

Course of study: INFOTECH

Examiner: Prof. Dr. rer. nat./Harvard Univ. Erhard Plödereder

Supervisor: Dipl.-Inf. Mikhail Prokharau

Commenced: October 1, 2012

Completed: July 29, 2013

CR-Classification: B.3.2, B.3.3, C.1.2.vi, D.4.2.vii

Institute of Software Technology

Department of Programming Languages and Compilers

University of Stuttgart

Universitätsstraße 38

70569 Stuttgart

Germany

Master thesis Nr. 3409

Analysis of Cache Usability on Modern
Real-Time Systems

Ahmad N. Almheidat

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Publikationen der Universität Stuttgart

https://core.ac.uk/display/147542513?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

iii

ABSTRACT

Cache memories are used in the microprocessors to close the speed gap between the

processor and the main memory. Caches can minimize the memory access time by

keeping a copy of the highly demanded data closer to the processor. As a result, the

overall program execution time is reduced. In safety-critical real-time systems, a worst-

case analysis is required, and therefore the cache memories play an essential role in the

estimation of the application‟s worst-case execution time. A simulation tool for the cache

structure was developed to provide estimated measurements for both cache predictability

and the worst-case memory access time based on the used architectural model. This may

help to draw some conclusions about the actual cache operation. The simulation supports

several modern uni-core and multi-core architectures, including some used in real-time

systems. It also allows configuring different cache structures and hierarchies. The cache

architecture, configuration and memory accesses from a simulated running application

are specified by the user via an input file. The simulation provides a list of traces for

every access. The cache predictability can be formulated as hit and miss rates. At the

same time, the traces can be used to estimate total memory access time.

v

ACKNOWLEDGMENTS

I would like to thank Prof. Dr. rer. nat./Harvard Univ. Erhard Plödereder for giving me

the opportunity to write my thesis at the Institute of Software Technology, Department of

Programming Languages and Compilers at the University of Stuttgart.

I would like also to express my appreciation to my thesis supervisor Dipl.-Inf. Mikhail

Prokharau for his guidance and significant review of the thesis work.

I am profoundly grateful to my family for their continuous support throughout the period

of my studying.

Finally, I want to thank Nurgül Düzenli for her concern and support.

vii

Table of Contents

1 Introduction ... 13

2 Cache Basics .. 15

2.1 Memory hierarchy ... 15

2.2 Processor Caches ... 17

2.3 Cache Structure ... 19

2.4 Cache Organizations .. 21

2.5 How to Place a Block in the Cache?.. 22

2.6 How to Find a Block in the Cache? ... 24

2.7 Cache Organization Example .. 26

2.8 Cache Replacement Policies .. 30

2.9 Cache Writing Policies .. 37

2.10 Three kinds of Cache Misses ... 39

2.11 Multilevel Cache Structure .. 40

2.12 Different Types of Cache Hierarchies ... 40

3 Cache Structure in Multi-Core Processors .. 43

3.1 Multi-core Processor Cache Architecture .. 43

3.2 Cache Hierarchies in the Intel Nehalem and AMD Opteron Processors 48

3.2.1 Four-Core Intel Nehalem Core-i7.. 48

3.2.2 Six-Core AMD Opteron (Istanbul) .. 50

3.3 Cache Coherence Problem .. 52

3.4 MSI protocol for Multi-core Cache Coherence ... 56

4 Design and Implementation of Cache Simulation ... 66

4.1 Cache Management ... 67

4.1.1 Private Cache Management ... 70

4.1.2 Shared Cache Management ... 74

4.1.3 Cache Set and Cache Replacement Policies .. 76

4.1.4 Cache Blocks ... 77

viii

4.1.5 Address Parser ... 79

4.2 Processor Cores ... 79

4.3 Simulator ... 81

4.3.1 Simulator Input .. 83

4.3.2 Simulator Input Validation .. 85

4.3.3 Simulator Output ... 86

5 Tests and Simulation Results ... 88

5.1 Test Cache Configurations .. 88

5.1.1 Direct-Mapped Cache .. 88

5.1.2 Fully-Associative Cache .. 90

5.1.3 Two-way Set-Associative Cache ... 91

5.2 Test Cache Replacement Policies .. 92

5.2.1 LRU Replacement Policy .. 93

5.2.2 FIFO Replacement Policy ... 94

5.2.3 PLRU Replacement Policy .. 95

5.3 Test Cache Structure on Multi-Core Processors .. 96

5.3.1 Inclusive Cache Hierarchy at the Shared Last Level of Cache.............................. 97

5.3.2 Exclusive Cache Hierarchy at the Shared Last Level of Cache 100

5.3.3 Multi-Core Processor without Shared Last Level Cache 102

5.3.4 Multi-Core Processor with Only Shared Cache and No Private Caches 105

5.4 Measuring Cache Performance .. 107

6 Conclusion and Future Work ... 108

ix

List of Figures

Figure 1 Basic structure of a memory hierarchy [1] .. 16

Figure 2 Memory hierarchy of a system that uses multi-level caches ... 18

Figure 3 Data block transfer between every pair of levels in the memory hierarchy [1] 19

Figure 4 Associative cache structure ... 20

Figure 5 Three different cache organizations [3] .. 23

Figure 6 Three different portions of the memory address [3] ... 25

Figure 7 The hardware implementation of a 4-way set-associative cache [1] 26

Figure 8 PLRU cache replacement policies for 4-way cache set [6] ... 33

Figure 9 Updates of a PLRU tree of 4-way cache set ... 36

Figure 10 Multilevel cache hierarchies [16] .. 42

Figure 11 Two-level cache hierarchy for multi-core processor with 4 cores [19] 44

Figure 12 Exclusive vs. Inclusive cache hit [32] ... 47

Figure 13 Exclusive vs. Inclusive cache miss [32] .. 48

Figure 14 Intel Nehalem Core-i7 processor [23] ... 49

Figure 15 Six-Core AMD Opteron processor [24] .. 51

Figure 16 Write invalidate cache coherence method [25] ... 55

Figure 17 MSI protocol states transition for requests from the core (hit in the local cache) [3] ... 58

Figure 18 MSI protocol states transition for requests from the core (miss in the local cache) [3] 60

Figure 19 MSI protocol states transition for requests from the bus [3] ... 61

Figure 20 MSI cache coherence model using directory in the shared inclusive cache [33] 62

Figure 21 Separate directory with the shared exclusive cache [22] .. 64

Figure 22 MOESI state transitions [41] ... 65

Figure 23 Cache simulation design ... 66

Figure 24 The UML class diagram of cache management .. 68

Figure 25 Cache set and replacement policies class diagram .. 77

Figure 26 Cache block and directory entry class diagram ... 78

Figure 27 Address Parser class diagram .. 79

Figure 28 Core class diagram .. 80

Figure 29 Simulator class diagram .. 81

Figure 30 Simulation object diagram .. 86

x

List of Tables

Table 1 Cache organization example .. 27

Table 2 Memory access results for direct-mapped cache .. 28

Table 3 Direct-mapped cache content ... 28

Table 4 Memory access results for two-way set-associative cache ... 29

Table 5 Two-way set-associative cache content.. 29

Table 6 Memory access results for fully-associative cache... 29

Table 7 Fully-associative cache content .. 30

Table 8 LRU replacement policy .. 32

Table 9 FIFO replacement policy .. 33

Table 10 Three level cache in the Intel Nehalem and AMD Opteron processors [1] 52

Table 11 Cache coherence problem .. 53

Table 12 Requests from the core (hit in the local cache) [3] ... 58

Table 13 Requests from the core (miss in the local cache) [3] .. 59

Table 14 Requests from the bus [3] ... 61

Table 15 MOESI protocol states ... 65

Table 16 Cache management properties .. 69

Table 17 ICacheManagement functions' parameters ... 70

xi

List of Listings

Listing 1 Cache structure XML-schema .. 82

Listing 2 Cache structure XML format ... 84

Listing 3 Memory access list ... 84

Listing 4 Java code for cache structure XML validation with the XML-schema.......................... 85

Listing 5 Simulation output ... 87

Listing 6 Memory access list for testing cache configurations.. 88

Listing 7 Direct-Mapped cache XML ... 88

Listing 8 Direct-Mapped cache simulation output .. 89

Listing 9 Fully-Associative cache XML ... 90

Listing 10 Fully-Associative cache simulation output .. 90

Listing 11 Two-way set-associative cache XML .. 91

Listing 12 Two-way set-associative cache simulation output ... 91

Listing 13 Memory access list for testing replacement policies .. 92

Listing 14 Cache structure XML with LRU replacement policy .. 93

Listing 15 LRU cache simulation output ... 93

Listing 16 FIFO cache simulation output .. 94

Listing 17 PLRU cache simulation output .. 95

Listing 18 Cache structure XML for multi-core processor with two cores 96

Listing 19 Memory access list for testing cache hierarchy ... 97

Listing 20 Inclusive cache hierarchy simulation output .. 97

Listing 21 Exclusive cache hierarchy simulation output ... 100

Listing 22 Cache structure XML for multi-core processor with no shared cache 103

Listing 23 No shared cache simulation output .. 103

Listing 24 Cache structure XML for multi-core processor with no private cache 105

Listing 25 No private cache simulation output .. 106

file:///C:\Users\Ahmad\Desktop\writing\Analysis%20of%20Cache%20Usability%20on%20Modern%20Real-Time%20Systems.docx%23_Toc362849424
file:///C:\Users\Ahmad\Desktop\writing\Analysis%20of%20Cache%20Usability%20on%20Modern%20Real-Time%20Systems.docx%23_Toc362849425
file:///C:\Users\Ahmad\Desktop\writing\Analysis%20of%20Cache%20Usability%20on%20Modern%20Real-Time%20Systems.docx%23_Toc362849426
file:///C:\Users\Ahmad\Desktop\writing\Analysis%20of%20Cache%20Usability%20on%20Modern%20Real-Time%20Systems.docx%23_Toc362849427
file:///C:\Users\Ahmad\Desktop\writing\Analysis%20of%20Cache%20Usability%20on%20Modern%20Real-Time%20Systems.docx%23_Toc362849428
file:///C:\Users\Ahmad\Desktop\writing\Analysis%20of%20Cache%20Usability%20on%20Modern%20Real-Time%20Systems.docx%23_Toc362849429
file:///C:\Users\Ahmad\Desktop\writing\Analysis%20of%20Cache%20Usability%20on%20Modern%20Real-Time%20Systems.docx%23_Toc362849430
file:///C:\Users\Ahmad\Desktop\writing\Analysis%20of%20Cache%20Usability%20on%20Modern%20Real-Time%20Systems.docx%23_Toc362849431
file:///C:\Users\Ahmad\Desktop\writing\Analysis%20of%20Cache%20Usability%20on%20Modern%20Real-Time%20Systems.docx%23_Toc362849432
file:///C:\Users\Ahmad\Desktop\writing\Analysis%20of%20Cache%20Usability%20on%20Modern%20Real-Time%20Systems.docx%23_Toc362849433
file:///C:\Users\Ahmad\Desktop\writing\Analysis%20of%20Cache%20Usability%20on%20Modern%20Real-Time%20Systems.docx%23_Toc362849434
file:///C:\Users\Ahmad\Desktop\writing\Analysis%20of%20Cache%20Usability%20on%20Modern%20Real-Time%20Systems.docx%23_Toc362849435
file:///C:\Users\Ahmad\Desktop\writing\Analysis%20of%20Cache%20Usability%20on%20Modern%20Real-Time%20Systems.docx%23_Toc362849436
file:///C:\Users\Ahmad\Desktop\writing\Analysis%20of%20Cache%20Usability%20on%20Modern%20Real-Time%20Systems.docx%23_Toc362849437
file:///C:\Users\Ahmad\Desktop\writing\Analysis%20of%20Cache%20Usability%20on%20Modern%20Real-Time%20Systems.docx%23_Toc362849438
file:///C:\Users\Ahmad\Desktop\writing\Analysis%20of%20Cache%20Usability%20on%20Modern%20Real-Time%20Systems.docx%23_Toc362849439
file:///C:\Users\Ahmad\Desktop\writing\Analysis%20of%20Cache%20Usability%20on%20Modern%20Real-Time%20Systems.docx%23_Toc362849440
file:///C:\Users\Ahmad\Desktop\writing\Analysis%20of%20Cache%20Usability%20on%20Modern%20Real-Time%20Systems.docx%23_Toc362849441
file:///C:\Users\Ahmad\Desktop\writing\Analysis%20of%20Cache%20Usability%20on%20Modern%20Real-Time%20Systems.docx%23_Toc362849442
file:///C:\Users\Ahmad\Desktop\writing\Analysis%20of%20Cache%20Usability%20on%20Modern%20Real-Time%20Systems.docx%23_Toc362849443
file:///C:\Users\Ahmad\Desktop\writing\Analysis%20of%20Cache%20Usability%20on%20Modern%20Real-Time%20Systems.docx%23_Toc362849444
file:///C:\Users\Ahmad\Desktop\writing\Analysis%20of%20Cache%20Usability%20on%20Modern%20Real-Time%20Systems.docx%23_Toc362849445
file:///C:\Users\Ahmad\Desktop\writing\Analysis%20of%20Cache%20Usability%20on%20Modern%20Real-Time%20Systems.docx%23_Toc362849446
file:///C:\Users\Ahmad\Desktop\writing\Analysis%20of%20Cache%20Usability%20on%20Modern%20Real-Time%20Systems.docx%23_Toc362849447
file:///C:\Users\Ahmad\Desktop\writing\Analysis%20of%20Cache%20Usability%20on%20Modern%20Real-Time%20Systems.docx%23_Toc362849448

xii

1. Introduction

13

1 Introduction

Cache predictability plays a significant role in determining the overall system

performance during execution of an embedded application [43]. The cache predictability

can be measured by the cache miss rate which is the percentage of the memory accesses

not found in the cache taken from the total of all memory accesses. Since the cache miss

rate depends on the cache configuration parameters, such as cache size, block size, and

associativity, different cache configurations can result in different cache miss rates for a

particular application [44]. To analyze different structures of the cache memory, a

simulation of an embedded application‟s memory accesses can help by calculating the

miss rates using different cache structures, thus allowing a choice of the best structure

with the minimum cache miss rate for that embedded application [43].

This thesis aims to develop a simulator for the cache memories in the modern processors,

both multi- and uni-core, especially those which are used in the embedded systems. The

simulation supports different cache architectures such as directly mapped, fully

associative and set-associative. Within the simulation a number of cache parameters such

as cache size, block size, and associativity are adjustable. As part of the simulation three

different cache replacement polices (FIFO, LRU, PLRU) have been implemented. The

simulation supports multi-core architectures using multiple levels of private and shared

caches with different cache hierarchies (inclusive, non-inclusive, or exclusive) at each

level. It also offers a cache coherence scheme for private cache data consistency.

The rest of this thesis is structured as follows. Chapter 2 gives an introduction about the

cache basics including cache structures, cache block allocation, cache block replacement,

and multi-level cache hierarchies. Chapter 3 talks about cache memories in multi-core

processors and their structure. It also provides examples based on modern multi-core

processors. Besides, the chapter discusses the cache coherence problem and the

coherence protocol scheme aimed at solving the problem. Finally, the chapter explains

1. Introduction

14

the MSI protocol for cache coherence in multi-core processors. Chapter 4 shows the

design and the detailed implementation of the cache simulator. Chapter 5 introduces and

discusses a number of test case scenarios for the cache simulator. Finally, Chapter 6

concludes the entire work.

2. Cache Basics

15

2 Cache Basics

2.1 Memory hierarchy

The memory system of a computer is not a single memory; it is organized as a hierarchy

of connected memories of different technology. Memory hierarchy is a structure that

uses multiple levels of memories; memories in the closer levels to the CPU are faster and

smaller, and while the memory levels become farther from the CPU the size of the

memory and access time both increase. This hierarchy offers high storage capacity and at

the same time low average access time for the memory system. The level closer to the

CPU is generally a subset of any level further away, and all the data are stored at the

lowest level. A memory hierarchy can consist of multiple levels, but data are copied

between only two adjacent levels at a time [1].

Fast memory technologies that provide high speed data access like SRAM (static random

access memory) are expensive; therefore they are used only for small memories in the

levels closer to the CPU. At the same time cheaper technology is slower, but it is used for

large memories. This technology requires high access time like DRAM (dynamic random

access memory). Main memory is implemented from DRAM technology [2]. The aim of

the memory hierarchy is to provide memory system which gathers among big capacity,

short access time, and cost effective characteristics. The big capacity can be obtained

from using much memory which is slow and cheap in the lower levels of the hierarchy,

while the fast access time can be obtained from using small and fast memory in the

higher levels. Figure 1 shows the faster memory is closer to the CPU while the slower

and cheaper is below it. In many embedded devices magnetic disks are replaced by flash

memory [1].

2. Cache Basics

16

Figure 1 Basic structure of a memory hierarchy [1]

The reason for having a memory hierarchy is the principle of locality. It states that the

computer programs access the memory data in certain patterns. There are two kinds of

locality: temporal locality and spatial locality, the principle of temporal locality says if

the program references a memory location, it will be more likely to re-reference that

location than some other random location. For that reason the most recent referenced data

should be stored in a place closer to the CPU. A smaller and faster memory called cache

is used to store those data which are expected to be referenced next, so if the prediction is

correct, the data referencing can be served faster. The principle of spatial locality says if

the program references a memory location, it will be more likely to reference a location

near to it than some random location. Therefore, the main memory is divided logically

into a set of memory blocks which are equal in size; usually the size is a power of two.

Each memory block is made out of adjacent words (bytes), it represents the minimum

2. Cache Basics

17

unit of data that can be either present or not in the level of the hierarchy. When the

processor references some memory location, the whole block which contains that location

and the locations near to it is brought to the cache and stored in a cache line which is

equal in size to the memory block. Afterward if the processor references any near

address, it can be found in the cache, so the address referencing will be faster [1].

2.2 Processor Caches

The upper levels in the memory hierarchy represent the cache memories; they are small

in size and built using fast memory (SRAM). The time to retrieve the requested data

from the cache memory will be much smaller compared to the time needed to access the

main memory, which is the major component of the memory access latency. Caches are

used as fast storage to improve average access time to the slow main memory [1].

In modern architectures the cache memories are physically located in the CPU die

(logically placed) between the processor register file and the main memory. They store a

subset of memory data to hide the speed gap between the processor and the main memory

by exploiting the locality principle in the memory accesses. All processor requests are

served by caches first. As long as most memory accesses are found in the caches, the

average latency of memory access will be closer to the cache latency than the latency of

the main memory. In the recent processor architectures if the data are not found in the

cache, it takes several hundreds of processor cycles to bring the data from the main

memory. Therefore, cache predictability has a big influence on the whole system

performance [7].

Modern computer microprocessors have not only one cache but several caches which are

structured in a hierarchal way, one level of cache memory after the other. Most of the

microprocessors have the caches that constitute up to three levels of the overall memory

hierarchy and may be of different type [2]: separated cache, or unified cache. In the

2. Cache Basics

18

separated cache the data and the instructions of the program are stored in different

caches, so the cache is divided into instruction cache to hold the instructions and data

cache to hold the data. A split instruction and data cache can increase the cache

bandwidth. The unified caches hold both data and instructions. Figure 2 shows a system

with two levels of cache, the first level is a separated cache and implemented in the same

chip of the microprocessor, while the second level is a unified cache and implemented

off-chip in a separate set of SRAMs.

Figure 2 Memory hierarchy of a system that uses multi-level caches

All memory reference operations by the processor are sent first to the upper level of the

caches. If the cache logic finds the requested data in a block presented in the cache, this

means that the data are cached, this is called a hit. The time to access that data is called

the hit time, which includes also the time needed to determine whether the access is a hit.

In case of cache hit, the request can be directly serviced from the cache. If the data are

not found in that upper level of the caches, the request is called a miss. The lower level of

hierarchy (can be second level of cache, main memory, or disk) is then accessed to

retrieve the block containing the requested data. The request is propagated from one level

2. Cache Basics

19

to the next level in hierarchy until the requested block is found. When the requested block

is found in one memory level, it is necessary to forward it to the upper level and store it

there and so on through the intermediate hierarchy until the block is placed in the upper

level of the caches, after that the processor request is serviced. The time taken to search

for the requested block through the hierarchy until it is found, then bring it and store it

back along the hierarchy to the upper levels of the caches is called miss penalty. It also

includes the time needed for block replacement in each cache if it is needed [1]. Figure 3

shows how the data block is transferred from one level to the upper level in the hierarchy

then to the processor.

Figure 3 Data block transfer between every pair of levels in the memory hierarchy [1]

2.3 Cache Structure

Caches are partitioned into cache sets of equal size, usually power of two. Each cache set

contains one or more of the cache lines. The number of blocks in the set is known as the

2. Cache Basics

20

degree of associativity. For efficient lookup of a memory block in the cache, each

memory block can map to only one cache set and be stored in one of set‟s blocks [3]. The

cache is usually organized as a two-dimensional array, where the sets represent the rows

and the blocks in each set represent the columns. Figure 4 shows the cache sets and set

contents of blocks, here the associativity of the cache equals four.

Figure 4 Associative cache structure

The number of blocks or lines in the cache is usually a power of two, and it can be

calculated by

𝐶𝑎𝑐𝑒 𝑆𝑖𝑧𝑒 (𝑖𝑛 𝑏𝑦𝑡𝑒𝑠)

𝐵𝑙𝑜𝑐𝑘 𝑆𝑖𝑧𝑒 (𝑖𝑛 𝑏𝑦𝑡𝑒𝑠)
 [3]

The number of cache sets is a power of two, and it can be also calculated by

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑎𝑐𝑒 𝐵𝑙𝑜𝑐𝑘𝑠

𝐷𝑒𝑔𝑟𝑒𝑒 𝑜𝑓 𝐴𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑖𝑣𝑖𝑡𝑦
 [3]

2. Cache Basics

21

2.4 Cache Organizations

There are three different categories of cache organizations:

Direct-Mapped, every memory block brought to the cache has exactly one place (block)

in the cache where it can be allocated. The degree of associativity in the direct-mapped

cache organization equals 1, this means every cache set contains only one cache block,

and therefore the number of cache sets in this case is equal to the number of blocks in the

cache. Direct-mapped cache is cheap to implement in hardware, also the data look up in

the cache is fast [1].

Fully-Associative, the block can be placed in any available cache line. The cache has

only one big set which holds all cache blocks. The degree of the associativity in fully-

associative cache is equal to the number of the cache blocks. As long as a new block is

needed to be placed in the cache, it can be allocated in any available place in the cache.

To find a block in fully-associative cache, all the blocks in the cache must be searched;

therefore the implementation of the data look up is expensive [1].

Set-Associative, the block can be placed in a particular set in the cache. For n-way set-

associative cache the degree of associativity equals n, so each set contains n blocks. Each

memory block is mapped to a specific set, and then it can be allocated in any available

place within that set. Every cache can be considered as a set-associative cache, because

the set-associative placement combines both direct-mapped and fully-associative

placement mechanisms. Set-associative cache organization offers the chance to increase

performance by more flexible placement mechanism which reduces the number of cache

misses and at the same time enables an efficient data look up [1].

2. Cache Basics

22

2.5 How to Place a Block in the Cache?

The mapping between the addresses and cache sets can be done by modulo function [3];

the set number to where the block can be mapped is calculated by

 𝐵𝑙𝑜𝑐𝑘 𝐴𝑑𝑑𝑟𝑒𝑠𝑠 𝑚𝑜𝑑𝑢𝑙𝑜 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑎𝑐𝑒 𝑠𝑒𝑡𝑠

Figure 5 below shows an example for a block placement in the three different cache

organizations. The cache contains 8 blocks, and the block number 12 in the memory or

lower level of hierarchy needs to be placed in the cache. In fully-associative cache, the

block can be placed in any of the 8 blocks. With direct-mapped cache, the block 12 can

be mapped to cache block number: 12 𝑚𝑜𝑑 8 = 4. The last cache organization is 2-

way set-associative, therefore the cache has (
8

2
= 4) sets and each set holds two cache

blocks. The block number 12 is mapped to the set number: 12 𝑚𝑜𝑑 4 = 0, and the

block can be placed in any of the two blocks held by the set [3].

2. Cache Basics

23

Figure 5 Three different cache organizations [3]

As for both direct-mapped and fully-associative strategies, they can be seen as variations

on set-associative strategy. A direct-mapped cache is simply a one-way set-associative

cache; each cache set holds one cache block. A fully-associative cache with m blocks is

simply an m-way set-associative cache; it has one set with m blocks [3].

2. Cache Basics

24

2.6 How to Find a Block in the Cache?

Each cache block has a tag field associated with it and stored along with the data, the

block tag works as a unique identifier for the data mapped to that cache block, the tag

contains some address information to identify whether the data in the cache block is the

same as the requested data in the memory address, this means the data request is a hit in

the cache. When the system starts up none of the cache blocks contains valid data, a valid

bit associated with each block tag is needed to indicate whether the cache block contains

valid data; so the bit is set to 1, else it is set to 0 [1].

The address of the memory access comes from the processor and is divided into two

parts; the block address and the block offset. The block offset bits are the

log2(𝐵𝑙𝑜𝑐𝑘 𝑆𝑖𝑧𝑒) least significant bits of the memory address and the remaining bits are

for the block address field, if the block size is a power of two (which is usually the case).

The block offset field represents the address of the accessed data within the block. The

block address field is used to check whether the referenced block is present in the cache

or not, it is divided again into two parts; block tag and set index. The set index bits are

used to select the set which might contain the corresponding memory block. If the

number of cache sets is a power of two (which is usually the case), then the set number

can be found by taking the log2(𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑒𝑡𝑠) least significant bits of the block

address and the rest bits are for the block tag. To check if the corresponding set is

actually contained, the block tag filed in the memory address is compared with all block

tags in the set, if it matches with one block tag and the valid bit is set to 1, then the

request data are present in that cache block, and the block offset field is used to determine

the data and return them to the processor. In a cache miss, the block is fetched from the

lower level in the hierarchy [1].

The following figure 6 shows the three divisions of the memory address. The tag is used

as a unique identifier for the cached memory block, to differentiate between the different

blocks in the set. The index field determines the set number where the addressed data

2. Cache Basics

25

should reside, it is only used in direct-mapped and set-associative caches. For the fully-

associative cache there is no index field because the whole cache is organized as one set.

The block offset is where the data can be found within the cache block [3].

Figure 6 Three different portions of the memory address [3]

For a given memory address, the following procedure steps illustrate how the cache look

up logic finds whether the addressed data are cached (cache hit) or not (cache miss):

1. The index is used to select the cache set where the address can be mapped. For

fully-associative strategy the cache has effectively one set which contains all

blocks.

2. For each block in the selected cache set, the tag from the memory address is

compared with all tags associated with each block in the set. If a match is found,

proceed to the next step, otherwise cache miss.

3. For the matching block, the valid bit is checked; if it is set to 1, cache hit,

otherwise cache miss.

4. The block offset is used to determine the starting byte of the addressed data within

the block.

Figure 7 shows an example of the four-way set-associative cache hardware

implementation; four comparators are needed, because all the tags in the selected set are

searched in parallel, a 4-to-1 multiplexer is used to select among the four data blocks. In

direct-mapped cache only a single comparator is needed, because the set contains only

2. Cache Basics

26

one block (one-way set-associative). In a fully-associative cache, a sequential search

through the cache blocks would need a long time, or the search can be done in parallel

with a comparator associated with each cache block, which increases the hardware cost.

This makes the fully-associative placement practically usable only in a cache with small

numbers of blocks [1].

Figure 7 The hardware implementation of a 4-way set-associative cache [1]

2.7 Cache Organization Example

Consider a cache memory with 64 bytes size and with block size equaling 16 bytes. The

memory address width is 16 bits. Table 1 below shows how the purposed cache is

2. Cache Basics

27

structured using the different cache organizations (direct-mapped, fully-associative, and

set-associative). For each cache structure it shows the number of sets in the cache, the

number of blocks within each set, and the number of bits in each memory address

division, the bits used for the block offset and the set index bits which are used to find the

set to where the block maps and the tag bits which are stored in the cache as a block

identifier.

Table 1 Cache organization example

Cache

Organization

Number of

sets

Number of

blocks per set

Block

offset bits

Index

bits

Tag

bits

Direct-

mapped

64

16
= 4 1

log2 16
= 4

log2 4
= 2

10

Fully-

associative
1

64

16
= 4

log2 16
= 4

0 12

2-way set-

associative

64

16 × 2
= 2 2

log2 16
= 4

log2 2
= 1

11

Consider the following memory access sequence given as memory addresses: {0x1234,

0x123C, 0x1240, 0x1270, 0x1234, 0x1232, 0x1248, 0x12C8, 0x1248, 0x1244}. The

sequence is applied to every cache structure described in table 1; assume every cache is

initially empty. For the direct-mapped cache structure, table 2 shows the three divisions

of the memory address (Block offset, Index, and Tag) and the result of each memory

access. Table 3 shows the cache contents after applying the complete sequence of

memory accesses.

2. Cache Basics

28

Table 2 Memory access results for direct-mapped cache

Address Block offset Index Tag Hit/Miss

0x1234 0100 11 0001001000 Miss

0x123C 1100 11 0001001000 Hit

0x1240 0000 00 0001001001 Miss

0x1270 0000 11 0001001001 Miss

0x1234 0100 11 0001001000 Miss

0x1232 0010 11 0001001000 Hit

0x1248 1000 00 0001001001 Hit

0x12C8 1000 00 0001001011 Miss

0x1248 1000 00 0001001001 Miss

0x1244 0100 00 0001001001 Hit

Table 3 Direct-mapped cache content

Index V Tag

00 1

0001001001

0001001011

0001001001

01 0

10 0

11 1

0001001000

0001001001

0001001000

For the 2-way set-associative cache structure described in table 1, table 4 shows the three

divisions of the memory address (Block offset, Index, and Tag) and the result of each

memory access. Table 5 shows the cache contents after applying the complete sequence

of memory accesses.

2. Cache Basics

29

Table 4 Memory access results for two-way set-associative cache

Address Block offset Index Tag Hit/Miss

0x1234 0100 1 00010010001 Miss

0x123C 1100 1 00010010001 Hit

0x1240 0000 0 00010010010 Miss

0x1270 0000 1 00010010011 Miss

0x1234 0100 1 00010010001 Hit

0x1232 0010 1 00010010001 Hit

0x1248 1000 0 00010010010 Hit

0x12C8 1000 0 00010010110 Miss

0x1248 1000 0 00010010010 Hit

0x1244 0100 0 00010010010 Hit

Table 5 Two-way set-associative cache content

Index V Tag V Tag

0 1 00010010010 1 00010010110

1 1 00010010001 1 00010010011

For the fully-associative cache structure described in table 1, table 6 shows the two

divisions of the memory address (Block offset, and Tag) and the result of each memory

access. Table 7 shows the cache contents after applying the complete sequence of

memory accesses.

Table 6 Memory access results for fully-associative cache

Address Block offset Tag Hit/Miss

0x1234 0100 000100100011 Miss

0x123C 1100 000100100011 Hit

0x1240 0000 000100100100 Miss

0x1270 0000 000100100111 Miss

0x1234 0100 000100100011 Hit

0x1232 0010 000100100011 Hit

0x1248 1000 000100100100 Hit

0x12C8 1000 000100101100 Miss

0x1248 1000 000100100100 Hit

0x1244 0100 000100100100 Hit

2. Cache Basics

30

Table 7 Fully-associative cache content

V Tag V Tag V Tag V Tag

1 000100100011 1 000100100100 1 000100100111 1 000100101100

2.8 Cache Replacement Policies

The cache is much smaller in size than the main memory, and for this reason, the number

of memory blocks that map to a particular cache set is greater than the size of the cache

set [9]. On cache miss, the whole memory block which holds the requested data is

fetched from the lower level, and forwarded to the higher level of the hierarchy. If the set

is full (all blocks are valid), a victim block must be chosen and replaced (evicted). In

direct-mapped cache, because there is only one position to check every time for a hit, it is

trivial to choose the victim block, which is the block in that position. With a fully-

associative or set-associative cache, there are many blocks to choose for replacement. In

a fully-associative cache, all blocks in the cache can be candidates for replacement. In a

set-associative cache, only the blocks within the selected set are candidates. The victim

block is chosen among the candidates based on the replacement policy [2].

The most commonly-used known cache replacement policies are least-recently used

(LRU), first-in first-out (FIFO), and a cost-efficient variant of LRU named pseudo-LRU

(PLRU). Those policies work on each cache set individually, and use independent status

bits per set which store information about previous set accesses. This information is used

next time when a victim block needs to be chosen [10].

In LRU replacement, the victim block is the least recently used block in the set. That is

the block which has been unused for memory reads or writes for the longest time. LRU

strategy relies on the temporal locality; the recently used blocks are more likely to be

used again. For this purpose, the LRU implementation keeps track with each block being

2. Cache Basics

31

referenced in the set related to the other blocks within that set by maintaining a stack

within the set to store the accessing sequence [4]. In caches, the replacement algorithm is

implemented in hardware, which means that it should be easy to implement. LRU

replacement policy has the best predictability properties [7], but it is costly to implement

the logic for tracking the set usage information, especially when the degree of the

associativity exceeds four [1].

LRU replacement policy can be implemented in software for simulation purposes by

maintaining a queue for each cache set of length equaling to the associativity. The newly

brought block to the set (after a cache miss) is placed in the front of the queue, also when

referencing an existing block in the set (cache hit), the block is brought from its position

to the front of the queue, so the blocks in the set will be ordered from most-recently to

least-recently used [11]. As a result, for this procedure the last block in the queue is

always the least-recently-used one among those blocks in the queue, and it will be

removed to make a room for the block newly brought to the set when the set is full [2].

LRU replacement is used in the Intel Pentium I and the MIPS 24 K/34 K [9].

Consider a 4-way set-associative cache using LRU replacement policy and the following

sequence of memory accesses (given as block addresses) {A, B, C, D, E, B, A, F}.

Assume all blocks map to the same set and the set is initially empty. Table 8 shows all

results of the cache accesses. The LRU policy queue is updated every time the set is

accessed, and the referenced block is always placed in the front of the queue. The 0

values in the queue represent the invalid cache lines in the set which can be filled with

the new blocks after cache misses. When a cache miss occurs while the set is full (i.e.

referencing block E) the LRU block is chosen for replacement which is always the last

block in the queue.

2. Cache Basics

32

Table 8 LRU replacement policy

Block Address Hit/Miss LRU queue

A Miss {A,0,0,0}

B Miss {B,A,0,0}

C Miss {C,B,A,0}

D Miss {D,C,B,A}

E Miss {E,D,C,B}

B Hit {B,E,D,C}

A Miss {A,B,E,D}

F Miss {F,A,B,E}

In FIFO replacement, the victim block is the oldest block in the set. The implementation

of the FIFO replacement policy is quite simple; it only requires a single round-robin

counter per cache set which points to the next cache block to be replaced, and the counter

is updated every time a block is added to the set. FIFO is cheaper in hardware

implementation because it needs very little update logic, but it has less predictability

compared to LRU [12].

In software, FIFO policy can also be implemented as a FIFO-queue where the new block

to place in the set (after a cache miss) is placed in the front of the queue, but referencing

an existing block in the set (cache hit) does not change anything in the queue order.

According to this procedure, the last block in the queue is always the oldest one in the set

which is also the next victim block to replace when the set is full. FIFO replacement

policy is used in the Intel XSCALE, ARM9 and ARM11 processors [9].

Consider the same cache example used above, but now the cache uses FIFO replacement

policy. Table 9 shows all results of the cache accesses. The FIFO policy queue is updated

every time a cache miss occurs when the set is accessed, because a new block is brought

to the cache and it needs to always be placed in the front of the queue. If the set is full,

the first placed block in the set is chosen for replacement which is always the last block

in the queue. In case of a cache hit the queue is kept unchanged as in second memory

access to block B.

2. Cache Basics

33

Table 9 FIFO replacement policy

Block Address Hit/Miss FIFO queue

A Miss {A,0,0,0}

B Miss {B,A,0,0}

C Miss {C,B,A,0}

D Miss {D,C,B,A}

E Miss {E,D,C,B}

B Hit {E,D,C,B}

A Miss {A,E,D,C}

F Miss {F,A,E,D }

PLRU replacement is a tree-based approximation of the true LRU policy. It arranges the

cache blocks (ways) at the leaves of a binary tree [4]. For n-ways cache set, the PLRU

tree has (n - 1) inner nodes pointing to the block to be replaced next, every node has a bit

pointing to the sub-tree that contains at the end the PLRU candidate block. A „0‟

indicating the left sub-tree, a „1‟ indicating the right, figure 8 explains how to choose the

victim block (way) for replacement when the cache set is full. The history bits {a0, b0, b1}

represent the access order of the ways in the set, in the example figure if the value of the

history bits a0b0b1 = 011 the pseudo least recently used way is w1 and it will be chosen as

a victim next access miss to the set [6].

Figure 8 PLRU cache replacement policies for 4-way cache set [6]

2. Cache Basics

34

On a cache hit, the binary tree of the relevant cache set is traversed starting from the tree

root node to the referenced block, and on the way along the path the node values are

flipped to point to the opposite branch where the referenced block is allocated [5]. On

cache miss, PLRU tracks invalid blocks in the set first, the invalid lines are filled from

left to right, ignoring the tree bits, but all the node values in the way forming the newly

allocated block to the root node are flipped to point away from the block [8]. If the set is

full (all blocks in the set are valid), the tree is traversed according to the node values to

find the PLRU candidate block for replacement, while traversing to find the victim block

all path node values are also flipped to point away from the newly allocated block.

As an example for PLRU replacement policy, consider the same example for the 4-way

set-associative cache which is used above to discuss the replacement policies. Same

memory block access sequence {A, B, C, D, E, B, A, F} is used and the same assumption

that all blocks map to the same cache set is made. Figure 9 shows the state of the PLRU

binary tree for the set after each access. In the initial state shown in figure 9a, the set is

empty and the entire tree bits are set to „0‟. The first reference to block A results in a

cache miss, PLRU policy is searching first for an invalid line in the set where block A can

be placed, because the set is empty the first line to the left is chosen, also the tree bits are

set to point away from block A, shown in the figure 9b. For the following block accesses

B, C, and D shown in the figures 9c, 9d, and 9e respectively also cause cache misses, the

same procedure is used to place the new blocks as in the first block access. After those

accesses the cache set is full and the tree bits point to the line containing block A. An

access miss to block E evicts the memory block A, and all tree bits on the path to the root

of the tree are made to point away from the new referenced block E, figure 9f shows the

tree state. It is not necessary to change every bit in the path; the bit is kept not flipped

when it already points away from the new referenced block. For the following hit

reference to block B, the bits on the path from B to the root of the tree are made to point

away from B, as shown in the figure 9g. Another access to B would not change the tree

bits at all, as they already point away from it. The next access to block A evicts block C

which is the least-recently-used block in the set, and an update to the binary tree is made

2. Cache Basics

35

to point away of block A. However, the access to block A protects block D as well,

because the root bit is flipped to point away from the two neighbor blocks, shown in the

figure 9h. While block D is the least-recently-used block in the set and it should be the

victim block for the next miss, accessing block F affects block E instead of D and this

property reduces the predictability of PLRU replacement policy compared to the real

LRU replacement policy. Finally, figure 9i shows the last state of the binary tree after the

end of the access sequence, the tree bits now point to block D, which will be replaced on

the next cache miss.

2. Cache Basics

36

Figure 9 Updates of a PLRU tree of 4-way cache set

The advantage of PLRU replacement policy over real LRU replacement policy is that

PLRU is much cheaper to implement, reducing the hardware overhead in terms of storage

requirements and update logic. For n-way set-associative caches, PLRU requires only (n -

1) bits per set to track set reference information. But PLRU has a disadvantage that it

2. Cache Basics

37

does not always replace the least-recently-used element, thus this property reduces its

predictability [2]. PLRU is used in PowerPC series of microprocessors, Intel Pentium II-

IV, Intel Core Processors and AMD microprocessors.

2.9 Cache Writing Policies

The write policy determines how the data is written to the different memories in the

hierarchy. For the store instructions, the data from the processor is being written into only

the data cache keeping it inconsistent with the lower levels in memory hierarchy, because

they will have different values of the content data. For this concern, there are two

schemes to perform cache writing:

Write through: Data is always written to the cache and immediately to the next lower

level of memory hierarchy, ensuring that data is always consistent by updating the blocks

in both of them. This takes a long time especially when the next level is always slow,

while performing the write operation the processor must wait until the write is complete,

this is called write stall and it slows down the processor considerably. Using a write

buffer which holds the data while it is waiting to be written to the next level will solve

the problem, so the processor can write the data to the buffer and continue execution after

it. If the write buffer is full and the processor needs to add a write operation, then the

processor must stall until there is an empty place in the buffer [1].

Write back: Data is first written to the cache so the block in the cache is only updated,

and then the modified block is written to the lower level of memory hierarchy when the

block is evicted from the cache. For this purpose and to distinguish the modified block, a

sign bit called dirty bit is associated with each cache write back block, this bit is asserted

whenever a word in the block is modified, so it gives an indication whether the block is

clean (not modified) or dirty (modified). On a cache replacement, if the replaced block‟s

dirty bit is asserted, the block is written back to the lower level of the hierarchy by

2. Cache Basics

38

placing it in the buffer, otherwise it is overwritten by the newly placed block since an

identical copy of the block is found in the lower level [3].

Write through policy has a number of advantages. First of all, it is easy to implement,

because there is no need for an additional dirty bit per cache block to show that the block

is modified. Also, in write through policy there is no need to write a complete block back

to the lower level every time when a modified block is replaced by a cache miss: only the

written data is sent to the lower level, and thus cache misses are cheaper with write

though policy [3]. But write back policy has several advantages over write through

policy. On such advantage is that memory write operations will be faster, because they

always happen at the speed of the cache [1]. Another advantage is when several writes

happen to the same block, it is needed only to write the block once to the lower level of

memory hierarchy. Therefore less bandwidth of memory element in the memory

hierarchy is used which makes write back policy more effective to use especially in

multi-core processors [15]. Since write back does not use the memory hierarchy so often

for writing, much power as compared to write through is saved, making write back more

preferable to be used in embedded systems [14].

In case of a cache write miss, the data is not needed by the processor, so there are two

options: either to allocate the block in the cache then perform a write hit to the cache

which is called write-allocate, or not to allocate the block in the cache and modify the

block only in the lower level memory which is called no-write-allocate. In write-

allocate, write miss acts like read miss followed by write hit to the cache. For no-write

allocate, write misses do not affect the cache [3].

Normally, write back policy is implemented together with write-allocate in the cache,

because several writes may happen to the block, while for write back the write is done to

the cache block, so it needs to be allocated in the cache. Caches which implement write

through policy also use no-write-allocate together with it, because all writes to the block

will be sent all the time to the lower level memory, hence no need to locate the block in

the cache [2].

2. Cache Basics

39

2.10 Three kinds of Cache Misses

Cache misses are classified into three categories:

Compulsory misses or cold start misses are the misses that happen upon the first access

of the memory block that has never been in the cache. This kind of cache misses can

appear in every cache organization. The cache size and the associativity of the set cannot

make any improvement to the cold misses, but increasing the block size can somewhat

reduce the cold misses, because it reduces the number of memory references to different

memory blocks. However, it has a negative effect to the whole system performance by

increasing the miss penalty [1]. The use of cache perfecting mechanism by bringing the

next expected block to be accessed can reduce the cache misses caused by a cold start

[13].

Capacity misses are misses that happen because of the small cache being unable to hold

all blocks needed during the program execution. This kind of cache misses appears

effectively even with full associativity, when the cache is full and some blocks are being

replaced by other referenced blocks and later the replaced blocks are retrieved to the

cache again, because they are accessed repeatedly [2]. Capacity misses comprise the

majority of cache misses and are reduced by increasing the cache size [1].

Conflict misses or collision misses are misses that occur in direct-mapped or set-

associative caches, when the cache is partitioned into sets with a specific associativity.

The number of memory blocks that map to the set is always greater than the associativity

of the set. Conflict misses happen when the number of blocks needed to be placed in the

set at the same time exceeds the associativity, so the blocks which are replaced due to

conflicts by other blocks map to the same set are referenced again later causing a conflict

miss. The number of conflict misses can be reduced by increasing cache associativity, but

this can also increase the access time of the cache, leading to overall system performance

degradation [1].

2. Cache Basics

40

2.11 Multilevel Cache Structure

Multilevel cache is a memory hierarchy with multiple levels of caches, rather than just a

single cache and main memory [1]. Many processors use multilevel cache hierarchies to

reduce both the latency of cache misses (miss penalty) and the cache miss rate. Modern

processors usually support two to three cache levels.

Consider a processor with a multilevel cache which consists of two levels. The first level

(L1) is the primary cache which is often smaller and faster cache to reduce the cache

access time, while the second level (L2) is the secondary cache which is larger and uses

higher associativity to reduce the cache miss rates. If a miss occurs in L1 cache, then L2

cache is accessed to search for the desired data. When the data is found in L2, the miss

penalty of L1 is equal to the access time of L2 which is very small compared to the

access time of main memory. If L2 does not contain the desired data, an access to the

main memory is required, causing a larger miss penalty [1]. The miss rate of L1 becomes

less important in presence of L2, thus L1 can be made smaller and faster reducing its

access time. Also the access time of L2 becomes less critical in the presence of L1, thus

L2 can be made larger reducing its miss rate [1].

2.12 Different Types of Cache Hierarchies

In a multilevel cache hierarchy, the levels which come after the first level in the cache

hierarchy can be one of the following types: Inclusive, Non-Inclusive, or Exclusive. The

inclusive cache requires that the content of all the smaller cache levels higher in the

multilevel cache hierarchy (closer to the processor) is a sub-set of the inclusive cache.

Then all memory blocks which are held by the higher levels are also included in the

inclusive cache, and when a block is evicted from the inclusive cache, that block must be

invalidated in all higher levels of cache (if it resides there) to guarantee the inclusion.

2. Cache Basics

41

Those blocks which are invalidated or removed from the higher cache levels because of

the inclusion property are called inclusion victims [17]. On the other hand, a non-

inclusive cache allows memory blocks to be in the higher levels of the cache hierarchy

without also being duplicated in it. Thus, it does not guarantee that the contents of the

smaller cache levels are always a sub-set of the non-inclusive cache contents. In the

exclusive cache model, the memory blocks in the cache are not present in the higher

levels of the cache. So there is no intersection between the contents of an exclusive cache

level and any higher cache level [20].

Consider a multilevel cache hierarchy with two levels, first level of cache (L1) and last

level of cache (LLC). Figure 10 explains the different types of cache hierarchy between

the two levels. In the inclusive hierarchy shown in figure 10a, any miss in L1 either hits

in LLC or generates a miss in LLC, causing the memory block to be brought into both L1

and LLC. Likewise, when a memory block is evicted (invalidated) from the LLC, it must

be sent to L1, where it will cause the block to be invalidated if it exists. In such case, the

capacity of the cache hierarchy equals the size of LLC, because the content of L1 is

always replicated. For non-inclusive hierarchy shown in figure 10b, no back invalidation

is sent to L1 if a block is invalidated in LLC. Therefore, the removed block from LLC

can be still present in L1, and due to this, the capacity of non-inclusive hierarchy is in the

range between the size of LLC and the size of all levels in the hierarchy together. Figure

10c illustrates the cache fills in the exclusive hierarchy. In case of cache miss in both

levels, the memory block is brought first to L1, afterward it is placed in LLC upon

eviction from L1. When the block is referenced later, it is invalidated from LLC and

placed again in L1. Thus, there is no memory block which is replicated in the two levels.

In exclusive hierarchy, LLC works as a victim cache for the upper levels, and the

capacity of the cache hierarchy equals the size of all cache levels in the hierarchy [16].

2. Cache Basics

42

Figure 10 Multilevel cache hierarchies [16]

The different cache hierarchies have advantages and disadvantages. The inclusive cache

suffers from effective space reduction as a result of data duplication to guarantee

inclusion. Also, in case of back invalidation when a block is evicted from the lower level

cache, that block should also be invalidated in the upper level cache. Those reasons cause

a performance loss in inclusive cache, and to have a better performance, the size of the

LLC should be larger than or equal to the sum of all upper levels of cache hierarchy [18].

On the other hand, inclusive property plays a significant role in multi-core cache

coherence, making the inclusion property useful. Non-inclusive and exclusive caches

enable higher capacity with the same cache size, but they make the implementation of

multi-core processor cache coherence harder (see the next chapter). Moreover, exclusive

cache requires higher bandwidth since every victim block from the higher level even

those clean have to be written to the lower level [21]. When a cache miss at a higher level

occurs, the new block is brought from the lower level to the higher level and at the same

time a victim block (if exist any) is sent back to the lower level. Therefore, every cache

miss may cause a two-block exchange between the two levels of cache.

3. Cache Structure in Multi-Core Processors

43

3 Cache Structure in Multi-Core Processors

3.1 Multi-core Processor Cache Architecture

The multi-core processor or chip-multiprocessor (CMP) is a small number of symmetric

core processors on a single chip, they use a centralized shared memory and all core

processors have a symmetric equal access to it, this model of architecture is called

symmetric multiprocessors (SMP). The number the processor cores in the multi-core chip

is typically eight or fewer. Therefore, having a single shared memory for the core

processors is possible. Sometimes, the SMP architecture is also called uniform memory

access (UMA) multiprocessor, for the same reason of all processors having uniform

access latency to the memory [3].

Most modern multi-core processors implement the SMP architecture. They employ

multilevel cache hierarchies to reduce the cache access time during program execution,

and also the latency of cache misses. Normally, the first levels in the cache hierarchy are

small and private caches, so that every processor core has its own private cache, while

the last level in the cache hierarchy (LLC) is a large and shared cache between all

processor cores. This architecture is implemented in most of modern multi-core

processors like Intel Nehalem [40], AMD Opteron [24], IBM Power 7 [38], Sun T2 [39],

etc. Having a private cache within each core reduces the requests on the global

interconnect among the cores, and thus, reduces the access latency to the data. On the

other hand, shared cache is used for sharing the data among the cores and increasing the

performance by reducing the core communication complexity. In short, it is used by the

cores as a channel to communicate with each other. In Intel‟s Nehalem processor and

3. Cache Structure in Multi-Core Processors

44

AMD‟s Barcelona processor, L1 and L2 are private caches per core and L3 is a shared

cache [22].

Figure 11 shows the memory hierarchy for a multi-core processor with 4 cores. The

processor uses a two level inclusive data cache hierarchy, where each processor core

includes an L1 private cache and all cores share the L2 cache. Whenever the data is

loaded to the private cache, it has to be placed in the shared L2 cache. Therefore, L2

cache contains the superset of the private caches [19].

Figure 11 Two-level cache hierarchy for multi-core processor with 4 cores [19]

Multi-core processors are used to improve the performance of stand-alone applications.

In order to do it and to exploit the power of the parallel computing provided by the

multiple cores, the application must be split into multiple entities called threads which

run simultaneously on the different cores [26].

3. Cache Structure in Multi-Core Processors

45

The cache in a multi-core processor usually caches both shared and private data for the

different threads. Private data is used by a single core, and when the data is cached, it is

allocated in the core private cache. As the data is not used by the other cores, the running

program on the core behaves the same as when it runs on a uniprocessor system.

However, shared data is used by multiple cores. Basically, it is used to provide

communication among the different cores through reads and writes. For this reason and to

insure correctness, shared data has to be protected from being accessed concurrently by

multiple threads with at least one writing thread. In software, the mutual exclusion

principle is used in multi-threaded applications to protect the critical sections where the

shared data is updated in the code. Mutual exclusion ensures that only one thread at a

time accesses shared data. The implementation of critical sections in programming is

done through the synchronization primitives which are software routines built over

hardware synchronization instructions. Those instructions are uninterruptable, and thus,

they provide exclusive access to shared memory location. As a result, it is guaranteed for

one thread to have a mutual exclusive access to the critical section [27]. A number of

synchronization mechanisms are used in the modern programming languages as

synchronization mechanisms in multi-threaded programs such as semaphores [28],

conditional variables, and monitors [29].

In the cache, when shared data is cached and used by multiple cores, it is replicated in the

private caches of the multiple cores. This replication is good for reducing cache access

latency. It also provides a reduction in contention that may happen to the shared last level

cache when multiple cores are trying to access shared data item concurrently [30]. Shared

data replication in the private caches can increase the performance, however, it causes a

new problem called cache coherence when multiple cores are trying to update the shared

data.

As mentioned before, in a typical multi-core processor design, caches are with multiple

levels and the last level cache (LLC) is shared across the cores in order to improve

scalability. The cache hierarchy between the shared LLC and the core private caches can

3. Cache Structure in Multi-Core Processors

46

be inclusive. This requires that all memory blocks cached in all core private caches are

also present in the shared LLC. Same thing is also true for inclusion property. When a

memory block is brought to the processor, it is first allocated in the shared LLC, and then

it is forwarded to the requesting core to be stored in its private cache. Afterward, when

the cached block is evicted from the shared LLC, all cached copies of the same block in

the private caches (if present) have to be invalidated. Inclusive cache hierarchies are

widely used in multi-core processors since they can simplify the implementation of cache

coherence and minimize the coherence traffic between the cores. Inclusive caches

maintain a set of core valid bits called snoop filter [34] per cache block in the inclusive

LLC. Each bit represents a core. If any of the core private caches may contain the same

cache block, then core valid bit is set to 1. If no bits are set, no need to check the other

cores. However, inclusion reduces cache capacity and also has backward invalidation

effect, both resulting in performance reductions [31]. On the other side, if the cache

hierarchy between the shared LLC and the core caches is exclusive, it requires that the

contents of the core caches are not replicated in the shared LLC, but it is allowed to share

data by more than one core. In an exclusive cache hierarchy, the shared LLC works as a

victim cache for the cores‟ private caches, which means that the memory block newly

brought to the processor is placed first in the requesting core private cache, then when it

is evicted from the core it is stored in the shared LLC if the block is not cached by any

other core. Exclusion cache hierarchy can increase the total on-chip cache memory

capacity, but on the other hand, it cannot benefit from the natural snoop filter in the

inclusive cache, because the contents of the LLC and the core private caches are always

different. In exclusive cache structure, since snoop filters cannot be associated with the

LLC, a new structure called directory [35] exists beside the LLC that is used to hold tags

and snoop filters for all cached blocks in the cache hierarchy. This increases the hardware

overhead and verification complexity [16].

Figures 12 and 13 show the differences between exclusive and inclusive caches with

embedded snoop filters in the inclusive cache. The cache hierarchy is with three levels

and the shared LLC is the third level (L3). A data request from core 0 misses both L1 and

3. Cache Structure in Multi-Core Processors

47

L2 core private caches, and then it is forwarded to look up in L3 cache. In figure 12, the

requested data is a hit in L3. For the exclusive cache, there is no need to check the other

cores, because exclusion guarantees that the data would not be present in any of them. In

the inclusive cache, the data can be also in another core‟s cache, but the snoop filter is

can tell in which core the data is present, therefore, a core is checked only when its core

valid bit is set, and only when the data is modified, so the L3 data copy is not updated. In

figure 13, the requested data is missed in L3 cache. For an exclusive cache without snoop

filter, the request must be forwarded to all other cores to look up the data. On the other

hand, the inclusion property guarantees that when the requested data is not present in L3,

then it is not cached anywhere else in the processor die.

Figure 12 Exclusive vs. Inclusive cache hit [32]

3. Cache Structure in Multi-Core Processors

48

Figure 13 Exclusive vs. Inclusive cache miss [32]

3.2 Cache Hierarchies in the Intel Nehalem and AMD Opteron Processors

This section shows the cache hierarchies of two modern multi-core processors: the four-

core Intel Nehalem (Core-i7) [36] processor and six-core AMD Opteron (Istanbul) [37].

Both have three levels of cache hierarchy, all are on the main processor die. The

outermost cache in both is shared among cores, is inclusive in the Intel Nehalem and

exclusive in the AMD Opteron. Both processors have on-chip memory controllers, which

reduce the main memory latency.

3.2.1 Four-Core Intel Nehalem Core-i7

Intel Nehalem implementation contains four cores in a processor chip and supports

hierarchy of up to three levels, figure 15 shows the Intel Nehalem core-i7 cache

hierarchy. It divides the physical memory into blocks of 64 bytes, while all caches

throughout the hierarchy have the same block size.

3. Cache Structure in Multi-Core Processors

49

Figure 14 Intel Nehalem Core-i7 processor [23]

Each core has separate L1 caches for instructions and data, and its own unified (for both

instructions and data) and non-inclusive L2 cache. The four cores share L3 cache, which

is unified and inclusive of the core caches, meaning that every memory block that exists

in either L1 data or instruction cache, or the L2 caches, is also existent in L3. Fills from

the main memory are allocated first in the L3 cache, and then they are directed to the

appropriate core, to be stored first in the L2 cache then forwarded to the L1 cache. The

writing policy used in all cache levels is write-back, so whenever a modified block is

evicted from any cache, the block is written back to the next cache in the hierarchy. The

replacement policy which is used in L3 cache is a variant on pseudo-LRU, the replaced

block is chosen based on PLRU but with an ordered selection algorithm. If a memory

3. Cache Structure in Multi-Core Processors

50

block is replaced in L2 cache, no block invalidation message for the evicted block is sent

to L1 cache, because L2 uses non-inclusive hierarchy. But when a block is evicted from

the inclusive L3 cache, all existing copies of the block in L1 and L2 caches have to be

invalidated to hold the inclusion. The inclusion property is implemented to minimize the

snooping traffic among the cores. A 4-bit snooping filter associated with each L3 block

indicates if the block is already cached in the L2 or L1 cache of a particular core.

Therefore, block snooping is done through the L3 cache to track a particular block status,

so there is no need to forward a broadcast snoop message to all cores [23].

3.2.2 Six-Core AMD Opteron (Istanbul)

The six-core AMD Opteron (Istanbul) is a multi-core processor that integrates six cores,

and a shared 6 MB L3 cache on one die. The core has separate instruction and data

caches backed by a large L2 cache. All caches throughout the hierarchy have 64-byte

lines, and use write-back policy. Figure 16 shows the six-core AMD Opteron memory

hierarchy. As in many other AMD processors, the L1 and L2 caches use an exclusive

hierarchy, so that the fills from the main memory go directly into L1 cache in the

appropriate core and are not placed in the L2 cache. When any memory block is evicted

from the L1 cache, it moves into the L2 cache. Also, the other way around, the blocks

which are hit in core‟s L2 cache are invalidated from L2 and placed into the requesting

L1 cache. Here the L2 cache works as a victim cache for the L1 instruction and data

caches. The 6 MB exclusive shared L3 cache works as a victim cache for cores‟ L2

caches. Also, a part of the exclusive cache is used to store the cache directory (snoop

filter or probe filter) [24] for cache coherence. Every cached block in the hierarchy has an

entry in the cache directory. The entry contains the block tag and cores‟ tracking bits,

they show which of cores have a copy of the block and the status of that copy. All blocks

that are evicted from cores‟ L2 caches, are stored in the L3 cache, the cache uses pseudo-

LRU replacement strategy to place a new block into a full cache set. Having L3 as a

victim cache allows caching more data, also back invalidation of the L2 caches is not

needed when a block is victimized in L3 cache. AMD Opteron implements a semi-

exclusive cache hierarchy at L3 cache [22]. When a core victimizes a particular block, it

3. Cache Structure in Multi-Core Processors

51

is stored in L3 cache to detect a true sharing pattern to that particular block. If the next

request to the block is from the same core where the block was located before, the data

seems to be private to the core, therefore, the L3 does not keep a copy of the block. Else,

the L3 cache can retain a line after providing a copy to a requesting core for further

sharing [24].

Figure 15 Six-Core AMD Opteron processor [24]

3. Cache Structure in Multi-Core Processors

52

The following table 10 summarizes both Intel Nehalem Core-i7 and AMD Opteron

(Istanbul) processors‟ cache characteristics.

Table 10 Three level cache in the Intel Nehalem and AMD Opteron processors [1]

Characteristic Intel Nehalem Core-i7 AMD Opteron (Istanbul)

Number of cores 4 6

L1 cache organization Separated cache per core Separated cache per core

L1 cache size 32 KB each for (I/D) cache 64 KB each for (I/D) cache

L1 cache associativity 4-way (I), 8-way (D) 2-way

L1 replacement policy Pseudo-LRU LRU

L1 block size 64 bytes 64 bytes

L1 write policy Write-back, Write-allocate Write-back, Write-allocate

L1 hit time 4 cycles, pipelined 3 cycles

L2 cache organization Unified cache per core Unified cache per core

L2 cache size 256 KB 512 KB

L2 cache associativity 8-way 16-way

L2 cache hierarchy Non-inclusive Exclusive

L2 replacement policy Pseudo-LRU Pseudo-LRU

L2 block size 64 bytes 64 bytes

L2 write policy Write-back, Write-allocate Write-back, Write-allocate

L2 hit time 10 cycles 12 cycles

L3 cache organization Unified cache shared Unified cache shared

L3 cache size 8 MB 6 MB

L3 cache associativity 16-way 16-way

L3 cache hierarchy Inclusive Semi-exclusive

L3 replacement policy Variant of Pseudo-LRU Pseudo-LRU

L3 block size 64 bytes 64 bytes

L3 write policy Write-back, Write-allocate Write-back, Write-allocate

L3 hit time 35-40 cycles 38 cycles

3.3 Cache Coherence Problem

In a shared-memory multiprocessor with private data caches, when a cached block is

replicated in at least two private caches, modifying one of the block‟s copies will cause a

cache coherence problem. In general, the coherence problem exists because there are two

3. Cache Structure in Multi-Core Processors

53

states for the data, one is the global state, defined by the main memory or the shared last

level of cache (for example L3 cache) in multi-core processors, and the other is local state

defined by the cores‟ private caches (for example L1 and L2 caches) [15]. Consider a

multi-core processor with two cores C1 and C2, each having a private cache which is

connected to the memory. The two different private caches can have two different values

for the same memory location, table 11 explains this. Consider the initial value at time 0

of x = 1 at time 0 which is not cached in any of the cores‟ private caches, also assume the

writing policy that is used by the caches is write-back. At time 1, C1 reads x from the

memory and places it in the core‟s private cache. At time 2, C2 reads also x and places it

in the core‟s private cache. Now, both private caches and memory have the same value of

x = 1. After that the value of x has been written by C1 at time 3, C1‟s private cache has

the new value, while C2‟s private cache has the old value, and if C2 reads the value of x

again, it will receive 1.

Table 11 Cache coherence problem

Time Event
Value of x

C1 private cache C2 private cache Memory

0 1

1 C1 reads x 1 1

2 C2 reads x 1 1 1

3 C1 writes x = 0 0 1 1

To ensure consistency among multiple copies of the same memory location, a coherence

scheme or protocol, is required. Cache coherence protocols are to maintain coherence

among the individual caches in a system of multiple processors. The implementation of a

cache coherence protocol tracks the state of any shared data block. There are two classes

of protocols in use based on the way they locate multiple copies of the same block and

the different techniques used to track the sharing state. One is directory based and the

other is snooping based. In directory based protocols, the sharing status that maintains

3. Cache Structure in Multi-Core Processors

54

the coherence among the different copies of a particular block of physical memory is kept

in one location called directory. The directory acts as a filter, so when any processor/core

needs to load a memory block, it goes through the directory. Also, when a cached block

is modified in one cache, the directory either updates the other caches with the new value

of the block or invalidates their copies of the block, depending on the implemented cache

coherence method. In snooping protocols, every individual cache that has a copy of a

particular block could monitor the sharing status of the block. All private caches are

connected to a broadcast medium, i.e., a bus which connects the private caches to the

shared cache or memory. The cache controller keeps listening to the broadcast medium

and updates or invalidates the snooped block based on the cache coherence method and

the request on the bus. In multi-core processors, if all cores share some level of the cache,

the directory can be associated with the outermost cache, and a snooping scheme can be

built over the directory to obtain the cache coherence. The directory is used to reduce

snoop traffic in the broadcast medium by propagating the coherence messages only to the

caches which have a copy of the block. This can reduce the overhead to the cache

controller by consuming less medium bandwidth especially with an increasing number of

cores, which makes this architecture more scalable. If the multi-core processor does not

implement a shared last level of cache, a pure snooping scheme can be used to obtain

cache coherence between cores‟ private caches [3].

Cache coherence protocols can implement two methods for propagating the modifications

of the blocks among the different caches. One method is write update or write broadcast.

The protocols which implement this method must broadcast the writes every time a write

happens to a shared block. This consumes much bandwidth and for this reason it is not

used in most of multi-core processors. The other method is write invalidate, which

invalidates all other copies of the shared block once a write is performed on that block.

This ensures that a core has exclusive access to a cached block before it writes to that

block. Write invalidate protocols are commonly used cache coherence protocols in

modern multi-core processors. To illustrate the idea, consider a multi-core processor with

two cores, seen in figure 2. Both cores initially have a copy of block X cached in their

3. Cache Structure in Multi-Core Processors

55

private caches, the figure shows how coherence actions work to keep local caches

coherent in a write invalidate policy. When Core1 issues a write operation to the block X,

a coherence invalidation request is sent through the bus to invalidate the copy of the

block X in Core2‟s cache. Therefore the valid bit of the block X in Core2‟s cache is set to

be invalid. Next time, when Core2 wants to read from the block X again, it will find the

block not present in its local cache and it must obtain a new value of the block. A read

miss request will be sent through the bus and make Core1 write back the updated value of

the block to the external memory and forward a copy to Core2. If a multi-core processor

uses a shared cache, the shared cache will act as the external memory, and the coherency

must be handled for the local cache in each core [3].

Figure 16 Write invalidate cache coherence method [25]

3. Cache Structure in Multi-Core Processors

56

3.4 MSI protocol for Multi-core Cache Coherence

In multi-core processors where shared cache is present, the cores‟ private caches are

connected to the shared outermost cache (for example L1 and L2 are private caches per-

core and L3 is shared cache among the cores in Intel Nehalem and AMD Opteron) via a

bus or interconnection network which provides a broadcast medium. The broadcast

medium is used for sending coherence invalidation requests. When a core wants to

perform a write to a shared block, it attempts to acquire access to the bus and sends a

broadcast invalidation with the referenced memory address to the other cores on the bus.

The cores keep snooping on the bus, and when they receive the address to be invalidated,

all cores check their private cache for the corresponding block. If a match is found, the

core invalidates the entire block. The bus offers sequential access and modification to the

shared data. When two cores attempt to write to a shared block at the same time, first

thing they will do is try to acquire the bus to send invalidation requests. Only one

processor at a time can use the bus for sending requests, therefore, bus acquisition for the

different cores is serialized. In case of a data miss in the private cache, the same snooping

scheme can be used for allocating a data block in the cache when the used writing policy

in the cache hierarchy is write-back, since the missed data can be modified in one of the

private caches. All cores also snoop for every address placed on the bus, and if a core has

the desired block modified in its private cache, then it provides the requesting core with

the last updated copy of the block and stops the memory or shared cache access [3].

The simple MSI (Modified, Shared, and Invalid) protocol can basically be used to

implement the cache coherence. The protocol implementation assumes two things: the

first assumption is that the cache writing policy which is used at least between the private

caches and the shared cache or the memory is write-back and write-allocate, the second

assumption is that the block size is the same in the entire memory hierarchy. These two

assumptions are held in most multi-core processors implementations, since write-back

3. Cache Structure in Multi-Core Processors

57

does not consume much bandwidth or much time to perform the write operation. The

equal block size provides simplicity to the implementation [3]. The MSI protocol

enforces one main rule to keep coherence. The rule says, “for a given block, at any given

moment in time, there is either: only a single core with write (and read) permission to the

block (in state M for modified) or, zero or more cores with read permission to the block

(in state S for shared)” [33]. For this, every cache block in a core‟s private cache is in one

of the following states: invalid, shared, and modified. The invalid state indicates that the

contents of the block are invalid to use, because the block‟s contents are invalidated or

the block is not yet occupied. The shared state indicates that the cache has an up-to-date

and clean copy of the block which can be shared with the other private caches, and the

access to the block is allowed for reads only. The modified state indicates that the cache

has the only copy of the block which is up-to-date and modified, and the access to the

block is allowed for both reads and writes. To track the block state, each cache block

associates extra status bits to encode the block state [35].

The following tables and figures explain the MSI coherence mechanisms which are

implemented in every private cache controller. The cache receives requests from the core

to which the cache belongs and from the shared bus. The requests can be reads, writes, or

data invalidations. The cache controller responds to the requests based on the request type

and whether the data is present in the cache or not, also it depends on the state of the

referenced block which contains the data [3].

Table 12 shows the read hit and write hit requests from the core to its local cache. For the

first three requests in the table, the type of the cache action is normal hit and the requests

are handled within the local cache. Even for the third request, a coherence action is not

required because the referenced block state is modified, so the core has an exclusive copy

of the block and no need for invalidation. But in the fourth request, because the

referenced block state is shared, a coherence action is needed, since the other cores may

have a copy of the block. An invalidate request is placed on the bus to invalidate the other

copies (if any) and to obtain the block ownership. Figure 17 shows the state transitions of

3. Cache Structure in Multi-Core Processors

58

the cache block based on the request and the state of the referenced block, it also shows

the cache action as a response to the request.

Table 12 Requests from the core (hit in the local cache) [3]

Request Block state Type of cache action Cache action

Read hit Shared Normal hit Read data in the local cache

Read hit Modified Normal hit Read data in the local cache

Write hit Modified Normal hit Write data in local cache

Write hit Shared Coherence Place invalidate on bus

Figure 17 MSI protocol states transition for requests from the core (hit in the local cache) [3]

3. Cache Structure in Multi-Core Processors

59

Table 13 shows the read miss and write miss requests from the core to its local cache.

The referenced block here is a victim block which is chosen to be replaced by the new

allocated block. If the victim block is in a modified state, then the block‟s contents are

written back to the shared cache or memory before replacement, and after that, the

request (read miss/write miss) is placed on the bus to obtain the block from the other

private caches, or shared cache, or memory. The write miss request on the bus may cause

invalidation in the other caches in order to grant the requesting cache an exclusive access

to the new block. Figure 18 shows the state transitions of the cache block with the new

allocated block based on the request and the state of the replaced block, it also shows the

cache action as a response to the request.

Table 13 Requests from the core (miss in the local cache) [3]

Request
Block

state

Type of cache

action
Cache Action

Read

miss
Invalid Normal miss Place read miss on bus.

Read

miss
Shared Replacement

Address conflict miss: place read miss on

bus.

Read

miss
Modified Replacement

Address conflict miss: write-back block,

then place read miss on bus.

Write

miss
Invalid Normal miss Place write miss on bus.

Write

miss
Shared Replacement

Address conflict miss: Place write miss on

bus.

Write

miss
Modified Replacement

Address conflict miss: write-back block,

then place write miss on bus.

3. Cache Structure in Multi-Core Processors

60

Figure 18 MSI protocol states transition for requests from the core (miss in the local cache) [3]

Table 14 shows the requests from the bus to the private cache. The private cache keeps

snooping on the bus for requests like read miss, write miss, and invalidate. The cache

responds to the request when it has a copy of the required block. For the first request in

the table, no coherence action is needed, because the requesting cache tries to share a

clean block which can be obtained from the shared cache or the memory. All other

requests need a coherence action from the cache. If the state of the addressed block in the

cache is modified, then block contents are written-back and the requesting cache is

provided with a copy of the block. Both invalidate and write miss requests cause

invalidation to the block contents. Figure 19 shows the state transitions of the addressed

block based on the request and the state of the block, it also shows the cache action as a

response to the request.

3. Cache Structure in Multi-Core Processors

61

Table 14 Requests from the bus [3]

Request
Block

state

Type of

cache action
Cache Action

Read

miss
Shared No action

Allow shared cache or memory to service read

miss.

Read

miss
Modified Coherence

Attempt to share data: write-back the cache

block and make its state shared.

Invalidate Shared Coherence
Attempt to write shared block: invalidate the

block.

Write

miss
Shared Coherence

Attempt to write shared block: invalidate the

block.

Write

miss
Modified Coherence

Attempt to write block that is exclusive

elsewhere in other local cache: write-back the

cache block and make its state invalid in the

local cache.

Figure 19 MSI protocol states transition for requests from the bus [3]

3. Cache Structure in Multi-Core Processors

62

In those multi-core processors where the shared cache is inclusive, it includes the

contents of all private caches. This allows implementing a straightforward directory

scheme in the shared cache. This scheme can reduce the snooping traffic significantly and

minimize the interference on the bus. Because inclusion ensures that each private block

has a corresponding shared block, the coherence protocol can track the copies of the

block in the private caches through the snoop filter (directory entry) in the shared cache.

Each block in the shared cache is associated with several bits: two bits for coherence state

and the rest for core tracking (one bit per core) showing which core caches the block

[33]. Figure 20 shows a system model with inclusive shared cache and the block structure

in both private and shared caches. Both blocks A (cached by Core 0) and B (cached by

Core 1 and Core 2) must be present in the shared cache because of inclusion hierarchy.

The core tracking bits in each block are set properly to point to the cores which cache the

block ; A{1,0,0,0} and B{0,1,1,0}.

Figure 20 MSI cache coherence model using directory in the shared inclusive cache [33]

3. Cache Structure in Multi-Core Processors

63

When a read or write misses in the private cache, the core sends a coherence request to

the shared cache. The shared cache can respond to the request based on the referenced

block‟s coherence state, either directly (when the state is shared), or by forwarding the

request (when the state is modified) to the only core whose bit is set in the block‟s

tracking list. The same thing happens when an invalidate coherence request is issued by a

core because of writing to a shared block. The core sends the request to the shared cache

which in its turn forwards the request only to the cores in the block‟s tracking list (if any)

other than the requesting core. The core private caches then invalidate their copies of the

block. The block‟s tracking list in the shared cache has to be updated when a block copy

is evicted from a private cache [33].

This scheme (directory at the shared cache) avoids the need for snooping in the cores, it

also avoids broadcast messages and uses point-to-point messages for communication.

This minimizes the system overhead and improves the scalability allowing to add more

cores to the system. This coherence model is implemented in Intel Nehalem [33].

In those multi-core processors where the shared cache is exclusive, the embedded

snooping filter with the shared cache block cannot be used, because the blocks which are

cached in the private caches are not cached in the shared exclusive cache. The solution to

this problem is to use a directory structure with the shared cache which holds an entry for

each cached block in the private caches. The entry contains the block‟s tag, coherence

state, and tracking list [22]. Figure 21 shows the directory structure. This architecture is

implemented in AMD Opteron [24].

3. Cache Structure in Multi-Core Processors

64

Figure 21 Separate directory with the shared exclusive cache [22]

The MSI protocol has some extensions that arise by adding additional states and

transitions to improve the performance if possible, i.e., MESI and MOESI protocol

extensions. In MESI a new state called Exclusive is added to MSI, the exclusive state

indicates that the block is present in only one private cache but it is clean, this state is

represented in the MSI protocol by a shared state with only one bit set in cores‟ tracking

list. The core which has the block in exclusive state can write to it without sending an

invalidate request, just the state of the block will change from exclusive to modified. A

read miss from any other core to the block will change its state from exclusive to shared

[17].

In MOESI a new state called Owned is added to the MESI extension. The owned state

indicates that the block is modified in the private cache and out-of-date in memory. In

MSI when the block is in modified state and there is an attempt to share the block from

another core, the block is written back and its state changes to shared. But in MOESI

protocol, the cache can share the latest copy of the block with the requesters, the state of

the block changes from modified to owned while the state of the block in the other caches

is shared. The state changes from owned to modified again when a core writes to the

block after sending an invalidate request. This protocol extension (MOESI) is used by

3. Cache Structure in Multi-Core Processors

65

AMD in Opteron processor [41]. The following table 15 and figure 22 show the MOESI

protocol states and the states transition diagram.

Table 15 MOESI protocol states

State Clean/Dirty Unique Read/Write

Modified Dirty Yes R/W

Owned Dirty No R

Exclusive Clean Yes R/W

Shared Clean No R

Invalid NA NA NA

Figure 22 MOESI state transitions [41]

4. Design and Implementation of Cache Simulation

66

4 Design and Implementation of Cache Simulation

Figure 23 Cache simulation design

Figure 23 provides an overview of the cache simulation design. The classes are

represented by boxes, the dashed arrows represent inheritance, the solid arrows represent

referencing, and the dotted arrows represent messaging.

4. Design and Implementation of Cache Simulation

67

4.1 Cache Management

The cache management forms the most important part in the cache simulation design. In

the multi-core processor cache hierarchy, we have two categories of caches based on the

cache functionality. The first category is the private cache, which represents every single

level of cache within the core, and the second category is the shared cache, which

represents the shared last level of cache. Both caches share some functions which are

common in every cache memory like request a cached block, allocate a cache block,

resolve a cache coherence request, and write back a modified block. But the difference is

in how each category implements these functions.

For the cache management, we implement an interface which defines all common cache

functions, and both the private cache and the shared cache are implemented as two

classes which have to implement the interface functions. Each class will implement the

interface functions in a way suitable to the cache functionality. Figure 24 shows the UML

class diagram from the cache management. The UML Lab-Yatta tool [42] was used to

generate this and all further class diagrams. The interface ICachemanagement shown on

top defines the common class management functions. The class

PrivateCacheManagement represents the private cache category, and the class

SharedCacheManagement represents the shared cache category.

4. Design and Implementation of Cache Simulation

68

Figure 24 The UML class diagram of cache management

The following table 16 describes the cache management properties which are

implemented in private and shared cache management classes.

4. Design and Implementation of Cache Simulation

69

Table 16 Cache management properties

Property Type Description
cache_size int The size of the cache
block_size int The size of the cache block

number_of_blocks int The number of blocks in the cache
number_of_sets int The number of sets in the cache
associativity int The associativity of the cache set

structure Cache

Structure
The cache structure or organization,

Direct_Map, Fully_Associative, or
Set_Associative

replacement_policy Cache

Replacement

Policy

The replacement policy which is used to

choose the next victim block in the cache

set for replacement in the next miss,

DirectMap where no replacement policy

is used, FIFO, LRU, or PLRU
hierarchy_policy Cache

Hierarchy

Policy

The type of cache hierarchy, Inclusive,

Non_inclusive, Exclusive, or None as

in the first level of cache hierarchy
cache_level Integer The level of the cache in the hierarchy

sets ArrayList

<CacheSet>
List of the cache sets which represents

the cache sets, the index of the array is

also used as the set index for mapping
hits_count int Counter for cache hits

misses_count int Counter for cache misses
conflict_misses_count int Counter for cache misses because of set

conflict
coherence_misses_count int Counter for cache misses because of

coherence protocol
inclusion_misses_count int Counter for cache misses because of

inclusion property
conflict_victim_blocks_

addresses

ArrayList

<String>
List of victim block addresses due to set

conflicts, if any block in the list is

referenced again, the result is a conflict

miss
coherence_victim_blocks

_addresses

ArrayList

<String>
List of victim blocks address due to

coherence protocol, if any block in the

list is referenced again, the result is a

coherence miss
inclusion_victim_blocks

_addresses

ArrayList

<String>
List of victim blocks address due to

inclusion property, if any block in the list

is referenced again, the result is a conflict

miss

4. Design and Implementation of Cache Simulation

70

The interface ICacheManagement defines three functions to manage cache referencing.

The function obtain_data_block is used to get the cache block which contains the

required data for memory access operations. The function serve_coherence_request

performs cache coherence requests from the other cores or the shared cache. The function

write_back_block_to_the_cache performs block write-backs for the evicted blocks

from the upper level cache when the evicted blocks are modified or the hierarchy policy

between the two cache levels is exclusive. Table 16 describes the functions‟ parameters.

Table 17 ICacheManagement functions' parameters

Parameter Type Description
core_index int The index of the core which initiates the

request
request Request

Type
The request type to the cache, Read, Write,

Read_miss, Write_miss, or Invalidate
block_address_parser Address

Parser
The address of the required block

tracer String

Builder
Cache access tracer which records the result of

the access
victim_block Cache

Block
The victim block which is replaced from the

upper level cache

4.1.1 Private Cache Management

Every single level of the core‟s private cache is represented in the simulation by an object

of the class PrivateCacheManagement. The class constructor is used to initialize the

cache parameters. Referring to the sections 2.3 and 2.4, the number of the cache blocks is

calculated by dividing the cache size over the block size. If the cache structure is direct-

mapped, then the number of sets in the cache equals the number of the cache blocks, so

every set holds only one cache block. For full-associative cache structure, there is only

one set, and it holds all cache blocks. Finally, for the set-associative cache structure, the

number of blocks per set equals the associativity, so the number of sets is calculated by

4. Design and Implementation of Cache Simulation

71

dividing the number of blocks by the associativity. The indexed list sets is created

afterwards with a number of CacheSet objects equaling to the calculated number of the

cache sets, each object represents a cache set and contains an ordered list of Cacheblock

objects equaling to the calculated number of blocks.

The class implements the interface ICacheManagement, so it has to implement all of

the functions which are defined in the interface. The function obtain_data_block is

used to get the required cache block, the request type to the cache is here either Read or

Write. As explained in section 2.6, the address of the block is passed to the function as

an object of AddressParser class, the AddressParser is used to parse the block address

to get the tag and index. The index is used to get the cache set from the sets list and

after it the tag is used to retrieve the block from the cache set through the set function

fetch_block(tag). If the fetch function returns the block, then the request hits in the

cache, the hits_count is incremented and a cache hit message is added to the tracer. If

the request type is Write and the block state is Shared, then an invalidate coherence

request is sent through the Core (as we will see later) to the shared cache or to the other

private caches when there is no shared cache, and then the block state is changed to

Modified, referring to table 12, section 3.4. If the fetch function returns null, then the

request misses in the cache, the misses_count is incremented and a cache miss message

is added to the tracer. In case of a cache miss, the cache sends the request to the next

level private cache to obtain the block. If the cache is the last level of the private caches,

a Read_miss or Write_miss coherence request is sent through the Core to shared cache

or to the other cores when there is no shared cache to obtain the block as shown in table

13, section 3.4. The new block is allocated to the related set through the set function

allocate_block(block). The allocate function returns either null when no victim

block is replaced or a victim block chosen based on the replacement policy when the set

is fully occupied by memory blocks. If the victim block state is Modified or the

hierarchy policy with next level cache is Exclusive, the victim block is written back to

the next level cache through the function write_back_block_to_the_cache (see

section 2.9 for cache writing policies). The victim block address is added to

4. Design and Implementation of Cache Simulation

72

conflict_victim_blocks_addresses list, so when the block is referenced again, the

miss will be considered as a miss because of set conflict. One more thing, a request is

sent through the Core to the shared cache (if present) to set the core block tracking bit to

0 because the victim block is not any more present in the core. Considering the cache

hierarchy here as explained in section 2.12, the new block brought to the cache is

forwarded directly to the upper level cache and is not allocated in the intermediate cache

when the hierarchy between the two cache levels is Exclusive. However, in Inclusive

and Non_inclusive hierarchies the block is allocated on both cache levels. If a block is

evicted from Inclusive cache, a back invalidation request is sent from the cache to all

upper level caches, but for Non_inclusive and Exclusive hierarchies no back

invalidation request is sent.

The class has to implement the serve_coherence_request function to serve the

coherence requests sent to the cache from the shared cache or from the other cores when

there is no shared cache. The block address is passed to the function as a parameter. The

block tag and set index are calculated by the AddressParser object and then the related

cache set is accessed to get the required cache block for the coherence request. If the

block is found in the set, the cache responds to the request by the suitable action. As

explained in the table 14 section 3.4, when the coherence request is Read_miss and the

block state is Modified, the block content is written back to the shared cache (if present

and not Exclusive) or memory, the block state is then changed to Shared. When the

coherence request is Write_miss and the block state is Shared, the state is changed to

Invalid. But if the block state is Modified, the block content is written back first to the

shared cache or memory, then the block state is changed to Invalid. For the coherence

request of type Invalidate, if the block state is Shared, the state is changed to Invalid

and the block address is added to coherence_victim_blocks_addresses so when the

block is referenced again, the miss will be considered as a miss because of coherence.

Finally, the coherence request is propagated to all levels of the private cache within the

core to make sure that all levels perform the coherence request.

4. Design and Implementation of Cache Simulation

73

The class has to implement the function write_back_block_to_cache which performs

the write back for the replaced block from the upper level cache. The victim block is

passed as a parameter to the function. The state of the victim block can be Modified, so

its content needs to be written, or it can be Shared and the block needs to be allocated in

the cache because of the Exclusive cache hierarchy between the two levels. Firstly, the

block is fetched from the related set using the fetch_block(tag) function. If the block

is present, then its state is updated with the victim block state, otherwise, the victim block

is allocated to the set using the set function allocate_block(block), which could result

in a new victim block. The new victim block can be handled in the same way as

explained in the function obtain_data_block.

The class member function back_invalidation_from_inclusive_cache is used to

perform the back invalidation requests from the lower levels of cache when the cache

hierarchy there is Inclusive. The function receives as a parameter the address of the

block to invalidate. The block is fetched from the related set. If the block is present and

its state is Shared the state is changed to Invalid. When the block state is Modified, the

block content is written back first, then its state is changed to Invalid. The block address

is added to inclusion_victim_blocks_addresses list, so when the block is referenced

again, the miss will be considered as a miss because of inclusion property. Finally, the

invalidate request is propagated to the next level invalidate function to make sure that the

block is invalidated in all levels of the private cache within the core.

The class member function is_the_block_located_in_the_cache is used by Core to check

if a block is present in any level of the core private cache. The block address is passed as

a parameter to the function, then the block is fetched from the related set, if the block is

present the function returns true, otherwise the block is not present and the function

returns false.

4. Design and Implementation of Cache Simulation

74

4.1.2 Shared Cache Management

The shared last level of cache is represented in the simulation by a single object of the

class SharedCacheManagement. As explained in section 3.4, the shared last level of

cache is used in the coherence scheme to minimize the number of the sent coherence

messages through the bus. The cache keeps a directory entry in the shared cache for every

cached block in the cores‟ private caches. The DirectoryEntry object can be stored with

the Cacheblock object at the shared cache when the cache hierarchy is Inclusive, or it

can be stored in a separate Directory structure when the cache hierarchy is

Non_inclusive or Exclusive.

The SharedCacheManagement class has to implement the functions of the interface

ICacheManagement. The class constructor does almost the same things as in the

PrivateCacheManagement class. The class implements the obtain_data_block

function which is used by the cores to obtain the data block when the block is not present

in the private cache. If the cache hierarchy is Non_inclusive or Exclusive, the

Directory hash table is used to retrieve the block directory entry. The block tag is used

as a hash Key and the hash Value is the directory entry object. If the block directory entry

is found in the Directory, then the block is cached in at least one private cache. The

directory entry contains the block state and cores_tracking_bits array. If the state of

the block is Shared and the request type is Read_miss the requesting core‟s bit in the

cores_tracking_bits array is set to 1. If the request type is Write_miss, then the cache

forwards the Write_miss request to cores in the cores_tracking_bits, after that, the

state in the directory entry is changed to Modified and only the requesting core‟s bit is

set to 1. If the state in the entry is Modified and the request type is Read_miss, the cache

forwards the Read_miss request to the only core which has the block, the block state is

changed to Modified and the requesting core‟s bit in the cores_tracking_bits array is

set to 1. If the request is Write_miss, the cache also forwards the Write_miss request to

the only core which has the block and only the requesting core‟s bit is set to 1. When the

Directory does not have an entry for the block, the related cache set is searched for the

4. Design and Implementation of Cache Simulation

75

block. If the block is present in the cache, then it is forwarded to the requesting core, and

invalidated in the shared cache if the cache hierarchy is Exclusive, otherwise, the block

is fetched from the memory if it is not present in the cache. A new directory entry for the

block is added to the Directory hash table with Shared state if the request type is

Read_miss, or Modified if the request type is Write_miss, also the requesting core‟s bit

in the cores_tracking_bits array is set to 1. For the Inclusive cache hierarchy, the

block directory entry is stored within the block. Firstly, the block is fetched from the

cache set, then the block directory entry is retrieved using the block function

get_snoop_filter(). After getting the directory entry, the request is served in the same

way as explained before with the Exclusive cache. If the block is not present in the

cache, it is fetched from the memory, allocated in the cache, and then forwarded to the

requesting core. If the block allocation results in a victim block, and the victim block

state is Shared, the cache forwards an Invalidate request to cores in the

cores_tracking_bits of the victim block then the victim block is written back to the

memory if the Dirty bit is set to 1.

The class has to implement the serve_coherence_request function which is used by

the core to send invalidate requests to the other cores‟ private caches. The block‟s

directory entry can be obtained either from the Directory hash table or from the block

depending on the cache hierarchy as explained before. The invalidate request is

forwarded to cores in the cores_tracking_bits, after that, the state in the directory

entry is changed to Modified and only the requesting core‟s bit is set to 1.

The class has to implement the write_back_block_to_cache function which is used to

write back the evicted blocks from the private caches to the shared cache. If the cache

hierarchy is Inclusive and the victim block state is Modified, the cache block Dirty bit

is set to 1. If the cache hierarchy is Exclusive and no other private cache has a copy of

the victim block, then the victim block is allocated in the shared cache.

4. Design and Implementation of Cache Simulation

76

4.1.3 Cache Set and Cache Replacement Policies

Every cache set is represented in the simulation by an object of the class CacheSet. The

class implements an ordered list of blocks which represent the blocks held by the set. As

explained in section 2.8, the order is used by the ReplacementPolicy to select a victim

for replacement when the cache is full. Figure 25 shows the class diagram for the

CacheSet class and the IReplacementPolicy interface, the figure also shows the class

diagrams for all implemented replacement policies in the simulation, all replacement

policy classes implement the IReplacementPolicy interface. The class constructor

function is used to create the blocks list with the calculated number of blocks and the

replacement_policy object which can be an object of any replacement policy classes.

The replacement policy class updates the order of the blocks in blocks list based on the

implemented replacement policy.

The class member function fetch_block(tag, request) is used by the cache

management to fetch a cache block from the set. The blocks list is searched to look for

the block. When a block with the same tag and with state other than Invalid is found in

the list, a copy of that block is returned. The replacement_policy updates the order of

the blocks list through the function update_replacement_policy(block) only when

the request is Read or Write.

The class member function allocate_block(block) is used by the cache management

to allocate a cache block to the set. The replacement_policy is used to get a victim

block through the function get_victim_block to replace it with the new block. Invalid

blocks are replaced first, and when the list is full a valid block is chosen for replacement

based on the replacement policy. The data of the new block is filled to the victim block

and a copy of the victim block is returned to the cache management.

The class member function update_block(newBlock) is used by the cache management

to update the data of an existing block in the set with a new block data.

4. Design and Implementation of Cache Simulation

77

The class member function is_block_present(tag) is used to check whether a block is

present in the set: if it is, true is returned, otherwise false.

Figure 25 Cache set and replacement policies class diagram

4.1.4 Cache Blocks

Every cache block is represented in the simulation by an object of the class CacheBlock.

Figure 26 shows the class diagram for both CacheBlock and DirectoryEntry classes. If

4. Design and Implementation of Cache Simulation

78

the block belongs to a shared inclusive cache, then the block‟s directory entry is stored

within the block through snoop_filter class local variable.

Figure 26 Cache block and directory entry class diagram

4. Design and Implementation of Cache Simulation

79

4.1.5 Address Parser

The AddressParser class is used to parse the block address to get the block tag and the

set index. To parse a block address within a cache the function parse(block_size,

number_of_sets, structure). The parsing method is explained in section 2.6.

Figure 27 Address Parser class diagram

4.2 Processor Cores

The Core class represents the core processor in the simulation. The core has

private_cache which points to the first level of private cache and shared_cache which

points to the shared last level of caches (if present). The following figure 27 shows the

class diagram of the Core class.

4. Design and Implementation of Cache Simulation

80

Figure 28 Core class diagram

The class member functions read(address)/write(address) are used by the Simulator

class to perform core memory read operation. The memory address is passed to the

function as a parameter. First the function checks the memory address using the address

parser class. When the address is valid, the function obtain_data_block() of the core

private cache is called to perform the memory access. The obtain function takes as

parameters the core index, the block address, the request type Read/Write, and the

memory access tracer. If the core does not have private cache, the shares cache

obtain_data_block() function is called to obtain the block.

 The class member function obtain_coherence_request() is used by the core private

cache levels to send a coherence requests to the shared cache (if present) or to broadcast

it to the other cores.

The class member function perform_coherence_request()is used by the other cores or

the shared cache (if present) to forward the coherence requests to the core‟s private

cache.

4. Design and Implementation of Cache Simulation

81

The member function update_block_directory_entry() is used by the core private cache

levels to send coherence request to the shared cache (if present) to reset the core‟s

tracking bit to 0, for some block evicted from the private cache.

4.3 Simulator

The Simulator class is used to construct the cache simulation objects and to run the

simulation. Fugire 29 shows the class diagram for the simulator class.

Figure 29 Simulator class diagram

The simulator uses XML format input to define the cache structure. It also applies a

predefined XML-schema for structuring and validating the XML cache structure input

format. The main() function creates a new object of the Simulator class and calls the

class constructor. In the constructor the function parse_xml_cache_config(

xmlDocument) is called first to validate the input xmlDocument for cache structure with

the predefined cache structure XML-schema, if the input XML matches the XML-

schema, the input XML is parsed to build the cache structure. The function

perform_memory_access(FileReader) is called to read the simulator memory access

4. Design and Implementation of Cache Simulation

82

list input file, then parse it and start the simulation. The following listing 1 shows the

cache structure XML-schema.

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs=http://www.w3.org/2001/XMLSchema

elementFormDefault="qualified">

<xs:element name="simulator">

<xs:complexType>

<xs:sequence>

<xs:element name="cores" type="coresType" minOccurs="1"

maxOccurs="1" />

<xs:element name="caches" type="cachesType" minOccurs="1"

maxOccurs="1" />

</xs:sequence>

<xs:attribute name="address_width" type="xs:integer" use="required" />

<xs:attribute name="block_size" type="xs:string" use="required" />

</xs:complexType>

</xs:element>

<xs:complexType name="coresType">

<xs:sequence>

<xs:element name="core" type="coreType" minOccurs="1"

maxOccurs="unbounded" />

</xs:sequence>

</xs:complexType>

<xs:complexType name="coreType">

<xs:attribute name="id" type="xs:ID" use="required" />

</xs:complexType>

<xs:complexType name="cachesType">

<xs:sequence>

<xs:element name="private_cache" type="privateCacheTypye"

minOccurs="0" maxOccurs="1" />

<xs:element name="shared_cache" type="sharedCacheTypye"

minOccurs="0" maxOccurs="1" />

</xs:sequence>

</xs:complexType>

<xs:complexType name="privateCacheTypye">

<xs:sequence>

<xs:element name="cache" type="cacheType" minOccurs="1"

maxOccurs="unbounded" />

</xs:sequence>

</xs:complexType>

<xs:complexType name="sharedCacheTypye">

<xs:sequence>

<xs:element name="cache" type="cacheType" minOccurs="0"

maxOccurs="1" />

</xs:sequence>

</xs:complexType>

Listing 1 Cache structure XML-schema

http://www.w3.org/2001/XMLSchema

4. Design and Implementation of Cache Simulation

83

Listing 1 Cache structure XML-schema (continued)

4.3.1 Simulator Input

As we mentioned before, the simulator has two input files. The first one is the cache

structure in XML format. The second one is the simulator memory access list, every line

in the list has a memory operation in a predefined format. Listing 2 shows an example of

<xs:complexType name="cacheType">

<xs:attribute name="level" type="xs:integer" use="required" />

<xs:attribute name="cache_size" type="xs:string" use="required" />

<xs:attribute name="cache_structure" type="cacheStructureType"

use="required" />

<xs:attribute name="associativity" type="xs:integer"

use="optional"/>

<xs:attribute name="replacement_policy"

type="replacementPolicyType" use="optional" />

<xs:attribute name="cache_hierarchy" type="hierarchyType"

use="required" />

</xs:complexType>

<xs:simpleType name="cacheStructureType" final="restriction">

 <xs:restriction base="xs:string">

 <xs:enumeration value="DM" />

 <xs:enumeration value="FA" />

 <xs:enumeration value="SA" />

 </xs:restriction>

</xs:simpleType>

<xs:simpleType name="replacementPolicyType" final="restriction">

 <xs:restriction base="xs:string">

 <xs:enumeration value="FIFO" />

 <xs:enumeration value="LRU" />

 <xs:enumeration value="PLRU" />

 </xs:restriction>

</xs:simpleType>

<xs:simpleType name="hierarchyType" final="restriction">

 <xs:restriction base="xs:string">

 <xs:enumeration value="inclusive" />

 <xs:enumeration value="non-inclusive" />

 <xs:enumeration value="exclusive" />

 <xs:enumeration value="none" />

 </xs:restriction>

</xs:simpleType>

</xs:schema>

4. Design and Implementation of Cache Simulation

84

cache structure in XML while listing 3 shows an example of memory access list. Notice

that the core_Ids in the cache structure XML is the same as in the memory access list.

C0 Read [0x1210]

C1 Read [0x1213]

C0 Read [0x2352]

C1 Write [0x1213]

C0 Read [0x1210]

<?xml version="1.0" encoding="UTF-8"?>

<simulator address_width="16" block_size="4 B">

<cores>

 <core id="c0" />

 <core id="c1" />

</cores>

<caches>

<private_cache>

 <cache level="1" cache_size="32 B" cache_structure="SA"

associativity="2" replacement_policy="LRU"

cache_hierarchy="none" />

</private_cache>

<shared_cache>

 <cache level="2" cache_size="64 B" cache_structure="SA"

associativity="4" replacement_policy="LRU"

cache_hierarchy="inclusive" />

</shared_cache>

</caches>

</simulator>

Listing 2 Cache structure XML format

Listing 3 Memory access list

4. Design and Implementation of Cache Simulation

85

4.3.2 Simulator Input Validation

The following java code in listing 4 is used to match the input cache structure in XML

with the XML-schema. If the input XML is not matched with the schema, the code

throws an exception.

When the XML input of the cache structure is valid, the XML is parsed to get the

information about the simulated cache structure. The XML includes the list of cores and

cache levels (private/shared) with the cache parameters of each level like the level

number, the cache size, the cache structure (DM: direct-mapped, FA: fully-associative, or

SA: set-associative), the associativity, the replacement policy (FIFO, LRU, or PLRU),

and the cache hierarchy policy (inclusive, non-inclusive, exclusive, or none for the first

level of cache).

try {

// define XML schema object to validate the cache simulator XML input

configuration

SchemaFactory schemaFactory =

SchemaFactory.newInstance(XMLConstants.W3C_XML_SCHEMA_NS_URI);

// the name of schema file is cache_system_schema.xsd

Schema schema = schemaFactory.newSchema(

new File("simulator_xml_schema.xsd"));

DocumentBuilderFactory parserFactory =

DocumentBuilderFactory.newInstance();

parserFactory.setSchema(schema);

parserFactory.setIgnoringElementContentWhitespace(true);

parserFactory.setIgnoringComments(true);

DocumentBuilder documentBuilder = parserFactory.newDocumentBuilder();

// the name of the XML input configuration file

Document document = documentBuilder.parse(

new File("cache_config.xml"));

}

catch (Exception e) {

System.out.println(e.getMessage());

}

Listing 4 Java code for cache structure XML validation with the XML-schema

4. Design and Implementation of Cache Simulation

86

After parsing the XML, the simulation objects (cores and caches) are created to start the

simulation. Figure 30 shows the simulation object diagram for the cache structure XML

shown in listing 2.

Figure 30 Simulation object diagram

4.3.3 Simulator Output

The simulation output is a list of traces for every memory access operation. Each trace

contains the operation itself and the result of every cache level access (Hit/Miss). The

trace includes also the block state in the cache when it is a hit, and the block allocation,

and victim block replacement when the block is a miss. The sent coherence messages are

also included. Listing 5 shows the simulation output for the cache structure and memory

access list shown respectively in listing 2 and listing 3. The simulation also provides

counts of hits and misses in each cache level.

4. Design and Implementation of Cache Simulation

87

core C0 Read [0x1210]:

C0 L1 private cache Miss

L2 shared cache Miss

L2 shared cache, allocate block, block address: 0x0484, new block state: Shared

, core tracking bits: 10

C0 L1 private cache, allocate block, block address: 0x0484, block state: Shared

core C1 Read [0x1213]:

C1 L1 private cache Miss

L2 shared cache Hit, block address: 0x0484, block state: Shared , core tracking

bits: 10

L2 shared cache, block address: 0x0484, new block state: Shared , core tracking

bits: 11

C1 L1 private cache, allocate block, block address: 0x0484, block state: Shared

core C0 Read [0x2352]:

C0 L1 private cache Miss

L2 shared cache Miss

L2 shared cache, allocate block, block address: 0x08D4, new block state: Shared

, core tracking bits: 10

C0 L1 private cache, allocate block, block address: 0x08D4, block state: Shared

core C1 Write [0x1213]:

C1 L1 private cache data request Hit, block address: 0x0484, block state:

Shared

C1 send block invalidate request to shared cache, block address: 0x0484

L2 shared cache, block address: 0x0484, block state: Shared , core tracking

bits: 11

L2 shared cache, forward invalidate request to core C0, block address: 0x0484

C0 L1 private cache, invalidate block, block address: 0x0484, block state:

Shared

C0 L1 private cache, block address: 0x0484, block new state: Invalid

L2 shared cache, block address: 0x0484, new block state: Modified , core

tracking bits: 01

C1 L1 private cache, block address: 0x0484, block new state: Modified

core C0 Read [0x1210]:

C0 L1 private cache Miss

L2 shared cache Hit, block address: 0x0484, block state: Modified , core

tracking bits: 01

L2 shared cache, forward Read miss request to core C1, block address: 0x0484

C1 L1 private cache, write back block, block address: 0x0484, block state:

Modified

C1 L1 private cache, block address: 0x0484, block new state: Shared

L2 shared cache, block address: 0x0484, new block state: Shared , core tracking

bits: 11

C0 L1 private cache, allocate block, block address: 0x0484, block state: Shared

Listing 5 Simulation output

5. Testing and Simulation Result

88

5 Tests and Simulation Results

5.1 Test Cache Configurations

For testing the cache configuration, we will use the example which is discussed in section

2.7. The used cache size in all cases is 64 byte, the block size is 16 byte, and the address

width is 16 bits. The following memory access list in listing 6 is used in the simulation.

5.1.1 Direct-Mapped Cache

Listing 7 shows the direct-mapped cache structure and listing 8 shows the simulation

output.

<?xml version="1.0" encoding="UTF-8"?>

<simulator address_width="16" block_size="16 B">

<cores>

<core id="c0" />

</cores>

<caches>

<private_cache>

<cache level="1" cache_size="64 B" cache_structure="DM"

cache_hierarchy="none" />

</private_cache>

</caches>

</simulator>

C0 Read [0x1234]

C0 Read [0x123C]

C0 Read [0x1240]

C0 Read [0x1270]

C0 Read [0x1234]

C0 Read [0x1232]

C0 Read [0x1248]

C0 Read [0x12C8]

C0 Read [0x1248]

C0 Read [0x1244]

Listing 6 Memory access list for testing cache configurations

Listing 7 Direct-Mapped cache XML

5. Testing and Simulation Result

89

The simulation results are the same as in the table 2 on page 27.

core C0 Read [0x1234]:

C0 L1 private cache Miss

C0 L1 private cache, allocate block, block address: 0x123, block state: Shared

core C0 Read [0x123C]:

C0 L1 private cache data request Hit, block address: 0x123, block state: Shared

C0 L1 private cache, block address: 0x123, block new state: Shared

core C0 Read [0x1240]:

C0 L1 private cache Miss

C0 L1 private cache, allocate block, block address: 0x124, block state: Shared

core C0 Read [0x1270]:

C0 L1 private cache Miss

C0 L1 private cache, allocate block, block address: 0x127, block state: Shared

C0 L1 private cache, victim block for replacement, block address: 0x123, block

state: Shared

core C0 Read [0x1234]:

C0 L1 private cache Miss

C0 L1 private cache, allocate block, block address: 0x123, block state: Shared

C0 L1 private cache, victim block for replacement, block address: 0x127, block

state: Shared

core C0 Read [0x1232]:

C0 L1 private cache data request Hit, block address: 0x123, block state: Shared

C0 L1 private cache, block address: 0x123, block new state: Shared

core C0 Read [0x1248]:

C0 L1 private cache data request Hit, block address: 0x124, block state: Shared

C0 L1 private cache, block address: 0x124, block new state: Shared

core C0 Read [0x12C8]:

C0 L1 private cache Miss

C0 L1 private cache, allocate block, block address: 0x12C, block state: Shared

C0 L1 private cache, victim block for replacement, block address: 0x124, block

state: Shared

core C0 Read [0x1248]:

C0 L1 private cache Miss

C0 L1 private cache, allocate block, block address: 0x124, block state: Shared

C0 L1 private cache, victim block for replacement, block address: 0x12C, block

state: Shared

core C0 Read [0x1244]:

C0 L1 private cache data request Hit, block address: 0x124, block state: Shared

C0 L1 private cache, block address: 0x124, block new state: Shared

Listing 8 Direct-Mapped cache simulation output

5. Testing and Simulation Result

90

5.1.2 Fully-Associative Cache

Listing 9 shows the fully-associative cache structure and listing 10 shows the simulation

output.

<?xml version="1.0" encoding="UTF-8"?>

<simulator address_width="16" block_size="16 B">

<cores>

<core id="c0" />

</cores>

<caches>

<private_cache>

<cache level="1" cache_size="64 B" cache_structure="FA"

replacement_policy="LRU" cache_hierarchy="none" />

</private_cache>

</caches>

</simulator>

core C0 Read [0x1234]:

C0 L1 private cache Miss

C0 L1 private cache, allocate block, block address: 0x123, block state: Shared

core C0 Read [0x123C]:

C0 L1 private cache data request Hit, block address: 0x123, block state: Shared

C0 L1 private cache, block address: 0x123, block new state: Shared

core C0 Read [0x1240]:

C0 L1 private cache Miss

C0 L1 private cache, allocate block, block address: 0x124, block state: Shared

core C0 Read [0x1270]:

C0 L1 private cache Miss

C0 L1 private cache, allocate block, block address: 0x127, block state: Shared

core C0 Read [0x1234]:

C0 L1 private cache data request Hit, block address: 0x123, block state: Shared

C0 L1 private cache, block address: 0x123, block new state: Shared

core C0 Read [0x1232]:

C0 L1 private cache data request Hit, block address: 0x123, block state: Shared

C0 L1 private cache, block address: 0x123, block new state: Shared

core C0 Read [0x1248]:

C0 L1 private cache data request Hit, block address: 0x124, block state: Shared

C0 L1 private cache, block address: 0x124, block new state: Shared

Listing 9 Fully-Associative cache XML

Listing 10 Fully-Associative cache simulation output

5. Testing and Simulation Result

91

Listing 10 Fully-Associative cache simulation output (continued)

The simulation results are the same as in the table 6 on page 28.

5.1.3 Two-way Set-Associative Cache

Listing 11 shows the two-way set-associative cache structure and listing 12 shows the

simulation output.

core C0 Read [0x1234]:

C0 L1 private cache Miss

C0 L1 private cache, allocate block, block address: 0x123, block state: Shared

core C0 Read [0x123C]:

C0 L1 private cache data request Hit, block address: 0x123, block state: Shared

C0 L1 private cache, block address: 0x123, block new state: Shared

<?xml version="1.0" encoding="UTF-8"?>

<simulator address_width="16" block_size="16 B">

<cores>

<core id="c0" />

</cores>

<caches>

<private_cache>

<cache level="1" cache_size="64 B" cache_structure="SA"

associativity="2" replacement_policy="LRU" cache_hierarchy="none" />

</private_cache>

</caches>

</simulator>

core C0 Read [0x12C8]:

C0 L1 private cache Miss

C0 L1 private cache, allocate block, block address: 0x12C, block state: Shared

core C0 Read [0x1248]:

C0 L1 private cache data request Hit, block address: 0x124, block state: Shared

C0 L1 private cache, block address: 0x124, block new state: Shared

core C0 Read [0x1244]:

C0 L1 private cache data request Hit, block address: 0x124, block state: Shared

C0 L1 private cache, block address: 0x124, block new state: Shared

Listing 11 Two-way set-associative cache XML

Listing 12 Two-way set-associative cache simulation output

5. Testing and Simulation Result

92

Listing 12 Two-way set-associative cache simulation output (continued)

The simulation results are the same as in the table 4 on page 28.

5.2 Test Cache Replacement Policies

In replacement policy tests we will consider the examples which are discussed in section

2.8. The following memory access list in listing 13 is used in the simulation.

C0 Read [0x0A00]

C0 Read [0x0B00]

C0 Read [0x0C00]

C0 Read [0x0D00]

C0 Read [0x0E00]

C0 Read [0x0B00]

C0 Read [0x0A00]

C0 Read [0x0F00]

core C0 Read [0x1240]:

C0 L1 private cache Miss

C0 L1 private cache, allocate block, block address: 0x124, block state: Shared

core C0 Read [0x1270]:

C0 L1 private cache Miss

C0 L1 private cache, allocate block, block address: 0x127, block state: Shared

core C0 Read [0x1234]:

C0 L1 private cache data request Hit, block address: 0x123, block state: Shared

C0 L1 private cache, block address: 0x123, block new state: Shared

core C0 Read [0x1232]:

C0 L1 private cache data request Hit, block address: 0x123, block state: Shared

C0 L1 private cache, block address: 0x123, block new state: Shared

core C0 Read [0x1248]:

C0 L1 private cache data request Hit, block address: 0x124, block state: Shared

C0 L1 private cache, block address: 0x124, block new state: Shared

core C0 Read [0x12C8]:

C0 L1 private cache Miss

C0 L1 private cache, allocate block, block address: 0x12C, block state: Shared

core C0 Read [0x1248]:

C0 L1 private cache data request Hit, block address: 0x124, block state: Shared

C0 L1 private cache, block address: 0x124, block new state: Shared

core C0 Read [0x1244]:

C0 L1 private cache data request Hit, block address: 0x124, block state: Shared

C0 L1 private cache, block address: 0x124, block new state: Shared

Listing 13 Memory access list for testing replacement policies

5. Testing and Simulation Result

93

5.2.1 LRU Replacement Policy

Listing 14 shows the four-way set-associative cache structure with LRU replacement

policy and listing 15 shows the simulation output.

core C0 Read [0xA00]:

C0 L1 private cache Miss

C0 L1 private cache, allocate block, block address: 0x0A0, block state: Shared

core C0 Read [0xB00]:

C0 L1 private cache Miss

C0 L1 private cache, allocate block, block address: 0x0B0, block state: Shared

core C0 Read [0xC00]:

C0 L1 private cache Miss

C0 L1 private cache, allocate block, block address: 0x0C0, block state: Shared

core C0 Read [0xD00]:

C0 L1 private cache Miss

C0 L1 private cache, allocate block, block address: 0x0D0, block state: Shared

core C0 Read [0xE00]:

C0 L1 private cache Miss

C0 L1 private cache, allocate block, block address: 0x0E0, block state: Shared

C0 L1 private cache, victim block for replacement, block address: 0x0A0, block

state: Shared

core C0 Read [0xB00]:

C0 L1 private cache data request Hit, block address: 0x0B0, block state: Shared

C0 L1 private cache, block address: 0x0B0, block new state: Shared

<?xml version="1.0" encoding="UTF-8"?>

<simulator address_width="16" block_size="16 B">

<cores>

<core id="c0" />

</cores>

<caches>

<private_cache>

<cache level="1" cache_size="1 KB" cache_structure="SA"

associativity="4" replacement_policy="LRU" cache_hierarchy="none" />

</private_cache>

</caches>

</simulator>

Listing 14 Cache structure XML with LRU replacement policy

Listing 15 LRU cache simulation output

5. Testing and Simulation Result

94

Listing 15 LRU cache simulation output (continued)

The simulation results are the same as in the table 8 on page 31.

5.2.2 FIFO Replacement Policy

The same cache structure is used to simulate FIFO replacement policy. Listing 16 shows

the simulation output.

core C0 Read [0xA00]:

C0 L1 private cache Miss

C0 L1 private cache, allocate block, block address: 0x0A0, block state: Shared

core C0 Read [0xB00]:

C0 L1 private cache Miss

C0 L1 private cache, allocate block, block address: 0x0B0, block state: Shared

core C0 Read [0xC00]:

C0 L1 private cache Miss

C0 L1 private cache, allocate block, block address: 0x0C0, block state: Shared

core C0 Read [0xD00]:

C0 L1 private cache Miss

C0 L1 private cache, allocate block, block address: 0x0D0, block state: Shared

core C0 Read [0xE00]:

C0 L1 private cache Miss

C0 L1 private cache, allocate block, block address: 0x0E0, block state: Shared

C0 L1 private cache, victim block for replacement, block address: 0x0A0, block

state: Shared

core C0 Read [0xB00]:

C0 L1 private cache data request Hit, block address: 0x0B0, block state: Shared

C0 L1 private cache, block address: 0x0B0, block new state: Shared

core C0 Read [0xA00]:

C0 L1 private cache Miss

C0 L1 private cache, allocate block, block address: 0x0A0, block state: Shared

C0 L1 private cache, victim block for replacement, block address: 0x0C0, block

state: Shared

core C0 Read [0xF00]:

C0 L1 private cache Miss

C0 L1 private cache, allocate block, block address: 0x0F0, block state: Shared

C0 L1 private cache, victim block for replacement, block address: 0x0D0, block

state: Shared

Listing 16 FIFO cache simulation output

5. Testing and Simulation Result

95

Listing 16 FIFO cache simulation output (continued)

The simulation results are the same as in the table 9 on page 32.

5.2.3 PLRU Replacement Policy

The same cache structure is also used to simulate PLRU replacement policy. Listing 17

shows the simulation output.

core C0 Read [0xA00]:

C0 L1 private cache Miss

C0 L1 private cache, allocate block, block address: 0x0A0, block state: Shared

core C0 Read [0xB00]:

C0 L1 private cache Miss

C0 L1 private cache, allocate block, block address: 0x0B0, block state: Shared

core C0 Read [0xC00]:

C0 L1 private cache Miss

C0 L1 private cache, allocate block, block address: 0x0C0, block state: Shared

core C0 Read [0xD00]:

C0 L1 private cache Miss

C0 L1 private cache, allocate block, block address: 0x0D0, block state: Shared

core C0 Read [0xE00]:

C0 L1 private cache Miss

C0 L1 private cache, allocate block, block address: 0x0E0, block state: Shared

C0 L1 private cache, victim block for replacement, block address: 0x0A0, block

state: Shared

core C0 Read [0xB00]:

C0 L1 private cache data request Hit, block address: 0x0B0, block state: Shared

C0 L1 private cache, block address: 0x0B0, block new state: Shared

core C0 Read [0xA00]:

C0 L1 private cache Miss

C0 L1 private cache, allocate block, block address: 0x0A0, block state: Shared

C0 L1 private cache, victim block for replacement, block address: 0x0B0, block

state: Shared

core C0 Read [0xF00]:

C0 L1 private cache Miss

C0 L1 private cache, allocate block, block address: 0x0F0, block state: Shared

C0 L1 private cache, victim block for replacement, block address: 0x0C0, block

state: Shared

Listing 17 PLRU cache simulation output

5. Testing and Simulation Result

96

Listing 17 PLRU cache simulation output (continued)

The simulation results are the same as in the Figure 9 on page 35.

5.3 Test Cache Structure on Multi-Core Processors

A multi-core processor with two cores is used to test the cache hierarchy at the shared last

level cache. The following listing 18 shows the cache structure of the multi-core

processor.

<?xml version="1.0" encoding="UTF-8"?>

<simulator address_width="16" block_size="4 B">

<cores>

 <core id="c0" />

 <core id="c1" />

</cores>

<caches>

<private_cache>

 <cache level="1" cache_size="32 B" cache_structure="SA"

associativity="2" replacement_policy="LRU"

cache_hierarchy="none" />

</private_cache>

<shared_cache>

 <cache level="2" cache_size="64 B" cache_structure="SA"

associativity="4" replacement_policy="LRU"

cache_hierarchy="inclusive" />

</shared_cache>

</caches>

</simulator>

core C0 Read [0xA00]:

C0 L1 private cache Miss

C0 L1 private cache, allocate block, block address: 0x0A0, block state: Shared

C0 L1 private cache, victim block for replacement, block address: 0x0C0, block

state: Shared

core C0 Read [0xF00]:

C0 L1 private cache Miss

C0 L1 private cache, allocate block, block address: 0x0F0, block state: Shared

C0 L1 private cache, victim block for replacement, block address: 0x0E0, block

state: Shared

Listing 18 Cache structure XML for multi-core processor with two cores

5. Testing and Simulation Result

97

The following memory access list in listing 19 is used in the multi-core cache simulation.

5.3.1 Inclusive Cache Hierarchy at the Shared Last Level of Cache

Using the memory access list defined in listing 19 for the simulation, listing 20 shows the

simulation result of a system containing a shared inclusive cache.

C0 Read [0x1210]

C1 Read [0x1213]

C0 Read [0x2352]

C1 Write[0x1213]

C0 Read [0x1210]

C0 Read [0x2213]

C1 Read [0x2351]

C0 Read [0x2522]

C1 Read [0x3452]

C1 Read [0x1210]

core C0 Read [0x1210]:

C0 L1 private cache Miss

L2 shared cache Miss

L2 shared cache, allocate block, block address: 0x0484, new block state: Shared

, core tracking bits: 10

C0 L1 private cache, allocate block, block address: 0x0484, block state: Shared

core C1 Read [0x1213]:

C1 L1 private cache Miss

L2 shared cache Hit, block address: 0x0484, block state: Shared , core tracking

bits: 10

L2 shared cache, block address: 0x0484, new block state: Shared , core tracking

bits: 11

C1 L1 private cache, allocate block, block address: 0x0484, block state: Shared

core C0 Read [0x2352]:

C0 L1 private cache Miss

L2 shared cache Miss

L2 shared cache, allocate block, block address: 0x08D4, new block state: Shared

, core tracking bits: 10

C0 L1 private cache, allocate block, block address: 0x08D4, block state: Shared

core C1 Write [0x1213]:

C1 L1 private cache data request Hit, block address: 0x0484, block state:

Shared

C1 send block invalidate request to shared cache, block address: 0x0484

L2 shared cache, block address: 0x0484, block state: Shared , core tracking

bits: 11

Listing 19 Memory access list for testing cache hierarchy

Listing 20 Inclusive cache hierarchy simulation output

5. Testing and Simulation Result

98

Listing 20 Inclusive cache hierarchy simulation output (continued)

L2 shared cache, forward invalidate request to core C0, block address: 0x0484

C0 L1 private cache, invalidate block, block address: 0x0484, block state:

Shared

C0 L1 private cache, block address: 0x0484, block new state: Invalid

L2 shared cache, block address: 0x0484, new block state: Modified , core

tracking bits: 01

C1 L1 private cache, block address: 0x0484, block new state: Modified

core C0 Read [0x1210]:

C0 L1 private cache Miss

L2 shared cache Hit, block address: 0x0484, block state: Modified , core

tracking bits: 01

L2 shared cache, forward Read miss request to core C1, block address: 0x0484

C1 L1 private cache, write back block, block address: 0x0484, block state:

Modified

C1 L1 private cache, block address: 0x0484, block new state: Shared

L2 shared cache, block address: 0x0484, new block state: Shared , core tracking

bits: 11

C0 L1 private cache, allocate block, block address: 0x0484, block state: Shared

core C0 Read [0x2213]:

C0 L1 private cache Miss

L2 shared cache Miss

L2 shared cache, allocate block, block address: 0x0884, new block state: Shared

, core tracking bits: 10

C0 L1 private cache, allocate block, block address: 0x0884, block state: Shared

C0 L1 private cache, victim block for replacement, block address: 0x08D4, block

state: Shared

L2 shared cache, update core tracking bits, block address: 0x08D4, new block

state: Shared , core tracking bits: 00

core C1 Read [0x2351]:

C1 L1 private cache Miss

L2 shared cache Hit, block address: 0x08D4, block state: Shared , core tracking

bits: 00

L2 shared cache, block address: 0x08D4, new block state: Shared , core tracking

bits: 01

C1 L1 private cache, allocate block, block address: 0x08D4, block state: Shared

core C0 Read [0x2522]:

C0 L1 private cache Miss

L2 shared cache Miss

L2 shared cache, allocate block, block address: 0x0948, new block state: Shared

, core tracking bits: 10

C0 L1 private cache, allocate block, block address: 0x0948, block state: Shared

C0 L1 private cache, victim block for replacement, block address: 0x0484, block

state: Shared

L2 shared cache, update core tracking bits, block address: 0x0484, new block

state: Shared , core tracking bits: 01

5. Testing and Simulation Result

99

Listing 20 Inclusive cache hierarchy simulation output (continued)

The simulation results show each core was first sending the coherence requests to the

shared cache, then the shared cache forwarded them to the core. The core C0 had one

coherence miss happening at the operation C0 Read [0x1210], because the block was

invalidated by C1 after the operation C1 Write [0x1213]. The core C1 had one inclusion

miss resulting from the operation C1 Read [0x1210], because the block was invalidated

core C1 Read [0x3452]:

C1 L1 private cache Miss

L2 shared cache Miss

L2 shared cache, allocate block, block address: 0x0D14, new block state: Shared

, core tracking bits: 01

L2 shared cache, victim block for replacement, block address: 0x0484, is dirty:

true, block state: Shared , core tracking bits: 01

C1 L1 private cache, back invalidate block (inclusion), block address: 0x0484,

block state: Shared

L2 shared cache, write back block to memory, block address: 0x0484

C1 L1 private cache, allocate block, block address: 0x0D14, block state: Shared

core C1 Read [0x1210]:

C1 L1 private cache Miss

L2 shared cache Miss

L2 shared cache, allocate block, block address: 0x0484, new block state: Shared

, core tracking bits: 01

L2 shared cache, victim block for replacement, block address: 0x0884, is dirty:

false, block state: Shared , core tracking bits: 10

C1 L1 private cache, back invalidate block (inclusion), block address: 0x0884,

block state: Shared

C1 L1 private cache, allocate block, block address: 0x0484, block state: Shared

C1 L1 private cache, victim block for replacement, block address: 0x08D4, block

state: Shared

L2 shared cache, update core tracking bits, block address: 0x08D4, new block

state: Shared , core tracking bits: 00

C0 L1 private cache

cache hits: 0

cache misses: 5

cache conflict misses: 0

cache coherence misses: 1

cache inclusion misses: 0

C1 L1 private cache

cache hits: 1

cache misses: 4

cache conflict misses: 0

cache coherence misses: 0

cache inclusion misses: 1

L2 shared cache

cache hits: 3

cache misses: 6

cache conflict misses: 1

5. Testing and Simulation Result

100

by the shared cache after it was evicted from the shared cache (inclusion property) at the

operation C1 Write [0x1213].

5.3.2 Exclusive Cache Hierarchy at the Shared Last Level of Cache

Using the memory access list defined in listing 19 for the simulation, listing 21 shows the

simulation result of a system containing a shared exclusive cache.

core C0 Read [0x1210]:

C0 L1 private cache Miss

L2 shared cache Miss

L2 shared cache, block address: 0x0484, new directory entry block state: Shared

, core tracking bits: 10

C0 L1 private cache, allocate block, block address: 0x0484, block state: Shared

core C1 Read [0x1213]:

C1 L1 private cache Miss

L2 shared cache, block address: 0x0484, directory entry block state: Shared ,

core tracking bits: 10

L2 shared cache, block address: 0x0484, new directory entry block state: Shared

, core tracking bits: 11

C1 L1 private cache, allocate block, block address: 0x0484, block state: Shared

core C0 Read [0x2352]:

C0 L1 private cache Miss

L2 shared cache Miss

L2 shared cache, block address: 0x08D4, new directory entry block state: Shared

, core tracking bits: 10

C0 L1 private cache, allocate block, block address: 0x08D4, block state: Shared

core C1 Write [0x1213]:

C1 L1 private cache data request Hit, block address: 0x0484, block state:

Shared

C1 send block invalidate request to shared cache, block address: 0x0484

L2 shared cache, block address: 0x0484, directory entry block state: Shared ,

core tracking bits: 11

L2 shared cache, forward invalidate request to core C0, block address: 0x0484

C0 L1 private cache, invalidate block, block address: 0x0484, block state:

Shared

C0 L1 private cache, block address: 0x0484, block new state: Invalid

L2 shared cache, block address: 0x0484, directory entry new block state:

Modified , core tracking bits: 01

C1 L1 private cache, block address: 0x0484, block new state: Modified

core C0 Read [0x1210]:

C0 L1 private cache Miss

L2 shared cache, block address: 0x0484, directory entry block state: Modified ,

core tracking bits: 01

L2 shared cache, forward Read miss request to core C1, block address: 0x0484

C1 L1 private cache, write back block, block address: 0x0484, block state:

Modified

C1 L1 private cache, block address: 0x0484, block new state: Shared

L2 shared cache, block address: 0x0484, new directory entry block state: Shared

, core tracking bits: 11

C0 L1 private cache, allocate block, block address: 0x0484, block state: Shared

Listing 21 Exclusive cache hierarchy simulation output

5. Testing and Simulation Result

101

Listing 21 Exclusive cache hierarchy simulation output (continued)

core C0 Read [0x2213]:

C0 L1 private cache Miss

L2 shared cache Miss

L2 shared cache, block address: 0x0884, new directory entry block state: Shared

, core tracking bits: 10

C0 L1 private cache, allocate block, block address: 0x0884, block state: Shared

C0 L1 private cache, victim block for replacement, block address: 0x08D4, block

state: Shared

L2 shared cache, directory entry update core tracking bits, block address:

0x08D4, new block state: Shared , core tracking bits: 00

L2 shared cache, remove directory entry , block address: 0x08D4

L2 shared cache, allocate block (exclusion), block address: 0x08D4

core C1 Read [0x2351]:

C1 L1 private cache Miss

L2 shared cache Hit, block address: 0x08D4

L2 shared cache, invalidate block (exclusion), block address: 0x08D4

L2 shared cache, block address: 0x08D4, new directory entry block state: Shared

, core tracking bits: 01

C1 L1 private cache, allocate block, block address: 0x08D4, block state: Shared

core C0 Read [0x2522]:

C0 L1 private cache Miss

L2 shared cache Miss

L2 shared cache, block address: 0x0948, new directory entry block state: Shared

, core tracking bits: 10

C0 L1 private cache, allocate block, block address: 0x0948, block state: Shared

C0 L1 private cache, victim block for replacement, block address: 0x0484, block

state: Shared

L2 shared cache, directory entry update core tracking bits, block address:

0x0484, new block state: Shared , core tracking bits: 01

core C1 Read [0x3452]:

C1 L1 private cache Miss

L2 shared cache Miss

L2 shared cache, block address: 0x0D14, new directory entry block state: Shared

, core tracking bits: 01

C1 L1 private cache, allocate block, block address: 0x0D14, block state: Shared

C1 L1 private cache, victim block for replacement, block address: 0x0484, block

state: Shared

L2 shared cache, directory entry update core tracking bits, block address:

0x0484, new block state: Shared , core tracking bits: 00

L2 shared cache, remove directory entry , block address: 0x0484

L2 shared cache, allocate block (exclusion), block address: 0x0484

core C1 Read [0x1210]:

C1 L1 private cache Miss

L2 shared cache Hit, block address: 0x0484

L2 shared cache, invalidate block (exclusion), block address: 0x0484

L2 shared cache, block address: 0x0484, new directory entry block state: Shared

, core tracking bits: 01

C1 L1 private cache, allocate block, block address: 0x0484, block state: Shared

C1 L1 private cache, victim block for replacement, block address: 0x08D4, block

state: Shared

5. Testing and Simulation Result

102

Listing 21 Exclusive cache hierarchy simulation output (continued)

The simulation results show that each core was first sending the coherence requests to the

directory within the shared cache, and then the directory forwarded them to the core.

When the block (address: 0x08D4) was evicted from the private cache, it was allocated in

the shared cache (shared exclusive cache is considered as a victim cache to the private

caches). Because of the exclusion property exclusive cache has better hit rate than the

inclusive cache.

5.3.3 Multi-Core Processor without Shared Last Level Cache

In this kind of architecture the private caches are connected together and to the memory

through a bus. Listing 22 shows the cache structure and listing 23 shows the simulation

result of a system containing no shared cache.

L2 shared cache, directory entry update core tracking bits, block address:

0x08D4, new block state: Shared , core tracking bits: 00

L2 shared cache, remove directory entry , block address: 0x08D4

L2 shared cache, allocate block (exclusion), block address: 0x08D4

C0 L1 private cache

cache hits: 0

cache misses: 5

cache conflict misses: 0

cache coherence misses: 1

C1 L1 private cache

cache hits: 1

cache misses: 4

cache conflict misses: 1

cache coherence misses: 0

L2 shared cache

cache hits: 2

cache misses: 5

cache conflict misses: 0

5. Testing and Simulation Result

103

<?xml version="1.0" encoding="UTF-8"?>

<simulator address_width="16" block_size="4 B">

<cores>

 <core id="c0" />

 <core id="c1" />

</cores>

<caches>

<private_cache>

 <cache level="1" cache_size="32 B" cache_structure="SA"

associativity="2" replacement_policy="LRU"

cache_hierarchy="none" />

</private_cache>

</caches>

</simulator>

core C0 Read [0x1210]:

C0 L1 private cache Miss

C0 send broadcast coherence request to other cores private caches, request

type: Read_miss, block address: 0x0484

C0 L1 private cache, allocate block, block address: 0x0484, block state: Shared

core C1 Read [0x1213]:

C1 L1 private cache Miss

C1 send broadcast coherence request to other cores private caches, request

type: Read_miss, block address: 0x0484

C0 L1 private cache, block address: 0x0484, block state: Shared

C0 L1 private cache, block address: 0x0484, block new state: Shared

C1 L1 private cache, allocate block, block address: 0x0484, block state: Shared

core C0 Read [0x2352]:

C0 L1 private cache Miss

C0 send broadcast coherence request to other cores private caches, request

type: Read_miss, block address: 0x08D4

C0 L1 private cache, allocate block, block address: 0x08D4, block state: Shared

core C1 Write [0x1213]:

C1 L1 private cache data request Hit, block address: 0x0484, block state:

Shared

C1 send broadcast coherence request to other cores private caches, request

type: Invalidate, block address: 0x0484

C0 L1 private cache, invalidate block, block address: 0x0484, block state:

Shared

C0 L1 private cache, block address: 0x0484, block new state: Invalid

C1 L1 private cache, block address: 0x0484, block new state: Modified

Listing 22 Cache structure XML for multi-core processor with no shared cache

Listing 23 No shared cache simulation output

5. Testing and Simulation Result

104

Listing 23 No shared cache simulation output (continued)

core C0 Read [0x1210]:

C0 L1 private cache Miss

C0 send broadcast coherence request to other cores private caches, request

type: Read_miss, block address: 0x0484

C1 L1 private cache, write back block, block address: 0x0484, block state:

Modified

C1 L1 private cache, block address: 0x0484, block new state: Shared

C0 L1 private cache, allocate block, block address: 0x0484, block state: Shared

core C0 Read [0x2213]:

C0 L1 private cache Miss

C0 send broadcast coherence request to other cores private caches, request

type: Read_miss, block address: 0x0884

C0 L1 private cache, allocate block, block address: 0x0884, block state: Shared

C0 L1 private cache, victim block for replacement, block address: 0x08D4, block

state: Shared

core C1 Read [0x2351]:

C1 L1 private cache Miss

C1 send broadcast coherence request to other cores private caches, request

type: Read_miss, block address: 0x08D4

C1 L1 private cache, allocate block, block address: 0x08D4, block state: Shared

core C0 Read [0x2522]:

C0 L1 private cache Miss

C0 send broadcast coherence request to other cores private caches, request

type: Read_miss, block address: 0x0948

C0 L1 private cache, allocate block, block address: 0x0948, block state: Shared

C0 L1 private cache, victim block for replacement, block address: 0x0484, block

state: Shared

core C1 Read [0x3452]:

C1 L1 private cache Miss

C1 send broadcast coherence request to other cores private caches, request

type: Read_miss, block address: 0x0D14

C1 L1 private cache, allocate block, block address: 0x0D14, block state: Shared

C1 L1 private cache, victim block for replacement, block address: 0x0484, block

state: Shared

core C1 Read [0x1210]:

C1 L1 private cache Miss

C1 send broadcast coherence request to other cores private caches, request

type: Read_miss, block address: 0x0484

C1 L1 private cache, allocate block, block address: 0x0484, block state: Shared

C1 L1 private cache, victim block for replacement, block address: 0x08D4, block

state: Shared

5. Testing and Simulation Result

105

Listing 23 No shared cache simulation output (continued)

The simulation results show that each core was sending the coherence requests as

broadcast messages through the bus to the other core.

5.3.4 Multi-Core Processor with Only Shared Cache and No Private Caches

Listing 24 shows the cache structure and listing 25 shows the simulation result of the

stated case.

<?xml version="1.0" encoding="UTF-8"?>

<simulator address_width="16" block_size="4 B">

<cores>

 <core id="c0" />

 <core id="c1" />

</cores>

<caches>

<shared_cache>

 <cache level="1" cache_size="64 B" cache_structure="SA"

associativity="4" replacement_policy="LRU"

cache_hierarchy="inclusive" />

</shared_cache>

</caches>

</simulator>

C0 L1 private cache

cache hits: 0

cache misses: 5

cache conflict misses: 0

cache coherence misses: 1

C1 L1 private cache

cache hits: 1

cache misses: 4

cache conflict misses: 1

cache coherence misses: 0

Listing 24 Cache structure XML for multi-core processor with no private cache

5. Testing and Simulation Result

106

To the best of our knowledge, there is no architecture like this. However, it shows that

some experimental architectures are supported by the simulation.

core C0 Read [0x1210]:

L1 shared cache Miss

L1 shared cache, allocate block, block address: 0x0484

core C1 Read [0x1213]:

L1 shared cache Hit, block address: 0x0484

core C0 Read [0x2352]:

L1 shared cache Miss

L1 shared cache, allocate block, block address: 0x08D4

core C1 Write [0x1213]:

L1 shared cache Hit, block address: 0x0484

L1 shared cache, block address: 0x0484, set dirty: true

core C0 Read [0x1210]:

L1 shared cache Hit, block address: 0x0484

core C0 Read [0x2213]:

L1 shared cache Miss

L1 shared cache, allocate block, block address: 0x0884

core C1 Read [0x2351]:

L1 shared cache Hit, block address: 0x08D4

core C0 Read [0x2522]:

L1 shared cache Miss

L1 shared cache, allocate block, block address: 0x0948

core C1 Read [0x3452]:

L1 shared cache Miss

L1 shared cache, allocate block, block address: 0x0D14

L1 shared cache, victim block for replacement, block address: 0x0484, is dirty:

true

L1 shared cache, write back block to memory, block address: 0x0484

core C1 Read [0x1210]:

L1 shared cache Miss

L1 shared cache, allocate block, block address: 0x0484

L1 shared cache, victim block for replacement, block address: 0x0884, is dirty:

false

L1 shared cache

cache hits: 4

cache misses: 6

cache conflict misses: 2

Listing 25 No private cache simulation output

5. Testing and Simulation Result

107

5.4 Measuring Cache Performance

The miss rate calculated by the simulation can provide a good measurement to the cache

predictability. The simulation provides statistics for every single cache level after

performing all memory accesses. The statistics include the number of hits and the number

of misses, including the number of misses per miss type. Using these statistics, the miss

rate can be calculated, while the memory access time can be approximated as well. In

general, a number of cache parameters like the cache size, block size, associativity, cache

coherence, and cache inclusion property can affect the miss rate.

6. Conclusion and Future Work

108

6 Conclusion and Future Work

In this thesis work, the cache architectures in the modern multi-core processors were first

analyzed in order to find a better way to adapt as many architectures as possible to the

simulation. Then, a software cache simulator was designed, implemented and tested to

simulate the behavior of predefined cache architectures according to the provided

memory accesses. The simulator takes the cache structure as an input in XML format and

then uses a predefined XML-schema to validate it. The simulator also takes the memory

accesses of the simulated software as an input list file. In this file the user can define the

number of the cores and the levels in the cache hierarchy. The upper levels in the

hierarchy can be considered private, while the last level of cache can be either private or

shared among the cores. Within each cache level, cache configuration parameters and

replacement policy can be specified. Every cache is considered in the simulation as a

standalone cache, receiving block requests, allocating new blocks, handling the evicted

blocks, and dealing with the cache coherence across the cache hierarchy. The simulator

then starts executing the provided sequence of memory accesses. Every memory access

becomes a block request, which is sent first to the first level in the cache hierarchy. The

simulator records a memory access trace for all caches throughout the hierarchy. The

trace contains every operation that was executed at every cache level affected by the

request. The trace can be used to calculate the required time to perform each memory

access and every cache level counts the number of hits and misses, which can be used in

cache predictability analysis.

We can propose as future work to implement additional replacement policies, i.e.,

Random (RAND) and Pseudo-Round-Robin (PRR) replacement policies [2]. The

simulation can be extended to support a system consisting of several separate blocks of

cache coherent cores [45]. The simulator can also be extended to include additional

hardware features, i.e., crossbar interconnect, for more realistic system simulation.

109

References

1. Patterson, David A., and John L. Hennessy. Computer organization and design: the

hardware/software interface. Morgan Kaufmann, 2008.

2. Grund, Daniel. Static Cache Analysis for Real-Time Systems. epubli, 2012.

3. Hennessy, John L., and David A. Patterson. Computer architecture: a quantitative

approach. Morgan Kaufmann, 2011.

4. Zhang, Ke, et al. "PAC-PLRU: A Cache Replacement Policy to Salvage Discarded

Predictions from Hardware Prefetchers." Cluster, Cloud and Grid Computing (CCGrid),

2011 11th IEEE/ACM International Symposium on. IEEE, 2011.

5. Roy, Sourav. "H-NMRU: a low area, high performance cache replacement policy for

embedded processors." VLSI Design, 2009 22nd International Conference on. IEEE,

2009.

6. Perez, W. J. H., et al. "Functional test generation for the pLRU replacement mechanism

of embedded cache memories." Test Workshop (LATW), 2011 12th Latin American.

IEEE, 2011.

7. Cullmann, Christoph, et al. "Predictability considerations in the design of multi-core

embedded systems." Proceedings of Embedded Real Time Software and Systems (2010):

36-42.

8. Grund, Daniel, and Jan Reineke. "Toward precise PLRU cache analysis." 10th

International Workshop on Worst-Case Execution Time Analysis (WCET 2010). Vol. 15.

Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik, 2010.

9. Reineke, Jan, et al. "Timing predictability of cache replacement policies." Real-Time

Systems 37.2 (2007): 99-122.

10. Wilhelm, Reinhard, et al. "Memory hierarchies, pipelines, and buses for future

architectures in time-critical embedded systems." Computer-Aided Design of Integrated

Circuits and Systems, IEEE Transactions on 28.7 (2009): 966-978.

11. Ferdinand, Christian, and Reinhard Wilhelm. "Efficient and precise cache behavior

prediction for real-time systems." Real-Time Systems 17.2-3 (1999): 131-181.

12. Grund, Daniel, and Jan Reineke. "Abstract interpretation of FIFO replacement."Static

Analysis. Springer Berlin Heidelberg, 2009. 120-136.

110

13. Wallin, Dan, and Erik Hagersten. "Miss penalty reduction using bundled capacity

prefetching in multiprocessors." Parallel and Distributed Processing Symposium, 2003.

Proceedings. International. IEEE, 2003.

14. Jeyapaul, Reiley, and Aviral Shrivastava. "Smart cache cleaning: energy efficient

vulnerability reduction in embedded processors." Proceedings of the 14th international

conference on Compilers, architectures and synthesis for embedded systems. ACM, 2011.

15. Mounes-Toussi, Farnaz, and David J. Lilja. "Write buffer design for cache-coherent

shared-memory multiprocessors." Computer Design: VLSI in Computers and Processors,

1995. ICCD'95. Proceedings., 1995 IEEE International Conference on. IEEE, 1995.

16. Jaleel, Aamer, et al. "Achieving non-inclusive cache performance with inclusive caches:

Temporal locality aware (tla) cache management policies."Microarchitecture (MICRO),

2010 43rd Annual IEEE/ACM International Symposium on. IEEE, 2010.

17. Qian, Bin-feng, and Li-min Yan. "The research of the inclusive cache used in multi-core

processor." Electronic Packaging Technology & High Density Packaging, 2008. ICEPT-

HDP 2008. International Conference on. IEEE, 2008.

18. Li, Lingda, et al. "Improving inclusive cache performance with two-level eviction

priority." Computer Design (ICCD), 2012 IEEE 30th International Conference on. IEEE,

2012.

19. Haque, Mohammad Shihabul, et al. "TRISHUL: A Single-pass Optimal Two-level

Inclusive Data Cache Hierarchy Selection Process for Real-time MPSoCs."

20. Subha, S. "A two-type data cache model." Electro/Information Technology, 2009. eit'09.

IEEE International Conference on. IEEE, 2009.

21. Zheng, Ying, Brian T. Davis, and Matthew Jordan. "Performance evaluation of exclusive

cache hierarchies." Performance Analysis of Systems and Software, 2004 IEEE

International Symposium on-ISPASS. IEEE, 2004.

22. Zhao, Li, et al. "Ncid: a non-inclusive cache, inclusive directory architecture for flexible

and efficient cache hierarchies." Proceedings of the 7th ACM international conference on

Computing frontiers. ACM, 2010.

23. Thomadakis, Michael E. "The architecture of the Nehalem processor and Nehalem-EP

smp platforms." Resource 3 (2011): 2.

24. Conway, Pat, et al. "Cache hierarchy and memory subsystem of the AMD Opteron

processor." Micro, IEEE 30.2 (2010): 16-29.

111

25. Fu, Cheng-Yang, Meng-Huan Wu, and Ren-Song Tsay. "A shared-variable-based

synchronization approach to efficient cache coherence simulation for multi-core

systems." Design, Automation & Test in Europe Conference & Exhibition (DATE), 2011.

IEEE, 2011.

26. Suleman, M. Aater, et al. "Accelerating critical section execution with asymmetric multi-

core architectures." ACM Sigplan Notices. Vol. 44. No. 3. ACM, 2009.

27. Nikolopoulos, Dimitrios S., and Theodore S. Papatheodorou. "Fast synchronization on

scalable cache-coherent multiprocessors using hybrid primitives." Parallel and

Distributed Processing Symposium, 2000. IPDPS 2000. Proceedings. 14th International.

IEEE, 2000.

28. Zuberi, Khawar M., and Kang G. Shin. "An efficient semaphore implementation scheme

for small-memory embedded systems." Real-Time Technology and Applications

Symposium, 1997. Proceedings., Third IEEE. IEEE, 1997.

29. Garg, Vijay K. Concurrent and distributed computing in Java. Wiley-IEEE Press, 2005.

30. Hossain, Hemayet, Sandhya Dwarkadas, and Michael C. Huang. "POPS: Coherence

protocol optimization for both private and shared data." Parallel Architectures and

Compilation Techniques (PACT), 2011 International Conference on. IEEE, 2011.

31. Tian, Yingying, and Daniel A. Jiménez. "Sampling Temporal Touch Hint (STTH)

Inclusive Cache Management Policy." Parallel Architectures and Compilation

Techniques (PACT), 2011 International Conference on. IEEE, 2011.

32. Semin, Andrey. "Inside Intel Nehalem Microarchitecture." (2009).

33. Martin, Milo MK, Mark D. Hill, and Daniel J. Sorin. "Why on-chip cache coherence is

here to stay." Communications of the ACM 55.7 (2012): 78-89.

34. Al-Mouhamed, Mayez A., and Khaled A. Daud. "Experimental Analysis of SMP

Scalability in the Presence of Coherence Traffic and Snoop Filtering." High Performance

Computing and Communication & 2012 IEEE 9th International Conference on

Embedded Software and Systems (HPCC-ICESS), 2012 IEEE 14th International

Conference on. IEEE, 2012.

35. Lis, Mieszko, et al. "Memory coherence in the age of multicores." Computer Design

(ICCD), 2011 IEEE 29th International Conference on. IEEE, 2011.

36. Intel® Microarchitecture (Nehalem), http://www.intel.com/.

37. AMD® Advanced Micro Devices (Opteron), http://www.amd.com/.

http://www.intel.com/
http://www.amd.com/

112

38. Kalla, Ron, et al. "Power7: IBM's next-generation server processor." Micro, IEEE 30.2

(2010): 7-15.

39. Čakarević, Vladimir, et al. "Characterizing the resource-sharing levels in the

UltraSPARC T2 processor." Proceedings of the 42nd Annual IEEE/ACM International

Symposium on Microarchitecture. ACM, 2009.

40. Molka, Daniel, et al. "Memory performance and cache coherency effects on an Intel

Nehalem multiprocessor system." Parallel Architectures and Compilation Techniques,

2009. PACT'09. 18th International Conference on. IEEE, 2009.

41. Devices, A. Micro. "AMD64 architecture programmer‟s manual volume 2: System

programming." (2006).

42. UML Lab-Yatta, http://www.uml-lab/en/uml-lab/.

43. Haque, Mohammad Shihabul, Jorgen Peddersen, and Sri Parameswaran. "CIPARSim:

Cache intersection property assisted rapid single-pass FIFO cache simulation

technique." Proceedings of the International Conference on Computer-Aided Design.

IEEE Press, 2010.

44. Zang, Wei, and Ann Gordon-Ross. "T-spacs: a two-level single-pass cache simulation

methodology." Proceedings of the 16th Asia and South Pacific Design Automation

Conference. IEEE Press, 2011.

45. Blake, Geoffrey, Ronald G. Dreslinski, and Trevor Mudge. "A survey of multicore

processors." Signal Processing Magazine, IEEE 26.6 (2009): 26-37.

http://www.uml-lab/en/uml-lab/

Declaration

All the work contained within this thesis, except where otherwise acknowledged, was

solely the effort of the author. At no stage was any collaboration entered into with any

other party.

Stuttgart, 29. July 2013 _____________________

