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ABSTRACT 

Cache memories are used in the microprocessors to close the speed gap between the 

processor and the main memory. Caches can minimize the memory access time by 

keeping a copy of the highly demanded data closer to the processor. As a result, the 

overall program execution time is reduced. In safety-critical real-time systems, a worst-

case analysis is required, and therefore the cache memories play an essential role in the 

estimation of the application‟s worst-case execution time. A simulation tool for the cache 

structure was developed to provide estimated measurements for both cache predictability 

and the worst-case memory access time based on the used architectural model. This may 

help to draw some conclusions about the actual cache operation. The simulation supports 

several modern uni-core and multi-core architectures, including some used in real-time 

systems. It also allows configuring different cache structures and hierarchies. The cache 

architecture, configuration and memory accesses from a simulated running application 

are specified by the user via an input file. The simulation provides a list of traces for 

every access. The cache predictability can be formulated as hit and miss rates. At the 

same time, the traces can be used to estimate total memory access time.  
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1 Introduction 

 

Cache predictability plays a significant role in determining the overall system 

performance during execution of an embedded application [43]. The cache predictability 

can be measured by the cache miss rate which is the percentage of the memory accesses 

not found in the cache taken from the total of all memory accesses. Since the cache miss 

rate depends on the cache configuration parameters, such as cache size, block size, and 

associativity, different cache configurations can result in different cache miss rates for a 

particular application [44]. To analyze different structures of the cache memory, a 

simulation of an embedded application‟s memory accesses can help by calculating the 

miss rates using different cache structures, thus allowing a choice of the best structure 

with the minimum cache miss rate for that embedded application [43]. 

This thesis aims to develop a simulator for the cache memories in the modern processors, 

both multi- and uni-core, especially those which are used in the embedded systems. The 

simulation supports different cache architectures such as directly mapped, fully 

associative and set-associative. Within the simulation a number of cache parameters such 

as cache size, block size, and associativity are adjustable. As part of the simulation three 

different cache replacement polices (FIFO, LRU, PLRU) have been implemented. The 

simulation supports multi-core architectures using multiple levels of private and shared 

caches with different cache hierarchies (inclusive, non-inclusive, or exclusive) at each 

level. It also offers a cache coherence scheme for private cache data consistency. 

The rest of this thesis is structured as follows. Chapter 2 gives an introduction about the 

cache basics including cache structures, cache block allocation, cache block replacement, 

and multi-level cache hierarchies. Chapter 3 talks about cache memories in multi-core 

processors and their structure. It also provides examples based on modern multi-core 

processors. Besides, the chapter discusses the cache coherence problem and the 

coherence protocol scheme aimed at solving the problem. Finally, the chapter explains 
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the MSI protocol for cache coherence in multi-core processors. Chapter 4 shows the 

design and the detailed implementation of the cache simulator. Chapter 5 introduces and 

discusses a number of test case scenarios for the cache simulator. Finally, Chapter 6 

concludes the entire work. 
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2 Cache Basics  

 

 

2.1 Memory hierarchy 

 

The memory system of a computer is not a single memory; it is organized as a hierarchy 

of connected memories of different technology. Memory hierarchy is a structure that 

uses multiple levels of memories; memories in the closer levels to the CPU are faster and 

smaller, and while the memory levels become farther from the CPU the size of the 

memory and access time both increase. This hierarchy offers high storage capacity and at 

the same time low average access time for the memory system. The level closer to the 

CPU is generally a subset of any level further away, and all the data are stored at the 

lowest level. A memory hierarchy can consist of multiple levels, but data are copied 

between only two adjacent levels at a time [1].  

Fast memory technologies that provide high speed data access like SRAM (static random 

access memory) are expensive; therefore they are used only for small memories in the 

levels closer to the CPU. At the same time cheaper technology is slower, but it is used for 

large memories. This technology requires high access time like DRAM (dynamic random 

access memory). Main memory is implemented from DRAM technology [2]. The aim of 

the memory hierarchy is to provide memory system which gathers among big capacity, 

short access time, and cost effective characteristics. The big capacity can be obtained 

from using much memory which is slow and cheap in the lower levels of the hierarchy, 

while the fast access time can be obtained from using small and fast memory in the 

higher levels. Figure 1 shows the faster memory is closer to the CPU while the slower 

and cheaper is below it. In many embedded devices magnetic disks are replaced by flash 

memory [1].  
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Figure 1 Basic structure of a memory hierarchy [1] 

 

The reason for having a memory hierarchy is the principle of locality. It states that the 

computer programs access the memory data in certain patterns. There are two kinds of 

locality: temporal locality and spatial locality, the principle of temporal locality says if 

the program references a memory location, it will be more likely to re-reference that 

location than some other random location. For that reason the most recent referenced data 

should be stored in a place closer to the CPU. A smaller and faster memory called cache 

is used to store those data which are expected to be referenced next, so if the prediction is 

correct, the data referencing can be served faster. The principle of spatial locality says if 

the program references a memory location, it will be more likely to reference a location 

near to it than some random location. Therefore, the main memory is divided logically 

into a set of memory blocks which are equal in size; usually the size is a power of two. 

Each memory block is made out of adjacent words (bytes), it represents the minimum 
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unit of data that can be either present or not in the level of the hierarchy. When the 

processor references some memory location, the whole block which contains that location 

and the locations near to it is brought to the cache and stored in a cache line which is 

equal in size to the memory block. Afterward if the processor references any near 

address, it can be found in the cache, so the address referencing will be faster [1].  

 

2.2 Processor Caches  

 

The upper levels in the memory hierarchy represent the cache memories; they are small 

in size and built using fast memory (SRAM).  The time to retrieve the requested data 

from the cache memory will be much smaller compared to the time needed to access the 

main memory, which is the major component of the memory access latency. Caches are 

used as fast storage to improve average access time to the slow main memory [1]. 

In modern architectures the cache memories are physically located in the CPU die 

(logically placed) between the processor register file and the main memory. They store a 

subset of memory data to hide the speed gap between the processor and the main memory 

by exploiting the locality principle in the memory accesses. All processor requests are 

served by caches first. As long as most memory accesses are found in the caches, the 

average latency of memory access will be closer to the cache latency than the latency of 

the main memory. In the recent processor architectures if the data are not found in the 

cache, it takes several hundreds of processor cycles to bring the data from the main 

memory. Therefore, cache predictability has a big influence on the whole system 

performance [7].  

Modern computer microprocessors have not only one cache but several caches which are 

structured in a hierarchal way, one level of cache memory after the other. Most of the 

microprocessors have the caches that constitute up to three levels of the overall memory 

hierarchy and may be of different type [2]: separated cache, or unified cache. In the 
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separated cache the data and the instructions of the program are stored in different 

caches, so the cache is divided into instruction cache to hold the instructions and data 

cache to hold the data. A split instruction and data cache can increase the cache 

bandwidth. The unified caches hold both data and instructions. Figure 2 shows a system 

with two levels of cache, the first level is a separated cache and implemented in the same 

chip of the microprocessor, while the second level is a unified cache and implemented 

off-chip in a separate set of SRAMs. 

 

Figure 2 Memory hierarchy of a system that uses multi-level caches 

 

All memory reference operations by the processor are sent first to the upper level of the 

caches. If the cache logic finds the requested data in a block presented in the cache, this 

means that the data are cached, this is called a hit. The time to access that data is called 

the hit time, which includes also the time needed to determine whether the access is a hit. 

In case of cache hit, the request can be directly serviced from the cache. If the data are 

not found in that upper level of the caches, the request is called a miss. The lower level of 

hierarchy (can be second level of cache, main memory, or disk) is then accessed to 

retrieve the block containing the requested data. The request is propagated from one level 
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to the next level in hierarchy until the requested block is found. When the requested block 

is found in one memory level, it is necessary to forward it to the upper level and store it 

there and so on through the intermediate hierarchy until the block is placed in the upper 

level of the caches, after that the processor request is serviced. The time taken to search 

for the requested block through the hierarchy until it is found, then bring it and store it 

back along the hierarchy to the upper levels of the caches is called miss penalty. It also 

includes the time needed for block replacement in each cache if it is needed [1]. Figure 3 

shows how the data block is transferred from one level to the upper level in the hierarchy 

then to the processor. 

 

Figure 3 Data block transfer between every pair of levels in the memory hierarchy [1] 

 

2.3 Cache Structure 

 

Caches are partitioned into cache sets of equal size, usually power of two. Each cache set 

contains one or more of the cache lines. The number of blocks in the set is known as the 
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degree of associativity. For efficient lookup of a memory block in the cache, each 

memory block can map to only one cache set and be stored in one of set‟s blocks [3]. The 

cache is usually organized as a two-dimensional array, where the sets represent the rows 

and the blocks in each set represent the columns. Figure 4 shows the cache sets and set 

contents of blocks, here the associativity of the cache equals four. 

 

Figure 4 Associative cache structure 

 

The number of blocks or lines in the cache is usually a power of two, and it can be 

calculated by 

𝐶𝑎𝑐𝑒 𝑆𝑖𝑧𝑒 (𝑖𝑛 𝑏𝑦𝑡𝑒𝑠)

𝐵𝑙𝑜𝑐𝑘 𝑆𝑖𝑧𝑒 (𝑖𝑛 𝑏𝑦𝑡𝑒𝑠)
 [3] 

The number of cache sets is a power of two, and it can be also calculated by 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑎𝑐𝑒 𝐵𝑙𝑜𝑐𝑘𝑠

𝐷𝑒𝑔𝑟𝑒𝑒 𝑜𝑓 𝐴𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑖𝑣𝑖𝑡𝑦
 [3] 
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2.4 Cache Organizations 

 

There are three different categories of cache organizations:  

Direct-Mapped, every memory block brought to the cache has exactly one place (block) 

in the cache where it can be allocated. The degree of associativity in the direct-mapped 

cache organization equals 1, this means every cache set contains only one cache block, 

and therefore the number of cache sets in this case is equal to the number of blocks in the 

cache. Direct-mapped cache is cheap to implement in hardware, also the data look up in 

the cache is fast [1]. 

Fully-Associative, the block can be placed in any available cache line. The cache has 

only one big set which holds all cache blocks. The degree of the associativity in fully-

associative cache is equal to the number of the cache blocks. As long as a new block is 

needed to be placed in the cache, it can be allocated in any available place in the cache. 

To find a block in fully-associative cache, all the blocks in the cache must be searched; 

therefore the implementation of the data look up is expensive [1]. 

Set-Associative, the block can be placed in a particular set in the cache. For n-way set-

associative cache the degree of associativity equals n, so each set contains n blocks. Each 

memory block is mapped to a specific set, and then it can be allocated in any available 

place within that set. Every cache can be considered as a set-associative cache, because 

the set-associative placement combines both direct-mapped and fully-associative 

placement mechanisms. Set-associative cache organization offers the chance to increase 

performance by more flexible placement mechanism which reduces the number of cache 

misses and at the same time enables an efficient data look up [1]. 
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2.5 How to Place a Block in the Cache? 

 

The mapping between the addresses and cache sets can be done by modulo function [3]; 

the set number to where the block can be mapped is calculated by 

 𝐵𝑙𝑜𝑐𝑘 𝐴𝑑𝑑𝑟𝑒𝑠𝑠  𝑚𝑜𝑑𝑢𝑙𝑜  𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑎𝑐𝑒 𝑠𝑒𝑡𝑠  

Figure 5 below shows an example for a block placement in the three different cache 

organizations. The cache contains 8 blocks, and the block number 12 in the memory or 

lower level of hierarchy needs to be placed in the cache. In fully-associative cache, the 

block can be placed in any of the 8 blocks. With direct-mapped cache, the block 12 can 

be mapped to cache block number:  12 𝑚𝑜𝑑 8 = 4. The last cache organization is 2-

way set-associative, therefore the cache has ( 
8

2
=  4) sets and each set holds two cache 

blocks. The block number 12 is mapped to the set number:  12 𝑚𝑜𝑑 4 = 0, and the 

block can be placed in any of the two blocks held by the set [3]. 
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Figure 5 Three different cache organizations [3] 

 

As for both direct-mapped and fully-associative strategies, they can be seen as variations 

on set-associative strategy. A direct-mapped cache is simply a one-way set-associative 

cache; each cache set holds one cache block. A fully-associative cache with m blocks is 

simply an m-way set-associative cache; it has one set with m blocks [3]. 
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2.6 How to Find a Block in the Cache? 

 

Each cache block has a tag field associated with it and stored along with the data, the 

block tag works as a unique identifier for the data mapped to that cache block, the tag 

contains some address information to identify whether the data in the cache block is the 

same as the requested data in the memory address, this means the data request is a hit in 

the cache. When the system starts up none of the cache blocks contains valid data, a valid 

bit associated with each block tag is needed to indicate whether the cache block contains 

valid data; so the bit is set to 1, else it is set to 0 [1]. 

The address of the memory access comes from the processor and is divided into two 

parts; the block address and the block offset. The block offset bits are the 

log2(𝐵𝑙𝑜𝑐𝑘 𝑆𝑖𝑧𝑒) least significant bits of the memory address and the remaining bits are 

for the block address field, if the block size is a power of two (which is usually the case). 

The block offset field represents the address of the accessed data within the block. The 

block address field is used to check whether the referenced block is present in the cache 

or not, it is divided again into two parts; block tag and set index. The set index bits are 

used to select the set which might contain the corresponding memory block. If the 

number of cache sets is a power of two (which is usually the case), then the set number 

can be found by taking the log2(𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑒𝑡𝑠) least significant bits of the block 

address and the rest bits are for the block tag. To check if the corresponding set is 

actually contained, the block tag filed in the memory address is compared with all block 

tags in the set, if it matches with one block tag and the valid bit is set to 1, then the 

request data are present in that cache block, and the block offset field is used to determine 

the data and return them to the processor. In a cache miss, the block is fetched from the 

lower level in the hierarchy [1]. 

The following figure 6 shows the three divisions of the memory address. The tag is used 

as a unique identifier for the cached memory block, to differentiate between the different 

blocks in the set. The index field determines the set number where the addressed data 
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should reside, it is only used in direct-mapped and set-associative caches. For the fully-

associative cache there is no index field because the whole cache is organized as one set. 

The block offset is where the data can be found within the cache block [3]. 

 

Figure 6 Three different portions of the memory address [3] 

 

For a given memory address, the following procedure steps illustrate how the cache look 

up logic finds whether the addressed data are cached (cache hit) or not (cache miss): 

1. The index is used to select the cache set where the address can be mapped. For 

fully-associative strategy the cache has effectively one set which contains all 

blocks. 

2. For each block in the selected cache set, the tag from the memory address is 

compared with all tags associated with each block in the set. If a match is found, 

proceed to the next step, otherwise cache miss. 

3. For the matching block, the valid bit is checked; if it is set to 1, cache hit, 

otherwise cache miss. 

4. The block offset is used to determine the starting byte of the addressed data within 

the block. 

 

Figure 7 shows an example of the four-way set-associative cache hardware 

implementation; four comparators are needed, because all the tags in the selected set are 

searched in parallel, a 4-to-1 multiplexer is used to select among the four data blocks. In 

direct-mapped cache only a single comparator is needed, because the set contains only 
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one block (one-way set-associative). In a fully-associative cache, a sequential search 

through the cache blocks would need a long time, or the search can be done in parallel 

with a comparator associated with each cache block, which increases the hardware cost. 

This makes the fully-associative placement practically usable only in a cache with small 

numbers of blocks [1]. 

 

Figure 7 The hardware implementation of a 4-way set-associative cache [1] 

 

2.7 Cache Organization Example 

 

Consider a cache memory with 64 bytes size and with block size equaling 16 bytes. The 

memory address width is 16 bits. Table 1 below shows how the purposed cache is 



2. Cache Basics 

 

27 
 

structured using the different cache organizations (direct-mapped, fully-associative, and 

set-associative). For each cache structure it shows the number of sets in the cache, the 

number of blocks within each set, and the number of bits in each memory address 

division, the bits used for the block offset and the set index bits which are used to find the 

set to where the block maps and the tag bits which are stored in the cache as a block 

identifier. 

Table 1 Cache organization example 

Cache 

Organization 

Number of 

sets 

Number of 

blocks per set 

Block 

offset bits 

Index 

bits 

Tag 

bits 

Direct-

mapped 

64

16
= 4 1 

log2 16
= 4 

log2 4
= 2 

10 

Fully-

associative 
1 

64

16
= 4 

log2 16
= 4 

0 12 

2-way set-

associative 

64

16 × 2
= 2 2 

log2 16
= 4 

log2 2
= 1 

11 

 

Consider the following memory access sequence given as memory addresses: {0x1234, 

0x123C, 0x1240, 0x1270, 0x1234, 0x1232, 0x1248, 0x12C8, 0x1248, 0x1244}. The 

sequence is applied to every cache structure described in table 1; assume every cache is 

initially empty. For the direct-mapped cache structure, table 2 shows the three divisions 

of the memory address (Block offset, Index, and Tag) and the result of each memory 

access. Table 3 shows the cache contents after applying the complete sequence of 

memory accesses. 
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Table 2 Memory access results for direct-mapped cache 

Address Block offset Index Tag Hit/Miss 

0x1234 0100 11 0001001000 Miss 

0x123C 1100 11 0001001000 Hit 

0x1240 0000 00 0001001001 Miss 

0x1270 0000 11 0001001001 Miss 

0x1234 0100 11 0001001000 Miss 

0x1232 0010 11 0001001000 Hit 

0x1248 1000 00 0001001001 Hit 

0x12C8 1000 00 0001001011 Miss 

0x1248 1000 00 0001001001 Miss 

0x1244 0100 00 0001001001 Hit 

 

Table 3 Direct-mapped cache content 

Index V Tag 

00 1 

0001001001 

0001001011 

0001001001 

01 0  

10 0  

11 1 

0001001000 

0001001001 

0001001000 

 

For the 2-way set-associative cache structure described in table 1, table 4 shows the three 

divisions of the memory address (Block offset, Index, and Tag) and the result of each 

memory access. Table 5 shows the cache contents after applying the complete sequence 

of memory accesses. 
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Table 4 Memory access results for two-way set-associative cache 

Address Block offset Index Tag Hit/Miss 

0x1234 0100 1 00010010001 Miss 

0x123C 1100 1 00010010001 Hit 

0x1240 0000 0 00010010010 Miss 

0x1270 0000 1 00010010011 Miss 

0x1234 0100 1 00010010001 Hit 

0x1232 0010 1 00010010001 Hit 

0x1248 1000 0 00010010010 Hit 

0x12C8 1000 0 00010010110 Miss 

0x1248 1000 0 00010010010 Hit 

0x1244 0100 0 00010010010 Hit 

 

Table 5 Two-way set-associative cache content 

Index V Tag V Tag 

0 1 00010010010 1 00010010110 

1 1 00010010001 1 00010010011 

 

For the fully-associative cache structure described in table 1, table 6 shows the two 

divisions of the memory address (Block offset, and Tag) and the result of each memory 

access. Table 7 shows the cache contents after applying the complete sequence of 

memory accesses. 

Table 6 Memory access results for fully-associative cache 

Address Block offset Tag Hit/Miss 

0x1234 0100 000100100011 Miss 

0x123C 1100 000100100011 Hit 

0x1240 0000 000100100100 Miss 

0x1270 0000 000100100111 Miss 

0x1234 0100 000100100011 Hit 

0x1232 0010 000100100011 Hit 

0x1248 1000 000100100100 Hit 

0x12C8 1000 000100101100 Miss 

0x1248 1000 000100100100 Hit 

0x1244 0100 000100100100 Hit 
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Table 7 Fully-associative cache content 

V Tag V Tag V Tag V Tag 

1 000100100011 1 000100100100 1 000100100111 1 000100101100 

 

 

2.8 Cache Replacement Policies 

 

The cache is much smaller in size than the main memory, and for this reason, the number 

of memory blocks that map to a particular cache set is greater than the size of the cache 

set [9]. On cache miss, the whole memory block which holds the requested data is 

fetched from the lower level, and forwarded to the higher level of the hierarchy. If the set 

is full (all blocks are valid), a victim block must be chosen and replaced (evicted). In 

direct-mapped cache, because there is only one position to check every time for a hit, it is 

trivial to choose the victim block, which is the block in that position. With a fully-

associative or set-associative cache, there are many blocks to choose for replacement. In 

a fully-associative cache, all blocks in the cache can be candidates for replacement. In a 

set-associative cache, only the blocks within the selected set are candidates. The victim 

block is chosen among the candidates based on the replacement policy [2].  

The most commonly-used known cache replacement policies are least-recently used 

(LRU), first-in first-out (FIFO), and a cost-efficient variant of LRU named pseudo-LRU 

(PLRU). Those policies work on each cache set individually, and use independent status 

bits per set which store information about previous set accesses. This information is used 

next time when a victim block needs to be chosen [10]. 

In LRU replacement, the victim block is the least recently used block in the set. That is 

the block which has been unused for memory reads or writes for the longest time. LRU 

strategy relies on the temporal locality; the recently used blocks are more likely to be 

used again. For this purpose, the LRU implementation keeps track with each block being 
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referenced in the set related to the other blocks within that set by maintaining a stack 

within the set to store the accessing sequence [4]. In caches, the replacement algorithm is 

implemented in hardware, which means that it should be easy to implement. LRU 

replacement policy has the best predictability properties [7], but it is costly to implement 

the logic for tracking the set usage information, especially when the degree of the 

associativity exceeds four [1].  

LRU replacement policy can be implemented in software for simulation purposes by 

maintaining a queue for each cache set of length equaling to the associativity. The newly 

brought block to the set (after a cache miss) is placed in the front of the queue, also when 

referencing an existing block in the set (cache hit), the block is brought from its position 

to the front of the queue, so the blocks in the set will be ordered from most-recently to 

least-recently used [11]. As a result, for this procedure the last block in the queue is 

always the least-recently-used one among those blocks in the queue, and it will be 

removed to make a room for the block newly brought to the set when the set is full [2]. 

LRU replacement is used in the Intel Pentium I and the MIPS 24 K/34 K [9]. 

Consider a 4-way set-associative cache using LRU replacement policy and the following 

sequence of memory accesses (given as block addresses) {A, B, C, D, E, B, A, F}. 

Assume all blocks map to the same set and the set is initially empty. Table 8 shows all 

results of the cache accesses. The LRU policy queue is updated every time the set is 

accessed, and the referenced block is always placed in the front of the queue. The 0 

values in the queue represent the invalid cache lines in the set which can be filled with 

the new blocks after cache misses. When a cache miss occurs while the set is full (i.e. 

referencing block E) the LRU block is chosen for replacement which is always the last 

block in the queue. 
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Table 8 LRU replacement policy 

Block Address Hit/Miss LRU queue 

A Miss {A,0,0,0} 

B Miss {B,A,0,0} 

C Miss {C,B,A,0} 

D Miss {D,C,B,A} 

E Miss {E,D,C,B} 

B Hit {B,E,D,C} 

A Miss {A,B,E,D} 

F Miss {F,A,B,E} 

 

In FIFO replacement, the victim block is the oldest block in the set. The implementation 

of the FIFO replacement policy is quite simple; it only requires a single round-robin 

counter per cache set which points to the next cache block to be replaced, and the counter 

is updated every time a block is added to the set. FIFO is cheaper in hardware 

implementation because it needs very little update logic, but it has less predictability 

compared to LRU [12]. 

In software, FIFO policy can also be implemented as a FIFO-queue where the new block 

to place in the set (after a cache miss) is placed in the front of the queue, but referencing 

an existing block in the set (cache hit) does not change anything in the queue order. 

According to this procedure, the last block in the queue is always the oldest one in the set 

which is also the next victim block to replace when the set is full. FIFO replacement 

policy is used in the Intel XSCALE, ARM9 and ARM11 processors [9]. 

Consider the same cache example used above, but now the cache uses FIFO replacement 

policy. Table 9 shows all results of the cache accesses. The FIFO policy queue is updated 

every time a cache miss occurs when the set is accessed, because a new block is brought 

to the cache and it needs to always be placed in the front of the queue. If the set is full, 

the first placed block in the set is chosen for replacement which is always the last block 

in the queue. In case of a cache hit the queue is kept unchanged as in second memory 

access to block B. 
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Table 9 FIFO replacement policy 

Block Address Hit/Miss FIFO queue 

A Miss {A,0,0,0} 

B Miss {B,A,0,0} 

C Miss {C,B,A,0} 

D Miss {D,C,B,A} 

E Miss {E,D,C,B} 

B Hit {E,D,C,B} 

A Miss {A,E,D,C} 

F Miss {F,A,E,D } 

 

PLRU replacement is a tree-based approximation of the true LRU policy. It arranges the 

cache blocks (ways) at the leaves of a binary tree [4]. For n-ways cache set, the PLRU 

tree has (n - 1) inner nodes pointing to the block to be replaced next, every node has a bit 

pointing to the sub-tree that contains at the end the PLRU candidate block. A „0‟ 

indicating the left sub-tree, a „1‟ indicating the right, figure 8 explains how to choose the 

victim block (way) for replacement when the cache set is full. The history bits {a0, b0, b1} 

represent the access order of the ways in the set, in the example figure if the value of the 

history bits a0b0b1 = 011 the pseudo least recently used way is w1 and it will be chosen as 

a victim next access miss to the set [6].  

 

Figure 8 PLRU cache replacement policies for 4-way cache set [6] 

 



2. Cache Basics 

 

34 
 

On a cache hit, the binary tree of the relevant cache set is traversed starting from the tree 

root node to the referenced block, and on the way along the path the node values are 

flipped to point to the opposite branch where the referenced block is allocated [5]. On 

cache miss, PLRU tracks invalid blocks in the set first, the invalid lines are filled from 

left to right, ignoring the tree bits, but all the node values in the way forming the newly 

allocated block to the root node are flipped to point away from the block [8]. If the set is 

full (all blocks in the set are valid), the tree is traversed according to the node values to 

find the PLRU candidate block for replacement, while traversing to find the victim block 

all path node values are also flipped to point away from the newly allocated block.  

As an example for PLRU replacement policy, consider the same example for the 4-way 

set-associative cache which is used above to discuss the replacement policies. Same 

memory block access sequence {A, B, C, D, E, B, A, F} is used and the same assumption 

that all blocks map to the same cache set is made.  Figure 9 shows the state of the PLRU 

binary tree for the set after each access. In the initial state shown in figure 9a, the set is 

empty and the entire tree bits are set to „0‟. The first reference to block A results in a 

cache miss, PLRU policy is searching first for an invalid line in the set where block A can 

be placed, because the set is empty the first line to the left is chosen, also the tree bits are 

set to point away from block A, shown in the figure 9b. For the following block accesses 

B, C, and D shown in the figures 9c, 9d, and 9e respectively also cause cache misses, the 

same procedure is used to place the new blocks as in the first block access. After those 

accesses the cache set is full and the tree bits point to the line containing block A. An 

access miss to block E evicts the memory block A, and all tree bits on the path to the root 

of the tree are made to point away from the new referenced block E, figure 9f shows the 

tree state. It is not necessary to change every bit in the path; the bit is kept not flipped 

when it already points away from the new referenced block. For the following hit 

reference to block B, the bits on the path from B to the root of the tree are made to point 

away from B, as shown in the figure 9g. Another access to B would not change the tree 

bits at all, as they already point away from it. The next access to block A evicts block C 

which is the least-recently-used block in the set, and an update to the binary tree is made 
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to point away of block A. However, the access to block A protects block D as well, 

because the root bit is flipped to point away from the two neighbor blocks, shown in the 

figure 9h. While block D is the least-recently-used block in the set and it should be the 

victim block for the next miss, accessing block F affects block E instead of D and this 

property reduces the predictability of PLRU replacement policy compared to the real 

LRU replacement policy. Finally, figure 9i shows the last state of the binary tree after the 

end of the access sequence, the tree bits now point to block D, which will be replaced on 

the next cache miss. 



2. Cache Basics 

 

36 
 

 

Figure 9 Updates of a PLRU tree of 4-way cache set 

 

The advantage of PLRU replacement policy over real LRU replacement policy is that 

PLRU is much cheaper to implement, reducing the hardware overhead in terms of storage 

requirements and update logic. For n-way set-associative caches, PLRU requires only (n - 

1) bits per set to track set reference information. But PLRU has a disadvantage that it 
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does not always replace the least-recently-used element, thus this property reduces its 

predictability [2]. PLRU is used in PowerPC series of microprocessors, Intel Pentium II-

IV, Intel Core Processors and AMD microprocessors. 

 

2.9 Cache Writing Policies 

 

The write policy determines how the data is written to the different memories in the 

hierarchy. For the store instructions, the data from the processor is being written into only 

the data cache keeping it inconsistent with the lower levels in memory hierarchy, because 

they will have different values of the content data. For this concern, there are two 

schemes to perform cache writing: 

Write through: Data is always written to the cache and immediately to the next lower 

level of memory hierarchy, ensuring that data is always consistent by updating the blocks 

in both of them. This takes a long time especially when the next level is always slow, 

while performing the write operation the processor must wait until the write is complete, 

this is called write stall and it slows down the processor considerably. Using a write 

buffer which holds the data while it is waiting to be written to the next level will solve 

the problem, so the processor can write the data to the buffer and continue execution after 

it. If the write buffer is full and the processor needs to add a write operation, then the 

processor must stall until there is an empty place in the buffer [1].  

Write back: Data is first written to the cache so the block in the cache is only updated, 

and then the modified block is written to the lower level of memory hierarchy when the 

block is evicted from the cache. For this purpose and to distinguish the modified block, a 

sign bit called dirty bit is associated with each cache write back block, this bit is asserted 

whenever a word in the block is modified, so it gives an indication whether the block is 

clean (not modified) or dirty (modified). On a cache replacement, if the replaced block‟s 

dirty bit is asserted, the block is written back to the lower level of the hierarchy by 
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placing it in the buffer, otherwise it is overwritten by the newly placed block since an 

identical copy of the block is found in the lower level [3].  

Write through policy has a number of advantages. First of all, it is easy to implement, 

because there is no need for an additional dirty bit per cache block to show that the block 

is modified. Also, in write through policy there is no need to write a complete block back 

to the lower level every time when a modified block is replaced by a cache miss: only the 

written data is sent to the lower level, and thus cache misses are cheaper with write 

though policy [3]. But write back policy has several advantages over write through 

policy. On such advantage is that memory write operations will be faster, because they 

always happen at the speed of the cache [1]. Another advantage is when several writes 

happen to the same block, it is needed only to write the block once to the lower level of 

memory hierarchy. Therefore less bandwidth of memory element in the memory 

hierarchy is used which makes write back policy more effective to use especially in 

multi-core processors [15]. Since write back does not use the memory hierarchy so often 

for writing, much power as compared to write through is saved, making write back more 

preferable to be used in embedded systems [14]. 

In case of a cache write miss, the data is not needed by the processor, so there are two 

options: either to allocate the block in the cache then perform a write hit to the cache 

which is called write-allocate, or not to allocate the block in the cache and modify the 

block only in the lower level memory which is called no-write-allocate. In write-

allocate, write miss acts like read miss followed by write hit to the cache. For no-write 

allocate, write misses do not affect the cache [3]. 

Normally, write back policy is implemented together with write-allocate in the cache, 

because several writes may happen to the block, while for write back the write is done to 

the cache block, so it needs to be allocated in the cache. Caches which implement write 

through policy also use no-write-allocate together with it, because all writes to the block 

will be sent all the time to the lower level memory, hence no need to locate the block in 

the cache [2]. 
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2.10 Three kinds of Cache Misses 

 

Cache misses are classified into three categories: 

Compulsory misses or cold start misses are the misses that happen upon the first access 

of the memory block that has never been in the cache. This kind of cache misses can 

appear in every cache organization. The cache size and the associativity of the set cannot 

make any improvement to the cold misses, but increasing the block size can somewhat 

reduce the cold misses, because it reduces the number of memory references to different 

memory blocks. However, it has a negative effect to the whole system performance by 

increasing the miss penalty [1]. The use of cache perfecting mechanism by bringing the 

next expected block to be accessed can reduce the cache misses caused by a cold start 

[13]. 

Capacity misses are misses that happen because of the small cache being unable to hold 

all blocks needed during the program execution. This kind of cache misses appears 

effectively even with full associativity, when the cache is full and some blocks are being 

replaced by other referenced blocks and later the replaced blocks are retrieved to the 

cache again, because they are accessed repeatedly [2]. Capacity misses comprise the 

majority of cache misses and are reduced by increasing the cache size [1]. 

Conflict misses or collision misses are misses that occur in direct-mapped or set-

associative caches, when the cache is partitioned into sets with a specific associativity. 

The number of memory blocks that map to the set is always greater than the associativity 

of the set. Conflict misses happen when the number of blocks needed to be placed in the 

set at the same time exceeds the associativity, so the blocks which are replaced due to 

conflicts by other blocks map to the same set are referenced again later causing a conflict 

miss. The number of conflict misses can be reduced by increasing cache associativity, but 

this can also increase the access time of the cache, leading to overall system performance 

degradation [1].  
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2.11 Multilevel Cache Structure 

 

Multilevel cache is a memory hierarchy with multiple levels of caches, rather than just a 

single cache and main memory [1]. Many processors use multilevel cache hierarchies to 

reduce both the latency of cache misses (miss penalty) and the cache miss rate. Modern 

processors usually support two to three cache levels.  

Consider a processor with a multilevel cache which consists of two levels. The first level 

(L1) is the primary cache which is often smaller and faster cache to reduce the cache 

access time, while the second level (L2) is the secondary cache which is larger and uses 

higher associativity to reduce the cache miss rates. If a miss occurs in L1 cache, then L2 

cache is accessed to search for the desired data. When the data is found in L2, the miss 

penalty of L1 is equal to the access time of L2 which is very small compared to the 

access time of main memory. If L2 does not contain the desired data, an access to the 

main memory is required, causing a larger miss penalty [1]. The miss rate of L1 becomes 

less important in presence of L2, thus L1 can be made smaller and faster reducing its 

access time. Also the access time of L2 becomes less critical in the presence of L1, thus 

L2 can be made larger reducing its miss rate [1].  

 

2.12 Different Types of Cache Hierarchies 

 

In a multilevel cache hierarchy, the levels which come after the first level in the cache 

hierarchy can be one of the following types: Inclusive, Non-Inclusive, or Exclusive. The 

inclusive cache requires that the content of all the smaller cache levels higher in the 

multilevel cache hierarchy (closer to the processor) is a sub-set of the inclusive cache. 

Then all memory blocks which are held by the higher levels are also included in the 

inclusive cache, and when a block is evicted from the inclusive cache, that block must be 

invalidated in all higher levels of cache (if it resides there) to guarantee the inclusion. 
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Those blocks which are invalidated or removed from the higher cache levels because of 

the inclusion property are called inclusion victims [17]. On the other hand, a non-

inclusive cache allows memory blocks to be in the higher levels of the cache hierarchy 

without also being duplicated in it. Thus, it does not guarantee that the contents of the 

smaller cache levels are always a sub-set of the non-inclusive cache contents. In the 

exclusive cache model, the memory blocks in the cache are not present in the higher 

levels of the cache. So there is no intersection between the contents of an exclusive cache 

level and any higher cache level [20]. 

Consider a multilevel cache hierarchy with two levels, first level of cache (L1) and last 

level of cache (LLC). Figure 10 explains the different types of cache hierarchy between 

the two levels. In the inclusive hierarchy shown in figure 10a, any miss in L1 either hits 

in LLC or generates a miss in LLC, causing the memory block to be brought into both L1 

and LLC. Likewise, when a memory block is evicted (invalidated) from the LLC, it must 

be sent to L1, where it will cause the block to be invalidated if it exists. In such case, the 

capacity of the cache hierarchy equals the size of LLC, because the content of L1 is 

always replicated. For non-inclusive hierarchy shown in figure 10b, no back invalidation 

is sent to L1 if a block is invalidated in LLC. Therefore, the removed block from LLC 

can be still present in L1, and due to this, the capacity of non-inclusive hierarchy is in the 

range between the size of LLC and the size of all levels in the hierarchy together. Figure 

10c illustrates the cache fills in the exclusive hierarchy. In case of cache miss in both 

levels, the memory block is brought first to L1, afterward it is placed in LLC upon 

eviction from L1. When the block is referenced later, it is invalidated from LLC and 

placed again in L1. Thus, there is no memory block which is replicated in the two levels. 

In exclusive hierarchy, LLC works as a victim cache for the upper levels, and the 

capacity of the cache hierarchy equals the size of all cache levels in the hierarchy [16]. 
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Figure 10 Multilevel cache hierarchies [16] 

 

The different cache hierarchies have advantages and disadvantages. The inclusive cache 

suffers from effective space reduction as a result of data duplication to guarantee 

inclusion. Also, in case of back invalidation when a block is evicted from the lower level 

cache, that block should also be invalidated in the upper level cache. Those reasons cause 

a performance loss in inclusive cache, and to have a better performance, the size of the 

LLC should be larger than or equal to the sum of all upper levels of cache hierarchy [18]. 

On the other hand, inclusive property plays a significant role in multi-core cache 

coherence, making the inclusion property useful. Non-inclusive and exclusive caches 

enable higher capacity with the same cache size, but they make the implementation of 

multi-core processor cache coherence harder (see the next chapter). Moreover, exclusive 

cache requires higher bandwidth since every victim block from the higher level even 

those clean have to be written to the lower level [21]. When a cache miss at a higher level 

occurs, the new block is brought from the lower level to the higher level and at the same 

time a victim block (if exist any) is sent back to the lower level. Therefore, every cache 

miss may cause a two-block exchange between the two levels of cache. 
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3 Cache Structure in Multi-Core Processors 

 

 

3.1 Multi-core Processor Cache Architecture 

 

The multi-core processor or chip-multiprocessor (CMP) is a small number of symmetric 

core processors on a single chip, they use a centralized shared memory and all core 

processors have a symmetric equal access to it, this model of architecture is called 

symmetric multiprocessors (SMP). The number the processor cores in the multi-core chip 

is typically eight or fewer. Therefore, having a single shared memory for the core 

processors is possible. Sometimes, the SMP architecture is also called uniform memory 

access (UMA) multiprocessor, for the same reason of all processors having uniform 

access latency to the memory [3]. 

Most modern multi-core processors implement the SMP architecture. They employ 

multilevel cache hierarchies to reduce the cache access time during program execution, 

and also the latency of cache misses. Normally, the first levels in the cache hierarchy are 

small and private caches, so that every processor core has its own private cache, while 

the last level in the cache hierarchy (LLC) is a large and shared cache between all 

processor cores. This architecture is implemented in most of modern multi-core 

processors like Intel Nehalem [40], AMD Opteron [24], IBM Power 7 [38], Sun T2 [39], 

etc. Having a private cache within each core reduces the requests on the global 

interconnect among the cores, and thus, reduces the access latency to the data. On the 

other hand, shared cache is used for sharing the data among the cores and increasing the 

performance by reducing the core communication complexity. In short, it is used by the 

cores as a channel to communicate with each other. In Intel‟s Nehalem processor and 
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AMD‟s Barcelona processor, L1 and L2 are private caches per core and L3 is a shared 

cache [22]. 

Figure 11 shows the memory hierarchy for a multi-core processor with 4 cores. The 

processor uses a two level inclusive data cache hierarchy, where each processor core 

includes an L1 private cache and all cores share the L2 cache. Whenever the data is 

loaded to the private cache, it has to be placed in the shared L2 cache. Therefore, L2 

cache contains the superset of the private caches [19]. 

 

 

Figure 11 Two-level cache hierarchy for multi-core processor with 4 cores [19] 

 

Multi-core processors are used to improve the performance of stand-alone applications. 

In order to do it and to exploit the power of the parallel computing provided by the 

multiple cores, the application must be split into multiple entities called threads which 

run simultaneously on the different cores [26]. 
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The cache in a multi-core processor usually caches both shared and private data for the 

different threads. Private data is used by a single core, and when the data is cached, it is 

allocated in the core private cache. As the data is not used by the other cores, the running 

program on the core behaves the same as when it runs on a uniprocessor system. 

However, shared data is used by multiple cores. Basically, it is used to provide 

communication among the different cores through reads and writes. For this reason and to 

insure correctness, shared data has to be protected from being accessed concurrently by 

multiple threads with at least one writing thread. In software, the mutual exclusion 

principle is used in multi-threaded applications to protect the critical sections where the 

shared data is updated in the code. Mutual exclusion ensures that only one thread at a 

time accesses shared data. The implementation of critical sections in programming is 

done through the synchronization primitives which are software routines built over 

hardware synchronization instructions. Those instructions are uninterruptable, and thus, 

they provide exclusive access to shared memory location. As a result, it is guaranteed for 

one thread to have a mutual exclusive access to the critical section [27].  A number of 

synchronization mechanisms are used in the modern programming languages as 

synchronization mechanisms in multi-threaded programs such as semaphores [28], 

conditional variables, and monitors [29].  

In the cache, when shared data is cached and used by multiple cores, it is replicated in the 

private caches of the multiple cores. This replication is good for reducing cache access 

latency. It also provides a reduction in contention that may happen to the shared last level 

cache when multiple cores are trying to access shared data item concurrently [30]. Shared 

data replication in the private caches can increase the performance, however, it causes a 

new problem called cache coherence when multiple cores are trying to update the shared 

data.  

As mentioned before, in a typical multi-core processor design, caches are with multiple 

levels and the last level cache (LLC) is shared across the cores in order to improve 

scalability. The cache hierarchy between the shared LLC and the core private caches can 
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be inclusive. This requires that all memory blocks cached in all core private caches are 

also present in the shared LLC. Same thing is also true for inclusion property. When a 

memory block is brought to the processor, it is first allocated in the shared LLC, and then 

it is forwarded to the requesting core to be stored in its private cache. Afterward, when 

the cached block is evicted from the shared LLC, all cached copies of the same block in 

the private caches (if present) have to be invalidated. Inclusive cache hierarchies are 

widely used in multi-core processors since they can simplify the implementation of cache 

coherence and minimize the coherence traffic between the cores. Inclusive caches 

maintain a set of core valid bits called snoop filter [34] per cache block in the inclusive 

LLC. Each bit represents a core. If any of the core private caches may contain the same 

cache block, then core valid bit is set to 1. If no bits are set, no need to check the other 

cores. However, inclusion reduces cache capacity and also has backward invalidation 

effect, both resulting in performance reductions [31]. On the other side, if the cache 

hierarchy between the shared LLC and the core caches is exclusive, it requires that the 

contents of the core caches are not replicated in the shared LLC, but it is allowed to share 

data by more than one core. In an exclusive cache hierarchy, the shared LLC works as a 

victim cache for the cores‟ private caches, which means that the memory block newly 

brought to the processor is placed first in the requesting core private cache, then when it 

is evicted from the core it is stored in the shared LLC if the block is not cached by any 

other core. Exclusion cache hierarchy can increase the total on-chip cache memory 

capacity, but on the other hand, it cannot benefit from the natural snoop filter in the 

inclusive cache, because the contents of the LLC and the core private caches are always 

different. In exclusive cache structure, since snoop filters cannot be associated with the 

LLC, a new structure called directory [35] exists beside the LLC that is used to hold tags 

and snoop filters for all cached blocks in the cache hierarchy. This increases the hardware 

overhead and verification complexity [16].  

Figures 12 and 13 show the differences between exclusive and inclusive caches with 

embedded snoop filters in the inclusive cache. The cache hierarchy is with three levels 

and the shared LLC is the third level (L3). A data request from core 0 misses both L1 and 
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L2 core private caches, and then it is forwarded to look up in L3 cache. In figure 12, the 

requested data is a hit in L3. For the exclusive cache, there is no need to check the other 

cores, because exclusion guarantees that the data would not be present in any of them. In 

the inclusive cache, the data can be also in another core‟s cache, but the snoop filter is 

can tell in which core the data is present, therefore, a core is checked only when its core 

valid bit is set, and only when the data is modified, so the L3 data copy is not updated. In 

figure 13, the requested data is missed in L3 cache. For an exclusive cache without snoop 

filter, the request must be forwarded to all other cores to look up the data. On the other 

hand, the inclusion property guarantees that when the requested data is not present in L3, 

then it is not cached anywhere else in the processor die. 

 

 

 

Figure 12 Exclusive vs. Inclusive cache hit [32] 
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Figure 13 Exclusive vs. Inclusive cache miss [32] 

 

3.2 Cache Hierarchies in the Intel Nehalem and AMD Opteron Processors 

 

This section shows the cache hierarchies of two modern multi-core processors: the four-

core Intel Nehalem (Core-i7) [36] processor and six-core AMD Opteron (Istanbul) [37]. 

Both have three levels of cache hierarchy, all are on the main processor die. The 

outermost cache in both is shared among cores, is inclusive in the Intel Nehalem and 

exclusive in the AMD Opteron. Both processors have on-chip memory controllers, which 

reduce the main memory latency.  

3.2.1 Four-Core Intel Nehalem Core-i7  

Intel Nehalem implementation contains four cores in a processor chip and supports 

hierarchy of up to three levels, figure 15 shows the Intel Nehalem core-i7 cache 

hierarchy. It divides the physical memory into blocks of 64 bytes, while all caches 

throughout the hierarchy have the same block size.  
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Figure 14 Intel Nehalem Core-i7 processor [23] 

 

Each core has separate L1 caches for instructions and data, and its own unified (for both 

instructions and data) and non-inclusive L2 cache. The four cores share L3 cache, which 

is unified and inclusive of the core caches, meaning that every memory block that exists 

in either L1 data or instruction cache, or the L2 caches, is also existent in L3. Fills from 

the main memory are allocated first in the L3 cache, and then they are directed to the 

appropriate core, to be stored first in the L2 cache then forwarded to the L1 cache. The 

writing policy used in all cache levels is write-back, so whenever a modified block is 

evicted from any cache, the block is written back to the next cache in the hierarchy. The 

replacement policy which is used in L3 cache is a variant on pseudo-LRU, the replaced 

block is chosen based on PLRU but with an ordered selection algorithm. If a memory 
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block is replaced in L2 cache, no block invalidation message for the evicted block is sent 

to L1 cache, because L2 uses non-inclusive hierarchy. But when a block is evicted from 

the inclusive L3 cache, all existing copies of the block in L1 and L2 caches have to be 

invalidated to hold the inclusion. The inclusion property is implemented to minimize the 

snooping traffic among the cores. A 4-bit snooping filter associated with each L3 block 

indicates if the block is already cached in the L2 or L1 cache of a particular core. 

Therefore, block snooping is done through the L3 cache to track a particular block status, 

so there is no need to forward a broadcast snoop message to all cores [23]. 

3.2.2 Six-Core AMD Opteron (Istanbul) 

The six-core AMD Opteron (Istanbul) is a multi-core processor that integrates six cores, 

and a shared 6 MB L3 cache on one die. The core has separate instruction and data 

caches backed by a large L2 cache. All caches throughout the hierarchy have 64-byte 

lines, and use write-back policy. Figure 16 shows the six-core AMD Opteron memory 

hierarchy. As in many other AMD processors, the L1 and L2 caches use an exclusive 

hierarchy, so that the fills from the main memory go directly into L1 cache in the 

appropriate core and are not placed in the L2 cache. When any memory block is evicted 

from the L1 cache, it moves into the L2 cache. Also, the other way around, the blocks 

which are hit in core‟s L2 cache are invalidated from L2 and placed into the requesting 

L1 cache. Here the L2 cache works as a victim cache for the L1 instruction and data 

caches. The 6 MB exclusive shared L3 cache works as a victim cache for cores‟ L2 

caches. Also, a part of the exclusive cache is used to store the cache directory (snoop 

filter or probe filter) [24] for cache coherence. Every cached block in the hierarchy has an 

entry in the cache directory. The entry contains the block tag and cores‟ tracking bits, 

they show which of cores have a copy of the block and the status of that copy. All blocks 

that are evicted from cores‟ L2 caches, are stored in the L3 cache, the cache uses pseudo-

LRU replacement strategy to place a new block into a full cache set. Having L3 as a 

victim cache allows caching more data, also back invalidation of the L2 caches is not 

needed when a block is victimized in L3 cache. AMD Opteron implements a semi-

exclusive cache hierarchy at L3 cache [22]. When a core victimizes a particular block, it 
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is stored in L3 cache to detect a true sharing pattern to that particular block. If the next 

request to the block is from the same core where the block was located before, the data 

seems to be private to the core, therefore, the L3 does not keep a copy of the block. Else, 

the L3 cache can retain a line after providing a copy to a requesting core for further 

sharing [24]. 

 

 

Figure 15 Six-Core AMD Opteron processor [24] 
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The following table 10 summarizes both Intel Nehalem Core-i7 and AMD Opteron 

(Istanbul) processors‟ cache characteristics. 

 

Table 10 Three level cache in the Intel Nehalem and AMD Opteron processors [1] 

Characteristic Intel Nehalem Core-i7 AMD Opteron (Istanbul) 

Number of cores 4 6 

L1 cache organization Separated cache per core Separated cache per core 

L1 cache size 32 KB each for (I/D) cache 64 KB each for (I/D) cache 

L1 cache associativity 4-way (I), 8-way (D) 2-way 

L1 replacement policy Pseudo-LRU LRU 

L1 block size 64 bytes 64 bytes 

L1 write policy Write-back, Write-allocate Write-back, Write-allocate 

L1 hit time 4 cycles, pipelined 3 cycles 

L2 cache organization Unified cache per core Unified cache per core 

L2 cache size 256 KB 512 KB 

L2 cache associativity 8-way 16-way 

L2 cache hierarchy Non-inclusive Exclusive 

L2 replacement policy Pseudo-LRU Pseudo-LRU 

L2 block size 64 bytes 64 bytes 

L2 write policy Write-back, Write-allocate Write-back, Write-allocate 

L2 hit time 10 cycles 12 cycles 

L3 cache organization Unified cache shared Unified cache shared 

L3 cache size 8 MB 6 MB 

L3 cache associativity 16-way 16-way 

L3 cache hierarchy Inclusive Semi-exclusive 

L3 replacement policy Variant of Pseudo-LRU Pseudo-LRU 

L3 block size 64 bytes 64 bytes 

L3 write policy Write-back, Write-allocate Write-back, Write-allocate 

L3 hit time 35-40 cycles 38 cycles 

 

3.3 Cache Coherence Problem 

 

In a shared-memory multiprocessor with private data caches, when a cached block is 

replicated in at least two private caches, modifying one of the block‟s copies will cause a 

cache coherence problem. In general, the coherence problem exists because there are two 
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states for the data, one is the global state, defined by the main memory or the shared last 

level of cache (for example L3 cache) in multi-core processors, and the other is local state 

defined by the cores‟ private caches (for example L1 and L2 caches) [15]. Consider a 

multi-core processor with two cores C1 and C2, each having a private cache which is 

connected to the memory. The two different private caches can have two different values 

for the same memory location, table 11 explains this. Consider the initial value at time 0 

of x = 1 at time 0 which is not cached in any of the cores‟ private caches, also assume the 

writing policy that is used by the caches is write-back. At time 1, C1 reads x from the 

memory and places it in the core‟s private cache. At time 2, C2 reads also x and places it 

in the core‟s private cache. Now, both private caches and memory have the same value of 

x = 1. After that the value of x has been written by C1 at time 3, C1‟s private cache has 

the new value, while C2‟s private cache has the old value, and if C2 reads the value of x 

again, it will receive 1.  

 

Table 11 Cache coherence problem 

Time Event 
Value of x 

C1 private cache C2 private cache Memory 

0    1 

1 C1 reads x 1  1 

2 C2 reads x 1 1 1 

3 C1 writes x = 0 0 1 1 

 

To ensure consistency among multiple copies of the same memory location, a coherence 

scheme or protocol, is required. Cache coherence protocols are to maintain coherence 

among the individual caches in a system of multiple processors. The implementation of a 

cache coherence protocol tracks the state of any shared data block. There are two classes 

of protocols in use based on the way they locate multiple copies of the same block and 

the different techniques used to track the sharing state. One is directory based and the 

other is snooping based. In directory based protocols, the sharing status that maintains 
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the coherence among the different copies of a particular block of physical memory is kept 

in one location called directory. The directory acts as a filter, so when any processor/core 

needs to load a memory block, it goes through the directory. Also, when a cached block 

is modified in one cache, the directory either updates the other caches with the new value 

of the block or invalidates their copies of the block, depending on the implemented cache 

coherence method. In snooping protocols, every individual cache that has a copy of a 

particular block could monitor the sharing status of the block. All private caches are 

connected to a broadcast medium, i.e., a bus which connects the private caches to the 

shared cache or memory. The cache controller keeps listening to the broadcast medium 

and updates or invalidates the snooped block based on the cache coherence method and 

the request on the bus. In multi-core processors, if all cores share some level of the cache, 

the directory can be associated with the outermost cache, and a snooping scheme can be 

built over the directory to obtain the cache coherence. The directory is used to reduce 

snoop traffic in the broadcast medium by propagating the coherence messages only to the 

caches which have a copy of the block. This can reduce the overhead to the cache 

controller by consuming less medium bandwidth especially with an increasing number of 

cores, which makes this architecture more scalable. If the multi-core processor does not 

implement a shared last level of cache, a pure snooping scheme can be used to obtain 

cache coherence between cores‟ private caches [3]. 

Cache coherence protocols can implement two methods for propagating the modifications 

of the blocks among the different caches. One method is write update or write broadcast. 

The protocols which implement this method must broadcast the writes every time a write 

happens to a shared block. This consumes much bandwidth and for this reason it is not 

used in most of multi-core processors. The other method is write invalidate, which 

invalidates all other copies of the shared block once a write is performed on that block. 

This ensures that a core has exclusive access to a cached block before it writes to that 

block. Write invalidate protocols are commonly used cache coherence protocols in 

modern multi-core processors. To illustrate the idea, consider a multi-core processor with 

two cores, seen in figure 2. Both cores initially have a copy of block X cached in their 



3. Cache Structure in Multi-Core Processors 

 

55 
 

private caches, the figure shows how coherence actions work to keep local caches 

coherent in a write invalidate policy. When Core1 issues a write operation to the block X, 

a coherence invalidation request is sent through the bus to invalidate the copy of the 

block X in Core2‟s cache. Therefore the valid bit of the block X in Core2‟s cache is set to 

be invalid. Next time, when Core2 wants to read from the block X again, it will find the 

block not present in its local cache and it must obtain a new value of the block. A read 

miss request will be sent through the bus and make Core1 write back the updated value of 

the block to the external memory and forward a copy to Core2. If a multi-core processor 

uses a shared cache, the shared cache will act as the external memory, and the coherency 

must be handled for the local cache in each core [3].  

 

 

Figure 16 Write invalidate cache coherence method [25] 
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3.4 MSI protocol for Multi-core Cache Coherence  

 

In multi-core processors where shared cache is present, the cores‟ private caches are 

connected to the shared outermost cache (for example L1 and L2 are private caches per-

core and L3 is shared cache among the cores in Intel Nehalem and AMD Opteron) via a 

bus or interconnection network which provides a broadcast medium. The broadcast 

medium is used for sending coherence invalidation requests. When a core wants to 

perform a write to a shared block, it attempts to acquire access to the bus and sends a 

broadcast invalidation with the referenced memory address to the other cores on the bus. 

The cores keep snooping on the bus, and when they receive the address to be invalidated, 

all cores check their private cache for the corresponding block. If a match is found, the 

core invalidates the entire block. The bus offers sequential access and modification to the 

shared data. When two cores attempt to write to a shared block at the same time, first 

thing they will do is try to acquire the bus to send invalidation requests. Only one 

processor at a time can use the bus for sending requests, therefore, bus acquisition for the 

different cores is serialized. In case of a data miss in the private cache, the same snooping 

scheme can be used for allocating a data block in the cache when the used writing policy 

in the cache hierarchy is write-back, since the missed data can be modified in one of the 

private caches. All cores also snoop for every address placed on the bus, and if a core has 

the desired block modified in its private cache, then it provides the requesting core with 

the last updated copy of the block and stops the memory or shared cache access [3]. 

The simple MSI (Modified, Shared, and Invalid) protocol can basically be used to 

implement the cache coherence. The protocol implementation assumes two things: the 

first assumption is that the cache writing policy which is used at least between the private 

caches and the shared cache or the memory is write-back and write-allocate, the second 

assumption is that the block size is the same in the entire memory hierarchy. These two 

assumptions are held in most multi-core processors implementations, since write-back 
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does not consume much bandwidth or much time to perform the write operation. The 

equal block size provides simplicity to the implementation [3]. The MSI protocol 

enforces one main rule to keep coherence. The rule says, “for a given block, at any given 

moment in time, there is either: only a single core with write (and read) permission to the 

block (in state M for modified) or, zero or more cores with read permission to the block 

(in state S for shared)” [33]. For this, every cache block in a core‟s private cache is in one 

of the following states: invalid, shared, and modified. The invalid state indicates that the 

contents of the block are invalid to use, because the block‟s contents are invalidated or 

the block is not yet occupied. The shared state indicates that the cache has an up-to-date 

and clean copy of the block which can be shared with the other private caches, and the 

access to the block is allowed for reads only. The modified state indicates that the cache 

has the only copy of the block which is up-to-date and modified, and the access to the 

block is allowed for both reads and writes. To track the block state, each cache block 

associates extra status bits to encode the block state [35].  

The following tables and figures explain the MSI coherence mechanisms which are 

implemented in every private cache controller. The cache receives requests from the core 

to which the cache belongs and from the shared bus. The requests can be reads, writes, or 

data invalidations. The cache controller responds to the requests based on the request type 

and whether the data is present in the cache or not, also it depends on the state of the 

referenced block which contains the data [3].  

Table 12 shows the read hit and write hit requests from the core to its local cache. For the 

first three requests in the table, the type of the cache action is normal hit and the requests 

are handled within the local cache. Even for the third request, a coherence action is not 

required because the referenced block state is modified, so the core has an exclusive copy 

of the block and no need for invalidation. But in the fourth request, because the 

referenced block state is shared, a coherence action is needed, since the other cores may 

have a copy of the block. An invalidate request is placed on the bus to invalidate the other 

copies (if any) and to obtain the block ownership. Figure 17 shows the state transitions of 
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the cache block based on the request and the state of the referenced block, it also shows 

the cache action as a response to the request. 

 

Table 12 Requests from the core (hit in the local cache) [3] 

Request Block state Type of cache action Cache action 

Read hit Shared Normal hit Read data in the local cache 

Read hit Modified Normal hit Read data in the local cache 

Write hit Modified Normal hit Write data in local cache 

Write hit Shared Coherence Place invalidate on bus 

 

 

 

Figure 17 MSI protocol states transition for requests from the core (hit in the local cache) [3] 
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Table 13 shows the read miss and write miss requests from the core to its local cache. 

The referenced block here is a victim block which is chosen to be replaced by the new 

allocated block. If the victim block is in a modified state, then the block‟s contents are 

written back to the shared cache or memory before replacement, and after that, the 

request (read miss/write miss) is placed on the bus to obtain the block from the other 

private caches, or shared cache, or memory. The write miss request on the bus may cause 

invalidation in the other caches in order to grant the requesting cache an exclusive access 

to the new block. Figure 18 shows the state transitions of the cache block with the new 

allocated block based on the request and the state of the replaced block, it also shows the 

cache action as a response to the request. 

 

Table 13 Requests from the core (miss in the local cache) [3] 

Request 
Block 

state 

Type of cache 

action 
Cache Action 

Read 

miss 
Invalid Normal miss Place read miss on bus. 

Read 

miss 
Shared Replacement 

Address conflict miss: place read miss on 

bus. 

Read 

miss 
Modified Replacement 

Address conflict miss: write-back block, 

then place read miss on bus. 

Write 

miss 
Invalid Normal miss Place write miss on bus. 

Write 

miss 
Shared Replacement 

Address conflict miss: Place write miss on 

bus. 

Write 

miss 
Modified Replacement 

Address conflict miss: write-back block, 

then place write miss on bus. 
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Figure 18 MSI protocol states transition for requests from the core (miss in the local cache) [3] 

 

Table 14 shows the requests from the bus to the private cache. The private cache keeps 

snooping on the bus for requests like read miss, write miss, and invalidate. The cache 

responds to the request when it has a copy of the required block. For the first request in 

the table, no coherence action is needed, because the requesting cache tries to share a 

clean block which can be obtained from the shared cache or the memory. All other 

requests need a coherence action from the cache. If the state of the addressed block in the 

cache is modified, then block contents are written-back and the requesting cache is 

provided with a copy of the block. Both invalidate and write miss requests cause 

invalidation to the block contents. Figure 19 shows the state transitions of the addressed 

block based on the request and the state of the block, it also shows the cache action as a 

response to the request.  
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Table 14 Requests from the bus [3] 

Request 
Block 

state 

Type of 

cache action 
Cache Action 

Read 

miss 
Shared No action 

Allow shared cache or memory to service read 

miss. 

Read 

miss 
Modified Coherence 

Attempt to share data: write-back the cache 

block and make its state shared. 

Invalidate Shared Coherence 
Attempt to write shared block: invalidate the 

block. 

Write 

miss 
Shared Coherence 

Attempt to write shared block: invalidate the 

block. 

Write 

miss 
Modified Coherence 

Attempt to write block that is exclusive 

elsewhere in other local cache: write-back the 

cache block and make its state invalid in the 

local cache. 

 

 

Figure 19 MSI protocol states transition for requests from the bus [3] 
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In those multi-core processors where the shared cache is inclusive, it includes the 

contents of all private caches. This allows implementing a straightforward directory 

scheme in the shared cache. This scheme can reduce the snooping traffic significantly and 

minimize the interference on the bus. Because inclusion ensures that each private block 

has a corresponding shared block, the coherence protocol can track the copies of the 

block in the private caches through the snoop filter (directory entry) in the shared cache. 

Each block in the shared cache is associated with several bits: two bits for coherence state 

and the rest for core tracking (one bit per core) showing which core caches the block 

[33]. Figure 20 shows a system model with inclusive shared cache and the block structure 

in both private and shared caches. Both blocks A (cached by Core 0) and B (cached by 

Core 1 and Core 2) must be present in the shared cache because of inclusion hierarchy. 

The core tracking bits in each block are set properly to point to the cores which cache the 

block ; A{1,0,0,0} and B{0,1,1,0}. 

 

 

 

Figure 20 MSI cache coherence model using directory in the shared inclusive cache [33] 
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When a read or write misses in the private cache, the core sends a coherence request to 

the shared cache. The shared cache can respond to the request based on the referenced 

block‟s coherence state, either directly (when the state is shared), or by forwarding the 

request (when the state is modified) to the only core whose bit is set in the block‟s 

tracking list. The same thing happens when an invalidate coherence request is issued by a 

core because of writing to a shared block. The core sends the request to the shared cache 

which in its turn forwards the request only to the cores in the block‟s tracking list (if any) 

other than the requesting core. The core private caches then invalidate their copies of the 

block. The block‟s tracking list in the shared cache has to be updated when a block copy 

is evicted from a private cache [33].  

This scheme (directory at the shared cache) avoids the need for snooping in the cores, it 

also avoids broadcast messages and uses point-to-point messages for communication. 

This minimizes the system overhead and improves the scalability allowing to add more 

cores to the system. This coherence model is implemented in Intel Nehalem [33]. 

In those multi-core processors where the shared cache is exclusive, the embedded 

snooping filter with the shared cache block cannot be used, because the blocks which are 

cached in the private caches are not cached in the shared exclusive cache. The solution to 

this problem is to use a directory structure with the shared cache which holds an entry for 

each cached block in the private caches. The entry contains the block‟s tag, coherence 

state, and tracking list [22]. Figure 21 shows the directory structure.  This architecture is 

implemented in AMD Opteron [24]. 
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Figure 21 Separate directory with the shared exclusive cache [22] 

 

The MSI protocol has some extensions that arise by adding additional states and 

transitions to improve the performance if possible, i.e., MESI and MOESI protocol 

extensions. In MESI a new state called Exclusive is added to MSI, the exclusive state 

indicates that the block is present in only one private cache but it is clean, this state is 

represented in the MSI protocol by a shared state with only one bit set in cores‟ tracking 

list. The core which has the block in exclusive state can write to it without sending an 

invalidate request, just the state of the block will change from exclusive to modified. A 

read miss from any other core to the block will change its state from exclusive to shared 

[17]. 

In MOESI a new state called Owned is added to the MESI extension. The owned state 

indicates that the block is modified in the private cache and out-of-date in memory. In 

MSI when the block is in modified state and there is an attempt to share the block from 

another core, the block is written back and its state changes to shared. But in MOESI 

protocol, the cache can share the latest copy of the block with the requesters, the state of 

the block changes from modified to owned while the state of the block in the other caches 

is shared. The state changes from owned to modified again when a core writes to the 

block after sending an invalidate request. This protocol extension (MOESI) is used by 
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AMD in Opteron processor [41]. The following table 15 and figure 22 show the MOESI 

protocol states and the states transition diagram. 

Table 15 MOESI protocol states 

State Clean/Dirty Unique Read/Write  

Modified Dirty Yes R/W 

Owned Dirty No R 

Exclusive Clean Yes R/W 

Shared Clean No R 

Invalid NA NA NA 

 

 

Figure 22 MOESI state transitions [41] 
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4 Design and Implementation of Cache Simulation 

 

 

 

Figure 23 Cache simulation design 

Figure 23 provides an overview of the cache simulation design. The classes are 

represented by boxes, the dashed arrows represent inheritance, the solid arrows represent 

referencing, and the dotted arrows represent messaging. 
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4.1 Cache Management 

 

The cache management forms the most important part in the cache simulation design. In 

the multi-core processor cache hierarchy, we have two categories of caches based on the 

cache functionality. The first category is the private cache, which represents every single 

level of cache within the core, and the second category is the shared cache, which 

represents the shared last level of cache. Both caches share some functions which are 

common in every cache memory like request a cached block, allocate a cache block, 

resolve a cache coherence request, and write back a modified block. But the difference is 

in how each category implements these functions. 

For the cache management, we implement an interface which defines all common cache 

functions, and both the private cache and the shared cache are implemented as two 

classes which have to implement the interface functions. Each class will implement the 

interface functions in a way suitable to the cache functionality. Figure 24 shows the UML 

class diagram from the cache management. The UML Lab-Yatta tool [42] was used to 

generate this and all further class diagrams. The interface ICachemanagement shown on 

top defines the common class management functions. The class 

PrivateCacheManagement represents the private cache category, and the class 

SharedCacheManagement represents the shared cache category. 
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Figure 24 The UML class diagram of cache management 

 

The following table 16 describes the cache management properties which are 

implemented in private and shared cache management classes. 
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Table 16 Cache management properties 

Property Type Description 
cache_size int The size of the cache 
block_size int The size of the cache block 

number_of_blocks int The number of blocks in the cache 
number_of_sets int The number of sets in the cache 
associativity int The associativity of the cache set 

structure Cache 

Structure 
The cache structure or organization, 

Direct_Map, Fully_Associative, or 
Set_Associative 

replacement_policy Cache 

Replacement

Policy 

The replacement policy which is used to 

choose the next victim block in the cache 

set for replacement in the next miss, 

DirectMap where no replacement policy 

is used, FIFO, LRU, or PLRU  
hierarchy_policy Cache 

Hierarchy 

Policy 

The type of cache hierarchy, Inclusive, 

Non_inclusive, Exclusive, or None as 

in the first level of cache hierarchy 
cache_level Integer The level of the cache in the hierarchy 

sets ArrayList 

<CacheSet> 
List of the cache sets which represents 

the cache sets, the index of the array is 

also used as the set index for mapping 
hits_count int Counter for cache hits 

misses_count int Counter for cache misses 
conflict_misses_count int Counter for cache misses because of set 

conflict 
coherence_misses_count int Counter for cache misses because of 

coherence protocol 
inclusion_misses_count int Counter for cache misses because of 

inclusion property 
conflict_victim_blocks_

addresses 

ArrayList 

<String> 
List of victim block addresses due to set 

conflicts, if any block in the list is 

referenced again, the result is a conflict 

miss 
coherence_victim_blocks

_addresses 

ArrayList 

<String> 
List of victim blocks address due to 

coherence protocol, if any block in the 

list is referenced again, the result is a 

coherence miss 
inclusion_victim_blocks

_addresses 

ArrayList 

<String> 
List of victim blocks address due to 

inclusion property, if any block in the list 

is referenced again, the result is a conflict 

miss 
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The interface ICacheManagement defines three functions to manage cache referencing. 

The function obtain_data_block is used to get the cache block which contains the 

required data for memory access operations. The function serve_coherence_request 

performs cache coherence requests from the other cores or the shared cache. The function 

write_back_block_to_the_cache performs block write-backs for the evicted blocks 

from the upper level cache when the evicted blocks are modified or the hierarchy policy 

between the two cache levels is exclusive. Table 16 describes the functions‟ parameters. 

 

Table 17 ICacheManagement functions' parameters 

Parameter Type Description 
core_index int The index of the core which initiates the 

request 
request Request 

Type 
The request type to the cache, Read, Write, 

Read_miss, Write_miss, or Invalidate  
block_address_parser Address 

Parser 
The address of the required block 

tracer String 

Builder 
Cache access tracer which records the result of 

the access 
victim_block Cache 

Block 
The victim block which is replaced from the 

upper level cache 

 

 

4.1.1 Private Cache Management 

Every single level of the core‟s private cache is represented in the simulation by an object 

of the class PrivateCacheManagement. The class constructor is used to initialize the 

cache parameters. Referring to the sections 2.3 and 2.4, the number of the cache blocks is 

calculated by dividing the cache size over the block size. If the cache structure is direct-

mapped, then the number of sets in the cache equals the number of the cache blocks, so 

every set holds only one cache block. For full-associative cache structure, there is only 

one set, and it holds all cache blocks. Finally, for the set-associative cache structure, the 

number of blocks per set equals the associativity, so the number of sets is calculated by 
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dividing the number of blocks by the associativity. The indexed list sets is created 

afterwards with a number of CacheSet objects equaling to the calculated number of the 

cache sets, each object represents a cache set and contains an ordered list of Cacheblock 

objects equaling to the calculated number of blocks.  

The class implements the interface ICacheManagement, so it has to implement all of 

the functions which are defined in the interface. The function obtain_data_block is 

used to get the required cache block, the request type to the cache is here either Read or 

Write. As explained in section 2.6, the address of the block is passed to the function as 

an object of AddressParser class, the AddressParser is used to parse the block address 

to get the tag and index. The index is used to get the cache set from the sets list and 

after it the tag is used to retrieve the block from the cache set through the set function 

fetch_block(tag). If the fetch function returns the block, then the request hits in the 

cache, the hits_count is incremented and a cache hit message is added to the tracer. If 

the request type is Write and the block state is Shared, then an invalidate coherence 

request is sent through the Core (as we will see later) to the shared cache or to the other 

private caches when there is no shared cache, and then the block state is changed to 

Modified, referring to table 12, section 3.4. If the fetch function returns null, then the 

request misses in the cache, the misses_count is incremented and a cache miss message 

is added to the tracer. In case of a cache miss, the cache sends the request to the next 

level private cache to obtain the block. If the cache is the last level of the private caches, 

a Read_miss or Write_miss coherence request is sent through the Core to shared cache 

or to the other cores when there is no shared cache to obtain the block as shown in table 

13, section 3.4. The new block is allocated to the related set through the set function 

allocate_block(block). The allocate function returns either null when no victim 

block is replaced or a victim block chosen based on the replacement policy when the set 

is fully occupied by memory blocks. If the victim block state is Modified or the 

hierarchy policy with next level cache is Exclusive, the victim block is written back to 

the next level cache through the function write_back_block_to_the_cache (see 

section 2.9 for cache writing policies). The victim block address is added to 
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conflict_victim_blocks_addresses list, so when the block is referenced again, the 

miss will be considered as a miss because of set conflict. One more thing, a request is 

sent through the Core to the shared cache (if present) to set the core block tracking bit to 

0 because the victim block is not any more present in the core. Considering the cache 

hierarchy here as explained in section 2.12, the new block brought to the cache is 

forwarded directly to the upper level cache and is not allocated in the intermediate cache 

when the hierarchy between the two cache levels is Exclusive. However, in Inclusive 

and Non_inclusive hierarchies the block is allocated on both cache levels. If a block is 

evicted from Inclusive cache, a back invalidation request is sent from the cache to all 

upper level caches, but for Non_inclusive and Exclusive hierarchies no back 

invalidation request is sent. 

The class has to implement the serve_coherence_request function to serve the 

coherence requests sent to the cache from the shared cache or from the other cores when 

there is no shared cache. The block address is passed to the function as a parameter. The 

block tag and set index are calculated by the AddressParser object and then the related 

cache set is accessed to get the required cache block for the coherence request. If the 

block is found in the set, the cache responds to the request by the suitable action. As 

explained in the table 14 section 3.4, when the coherence request is Read_miss and the 

block state is Modified, the block content is written back to the shared cache (if present 

and not Exclusive) or memory, the block state is then changed to Shared. When the 

coherence request is Write_miss and the block state is Shared, the state is changed to 

Invalid. But if the block state is Modified, the block content is written back first to the 

shared cache or memory, then the block state is changed to Invalid. For the coherence 

request of type Invalidate, if the block state is Shared, the state is changed to Invalid 

and the block address is added to coherence_victim_blocks_addresses so when the 

block is referenced again, the miss will be considered as a miss because of coherence. 

Finally, the coherence request is propagated to all levels of the private cache within the 

core to make sure that all levels perform the coherence request. 
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The class has to implement the function write_back_block_to_cache which performs 

the write back for the replaced block from the upper level cache. The victim block is 

passed as a parameter to the function. The state of the victim block can be Modified, so 

its content needs to be written, or it can be Shared and the block needs to be allocated in 

the cache because of the Exclusive cache hierarchy between the two levels. Firstly, the 

block is fetched from the related set using the fetch_block(tag) function. If the block 

is present, then its state is updated with the victim block state, otherwise, the victim block 

is allocated to the set using the set function allocate_block(block), which could result 

in a new victim block. The new victim block can be handled in the same way as 

explained in the function obtain_data_block. 

The class member function back_invalidation_from_inclusive_cache is used to 

perform the back invalidation requests from the lower levels of cache when the cache 

hierarchy there is Inclusive. The function receives as a parameter the address of the 

block to invalidate. The block is fetched from the related set. If the block is present and 

its state is Shared the state is changed to Invalid. When the block state is Modified, the 

block content is written back first, then its state is changed to Invalid. The block address 

is added to inclusion_victim_blocks_addresses list, so when the block is referenced 

again, the miss will be considered as a miss because of inclusion property. Finally, the 

invalidate request is propagated to the next level invalidate function to make sure that the 

block is invalidated in all levels of the private cache within the core. 

The class member function is_the_block_located_in_the_cache is used by Core to check 

if a block is present in any level of the core private cache. The block address is passed as 

a parameter to the function, then the block is fetched from the related set, if the block is 

present the function returns true, otherwise the block is not present and the function 

returns false. 
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4.1.2 Shared Cache Management 

The shared last level of cache is represented in the simulation by a single object of the 

class SharedCacheManagement. As explained in section 3.4, the shared last level of 

cache is used in the coherence scheme to minimize the number of the sent coherence 

messages through the bus. The cache keeps a directory entry in the shared cache for every 

cached block in the cores‟ private caches. The DirectoryEntry object can be stored with 

the Cacheblock object at the shared cache when the cache hierarchy is Inclusive, or it 

can be stored in a separate Directory structure when the cache hierarchy is 

Non_inclusive or Exclusive.  

The SharedCacheManagement class has to implement the functions of the interface 

ICacheManagement. The class constructor does almost the same things as in the 

PrivateCacheManagement class. The class implements the obtain_data_block 

function which is used by the cores to obtain the data block when the block is not present 

in the private cache. If the cache hierarchy is Non_inclusive or Exclusive, the 

Directory hash table is used to retrieve the block directory entry. The block tag is used 

as a hash Key and the hash Value is the directory entry object. If the block directory entry 

is found in the Directory, then the block is cached in at least one private cache. The 

directory entry contains the block state and cores_tracking_bits array. If the state of 

the block is Shared and the request type is Read_miss the requesting core‟s bit in the 

cores_tracking_bits array is set to 1. If the request type is Write_miss, then the cache 

forwards the Write_miss request to cores in the cores_tracking_bits, after that, the 

state in the directory entry is changed to Modified and only the requesting core‟s bit is 

set to 1. If the state in the entry is Modified and the request type is Read_miss, the cache 

forwards the Read_miss request to the only core which has the block, the block state is 

changed to Modified and the requesting core‟s bit in the cores_tracking_bits array is 

set to 1. If the request is Write_miss, the cache also forwards the Write_miss request to 

the only core which has the block and only the requesting core‟s bit is set to 1. When the 

Directory does not have an entry for the block, the related cache set is searched for the 
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block. If the block is present in the cache, then it is forwarded to the requesting core, and 

invalidated in the shared cache if the cache hierarchy is Exclusive, otherwise, the block 

is fetched from the memory if it is not present in the cache. A new directory entry for the 

block is added to the Directory hash table with Shared state if the request type is 

Read_miss, or Modified if the request type is Write_miss, also the requesting core‟s bit 

in the cores_tracking_bits array is set to 1. For the Inclusive cache hierarchy, the 

block directory entry is stored within the block.  Firstly, the block is fetched from the 

cache set, then the block directory entry is retrieved using the block function 

get_snoop_filter(). After getting the directory entry, the request is served in the same 

way as explained before with the Exclusive cache. If the block is not present in the 

cache, it is fetched from the memory, allocated in the cache, and then forwarded to the 

requesting core. If the block allocation results in a victim block, and the victim block 

state is Shared, the cache forwards an Invalidate request to cores in the 

cores_tracking_bits of the victim block then the victim block is written back to the 

memory if the Dirty bit is set to 1. 

The class has to implement the serve_coherence_request function which is used by 

the core to send invalidate requests to the other cores‟ private caches. The block‟s 

directory entry can be obtained either from the Directory hash table or from the block 

depending on the cache hierarchy as explained before. The invalidate request is 

forwarded to cores in the cores_tracking_bits, after that, the state in the directory 

entry is changed to Modified and only the requesting core‟s bit is set to 1. 

The class has to implement the write_back_block_to_cache function which is used to 

write back the evicted blocks from the private caches to the shared cache. If the cache 

hierarchy is Inclusive and the victim block state is Modified, the cache block Dirty bit 

is set to 1. If the cache hierarchy is Exclusive and no other private cache has a copy of 

the victim block, then the victim block is allocated in the shared cache. 

 



4. Design and Implementation of Cache Simulation 

 

76 
 

4.1.3 Cache Set and Cache Replacement Policies  

Every cache set is represented in the simulation by an object of the class CacheSet. The 

class implements an ordered list of blocks which represent the blocks held by the set. As 

explained in section 2.8, the order is used by the ReplacementPolicy to select a victim 

for replacement when the cache is full. Figure 25 shows the class diagram for the 

CacheSet class and the IReplacementPolicy interface, the figure also shows the class 

diagrams for all implemented replacement policies in the simulation, all replacement 

policy classes implement the IReplacementPolicy interface. The class constructor 

function is used to create the blocks list with the calculated number of blocks and the 

replacement_policy object which can be an object of any replacement policy classes. 

The replacement policy class updates the order of the blocks in blocks list based on the 

implemented replacement policy. 

The class member function fetch_block(tag, request) is used by the cache 

management to fetch a cache block from the set. The blocks list is searched to look for 

the block. When a block with the same tag and with state other than Invalid is found in 

the list, a copy of that block is returned. The replacement_policy updates the order of 

the blocks list through the function update_replacement_policy(block) only when 

the request is Read or Write.  

The class member function allocate_block(block) is used by the cache management 

to allocate a cache block to the set. The replacement_policy is used to get a victim 

block through the function get_victim_block to replace it with the new block. Invalid 

blocks are replaced first, and when the list is full a valid block is chosen for replacement 

based on the replacement policy. The data of the new block is filled to the victim block 

and a copy of the victim block is returned to the cache management. 

The class member function update_block(newBlock) is used by the cache management 

to update the data of an existing block in the set with a new block data.  
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The class member function is_block_present(tag) is used to check whether a block is 

present in the set: if it is, true is returned, otherwise false. 

 

Figure 25 Cache set and replacement policies class diagram 

 

4.1.4 Cache Blocks 

Every cache block is represented in the simulation by an object of the class CacheBlock. 

Figure 26 shows the class diagram for both CacheBlock and DirectoryEntry classes. If 
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the block belongs to a shared inclusive cache, then the block‟s directory entry is stored 

within the block through snoop_filter class local variable. 

 

Figure 26 Cache block and directory entry class diagram 
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4.1.5 Address Parser 

The AddressParser class is used to parse the block address to get the block tag and the 

set index. To parse a block address within a cache the function parse(block_size, 

number_of_sets, structure). The parsing method is explained in section 2.6. 

 

 

Figure 27 Address Parser class diagram 

 

 

4.2 Processor Cores  

 

The Core class represents the core processor in the simulation. The core has 

private_cache which points to the first level of private cache and shared_cache which 

points to the shared last level of caches (if present).  The following figure 27 shows the 

class diagram of the Core class. 
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Figure 28 Core class diagram 

 

The class member functions read(address)/write(address) are used by the Simulator 

class to perform core memory read operation. The memory address is passed to the 

function as a parameter. First the function checks the memory address using the address 

parser class. When the address is valid, the function obtain_data_block() of the core 

private cache is called to perform the memory access. The obtain function takes as 

parameters the core index, the block address, the request type Read/Write, and the 

memory access tracer. If the core does not have private cache, the shares cache 

obtain_data_block() function is called to obtain the block. 

 The class member function obtain_coherence_request() is used by the core private 

cache levels to send a coherence requests to the shared cache (if present) or to broadcast 

it to the other cores. 

The class member function perform_coherence_request()is used by the other cores or 

the shared cache (if present) to forward the coherence requests to the core‟s private 

cache. 
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The member function update_block_directory_entry() is used by the core private cache 

levels to send coherence request to the shared cache (if present) to reset the core‟s 

tracking bit to 0, for some block evicted from the private cache. 

 

4.3 Simulator 

 

The Simulator class is used to construct the cache simulation objects and to run the 

simulation. Fugire 29 shows the class diagram for the simulator class. 

 

Figure 29 Simulator class diagram 

 

The simulator uses XML format input to define the cache structure. It also applies a 

predefined XML-schema for structuring and validating the XML cache structure input 

format. The main() function creates a new object of the Simulator class and calls the 

class constructor. In the constructor the function parse_xml_cache_config( 

xmlDocument) is called first to validate the input xmlDocument  for cache structure with 

the predefined cache structure XML-schema, if the input XML matches the XML-

schema, the input XML is parsed to build the cache structure. The function 

perform_memory_access(FileReader) is called to read the simulator memory access 
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list input file, then parse it and start the simulation. The following listing 1 shows the 

cache structure XML-schema. 

 

<?xml version="1.0" encoding="UTF-8"?> 

<xs:schema xmlns:xs=http://www.w3.org/2001/XMLSchema 

elementFormDefault="qualified"> 

 

<xs:element name="simulator"> 

<xs:complexType> 

<xs:sequence> 

<xs:element name="cores" type="coresType" minOccurs="1" 

maxOccurs="1"  /> 

<xs:element name="caches" type="cachesType" minOccurs="1" 

maxOccurs="1" /> 

</xs:sequence> 

<xs:attribute name="address_width" type="xs:integer" use="required" /> 

<xs:attribute name="block_size" type="xs:string" use="required" /> 

</xs:complexType> 

</xs:element> 

<xs:complexType name="coresType"> 

<xs:sequence> 

<xs:element name="core" type="coreType" minOccurs="1" 

maxOccurs="unbounded" /> 

</xs:sequence> 

</xs:complexType> 

<xs:complexType name="coreType"> 

<xs:attribute name="id" type="xs:ID" use="required" /> 

</xs:complexType> 

<xs:complexType name="cachesType"> 

<xs:sequence> 

<xs:element name="private_cache" type="privateCacheTypye" 

minOccurs="0" maxOccurs="1" /> 

<xs:element name="shared_cache" type="sharedCacheTypye" 

minOccurs="0" maxOccurs="1" /> 

</xs:sequence> 

</xs:complexType> 

<xs:complexType name="privateCacheTypye"> 

<xs:sequence> 

<xs:element name="cache" type="cacheType" minOccurs="1" 

maxOccurs="unbounded" /> 

</xs:sequence> 

</xs:complexType> 

<xs:complexType name="sharedCacheTypye"> 

<xs:sequence> 

<xs:element name="cache" type="cacheType" minOccurs="0" 

maxOccurs="1" /> 

</xs:sequence> 

</xs:complexType> 

Listing 1 Cache structure XML-schema 

http://www.w3.org/2001/XMLSchema
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Listing 1 Cache structure XML-schema (continued) 

4.3.1 Simulator Input 

As we mentioned before, the simulator has two input files. The first one is the cache 

structure in XML format. The second one is the simulator memory access list, every line 

in the list has a memory operation in a predefined format. Listing 2 shows an example of 

<xs:complexType name="cacheType"> 

<xs:attribute name="level" type="xs:integer" use="required" /> 

<xs:attribute name="cache_size" type="xs:string" use="required" /> 

<xs:attribute name="cache_structure" type="cacheStructureType" 

use="required" /> 

<xs:attribute name="associativity" type="xs:integer" 

use="optional"/> 

<xs:attribute name="replacement_policy" 

type="replacementPolicyType" use="optional" /> 

<xs:attribute name="cache_hierarchy" type="hierarchyType" 

use="required" /> 

</xs:complexType> 

<xs:simpleType name="cacheStructureType" final="restriction"> 

    <xs:restriction base="xs:string"> 

     <xs:enumeration value="DM" /> 

     <xs:enumeration value="FA" /> 

     <xs:enumeration value="SA" /> 

    </xs:restriction> 

</xs:simpleType> 

<xs:simpleType name="replacementPolicyType" final="restriction"> 

    <xs:restriction base="xs:string"> 

     <xs:enumeration value="FIFO" /> 

     <xs:enumeration value="LRU" /> 

     <xs:enumeration value="PLRU" /> 

    </xs:restriction> 

</xs:simpleType> 

<xs:simpleType name="hierarchyType" final="restriction"> 

    <xs:restriction base="xs:string"> 

      <xs:enumeration value="inclusive" /> 

      <xs:enumeration value="non-inclusive" /> 

      <xs:enumeration value="exclusive" /> 

      <xs:enumeration value="none" /> 

    </xs:restriction> 

</xs:simpleType> 

</xs:schema> 
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cache structure in XML while listing 3 shows an example of memory access list. Notice 

that the core_Ids in the cache structure XML is the same as in the memory access list. 

 

 

 

 

C0 Read [0x1210] 

C1 Read [0x1213] 

C0 Read [0x2352] 

C1 Write [0x1213] 

C0 Read [0x1210] 

<?xml version="1.0" encoding="UTF-8"?> 

<simulator address_width="16" block_size="4 B"> 

 

<cores> 

 <core id="c0" /> 

 <core id="c1" /> 

</cores> 

 

<caches> 

 

<private_cache> 

 <cache level="1" cache_size="32 B" cache_structure="SA"  

associativity="2" replacement_policy="LRU" 

cache_hierarchy="none" /> 

</private_cache> 

<shared_cache> 

 <cache level="2" cache_size="64 B" cache_structure="SA"  

associativity="4" replacement_policy="LRU" 

cache_hierarchy="inclusive" /> 

</shared_cache> 

   

</caches> 

</simulator> 

Listing 2 Cache structure XML format 

Listing 3 Memory access list 
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4.3.2 Simulator Input Validation 

The following java code in listing 4 is used to match the input cache structure in XML 

with the XML-schema. If the input XML is not matched with the schema, the code 

throws an exception.  

 

 

When the XML input of the cache structure is valid, the XML is parsed to get the 

information about the simulated cache structure. The XML includes the list of cores and 

cache levels (private/shared) with the cache parameters of each level like the level 

number, the cache size, the cache structure (DM: direct-mapped, FA: fully-associative, or 

SA: set-associative), the associativity, the replacement policy (FIFO, LRU, or PLRU), 

and the cache hierarchy policy (inclusive, non-inclusive, exclusive, or none for the first 

level of cache). 

try { 

// define XML schema object to validate the cache simulator XML input 

configuration  

SchemaFactory schemaFactory = 

SchemaFactory.newInstance(XMLConstants.W3C_XML_SCHEMA_NS_URI); 

 

// the name of schema file is cache_system_schema.xsd  

Schema schema = schemaFactory.newSchema( 

new File("simulator_xml_schema.xsd")); 

DocumentBuilderFactory parserFactory = 

DocumentBuilderFactory.newInstance(); 

parserFactory.setSchema(schema); 

parserFactory.setIgnoringElementContentWhitespace(true); 

parserFactory.setIgnoringComments(true); 

DocumentBuilder documentBuilder = parserFactory.newDocumentBuilder(); 

 

// the name of the XML input configuration file  

Document document = documentBuilder.parse( 

new File("cache_config.xml")); 

} 

catch (Exception e) { 

System.out.println(e.getMessage()); 

} 

Listing 4 Java code for cache structure XML validation with the XML-schema 
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After parsing the XML, the simulation objects (cores and caches) are created to start the 

simulation. Figure 30 shows the simulation object diagram for the cache structure XML 

shown in listing 2. 

 

 

Figure 30 Simulation object diagram 

 

4.3.3 Simulator Output 

The simulation output is a list of traces for every memory access operation. Each trace 

contains the operation itself and the result of every cache level access (Hit/Miss). The 

trace includes also the block state in the cache when it is a hit, and the block allocation, 

and victim block replacement when the block is a miss. The sent coherence messages are 

also included. Listing 5 shows the simulation output for the cache structure and memory 

access list shown respectively in listing 2 and listing 3. The simulation also provides 

counts of hits and misses in each cache level. 
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core C0 Read [0x1210]: 

C0 L1 private cache Miss  

L2 shared cache Miss  

L2 shared cache, allocate block, block address: 0x0484, new block state: Shared 

, core tracking bits: 10 

C0 L1 private cache, allocate block, block address: 0x0484, block state: Shared  

***************************** 

core C1 Read [0x1213]: 

C1 L1 private cache Miss  

L2 shared cache Hit, block address: 0x0484, block state: Shared , core tracking 

bits: 10 

L2 shared cache, block address: 0x0484, new block state: Shared , core tracking 

bits: 11 

C1 L1 private cache, allocate block, block address: 0x0484, block state: Shared  

***************************** 

core C0 Read [0x2352]: 

C0 L1 private cache Miss  

L2 shared cache Miss  

L2 shared cache, allocate block, block address: 0x08D4, new block state: Shared 

, core tracking bits: 10 

C0 L1 private cache, allocate block, block address: 0x08D4, block state: Shared  

***************************** 

core C1 Write [0x1213]: 

C1 L1 private cache data request Hit, block address: 0x0484, block state: 

Shared  

C1 send block invalidate request to shared cache, block address: 0x0484 

L2 shared cache, block address: 0x0484, block state: Shared , core tracking 

bits: 11 

L2 shared cache, forward invalidate request to core C0, block address: 0x0484 

C0 L1 private cache, invalidate block, block address: 0x0484, block state: 

Shared  

C0 L1 private cache, block address: 0x0484, block new state: Invalid  

L2 shared cache, block address: 0x0484, new block state: Modified , core 

tracking bits: 01 

C1 L1 private cache, block address: 0x0484, block new state: Modified  

***************************** 

core C0 Read [0x1210]: 

C0 L1 private cache Miss  

L2 shared cache Hit, block address: 0x0484, block state: Modified , core 

tracking bits: 01 

L2 shared cache, forward Read miss request to core C1, block address: 0x0484 

C1 L1 private cache, write back block, block address: 0x0484, block state: 

Modified  

C1 L1 private cache, block address: 0x0484, block new state: Shared  

L2 shared cache, block address: 0x0484, new block state: Shared , core tracking 

bits: 11 

C0 L1 private cache, allocate block, block address: 0x0484, block state: Shared  

***************************** 

 
Listing 5 Simulation output 
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5 Tests and Simulation Results 

 

5.1 Test Cache Configurations 

 

For testing the cache configuration, we will use the example which is discussed in section 

2.7. The used cache size in all cases is 64 byte, the block size is 16 byte, and the address 

width is 16 bits. The following memory access list in listing 6 is used in the simulation. 

 

 

5.1.1 Direct-Mapped Cache 

Listing 7 shows the direct-mapped cache structure and listing 8 shows the simulation 

output. 

 

 

<?xml version="1.0" encoding="UTF-8"?> 

<simulator address_width="16" block_size="16 B"> 

 

<cores> 

<core id="c0" /> 

</cores> 

 

<caches> 

<private_cache> 

<cache level="1" cache_size="64 B" cache_structure="DM" 

cache_hierarchy="none" /> 

</private_cache> 

</caches> 

 

</simulator> 

C0 Read [0x1234] 

C0 Read [0x123C] 

C0 Read [0x1240] 

C0 Read [0x1270] 

C0 Read [0x1234] 

C0 Read [0x1232] 

C0 Read [0x1248] 

C0 Read [0x12C8] 

C0 Read [0x1248] 

C0 Read [0x1244] 

 

Listing 6 Memory access list for testing cache configurations 

Listing 7 Direct-Mapped cache XML 
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The simulation results are the same as in the table 2 on page 27. 

 

core C0 Read [0x1234]: 

C0 L1 private cache Miss  

C0 L1 private cache, allocate block, block address: 0x123, block state: Shared  

***************************** 

core C0 Read [0x123C]: 

C0 L1 private cache data request Hit, block address: 0x123, block state: Shared  

C0 L1 private cache, block address: 0x123, block new state: Shared  

***************************** 

core C0 Read [0x1240]: 

C0 L1 private cache Miss  

C0 L1 private cache, allocate block, block address: 0x124, block state: Shared  

***************************** 

core C0 Read [0x1270]: 

C0 L1 private cache Miss  

C0 L1 private cache, allocate block, block address: 0x127, block state: Shared  

C0 L1 private cache, victim block for replacement, block address: 0x123, block 

state: Shared  

***************************** 

core C0 Read [0x1234]: 

C0 L1 private cache Miss  

C0 L1 private cache, allocate block, block address: 0x123, block state: Shared  

C0 L1 private cache, victim block for replacement, block address: 0x127, block 

state: Shared  

***************************** 

core C0 Read [0x1232]: 

C0 L1 private cache data request Hit, block address: 0x123, block state: Shared  

C0 L1 private cache, block address: 0x123, block new state: Shared  

***************************** 

core C0 Read [0x1248]: 

C0 L1 private cache data request Hit, block address: 0x124, block state: Shared  

C0 L1 private cache, block address: 0x124, block new state: Shared  

***************************** 

core C0 Read [0x12C8]: 

C0 L1 private cache Miss  

C0 L1 private cache, allocate block, block address: 0x12C, block state: Shared  

C0 L1 private cache, victim block for replacement, block address: 0x124, block 

state: Shared  

***************************** 

core C0 Read [0x1248]: 

C0 L1 private cache Miss  

C0 L1 private cache, allocate block, block address: 0x124, block state: Shared  

C0 L1 private cache, victim block for replacement, block address: 0x12C, block 

state: Shared  

***************************** 

core C0 Read [0x1244]: 

C0 L1 private cache data request Hit, block address: 0x124, block state: Shared  

C0 L1 private cache, block address: 0x124, block new state: Shared  

***************************** 

 
Listing 8 Direct-Mapped cache simulation output 
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5.1.2 Fully-Associative Cache 

Listing 9 shows the fully-associative cache structure and listing 10 shows the simulation 

output. 

 

 

 

<?xml version="1.0" encoding="UTF-8"?> 

<simulator address_width="16" block_size="16 B"> 

 

<cores> 

<core id="c0" /> 

</cores> 

 

<caches> 

<private_cache> 

<cache level="1" cache_size="64 B" cache_structure="FA" 

replacement_policy="LRU" cache_hierarchy="none" /> 

</private_cache> 

</caches> 

 

</simulator> 

core C0 Read [0x1234]: 

C0 L1 private cache Miss  

C0 L1 private cache, allocate block, block address: 0x123, block state: Shared  

***************************** 

core C0 Read [0x123C]: 

C0 L1 private cache data request Hit, block address: 0x123, block state: Shared  

C0 L1 private cache, block address: 0x123, block new state: Shared  

***************************** 

core C0 Read [0x1240]: 

C0 L1 private cache Miss  

C0 L1 private cache, allocate block, block address: 0x124, block state: Shared  

***************************** 

core C0 Read [0x1270]: 

C0 L1 private cache Miss  

C0 L1 private cache, allocate block, block address: 0x127, block state: Shared  

***************************** 

core C0 Read [0x1234]: 

C0 L1 private cache data request Hit, block address: 0x123, block state: Shared  

C0 L1 private cache, block address: 0x123, block new state: Shared  

***************************** 

core C0 Read [0x1232]: 

C0 L1 private cache data request Hit, block address: 0x123, block state: Shared  

C0 L1 private cache, block address: 0x123, block new state: Shared  

***************************** 

core C0 Read [0x1248]: 

C0 L1 private cache data request Hit, block address: 0x124, block state: Shared  

C0 L1 private cache, block address: 0x124, block new state: Shared  

***************************** 

 

Listing 9 Fully-Associative cache XML 

Listing 10 Fully-Associative cache simulation output 



5. Testing and Simulation Result 

 

91 
 

 

Listing 10 Fully-Associative cache simulation output (continued) 

The simulation results are the same as in the table 6 on page 28. 

 

5.1.3 Two-way Set-Associative Cache 

Listing 11 shows the two-way set-associative cache structure and listing 12 shows the 

simulation output. 

 

 

 

core C0 Read [0x1234]: 

C0 L1 private cache Miss  

C0 L1 private cache, allocate block, block address: 0x123, block state: Shared  

***************************** 

core C0 Read [0x123C]: 

C0 L1 private cache data request Hit, block address: 0x123, block state: Shared  

C0 L1 private cache, block address: 0x123, block new state: Shared  

***************************** 

 

<?xml version="1.0" encoding="UTF-8"?> 

<simulator address_width="16" block_size="16 B"> 

 

<cores> 

<core id="c0" /> 

</cores> 

 

<caches> 

<private_cache> 

<cache level="1" cache_size="64 B" cache_structure="SA" 

associativity="2" replacement_policy="LRU" cache_hierarchy="none" /> 

</private_cache> 

</caches> 

 

</simulator> 

core C0 Read [0x12C8]: 

C0 L1 private cache Miss  

C0 L1 private cache, allocate block, block address: 0x12C, block state: Shared  

***************************** 

core C0 Read [0x1248]: 

C0 L1 private cache data request Hit, block address: 0x124, block state: Shared  

C0 L1 private cache, block address: 0x124, block new state: Shared  

***************************** 

core C0 Read [0x1244]: 

C0 L1 private cache data request Hit, block address: 0x124, block state: Shared  

C0 L1 private cache, block address: 0x124, block new state: Shared  

***************************** 

Listing 11 Two-way set-associative cache XML 

Listing 12 Two-way set-associative cache simulation output 
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Listing 12 Two-way set-associative cache simulation output (continued) 

The simulation results are the same as in the table 4 on page 28. 

 

5.2 Test Cache Replacement Policies 

 

In replacement policy tests we will consider the examples which are discussed in section 

2.8. The following memory access list in listing 13 is used in the simulation. 

 

C0 Read [0x0A00] 

C0 Read [0x0B00] 

C0 Read [0x0C00] 

C0 Read [0x0D00] 

C0 Read [0x0E00] 

C0 Read [0x0B00] 

C0 Read [0x0A00] 

C0 Read [0x0F00] 

core C0 Read [0x1240]: 

C0 L1 private cache Miss  

C0 L1 private cache, allocate block, block address: 0x124, block state: Shared  

***************************** 

core C0 Read [0x1270]: 

C0 L1 private cache Miss  

C0 L1 private cache, allocate block, block address: 0x127, block state: Shared  

***************************** 

core C0 Read [0x1234]: 

C0 L1 private cache data request Hit, block address: 0x123, block state: Shared  

C0 L1 private cache, block address: 0x123, block new state: Shared  

***************************** 

core C0 Read [0x1232]: 

C0 L1 private cache data request Hit, block address: 0x123, block state: Shared  

C0 L1 private cache, block address: 0x123, block new state: Shared  

***************************** 

core C0 Read [0x1248]: 

C0 L1 private cache data request Hit, block address: 0x124, block state: Shared  

C0 L1 private cache, block address: 0x124, block new state: Shared  

***************************** 

core C0 Read [0x12C8]: 

C0 L1 private cache Miss  

C0 L1 private cache, allocate block, block address: 0x12C, block state: Shared  

***************************** 

core C0 Read [0x1248]: 

C0 L1 private cache data request Hit, block address: 0x124, block state: Shared  

C0 L1 private cache, block address: 0x124, block new state: Shared  

***************************** 

core C0 Read [0x1244]: 

C0 L1 private cache data request Hit, block address: 0x124, block state: Shared  

C0 L1 private cache, block address: 0x124, block new state: Shared  

***************************** 

Listing 13 Memory access list for testing replacement policies 
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5.2.1 LRU Replacement Policy 

Listing 14 shows the four-way set-associative cache structure with LRU replacement 

policy and listing 15 shows the simulation output. 

 

 

 

core C0 Read [0xA00]: 

C0 L1 private cache Miss  

C0 L1 private cache, allocate block, block address: 0x0A0, block state: Shared  

***************************** 

core C0 Read [0xB00]: 

C0 L1 private cache Miss  

C0 L1 private cache, allocate block, block address: 0x0B0, block state: Shared  

***************************** 

core C0 Read [0xC00]: 

C0 L1 private cache Miss  

C0 L1 private cache, allocate block, block address: 0x0C0, block state: Shared  

***************************** 

core C0 Read [0xD00]: 

C0 L1 private cache Miss  

C0 L1 private cache, allocate block, block address: 0x0D0, block state: Shared  

***************************** 

core C0 Read [0xE00]: 

C0 L1 private cache Miss  

C0 L1 private cache, allocate block, block address: 0x0E0, block state: Shared  

C0 L1 private cache, victim block for replacement, block address: 0x0A0, block 

state: Shared  

***************************** 

core C0 Read [0xB00]: 

C0 L1 private cache data request Hit, block address: 0x0B0, block state: Shared  

C0 L1 private cache, block address: 0x0B0, block new state: Shared  

***************************** 

 

<?xml version="1.0" encoding="UTF-8"?> 

<simulator address_width="16" block_size="16 B"> 

 

<cores> 

<core id="c0" /> 

</cores> 

 

<caches> 

<private_cache> 

<cache level="1" cache_size="1 KB" cache_structure="SA" 

associativity="4" replacement_policy="LRU" cache_hierarchy="none" /> 

</private_cache> 

</caches> 

 

</simulator> 

Listing 14 Cache structure XML with LRU replacement policy 

Listing 15 LRU cache simulation output 
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Listing 15 LRU cache simulation output (continued) 

The simulation results are the same as in the table 8 on page 31. 

 

5.2.2 FIFO Replacement Policy 

The same cache structure is used to simulate FIFO replacement policy. Listing 16 shows 

the simulation output. 

 

core C0 Read [0xA00]: 

C0 L1 private cache Miss  

C0 L1 private cache, allocate block, block address: 0x0A0, block state: Shared  

***************************** 

core C0 Read [0xB00]: 

C0 L1 private cache Miss  

C0 L1 private cache, allocate block, block address: 0x0B0, block state: Shared  

***************************** 

core C0 Read [0xC00]: 

C0 L1 private cache Miss  

C0 L1 private cache, allocate block, block address: 0x0C0, block state: Shared  

***************************** 

core C0 Read [0xD00]: 

C0 L1 private cache Miss  

C0 L1 private cache, allocate block, block address: 0x0D0, block state: Shared  

***************************** 

core C0 Read [0xE00]: 

C0 L1 private cache Miss  

C0 L1 private cache, allocate block, block address: 0x0E0, block state: Shared  

C0 L1 private cache, victim block for replacement, block address: 0x0A0, block 

state: Shared  

***************************** 

core C0 Read [0xB00]: 

C0 L1 private cache data request Hit, block address: 0x0B0, block state: Shared  

C0 L1 private cache, block address: 0x0B0, block new state: Shared  

***************************** 

core C0 Read [0xA00]: 

C0 L1 private cache Miss  

C0 L1 private cache, allocate block, block address: 0x0A0, block state: Shared  

C0 L1 private cache, victim block for replacement, block address: 0x0C0, block 

state: Shared  

***************************** 

core C0 Read [0xF00]: 

C0 L1 private cache Miss  

C0 L1 private cache, allocate block, block address: 0x0F0, block state: Shared  

C0 L1 private cache, victim block for replacement, block address: 0x0D0, block 

state: Shared  

***************************** 

 

Listing 16 FIFO cache simulation output 
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Listing 16 FIFO cache simulation output (continued) 

The simulation results are the same as in the table 9 on page 32. 

 

5.2.3 PLRU Replacement Policy 

The same cache structure is also used to simulate PLRU replacement policy. Listing 17 

shows the simulation output. 

 

core C0 Read [0xA00]: 

C0 L1 private cache Miss  

C0 L1 private cache, allocate block, block address: 0x0A0, block state: Shared  

***************************** 

core C0 Read [0xB00]: 

C0 L1 private cache Miss  

C0 L1 private cache, allocate block, block address: 0x0B0, block state: Shared  

***************************** 

core C0 Read [0xC00]: 

C0 L1 private cache Miss  

C0 L1 private cache, allocate block, block address: 0x0C0, block state: Shared  

***************************** 

core C0 Read [0xD00]: 

C0 L1 private cache Miss  

C0 L1 private cache, allocate block, block address: 0x0D0, block state: Shared  

***************************** 

core C0 Read [0xE00]: 

C0 L1 private cache Miss  

C0 L1 private cache, allocate block, block address: 0x0E0, block state: Shared  

C0 L1 private cache, victim block for replacement, block address: 0x0A0, block 

state: Shared  

***************************** 

core C0 Read [0xB00]: 

C0 L1 private cache data request Hit, block address: 0x0B0, block state: Shared  

C0 L1 private cache, block address: 0x0B0, block new state: Shared  

***************************** 

core C0 Read [0xA00]: 

C0 L1 private cache Miss  

C0 L1 private cache, allocate block, block address: 0x0A0, block state: Shared  

C0 L1 private cache, victim block for replacement, block address: 0x0B0, block 

state: Shared  

***************************** 

core C0 Read [0xF00]: 

C0 L1 private cache Miss  

C0 L1 private cache, allocate block, block address: 0x0F0, block state: Shared  

C0 L1 private cache, victim block for replacement, block address: 0x0C0, block 

state: Shared  

***************************** 

Listing 17 PLRU cache simulation output 



5. Testing and Simulation Result 

 

96 
 

 

Listing 17 PLRU cache simulation output (continued) 

The simulation results are the same as in the Figure 9 on page 35. 

 

5.3 Test Cache Structure on Multi-Core Processors 

 

A multi-core processor with two cores is used to test the cache hierarchy at the shared last 

level cache. The following listing 18 shows the cache structure of the multi-core 

processor. 

 

 

<?xml version="1.0" encoding="UTF-8"?> 

<simulator address_width="16" block_size="4 B"> 

 

<cores> 

 <core id="c0" /> 

 <core id="c1" /> 

</cores> 

 

<caches> 

 

<private_cache> 

 <cache level="1" cache_size="32 B" cache_structure="SA"  

associativity="2" replacement_policy="LRU" 

cache_hierarchy="none" /> 

</private_cache> 

<shared_cache> 

 <cache level="2" cache_size="64 B" cache_structure="SA"  

associativity="4" replacement_policy="LRU" 

cache_hierarchy="inclusive" /> 

</shared_cache> 

   

</caches> 

</simulator> 

core C0 Read [0xA00]: 

C0 L1 private cache Miss  

C0 L1 private cache, allocate block, block address: 0x0A0, block state: Shared  

C0 L1 private cache, victim block for replacement, block address: 0x0C0, block 

state: Shared  

***************************** 

core C0 Read [0xF00]: 

C0 L1 private cache Miss  

C0 L1 private cache, allocate block, block address: 0x0F0, block state: Shared  

C0 L1 private cache, victim block for replacement, block address: 0x0E0, block 

state: Shared  

***************************** 

Listing 18 Cache structure XML for multi-core processor with two cores 
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The following memory access list in listing 19 is used in the multi-core cache simulation. 

 

 

5.3.1 Inclusive Cache Hierarchy at the Shared Last Level of Cache 

Using the memory access list defined in listing 19 for the simulation, listing 20 shows the 

simulation result of a system containing a shared inclusive cache. 

 

 

C0 Read [0x1210] 

C1 Read [0x1213] 

C0 Read [0x2352] 

C1 Write[0x1213] 

C0 Read [0x1210] 

C0 Read [0x2213] 

C1 Read [0x2351] 

C0 Read [0x2522] 

C1 Read [0x3452] 

C1 Read [0x1210] 

core C0 Read [0x1210]: 

C0 L1 private cache Miss  

L2 shared cache Miss  

L2 shared cache, allocate block, block address: 0x0484, new block state: Shared 

, core tracking bits: 10 

C0 L1 private cache, allocate block, block address: 0x0484, block state: Shared  

***************************** 

core C1 Read [0x1213]: 

C1 L1 private cache Miss  

L2 shared cache Hit, block address: 0x0484, block state: Shared , core tracking 

bits: 10 

L2 shared cache, block address: 0x0484, new block state: Shared , core tracking 

bits: 11 

C1 L1 private cache, allocate block, block address: 0x0484, block state: Shared  

***************************** 

core C0 Read [0x2352]: 

C0 L1 private cache Miss  

L2 shared cache Miss  

L2 shared cache, allocate block, block address: 0x08D4, new block state: Shared 

, core tracking bits: 10 

C0 L1 private cache, allocate block, block address: 0x08D4, block state: Shared  

***************************** 

core C1 Write [0x1213]: 

C1 L1 private cache data request Hit, block address: 0x0484, block state: 

Shared  

C1 send block invalidate request to shared cache, block address: 0x0484 

L2 shared cache, block address: 0x0484, block state: Shared , core tracking 

bits: 11 

Listing 19 Memory access list for testing cache hierarchy 

Listing 20 Inclusive cache hierarchy simulation output 
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Listing 20 Inclusive cache hierarchy simulation output (continued) 

L2 shared cache, forward invalidate request to core C0, block address: 0x0484 

C0 L1 private cache, invalidate block, block address: 0x0484, block state: 

Shared  

C0 L1 private cache, block address: 0x0484, block new state: Invalid  

L2 shared cache, block address: 0x0484, new block state: Modified , core 

tracking bits: 01 

C1 L1 private cache, block address: 0x0484, block new state: Modified  

*****************************  

core C0 Read [0x1210]: 

C0 L1 private cache Miss  

L2 shared cache Hit, block address: 0x0484, block state: Modified , core 

tracking bits: 01 

L2 shared cache, forward Read miss request to core C1, block address: 0x0484 

C1 L1 private cache, write back block, block address: 0x0484, block state: 

Modified  

C1 L1 private cache, block address: 0x0484, block new state: Shared  

L2 shared cache, block address: 0x0484, new block state: Shared , core tracking 

bits: 11 

C0 L1 private cache, allocate block, block address: 0x0484, block state: Shared  

***************************** 

core C0 Read [0x2213]: 

C0 L1 private cache Miss  

L2 shared cache Miss  

L2 shared cache, allocate block, block address: 0x0884, new block state: Shared 

, core tracking bits: 10 

C0 L1 private cache, allocate block, block address: 0x0884, block state: Shared  

C0 L1 private cache, victim block for replacement, block address: 0x08D4, block 

state: Shared  

L2 shared cache, update core tracking bits, block address: 0x08D4, new block 

state: Shared , core tracking bits: 00 

***************************** 

core C1 Read [0x2351]: 

C1 L1 private cache Miss  

L2 shared cache Hit, block address: 0x08D4, block state: Shared , core tracking 

bits: 00 

L2 shared cache, block address: 0x08D4, new block state: Shared , core tracking 

bits: 01 

C1 L1 private cache, allocate block, block address: 0x08D4, block state: Shared  

***************************** 

core C0 Read [0x2522]: 

C0 L1 private cache Miss  

L2 shared cache Miss  

L2 shared cache, allocate block, block address: 0x0948, new block state: Shared 

, core tracking bits: 10 

C0 L1 private cache, allocate block, block address: 0x0948, block state: Shared  

C0 L1 private cache, victim block for replacement, block address: 0x0484, block 

state: Shared  

L2 shared cache, update core tracking bits, block address: 0x0484, new block 

state: Shared , core tracking bits: 01 

***************************** 
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Listing 20 Inclusive cache hierarchy simulation output (continued) 

The simulation results show each core was first sending the coherence requests to the 

shared cache, then the shared cache forwarded them to the core. The core C0 had one 

coherence miss happening at the operation C0 Read [0x1210], because the block was 

invalidated by C1 after the operation C1 Write [0x1213]. The core C1 had one inclusion 

miss resulting from the operation C1 Read [0x1210], because the block was invalidated 

core C1 Read [0x3452]: 

C1 L1 private cache Miss  

L2 shared cache Miss  

L2 shared cache, allocate block, block address: 0x0D14, new block state: Shared 

, core tracking bits: 01 

L2 shared cache, victim block for replacement, block address: 0x0484, is dirty: 

true, block state: Shared , core tracking bits: 01 

C1 L1 private cache, back invalidate block (inclusion), block address: 0x0484, 

block state: Shared  

L2 shared cache, write back block to memory, block address: 0x0484  

C1 L1 private cache, allocate block, block address: 0x0D14, block state: Shared  

***************************** 

core C1 Read [0x1210]: 

C1 L1 private cache Miss  

L2 shared cache Miss  

L2 shared cache, allocate block, block address: 0x0484, new block state: Shared 

, core tracking bits: 01 

L2 shared cache, victim block for replacement, block address: 0x0884, is dirty: 

false, block state: Shared , core tracking bits: 10 

C1 L1 private cache, back invalidate block (inclusion), block address: 0x0884, 

block state: Shared  

C1 L1 private cache, allocate block, block address: 0x0484, block state: Shared  

C1 L1 private cache, victim block for replacement, block address: 0x08D4, block 

state: Shared  

L2 shared cache, update core tracking bits, block address: 0x08D4, new block 

state: Shared , core tracking bits: 00 

***************************** 

C0 L1 private cache  

cache hits: 0  

cache misses: 5  

cache conflict misses: 0  

cache coherence misses: 1  

cache inclusion misses: 0  

***************************** 

C1 L1 private cache  

cache hits: 1  

cache misses: 4  

cache conflict misses: 0  

cache coherence misses: 0  

cache inclusion misses: 1  

***************************** 

L2 shared cache  

cache hits: 3  

cache misses: 6  

cache conflict misses: 1  

***************************** 
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by the shared cache after it was evicted from the shared cache (inclusion property) at the 

operation C1 Write [0x1213]. 

5.3.2 Exclusive Cache Hierarchy at the Shared Last Level of Cache 

Using the memory access list defined in listing 19 for the simulation, listing 21 shows the 

simulation result of a system containing a shared exclusive cache. 

 

core C0 Read [0x1210]: 

C0 L1 private cache Miss  

L2 shared cache Miss  

L2 shared cache, block address: 0x0484, new directory entry block state: Shared 

, core tracking bits: 10 

C0 L1 private cache, allocate block, block address: 0x0484, block state: Shared  

***************************** 

core C1 Read [0x1213]: 

C1 L1 private cache Miss  

L2 shared cache, block address: 0x0484, directory entry block state: Shared , 

core tracking bits: 10 

L2 shared cache, block address: 0x0484, new directory entry block state: Shared 

, core tracking bits: 11 

C1 L1 private cache, allocate block, block address: 0x0484, block state: Shared  

***************************** 

core C0 Read [0x2352]: 

C0 L1 private cache Miss  

L2 shared cache Miss  

L2 shared cache, block address: 0x08D4, new directory entry block state: Shared 

, core tracking bits: 10 

C0 L1 private cache, allocate block, block address: 0x08D4, block state: Shared  

***************************** 

core C1 Write [0x1213]: 

C1 L1 private cache data request Hit, block address: 0x0484, block state: 

Shared  

C1 send block invalidate request to shared cache, block address: 0x0484 

L2 shared cache, block address: 0x0484, directory entry block state: Shared , 

core tracking bits: 11 

L2 shared cache, forward invalidate request to core C0, block address: 0x0484 

C0 L1 private cache, invalidate block, block address: 0x0484, block state: 

Shared  

C0 L1 private cache, block address: 0x0484, block new state: Invalid  

L2 shared cache, block address: 0x0484, directory entry new block state: 

Modified , core tracking bits: 01 

C1 L1 private cache, block address: 0x0484, block new state: Modified  

***************************** 

core C0 Read [0x1210]: 

C0 L1 private cache Miss  

L2 shared cache, block address: 0x0484, directory entry block state: Modified , 

core tracking bits: 01 

L2 shared cache, forward Read miss request to core C1, block address: 0x0484 

C1 L1 private cache, write back block, block address: 0x0484, block state: 

Modified  

C1 L1 private cache, block address: 0x0484, block new state: Shared  

L2 shared cache, block address: 0x0484, new directory entry block state: Shared 

, core tracking bits: 11 

C0 L1 private cache, allocate block, block address: 0x0484, block state: Shared  

***************************** 

Listing 21 Exclusive cache hierarchy simulation output 
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Listing 21 Exclusive cache hierarchy simulation output (continued) 

core C0 Read [0x2213]: 

C0 L1 private cache Miss  

L2 shared cache Miss  

L2 shared cache, block address: 0x0884, new directory entry block state: Shared 

, core tracking bits: 10 

C0 L1 private cache, allocate block, block address: 0x0884, block state: Shared  

C0 L1 private cache, victim block for replacement, block address: 0x08D4, block 

state: Shared  

L2 shared cache, directory entry update core tracking bits, block address: 

0x08D4, new block state: Shared , core tracking bits: 00 

L2 shared cache, remove directory entry , block address: 0x08D4  

L2 shared cache, allocate block (exclusion), block address: 0x08D4  

***************************** 

core C1 Read [0x2351]: 

C1 L1 private cache Miss  

L2 shared cache Hit, block address: 0x08D4  

L2 shared cache, invalidate block (exclusion), block address: 0x08D4  

L2 shared cache, block address: 0x08D4, new directory entry block state: Shared 

, core tracking bits: 01 

C1 L1 private cache, allocate block, block address: 0x08D4, block state: Shared  

***************************** 

core C0 Read [0x2522]: 

C0 L1 private cache Miss  

L2 shared cache Miss  

L2 shared cache, block address: 0x0948, new directory entry block state: Shared 

, core tracking bits: 10 

C0 L1 private cache, allocate block, block address: 0x0948, block state: Shared  

C0 L1 private cache, victim block for replacement, block address: 0x0484, block 

state: Shared  

L2 shared cache, directory entry update core tracking bits, block address: 

0x0484, new block state: Shared , core tracking bits: 01 

***************************** 

core C1 Read [0x3452]: 

C1 L1 private cache Miss  

L2 shared cache Miss  

L2 shared cache, block address: 0x0D14, new directory entry block state: Shared 

, core tracking bits: 01 

C1 L1 private cache, allocate block, block address: 0x0D14, block state: Shared  

C1 L1 private cache, victim block for replacement, block address: 0x0484, block 

state: Shared  

L2 shared cache, directory entry update core tracking bits, block address: 

0x0484, new block state: Shared , core tracking bits: 00 

L2 shared cache, remove directory entry , block address: 0x0484  

L2 shared cache, allocate block (exclusion), block address: 0x0484  

*****************************  

core C1 Read [0x1210]: 

C1 L1 private cache Miss  

L2 shared cache Hit, block address: 0x0484  

L2 shared cache, invalidate block (exclusion), block address: 0x0484  

L2 shared cache, block address: 0x0484, new directory entry block state: Shared 

, core tracking bits: 01 

C1 L1 private cache, allocate block, block address: 0x0484, block state: Shared  

C1 L1 private cache, victim block for replacement, block address: 0x08D4, block 

state: Shared  
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Listing 21 Exclusive cache hierarchy simulation output (continued) 

 

The simulation results show that each core was first sending the coherence requests to the 

directory within the shared cache, and then the directory forwarded them to the core. 

When the block (address: 0x08D4) was evicted from the private cache, it was allocated in 

the shared cache (shared exclusive cache is considered as a victim cache to the private 

caches). Because of the exclusion property exclusive cache has better hit rate than the 

inclusive cache. 

5.3.3 Multi-Core Processor without Shared Last Level Cache 

In this kind of architecture the private caches are connected together and to the memory 

through a bus. Listing 22 shows the cache structure and listing 23 shows the simulation 

result of a system containing no shared cache. 

 

 

 

L2 shared cache, directory entry update core tracking bits, block address: 

0x08D4, new block state: Shared , core tracking bits: 00 

L2 shared cache, remove directory entry , block address: 0x08D4  

L2 shared cache, allocate block (exclusion), block address: 0x08D4  

***************************** 

C0 L1 private cache  

cache hits: 0  

cache misses: 5  

cache conflict misses: 0  

cache coherence misses: 1  

***************************** 

C1 L1 private cache  

cache hits: 1  

cache misses: 4  

cache conflict misses: 1  

cache coherence misses: 0  

***************************** 

L2 shared cache  

cache hits: 2  

cache misses: 5  

cache conflict misses: 0  

***************************** 



5. Testing and Simulation Result 

 

103 
 

 

 

 

<?xml version="1.0" encoding="UTF-8"?> 

<simulator address_width="16" block_size="4 B"> 

 

<cores> 

 <core id="c0" /> 

 <core id="c1" /> 

</cores> 

 

<caches> 

 

<private_cache> 

 <cache level="1" cache_size="32 B" cache_structure="SA"  

associativity="2" replacement_policy="LRU" 

cache_hierarchy="none" /> 

</private_cache> 

   

</caches> 

</simulator> 

core C0 Read [0x1210]: 

C0 L1 private cache Miss  

C0 send broadcast coherence request to other cores private caches, request 

type: Read_miss, block address: 0x0484 

C0 L1 private cache, allocate block, block address: 0x0484, block state: Shared  

***************************** 

core C1 Read [0x1213]: 

C1 L1 private cache Miss  

C1 send broadcast coherence request to other cores private caches, request 

type: Read_miss, block address: 0x0484 

C0 L1 private cache, block address: 0x0484, block state: Shared  

C0 L1 private cache, block address: 0x0484, block new state: Shared  

C1 L1 private cache, allocate block, block address: 0x0484, block state: Shared  

***************************** 

core C0 Read [0x2352]: 

C0 L1 private cache Miss  

C0 send broadcast coherence request to other cores private caches, request 

type: Read_miss, block address: 0x08D4 

C0 L1 private cache, allocate block, block address: 0x08D4, block state: Shared  

***************************** 

core C1 Write [0x1213]: 

C1 L1 private cache data request Hit, block address: 0x0484, block state: 

Shared  

C1 send broadcast coherence request to other cores private caches, request 

type: Invalidate, block address: 0x0484 

C0 L1 private cache, invalidate block, block address: 0x0484, block state: 

Shared  

C0 L1 private cache, block address: 0x0484, block new state: Invalid  

C1 L1 private cache, block address: 0x0484, block new state: Modified  

***************************** 

Listing 22 Cache structure XML for multi-core processor with no shared cache 

Listing 23 No shared cache simulation output 
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Listing 23 No shared cache simulation output (continued) 

core C0 Read [0x1210]: 

C0 L1 private cache Miss  

C0 send broadcast coherence request to other cores private caches, request 

type: Read_miss, block address: 0x0484 

C1 L1 private cache, write back block, block address: 0x0484, block state: 

Modified  

C1 L1 private cache, block address: 0x0484, block new state: Shared  

C0 L1 private cache, allocate block, block address: 0x0484, block state: Shared  

***************************** 

core C0 Read [0x2213]: 

C0 L1 private cache Miss  

C0 send broadcast coherence request to other cores private caches, request 

type: Read_miss, block address: 0x0884 

C0 L1 private cache, allocate block, block address: 0x0884, block state: Shared  

C0 L1 private cache, victim block for replacement, block address: 0x08D4, block 

state: Shared  

***************************** 

core C1 Read [0x2351]: 

C1 L1 private cache Miss  

C1 send broadcast coherence request to other cores private caches, request 

type: Read_miss, block address: 0x08D4 

C1 L1 private cache, allocate block, block address: 0x08D4, block state: Shared  

***************************** 

core C0 Read [0x2522]: 

C0 L1 private cache Miss  

C0 send broadcast coherence request to other cores private caches, request 

type: Read_miss, block address: 0x0948 

C0 L1 private cache, allocate block, block address: 0x0948, block state: Shared  

C0 L1 private cache, victim block for replacement, block address: 0x0484, block 

state: Shared  

***************************** 

core C1 Read [0x3452]: 

C1 L1 private cache Miss  

C1 send broadcast coherence request to other cores private caches, request 

type: Read_miss, block address: 0x0D14 

C1 L1 private cache, allocate block, block address: 0x0D14, block state: Shared  

C1 L1 private cache, victim block for replacement, block address: 0x0484, block 

state: Shared  

***************************** 

core C1 Read [0x1210]: 

C1 L1 private cache Miss  

C1 send broadcast coherence request to other cores private caches, request 

type: Read_miss, block address: 0x0484 

C1 L1 private cache, allocate block, block address: 0x0484, block state: Shared  

C1 L1 private cache, victim block for replacement, block address: 0x08D4, block 

state: Shared  

***************************** 
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Listing 23 No shared cache simulation output (continued) 

The simulation results show that each core was sending the coherence requests as 

broadcast messages through the bus to the other core. 

5.3.4 Multi-Core Processor with Only Shared Cache and No Private Caches  

Listing 24 shows the cache structure and listing 25 shows the simulation result of the 

stated case. 

 

 

 

 

<?xml version="1.0" encoding="UTF-8"?> 

<simulator address_width="16" block_size="4 B"> 

 

<cores> 

 <core id="c0" /> 

 <core id="c1" /> 

</cores> 

 

<caches> 

 

<shared_cache> 

 <cache level="1" cache_size="64 B" cache_structure="SA"  

associativity="4" replacement_policy="LRU" 

cache_hierarchy="inclusive" /> 

</shared_cache> 

   

</caches> 

</simulator> 

C0 L1 private cache  

cache hits: 0  

cache misses: 5  

cache conflict misses: 0  

cache coherence misses: 1  

***************************** 

C1 L1 private cache  

cache hits: 1  

cache misses: 4  

cache conflict misses: 1  

cache coherence misses: 0  

***************************** 

Listing 24 Cache structure XML for multi-core processor with no private cache 
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To the best of our knowledge, there is no architecture like this. However, it shows that 

some experimental architectures are supported by the simulation. 

 

core C0 Read [0x1210]: 

L1 shared cache Miss  

L1 shared cache, allocate block, block address: 0x0484  

***************************** 

core C1 Read [0x1213]: 

L1 shared cache Hit, block address: 0x0484  

***************************** 

core C0 Read [0x2352]: 

L1 shared cache Miss  

L1 shared cache, allocate block, block address: 0x08D4  

***************************** 

core C1 Write [0x1213]: 

L1 shared cache Hit, block address: 0x0484  

L1 shared cache, block address: 0x0484, set dirty: true  

***************************** 

core C0 Read [0x1210]: 

L1 shared cache Hit, block address: 0x0484  

***************************** 

core C0 Read [0x2213]: 

L1 shared cache Miss  

L1 shared cache, allocate block, block address: 0x0884  

***************************** 

core C1 Read [0x2351]: 

L1 shared cache Hit, block address: 0x08D4  

***************************** 

core C0 Read [0x2522]: 

L1 shared cache Miss  

L1 shared cache, allocate block, block address: 0x0948  

***************************** 

core C1 Read [0x3452]: 

L1 shared cache Miss  

L1 shared cache, allocate block, block address: 0x0D14  

L1 shared cache, victim block for replacement, block address: 0x0484, is dirty: 

true 

L1 shared cache, write back block to memory, block address: 0x0484  

***************************** 

core C1 Read [0x1210]: 

L1 shared cache Miss  

L1 shared cache, allocate block, block address: 0x0484 

L1 shared cache, victim block for replacement, block address: 0x0884, is dirty: 

false 

***************************** 

L1 shared cache  

cache hits: 4  

cache misses: 6  

cache conflict misses: 2  

***************************** 

 
Listing 25 No private cache simulation output 
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5.4 Measuring Cache Performance 

 

The miss rate calculated by the simulation can provide a good measurement to the cache 

predictability. The simulation provides statistics for every single cache level after 

performing all memory accesses. The statistics include the number of hits and the number 

of misses, including the number of misses per miss type. Using these statistics, the miss 

rate can be calculated, while the memory access time can be approximated as well. In 

general, a number of cache parameters like the cache size, block size, associativity, cache 

coherence, and cache inclusion property can affect the miss rate. 
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6 Conclusion and Future Work 

 

In this thesis work, the cache architectures in the modern multi-core processors were first 

analyzed in order to find a better way to adapt as many architectures as possible to the 

simulation. Then, a software cache simulator was designed, implemented and tested to 

simulate the behavior of predefined cache architectures according to the provided 

memory accesses. The simulator takes the cache structure as an input in XML format and 

then uses a predefined XML-schema to validate it. The simulator also takes the memory 

accesses of the simulated software as an input list file. In this file the user can define the 

number of the cores and the levels in the cache hierarchy. The upper levels in the 

hierarchy can be considered private, while the last level of cache can be either private or 

shared among the cores. Within each cache level, cache configuration parameters and 

replacement policy can be specified. Every cache is considered in the simulation as a 

standalone cache, receiving block requests, allocating new blocks, handling the evicted 

blocks, and dealing with the cache coherence across the cache hierarchy. The simulator 

then starts executing the provided sequence of memory accesses. Every memory access 

becomes a block request, which is sent first to the first level in the cache hierarchy. The 

simulator records a memory access trace for all caches throughout the hierarchy. The 

trace contains every operation that was executed at every cache level affected by the 

request. The trace can be used to calculate the required time to perform each memory 

access and every cache level counts the number of hits and misses, which can be used in 

cache predictability analysis. 

We can propose as future work to implement additional replacement policies, i.e., 

Random (RAND) and Pseudo-Round-Robin (PRR) replacement policies [2]. The 

simulation can be extended to support a system consisting of several separate blocks of 

cache coherent cores [45]. The simulator can also be extended to include additional 

hardware features, i.e., crossbar interconnect, for more realistic system simulation. 
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