76
5.7 Contents of the Annotation Tabs . 77
5.8 Contents of the Topology Information and View Tabs 78

7

6.1 Sugar CRM Topology . 80
6.2 Comparison of Topology Displays . 80
6.3 Sample Blueprint Virtual Architecture Graph [NLPH12]. 81
6.4 Taxi BackEnd SaaS Topology . 82
6.5 BPEL Composition Engine Topology 82
6.6 Context Integration Framework Topology 83
6.7 Enterprise Service Bus Topology . 84
6.8 Cost Calculation Response . 85

List of Tables
2.1 Topology Languages and Frameworks 34
3.1 Mappings between GENTL and other Topology Languages 56
5.1 Implementation Options . 69

List of Listings
3.1 Formal Description of GENTL using EBNF 55
4.1 Formal Description of GENTL Annotations using EBNF 63

8

List of Abbreviations

API Application Program Interface
AWS Amazon Web Services
BPEL Business Process Execution Language
BPMN Business Process Model and Notation
CaaS Composite as a Service
Cafe Composite Application Framework
DMM Descartes Meta-Model
DOM Document Object Model
DSL Domain-Specific Language
EBNF Extended Backus-Naur Form
EMF Eclipse Modeling Framework
GEF Graphical Editing Framework
GENTL GENeralized Topology Language
GMP Graphical Modeling Project
HTML Hypertext Markup Language
IaaS Infrastructure as a Service
JSON JavaScript Object Notation
MOCCA MOve to Clouds for Composite Applications
MVC Model View Controler
OMG Object Management Group
OWL Web Ontology Language
PaaS Platform as a Service
QoS Quality of Service
SaaS Software as a Service
SAWSDL Semantic Annotations for WSDL and XML Schema
SBA Service Based Application
SLA Service Level Aggreement
SVG Scalable Vector Graphics
TOSCA Topology and Orchestration Specification for Cloud Applications
UML Unified Modeling Language
URI Uniform Resource Identifier
URL Uniform Resource Locator
USDL Unified Service Description Language

9

W3C World Wide Web Consortium
WSDL Web Services Description Language
WSLA Web Service Level Agreement
XHTML Extensible Hypertext Markup Language
XML Extensible Markup Language
XSL Extensible Stylesheet Language
XSLT XSL Transformation

10

1 Introduction

The design of composite, multi-tier applications for the cloud, as well as the migration
of existing composite applications to the cloud requires various architectural deci-
sions (cf. [ASL13]). Decisions to be made include partitioning of the applications into
sets of components to be distributed to different clouds, the cloud provider to be chosen
to host a specific component as well as choosing the implementation settings and options
for a component which are best suited to fulfill the requirements on the component and
on the application as a whole.

Architectural decisions have impact on the functional properties of the application as well
as on the business aspects and Quality of Service attributes. To estimate the influence
of design decisions on the characteristics of the resulting application, the application
topology has to be formalized to capture the structure of the application.

Based on the formalized representation of the application and additional information
on the architectural decisions, future application properties can be estimated. An
example is the calculation of the cost for a specific application component, based on
hosting information, like the desired service type, the intended cloud provider and the
configuration parameters of service.

Many different formalized languages and frameworks exist to describe application
topologies. They are designed for different purposes and focus on different areas of
application, but the basic elements of those languages usually describe a graph consisting
of application components and connections between them.

This thesis investigates the major existing application topology languages and frameworks
and identifies the common concepts in different languages. It provides a categorization
for application topology annotations into Discovery, Provision and Management and
Design Support Annotations, as well as a distinction between different processing modes
for annotations and between static and dynamic annotations. Existing annotations from
different categories are presented.

Based on the common concepts in the presented application topology languages and
frameworks, a new GENeralized Topology Language (GENTL) is designed to capture
topologies from different languages. Mappings from existing languages to the new
language are described. An annotation scheme for the designed language is provided,

11

1 Introduction

which is extensible and supports different kinds of annotations. Instantiations for static
and dynamic annotations are given.

GENTL is implemented as an extensible application topology framework, which offers
the functionality to import topologies from the two application topology languages
Blueprint and TOSCA. Topologies are visualized as graphs and annotations following
the designed annotation scheme can be attached to the topology elements.

Topologies as well as annotations on topologies and topology elements can be exported in
a serialized representation of the designed application topology language. The framework
is extensible to allow for new topology language imports and new topology annotations
to be included into the framework.

The thesis is structured as follows: Chapter 2 describes the fundamental concepts
and related work, including existing topology languages and topology annotations. In
Chapter 3, the GENeralized Topology Language (GENTL) is introduced, and Chapter 4
specifies the annotation scheme for GENTL. Chapter 5 depicts the implementation of
the topology annotation framework and Chapter 6 evaluates the framework. Chapter 7
concludes the thesis.

12

2 Fundamentals and Related Work

This section is structured as follows: In Section 2.1 some basic terms in cloud computing
and web services are described. Section 2.2 presents exemplary application topology
languages and frameworks and Section 2.3 provides an overview on annotations on
application topologies.

2.1 Basic Terms in Cloud Computing and Web Services

This section describes the basic terms and standards in cloud computing and web services
necessary for the comprehension of the remainder of this thesis. A comprehensive view on
cloud computing is given e.g. in [Ley09, AFG+09, BGPCV12] and detailed information
about standards and technologies in web services can be found in [WCL05, wsa04].

2.1.1 Cloud Computing Terms

The general term “cloud” or “cloud system” comprises different possible deployment
models. The following four deployment models exist for a cloud or a cloud system (c.f.
[BGPCV12]):

• Private Cloud: Provisioned for the exclusive use by a single organization, in-
cluding multiple consumers (e.g., business units). It may exist on or off premises
and can be owned, managed and operated either by the organization, a third party
or a combination of both.

• Community Cloud: Provisioned to be used by a specific community of consumers
from multiple organizations. It may exist on or off premises and can be owned,
managed and operated by one or more organizations in the community, a third
party or a combination of them.

• Public Cloud: Provisioned for open and public use. It exists on the premises
of the cloud provider, who owns, manages and operates the public cloud. The
cloud provider may be a business, academic or government organization, or a
combination of them.

13

2 Fundamentals and Related Work

• Hybrid Cloud: Two or more different cloud infrastructures (private, community,
or public clouds) are composed and bound together to enable data and application
portablity

Considering the services offered in the cloud, the following three service models are
usually distinguished (c.f. [BGPCV12]):

• Cloud Infrastructure as a Service (IaaS): Consumers can provision pro-
cessing, storage, networks and other fundamental computing resources, without
managing or controlling the underlying cloud infrastructure. The consumer can
deploy and control operating systems, storage and applications on the provisioned
resources.

• Cloud Platform as a Service (PaaS): Consumers can deploy and control
applications in supported programming languages onto the provided cloud infras-
tructure. The underlying cloud infrastructure including network, servers, operating
systems or storage lies not within the control of the consumer.

• Cloud Software as a Service (SaaS): Consumers can access and run applica-
tions from the cloud provider running on the provider’s infrastructure, through a
thin client interface or a program interface. Aside from user-specific application
configuration settings, the user maintains no access to management or control
issues of the underlying cloud infrastructure.

The three service models form a stack, with SaaS resting on top of PaaS residing on
IaaS. In [Ley09], a fourth layer called Composite as a Service (CaaS) is suggested
on top of this stack to represent compositions of services from the IaaS, PaaS and SaaS
layers of the stack.

2.1.2 Web Services Standards and Technologies

The World Wide Web Consortium (W3C) uses the following definition of aWeb Service:
“AWeb service is a software system designed to support interoperable machine-to-machine
interaction over a network. It has an interface described in a machine-processable format
(specifically WSDL). Other systems interact with the Web service in a manner prescribed
by its description using SOAP messages, typically conveyed using HTTP with an XML
serialization in conjunction with other Web-related standards.”[wsa04]

The Web Services Description Language (WSDL) provides an XML vocabulary
for the description of web services. It consists of an abstract part, describing the
operational behavior of a service through the in- and outgoing messages of the service,
and a concrete part, which defines how and where to access the service implementation.
The operational behavior is described in syntactic and structural terms, the semantics
of a service are not in the scope of WSDL (cf. [WCL05, WSD07]).

14

2.2 Application Topology Languages and Frameworks

SOAP is a messaging framework, providing a standardized XML based message struc-
ture, a processing model and a binding mechanism to different network protocols, as well
as a way to attach non-XML encoded information to SOAP messages (cf. [WCL05]).

The Business Process Execution Language (BPEL) is an extensible workflow-
based language that provides a way to create service choreographies. A BPEL process
creates an arrangement of service interactions on the basis of the service interfaces
described in WSDL. The process itself exposes WSDL interfaces and the corresponding
service can be used in other choreographies (cf. [WCL05]).

2.2 Application Topology Languages and Frameworks

Distributed applications and applications in the cloud usually consist of a set of com-
ponents and relationships between components. An application topology is the graph
that is formed out of these components and relationships. It defines how the different
components interact and depend on each other.

This section discusses existing application topology languages and frameworks with a
focus on topology concepts for applications in the cloud. In the beginning, two general
concepts for the design of Service Based Applications (SBA) in the cloud, namely the
Blueprint Approach and TOSCA will be discussed followed by a description of Cafe and
MOCCA, a framework for the automatic deployment of composite applications and a
metamodel offering support for moving composite applications to the cloud.

In Section 2.2.4, the realization of Application Topologies in AWS CloudFormation,
Flexiant Cloud Orchestrators Bento Boxes, OpenStack and OpenNebula are presented
as examples for Application Topology Frameworks in Cloud Management Tools. Sec-
tion 2.2.5 introduces a proposed abstraction layer for resource provision and a correspond-
ing metamodel for application deployment in the cloud. The description of application
topology languages and frameworks concludes with the discussion of the two general
architecture modeling languages DMM and UML, followed by the service description
language USDL. A comparison of the different approaches is given in Section 2.2.9.

2.2.1 Blueprint

The Blueprinting Approach as described in [NLPH12, PH11] introduces a syndicated
multi-channel cloud delivery model, which is contrasted to the monolithic cloud stack
solutions usually provided by cloud service vendors.

The standard monolithic cloud stack solution as illustrated in Figure 2.1a is composed
of the Infrastructure as a Service (IaaS), Platform as a Service (PaaS) and Software as

15

2 Fundamentals and Related Work

Figure 2.1: Monolithic Cloud Stack Solutions vs. Syndicated Multi-channel Cloud
Delivery Model Introduced in the Blueprint Approach [NLPH12].

a Service (SaaS) offerings from a single cloud service provider. Customers can either
use the IaaS from the provider, or the PaaS which is deployed on the vendors IaaS, or
the SaaS which runs on top of the vendors PaaS and IaaS.

The Blueprint approach aims at a more flexible architecture for SBAs. The objective
is an architecture model which is able to combine IaaS, PaaS and SaaS offerings from
multiple vendors as illustrated in Figure 2.1b, to enable the development of customized,
flexible and agile SBAs. To capture and formalize such an architecture, the Blueprint
Template is introduced.

A Blueprint gives an abstracted description of a cloud service offering and is composed
out of the following six parts as (depicted in Figure 2.2):

• Basic Properties: General properties describing the blueprint (e.g. ID, owner-
ship, release date etc.)

16

2.2 Application Topology Languages and Frameworks

Figure 2.2: Fundamental Blueprint Structure [NLPH12].

• Offering: The specification of one or many cloud service offerings. This speci-
fication of a cloud service offering includes the names, functionalities, signature
interfaces, interaction protocols, elasticity offerings and Quality of Service (QoS)
offerings.

• Implementation Artifacts: Description of the elements necessary to implement
the offerings (may include binary files, configuration files or deployable web
packages).

• Resource Requirements: The description of the cloud resources that are neces-
sary for the deployment of the implementation artifacts. The description includes
the QoS requirements of the respective cloud resources. A Resource Requirement
can be fulfilled by discovering a Blueprint of a matching cloud resource.

• Virtual Architecture: Depiction of the virtual architecture desired by the
application developers. The virtual architecture is given by the interdependencies
and interconnections between the offerings, implementation artifacts and resource
requirements across blueprints. These interdependencies have to be specified by
the application developer.

• Policy: The specification of the policy constraints that all elements of the blueprint
(offering, implementation artifacts, resource requirements) have to comply with.

The application topology depicted by a blueprint is the graph representation of the
virtual architecture, that links the specified elements (offerings, implementation artifacts
or resource requirements) of the blueprint.

The reusability is part of the core concept in the Blueprinting Approach and the
development process relies on marketplace repositories for the publication, purchase and
reuse of Blueprints. A Blueprint under development is called Target Blueprint and a
Blueprint that has been submitted to a marketplace repository to be purchased and
reused by other developers is called a Source Blueprint.

17

2 Fundamentals and Related Work

To create a deployable Source Blueprint out of a Target Blueprint, the developer has to
complete the first five phases of the Blueprint lifecycle:

1. In the Target Blueprint Design phase, the developer of a new SBA in the cloud
uses the Blueprint Template to define a Target Blueprint. The Target Blueprint
contains a description of the functionalities offered by the SBA, a definition of the
required resources, the necessary policy constraints and the desired architecture
topology.

2. In the Target Blueprint Resolution phase, the specified resource requirements
are resolved with Source Blueprints of matching SaaS, PaaS or IaaS offerings which
fulfill the requirements. This step results in a set of alternatives to resolve the
required resources in the Target Blueprint with different cloud service offerings.

3. Choosing which of the alternative solutions found in the previous phase should be
used for the SBA is done in the Target Blueprint Customization phase.

4. In the Target Blueprint Checking & Testing phase, the resolved Blueprint
is tested. If the tested Blueprint satisfies all criteria specified for the final cloud
application, the application can be deployed, or the Blueprint can be stored in
a marketplace/repository to be reused by other developers. If any faults or false
behavior is found during testing, the developer can either go back to the Target
Blueprint Customization phase and choose different service offerings as resources,
or go back to the first step and redesign the Target Blueprint.

5. The next step is the Target Blueprint Deployment, in which the application
is deployed following a deployment plan that ensures SLAs for the correct QoS
specified by the developer.

6. In the Target Blueprint Monitoring phase, the operational performance of
the deployed application must be monitored. If an SLA constraint is violated,
the developer should be notified. To reestablish the fulfillment of all SLAs, the
developer can choose between a redeployment, a new Target Blueprint resolution
or a completely new design of the cloud application.

2.2.2 TOSCA

The Topology and Orchestration Specification for Cloud Applications (TOSCA) de-
fined in [tos13] provides a language specification for a portable description of service
components, their relationships and management procedures. TOSCA’s objective is
to make the semi-automatic creation and management of application layer services
portable across alternative cloud implementation environments while the services remain
interoperable.

18

2.2 Application Topology Languages and Frameworks

Figure 2.3: Structural Elements of a TOSCA Service Template and their Relations
[tos13].

To describe everything that has to be preserved across service deployments in different
environments, the TOSCA Service Template uses a combination of a service topology and
orchestration processes. The Service Template provides a foundation for the interoperable
deployment of cloud services, as well as for the service management throughout the
lifecycle and for the porting of services over alternative cloud environments.

The structure of the Service Template is depicted in Figure 2.3 and contains the following
elements:

• Node Type: Definition of the properties and interfaces of a certain type of
component. A property of a node type for a server may for example be the IP
address of a server instance. The interfaces describe the operations available to
manipulate the component, for example an operation to start or shut down a
server instance. The Requirement and Capability Definitions depicted in the Node
Type can be used to express a components requirements against other components
or the hosting environment and the functionalities the component offers to other
components.

• Node Template: Representation of a specific component as a reference to a
defined node type with added usage constraints, such as the number of times a
component can occur.

19

2 Fundamentals and Related Work

Figure 2.4: Requirements and Capabilities for Node Types and Templates in TOSCA
[tos13].

• Relationship Type: Definition of the semantics and properties of a type of
relationship between node templates, such as “hosted by” or “deployed on”.

• Relationship Template: Specification of a relationship between two node tem-
plates. Each relationship template refers to a relationship type and indicates the
direction of the relationship by representing the connected components in a nested
source and target element.

• Topology Template: The service components and their relationships form a
graph with components as nodes and relationships between components as edges
of the graph. The Topology Template represents this graph as a set of node and
relationship templates.

• Plans: Description of the management aspects of service instances like the creation
and termination of service instances. The management issues are described in
process models which can either be included as part of the plan or as a reference to
a separate process model. Process models can be defined in any existing language
(like BPMN or BPEL) and can contain tasks referring to operations of Interfaces
of Node Templates/ Types or Relationship Templates/ Types.

As illustrated in Figure 2.4, Node Types can be annotated with Requirement and
Capability Definitions which are of a certain Requirement/Capability Type. If a
Requirement Type for a database connection is defined, different Node Types can have
a Requirement Definition of this Type.

20

2.2 Application Topology Languages and Frameworks

Figure 2.5: Service Template Composition in TOSCA [tos13].

A Node Template which is of a Node Type with a Requirement Definition, has a
corresponding Requirement with concrete property values specific to the Node Template.
A property value for a database connection requirement could be for example the
minimum capacity or the type of database that is required.

The structure of Capability Definitions, Capability Types and Capabilities corresponds
to the structure for Requirement Definitions, Requirement Types and Requirements.
In the Topology Template, a Requirement of one Node Template can be connected to
a Capability of another Node Template to indicate that the particular Requirement is
fulfilled by the chosen Capability.

Non-functional behaviors and QoS can be expressed via Policy Types and Policy Tem-
plates in TOSCA. A Policy Type expresses a certain kind of non-functional behavior or
QoS which can be provided by a Node Type (e.g. high availability). Policy Templates
define a particular non-functional behavior or QoS of a Node Template. Each Policy
Template refers to a specific Policy Type.

TOSCA also offers the possibility to compose different Service Templates as shown in
Figure 2.5. A Node Template can be substituted by a Service Template if the Service
Template has the same boundary definitions (i.e. properties, interfaces, requirements,
capabilities) as the Node Template.

Deployment and implementation artifacts can be defined with Artifact Types and
Templates. An Artifact Template represents a deployment or implementation artifact
which can be referenced by objects in a Service Template. Each Artifact Template refers
to an Artifact Type, which specifies the type and structure of the artifact.

21

2 Fundamentals and Related Work

Figure 2.6: Ingredients of a Cafe Application Template [Mie10].

2.2.3 Cafe and MOCCA

Cafe

The Composite Application Framework (Cafe) framework presented in [Mie10, MUL09]
provides the means to describe composite service-oriented applications and provision
them automatically across different providers. Figure 2.6 shows the ingredients of a
Cafe application template.

A Cafe application template consists of an application model, a variability model and
code artifacts and references. The variability model captures variability points for the
parameterization of the application. The variability points are used in the deployment
process along with the code artifacts and references.

The topology of a Cafe application is captured in the application metamodel depicted in
Figure 2.7. An Application Model is a Component, which consists of a set of Components
and can also be used as Component in other Application Models. Components can be
deployed on other Components and are implemented by an Implementation. An Imple-
mentation can be realized by a set of files or supplied by the provider. Components have
an associated Component Type and Implementations are of a specific Implementation
Type.

22

2.2 Application Topology Languages and Frameworks

Figure 2.7: Cafe Application Metamodel [Mie10].

MOCCA

The MOCCA Method (MOve to Clouds for Composite Applications) presented in
[LFM+11] formalizes the necessary steps to be done when moving an application to
the cloud. It introduces a metamodel which supports to split an application and move
parts of it to different clouds, including automatic provisioning in the different target
clouds.

MOCCA requires an architecture model of the application, a deployment model of
the application and implementation artifacts such as virtual images of (parts of) the
application to be provided.

To rearrange and provision an application in the cloud, the MOCCA method proposes
to produce and combine artifacts in the following steps:

1. Provide an architecture model of the application to be moved to the cloud. The
architecture model describes the architecture of the application by giving the
components and their relations similar to the application topologies discussed.

2. Provide a deployment model of the application. This can be done as an enrichment
of the architecture model with deployment information. The deployment model
defines the required runtime containers for the application and the distribution of
the architecture components across the containers.

23

2 Fundamentals and Related Work

Figure 2.8: The Model Types and Metamodel used for MOCCA [LFM+11] .

3. Rearrange the architecture model into groups of components that belong into the
same cloud. The resulting segmentation is called a cloud distribution

4. Provide all implementation units required for the application, like executables or
virtual images of (parts of) the application. This supports automatic provisioning.

5. Form a provision cluster by combining the cloud distribution and the combined
architecture/deployment model annotated with the required implementation units.
The provision cluster represents all the information needed to provision the rear-
ranged application into its target clouds.

Figure 2.8 illustrates how the MOCCA metamodel represents the artifacts used in the
MOCCA method. The metamodel is an adaption of the Cafe application metamodel
and variability model.

An application is represented by an Application Template which consists of one or more
Components. Each Component may contain other Components and it is source as well
as target of zero or more Component Relations. The Components and Component
Relations formalize the architecture model of the application. The deployment model
of the application is represented by Components containing other Components. This
models runtime containers and the distribution of architecture components across the
containers.

24

2.2 Application Topology Languages and Frameworks

Every Component Relation and every Component has zero or more Labels and a Label
is defined as a pair of a name and a value attribute. The Labels are used to provide the
necessary information for the generation of the cloud distribution.

Each component is realized by an Implementation which consists of zero or more artifacts.
The Implementation Artifacts are used for automatic installation of the application.
To support deployment parameterization, an Implementation Artifact can have zero or
more Variability Points providing zero or more alternatives for deployment.

In the context of MOCCA, the relevant types of alternatives are Explicit Alternatives,
Free Alternatives and Property Alternatives. Explicit Alternatives provide a choice
between a set of pre-defined values, Free Alternatives take an arbitrary value as input and
Property Alternatives point to a Visible Property of a Component. Visible Properties
are made visible to the outside for the purpose of overwriting.

2.2.4 Topology Frameworks in Cloud Management Tools

The main focus of cloud management tools lies on the deployment and management
functionalities as well as security and billing issues. In consequence, the representations of
application topologies aim at easy deployment and management of the used resources.

In this section, the cloud management tools AWS CloudFormation, Flexiant Cloud
Orchestrator, OpenStack and OpenNebula are discussed as examples for cloud provision
and management tools.

AWS CloudFormation

AWS CloudFormation [clo13] provides the functionality to create and manage collections
of related Amazon Web Services resources. CloudFormation stacks are described in a
JSON based template format. To create a new CloudFormation stack, the user can
either choose one of the sample templates provided by AWS CloudFormation, or create
a custom template.

Figure 2.9 depicts the basic structure of an AWS CloudFormation template. Templates
can be used repeatedly to create multiple instances of the same stack. Parameters can
be used to customize a template, or create stacks with the same basic structure, which
differ in certain settings (e.g. different settings according to the amount of expected
traffic).

The templates represent the application topology of an AWS CloudFormation stack.
Application topology reusability is supported by the reuse, parameterization and cus-
tomization of existing templates.

25

2 Fundamentals and Related Work

{

"Description" : "A text description for the template usage",

"Parameters": {

// A set of inputs used to customize the template per deployment

},

"Resources" : {

// The set of AWS resources and relationships between them

},

"Outputs" : {

// A set of values to be made visible to the stack creator

},

"AWSTemplateFormatVersion" : "2010-09-09"

}

Figure 2.9: Structure of AWS CloudFormation Templates [clo13].

Flexiant Cloud Orchestrator

Flexiant Cloud Orchestrator [ben13] is a software solution for cloud management devel-
oped by Flexiant Limited. It provides functionality for Resource Management, Access
Control, Metering and Billing and since the Flexiant Cloud Orchestrator V3, Flexiant
added a feature called Bento Boxes.

Bento Boxes offers a drag and drop user interface that allows service providers and their
customers to build, deploy and share software templates graphically. The interface is
intended to provide a way for non-IT-Experts to deploy and customize pre-packaged,
configured and sophisticated application stacks.

The service providers can enhance the preconfigured application stacks by adding so
called Deployment Questions, which are presented to the customers in the graphical
interface each time a template is deployed. The obtained information can then be
used for runtime configuration and customization of a standard template or it can be
combined with tools like Chef or Puppet for more advanced use cases.

For the customer, this results in a deployment process which only requires the customer
to enter necessary information (like e.g. user names and passwords) once in the beginning
to start an otherwise completely automated deployment process. Through the graphical
Interface the reuse of an application topology by a customer is possible without extensive
knowledge about the technical details of the application.

Open Stack

The open source software OpenStack [ope13b] is a cloud computing platform for public
and private clouds. It is developed and maintained by a global collaboration of software
developers and is composed out of the following parts as illustrated in Figure 2.10:

26

2.2 Application Topology Languages and Frameworks

Figure 2.10: Structure of the OpenStack Software [ope13b].

• Compute enables the provision and management of large networks of virtual
machines.

• Storage provides object and block storage for servers and applications.

• Networking supplies a pluggable, scalable, API-driven network and IP manage-
ment.

• Dashboard is a graphical interface for users and administrators to access, provision
and automate cloud-based resources.

• Shared Services integrates the OpenStack components with each other as well
as with external systems through services like identity and image management
and a web interface to provide a unified experience for the user interacting with
different cloud resources.

The structure of clouds managed with OpenStack is represented in the Compute, Storage
and Networking part. The Dashboard is an entry point to the underlying structure of
the cloud. As a graphical interface it provides an overview about the components from
the Compute and Storage part of OpenStack as well as the connections managed by the
Networking part.

OpenNebula

OpenNebula [ope13a] is an open-source industry standard for data center virtualization.
The primary use case for OpenNebula is the management of virtualized infrastructures
in data centers or clusters. It also offers support for combining local infrastructure
with public cloud-based infrastructure and it provides cloud interfaces to expose its
functionality for virtual machine, storage and network management.

27

2 Fundamentals and Related Work

As key features for the management and orchestration of the virtual infrastructure,
OpenNebula lists:

• Virtual infrastructure management adjusted to enterprise data centers
• Complete life-cycle management of virtual resources
• Powerful hooking system
• Full control, monitoring and accounting of virtual infrastructure resources
• Fine-grained multi-tenancy

These features in combination with the provided interfaces are the control mechanisms for
the underlying application topology. The application topology in OpenNebula consists
of Virtual Machines, Data Stores, Networking Components and Hosts and Clusters.

OpenNebula also provides an appliance marketplace offering virtual appliances ready to
run in OpenNebula environments. The appliance marketplace provides a way to reuse
existing application topologies and integrate them into new applications or build new
applications on top of existing ones.

2.2.5 CloudML

The process of provisioning resources and deploying applications in the cloud varies
between the different cloud providers. An application which was implemented to be
deployed on a certain cloud may have to be redesigned to be deployable on another cloud.
To avoid the resulting vendor lock-in, in [BMM12b] an abstraction layer is proposed to
model available resources in the cloud. Figure 2.11 depicts the CloudML metamodel.

The Domain-Specific Language (DSL) CloudML provides a platform-independent model
for the specification of the needed resources for an application. The CloudML engine
uses this model to create a run-time model of the provisioned resources. The run-time
model handles the interaction with the provisioned resources and the deployment of the
application.

In [BMM12a], a domain-specific language for the deployment of applications in the cloud
is proposed. The language Pim4Cloud DSL provides a component based metamodel,
which is depicted in Figure 2.12. A component can be a scalar or a composite, which
contains sub-components. Components can offer or require deployment services which
are used to deploy one component onto another and connectors are used to describe
links between components. The properties offered and expected by components are used
at runtime to establish RuntimeBindings for information transfer. Defined components
can be reused in other deployments (i.e. architectural patterns can be expressed as
components).

28

2.2 Application Topology Languages and Frameworks

Figure 2.11: Architecture of CloudML [BMM12b] .

Figure 2.12: Metamodel of Pim4Cloud DSL [BMM12a] .

29

2 Fundamentals and Related Work

Figure 2.13: Structure of the Descartes Meta-Model [KBH12].

2.2.6 Descartes Meta-Model

The Descartes Meta-Model (DMM) defined in [KBH12] is an architecture-level modeling
language for modern dynamic IT systems, infrastructures and services. DMM model
instances are meant to be used for self-aware system adaption at runtime. It focuses on
online performance prediction to ensure compliance to SLAs while optimizing resource
utilization. The Descartes Meta-Model consists of the following four sub-meta-models
depicted in Figure 2.13:

Resource Landscape: Describes the resources and their structural order. It provides
the means to describe the computing infrastructure and its physical resources as well as
the different layers within the system which also provide logical resources. Additionally,
the layered execution environment can be described, which increases the flexibility and
reuse of reoccurring container types.

To enable the prediction of system performance changes at runtime, the influences of
individual layers on the systems performance, the dependencies among these influences
and the resource allocations at each layer can also be captured as part of the model.

Application Architecture: The application architecture is depicted as a component-
based software system. To capture the behavior and resource consumption of a compo-
nent, the implementation of the component, existing dependencies on external services

30

2.2 Application Topology Languages and Frameworks

and their performance as well the usage profile and the execution environment in which
the component is running can be taken into account. The performance behavior of a
system is the performance behavior assembled over all components.

Adaptation Points: The adaptation points meta-model captures the variable parts
of the resource landscape and application architecture which can be adapted during
runtime. It reflects the possible valid states of the system architecture without the
specification of the actual changes on the model instance or the system.

Adaptation Process: The adaptation process meta-model uses the adaptation points
model to specify the adaptations to changes in the system. It provides means to describe
system adaptation processes at the system architecture level with a set of modeling
abstractions to specify strategies, tactics and actions in a generic, human-understandable
and reusable way.

The application architecture and the resource landscape meta-model form the system
architecture QoS model. It specifies the application topology enhanced by information
on performance influences and dependencies.

2.2.7 Unified Modeling Language

The Unified Modeling Language (UML) specified by the Object Management Group
(OMG) in [Gro11] is widely used to model application structures, behaviors and archi-
tectures as well as business processes and data structures.

UML 2.0 defines thirteen types of diagrams divided into the three categories of Structure
Diagrams, Behavior Diagrams and Interaction Diagrams. The modeling of application
topologies is captured in Structure Diagrams. Structure Diagrams are the Class Diagram,
Object Diagram, Component Diagram, Composite Structure Diagram, Package Diagram,
and Deployment Diagram.

The Class Diagram models the static elements of a system and the characteristics of and
relationships between those elements. The classes in the diagram can contain attributes
and operations and a class can realize or require a specific interface. Abstract classes and
templates can be defined and stereotypes can be used to specify the purpose or type of
an element. Relationships can be expressed as associations, aggregations, compositions
or generalizations. (cf. [Kec05, p. 29-112])

The Object Diagram can be regarded as a special kind of class diagram, which captures
a snap shot of the objects, attribute values and relationships in a limited timespan
during runtime. It captures objects which are class realizations and links which specify
the relationships between the objects. (cf. [Kec05, p. 113-126])

31

2 Fundamentals and Related Work

The Component Diagram captures the organization and the dependencies of components
in a system. It consists of components and artifacts which can be nested in components.
The components communicate with each other over ports and interfaces. (cf. [Kec05,
p. 149-164])

The Composite Structure Diagram models the internal structure of components and
the possible collaborations of components. The internal structure is represented by
parts, ports which enable interaction between parts, classes and their surroundings and
connectors between parts, ports or classes. A collaboration is an abstract description
of a functionality offered by interconnected elements and a composite structure is a
concrete application of a collaboration. (cf. [Kec05, p. 127-148])

The Package Diagram captures the organization of elements in packages. A package
groups classes or other packages and defines namespaces. It can access or import other
packages and the contents of two packages can be merged via package-merge. (cf.
[Kec05, p. 175-198])

The Deployment Diagram models the architecture of distributed systems at runtime.
Nodes in the diagram represent computing resources and artifacts in the nodes model
software components running on the computing resource. Communication paths are
depicted by connections between the nodes. (cf. [Kec05, p. 165-173])

2.2.8 Unified Service Description Language

The Unified Service Description Language (USDL) described in [USD11] provides a
platform-neutral, UML based language for service description. USDL merges information
from the business, operational, and technical level of a service into one language. This
is achieved by the definition of a set of interconnected UML class models.

Figure 2.14 depicts the different modules of USDL and their dependencies. The service
module is the center of USDL and describes the fundamental concepts of the service
as well as the relations to the other service description modules. Concepts which are
pertaining to several aspects of the service description, like e.g. naming conventions, or
which are independent of the service itself, like persons or organizations can be captured
in the foundations module.

The technical module captures the available access methods of a service like interface
and access protocols and the functional module describes the offered functionality of a
service (e.g. function, parameter and fault).

Information about the participating actors in provisioning, delivery and consumption of
a service can be captured in the participants module. Participants include for example
the provider, intermediary, stakeholder or consumer of a service.

32

2.2 Application Topology Languages and Frameworks

Figure 2.14: UML Package Diagram of USDL [USD11].

The interaction module captures the necessary interaction sequences for service execution.
It has dependencies on the functional and the participants module to capture the
functionalities and the actors involved in the interaction sequences.

The pricing structure of a service (e.g. price plan, price component and price level) is
captured in the pricing module which has dependencies on the participants and on the
functional module to capture price structures depending on used functionalities and
involved actors.

The legal module captures licensing and copy right information and the agreed QoS
guarantees for the provisioning, delivery and consumption of a service are captured in
the service level module.

2.2.9 Comparison

Extensibility, reusability and composability are essential concepts in the development of
applications in the cloud. Table 2.1 presents a summary of the extension points, the
features supporting reuse of application topologies, and the possibilities to compose
new applications with existing topologies given by the cloud related topologies and
frameworks discussed in this section.

33

2 Fundamentals and Related Work

Extension Points Reusability Support Composability

Blueprint extensible
template

source blueprint
concept and
marketplace
repository

resolve resource
requirements

TOSCA all elements are
extensible

portable and
composable
core concept

substitute node
templates with
service templates

Cafe and
MOCCA

variability model
automatic installation

clustering
variability model contains-relationship

on containers

AWS
CloudFormation

reuse, parameterization
and customization

of templates

Flexiant Cloud
Orchestrator

integration with
existing systems

Bento Boxes and
Deployment
Questions

OpenStack OpenStack
Extensions

OpenNebula
plugins for

integration with
third party tools

appliance
marketplace

reuse of virtual
appliances for
compositions

Table 2.1: Extension Points, Reusability and Composability of cloud related Topology
Languages and Frameworks

Blueprint and TOSCA have a clear focus on the development of application topologies.
The extensibility, reusability and composability of application topologies is part of the
core concept in both approaches.

Cafe aims at the automatic provisioning of composite service-oriented applications.
Deployment parameterization is enabled through a variability model, supporting the
reusability of application topologies. Existing application models can be used as com-
ponents in other application models, providing composability of application topologies.
MOCCA provides an extension of the Cafe framework. It formalizes the necessary steps
to move an application to the cloud and provides the means to split applications into
provision clusters which can be deployed on different clouds automatically.

The presented Cloud Management Tools have their primary focus on the deployment and
management of cloud applications. The extension points focus on the connection to or
integration with existing systems. Underlying topologies are represented by the different
network, storage and computing resources used. The reuse of application topologies
aims at customized deployment options and ready to use appliances.

34

2.3 Annotation Approaches for Application Topologies

CloudML introduces an abstraction layer to prevent vendor lock-in in the provisioning of
cloud resources. Pim4Cloud DSL provides a matching model for application deployment.
The Descartes Meta-Model focuses on self-aware system adaptation at runtime. The
depicted application topologies are enhanced by information on system performance
influences and dependencies and possible adaptations are captured in adaptation points
and corresponding processes. UML provides a whole collection of topology models for
different purposes and different phases in application development. USDL aims at a
global service description model, capturing all aspects of a service.

2.3 Annotation Approaches for Application Topologies

Additional information on topologies can be useful for several purposes, like interop-
erability, management, runtime system adaption, discoverability, metering and billing.
Some of the topology languages and frameworks discussed in Section 2.2 include different
kinds of additional information as part of the core language or enable the developer to
include references to externally defined annotations on the topology.

The remainder of this section is structured as follows: A classification of topology
annotations is given in Section 2.3.1. Section 2.3.2 gathers the annotations included in
the discussed topology languages and frameworks. Exemplary annotations concerning
discovery are given in Section 2.3.3, annotations used for provision and management are
presented in Section 2.3.4 and Section 2.3.5 discusses annotations as design support.

2.3.1 Classification of Annotations

According to their intended usage, topology annotations can be grouped into the
following, sometimes overlapping categories:

• Discovery: Annotations in this category describe the offerings or requirements
of topologies and topology elements. They are used to determine compatible
offerings for a set of defined requirements. The possible descriptions of offerings
and requirements range from functional interface descriptions over desired QoS
characteristics to semantic annotations.

• Provision and Management: Annotations in this category cover the necessary
steps to be taken for the provision of resources, the deployment of an application
or for the execution of management tasks during the lifecycle of an application.
They can be used to automate the provisioning and management of applications.
Management tasks to be automated range from simply installing or removing
components of a topology to complex system adaptations at runtime.

35

2 Fundamentals and Related Work

• Design Support: Annotations in this category are designed to provide some
kind of decision support during the design of a new application or an adaptation
of an existing topology (like the migration of an application to the cloud). They
can be used to provide a prediction of characteristics of the designed application
(e.g. performance or cost calculations), to identify possible flaws in the design (e.g.
performance bottlenecks) or to compare the characteristics imposed by different
design options. Annotations can also be used to identify applicable patterns for the
application design and to capture the decisions made during the design process.

Annotations can be static, meaning that they are interpreted “as is” during processing,
or dynamic annotations which provide the basis for a calculation of the actual annotation
value and may require additional input from a user.

Based on the level of automation in the processing of the information captured in
annotations, the application topology annotations can be grouped in three classes:

• automatic processing: annotations which are processed entirely by machines
(e.g. annotations for automated discovery)

• human processing: annotations designed to be processed by humans (e.g. an-
notations in natural language)

• hybrid processing: annotations which are processed by machines but require
additional input from the user (e.g. customization options for automated provi-
sioning)

Annotations used for discovery are usually static annotations which are processed
automatically, while provision and management annotations combine static and dynamic
annotations and use hybrid or automatic processing methods. Design supporting
annotations can be static or dynamic and may use human or hybrid processing.

2.3.2 Annotations in Presented Topology Languages and Frameworks

Blueprint

In the Blueprinting Approach, each blueprint includes a policy section to describe
constraints that all elements of the blueprint have to comply with. This policy is
attached to the blueprint via a global policy constraint attribute in the blueprint
properties section, which references an external policy definition file.

Blueprints also include QoS information in offerings and resource requirements, which
are used in the blueprint resolution phase to discover matching offerings for resource

36

2.3 Annotation Approaches for Application Topologies

requirements. The QoS characteristics of offerings and resource requirements are ex-
pressed via policies, attached to them via policy attributes in the offering and resource
requirement sections of a blueprint.

TOSCA

The TOSCA Service Template includes a container for plans. Plans are used to describe
management aspects of service instances in the topology. The management issues are
described in process models, which are workflows of one or more steps. TOSCA does
not define a language for the description of process models. Existing languages like
BPEL or BPMN can be used instead.

TOSCA offers the concept of Policy Types and Policy Templates to include non-functional
and QoS characteristics in the topology description. A Policy Type specifies a certain
kind of non-functional or QoS characteristic and the Node Types it can be applied
to. The Policy Templates refer to a Node Type and specify the actual values for the
invariant properties defined in the referred Node Type. Policy Templates can then be
used to define a Policy within a Node Template.

Cafe

The basic topology model in Cafe is enhanced with a variability points model which
is used for deployment parameterization. A variability point can be associated with a
concrete artifact via a locator. (cf. [Mie10, p. 92])

In MOCCA, the initial application topology of Cafe is enriched by additional information
on the possible distribution of components to different clouds. This information is
captured via labels on components and component relations. The result is a segmentation
of the topology into a cloud distribution which is used for the provisioning of the
rearranged application to the cloud.

DMM

The Descartes Meta-Model is designed to enable the prediction of system performance
changes at runtime. This results in a model which is enriched to capture the influences of
individual layers on the systems performance, the dependencies among these influences
and the resource allocations at each layer. Performance information is captured as part
of the core model in DMM.

Additional annotations capture the valid states of the system architecture and system
adaption processes used to adapt to system performance changes at runtime. This is

37

2 Fundamentals and Related Work

reflected in the adaptation point and adaptation process model on top of the system
architecture QoS model.

USDL

USDL provides a service description language which combines information from the
business, operational and technical level of a service. The different modules of USDL
can be divided into a set of modules representing the service topology and a set of
modules to capture additional information.

The union of the information captured in service module, technical module and functional
module roughly resembles the information captured in the other topology languages
and frameworks. Annotations on the service topology are captured in the interaction,
service level, participants, pricing and legal module. The different modules reflect the
different kinds of information captured about the service.

2.3.3 Discovery Annotations

WS-Policies

The Web Services Policy Framework defined in [WSP07] provides a framework and a
model for the declaration of policies referring to domain-specific capabilities, requirements
and general characteristics of entities in a web service based system. Policies are used
to negotiate the configuration options for service interactions.

A policy consists of zero or more policy alternatives. The alternatives indicate choices in
the requirements or capabilities reflected through the policy. Each alternative represents
a valid combination of constraints and requirements, governing the interaction with a
service or the access to a resource. A policy with zero alternatives contains no choices.
(cf. [WSP07], [WCL05, p. 131])

Each policy alternative is a collection of zero or more policy assertions. A policy assertion
reflects a behavior specifying a constraint or requirement for the interaction with a
service or the access to a resource. An alternative containing one or more assertions
denotes exclusively those behaviors implied by the assertions. Alternatives without
assertions indicate no behaviors. (cf. [WSP07], [WCL05, p. 131])

Each policy assertion reflects a requirement, a capability, or other property of a behavior
of a policy subject. Policy subjects are entities (e.g. endpoints, messages, resources,
operations) to which a policy can be associated - the policy itself does not specify its
subject. Policies can be attached to specific subjects via a generic policy annotation

38

2.3 Annotation Approaches for Application Topologies

which can be used in arbitrary XML documents or via an external attachment mechanism.
(cf. [WSP07], [WCL05, p. 131,139])

Assertions in a policy alternative can be grouped into valid combinations with the
ExactlyOne operator and the All operator. The ExactlyOne operator specifies a choice
of assertions from which exactly one can be a part of the alternative at any one time.
All assertions which are combined with the All operator are part of the behavior of the
policy alternative. To indicate that the inclusion of an assertion is optional, an attribute
optional=“true” can be set. This is essentially a shortcut for two policy alternatives,
one that includes the assertion and one that does not. If the optional attribute is not
specified, the interpretation defaults to optional=“false”. (cf. [WCL05, p. 131ff.])

The described operators can be nested inside each other. A policy is in normal form,
if each policy alternative consist of an All element (containing the assertions) and all
alternatives are contained in a single exactly one operator. In other words, only one
alternative can be chosen and the behavior of every assertion contained in the chosen
alternative must be applied. (cf. [WCL05, p. 133])

The compatibility between two policies is usually established by the policy intersection
mechanism followed up by discipline-specific engines. Policy intersection inspects the
structure of the two policies and results in a set of policy alternatives which appear in
both policies. It only matches the element names of the XML representation of the
assertions which helps to discard clear nonmatches. To ensure technical compatibility,
the policy intersection has to be validated with discipline-specific engines. (cf. [WCL05,
p. 135f.])

Semantic Annotations

Semantic annotations in web services can enhance the discoverability of services by
adding semantic information to the service descriptions and include this information in
the service retrieval process.

An example for semantic annotations in web services are the Semantic Annotations
for WSDL and XML Schema (SAWSDL) proposed by the W3C in [FL07]. SAWSDL
specifies how to extend WSDL and XML Schema definitions to capture additional
semantics of WSDL components or XML elements.

Semantic information is included through references to semantic models like ontologies.
Instead of a language for the representation of semantic models, SAWSDL provides the
means to reference semantic models from within WSDL and XML Schema components.

SAWSDL provides three extension attributes named modelReference, liftingSchemaMap-
ping and loweringSchemaMapping. The modelReference attribute is used in XML
Schema type, element and attribute declarations as well as WSDL interfaces, operations

39

2 Fundamentals and Related Work

and faults. It indicates the association of a WSDL or XML Schema component with a
concept in a semantic model. The liftingSchemaMapping and loweringSchemaMapping
is used in XML Schema element declarations and type definitions. A liftingSchemaMap-
ping defines a mapping that transforms data from XML to a semantic model, while a
loweringSchemaMapping translates data from a semantic model into XML.

The model references and schema mappings may contain multiple references to different
semantic models. In schema mappings, the different models are treated as alternatives
while multiple model references are all applied.

The Semantic Annotations for WS-Policy (SA WS-Policy) proposed in [Spe10] are
inspired by SAWSDL and provide means to annotate policy assertions and match
requirements and capabilities not only on a syntactical but also on a semantical level.

The semantic model is captured in the Web Ontology Language (OWL) [HKP+09]. An
ontology in OWL can describe individuals, classes referring to groups of individuals and
relations between individuals or between classes. Each individual, class and relation in
OWL is labeled with an URI.

In SAWS-Policy, the assertions in policies are annotated with a modelReference attribute,
a liftingSchema attribute or both. A modelReference attribute in SA WS-Policy contains
an URI referencing an OWL class and a liftingSchema attribute contains a link to
an XSL transformation which is used to generate an OWL class definition from the
assertions XML node and its children.

The matching of offering and requesting policies is achieved with ontology reasoning.
Policy assertions are represented by classes and an offering matches a request, if the
offering is a subclass of the request.

2.3.4 Management and Provisioning Annotations

Web Service Level Agreement

The Web Service Level Agreement (WSLA) defined in [LKD+02] specifies a language
for the formal description of service level agreements. It is designed to enable automatic
deployment, monitoring and enforcement of SLAs.

Figure 2.15 depicts the role of a WSLA in a service interaction. The WSLA specifies
the agreed performance characteristics and provides information about the metrics to
be measured, and the performance guaranties that have to be fulfilled. Metrics may be
measured from various sources, enabling for example to capture server-side metrics from
the provider and client-side metrics from the customer.

40

2.3 Annotation Approaches for Application Topologies

Figure 2.15: Role of a Web Service Level Agreement in Service Interactions [LKD+02].

The management of a WSLA during runtime is achieved by retrieving the measured met-
rics from the systems instrumentation, evaluating the conditions to meet the guarantied
performance and trigger a management action in case of a guarantee violation. The
measurement and condition evaluation functionalities may be outsourced to supporting
parties which offer according services. Those supporting parties do not have access to
the whole WSLA but receive only relevant information from the party which outsources
a functionality to them.

The WSLA language consists of a parties section, a service definition section and an
obligations section as depicted in Figure 2.16. Parties can be either signatory parties,
who are assumed to “sign” the SLA, or supporting parties which offer measurement and
condition evaluation services and are sponsored by one or both signatory parties.

Each service definition contains one or more service objects which are abstractions of
services that are relevant for the definition of SLA parameters. An SLA parameter is
defined by a metric and a metric specifies either a measurement directive or a function
which computes the metric. A measurement directive specifies how a value is measured
from a source. Metrics retrieved by a measurement directive are called resource metrics
and computed metrics are referred to as composite metrics.

Obligations can be either a service level objective or an action guarantee and every
obligation has an obliged party. A service level objective guarantees a particular state
of SLA parameters in a certain time period and is usually the obligation of the service
provider. An action guarantee is the assurance to execute a defined action in a specific
situation. This can be obliged to any party, including the supporting parties.

41

2 Fundamentals and Related Work

Figure 2.16: Overview of main WSLA Concepts [LKD+02].

Policy-Aware Provisioning

The management framework presented in [BBKL13] uses management planlets and
management annotations to generate management plans for an application. Management
planlets provide small management tasks like installing or removing components. A
management plan defines an orchestration of management planlets to achieve a desired
state of the topology. Management plans can also be used for provisioning of an
application. The desired state of the topology is described with management annotations.
They are attached to topology elements and specify low-level management tasks which
have to be performed on the corresponding elements.

In [BBK+13] the framework is extended to support policy-aware provisioning of applica-
tions. The general concept is depicted in Figure 2.17: Topology elements are annotated
with policies describing non-functional requirements of the respecting element. Elements
in planlets are annotated with policies describing the non-functional capabilities that
may be provided by the planlet for the element in the executed task.

During the generation of a provisioning plan, the policies attached to the topology
are checked for compatibility with the available planlets. A planlet is applicable, if all
policies attached to topology elements which are contained in the planlet are fulfilled.

42

2.3 Annotation Approaches for Application Topologies

Figure 2.17: Concept for policy-aware Provisioning of Cloud Applications [BBK+13].

2.3.5 Design Support Annotations

Architectural Patterns

In [FLR+11] an architectural pattern language of cloud-based applications is introduced
and a catalog of identified patterns is provided. A method for pattern-driven application
development based on the introduced language is defined and a framework for the design
process is proposed.

The architectural patterns are described in a uniform format which captures the context
in which the pattern applies, the challenges which are handled, the details of the proposed
solution with corresponding instructions for the realization, possible variations in the
pattern, known uses of the pattern and relations to other patterns.

Based on the pattern catalog, the interrelations between the different patterns are
determined and a decision table is constructed which matches each combination of two
patterns to one of the following three types of relations:

• Strong Cohesion: the two patterns are likely to be combined

• Exclusion: the two patterns cannot be combined

• Undetermined: the two patterns neither form a strong cohesion relation nor an
exclusion relation

The resulting decision recommendation table is used to identify applicable patterns in
the design process, which incorporates the following steps:

1. The developer selects patterns describing the chosen environment for application
deployment

2. Based on the selected patterns, a set of possible patterns are recommended for the
implementation

3. The developer selects the patterns to be used
4. Based on the selection, possible conflicts are detected and displayed

43

2 Fundamentals and Related Work

Figure 2.18: Cloud Pattern Framework [FLR+11].

5. The developer resolves the conflicts by deciding which patterns are more important

Each set of patterns which are chosen by the developer results in three different sets
of patterns which can be derived from the pattern interrelations in the decision rec-
ommendation table. Patterns with a strong cohesion relationship to the set of chosen
patterns are likely to be applicable as well, while patterns with an exclusion relation to
the set of chosen patterns cannot be used. The last set contains patterns for which the
applicability is undetermined. To obtain the effective set of patterns for a defined use
case, the developer iteratively refines the list of applicable patterns.

Figure 2.18 depicts the envisioned cloud pattern framework. The pattern format and
annotations to patterns are supposed to form the basis for a pattern catalog component
and a runtime annotations component. A decision tool component, based on the decision
recommendation table shall be used by the application developer to identify the required
patterns.

For the provisioning of the application, the reuse of the existing provisioning tool
Cafe [MUL09] is suggested to fulfill the functionality of the provisioning tool, provisioning
flow and component interface part of the framework. The provisioning tool is used
for the customization and provisioning of pattern implementations and their runtime
infrastructures. Annotations to the patterns are used to determine the customization
options for a pattern. The provisioning flow accesses a set of component interfaces and
provisions components of the customized pattern implementations in the appropriate
order.

44

2.3 Annotation Approaches for Application Topologies

A pattern based approach for the migration of application data to the cloud is presented
in [SABL13]. Distinct cloud data migration scenarios are mapped to functional, non-
functional and confidentiality cloud data patterns. Functional patterns address possible
challenges related to the offered functionalities, non-functional patterns help to ensure
an acceptable QoS level by means of scalability and confidentiality patterns focus on
preventing disclosure of confidential data.

To migrate application data to the cloud, in the first step the relevant cloud data
migration scenario has to be identified. Then the desired cloud data store has to be
described and a suitable cloud data store has to be chosen based on the description. To
solve incompatibilities, the applicable patterns for the refactoring of the application have
to be identified and implemented by adapting the database layer and upper architectural
layers. In a last step the actual data has to be migrated to the selected cloud data
store.

CAP Properties

The CAP theorem describes the relationship of three fundamental requirements in
distributed systems:

• Consistency: if all system parts see the same data at the same time

• Availability: the percentage of time a system is accessible and functions properly

• Partition-tolerance: whether the system can tolerate network failures

Brewer [Bre00] observed, that a distributed system can only satisfy two out of those
three requirements at the same time. The hypothesis was later formally proven in
[GL02].

A CAP oriented methodology for the design of cloud-native applications is proposed
in [ASFL13]. The CAP properties can be added as an extension to the cloud pattern
framework introduced in [FLR+11] to enable estimation of CAP properties based on
captured design decisions.

The degree to which a distributed System fulfills each of the CAP properties can be
visualized by positioning the properties at the edges of a tetrahedron as depicted in
Figure 2.19 with minimum values in the intersection of the axes. Representation of the
CAP properties of a specific system is done by a triangular area which cuts through the
tetrahedron.

A system which satisfies availability and consistency, but is not tolerant to network
failures would be positioned at the left side of the tetrahedron. With a strict inter-
pretation of the CAP theorem, any system would be positioned at one side of the
tetrahedron. In practice, system designers and developers may trade some degree of one

45

2 Fundamentals and Related Work

Figure 2.19: The CAP Properties of a Distributed System [ASFL13].

of the CAP properties to achieve a higher degree of the other properties. This results in
systems with different emphasis on each of the CAP properties according to the system
requirements.

The CAP-oriented design methodology takes the possible influences of architectural
decisions on the CAP properties into account and consists of the following phases:

• Identify CAP Requirements: The application developer identifies the desired
CAP properties of the application.

• Capture Design Decisions: The design decisions made by the application
designer are recorded.

• Select *aaS Solutions: The abstract design decisions are translated into
Software-, Platform- or Infrastructure-as-a-Service solutions.

• Estimate CAP Properties: An Estimate of the overall CAP properties of the
application is computed based on the CAP properties of the solutions chosen in
the previous phase. To enable the estimation, the different *aaS solutions have
to be annotated with their CAP property values. As a representation for those
annotations, a triplet (c, a, p) is suggested with c, a, p ∈ [−1, 1]. Values close to 1
signify a strong correlation to the property, while values close to -1 indicate that
the solution has a degrading effect on the property. The annotated values can be
aggregated to estimate the overall CAP properties.

• Update Design and Solutions: If the estimated CAP properties satisfy the
requirements, the designer can proceed with the development, deployment and
provisioning of the application. Otherwise, the design decisions may be reconsidered
and changed, leading to different solutions with different CAP properties and a
new estimation of the overall system CAP properties.

46

2.3 Annotation Approaches for Application Topologies

Figure 2.20: CAP Extension of the Cloud Pattern Framework [ASFL13].

Figure 2.20 depicts the proposed integration with the cloud pattern framework to enable
the annotation with CAP properties, the estimation of the systems overall properties
and the visualization in the form of a tetrahedron.

2.3.6 Summary

Topology annotations serve various purposes. The topology languages and frameworks
discussed in Section 2.2 include annotations concerning the discovery, management
and distribution of services as well as performance prediction and runtime system
adaptation.

Discovery Annotations provide information which is useful to discover the right service
and to establish the appropriate way of interaction between service and consumer.
WS-Policies help to negotiate the configuration options for service interaction and can
be used to discover a service which supports the configurations required by the consumer.
Semantic annotations aim at a higher recall in service discovery by including semantic
information in the retrieval process.

Management and Provision Annotations are used for the automation of application
provision and managent. The purpose of WSLA lies in the automatic deployment,

47

2 Fundamentals and Related Work

monitoring and enforcement of SLAs for service interactions. Policy-Aware Provisioning
includes non-functional requirements in the provisioning process.

Design Support Annotations provide decision support during application design. Archi-
tectural Patterns capture applicable architectural decisions and can serve as reference
during application design. Predictions of system characteristics provided during the
design phase, can indicate possible flaws in the application design (e.g. performance
bottlenecks). Design decisions captured in annotations to the topology can serve as
documentation and ease adaption, extension and reuse of application topologies.

48

3 Generalization of Application Topology
Languages

The presented topology languages and frameworks rely on a set of common fundamental
concepts, which have different representations in each language. A generalized Applica-
tion Topology Language has to provide a metamodel for topology languages, which can
represent the information captured in different languages.

The remainder of this chapter is structured as follows: The common fundamental concepts
and their representation in the discussed languages and frameworks are depicted in detail
in Section 3.1. Section 3.2 lists the requirements derived from the presented common
concepts and defines a generalized application topology language with appropriate
mappings from selected existing topology languages and frameworks.

3.1 Common Fundamental Concepts in Application Topologies

The application topology languages and frameworks presented in Section ref-
sec:topolLanguages are based on similar concepts. They all represent a topology graph,
which consists of components (nodes) and connectors (edges). The components as well as
the connectors have certain attributes, and most languages also offer a way to assemble
components into groups and to form subgraphs.

The remainder of this section describes the common fundamental concepts in detail and
gives the corresponding constructs for each fundamental concept in the discussed cloud
related topology languages.

3.1.1 Components

Components are the nodes in the topology graph. The different application topology
languages and frameworks provide topology descriptions in different levels of detail.
This results in different types of components.

49

3 Generalization of Application Topology Languages

The blueprinting approach presented in Section 2.2.1 supports components of variable
granularity reaching from implementation artifacts, that can be a single script to offerings
and resource requirements which can be whole services.

In TOSCA (Section 2.2.2) components are node templates of specified node types.
Since there are no semantic restrictions on the granularity of a node type or template,
components in TOSCA can be anything from a simple script to a complex service.

Besides the component depicted in the Cafe metamodel in Section refsec:cafe, the
implementations as well as the files in the application metamodel can be seen as
components of the application topology.

The topology frameworks in cloud management tools presented in Section ref-
sec:ManagementTool are focused on the management of cloud resources. This results
in a topology graph with cloud resources (like servers, virtual machines, images, server
instances etc.) as components.

3.1.2 Connectors

Connectors are the edges in the topology graph and they represent the relationship
between the components in the graph. A connector is a directed link between two compo-
nents. The presented languages and frameworks provide different types of connectors.

Blueprint makes a distinction between vertical, horizontal and resource links to represent
different types of dependency. A vertical link from a to b specifies that the blueprint
element a has to be deployed on the blueprint element b. A horizontal link from a to b
indicates a functional dependency between blueprint element a and b, i.e. a reuses the
functionality of b. A resource link is a connection to a virtual network resource captured
in either an IaaS service offering or an IaaS resource requirement.

TOSCAs connectors are relationship templates of a specified relationship type. This
enables developers to specify any type of relationship desired, resulting in a wide range
of possible connections.

Connectors in Cafe are expressed through the contains and deployedOn relationships
between components, the implementedBy relationship between components and their
implementations and the realized by files relationship between implementations and
files.

In the presented topology frameworks in cloud management tools, the explicitly shown
connection is which component a is deployed on which component b. Some relationships
between components can be represented indirectly through connections to the managed

50

3.1 Common Fundamental Concepts in Application Topologies

networks. Components with a connection to the same network may or may not commu-
nicate with each other. Functional dependencies are not reflected in the presented cloud
management tools.

3.1.3 Attributes

The components and connectors of an application topology, as well as the topology as a
whole may have several attributes providing descriptive information on the respective
constructs. In contrast to topology annotations, which contain additional, external
information, attributes are part of the topology and provide information which is essential
for the completeness of the topology. The discussed languages and frameworks offer
different representations of such attributes.

A Blueprint has basic properties giving details about the Blueprint as a whole (e.g. ID,
ownership, release date etc.). Each offering in a Blueprint has attributes describing
the offered functionalities and each resource requirement has attributes describing a
required cloud resource. The implementation artefacts also have attributes specifying
for example the artefact type or location.

The properties and interfaces of node and relationship types and templates in TOSCA
are essentially attributes of components and connectors in the topology. Capability and
requirement definitions of node types and templates are also attributes of the respective
components.

The attributes in Cafe include the component and implementation types. Other at-
tributes for components, implementations and files may also be present without a
concrete specification in the application metamodel.

The attributes represented by the discussed topology frameworks in cloud management
tools are the configuration and setting options for the managed resources and networks
(e.g. size, bandwidth etc.).

3.1.4 Groups of Components

Some components in an application topology may form a group, because they are
deployed on the same host or the same cloud, or because they form a service which
offers functionalities for other parts of the application. These groups will be referred
to as sub-topologies from now on. In other respects, components which share common
features or behaviors may be considered part of the same group representing a certain
kind of component. Those will be called component groups later on.

51

3 Generalization of Application Topology Languages

The Blueprinting Approach relies on the concept of resource requirements expressing
the need for a resource. They can be resolved by a blueprint containing an offering
that fulfills the requirements. Each Blueprint represents a topology with possible other
Blueprints nested in it as sub-topologies. There are two distinct component groups in
a blueprint, since the components are either resource requirements or implementation
artefacts.

Every node template in TOSCA is of a defined node type, so each node type forms a
component group. Since TOSCA offers the possibility to replace a node template with
a service template, the node templates can also be sub-topologies.

The application model in Cafe can be used as component in other application models,
which converts it into a sub-topology. Component groups in Cafe are formed by Cafe
components, implementations and files.

In the presented topology frameworks in cloud management tools, the components may
form sub-topologies in the sense that they are installed on the same hosts or in the same
clusters or virtual data centers. Component groups may be defined by the types of the
manageable cloud resources.

52

3.2 GENTL - a GEneralized Topology Language

3.2 GENTL - a GEneralized Topology Language

This section first lists the requirements for an application topology metamodel in Sec-
tion 3.2.1. In Section 3.2.2 the GEneralized Topology Lanuagage GENTL is introduced
and a formal description of the language is given. The chapter concludes with map-
pings between GENTL and selected topology languages and frameworks discussed in
Section 3.2.3.

3.2.1 Requirements for a Generalized Application Topology Language

To create a metamodel capturing the information represented in topology languages
and frameworks, the described common concepts have to be modeled in a way which
is generic and extensible. As stated in Section 2.2.9, extensibility, reusability and
composability are key concepts in application topologies. This leads to the following
requirements for GENTL:

• To support reusability and composability of topologies, GENTL should provide
a topology representation which enables the reuse of existing topologies as sub-
topologies and provides a way to form compositions of topologies.

• The model should be extensible and enable mappings from different existing
topology languages and frameworks to GENTL. This leads to a generic modeling
of the topology elements. The required elements for a GENTL topology are:

– A component representation that can capture arbitrary attributes.

– Representations for connectors of different types with arbitrary attributes.

– A component group representation that can capture arbitrary attributes.

• The metamodel should capture coarse as well as fine grained topologies and provide
a quick overview on the whole topology as well as more detailed information on
each topology element when required.

All topology elements require a way to capture arbitrary attributes in order to support
the mapping from various topology languages and frameworks to GENTL. This indicates
the need of a generic model for attributes which can be applied to the topology elements.
The next section defines how the different topology elements and their attributes are
represented in GENTL.

53

3 Generalization of Application Topology Languages

3.2.2 Realization of Topology Concepts

GENTL relies on a generic but typed attribute system to support arbitrary kinds of
attributes, while at the same time providing some information about the type of a
captured attribute. The language provides simple and composite attributes.

A simple attribute consists of a name and a value. Simple attributes can be TextAt-
tributes, IntegerAttributes, DateAttributes, TimeAttributes, ReferenceAttributes or
generic attributes. The value of a generic attribute can be of any type, while the values
of the other attributes are restricted to string, integer, date, time and URI values.

A composite attribute has a name and contains a sequence of attributes which can be
simple or composite attributes. This enables the nesting of attributes which can be used
to express characteristics which are to complex to captured in simple attributes.

The Extended Backus-Naur Form (EBNF) in Listing 3.1 provides a formal description
of GENTL. A GENTL topology has a name and a unique ID, and contains zero or more
components, connector classes, connectors groups. Topology attributes can be used
to capture general information which applies to the topology as a whole. A topology
attribute can either be a simple or a composite attribute.

GENTL components have a unique ID, a name and an optional “representsTopology”
property. The “representsTopology” property can be used to link to another GENTL
topology, which depicts the inner structure of the component. This enables the reuse and
composition of GENTL topologies. All other aspects and properties of the component
are captured as component attributes, which can be simple and composite attributes.

A Connector has a unique ID, a name, a sourceComponentID and targetComponentID
value and belongs to a connectorClass. A connectorClass represents a type of connector
(e.g. deployed on) and consist of a name and a unique ID. The sourceComponentID
and targetComponentID serve as reference to the components which are linked through
the connector. Further information on the represented relationship can be captured in
connector attributes which follow the same structure as the component attributes.

A Group has a unique ID and a name. The grouped topology elements are represented as
listings of component IDs. Information on groups can be captured in group attributes in
the same manner as described for topologies, components and connectors. A component
may be part of multiple groups.

3.2.3 Mappings between GENTL and existing Topology Languages

Table 3.1 provides an overview on the correlation between GENTL and the topology
elements in the cloud related topology languages and frameworks. In the remainder of

54

3.2 GENTL - a GEneralized Topology Language

Listing 3.1 Formal Description of GENTL using EBNF
topology = name, uuid, topolAttr, topolParts;

topolParts = {component}, {connClass}, {connector}, {group};
component = name, uuid, [reprTopology], compAttr;
connClass = name, uuid;
connector = name, uuid, source, target, class, connAttr;

group = name, uuid, grAttr, compRef;
topolAttr = {attribute};
compAttr = {attribute};
connAttr = {attribute};

grAttr = {attribute};
attribute = simpleAttr | composAttr;

composAttr = name, attribute, {attribute};
simpleAttr = textAttr | intAttr | dateAttr | timeAttr | uriAttr | genAttr;

textAttr = name, stringValue;
intAttr = name, integerValue;

dateAttr = name, dateValue;
timeAttr = name, timeValue;
uriAttr = name, uriValue;
genAttr = name, genericValue;
source = uuid;
target = uuid;
class = uuid;

compRef = uuid;
reprTopology = uuid;

this section the details of the mappings from Blueprint, TOSCA and Cafe to GENTL
are described to demonstrate the generic nature of GENTL.

Mapping from Blueprint to GENTL

A blueprint offering resembles a topology on GENTL. Each GENTL topology which
is created from a blueprint, contains the two groups “resource requirements” and
“implementation artefacts”, and the two connectorClasses “horizontal” and “vertical”.

Resource requirements and implementation artefacts from the source blueprint are
mapped to components, and the components are added to the respective groups in
the GENTL topology. A resource requirement which is resolved by a matched offering
results in a component referencing the topology which represents the matched offering.

55

3 Generalization of Application Topology Languages

Blueprint TOSCA Cafe

Topology Offering Topology Template Application Model

Component Resource Requirement
Implementation Artefact

Node Template
Component

Implementation
File

Connector
Vertical Link

Horizontal Link
Resource Link

Relationship Template
delpoyedOn

implementedBy
contains

Group “resourceRequirements”
“deploymentArtefacts”

Node Type
“CafeComponent”
“Implementation”

“File”

Component
Attribute

Resource Requirement Property
Implementation Artefact Property

Node Property
Node Interface

Capability Definition
Requirement Definition

Connector
Attribute

Relationship Property
Relationship Interface

Group
Attribute Node Type Property

Topology
Attribute

Basic Property
Offering Property

Connector
Class

Link Type Relationship Type
“contains”

“deployedOn”
“implementedBy”

Table 3.1: Mappings between GENTL and other Topology Languages

The vertical and horizontal links captured in a blueprint are represented by connectors
of the “vertical” and “horizontal” classes respectively. The “resource links” discussed
in [NLPH12] are not included in the XML Schema for Blueprints, hence they are not
included in the mapping from Blueprint to GENTL.

The properties of resource requirements are added as component attributes to the
corresponding components and the basic properties and offering properties are added
as topology attributes. A GENTL topology derived from a blueprint neither contains
group nor connector attributes.

Mapping from TOSCA to GENTL

A TOSCA service template corresponds to a topology in GENTL. The TOSCA node
types are represented as groups and the relationship types as connectorClasses.

56

3.2 GENTL - a GEneralized Topology Language

Node templates are designed as components, which belong to the group that represents
their node type. The properties, interfaces, capability definitions and requirement
definitions of a node template are added as component attributes.

A relationship template in TOSCA resembles a connector in GENTL and the relationship
properties and interfaces are represented by connector attributes.

Mapping from Cafe to GENTL

A Cafe application model may be represented as a GENTL topology. The Components,
Implementations and Files in the application model can be mapped to components in
GENTL.

GENTL groups can be formed from the component and implementation types in
the application model, or the GENTL components could be grouped according to
their corresponding Cafe elements into “CafeComponent”, “Implementation” and “File”
groups. A combination of both group concepts may also be applied.

The relationships in a Cafe metamodel can be represented by GENTL connectors
belonging to “contains”, “deployedOn” or “implementedBy” connectorClasses.

57

4 GENTL Annotations

The discussed annotations are designed for different purposes, but they follow some
similar basic concepts. In this section, the common structures and concepts in topol-
ogy annotations are identified, respective requirements for GENTL annotations are
established and a generic annotation model for GENTL topologies is given.

The chapter is structured as follows: The structures and concepts in topology annotations
are identified in Section 4.1 and the resulting requirements for GENTL annotations
are given in Section 4.2. The chapter concludes with the definition, formalization and
exemplary instantiation of the GENTL annotation model in Section 4.3.

4.1 Structures and Concepts in Topology Annotations

The discussed annotations are designed for different purposes, but they follow some
similar basic concepts. Annotations like WS-Policies, WSLA, SAWSDL and SA WS-
Policy, as well as the different modules of USDL are designed to be passed to specific
engines for processing. All of them offer an XML representation of the captured
information.

There are three different ways to connect the annotations to the topologies or topology
elements:

1. Include annotations as part of the core model with specific language constructs

2. Include references to externally defined annotations in topology elements

3. Connect the annotations to the topology elements via external references to the
topology elements.

The first mechanism is used by USDL while WSLA, SAWSDL and SA WS-Policy use
the second mechanism and WS-Policy can be attached by the second as well as the third
mechanism.

Three different levels for annotations can be identified according to which parts of the
topology an annotation applies:

59

4 GENTL Annotations

• The most general annotations are applied on topology level, like for example the
policy section in a blueprint which applies to all parts of the blueprint.

• Annotations on group level apply to a group of topology elements, like for example
the cloud distributions in MOCCA which form a segmentation of the topology.

• The finest granularity for annotations are annotations on element level which
only apply to a single topology element like the discussed CAP properties for a
single component or component specific performance characteristics captured in
DMM. A common use of annotations on element level is to calculate some kind
of aggregation on group or topology level (e.g. the CAP properties of the overall
system).

As discussed in Section 2.3.1, based on the intended usage, the annotations can be
grouped into annotations for discovery of applications, management and provisioning of
applications and for support during the design of applications. Based on the processing
of annotations, the three different modes “human processing”, “automatic processing”
and “hybrid processing” can be distinguished and annotations can be classified as static
or dynamic.

4.2 Requirements for GENTL Annotations

This section first identifies the annotations to be supported by GENTL and the ways
in which they should be supported. Then the possible attachment mechanisms for
annotations are discussed and the appropriate method to be used for GENTL annotations
is identified. The section concludes with a listing of the overall assembled requirements
for GENTL annotations.

4.2.1 Annotations to be supported

The purpose of GENTL annotations lies in providing an annotation framework to
support the development of cloud applications. This includes the development of cloud
native applications as well as migrating applications to the cloud. As a consequence,
the focus of GENTL annotations lies on Design Support Annotations which facilitate
design decisions. However, other types of annotations should also be supported.

Provision and Management Annotations can be used to leverage the added provision
and management flexibility in cloud environments and Discovery Annotations are useful
to find reusable components and encourage others to use the designed application.

GENTL annotations should provide ways to capture Provision and Management An-
notations as well as Discovery Annotations. The processing of those annotations,

60

4.2 Requirements for GENTL Annotations

namely implementations for the automated provision, management and the discovery of
applications based on those annotations is not in the scope of GENTL annotations.

Static as well as dynamic annotations have to be provided to support the different
kinds of annotations. Functionalities to enable human and hybrid processing of Design
Support Annotations should also be included in GENTL annotations.

4.2.2 Attachment Mechanisms for Annotations

Annotations may reside on topology, on group or on element level. This requires attach-
ment mechanisms which enable the user to specify annotations on GENTL topologies
as well as on groups or elements inside a GENTL topology.

WS-Policy was created as a separate specification from WSDL to clearly separate
concerns between the functional descriptions in WSDL and non-functional descriptions
and QoS aspects handled by WS-Policy. Another advantage of the separation is that
policy subjects are not limited to service endpoints, enabling policies to be attached
to a huge variety of subjects. Due to the flexibility of the attachment mechanism, it is
possible to incrementally add capabilities (e.g. a new authentication mechanisms) to an
existing service description (cf. [WCL05]).

The definition of annotations separate from the topologies offers similar advantages
as stated for WS-Policies. Separation from the topology enables annotations to be
added, updated or removed while the topology remains unchanged. Different types
of annotations might be added without interfering with each other or cluttering the
core definition of the topology. An annotation might be defined once and attached to
multiple topology elements, even spanning multiple topologies.

In consequence, GENTL annotations shall be defined in a separate specification. Ap-
propriate attachment mechanisms to connect annotations with topologies and topology
elements must be established.

4.2.3 Assembled Requirements

Based on the discussion about the annotations to be supported and the attachment mech-
anisms suitable for GENTL, the following overall requirements for GENTL annotations
can be assembled:

• Primary focus on Design Support Annotations

• Capturing Provision and Management Annotations as well as Discovery Annota-
tions without processing them

61

4 GENTL Annotations

• Capture static annotations as well as dynamic annotations

• Enable human and hybrid processing of Design Support Annotations

• Capture annotations on topology, group and element level

• Provide a specification of GENTL annotations separate from GENTL specification

• Provide appropriate attachment mechanisms to connect annotations with topolo-
gies and topology elements

The next section specifies the structure of the GENTL annotation model and describes
how the established requirements are fulfilled by the GENTL annotation model.

4.3 Annotation Model

This section provides the GENTL annotation model. In Section refsec:annotationModelStruct
the basic structure of the annotation model is described and a formalization of GENTL
annotations is provided. Exemplary instantiations of the annotation model for different
kinds of annotations are provided in Section 4.3.2.

4.3.1 Annotation Structure

GENTL annotations are based on a generic model which can be further restricted to
define the structure of a concrete annotation type. The basic annotation model specifies
three different annotation types:

1. service invocation: a dynamic annotation containing a request
endpoint and request parameters to invoke a service call

2. simple annotation: a static annotation containing a sequence of
simple and composite GENTL attributes

3. external reference: a static annotation which contains a reference
to an external resource containing the actual annotation

The third kind of annotation could be captured as well by an instantiation of the second
annotation type containing a uriAttribute with a reference to the respective resource.
The motive for an additional type in the core model is the frequent occurrence of static
annotations which are best suited to be included via reference (e.g. WS-Policy, SAWSDL,
WSLA).

The EBNF in Listing 4.1 gives a formal description of a GENTL annotation. A GENTL
annotations element contains at least one annotation. An annotation has a name and

62

4.3 Annotation Model

Listing 4.1 Formal Description of GENTL Annotations using EBNF
annotations = annotation
annotation = name, uuid, parent, {parent}, annAttr, annType;
annType = extRef | serviceInv | simpleAnn;

extRef = uri;
serviceInv = reqUrl, staticParam, {dynParam};
simpleAnn = {attribute};

annAttr = {attribute};
staticParam = {attribute};

attribute = simpleAttr | composAttr;
composAttr = name, attribute, {attribute};
simpleAttr = textAttr | intAttr | dateAttr | timeAttr | uriAttr | genAttr;

textAttr = name, stringValue;
intAttr = name, integerValue;

dateAttr = name, dateValue;
timeAttr = name, timeValue;
uriAttr = name, uriValue;
genAttr = name, genericValue;

dynParam = name, datatype;
datatype = ‘Date’ | ‘Integer’ | ‘String’ | ‘Time’ | ‘URI‘;

parent = uuid;

a unique id and at least one parent element the annotation is attached to. A parent
element can either be a topology, a component, a connector or a group.

Each annotation can either contain a simple annotation (containing a sequence of
attributes), a reference to an external resource or a dynamic annotation which invokes
a service call. Information about the annotation itself may be captured in optional
annotation attributes.

The attributes in a simple annotation and the optional annotation attributes are of the
same type as GENTL attributes, meaning they may be simple or composite attributes
as discussed in Section 3.2.2.

An external reference annotation only captures the URI of a resource. In a service
invocation annotation, the URL for the request is captured along with the necessary
parameters for service invocation. The parameters are distinguished between static and
dynamic parameters.

A static parameter captures a parameter which remains the same for any invocation of
the service. Like the annotation attributes and the attributes in a simple annotation,
they are captured as GENTL attributes.

63

4 GENTL Annotations

Dynamic parameters represent information which has to be provided by the user at
runtime. They consist of a name and a datatype. The name specifies the kind of
parameter to be provided and the datatype can be used for type checking of the retrieved
user input before service invocation.

4.3.2 Instantiation for Different Annotation Types

An instantiation of a GENTL annotation is a restriction on the available annotation
types. An external reference could be instantiated by creating an annotation with
annotationAttributes specifying the type of the referenced document or instructions on
how to process the document.

To instantiate a documentation annotation, a simple annotation could be designed which
contains a textAttribute named author, a dateAttribute and a timeAttribute named
creationDate and creationTime and a textAttribute named documentationAnnotation.
The annotationAttributes on the simple annotation could contain guidelines on how to
structure the content of the documentationAnnotation field.

An instantiation of a service invocation annotation contains the request endpoint of the
desired service. It incorporates all predefined request parameters as static parameters
and the information which has to be retrieved from the user is represented by providing
the name and datatype of the request parameter. Predefined request parameters could be
for example the desired response format (e.g. JSON or XML) and dynamic parameters
could be the configuration parameters for the service call.

64

5 Implementation

This section discusses the implementation of the GENTL environment. The requirements
for the framework implementation are established in Section 5.1 and the possible
implementation options are discussed in Section 5.2. A structural description of the
implemented GENTL environment is given in Section 5.3 and the provided user interface
is described in Section 5.4.

5.1 Requirements

This section lists the fundamental requirements for the implementation. The application
topology annotation framework should be available to a wide range of users and it
should provide the functionality to import application topologies from different existing
topology languages and frameworks, display the imported topology graphs and add
annotations of different types to nodes, edges or groups of nodes in the topology graph.

In consequence, the chosen form of implementation should provide ways to offer the
following features:

• Platform Independence: Since the application topology framework should
be available to a wide range of users, the implementation should be platform
independent to enable easy access and usage.

• Import and Model Transformation: The import of application topologies and
the transformation into GENTL topologies are considered core functionalities for
the environment. Both importing and model transformation are widely used func-
tionalities and different libraries/toolkits/plugins supporting these functionalities
are available.

• Proper Graph Layout: To provide a graphical overview over the topology graph,
the displayed nodes and edges should be positioned to avoid overlap as far as
possible. This is not a trivial challenge, but many sophisticated algorithms for this
matter have been implemented. Hence, the reuse of an existing implementation
for graph visualization is highly desirable.

65

5 Implementation

• Interaction with the Topology Graph: To annotate the topology graph,
the user should be able to select nodes, edges as well as groups of nodes and
edges and add different types of annotations. Navigation between topologies and
sub-topologies, as well as editing of topologies and topology elements should be
supported.

5.2 Implementation Options

Possible options for the implementation are: a stand alone application (in a platform
independent programming language), a plugin for an existing development platform or
a web application. Main criteria for the selection of a form for the implementation, is
the availability of reusable features (libraries/plugins etc.) for the requirements listed in
the previous section. The remainder of this section gives an outline of some reusable
features for each implementation option.

5.2.1 Stand Alone Application

A stand alone application requires intense development effort for all parts of the im-
plementation. The import and model transformation could either be implemented
by importing XML-files, process them with a DOM-Parser and develop appropriate
functionality for the transformations, or by the use of an XSL Transformation Engine.

A DOM-Parser processes a given XML document and transforms it into a Document
Object Model (DOM), which is a platform- and language-neutral interface defined by
the W3C in [DOM05]. It allows programs and scripts to dynamically access and update
the content, structure and style of documents.

The transformation from a source model into a target model is not handled by the
DOM-Parser but has to be implemented separately for the desired source models. For
the transformation of a Blueprint into the developed application topology language, the
Blueprint would be transformed into a Document Object Model, which then would have
to be processed into a new model by a suitable matching function.

The other option, an XSL Transformation Engine, builds on the XSL Transformation
defined by W3C in [XSL07]. An important role of XSLT is to add styling information
to an XML source document by transforming it into a presentation-oriented format such
as Extensible Stylesheet Language (XSL), HTML, XHTML or SVG, but it is used for a
wide range of other transformation tasks.

A transformation in XSLT is done by a set of template rules which associate patterns
that matches nodes in the source document, with a sequence constructor. The evaluation

66

5.2 Implementation Options

of the sequence constructor can result in the construction of new nodes, which can
be used to produce part of a result tree. This way, different documents with similar
source tree structures can be transformed into one or more result trees by the same
stylesheet.

The graph visualization software Graphviz [gra] provides a way to visualize graphs using
a simple text description language. Graphviz offers different style options for nodes and
edges, as well as different layout options. Many different language bindings as well as
generators and translators that transform other data sources and formats into Graphviz
enable the reuse of Graphviz features in other applications.

5.2.2 Plugin for an existing Development Platform

Development of the GENTL environment as a plugin to an existing development
platform provides the advantage that the framework for the environment is already given.
Additional reusable plugins offering support for modeling and graphical representation
are available for some platforms, since these functionalities are necessary for a wide
range of tools and editors.

A possible Development Platform as basis for the plugin development is Eclipse. The
Eclipse Platform offers various plugins and functionality for model driven development
as well as for graphical editors.

In the Eclipse Modeling Project [ecl13a], the provision of a unified set of modeling
frameworks, tooling, and standards implementations aims at the evolution and promotion
of model-based development technologies within the Eclipse community.

The basis of the Eclipse Modeling Project is the Eclipse Modeling Framework (EMF).
EMF offers a modeling framework and code generation functionality to support the
development of applications which are based on structured data models.

The Graphical Editing Framework (GEF) bundles functionality for the creation of graph-
ical editors and views for the Eclipse Workbench UI. It includes a layout and rendering
toolkit, an interactive Model View Controler (MVC) framework and a visualization
toolkit which supports the implementation of graphical views.

A set of generative components and runtime infrastructures for the development of
graphical editors is provided by the Graphical Modeling Project (GMP) based on EMF
and GEF. It includes a toolkit for the model-driven generation of graphical editors,
an industry proven application framework for the development of graphical editors,
a standard notational meta model and a graphics framework for the development of
diagram editors for domain models.

67

5 Implementation

Functionalities for XSLT and Graphviz as mentioned in Section refsec:standAlone
are also available for the Eclipse framework. The XSLT Project [ecl13c] offers XSL
Transformation and the Graphviz Eclipse plug-in [ecl13b] provides a Java API for
Graphviz.

Another opportunity for plugin development is the NetBeans Platform. NetBeans
doesn’t have a comprehensive modeling project like Eclipse, but it offers functionality for
graph visualization in the NetBeans Visual Library [net13a] and XSL Transformation
in NetBeans XSL Support [net13b].

5.2.3 Web Application

An advantage of a web application over a stand alone application or a plugin for an
existing development platform is that a web application can be accessed by a simple
web browser, providing a higher degree of platform independence.

Since XSLT is often used for transformations into HTML and XHTML, the use of
an XSLT Engine for the model transformation comes naturally for web application
development. The use of Graphviz in web applications is possible either through the
HTML binding webdot [web] or the HTML5/Javascript canvas viewer Canviz [can].

Another option for the implementation of a web application is the use of a web application
framework like Django or Ruby on Rails. Web application frameworks reduce redundancy
since similar pages can be generated after templates and don’t have to be implemented
individually.

Django is based on Python and Ruby on Rails is based on Ruby. There are numerous
other frameworks based on different programming languages, but as all frameworks offer
the same functionality in slightly different ways, the following discussion concentrates
on Django as an example for a web framework.

The Django Framework [dja13] offers an object-relational mapper, which enables the
definition of data models in python. The data models are stored in a database and can be
accessed either through a dynamic database-access API or through SQL Statements.

For the required model transformation, the defined Application Topology Annotation
Framework should be represented as a database schema. The mapping from the
discussed topology languages and frameworks has to be implemented as a database
import functionality with the appropriate data transformations.

The graph representation can be done by use of pydot [pyd], a python interface to
Graphviz. Graphviz can generate SVG graphics with embedded URLs. This enables
navigation in the web application through clickable nodes and edges in the topology
graph.

68

5.3 GENTL Environment Architecture

Stand Alone
Application

Eclipse
Plugin

Django
Application

Platform
Independence

operating system
independence

operating system
independence

device
independence

Import and Model
Transformation

DOM-Parser
XSLT Engine

EMF
XSLT Project

Proper Graph Layout Graphviz APIs GEF
Graphviz Plugin Pydot + Graphviz

Interactions with
the Topology Graph GEF embedded URLs

in SVG files

Table 5.1: Reusable Features for the Implementation Options

5.2.4 Options Evaluation

The reusable features described in Section 5.2.2 show that the Eclipse framework offers
more features than the Netbeans Platform. As described in Section 5.2.3, web application
frameworks like django can help reduce redundancy in web application development.

The decision for an implementation option narrows down to a decision between an
implementation as a stand alone application, eclipse plugin or django application.
Table 5.1 presents a summary of the reusable features for these options.

The Eclipse framework imposes the most extensive set of reusable features providing a
clear advantage over an implementation as a stand alone application. While the django
application offers a smaller set of reusable features than the eclipse framework, it also
offers a higher degree of platform independence. A django application can be accessed
by any device with a web browser.

Because of the huge set of plugins and features available for the eclipse framework, the
eclipse plugin development provides a high threshold for beginners. Django offers a
much smoother learning curve which puts the development efforts for the two options
into another perspective. As a consequence, the GENTL Environment was decided to
be implemented as a django application.

5.3 GENTL Environment Architecture

The GENTL Environment is a Django project consisting of a Topology App, a Trans-
formation App and two Annotation Apps. The Topology App implements the topology
data model and the graph visualization. Static annotation data is captured and displayed
in the Static Annotation App and dynamic annotation data is handled by the Dynamic

69

5 Implementation

 Attribute
 name CharField

 TextAttribute
 <Attribute>

 id AutoField
 name CharField
 value CharField

 IntegerAttribute
 <Attribute>

 id AutoField
 name CharField
 value IntegerField

 DateAttribute
 <Attribute>

 id AutoField
 name CharField
 value DateField

 TimeAttribute
 <Attribute>

 id AutoField
 name CharField
 value TimeField

 UriAttribute
 <Attribute>

 id AutoField
 name CharField
 value CharField

 CompositeAttribute
 id AutoField
 name CharField
 parentCompositeAttribute ForeignKey (id)

Figure 5.1: Attributes Datamodel

Annotation App. Import and export functionalities for topologies and annotations are
bundled in the Transformation App.

As prerequisites, the GENTL Environment requires the Django Framework [dja13],
the graph visualization software Graphviz [gra] and pydot [pyd] as python interface to
Graphviz.

The remainder of this section is structured as follows: The structure of the Topology
App is described in Section 5.3.1, Section 5.3.2 describes the contents of the Annotation
Apps and the structure of the Transformation App is given in Section 5.3.3.

5.3.1 Topology App

The Topology App handles the topology data and the graph visualization. Topology
elements and attributes are implemented as model classes. Model classes are python
objects, which serve as basis for the generation of database tables containing the model
instances. The model instances can be accessed and models can be queried through
Djangos dynamic database-access API.

70

5.3 GENTL Environment Architecture

 TopolPart
 topology ForeignKey (id)
 name CharField
 uuid CharField
 display CharField

 Topology
 id AutoField
 name CharField
 uuid CharField
 engine CharField

 ConnectorClass
 id AutoField
 name CharField
 uuid CharField

 Component
 <TopolPart>

 id AutoField
 topology ForeignKey (id)
 name CharField
 uuid CharField
 display CharField
 representsTopology ForeignKey (id)

 Connector
 <TopolPart>

 id AutoField
 topology ForeignKey (id)
 name CharField
 uuid CharField
 display CharField
 source ForeignKey (id)
 target ForeignKey (id)
 connectorClass ForeignKey (id)

 Group
 <TopolPart>

 id AutoField
 topology ForeignKey (id)
 name CharField
 uuid CharField
 display CharField

Figure 5.2: Datamodel of Topology Elements

Figure 5.1 displays the data model for simple and composite attributes. TextAttribute,
IntegerAttribute, UriAttribute, TimeAttribute and DateAttribute classes are derived
from an abstract Attribute class and differ only in the datatype of their respective value
field. The CompositeAttribute class has many to many relationships to the simple
attribute classes and a foreign key relationship to its own class, to enable hierarchical
nesting of composite attributes.

Figure 5.2 displays the data model of the topology elements and their interconnections.
The Component, Connector and Group classes are subclasses of the abstract class
TopolPart. They have a foreign key relationship to the Topology class and many to
many relationships to the different attribute classes (not included in the figure for reasons
of clarity). Besides the properties defined in the GENTL language, a display field has
been added to enable optional hiding of topology elements in the graph representation.

71

5 Implementation

 StaticAnnotation
 name CharField
 uuid CharField

 DocumentationAnnotation
 <StaticAnnotation>

 id AutoField
 name CharField
 uuid CharField
 author CharField
 date DateField
 time TimeField
 comment CharField

 ReferenceAnnotation
 <StaticAnnotation>

 id AutoField
 name CharField
 uuid CharField
 type CharField
 description CharField
 file FileField
 uri CharField

 Topology

 Component

 Connector

 Group

Figure 5.3: Datamodel for static Annotations

In the Connector class, the source and target properties are represented as foreign key
relationships to the Component class and the connectorClass property is represented
as foreign key relationship to the ConnectorClass module. The representsTopology
property of a component is reflected in an additional foreign key relationship from the
Component to the Topology class. A many to many relationship between Group and
Component defines which components belong to which groups. Besides the GENTL
topology properties, the Topology class contains an engine field which sets the layout
orientation for the graph visualization engine.

The topology data is retrieved from the database and transformed into a graph repre-
sentation in an svg file through pydot and Graphviz. After the graph generation, the
created file is enhanced with javascript event listeners and functions to pass events to
the parent document, which handles the display of additional information on topology
elements.

5.3.2 Annotation Apps

Static Annotation App

The Static Annotation App realizes a documentation annotation as an example of a simple
annotation and a reference annotation as an example for an external reference annotation.
Figure 5.3 depicts the data model for both annotations. They are derived from an

72

5.3 GENTL Environment Architecture

abstract Annotation class and have many to many relationships to the Component,
Connector, Group and Topology classes from the Topology App.

The DocumentationAnnotation class contains a comment and an author field to capture
simple comments for documentation purposes, and a date and a time field, which have
the current date and time as default values.

The ReferenceAnnotation contains a type, a URI and an optional description field to
capture references to external resources. It also contains an optional file field which can
be used to upload an external resource into the GENTL framework.

Dynamic Annotation App

The Dynamic Annotation App contains the data model for a sequence of requests to the
Nefolog System [Xiu13, AX13], which provides a set of decision support web services.
The implemented annotation data model is designed for requests to the cost calculator
service of Nefolog.

Figure 5.4 depicts the designed data model. The NefologOfferingAnnotation and the
NefologServiceTypeAnnotation classes are derived from the abstract class NefologAn-
notation, which contains a foreign key relationship to the Component class from the
Topology App. The intended request sequence is to

1. create a NefologServiceTypeAnnotation by requesting the available service types
from Nefolog and choosing the desired service type for a component,

2. use the chosen service type to request the available offerings and create a Nefolo-
gOfferingAnnotation with the chosen offering,

3. retrieve the available configurations for the offering and create a NefologConfigu-
rationAnnotation with the chosen configuration,

4. retrieve the available configuration variables, insert the desired values and create
a NefologConfigurationVariablesAnnotation,

5. use the NefologConfigurationVariablesAnnotation to retrieve the cost calculation
for the offering with the given configuration values

The NefologConfigurationAnnotation class has a foreign key relationship to the Nefolog-
ConfigurationAnnotation class, and the NefologConfigurationVariablesAnnotation class
has a foreign key relation to the NefologConfigurationAnnotation class. The configura-
tion variables are represented through TextAttributes by a many to many relationship
in the NefologConfigurationVariablesAnnotation.

73

5 Implementation

 NefologAnnotation
 uuid CharField
 component ForeignKey (id)

 Component

 NefologOfferingAnnotation
 <NefologAnnotation>

 id AutoField
 uuid CharField
 component ForeignKey (id)
 offering CharField
 provider CharField

 NefologServiceTypeAnnotation
 <NefologAnnotation>

 id AutoField
 uuid CharField
 component ForeignKey (id)
 serviceType CharField

 NefologConfigurationAnnotation
 id AutoField
 offering ForeignKey (id)
 configuration_name CharField
 configuration_uri CharField

 NefologConfigurationVariablesAnnotation
 id AutoField
 configuration ForeignKey (id)

 TextAttribute

Figure 5.4: Nefolog Annotation Datamodel

74

5.4 User Interface

5.3.3 Transformation App

The Transformation App bundles the import functionalities for Blueprint and TOSCA
topologies and the serialization and deserialization of GENTL topologies and annotations.
The Blueprint import is based on the XML Schema for the Blueprint Language developed
as part of the 4CaaSt project1 and TOSCA import functionality relies on the schema of
the TOSCA Version 1.02. The XML Schema for the serialized representation of GENTL
topologies and GENTL annotations is given in the appendix.

5.4 User Interface

The index page depicted in Figure 5.5 lists all topologies available in the environment.
New topologies can be imported from TOSCA, Blueprint or GENTL files and existing
topologies can be opened by a click on an item in the topology list.

Figure 5.6 depicts the topology page for the TaxiScenario BackEnd Blueprint. The
topology page bundles all the functionalities offered for a specific topology. A graph
representation of the topology is given on the left, and additional information on topology
elements, annotations and view settings is given in tabs on the right. New components,
connectors and groups can be added to the topology through the menu bar, which
also provides the option to download the serialized XML representation of the GENTL
topology or the annotations connected to the topology.

A click on the elements of the topology graph loads information on the clicked element
to the tabs on the right. The Element Info tab displays the properties and attributes of
the topology element (Figure 5.8(a)) and provides functionalities to edit or delete the
selected element. Figure 5.8(b) displays the edit view for a component in the Element
Info tab.

In the static annotation tab depicted in Figure 5.7(a), the documentation and reference
annotations which are connected to the selected topology element are displayed. Single
annotations can be disconnected from the element, existing annotations can be connected
to the element and new annotations can be created.

The dynamic annotation tab (Figure 5.7(b)) displays the dynamic annotations connected
to the selected topology element. New annotations can be added and existing annotations
can be used to invoke service calls. The result from the service calls is also displayed in
this tab.

1EU Project 4CaaSt: http://www.4caast.eu
2Topology and Orchestration Specification for Cloud Applications Version 1.0: http://docs.

oasis-open.org/tosca/TOSCA/v1.0/cos01/schemas/TOSCA-v1.0.xsd

75

http://www.4caast.eu
http://docs.oasis-open.org/tosca/TOSCA/v1.0/cos01/schemas/TOSCA-v1.0.xsd
http://docs.oasis-open.org/tosca/TOSCA/v1.0/cos01/schemas/TOSCA-v1.0.xsd

5 Implementation

Figure 5.5: Index Page of the GENTL Environment

Figure 5.6: Topology Overview

76

5.4 User Interface

(a) Static Annotations (b) Nefolog Annotations

Figure 5.7: Contents of the Annotation Tabs

In the view options tab displayed in Figure 5.8(c), the settings for the topology graph
display can be changed. This includes changing the layout direction for the topology
graph between “top to bottom” and “left to right”. Each component, connector and
group in the topology can be hidden individually, to limit the displayed elements and
focus on specific parts of the topology.

77

5 Implementation

(a) Component Detail Display

(b) Edit Component (c) View Settings

Figure 5.8: Contents of the Topology Information and View Tabs

78

6 Evaluation

The introduced framework offers functionality to import topologies from GENTL,
TOSCA and Blueprint files and display the topologies as graphs. Annotations can be
added to the topologies in form of documentation annotations, reference annotations
and a set of service invocation annotations which retrieve information from the external
Nefolog system.

The remainder of this section is structured as follows: In Section 6.1 the import
and visualization of Blueprint and TOSCA topologies is evaluated. The implemented
annotations are discussed in Section 6.2 and Section 6.3 specifies how the framework
can be extended by adding additional annotations or import functionalities for other
topology languages.

6.1 Topology Import and Visualization

A topology import from a GENTL file merely deserializes the contained data into
the GENTL Environment. Imports from TOSCA and Blueprint topologies translate
the topology data into the GENTL language and create the corresponding GENTL
topologies. This section evaluates how TOSCA and Blueprint topologies are translated
to GENTL and how the resulting topology graphs are visualized.

6.1.1 TOSCA Import

Figure 6.1 depicts the GENTL topology imported from the TOSCA ServiceTemplate
of the SugarCRM application used for interoperability demonstration purposes1. The
TOSCA node templates are represented as components, which belong to a group that
corresponds to the type of the node template. Relationship types are denoted as connector
classes and each relationship template is depicted as connector of the connector class
representing its type.

1SugarCRM CSAR file: https://www.oasis-open.org/committees/download.php/50158/
SugarCRM-Interop-20130803.zip

79

https://www.oasis-open.org/committees/download.php/50158/SugarCRM-Interop-20130803.zip
https://www.oasis-open.org/committees/download.php/50158/SugarCRM-Interop-20130803.zip

6 Evaluation

Figure 6.1: Sugar CRM Topology

(a) Moodle Topology in Winery [win13] (b) Moodle Topology in GENTL

Figure 6.2: Comparison of Topology Displays

80

6.1 Topology Import and Visualization

Figure 6.3: Sample Blueprint Virtual Architecture Graph [NLPH12].

In [BBK+12] a visual notation for TOSCA is proposed and a topology modeler for
TOSCA is given in [win13]. Figure 6.2(a) shows a topology graph in the winery topology
modeler and Figure 6.2(b) depicts the same topology as GENTL topology.

The winery topology modeler is designed for TOSCA topologies. Different node types can
be distinguished by separate colors and specific icons in the node and each relationship
type can be displayed in a different color. GENTL represents node types as groups of
nodes and the language allows for a component to be in multiple groups. Hence the
visualization of node types is decoupled from the topology component and displayed in
a separate graph node with connections to the components of the certain node type.

6.1.2 Blueprint Import

The Blueprint Approach does not specify a visual notation for Blueprint topologies,
but in [NLPH12], an example virtual architecture graph is depicted (see Figure 6.3). A
Blueprint which is imported into the GENTL Environment results in a set of topologies.
Each created topology matches an offering in the imported Blueprint.

The import of the TaxiScenario-Blueprint-BackEndProduct for the Taxi Application
scenario in 4CaaSt results in six topologies. First the “Taxi BackEnd SaaS Topology”
depicted in Figure 6.4 is created, which consists of one deployment artefact and three
resource requirements. This topology represents the offering contained in the Blueprint.

The required blueprints section of the TaxiScenario-Blueprint-BackEndProduct contains
three Blueprints, which specify the matched offerings for the resource requirements.
Each of those Blueprints is imported which results in topologies for the included offerings

81

6 Evaluation

Figure 6.4: Taxi BackEnd SaaS Topology

Figure 6.5: BPEL Composition Engine Topology

and the required blueprints. Components reflecting resource requirements with a
matched offering are connected to the topology of the matched offering through the
representsTopology property.

Regarding the “Taxi BackEnd SaaS Topology”, this means that the “Enterprise Service
Bus” component is connected to the topology depicted in Figure 6.7, the “BPEL
Composition Engine on Servlet Container v2.5” component is connected to the topology
depicted in Figure 6.5 and the “Context Integration Framework” component is connected
to the topology in Figure 6.6.

The “BPEL Composition Engine on Servlet Container v2.5” topology graph (Figure 6.5)
is empty, because the corresponding Blueprint contains neither deployment artefacts nor
resource requirements. This results in an empty topology with Blueprint and offering
properties as topology attributes.

The “Enterprise Service Bus” topology in Figure 6.7 and the “Context Integration
Framework” topology in Figure 6.6 also contain resource requirements with matched
offerings. The corresponding components are either connected to an existing topology in
the framework (e.g. the “Enterprise Service Bus” component in the “Context Integration
Framework is connected to the topology in Figure 6.7) or, if the matched offering has
not been imported yet, a new topology is created.

82

6.1 Topology Import and Visualization

Context Integration Framework

depoymentArtefacts
resourceRequirements

G6 BPEL Composition Engine on Servlet Container v2.5

G5 CMF.war

G6 Context-as-a-Service

G5 ContextUpdate.zip

G6 Enterprise Service Bus

G5 GetActiveEntities.zip

G5 GetActiveEntitiesBrokerContextExclude.zip

G5 GetActiveEntitiesBrokerContextInclude.zip

G5 GetActiveEntitiesByType.zip

G5 GetActiveEntitiesProviderContextExclude.zip

G5 GetActiveEntitiesProviderContextInclude.zip

G5 GetAvailableTaxis.zip

G5 GetBrokerContextExclude.zip

G5 GetBrokerContextInclude.zip

G5 GetContextProviders.zip

G5 GetGoogleDirections.zip

G5 GetGoogleDirectionsDistance.zip

G5 GetGoogleDirectionsDuration.zip

G5 GetGoogleGeocoding.zip

G5 GetProviderContext.zip

G5 GetProviderContextExclude.zip

G5 GetProviderContextInclude.zip

G5 GetRouteDistanceForActiveEntities.zip

G5 GetRouteDurationForActiveEntities.zip

G5 GetTaxiDriverInformation.zip

G5 GoogleMapsServices.war

G5 ProviderAdvertising.zip

G5 ProviderMethod.zip

G5 TaxiServiceProvider.zip

horizontal

horizontal

vertical

horizontal

vertical

horizontal

vertical

horizontal

vertical

horizontal

vertical

horizontal

vertical

horizontal

vertical

horizontal

vertical

horizontal
horizontal

vertical

vertical

horizontal

vertical

horizontal

vertical

horizontal

vertical

horizontal

vertical

horizontal

vertical

horizontal

vertical

horizontal

vertical

horizontal

vertical

horizontal

vertical

horizontal

vertical

horizontal

vertical

horizontal

vertical

horizontal

vertical

horizontal

vertical

horizontal

vertical

horizontal

vertical

horizontal

vertical

Figure 6.6: Context Integration Framework Topology

83

6 Evaluation

Figure 6.7: Enterprise Service Bus Topology

6.2 Topology Annotations

6.2.1 Static Annotations

The GENTL Environment offers two kinds of static annotations. The documentation
annotation can be used to capture comments on topologies and topology elements and
consist of an author textfield, a comment textfield and a date and time field. The
reference annotation is designed to attach arbitrary external resources to topologies and
topology elements. Information on the contents of the external resource can be captured
in the annotation through a type and a description field.

6.2.2 Dynamic Annotations

The dynamic annotations introduced in the framework form a sequence of annotation
creation steps and service calls, which can be used to retrieve cost calculations for a
specific component in a topology.

In a first step, the service type of a component is defined by retrieving the available
service types and choosing one of them for an annotation to the component. The created

84

6.3 Extending the Framework

(a) Query Variables and Values (b) Cost Calculation

Figure 6.8: Cost Calculation Response

annotation may be used to retrieve the available offerings for the service type and
annotate the component with one of the offerings. Based on the offering annotation,
available configurations can be retrieved and a suitable configuration may be saved as
annotation to the component. Available configuration variables can be retrieved for
a configuration annotation and with the values for those variables, the costs for the
specified service can be retrieved.

The retrieved cost calculation contains the Query Variables and Values used for the
calculation and cost information for different location zones as displayed in Figure 6.8(a)
and 6.8(b).

The sequence of service calls provides the opportunity to retrieve cost calculations based
on different settings. Each step in the cost calculation process may be repeated with a
different selection, leading to a new annotation based on different settings.

6.3 Extending the Framework

The framework can be extended by import functions for additional languages, or by
new kinds of static or dynamic annotations. To introduce a new language import, the

85

6 Evaluation

Transformation App has to be extended. The app contains a package with a set of basic
functions for the import of topologies and contained elements, which can be reused for
additional languages.

This reduces the import of new languages to the design of a sufficient mapping to
the elements of the GENTL language and the implementation of the functionality to
retrieve the source data. The implemented language imports are both XML based, but
additional imports for different language representations could extend the framework.
Available APIs of cloud frameworks for example could be used to design import functions
for the managed topologies.

Additional annotations can be added either as extension of one of the existing annotation
apps, or included in the framework as a separate app. In both cases, the serialization
and deserialization of the annotation has to be added to the Transformation App.

The GENTL annotation model provides a generic structure for annotations which has to
be refined to provide a detailed model for a specific annotation. This refinement process
includes the design of an XML Schema definition for the serialized representation, the
design of a corresponding data model used in the environment and the specification of
the meaning and intended usage for the annotation.

To include a new annotation into the framework, the data model and the import and
export functionality has to be implemented. The views to display, create, edit and delete
annotations can either be added to one of the existing annotation tabs or provided in a
separate tab.

For a new simple annotation or a new kind of reference annotation the extension of the
existing Static Annotation App and the corresponding view template is advisable. If
the new annotation consists of a series of connected annotations like the introduced
nefolog annotations, the design of a new separate app and the display in an extra tab
should be the preferred option.

86

7 Conclusion

In this thesis, a set of common concepts in application topology languages have been
identified on the basis of the description of existing application topologies and frameworks.
The new application topology language GENTL has been introduced as an abstraction
from language specific details to provide a generalized topology description which can
capture topologies described in different languages. Mappings from existing topology
languages and frameworks to the designed language have been given.

The designed language describes a topology and the contained elements in a very generic
way, which provides the opportunity to capture different topology concepts in the same
model. A GENTL topology contains components, connectors between components,
groups of components and connector classes.

Components have a representsTopology property which enables the nesting of an existing
topology as a component into a new topology. Connectors represent a directed link
between a source and a target component and are grouped into distinct connector classes
specifying the expressed type of the connection. Groups of components can be used to
specify certain types of components as well as to express common properties of different
kinds of components. Components can be part of multiple groups.

Additional information on topologies, components, connectors and groups are captured
as generic but typed attributes on the respective elements. Attributes can be simple
attributes consisting of a name and value pair, as well as composite attributes which
may contain a sequence of simple and composite attributes.

Different existing topology annotations have been described and categorized into Dis-
covery, Provision and Management and Design Support Annotations, based on their
intended application area, as well as into static and dynamic annotations. The process-
ing modes automatic processing, human processing and hybrid processing have been
distinguished.

An annotation scheme for GENTL has been designed to capture static and dynamic anno-
tations with a focus on annotations supporting design decisions. The abstract annotation
scheme has been instantiated for exemplary static and dynamic annotations.

An extensible application topology framework with a corresponding topology annotation
scheme has been designed and implemented as a Django web application. The framework
offers import functions for GENTL, Blueprint and TOSCA topologies.

87

7 Conclusion

Topologies can be annotated with documentation annotations, reference annotations
providing connections to external resources and dynamic annotations which can be
used to retrieve cost calculations from the external decision support system Nefolog.
Topologies and annotations can be exported to the XML representation of GENTL and
GENTL annotations.

The framework is designed to be extensible. Extensions can be included as new import
functionalities for different application topology languages, and as new static and
dynamic annotations, providing additional options for decision support.

The presented framework provides the basis for decision support during application
architecture design for the cloud. It provides the means to extend the framework with
further decision support functionalities building towards a comprehensive support system
for cloud application design.

New import functionalities for additional languages, like Cafe or CloudML as well as
import options for information captured in cloud management tools may be introduced
in the future to complement the existing import functionality for Blueprint, TOSCA
and GENTL topologies.

The environment may also be extended to benefit from additional annotations e.g.
to support the attachment of design patterns and CAP properties (as introduced
in Section 2.3.5) or annotations for performance calculations like the performance
characteristics included in the Descartes Meta-Model.

Export functionalities from GENTL to other languages could be introduced with ac-
companying language-specific annotations to facilitate the transformation. Those trans-
formations could be implemented as hybrid-processing annotations, which perform the
translation to the target language based on the GENTL topology and some user provided
matching information. For an export to TOSCA the matching information would include
e.g. the node types of the components in the topology, and the relationship types of the
connectors.

88

8 Appendix

XML Schema for GENTL and GENTL Annotations
1 <?xml version="1.0" encoding="UTF-8"?>
2 <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

elementFormDefault="qualified" attributeFormDefault="unqualified">
3 <xs:simpleType name="UUID">
4 <xs:restriction base="xs:string"/>
5 </xs:simpleType>
6 <xs:complexType name="innerReference">
7 <xs:attribute name="uuid" type="UUID" use="required"/>
8 </xs:complexType>
9 <xs:element name="topology">

10 <xs:complexType>
11 <xs:sequence>
12 <xs:element name="topologyAttributes" type="attributeType"/>
13 <xs:element ref="component" maxOccurs="unbounded"/>
14 <xs:element ref="connectorClass" minOccurs="0" maxOccurs="unbounded"/>
15 <xs:element ref="connector" minOccurs="0" maxOccurs="unbounded"/>
16 <xs:element ref="group" minOccurs="0" maxOccurs="unbounded"/>
17 </xs:sequence>
18 <xs:attribute name="uuid" type="UUID" use="required"/>
19 <xs:attribute name="name" type="xs:string" use="required"/>
20 </xs:complexType>
21 </xs:element>
22 <xs:element name="group">
23 <xs:complexType>
24 <xs:sequence>
25 <xs:element name="groupAttributes" type="attributeType"/>
26 <xs:element name="component" type="innerReference" minOccurs="0"

maxOccurs="unbounded"/>
27 <xs:element name="connector" type="innerReference" minOccurs="0"

maxOccurs="unbounded"/>
28 </xs:sequence>
29 <xs:attribute name="uuid" type="UUID" use="required"/>
30 <xs:attribute name="name" type="xs:string" use="required"/>
31 </xs:complexType>
32 </xs:element>
33 <xs:element name="component" type="componentType"/>
34 <xs:element name="connector" type="connectorType"/>
35 <xs:element name="connectorClass" type="connectorClassType"/>
36 <xs:complexType name="componentType">

89

8 Appendix

37 <xs:sequence minOccurs="0" maxOccurs="unbounded">
38 <xs:element name="componentAttributes" type="attributeType"/>
39 </xs:sequence>
40 <xs:attribute name="uuid" type="UUID" use="required"/>
41 <xs:attribute name="name" type="xs:string" use="required"/>
42 <xs:attribute name="representsTopology" type="UUID" use="optional"/>
43 </xs:complexType>
44 <xs:complexType name="connectorClassType">
45 <xs:attribute name="uuid" use="required"/>
46 <xs:attribute name="name" use="required"/>
47 </xs:complexType>
48 <xs:complexType name="connectorType">
49 <xs:sequence>
50 <xs:element name="source" type="innerReference"/>
51 <xs:element name="target" type="innerReference"/>
52 <xs:element name="class" type="innerReference"/>
53 <xs:element name="connectorAttributes" type="attributeType"/>
54 </xs:sequence>
55 <xs:attribute name="uuid" type="UUID" use="required"/>
56 <xs:attribute name="name" type="xs:string" use="required"/>
57 </xs:complexType>
58 <xs:complexType name="attributeType">
59 <xs:choice minOccurs="0" maxOccurs="unbounded">
60 <xs:element name="simpleAttribute" type="simpleAttributeType"/>
61 <xs:element name="compositeAttribute" type="compsiteAttributeType"/>
62 </xs:choice>
63 </xs:complexType>
64 <xs:complexType name="simpleAttributeType">
65 <xs:choice>
66 <xs:element name="textAttribute" type="textAttributeType"/>
67 <xs:element name="intAttribute" type="intAttributeType"/>
68 <xs:element name="referenceAttribute" type="referenceAttributeType"/>
69 <xs:element name="dateAttribute" type="dateAttributeType"/>
70 <xs:element name="timeAttribute" type="timeAttributeType"/>
71 <xs:element name="genericAttribute" type="genericAttributeType"/>
72 </xs:choice>
73 </xs:complexType>
74 <xs:complexType name="compsiteAttributeType">
75 <xs:sequence maxOccurs="unbounded">
76 <xs:choice>
77 <xs:element name="simpleAttribute" type="simpleAttributeType"/>
78 <xs:element name="compositeAttribute" type="compsiteAttributeType"/>
79 </xs:choice>
80 </xs:sequence>
81 <xs:attribute name="name" use="required"/>
82 </xs:complexType>
83 <xs:complexType name="genericAttributeType">
84 <xs:attribute name="name" type="xs:string" use="required"/>
85 <xs:attribute name="value" type="xs:anySimpleType" use="required"/>
86 </xs:complexType>

90

87 <xs:complexType name="textAttributeType" final="restriction">
88 <xs:complexContent>
89 <xs:restriction base="genericAttributeType">
90 <xs:attribute name="name" type="xs:string" use="required"/>
91 <xs:attribute name="value" use="required">
92 <xs:simpleType>
93 <xs:restriction base="xs:string"/>
94 </xs:simpleType>
95 </xs:attribute>
96 </xs:restriction>
97 </xs:complexContent>
98 </xs:complexType>
99 <xs:complexType name="intAttributeType">

100 <xs:complexContent>
101 <xs:restriction base="genericAttributeType">
102 <xs:attribute name="value" type="xs:int" use="required"/>
103 </xs:restriction>
104 </xs:complexContent>
105 </xs:complexType>
106 <xs:complexType name="referenceAttributeType">
107 <xs:complexContent>
108 <xs:restriction base="genericAttributeType">
109 <xs:attribute name="value" type="xs:anyURI" use="required"/>
110 </xs:restriction>
111 </xs:complexContent>
112 </xs:complexType>
113 <xs:complexType name="timeAttributeType">
114 <xs:complexContent>
115 <xs:restriction base="genericAttributeType">
116 <xs:attribute name="value" type="xs:time" use="required"/>
117 </xs:restriction>
118 </xs:complexContent>
119 </xs:complexType>
120 <xs:complexType name="dateAttributeType">
121 <xs:complexContent>
122 <xs:restriction base="genericAttributeType">
123 <xs:attribute name="value" type="xs:date" use="required"/>
124 </xs:restriction>
125 </xs:complexContent>
126 </xs:complexType>
127 <xs:element name="annotations">
128 <xs:complexType>
129 <xs:sequence>
130 <xs:element name="annotation" type="annotationType"

maxOccurs="unbounded"/>
131 </xs:sequence>
132 </xs:complexType>
133 </xs:element>
134 <xs:complexType name="annotationType">
135 <xs:sequence>

91

8 Appendix

136 <xs:element name="parent" type="UUID" maxOccurs="unbounded"/>
137 <xs:element name="annoationAttributes" type="attributeType"/>
138 <xs:choice>
139 <xs:element name="externalReference" type="xs:anyURI"/>
140 <xs:element name="serviceInvocation">
141 <xs:complexType>
142 <xs:sequence>
143 <xs:element name="requestURL" type="xs:anyURI"/>
144 <xs:element name="staticParameters" type="attributeType"/>
145 <xs:element name="dynamicParameters">
146 <xs:complexType>
147 <xs:sequence minOccurs="0" maxOccurs="unbounded">
148 <xs:element name="requestParameter"

type="requestParameterType"/>
149 </xs:sequence>
150 </xs:complexType>
151 </xs:element>
152 </xs:sequence>
153 </xs:complexType>
154 </xs:element>
155 <xs:element name="staticAnnotation" type="attributeType"/>
156 </xs:choice>
157 </xs:sequence>
158 <xs:attribute name="name" type="xs:string" use="required"/>
159 <xs:attribute name="uuid" type="UUID" use="required"/>
160 </xs:complexType>
161 <xs:complexType name="serviceInvocationType">
162 <xs:sequence>
163 <xs:element name="requestUrl" type="xs:anyURI"/>
164 <xs:element name="parameters"/>
165 </xs:sequence>
166 </xs:complexType>
167 <xs:complexType name="requestParameterType">
168 <xs:attribute name="name" type="xs:string" use="required"/>
169 <xs:attribute name="datatype" type="dataType" use="required"/>
170 </xs:complexType>
171 <xs:simpleType name="dataType">
172 <xs:restriction base="xs:string">
173 <xs:enumeration value="String"/>
174 <xs:enumeration value="Integer"/>
175 <xs:enumeration value="URI"/>
176 <xs:enumeration value="Date"/>
177 <xs:enumeration value="Time"/>
178 </xs:restriction>
179 </xs:simpleType>
180 </xs:schema>

92

Bibliography

[AFG+09] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H. Katz, A. Konwin-
ski, G. Lee, D. A. Patterson, A. Rabkin, I. Stoica, M. Zaharia. Above
the Clouds: A Berkeley View of Cloud Computing. Technical Report
UCB/EECS-2009-28, EECS Department, University of California, Berke-
ley, 2009. URL http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/
EECS-2009-28.html. (Cited on page 13)

[ASFL13] V. Andrikopoulos, S. Strauch, C. Fehling, F. Leymann. CAP-Oriented
Design for Cloud-native Applications, 2013. To be published. (Cited on
pages 7, 45, 46 and 47)

[ASL13] V. Andrikopoulos, S. Strauch, F. Leymann. Decision Support
for Application Migration to the Cloud: Challenges and Vision.
In Proceedings of the 3rd International Conference on Cloud Com-
puting and Service Science (CLOSER’13), pp. 1–7. SciTePress,
2013. URL http://www2.informatik.uni-stuttgart.de/cgi-bin/
NCSTRL/NCSTRL_view.pl?id=INPROC-2013-18&engl=. (Cited on page 11)

[AX13] V. Andrikopoulos, M. Xiu. The Nefolog MiDSuS Systems. Technical report,
Universität Stuttgart, Institut für die Architektur von Anwendungssyste-
men, 2013. (Cited on page 73)

[BBK+12] U. Breitenbücher, T. Binz, O. Kopp, F. Leymann, D. Schumm.
Vino4TOSCA: A Visual Notation for Application Topologies Based on
TOSCA. In OTM 2012, Part I, volume 7565 of Lecture Notes in
Computer Science (LNCS), pp. 416–424. Springer-Verlag, 2012. doi:
10.1007/978-3-642-33606-5_25. URL http://dx.doi.org/10.1007/
978-3-642-33606-5_25. (Cited on page 81)

[BBK+13] U. Breitenbücher, T. Binz, O. Kopp, F. Leymann, M. Wieland.
Policy-Aware Provisioning of Cloud Applications. In SECUR-
WARE 2013, The Seventh International Conference on Emerging Se-
curity Information, Systems and Technologies, pp. 86–95. IARIA,
Stuttgart, 2013. URL http://www2.informatik.uni-stuttgart.de/
cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2013-48&engl=0. (Cited
on pages 7, 42 and 43)

93

http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-28.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-28.html
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2013-18&engl=
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2013-18&engl=
http://dx.doi.org/10.1007/978-3-642-33606-5_25
http://dx.doi.org/10.1007/978-3-642-33606-5_25
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2013-48&engl=0
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2013-48&engl=0

Bibliography

[BBKL13] U. Breitenbücher, T. Binz, O. Kopp, F. Leymann. Pattern-based Runtime
Management of Composite Cloud Applications. In F. Desprez, D. Ferguson,
E. Hadar, F. Leymann, M. Jarke, M. Helfert, editors, CLOSER, pp. 475–482.
SciTePress, 2013. (Cited on page 42)

[ben13] Bento Boxes | Cloud Management Software and Cloud Orchestra-
tion Software | Flexiant, 2013. URL http://www.flexiant.com/tag/
bento-boxes/. (Cited on page 26)

[BGPCV12] L. Badger, T. Grance, R. Patt-Corner, J. Voas. Cloud Computing Syn-
opsis and Recommendations. Technical report, U.S. Department of Com-
merce Gary Locke, Secretary National Institute of Standards and Technol-
ogy Patrick D. Gallagher, Director, 2012. URL http://csrc.nist.gov/
publications/nistpubs/800-146/sp800-146.pdf. (Cited on pages 13
and 14)

[BMM12a] E. Brandtzæg, P. Mohagheghi, S. Mosser. Towards a Domain-Specific
Language to Deploy Applications in the Clouds. In CLOUD COMPUTING
2012: The Third International Conference on Cloud Computing, GRIDs
and Virtualization. 2012. (Cited on pages 7, 28 and 29)

[BMM12b] E. Brandtzæg, S. Mosser, P. Mohagheghi. Towards CloudML, a Model-
based Approach to Provision Resources in the Clouds. In Model-
Driven Engineering for and on the Cloud workshop (co-located with
ECMFA’12)(CloudMDE’12), workshop, , pp. 18–27. DTU, Copenhaghen,
Danemark, 2012. (Cited on pages 7, 28 and 29)

[Bre00] E. A. Brewer. Towards Robust Distributed Systems, 2000. URL http:
//www.cs.berkeley.edu/~brewer/cs262b-2004/PODC-keynote.pdf.
(Cited on page 45)

[can] canviz - JavaScript library for drawing Graphviz graphs to a web browser
canvas - Google Project Hosting. URL http://code.google.com/p/
canviz/. (Cited on page 68)

[clo13] AWS CloudFormation, 2013. URL http://aws.amazon.com/
cloudformation/. (Cited on pages 7, 25 and 26)

[dja13] The Web framework for perfectionists with deadlines | Django, 2005-2013.
URL https://www.djangoproject.com. (Cited on pages 68 and 70)

[DOM05] W3C Document Object Model, 1997-2005. URL http://www.w3.org/DOM/.
(Cited on page 66)

[ecl13a] Eclipse Modeling Project, 2013. URL http://www.eclipse.org/
modeling/. (Cited on page 67)

94

http://www.flexiant.com/tag/bento-boxes/
http://www.flexiant.com/tag/bento-boxes/
http://csrc.nist.gov/publications/nistpubs/800-146/sp800-146.pdf
http://csrc.nist.gov/publications/nistpubs/800-146/sp800-146.pdf
http://www.cs.berkeley.edu/~brewer/cs262b-2004/PODC-keynote.pdf
http://www.cs.berkeley.edu/~brewer/cs262b-2004/PODC-keynote.pdf
http://code.google.com/p/canviz/
http://code.google.com/p/canviz/
http://aws.amazon.com/cloudformation/
http://aws.amazon.com/cloudformation/
https://www.djangoproject.com
http://www.w3.org/DOM/
http://www.eclipse.org/modeling/
http://www.eclipse.org/modeling/

Bibliography

[ecl13b] Graphviz Eclipse plug-in | Free Development software downloads
at SourceForge.net, 2013. URL http://sourceforge.net/projects/
eclipsegraphviz/. (Cited on page 68)

[ecl13c] XSLT Project - Eclipsepedia, 2013. URL http://wiki.eclipse.org/
XSLT_Project. (Cited on page 68)

[FL07] J. Farrell, H. Lausen. Semantic Annotations for WSDL and XML Schema.
W3crecommendation, World Wide Web Consortium, 2007. URL http:
//www.w3.org/TR/sawsdl/. (Cited on page 39)

[FLR+11] C. Fehling, F. Leymann, R. Retter, D. Schumm, W. Schupeck. An Archi-
tectural Pattern Language of Cloud-based Applications. In Proceedings of
the 18th Conference on Pattern Languages of Programs, PLoP 2011, pp.
1–11. ACM, 2011. URL http://www2.informatik.uni-stuttgart.de/
cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2011-66&engl=1. (Cited
on pages 7, 43, 44 and 45)

[GL02] S. Gilbert, N. Lynch. Brewer’s Conjecture and the Feasibility of Consistent
Available Partition-Tolerant Web Services. In In ACM SIGACT News, p.
2002. 2002. URL http://citeseerx.ist.psu.edu/viewdoc/download?
doi=10.1.1.20.1495&rep=rep1&type=pdf. (Cited on page 45)

[gra] Graphviz | Graphviz - Graph Visualization Software. URL http://www.
graphviz.org. (Cited on pages 67 and 70)

[Gro11] O. M. G. Group. UML Specification, Version 2.4.1, 2011. (Cited on page 31)

[HKP+09] P. Hitzler, M. Krötzsch, B. Parsia, P. F. Patel-Schneider, S. Rudolph. OWL
2 Web Ontology Language Primer. W3C Recommendation, World Wide
Web Consortium, 2009. URL http://www.w3.org/TR/owl2-primer/.
(Cited on page 40)

[KBH12] S. Kounev, F. Brosig, N. Huber. Descartes Meta-Model (DMM). Technical
report, Karlsruhe Institute of Technology (KIT), 2012. URL http://
www.descartes-research.net/metamodel/. To be published. (Cited on
pages 7 and 30)

[Kec05] C. Kecher. UML 2.0: Das umfassende Handbuch. Galileo Computing, 1
edition, 2005. (Cited on pages 31 and 32)

[Ley09] F. Leymann. Cloud Computing: The Next Revolution in IT. In Photogram-
metric Week ‘09, pp. 3–12. Wichmann Verlag, 2009. (Cited on pages 13
and 14)

95

http://sourceforge.net/projects/eclipsegraphviz/
http://sourceforge.net/projects/eclipsegraphviz/
http://wiki.eclipse.org/XSLT_Project
http://wiki.eclipse.org/XSLT_Project
http://www.w3.org/TR/sawsdl/
http://www.w3.org/TR/sawsdl/
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2011-66&engl=1
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2011-66&engl=1
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.20.1495&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.20.1495&rep=rep1&type=pdf
http://www.graphviz.org
http://www.graphviz.org
http://www.w3.org/TR/owl2-primer/
http://www.descartes-research.net/metamodel/
http://www.descartes-research.net/metamodel/

Bibliography

[LFM+11] F. Leymann, C. Fehling, R. Mietzner, A. Nowak, S. Dustdar. Moving
Applications to the Cloud: An Approach based on Application Model
Enrichment. International Journal of Cooperative Information Systems,
20(3):307–356, 2011. doi:10.1142/S0218843011002250. (Cited on pages 7,
23 and 24)

[LKD+02] H. Ludwig, A. Keller, A. Dan, R. P. King, R. Franck. Web service level
agreement (WSLA) language specification. Technical report, IBM Corpo-
ration, 2002. (Cited on pages 7, 40, 41 and 42)

[Mie10] R. Mietzner. A method and implementation to define and provision variable
composite applications, and its usage in cloud computing. Ph.D. thesis,
University of Stuttgart, 2010. (Cited on pages 7, 22, 23 and 37)

[MUL09] R. Mietzner, T. Unger, F. Leymann. Cafe: A Generic Configurable Cus-
tomizable Composite Cloud Application Framework. In R. Meersman,
T. Dillon, P. Herrero, editors, CoopIS 2009 (OTM 2009), volume 5870 of
Lecture Notes in Computer Science, pp. 357–364. Springer-Verlag, Berlin,
Heidelberg, 2009. (Cited on pages 22 and 44)

[net13a] NetBeans Visual Library, 2013. URL http://platform.netbeans.org/
graph/. (Cited on page 68)

[net13b] NetBeans xml: XSL Support, 2013. URL https://xml.netbeans.org/
xsl/. (Cited on page 68)

[NLPH12] D. K. Nguyen, F. Lelli, M. P. Papazoglou, W.-J. van den Heuvel. Blueprint-
ing Approach in Support of Cloud Computing. Future Internet, 4(1):322–
346, 2012. (Cited on pages 7, 8, 15, 16, 17, 56 and 81)

[ope13a] OpenNebula - Flexible Enterprise Cloud Made Simple, 2002-2013. URL
http://opennebula.org. (Cited on page 27)

[ope13b] Software » OpenStack Open Source Cloud Computing Software, 2013. URL
http://www.openstack.org/software/. (Cited on pages 7, 26 and 27)

[PH11] M. Papazoglou, W. van den Heuvel. Blueprinting the Cloud. Internet
Computing, IEEE, 15(6):74–79, 2011. doi:10.1109/MIC.2011.147. (Cited
on page 15)

[pyd] pydot - Python interface to Graphviz’s Dot language. - Google Project
Hosting. URL http://code.google.com/p/pydot/. (Cited on pages 68
and 70)

[SABL13] S. Strauch, V. Andrikopoulos, T. Bachmann, F. Leymann. Migrating
Application Data to the Cloud Using Cloud Data Patterns. In Proceedings
of the 3rd International Conference on Cloud Computing and Service

96

http://platform.netbeans.org/graph/
http://platform.netbeans.org/graph/
https://xml.netbeans.org/xsl/
https://xml.netbeans.org/xsl/
http://opennebula.org
http://www.openstack.org/software/
http://code.google.com/p/pydot/

Bibliography

Science, CLOSER 2013, 8-10 May 2013, Aachen, Germany, pp. 0–11.
SciTePress, 2013. (Cited on page 45)

[Spe10] S. Speiser. Semantic Annotations for WS-Policy. In Web Services (ICWS),
2010 IEEE International Conference on, pp. 449–456. 2010. doi:10.1109/
ICWS.2010.15. (Cited on page 40)

[tos13] Topology and Orchestration Specification for Cloud Applications Version
1.0. OASIS Committee Specification 01, 2013. URL http://docs.
oasis-open.org/tosca/TOSCA/v1.0/cs01/TOSCA-v1.0-cs01.html.
(Cited on pages 7, 18, 19, 20 and 21)

[USD11] Unified Service Description Language 3.0 (USDL): Overview. Technical
report, SAP Research, 2011. URL http://www.internet-of-services.
com/fileadmin/IOS/user_upload/pdf/USDL-3.0-M5-overview.pdf.
(Cited on pages 7, 32 and 33)

[WCL05] S. Weerawarana, F. Curbera, F. Leymann. Web Services Platform Architec-
ture: SOAP, WSDL, WS-Policy, WS-Addressing, WS-BPEL, WS-Reliable
Messaging and More. Prentice Hall PTR, 2005. (Cited on pages 13, 14, 15,
38, 39 and 61)

[web] WebDot Home Page. URL http://www.graphviz.org/webdot/index.
html. (Cited on page 68)

[win13] Winery, 2013. URL http://winery.opentosca.org. (Cited on pages 80
and 81)

[wsa04] Web Services Architecture. W3C Working Group Note, 2004. URL http:
//www.w3.org/TR/ws-arch/. (Cited on pages 13 and 14)

[WSD07] Web Services Description Language (WSDL) Version 2.0 Part 1: Core
Language. W3C Recommendation, 2007. URL http://www.w3.org/TR/
wsdl20/. (Cited on page 14)

[WSP07] Web Services Policy Framework (WSPolicy). W3C Recommendation, 2007.
URL http://www.w3.org/TR/ws-policy. (Cited on pages 38 and 39)

[Xiu13] M. Xiu. Decision support for different migration types of applications to
the Cloud. Diplomarbeit, University of Stuttgart, 2013. (Cited on page 73)

[XSL07] XSL Transformations (XSLT) Version 2.0. W3C Recommendation, 2007.
URL http://www.w3.org/TR/xslt20/. (Cited on page 66)

All links were last followed on November 26th, 2013.

97

http://docs.oasis-open.org/tosca/TOSCA/v1.0/cs01/TOSCA- v1.0-cs01.html.
http://docs.oasis-open.org/tosca/TOSCA/v1.0/cs01/TOSCA- v1.0-cs01.html.
http://www.internet-of-services.com/fileadmin/IOS/user_upload/pdf/USDL-3.0-M5-overview.pdf
http://www.internet-of-services.com/fileadmin/IOS/user_upload/pdf/USDL-3.0-M5-overview.pdf
http://www.graphviz.org/webdot/index.html
http://www.graphviz.org/webdot/index.html
http://winery.opentosca.org
http://www.w3.org/TR/ws-arch/
http://www.w3.org/TR/ws-arch/
http://www.w3.org/TR/wsdl20/
http://www.w3.org/TR/wsdl20/
http://www.w3.org/TR/ws-policy
http://www.w3.org/TR/xslt20/

Declaration

I hereby declare that the work presented in this thesis is
entirely my own and that I did not use any other sources
and references than the listed ones. I have marked all di-
rect or indirect statements from other sources contained
therein as quotations. Neither this work nor significant
parts of it were part of another examination procedure.
I have not published this work in whole or in part be-
fore. The electronic copy is consistent with all submitted
copies.

place, date, signature

	1 Introduction
	2 Fundamentals and Related Work
	2.1 Basic Terms in Cloud Computing and Web Services
	2.1.1 Cloud Computing Terms
	2.1.2 Web Services Standards and Technologies

	2.2 Application Topology Languages and Frameworks
	2.2.1 Blueprint
	2.2.2 TOSCA
	2.2.3 Cafe and MOCCA
	2.2.4 Topology Frameworks in Cloud Management Tools
	2.2.5 CloudML
	2.2.6 Descartes Meta-Model
	2.2.7 Unified Modeling Language
	2.2.8 Unified Service Description Language
	2.2.9 Comparison

	2.3 Annotation Approaches for Application Topologies
	2.3.1 Classification of Annotations
	2.3.2 Annotations in Presented Topology Languages and Frameworks
	2.3.3 Discovery Annotations
	2.3.4 Management and Provisioning Annotations
	2.3.5 Design Support Annotations
	2.3.6 Summary

	3 Generalization of Application Topology Languages
	3.1 Common Fundamental Concepts in Application Topologies
	3.1.1 Components
	3.1.2 Connectors
	3.1.3 Attributes
	3.1.4 Groups of Components

	3.2 GENTL - a GEneralized Topology Language
	3.2.1 Requirements for a Generalized Application Topology Language
	3.2.2 Realization of Topology Concepts
	3.2.3 Mappings between GENTL and existing Topology Languages

	4 GENTL Annotations
	4.1 Structures and Concepts in Topology Annotations
	4.2 Requirements for GENTL Annotations
	4.2.1 Annotations to be supported
	4.2.2 Attachment Mechanisms for Annotations
	4.2.3 Assembled Requirements

	4.3 Annotation Model
	4.3.1 Annotation Structure
	4.3.2 Instantiation for Different Annotation Types

	5 Implementation
	5.1 Requirements
	5.2 Implementation Options
	5.2.1 Stand Alone Application
	5.2.2 Plugin for an existing Development Platform
	5.2.3 Web Application
	5.2.4 Options Evaluation

	5.3 GENTL Environment Architecture
	5.3.1 Topology App
	5.3.2 Annotation Apps
	5.3.3 Transformation App

	5.4 User Interface

	6 Evaluation
	6.1 Topology Import and Visualization
	6.1.1 TOSCA Import
	6.1.2 Blueprint Import

	6.2 Topology Annotations
	6.2.1 Static Annotations
	6.2.2 Dynamic Annotations

	6.3 Extending the Framework

	7 Conclusion
	8 Appendix
	Bibliography

 HistoryItem_V1
 TrimAndShift

 Bereich: alle ungeraden Seiten
 Beschneiden: keine
 Versatz: rechts um 2.83 Punkte verschieben
 Normen (erweiterte Option): 'Original'

 32

 D:20130912095626
 841.8898
 a4
 Blank
 595.2756

 Tall
 1
 0
 No
 554
 324

 Fixed
 Right
 2.8346
 0.0000

 Odd
 1
 AllDoc
 1

 CurrentAVDoc

 None
 368.5039
 Bottom

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9a
 Quite Imposing Plus 2
 1

 67
 99
 98
 50

 1

 HistoryList_V1
 qi2base

