
Institute of Architecture of Application Systems
University of Stuttgart
Universitätsstraße 38
D - 70569 Stuttgart

Master Thesis Nr. 3574

Choreography-based
Business Process Consolidation in

One-To-Many interactions

Elkhan Dadashov

Major: InfoTech

Examiner: Prof. Dr. Frank Leymann

Supervisor: Dipl.-Inf. Sebastian Wagner

commenced: 01.04.2013

completed: 31.10.2013

CR-Classification: H.4.1

2

Abstract

In different real world scenarios the big companies can acquire other companies, or the company can
insource some of its own organizational units residing abroad to increase security and control on those
units, also achieve minimization of transaction costs. In these scenarios business processes of partner
companies need to be consolidated with each other. Interaction of the business processes of partner
companies can be modeled by choreographies.

The related works contain an approach for consolidation of the business processes which are represented
in choreography with only one instance per process type. In other words, the related works only contain
consolidation solution for one-to-one interaction scenarios. However, this thesis presents a concept for
choreography based business process consolidation in one-to-many interaction scenarios, where one
process interacts with multiple instances of another process. In particular, the number of involved
instances is unknown at design time, and it only becomes known at run time of choreography. Flight ticket
booking choreography is used as a motivation scenario, where it is assumed that number of involved
airlines is not known in advance. On the whole, the process consolidation approach is extended for
supporting consolidation of multi-instance partner processes into one merged process.

3

Acknowledgement

I would like to take this opportunity to express my deep gratitude to my master thesis supervisor Sebastian
Wagner for his patient guidance, consistent encouragement and advice throughout my thesis time. I would
like to thank him for valuable comments, insightful discussions, handmade sketches which helped me in
understanding sophisticated concepts.

I would like to express my sincere gratitude to Professor Frank Leymann for giving me the chance to work
on this thesis at his institute. I have been inspired by his character, carefulness for all students‘
understanding every detail, friendly, interactive teaching style and encouragement of asking good
questions during his lectures.

Finally, I thank my parents and friends for their support and motivation throughout six-month thesis
period.

4

Contents

Abstract ... 3

Acknowledgement ... 4

List of Figures ... 7

List of Tables ... 8

List of Listings .. 8

1 Introduction .. 11

1.1 Motivation for Business Process Consolidation ... 11

1.2 Service Composition by Orchestration and Choreography .. 12

1.2.1 Orchestration ... 12

1.2.2 Choreography .. 14

2 Background on BPEL and BPEL4Chor ... 17

2.1 BPEL Activities used in FTBS Motivation Scenario ... 17

2.1.1 <receive> ... 17

2.1.2 <invoke> .. 18

2.1.3 <reply> .. 19

2.1.4 <sequence> .. 19

2.1.5 <flow> ... 20

2.1.6 <scope>.. 20

2.1.7 <if> .. 20

2.1.8 <partnerLinkType> .. 21

2.1.9 <partnerLink> .. 22

2.1.10 <assign> .. 22

2.1.11 <wait> ... 23

2.1.12 <pick> ... 23

2.1.13 <forEach> .. 23

2.1.14 <link> .. 24

2.1.15 <sources> and <targets> ... 24

2.1.16 Standard Attributes and Standard Elements .. 26

2.2 BPEL4Chor .. 26

2.2.1 Participant Behavior Descriptions (PBDs) .. 30

2.2.2 Participant Topology ... 32

2.2.3 Participant Grounding .. 34

2.3 Allen’s algebra ... 36

3 Consolidation of Multi Instance Partner Business Processes ... 39

3.1 Allen’s Algebra applied to FTBS Scenario .. 40
5

3.2 Asynchronous and Synchronous Consolidation ... 41

3.3 FTBS Scenario: Traveler – Travel Agency as an Example of One-to-One Interaction 44

3.3.1 Determining Number of Containers for One-to-One Interaction .. 45

3.3.2 Container Generation Phase .. 45

3.4 FTBS Scenario: Travel Agency – Airlines as an Example of One-to-Many Interactions.............. 46

3.4.1 Multi Instance Partner (MIP) Instantiation from BPEL4Chor Perspective 49

3.4.2 Determining Type of MIP Instantiation .. 49

3.5 Static MIP Instantiation in Merged Process ... 51

3.5.1 Determining Number of Static Containers to be created in Merged Process 51

3.5.2 Static Container Generation Phase .. 52

3.6 Dynamic MIP Instantiation .. 53

3.6.1 Determining Number of Dynamic Containers to be created in Merged Process 53

3.6.2 Dynamic Container Generation Phase ... 54

3.6.3 Loop Fragmentation for resolving Cross Boundary Link Violations 55

3.6.4 Link Status Propagation Technique ... 63

3.6.5 Data Flow between Fragments in and across Container Scopes ... 66

3.7 Hybrid MIP Instantiation in Merged Process ... 69

4 Implementation ... 71

4.1 Design .. 71

4.2 Grounding Non-Mergeable-Message-Links (NMML) ... 73

4.3 Determining Type and Count of MIP Instantiation .. 78

4.4 Consolidation of Business Processes in One-to-One Interactions ... 80

4.5 Consolidation of Static MIP Instances ... 82

4.6 Consolidation of Dynamic MIP Instances .. 84

4.7 Consolidation of Hybrid MIP Instances ... 86

5 Summary & Future work .. 87

5.1 Future Work ... 88

Bibliography .. 89

6

List of Figures

Figure 1.1 Motivation Scenario – Flight Ticket Booking System ... 12
Figure 1.2 Service composition by orchestration, adapted from [JMS06] 13
Figure 1.3 Service composition by choreography, adapted from [JMS06] 14
Figure 1.4 Choreography versus orchestration, taken from [PEL03] .. 15
Figure 2.1 Interaction model choreography for FTBS scenario ... 28
Figure 2.2 Interconnection choreography example described in BPMN taken from [DKLW07] . 29
Figure 2.3 BPEL4Chor three artifacts, taken from [DKLW07] ... 30
Figure 2.4 How to convert a domain problem into an executable BPEL processes, taken from
[WASKV13] ... 36
Figure 3.1 Parallel paths to synchronization activities inside <forEach> loop 40
Figure 3.2 Asynchronous Merge Operation, taken from [WKL13] ... 42
Figure 3.3 Synchronous Merge Operation, taken from [WKL13] ... 43
Figure 3.4 Travel Agency and Airline Consolidation Model ... 44
Figure 3.5 One-To-One Partner Instantiation and Container Generation 46
Figure 3.6 Parallel MIP instantiation ... 47
Figure 3.7 Sequential MIP instantiation ... 48
Figure 3.8 Determining MIP instantiation type from topology artifact and PBDs 50
Figure 3.9 Determining MIP instantiation type from message links in topology artifact 51
Figure 3.10 Static MIP instantiation and container generation: invoke case 52
Figure 3.11 Static MIP instantiation and container generation: static sequential forEach case 53
Figure 3.12 Dynamic MIP Instantiation and Dynamic Container Generation: Dynamic, Parallel
<forEach> Case ... 54
Figure 3.13 Dynamic MIP Instantiation and Dynamic Container Generation: Dynamic, Serial
<forEach> Case ... 55
Figure 3.14 Loop fragmentation result, applied on example illustrated at Listing 3.1 57
Figure 3.15 Two abstract business processes before applying loop fragmentation 60
Figure 3.16 Loop fragmentation applied to example described in Figure 3.14 61
Figure 3.17 Travel agency and airline consolidation after fragmentation 62
Figure 3.18 Link status propagation from one fragment into another adapted from 65
Figure 3.19 Before Applying Variable Lifting Technique ... 66
Figure 3.20 After Applying Variable Lifting Technique ... 67
Figure 3.21 Hybrid MIP Instantiation and Container Generation .. 69
Figure 4.1 Four steps for choreography based process consolidation in one-to-many interactions
 .. 71
Figure 4.2 UML Class Diagram of org.bpel4chor.mergeChoreographyPackage, adapted from
[DEB13] ... 73
Figure 4.3 UML Class Diagram describing relations between (a)sync matcher and (a)sync
pattern, taken from [DEB13] .. 78
Figure 4.4 Determining type and count of MIP instantiations ... 79
Figure 4.5 Sequence diagram for finding MergePatterns for message links in one-to-one
interactions, adapted from [DEB13] .. 81
Figure 4.6 Sequence diagram for finding MergePatterns for message links in one-to-many
interactions – static MIP consolidation, adapted from [DEB13] ... 83
Figure 4.7 Static MIP consolidation in one-to-many interactions ... 84

7

Figure 4.8 Sequence diagram for finding MergePatterns for message links in one-to-many
interactions – dynamic MIP consolidation, adapted from [DEB13] .. 85
Figure 4.9 Choreography-based dynamic MIP consolidation in one-to-many interactions 86

List of Tables

Table 2.1 Thirteen relations between A and B intervals of Allen’s interval algebra adapted from
[WKL12], [ALL83] .. 37
Table 2.2 Transitivity Table for the Twelve Temporal Relations (omitting „=“) taken from
[ALL83] ... 38
Table 3.1 Allen’s interval algebra applied to motivation scenario activities 41

List of Listings

Listing 2.1 <receive> activity example .. 18
Listing 2.2 <invoke> activity example .. 19
Listing 2.3 <sequence> activity example .. 19
Listing 2.4 <flow> activity example .. 20
Listing 2.5 <scope> activity example ... 20
Listing 2.6 <if> activity example .. 21
Listing 2.7 <partnerLinkType> activity example ... 21
Listing 2.8 <partnerLink> activity example ... 22
Listing 2.9 <assign> activity example ... 22
Listing 2.10 <pick> activity example .. 23
Listing 2.11 <forEach> activity example .. 24
Listing 2.12 <targets> container example ... 25
Listing 2.13 <source> and <target> activity example, adapted from [OAS07] 26
Listing 2.14 Traveler participant behavior description .. 31
Listing 2.15 Participant type example from FTBS scenario .. 32
Listing 2.16 Participant references example from FTBS scenario ... 32
Listing 2.17 Message links from FTBS scenario ... 33
Listing 2.18 Participant topology from FTBS scenario ... 34
Listing 2.19 Participant topology from FTBS scenario ... 35
Listing 3.1 Abstract example for illustrating loop fragmentation technique 56
Listing 3.2 Loop fragmentation algorithm ... 59
Listing 3.3 Link status propagation - adapting changes to source fragment 64
Listing 3.4 Link status propagation - adapting changes to target fragment 64
Listing 3.5 Price Variable ... 67
Listing 3.6 MIPMPrice map entry .. 68
Listing 3.7 MIPM map complex type and variable priceMap of type MIPM 68
Listing 3.8 Change of from part of <assign> activity .. 68
Listing 4.1. Consolidation of asynchronous intra-process communicating activities- topology,
grounding and wsdl artifact of PBD2, adapted from [DEB13] .. 74

8

Listing 4.2 Consolidation of asynchronous intra-process communicating activities- merged
process before consolidation, adapted from [DEB13] ... 75
Listing 4.3 Consolidation of asynchronous intra-process communicating activities – merged
process after consolidation, adapted from [DEB13] .. 75
Listing 4.4 Consolidation of synchronous intra-process communicating activities – topology,
grounding and wsdl of PBD2, adapted from [DEB13] .. 76
Listing 4.5 Consolidation of synchronous intra-process communicating activities – merged
process before consolidation, adapted from [DEB13] ... 77
Listing 4.6 Consolidation of synchronous intra-process communicating activities – merged
process after consolidation, adapted from [DEB13] .. 77

9

10

1 Introduction

Business process is a collection of related and ordered set of tasks accomplished by company employers
and machines in order to produce the target service or product. By using business processes, companies
automatize their tasks, increase production throughput, decrease latency time and can easily optimize their
production process in systematic way.

1.1 Motivation for Business Process Consolidation
The recent deal of Microsoft acquiring Nokia’s mobile phone business is a bright example of an
interaction scenario between companies. After the deal has been signed Nokia’s business processes have
to be consolidated with Microsoft’s business processes. In dynamically changing world there are many
scenarios (Google acquired Motorola, Volkswagen AG acquired Audi, Bentley, Bugatti, Ducati,
Lamborghini, Man, Porsche, Scania, Seat, Škoda) where business process consolidation becomes
unavoidable.

IT managers commiserate over the challenges of convincing senior executives that, contrary to popular
belief, outsourcing is not always a money-saving option, even though outsourcing can lead to a reduction
in IT costs, this reduction often comes at a price: reduced service [HL00]. Insourcing becomes better
option when it is cheaper to do same task inside company than outside, or it is too critical share control of
business process. With the rise of cloud computing services and the use of personally identifiable
information will obligate the most of European companies to insource the critical organization units and
data of their business processes from USA (due to The Patriot Act1). Insourcing - being example of
company-to-company interaction, also requires business process consolidation phase as a backbone of
whole operation.

Flight Ticket Booking System (FTBS) will be used as motivating scenario throughout this thesis. There
are three parties involved in FTBS scenario: traveler, travel agency and airline. Traveler represents any
person who wants to buy ticket from travel agency. Traveler submits the flight details to travel agency.
Travel agency contacts the airlines (business processes) with given flight details for available ticket prices.
The airlines provide their actual ticket prices to travel agency. Travel agency business process picks the
best ticket offer and contacts the airline - which provided that ticket, for ordering. (Travel agency passes
traveler‘s contact details to that chosen airline. Then airline issues E-Ticket to that traveler directly.
Passing traveler‘s contact details to airline by travel agency is reference passing and will not be discussed
throughout this thesis.) Figure 1.1 illustrates FTBS motivation scenario which is used throughout this
thesis:

1 http://www.zdnet.com/blog/igeneration/case-study-how-the-usa-patriot-act-can-be-used-to-access-eu-data/8805
11

http://www.zdnet.com/blog/igeneration/case-study-how-the-usa-patriot-act-can-be-used-to-access-eu-data/8805

 Figure 1.1 Motivation Scenario – Flight Ticket Booking System

The consolidation of single-instances of interaction processes was introduced in work of Wagner et al.
[WKL11]. In their work, each process has only one instance created during choreography execution. In
this thesis, travel agency business process interacts with multi-instances of airline business process.
Another challenge of FTBS scenario is when the number of instances of airline business process - to be
contacted by travel agency - cannot be known at choreography design time, but only at run-time.

1.2 Service Composition by Orchestration and Choreography
Often a web service is seen as an application accessible to other applications over the Web [AGA07]. The
web services enable companies to expose their functionalities as services. As invocation of services is
made by a program, thus requesting and executing a service involves a program calling another program
by decreasing human interference in interactions [ACKM04]. The definition of W3C states that web
services should be defined, described and discovered. Taking into account platform independence, easy
integration and loose coupling properties of web services, companies have combined web services in
business processes to automatize tasks accomplished by different applications inside their organization, as
well as across their organizations. Business processes presents clear view of almost all operations-
provided as web service, of the company.

1.2.1 Orchestration

Orchestration refers to a business process that can interact with Web services, and these interactions occur
at the message level [PEL03]. That business process plays role of central management and has full control
of business logic and on the order of service invocations. None of the participating services in

12

orchestration need to know the existence of other services, also there is no need for an agreement between
participating web services. All the participating services communicate only with a central business
process, and the central business process knows all participating services and can interact with all of them.
WS-BPEL is the language which can be used for defining business processes. Business processes can be
executed on orchestration engines such as Oracle BPEL Process Manager2, IBM WebSphere Process
Server3, WSO2 Business Process Server4.

In the classical example given by John Evdemon (Software Architect at Microsoft) orchestration requires
“conductor” which is responsible for execution, management, logging of process related data5. The
“conductor” in orchestration plays same role as conductor in orchestra. The conductor in orchestra must
know the entire composition in order to be able to lead all the musicians in orchestra. Musicians in
orchestra - play role of different web services participating in orchestration, must only know how to play
his own instrument and his part of music, and of course understand the commands of conductor when to
start playing music, when to finish, and so on. Figure 1.2 illustrates service composition by orchestration:

Figure 1.2 Service composition by orchestration, adapted from [JMS06]

Due to central control, orchestration is more robust to faults in the flow of execution. If one of web
services fails due to any reason, then by alternating business flow, control can be transferred to another
web service having similar business logic. In other words, in orchestration failing web services can be
easily and transparently replaced by other web services having same (or similar) business logic.
Orchestration mainly focuses on business logic and the order of accomplishment of participating web
services.

2 http://www.oracle.com/technetwork/middleware/bpel/overview/index.html
3 http://www-01.ibm.com/software/integration/wps/
4 http://wso2.com/products/enterprise-service-bus/
5 http://msdn.microsoft.com/en-us/library/bb833024.aspx

13

http://www.oracle.com/technetwork/middleware/bpel/overview/index.html
http://www-01.ibm.com/software/integration/wps/
http://wso2.com/products/enterprise-service-bus/
http://msdn.microsoft.com/en-us/library/bb833024.aspx

In orchestration, the whole sequence of process flow can be represented by graphical view and easily
mapped to service oriented architecture.

1.2.2 Choreography

In contrast to orchestration, choreography does not have central control process [PEL03]. Choreography
focuses on interactions among (sub) set of participating web services – which can be called equally
righted participants, and on the message exchanges between them. In other words choreography defines
the order of message exchanges among involved participants.

Choreography requires that before implementation of business logic of web services, the interface through
which they will interact with each other must be agreed upon. So choreography can be seen as multi-
service agreement. Each interacting web service can determine the status of choreography after
interpretation of sent and received messages. Figure 1.3 illustrates service composition by choreography:

Figure 1.3 Service composition by choreography, adapted from [JMS06]

Participating services – participants know when and which other service they should interact by
exchanging messages.

WS-CDL is the language for describing multi-service agreements (contracts) and collaborations between
participating web services. According to Weiß et al. [WASKV13] choreographies can be also modeled
and represented by graphical view using the BPEL4Chor Designer tool.

Peltz [PEL03] has shown the relation between orchestration and choreography in Figure 1.4, where it can
be seen that focus of orchestration is business logic of web services and their calling order, but focus of
choreography is tracking message sequences between participating parties:

14

Figure 1.4 Choreography versus orchestration, taken from [PEL03]

Bpel4Chor language will be used for describing choreography throughout this thesis. Interaction
and interconnection choreographies are described by examples in Section 2.2.

15

16

2 Background on BPEL and BPEL4Chor

This first part of this section describes BPEL and its features for service composition in SOA
environment. Then BPEL activities which will be used in BPEL4Chor is presented using Flight Ticket
Booking System example. The second part introduces BPEL4Chor by explaining its parts and roles in
details. The third part of this section introduces Allen’s interval algebra for visualizing the execution order
relationships of activities.

2.1 BPEL Activities used in FTBS Motivation Scenario
BPEL is XML-based language to express a business process’s event sequence and collaboration logic,
whereas the underlying Web Services provide the process functionality [PAS05].

BPEL satisfies SOA environment requirements for service composition [WCLSF05]:

- Flexible integration – BPEL provides sufficiently rich and adaptable composition model to adapt
changing services and their interactions. Asynchronous message exchanges gives the developer
great flexibility when messages are sent, received, or processed [PAS05]. Using abstract processes
for describing observable message exchange behavior of participating processes, enables hiding
internal data management of process [OAS07][OAS07]. Use of explicit opaque tokens and
omissions in abstract processes provide flexibility to change local aspects of the process
implementation.

- Recursive composition – BPEL process can be offered as Web Services, which enables reuse of
existing web services composition.

- Separation and compose ability of concerns – BPEL allows decoupling of business logic from
technical and platform dependent specifications such as quality of service, messaging frameworks,
and coordination protocols.

- Stateful conversation and lifecycle management – BPEL allows combining long-running services
into a process and provides a clear lifecycle model for the resulting process.

- Recoverability – BPEL provides built-in fault handling to cope with expected exceptions during
process execution. Compensation handlers provide alternative approach of a two-phase commit
distributed transaction support and enable undoing of unwilled but completed actions [PAS05].

Activities are the basic constructs used in BPEL for describing event sequence and logic of process. In the
following parts activities used in process consolidation scenario will be described. Specifications of
activities are mainly taken from Web Services Business Process Execution Language Version 2.0
[OAS07]

2.1.1 <receive>

<receive> activity – is responsible for receiving incoming messages from partner processes.
<receive> activity has several attributes which helps to understand its role:

17

- partnerLink: contains myRole used to receive incoming messages from other processes.

- portType (optional): defines the operations supported by web services, and messages which
are input and output of supported operations

- operation: specifies the operation implemented by the process where <receive> activity
resides. This is the operation partner processes wants to invoke by sending appropriate message to
this process.

- variable: is used to store the received message data.

- createInstance: attribute can have yes or no value. By indicating yes as the value of
createInstance attribute, the business process in which this <receive> activity resides,
can be instantiated.

In order <receive> activity to complete successfully message with expected type must be received by
process instance.

In Listing 2.1 you will find example of receive activity from Flight Ticket Booking System
scenario:

Listing 2.1 <receive> activity example

This receive activity is start activity (the first activity to be invoked) in travel agency process. When
message of type inputVariable is received, then new instance of travel agency process is instantiated.

2.1.2 <invoke>

<invoke> activity – is used to invoke Web services provided by third parties or invoking partner process
which is exposed as Web Service. The real purpose is invoking required operation implemented as
service. Operations executed by invoke activity can either have return value or be a void function which
doesn’t have return value at all. If operation invoked is void function, then invoke activity does not have
output variable attribute. Invoke activity have similar attributes as receive activity:

partnerLink, portType, operation, inputVariable and outputVariable. InputVariable attribute stores the
data which is input to the called operation. OutputVariable attribute will store the result data of invoked
operation.

In Listing 2.2 you will find example of invoke activity from motivating scenario:

18

Listing 2.2 <invoke> activity example

This <invoke> activity resides inside travel agency process, and invokes getTicketPrice operation in
airline process. As this <invoke> activity does not have outputVariable attribute, it can be concluded
that getTicketPrice operation is void operation. In general <invoke> activity enables synchronous
communication between processes.

2.1.3 <reply>

<reply> activity – is used to send response message to a request message received by receive activity in
the same process previously. <reply> activity enables asynchronous communication for request-
response interactions. In addition to same attributes with <receive> activity, <reply> activity has
faultName, messageExchange (optional) attributes. Variable attribute of <reply> activity contains the
name of variable which holds the data to be sent. FaultName attribute is used only when variable attribute
indicates a fault. Optional messageExchange attribute differentiates the pair of inbound message activity
and <reply> activity.

2.1.4 <sequence>

<sequence> activity – contains several activities (at least one) which must be performed in sequential
order. The order of execution of activities inside <sequence> activity is determined by their order of
declaration inside <sequence> activity. The <sequence> activity is completed when its last activity
completes execution.

Listing 2.3 <sequence> activity example

In the example of Listing 2.3, three activities are defined inside sequence activity in travel agency process.
At first travel agency process invokes airline process to get flight ticket price from airline process. Then
travel agency receives price of flight ticket from airline process. The last activity – <assign> activity
stores received flight price in some variable locally.

19

2.1.5 <flow>

<flow> activity – enables execution of grouped activities concurrently. <flow> activity is considered
complete when all activities inside it are finished [OAS07], or its enabling condition evaluates to false and
none of its activities is executed. <links> can be used within flow activities to define explicit control
dependencies between nested child activities [OAS07]. <links> are described in detail in Section
2.1.14.

Listing 2.4 <flow> activity example

In the Listing 2.4 example two <invoke> activities are calling operations which are independent from
each other and can be executed concurrently, so they are grouped inside <flow> activity.

2.1.6 <scope>

<scope> activity - bounds visibility and context of enclosed activities. The variables, partner links,
message exchanges and correlation sets defined inside scope can only be accessed within the scope.

Listing 2.5 <scope> activity example

In the Listing 2.5 example all the partnerLinks and variables defined within scope has meaning only in the
context of Scope1. Outside Scope1 these variables and partner links are invisible.

2.1.7 <if>

<if> activity (with optional <elseif> and <else> activities) – provides different execution path
depending on condition. If the condition element of <if> activity evaluates to true then its contained

20

activity is executed. If condition element of <if> activity evaluates to false, then condition element of
<elseif> activities are checked. The contained activity of first <elseif> activity whose condition
element evaluates to true is executed. If none of the <elseif> activities is taken, then the activity
contained by <else> activity is executed. In Listing 2.6 you can find example from WS-BPEL
specification 2.0 [OAS07]:

Listing 2.6 <if> activity example

2.1.8 <partnerLinkType>

<partnerLinkType> activity – expresses conversational relationship between two communicating
web services. Each service provides its role in this conversation and indicates exactly one port type.

Listing 2.7 <partnerLinkType> activity example

In Listing 2.7 example described above the airline <partnerLinkType> is defined inside wsdl file of
airline process. Airline process declares its role as AirlineProvider, and its partner role as
AirlineRequester.

21

2.1.9 <partnerLink>

<partnerLink> construct – identifies the parties that interact with business process6.

<partnerLink> activity has several attributes:

- name: indicates unique name of this partner link within the same immediately enclosing scope

- partnerLinkType: indicates partnerLinkType used

- myRole: the role of process in which used partnerLinkType is declared

- partnerRole: is the role of partner processes which wants to communicate with this process

- initializeParnterRole (can be omitted): can have “yes” or “no” value. This attribute lets WS-BPEL
processor know either to initialize the endpoint reference of the partnerRole before that endpoint
reference is first utilized by the WS-BPEL process [OAS07].

The partner links defined within scope are only visible inside that scope.

Listing 2.8 <partnerLink> activity example

The Listing 2.8 example describes Airline partner link defined inside travel agency process.

2.1.10 <assign>

<assign> activity – is used for storing data in variables and copying data from one variable into
another. Another usage of <assign> activity is copying endpoint references to and from partnerLinks.
Expressions can be used to perform simple computations in <assign> activities.

Listing 2.9 <assign> activity example

The <assign> activity in Listing 2.9, copies minimum price (best price) value from
$arrayOfPricesVariable list into $bestPriceVariable.

6 http://docs.oracle.com/cd/E19182-01/821-0539/6nlj8ms9l/index.html
22

http://docs.oracle.com/cd/E19182-01/821-0539/6nlj8ms9l/index.html

2.1.11 <wait>

<wait> activity – enables delay in the execution of process for a given period of time or until timestamp
becomes equal to given deadline.

2.1.12 <pick>

<pick> activity – enables handling of timer-based and message receiving events. OnMessage element of
pick activity waits for the reception of particular type of incoming message. Several OnMessage elements
can be defined inside pick activity which allows receiving different types of messages. OnAlarm element
of pick activity triggers contained activity based on the given (duration or deadline) time. OnAlarm event
allows to bound waiting time for specific type of message to arrive.

Listing 2.10 <pick> activity example

In the above code snippet described in Listing 2.10, <pick> activity’s onMessage element waits for
message of type of onMessage_orderTicket_InputVariable variable. onAlarm element specifies duration
time of five minutes for waiting onMessage_orderTicket_InputVariable variable type message to arrive, if
message doesn’t arrive during 5 minutes, then <empty> activity is executed. <empty> activity can be
thought as no operation activity – nothing needs to be done.

2.1.13 <forEach>7

<forEach> activity – enables executing several activities within its first child <scope> activity
[finalCounterValue - startCounterValue] times. <forEach> activity’s counterName attribute defines

7 Only the elements and attributes of <forEach> activity which are used throughout this thesis, are explained in
this subsection

23

variable name for loop counter. Parallel attribute allows specifying parallel or sequential/serial execution
of scope instance. If parallel=”no” then each scope instance will start its execution only after completion
of previous instance, in other words scope instances will be executed in sequential order. If
parallel=”yes” then [finalCounterValue - startCounterValue] scope instances will be started
concurrently. Completion condition element of <forEach> activity is optional, when it is specified it
prevent some of the children from executing in serial <forEach> case, or forces early termination of
given number of the children in parallel <forEach> activity [OAS07].

Listing 2.11 <forEach> activity example

In the Listing 2.11 example of parallel <forEach> activity is described from FTBS scenario.

2.1.14 <link>

<link> construct is used to maintain synchronization dependencies between activities that are nested
within <flow> activity. Declarations of <link> activities are enclosed by a <flow> activity [OAS07].
A <link> activity has mandatory name attribute, which must be uniquely distinguished from all other
links defined in immediately enclosing <flow> activity.

2.1.15 <sources> and <targets>

Each WS-BPEL activity can have the optional container <sources> (<targets>) which contain
collection of <source> (<target>) elements. These elements are used to establish synchronization
relationships through a <link> activity [OAS07].

24

Listing 2.12 <targets> container example

linkName attribute of the <source> (<target>) must have value of a <link> declared in an
enclosing <flow> activity. Two different links MUST NOT share the same <source> and <target>
activities, that is, at most one <link> may be used to connect two activities [OAS07]. In other words
every activity within <flow> activity can be used exactly once as <source> (or <target>) activity
of exactly one <link> activity among all <link> activities.

Let <source> activity S of a <link> L be nested in another C activity (at any level) and the <link> L
itself is not declared inside C activity at any level. Such a link L is called link leaving S activity.

Let T be a <target> activity of a <link> L’ and be nested in another C’ activity (at any level), but the
<link> L’ itself is not declared inside C’ activity (at any level). Such <link> L’ is called link entering
T activity.

A link leaving or entering activity is called cross-boundary link.

25

Listing 2.13 <source> and <target> activity example, adapted from [OAS07]

The XML snippet in Listing 2.13 describes AtoB link as an example link which crosses boundary of two
activities: sequence A and sequence B. Hence AtoB is called cross-boundary link.

There exist some constraints for using links inside <forEach> activities in BPEL processes. A link
which is used within <forEach> activity must be declared in a flow which is itself nested inside the
<forEach> activity. A link must not cross the boundary of <forEach> activity, in other words leave
or enter from outside the scope activity of <forEach> activity.

2.1.16 Standard Attributes and Standard Elements

joinCondition is an optional attribute of targets collection (if not specified default join condition is logical
OR operation) which describes join condition of all incoming link activities to this activity. An optional
transitionCondition attribute of source element specifies the transition condition – to follow the outgoing
links or not (if this attribute is not specified according to default behavior all outgoing links need to be
followed).

Each WS-BPEL activity can have another optional attribute suppressJoinFailure. By the help of this
attribute, it is stated whether a join fault should be suppressed or not when bpel:joinFailure fault is raised.

2.2 BPEL4Chor
At first this section will describe the terminology which will be used for describing concepts of
choreography throughout this thesis. Later three artifacts of BPEL4Chor- participant behavior description,
participant grounding, participant topology, will be introduced. FTBS scenario will be used for illustrating
examples.

26

Real-world organizations, persons, information systems or software services that interact with other
organizations, persons, systems or services are called participants [DEC09]. Participants interact with each
other by exchanging messages. In other words participants are instances of participating business
processes.

Activities of participant can be separated into two groups: internal activities and communication activities.
Internal activities do not interact outside world, but only with local process and infrastructure. For
example activity for storing received ticket prices in local database is internal activity. Communication
activities are responsible for communication with outside world, by sending (receiving) messages to
(from) other participants.

There are two different modeling approaches in choreography: interaction and interconnected models. In
interaction model approach elementary interactions such as request and request-response message
exchanges are the basic building blocks and behavioral dependencies are defined between them
[DKLW07]. WS-CDL and Let’s Dance are the languages used for interaction modeling. Figure 2.1
illustrates interaction model example. In this example traveler interacts with travel agency for submitting
flight details in order to buy flight tickets. Travel agency interacts with several airlines for requesting
ticket price satisfying traveler supplied information. Then each airline interacts with travel agency by
quoting the current price of the ticket of interest. Travel agency chooses the best (the cheapest) ticket
providing airline, and interacts with it by ordering a ticket for traveler. After receiving ticket order request
from travel agency chosen airline interacts with traveler by issuing the eTicket to him.

27

Figure 2.1 Interaction model choreography for FTBS scenario

Interconnection models have communication activities as basic building blocks and behavioral
dependencies are defined between them on per-role bases [DEC09]. Each dependency should be assigned
only to one role. BPMN and BPEL4Chor are the languages mainly used for designing interconnection
choreographies. In example taken from [DKLW07] choreography is modeled using BPMN. Motivation
scenario used throughout this thesis is similar but not same with this choreography example. Traveler,
Traveler Agency and Airline are the involved participant types. Interconnection choreography example in
Figure 2.2 Interconnection choreography example described in BPMN taken from [DKLW07] is same as
interaction choreography example described above.

28

Figure 2.2 Interconnection choreography example described in BPMN taken from [DKLW07]

Interactions models can be mapped to interconnections models by using the approach described at Zaha et
al. [ZDH06]. As not all the interaction models can be mapped to interconnection models, Kopp et al.
[KLW10] has presented that safe and sound BPMN interconnection models and containing control flow
without exception handling can be mapped to interaction BPMN models [KELLN11].

BPEL4Chor is another language for modeling interconnection models. Bpel4chor has three artifacts:
participant topology, participant behavior description (PBD) and participant grounding. Different abstract
BPEL process is used as basis for each PBD. PBDs are connected together using message links in
participant topology. PBD and participant topology do not contain any technical configuration details,
which provides high flexibility for reusing choreography for different technical setups, e.g., with different
port types used [DKLW07]. Participant grounding is the only artifact which holds technical details such as
links to WSDL definitions and XSD types. Let’s dance and BPEL4Chor are able to model all common
interaction patterns described in [BDH05]. Figure 2.3 illustrates all three artifacts of BPEL4Chor:

29

Figure 2.3 BPEL4Chor three artifacts, taken from [DKLW07]

2.2.1 Participant Behavior Descriptions (PBDs)

Communication activities and their control and data dependencies are major building blocks of
choreographies. All activities of BPEL for control and data flow can be used unchanged in BPEL4Chor
safely, which also enables using existing BPEL tools for choreography designing. But there exists few
constraints while using BPEL activities for choreographies [DKLW07]:

- Each communicating activity inside choreographies must be identified uniquely. Due to fact that
<onMessage> activity does not have name attribute, different <onMessage> activities cannot
differentiated from each other. As a solution to this problem new wsu:id attribute having xsd:id
type is introduced as new attribute for all communicating activities.

- PartnerLink, portType and operation attributes must not be specified for communication
activities. By this constraint loose coupling of BPEL and WSDL interfaces is achieved.

- It is mandatory that messageExchange attribute exists in both receive and reply activities to relate
each pair of receive/reply messages. But if a receive models an asynchronous operation, the
attribute messageExchange must not be specified.

Abstract processes allow skipping some attributes of BPEL constructs, i.e. partnerLink and operation
attribute of message can be omitted. Decker [DEC09] has introduced Abstract Process Profile for
Participant Behavior Descriptions for describing the behavior of each participant. In other words one
participant behavior description is enough for all participants of the same type, i.e. only one travel agency
participant behavior description is created for all participants which has travel agency type. This profile
satisfies all constraints of Abstract Process Profile for Observable Behavior specified by BPEL
[DKLW07]. While using this profile, variables and variable types can be skipped in choreography design
which gives very high flexibility in expressing branching conditions as plain text.

30

Even though Abstract Process Profile for Participant Behavior Descriptions are easier for designing
choreographies, executable BPEL processes are used instead of abstract processes throughout this thesis.

Listing 2.14 Traveler participant behavior description

The xml snippet in Listing 2.14 describes traveler participant behavior description. Traveler PBD has
declared <partnerLinks>, variables and set of activities coordinating the flow of messages across the
services integrated within this PBD. This participant behavior description has only one communicating
activity - <invoke> activity. As all communicating activities in general, this <invoke> activity also
has wsu:id for differentiating it uniquely from other communicating activities of choreography. This

31

<invoke> activity communicates with <receive> activity (having wsu:id Receive_TravelDetails) of
travel agency participant.

2.2.2 Participant Topology

As stated in previous section, for each participant one separate participant behavior description is created.
Participant topology describes the structural aspects of choreography and helps to relate participant
behavior descriptions to each other [DEC09]. Participant type, participant reference and message link are
three new terms introduced in participant topology. Each participant behavior description represents one
participant type [DKLW07].

Listing 2.15 Participant type example from FTBS scenario

In the code snippet of Listing 2.15 three participant types are declared:

1) TravelerType participant type representing traveler participant behavior description

2) AirlineType participant type representing airline participant behavior description

3) TravelAgencyType participant type representing travel agency participant behavior description

Participant references point to participants.

Listing 2.16 Participant references example from FTBS scenario

In the Listing 2.16 two participants and one <participantSet> is declared. <participantSet>s
are used for describing the case when several <participant>s of the same type participate in one
choreography instance and the number of <participant>s can only be known at runtime. If number of
<participant>s of same participant type can be known at design time, then same number of
<participant>s is declared inside <participants> tags. Attribute selects indicates which
<participant> selects which other <participant>. In the example above travel agency initiates
conversation and selects airline of interest. The knowledge about <participant>s during a
conversation is local to individual <participant>s [DEC09]. Traveler does not know about airlines
involved in conversation with travel agency. In other words only direct partners of conversation know
each other and no one else.

32

The term containment helps to explain the case when participant reference is contained inside participant
set: that participant reference (having name selectedAirline) is selected from the set. The travel agency
will order a ticket only from one selected airline which provides cheapest price. The other participant
reference (having name currentAirline) which is also contained in <participantSet> represents one
<participant> selected in each iteration of the parallel <forEach> branches.

Message links binds two <participant>s together which can communicate with each other.
Alternatively it can be said that message links states interconnection of the participant behavior
descriptions. Two attributes of message link, receiveActivity and sendActivity refers to the communicating
activities of the PBDs. The ordering of these communicating activities can be understood from PBDs:
sending activity initiates conversation and sends message over message link. Only one sender out of
multiple senders with the same target type is allowed to send message. If a receiving activity is executed
multiple times, several interactions can take place over one message link [DEC09]. Message links must be
used under seven constraints which are described in [DKLW07].

Listing 2.17 Message links from FTBS scenario

In the code snippet above three message links are declared. First message link named
TInvokeTAOrderTripMessageLink, binds two participants - traveler and travel agency. This message link
states that send activity (having wsu:id Invoke_TravelAgency) of traveler sends message (named
Invoke_TravelAgency_orderTrip_InputVariable) to receive activity (having wsu:id
Receive_TravelDetails) of travel agency participant.

Throughout this thesis only invoke activity is used as send activity, and receive activity is used as receive
activity.

In Listing 2.18 you will find the topology artifact which describes motivating scenario FTBS:

33

Listing 2.18 Participant topology from FTBS scenario

2.2.3 Participant Grounding

Participant grounding is the only artifact of choreography which contains technical configuration details.
Participant grounding specify the mapping to web-service specific configurations: links to WSDL
definitions and XML schema types. In the code snippet below you can find grounding artifact of
motivating scenario:

34

Listing 2.19 Participant topology from FTBS scenario

The above participant grounding grounds all three message links which were declared in participant
topology. Grounding is only valid, if all message links are grounded [DEC09]. Message link named
TAInvokeAGetPriceMessageLink is grounded by specifying port type and operation combination. This
enables realization of one participant through different port types. If variables were declared at either
receiving or sending activities, then the message type of the specified operation must match the given
variable types.

The element participantRefs can be used inside participant grounding for passing participant references to
third participant in BPEL4Chor choreographies, this concept is called link passing mobility [DKLW07].
But participant reference passing is not part of motivating scenario of this thesis, so will not be discussed
further.

Weiß et al. [WASKV13] describe how to convert from a domain problem into executable business
process. It is assumed that domain problem is explained in a plain text or in graphical process modeling
language such as BPMN [WASKV13]. Then domain problem is modeled manually with choreography
editor. Then this choreography can be transformed into BPEL4Chor choreography automatically
[DKLW07], [DKLW09]. Afterwards three artifacts of BPEL4Chor choreography are used for generating
abstract BPEL process. Basic Executable Completion takes an input abstract process and turns it into
executable business process, but manual refinement is needed at the end.

35

Figure 2.4 How to convert a domain problem into an executable BPEL processes, taken from

[WASKV13]

2.3 Allen’s algebra
The Allen’s algebra will be used for visual verification of correctness of merge patterns [WKL11]. Allen’s
algebra (which is also called interval algebra) covers thirteen distinct basic relations which can occur
between two intervals A and B. Table 2.1 describes all these relations with pictorial and graphical
examples. Each relation in Table 2.1 (except A equals B relation, which is singular relation without inverse
relation) has inverse relation. Reverse relations are missing in this table as it’s so obvious to derive from
relation itself. For example, inverse relation of (A before B) is (B after A), with symbol representation of
Allen’s algebra B > A.

36

Table 2.1 Thirteen relations between A and B intervals of Allen’s interval algebra adapted from

[WKL12], [ALL83]

Allen [ALL83] has introduced how transitive relations can be derived for twelve relations (omitting equal
relation). Table 2.2 describes the full table of transitivity relations which can be derived from thirteen
distinct basic relations introduced before. Let’s say there exist two relations A r1 B, and B r2 C. Let r1
represent before (“<”) relation, in other words A before B relation; and let r2 represent before relation, in
other words B before C relation. Then A before C transitive relation can be derived from these two basic
distinct relations. All operations in on one cell of table can be combined with OR operation, which means
any of these relations can be result of transitivity relation:

37

Table 2.2 Transitivity Table for the Twelve Temporal Relations (omitting „=“) taken from

[ALL83]

Allen’s interval algebra can be applied to determine relations between activities of same or different
communicating processes. The advantage of using Allen’s algebra is that it is full algebra providing a set
of operations for determining transitive relationships between activities [WKL12].

38

3 Consolidation of Multi Instance Partner Business Processes

The consolidation operation merges a set of n interacting processes which are part of same choreography
into a single process named PMerged. The consolidation process mostly keeps control flow dependencies
between business activities of same process, as well as between business activities originating from
different processes. The business activities are activities performing some business function. The
peculiarity of business process consolidation operation is that it does not introduce any new BPEL
language constructs or additions middleware for merging participating processes in choreography. The
consolidated business process PMerged will have better runtime and memory performance due to less
communication (as communicating activities will be replaced by synchronization activities: <assign>
and <empty> activities) between activities by exchanging SOAP messages.

In this chapter choreography based process consolidation approach is described for one-to-many
interactions. Travel Ticket Management scenario is described as both an example of one-to-one and one-
to-many interaction. Section 3.1 introduces how Allen’s interval algebra can be used for visual
verification of correctness of merge patterns. Section 3.2 introduces asynchronous and synchronous
consolidation. In Section 3.3 traveler - travel agency interaction describes one-to-one interaction. Traveler
states his requirements to travel agency. Assumption is made that Traveler contacts only one travel
agency. Both traveler and travel agency plays role of “one” part of one-to-one interaction. In Section 3.4
travel agency – airline interactions describe one-to-many interactions. Travel agency contacts
many/several airline for available tickets. In this scenario travel agency plays role of “one” part of
interaction and airline plays “many” part of interaction. Section 3.5, Section 3.6, Section 3.7 describes
how to determine MIP instantiation type which can be among static, dynamic and hybrid multi instance
partner instantiations and which steps to follow for completing consolidation operation.

Two assumptions are made related to scenario used throughout this thesis:

1) It is assumed that there is only 1 traveler,1 travel agency, but N number of airline process
instances

2) The best price means the cheapest price in all scenarios described in this thesis

Also several technical assumptions are made thorughout this thesis:

1) Nested loops are not supported in this thesis

2) It is assumed that <forEach> loops in different processes, each has unique name throughout the
whole choreography

3) startCounterValue of all <forEach> loops starts from value 1.

4) Reference passing mechanism is not discussed for motivation scenario - FTBS.

5) It is assumed that there exists no parallel path to synchronization activities inside <forEach>
loops, which makes fragmentation of <forEach> activity difficult.

39

Figure 3.1 Parallel paths to synchronization activities inside <forEach> loop

Figure 3.1 illustrates process PA, which has parallel <forEach> activity. There exist two
synchronization activities A5 and A6. This thesis does not cover this particular case during <forEach>
loop fragmentation phase, described in Section 3.6.3. The problem with <forEach> loops containing
activities parallel to communication activities is that it is impossible to propagate faults between parallel
FE fragments. Let’s say if nth instance of FE_1 has failed, then all other related fragments (which are
originating from the same <forEach> loop as FE_1) has terminate its nth instance. But there is no way
from outside making only nth instance of another <forEach> loop to terminate.

3.1 Allen’s Algebra applied to FTBS Scenario
After choreographies get merged, it still has to be proven that all relations which existed between activities
in original choreographies are kept in merged choreography. Choreography based process consolidation is
valid consolidation if all the control-flow dependencies between the activities in the merged choreography
are reserved exactly same as in the originally choreography [WKL12]. Thus the Allen’s algebra will be
used for visual verification of correctness of merge patterns [WKL11].

40

Table 3.1 Allen’s interval algebra applied to motivation scenario activities

Table 3.1 describes execution order relations between activities in travel agency and airline PBDs used
throughout FTBS scenario. Only the relation of activities in the state “executing” is depicted and other
states such as “faulted” are omitted here. Each activity has beginning state which is start-executing and
end state which is end-executing. InvokeGetPriceReqi activity means InvokeGetPriceReq activity which is
called inside iteration i of <forEach> activity in travel agency choreography. As depicted in Table 3.1,
all activities described in rows always enter and leave the state of “running” before an instance activity
ChooseBestPrice (which is opaque activity in travel agency choreography). This is logical as all the prices
from airline processes must be received in order to choose best price. The relation R indicates that there
does not exist any control flow relations between activities, instances of airline process are independent of
each other, and all those instances are created and executed concurrently, thus QuotePricei activity in
airline process instance i and QuotePricei+1 activity in airline process instance (i+1) have no any control
flow relation between each other. All these control flow constraints must hold after travel agency and
airline process are consolidated in PMerged process.

3.2 Asynchronous and Synchronous Consolidation
To capture the implicit control flow constraints between the execution orders of activities, the
consolidation phase materializes those implicit control flow dependencies into explicit control flow
relations. If one of the activities is long running activity, then implicit control flow constraints become
hard to follow. In case of synchronous interaction, it is implied that the successor activities of a sending
synchronous <invoke> activity are not started till it receives a response from the partner where it has
sent a request message to before. Hence, the consolidation phase turns these implicit control flow
constraints into the materialized control links.

The consolidation phase starts by putting all activities, control links and variables of two processes into a
new single process PMerged [WKL11]. The activities are put into a flow activity (child of PMerged process)
which enables a potential parallel execution of nested activities. During the consolidation phase new
control links are added for keeping the original (before consolidation) execution order of the activities.
Same variable names are renamed to achieve unique variable naming in the same scope. The purpose of

41

consolidation phase is replacing communicating activities with synchronization activities. <assign>
activities are used for synchronization.

During consolidation phase message links are replaced by control flow links [WKL13]. Message links
need to be analyzed before determining consolidation type: synchronous or asynchronous consolidation.
Let ML be a message link declared in topology artifact. Let S an asynchronous <invoke> activity and
RC be <receive> activity declared in ML. In consolidation phase S is replaced by Syns <assign>
activity and R is replaced by an <empty> activity SynRC. The visibility scope of vRC variable is changed to
scope of PMerged process, so it can be accessed throughout the whole process. Syns activity copies the
message from the input variable vs of the invoke activity into the variable vrc of receive activity. An
<assign> activity inherits incoming and outgoing links of S and <empty> activity inherits incoming and
outgoing links of R as its own incoming and outgoing links. The additional link from Syns to SynRC ensures
that SynRC is started only after Syns activity. The graphical representation of asynchronous consolidation
can be found in Figure 3.2 taken from [WKL13]:

Figure 3.2 Asynchronous Merge Operation, taken from [WKL13]

In case of synchronous scenario, besides of <invoke> and <receive> activities there exists a
<reply> activity RP to an <invoke> activity. In this case <invoke> activity plays role of sender in
invoke-receive activities interaction and the role of receiver in reply-invoke activities interaction. The
visibility scope of vOUT variable is changed to the scope of PMerged process, to make it accessible throughout
the whole merged process. During consolidation phase the <reply> activity will be replaced by SynRP
activity., which copies the value of vRP variable into the variable vOUT. RC <receive> activity is
replaced by SynRC, and new SynSR activity is created to emulate receiving role of <invoke> activity S.
The control links of RC are mapped into SynRP and the outbound links of S are mapped into SynRC. The
newly created control link between SynRP and SynSR ensures that SynSR is started only after SynRP. Another
newly created control link Syns and SynRC is added for the same purpose as in asynchronous consolidation.

42

The Figure 3.3 illustrates synchronous consolidation scenario graphically:

Figure 3.3 Synchronous Merge Operation, taken from [WKL13]

Throughout this thesis only asynchronous consolidation was used. Figure 3.4 illustrates consolidation
model by applying asynchronous consolidation when merging travel agency and only one instance of
airline processes (activities not related to travel agency and airline interaction are disregarded from this
figure):

43

Figure 3.4 Travel Agency and Airline Consolidation Model

<onMessage> consolidation pattern is not supported yet, and that’s why it will be ignored in
consolidation phase.

Synchronization consolidation mechanism is applied four times in the scenario described above. Each
synchronization activity has two parts: assign and empty part, which are painted in the same color to be
differentiated easily.

3.3 FTBS Scenario: Traveler – Travel Agency as an Example of One-to-One
Interaction

In this real world scenario – FTBS, there are 3 business processes interacting with each other:

- Traveler business process – is a customer who supplies travel details to travel agency.
44

- Travel agency business process – is a company receiving traveler flight details and contacting
several airline companies for current ticket prices satisfying traveler flight requirements.

- Airline Company business process – receives flight details from travel agency, and provides up-
to-date ticket prices to travel agency.

This section will focus on two participant types only: traveler and travel agency.

Existence of one-to-one interaction can be determined by analyzing topology artifact. In topology artifact
each <participant>, as being child of <participants>, represents “one” part of one-to-one
interaction. But participants inside <participantSet> must be ignored for both one-to-one and one-
to-many interactions.

Traveler process is a calling process, and travel agency is a called process. In one-to-one interactions
calling process will have exactly one <invoke> activity which calls <receive> activity with
createInstance=”yes” attribute in called process. <receive> activity with createInstance=”yes”
attribute is also exactly one in called process. <invoke> activity is the only activity used as instance of
send activity throughout this thesis. It is worth to mention that the number of executed instances of invoke
activities influences the number of created instances. In other words, if there are only mutual exclusive
instance creating <invoke> activities then this is still a one-to-one scenario. Receiving activity can be
instance of <receive> or <pick> activities. But in this thesis only <receive> activity is used as
receiving activity in called process.

3.3.1 Determining Number of Containers for One-to-One Interaction

As a result of the process consolidation phase, in merged process PMerged two containers will be generated.
One container will be generated for calling process, which is traveler, and another container is created for
called process, which is travel agency.

3.3.2 Container Generation Phase

Container is a <scope> activity for one-to-one interactions. New container will be generated for each
<invoke> activity calling <receive> activity with createInstance attribute having „yes“ value. Again
only number of executed <invoke> activities influence the number of container generation, so it should
be carefully revised when there exist mutually exclusive instance creating <invoke> activities – only one
of them influences container generation, the one which is executed during run time. According to BPEL’s
execution semantics the container will only be executed if the invoke itself is had been executed, which
will enable dead path elimination. Container generation for one-to-one interaction is 2 step process:

1) For traveler participant new container scope CStraveler , and for travel agency participant new
container scope CStravelAgency is created. This container scope is called static container. Static
container is <scope> construct of BPEL language. Then these scopes are added as children of
<flow name="MergedFlow"> in merged PMerged process.

2) Traveler PBD is copied into CStraveler , and TravelAgency PBD is copied into CStravelAgency.

45

Figure 3.5 One-To-One Partner Instantiation and Container Generation

Figure 3.5 illustrates one-to-one interaction scenario where travel process instantiates only 1 instance of
travel agency process. Hence only one container scope STravelAgency needs to be created in PMerged for partner
process.

3.4 FTBS Scenario: Travel Agency – Airlines as an Example of One-to-Many
Interactions

One assumption is made for one-to-many interaction part related to FTBS scenario:

- For one-to-many interaction the calling process must have <forEach> activity (or any other
BPEL loop activities). <forEach> activity allows creating multi instances of same participant
type.

There exist two different scenarios depending on type of <forEach> activity. In first scenario,
<forEach> activity is parallel <forEach> activity, hence travel agency will invoke N number of
airline participants at the same time. In this particular scenario <forEach> activity has
startCounterVariable equals to one, and finalCounterVariable equals to three. Figure 3.6 and Figure 3.7
illustrate runtime of MIP instantiations, thus it differs graphically from design time representation of
activities.

46

Figure 3.6 Parallel MIP instantiation

In second scenario, <forEach> activity is serial/sequential activity, then as shown in Figure 3.7, travel
agency participant will invoke airline_1 participant, and only after receiving ticket price from airline_1

47

participant, then travel agency will invoke airline_2 participant and this sequence will be kept till the last –
airline_N participant is invoked.

Figure 3.7 Sequential MIP instantiation

For better viewing activities inside <forEach> activity iterations are minimized.

Throughout this thesis only parallel multi-instance partner instantiation will be used.

48

3.4.1 Multi Instance Partner (MIP) Instantiation from BPEL4Chor Perspective

This section will describe how to determine the type of multi instance partner instantiation depending on
analysis of topology and participant behavior description artifacts. After determining the type of MIP
instantiation the corresponding container type will be created:

- If static MIP Instantiation, then static container will be created for corresponding PBD in merged
process. Static container means corresponding PBD will be simple copied into new <scope> in
merged process without any change.

- If dynamic MIP Instantiation, then dynamic container will be created for corresponding PBD in
merged process. Dynamic container means corresponding PBD scope will be copied into
corresponding <forEach> container which resides in new <scope> in merged process.

3.4.2 Determining Type of MIP Instantiation

Type of MIP Instantiation can be determined by analyzing topology and corresponding PBD artifacts
together. The below two sections will describe how MIP instantiation types and counts can be determined
by two approaches.

3.4.2.1 By Analysis of Participants and Participant Sets in Topology Artifact

The existence of participants and participant sets can be checked in topology artifact. The information
about <forEach> activity’s finalCounterVariable’s value can be determined from corresponding PBD
artifact.
As described in Figure 3.8 , as a result of participant and participant set analysis in topology artifact, this
is static MIP Instantiation in the cases:

1) If there does not exist a participant set in topology and there exists at least 1 participant of certain
type

OR

2) If there exists a participant set, which has at least 1 <forEach> activity, with
finalCounterVariable’s value can be determined at design time – in other words
finalCounterVariable has some constant integer value. Condition 2 in Figure 3.8 has to be
checked for each <forEach> activity and corresponding path needs to be taken.

This is Dynamic MIP Instantiation in the case:

- If there exists a participant set with at least one <forEach> activity with finalCounterVariable’s
value which can be known only at run time – in other words finalCounterVariable is variable, not
constant.

49

Figure 3.8 Determining MIP instantiation type from topology artifact and PBDs

3.4.2.2 By Analysis of Message Links in in Topology Artifact

The existence of message links can be checked in topology artifact. Value of createInstance attribute of
receiving activities can be checked from corresponding PBD artifact. Receiving activities with
createInstance attribute can be <receive> activity. Also checking corresponding <invoke> activities
(which communicates with <receive> activities with createInstance=”yes” attribute) reside in
<forEach> activity or not, can be done by analysis of corresponding PBD. If Invoke activity resides
inside <forEach> activity, then this is dynamic MIP Instantiation, else this is static MIP instantiation:

50

Figure 3.9 Determining MIP instantiation type from message links in topology artifact

3.5 Static MIP Instantiation in Merged Process
After type of MIP instantiation is determined static containers need to be created in merged process.

3.5.1 Determining Number of Static Containers to be created in Merged Process

At first, number of containers to be created in merged process has to be determined. In static MIP
instantiation the number of containers is determined by analyzing message links in topology artifact.
Containers must be created according to message links which has <invoke> activities as sender activity
and <receive> activities as receiving activity with attribute createInstance=”yes”. Only number of
executed <invoke> activities influence the number of container generation, so it should be carefully
revised when there exist mutually exclusive instance creating <invoke> activities – only one of them

51

influences container generation, the one which is executed during run time. <invoke> activities must be
differentiated in two ways:

1) <invoke> activity has <forEach> activity as parent. Then number of containers to be
created is equal to finalCounterVariable of <forEach> activity.

2) <invoke> activity does not have <forEach> activity as parent. Then only one container
scope needs to be created for each <invoke> activity in merged process.

3.5.2 Static Container Generation Phase

The reason of creating containers is same as for one-to-one interaction scenarios described in Section
3.3.2. Container or container scope is new <scope> activity, and in case of static MIP instantiation the
container is called static container. After number of containers to be created in merged process is
determined, then container generation phase starts. In static MIP instantiation container creation is two
step processes:

1) New scope Sstatic is created as child of merged process PMerged .

2) Corresponding PBD is copied into that scope Sstatic .

Figure 3.10 Static MIP instantiation and container generation: invoke case

Figure 3.10 illustrates static multi-instance-partner instantiation and container generation phases
graphically. PMIP is the instance of multi instance partner. PMIP is called by process PA, which contains two
invoke activities: A2 and A3, which are both creating new instance of PMIP instances. B2 <receive>
activity of PMIP process has createInstance attribute which is set to “yes” value. The right side of Figure
3.10 illustrates container generation phase. In this particular scenario, number of containers (which is two)
is determined by number of <invoke> activities calling <receive> activity (with
createInstance=”yes” attribute) in PMIP process. S1

MiP and S2
MiP are two static container scopes generated

during consolidation phase.

52

Figure 3.11 Static MIP instantiation and container generation: static sequential forEach

case

Figure 3.11 illustrates static multi-instance-partner instantiation and container generation phase based on
static sequential <forEach> activity. PA process has <forEach> activity, which has
startCounterValue equal to one, and finalCounterValue equal to three. <invoke> activity A2 is child
activity of <forEach> activity. Hence A2 <invoke> activity will be called three times in total for three
iterations of <forEach> activity. B1 <receive> activity in PMIP process, has attribute createInstance
attribute set to “yes”. Thus three static containers need to be generated. In case of parallel static
<forEach> activity case, A21, A22, A23 <invoke> activities will be invoked concurrently and all three
containers will be generated at the same time.

3.6 Dynamic MIP Instantiation
The number of instances to be created is not known at design time. In order to create a priory unknown
number of instances parallel <forEach> activity will be used for container creation.

3.6.1 Determining Number of Dynamic Containers to be created in Merged Process

Number of containers to be created in dynamic MIP instantiation can be determined from message links in
topology artifact. The interested message links are those which has <receive> activity with
createInstance=”yes” attribute. After those message links are determined, then send activities of those
message links are analyzed. In dynamic MIP instantiation phase, we are only interested only in those
invoke activities whose parents are dynamic <forEach> activities. If we have m <invoke> activities
as children of <forEach> activity with finalCoutnerVariable=n, then number of containers to be created
in merged process will be (n*m). (Only executed <invoke> activities are assumed out of mutual
exclusive instance creating <invoke>s) The steps below describe how to determine number of
containers for dynamic MIP instantiation will be:

1) get all message links form topology artifact and store in SetallMsgLinks

2) select message links from SetmsgLinks where <receive> activity has attribute
createInstance=”yes” and store these message links in SetinstanceCreatingMsgLinks

3) get corresponding <invoke> activities from SetinstanceCreatingMsgLinks and store in SetInstanceCreatingInvokes

53

4) select <invoke> activities from SetInstanceCreatingInvokes which has as its parent dynamic
<forEach> activity and store them in SetselectedInvokes

5) Number of containers to be created in merged process will be
size_of(SetselectedInvokes) x (finalCounterVariable_of_ ForEach)

3.6.2 Dynamic Container Generation Phase

The reason of creating containers is same as for one-to-one interaction scenarios described in Section
3.3.2. As the number of process instances involved in choreography is not known at design time, hence
the multi-instance process cannot be unrolled into different containers as in static multi-instance creation
scenarios. The only way for creating a priory unknown number of instances of certain process in BPEL is
creating them using parallel dynamic <forEach> activity. Thus container in dynamic MIP instantiation
is <scope> activity having dynamic parallel <forEach> activity as its child. This container is called
dynamic container. Dynamic container generation phase is three step process:

1) New scope Sdynamic is created as parent of merged process PMerged.

2) New <forEach> activity ForEachdynamicContainer is created as the only child of Sdynamic .

ForEachdynamicContainer will have same attributes and values as in calling process. The only attribute
will matter is suppressJoinFailure attribute’s value need to be taken from the called process.

3) Corresponding PBD is copied as child element of ForEachdynamicContainer.

Figure 3.12 and Figure 3.13 illustrates dynamic parallel and serial <forEach> activity cases for multi-
instance-partner instantiation and container generation.

Figure 3.12 Dynamic MIP Instantiation and Dynamic Container Generation: Dynamic, Parallel

<forEach> Case

In Figure 3.12, PA process has one parallel <forEach> activity with startCounterValue=1 and
finalCounterValue=N. A2 <invoke> activity is child activity of <forEach> activity. B1 <receive>
activity of PMIP process has createInstance attribute which is set to “yes” value. As there is only one
dynamic <forEach> activity (and also only one <invoke> activity calling B1 receive activity in PMIP),

54

so only one dynamic container SMIP need to be generated. SMIP dynamic container is <forEach> activity
which inherits all its attributes (except suppressJoinFailure attribute value must be inherited from PMIP
process) from <forEach> activity in PA process.

Figure 3.13 describes dynamic serial <forEach> activity case. In this case the only difference from the
scenario illustrated in Figure 3.12 is that, SA container in PMerged process contains dynamic serial
<forEach> activity corresponding to dynamic serial <forEach> activity in PA process. It’s worth
mentioning that in both dynamic parallel and serial <forEach> cases, the dynamic container SMIP created
in PMerged process is dynamic parallel <forEach> activity.

Figure 3.13 Dynamic MIP Instantiation and Dynamic Container Generation: Dynamic, Serial

<forEach> Case

3.6.3 Loop Fragmentation for resolving Cross Boundary Link Violations

According to WS-BPEL 2.0 specification, a link must not cross the boundary of a repeatable construct.
<forEach> activity is also repeatable activity. After choreography PBDs get consolidated into PMerged
process, new links are created for supporting communication between communicating activities residing
in different <forEach> loops. Hence those links are violating cross-boundary constraint of WS-BPEL
specification. Thus loop fragmentation technique is used as a solution for handling cross-boundary link
violations.

This section introduces the algorithm for resolving cross boundary link violations by applying loop
fragmentation approach. Loop fragmentation enables dividing <forEach> loop residing in dynamic
container, created in PMerged, into several <forEach> loop fragments. Later in this section link status
propagation approach will be used for recovering broken control links between fragments.

Loop fragmentation algorithms main purpose is dividing <forEach> loop, into several <forEach>
fragments. Fragments are newly created <forEach> constructs of the BPEL language. Loop
fragmentation will create new fragments for:

1) All activities until first synchronization activity will be grouped into a newly created fragment.

55

2) Synchronization activities: send activity - Synsend , and receive activity Synrec will be moved into
newly created fragment.

3) All activities coming after synchronization activity till next synchronization activity (if there is
any) will be grouped into new different fragment.

In other words synchronization activities play the role of delimiter for creating new fragments.

Listing 3.1 Abstract example for illustrating loop fragmentation technique

The above given example in Listing 3.1 describes how activities in <forEach> loop residing in dynamic
container can be segmented into different fragments. Opaque activities can be any activity which is not
synchronization activity. In other words opaque activities are business activities, but not communicating
activities. Same color activities must be put into same fragment. As a result of loop fragmentation five
new <forEach> loop fragments will be created.

56

Figure 3.14 Loop fragmentation result, applied on example illustrated at Listing 3.1

Loop fragmentation algorithm is described by pseudo code in Listing 3.2:

57

(1) performLoopFragmentation(actforEach_send)
(2) begin
(3) … store all preceding activities of actforEach_send in ForEachPrecActssend list
(4) … store all succeeding activities of actforEach_send in ForEachSuccActssend list
(5) … store all preceding activities of Synrec in PrecActsrec list
(6) … store all succeeding activities of Synrec in SuccActsrec list
(7) … create new <forEach> FEsyn in CS of Synsend
(8) … move each pair of Synsend and Synrec into FEsyn
(9) if (Synsend.precedingOpaqueActsInForEach() ≠ null)
(10) … create new <forEach> FEpred_syn
(11) … move all Synsend.preceddingOpaqueActsInForEach() activities into FEpred_syn fragment
(12) fi
(13) if (Synrec.precedingOpaqueActsInForEach() ≠ null)
(14) … create new <forEach> FEpred_rec
(15) … move all Synsend.precedingOpaqueActsInForEach() activities into FEpred_rec fragment
(16) fi
(17) if (FEsyn != null && FEpred_rec != null)
(18) … create new control link CLsyn_predRec(FEsyn, FEpred_rec)
(19) fi
(20) if (FEsyn != null && FEpred_send != null)
(21) … create new control link CLpredSend_syn(FEpred_send , FEsyn)
(22) fi
(23) if (Synsend.succeedingOpaqueActsInForEach() ≠ null)
(24) … create new <forEach> FEsucc_send
(25) … move all Synsend.succeedingOpaqueActsInForEach() activities into FEsucc_send fragment
(26) … create new control link CLsyn_succSend (FEsyn, FEsucc_send)
(26) else
(27) … connect FEsyn to ForEachSuccActssend activities residing outside actforEach_send
(28) fi
(29) if (Synrec.succeedingOpaqueActsInForEach() ≠ null)
(30) … create new <forEach> FEsucc_rec
(31) … move all Synrec.succeedingOpaqueActsInForEach() activities into FEsucc_rec fragment
(32) … create new control link CLsyn_succRec (FEsyn, FEsucc_rec)
(33) else
(34) … connect FEsyn to SuccActsrec activities residing after Synrec
(35) fi
(36) … all opaque activities that do not precede any synchronization activity are left in their
(37) corresponding original <forEach> fragment and need to be connected to FEsyn fragment
(38) if (ForEachPrecActssend ≠ null)
(39) if (FEpred_send != null)
(40) … connect ForEachPrecActssend activity list to FEpred_send

(41) else
(42) … connect ForEachPrecActssend activity list to FEsyn

(43) fi
(44) fi
…

58

Listing 3.2 Loop fragmentation algorithm

performLoopFragmentation(actforEach_send) function takes one <forEach> activity as its argument.
actforEach_send represents <forEach> activity where send part of consolidation resides. actforEach_send can be
thought as <forEach> activity residing in travel agency process calling airline participant instances.

Lines [3,6] describes of getting all the activities preceding actforEach_send <forEach> activity (Synrec
activity) and storing them in ForEachPrecActssend (PrecActsrec) lists.

Lines [7,8] creates new <forEach> loop container FEsyn in the container scope of Synsend. The newly
created fragment FEsyn inherits the attributes, handlers, start and end counter values from original
<forEach> of Synsend. Each pair of activities Synsend and Synrec violating cross boundary link constraint
must be moved into the fragment FEsyn .This steps guarantees that no data will be modified by Synsend if
another activity fails in container scope of Synsend.

Lines [9,12] checks if there exist activities directly/indirectly preceding Synsend , then create new fragment
FEpred_send. All opaque activities directly or indirectly preceding Synsend (but not other synchronization
activity) are removed from their original <forEach> loop and moved into fragment FEpred_send.

Lines [13,16] checks if there exist activities directly/indirectly preceding Synrec activity (but not other
synchronization activity) then create new fragment FEpred_rec in the container scope of Synrec , as the
opaque activities preceding Synrec resides in the scope of Synrec. All opaque activities directly/indirectly
preceding Synrec (but not other synchronization activity) are removed from its original <forEach> loop
and put into fragment FEpred_rec.

Lines [17,19] creates new control link CLsyn_predRec(FEsyn, FEpred_rec) and connects two <forEach> loop
fragments - FEsyn and FEpred_rec.

Lines [20,22] creates new control link CLpredSend_syn(FEpred_send , FEsyn) and connects two <forEach>
fragments - FEpred_send and FEsyn.

Lines [23,28] connects FEsyn fragment either to the <forEach> fragment which contains the direct
successor activities of Synsend, or directly to successor activities of Synsend that do not reside within
<forEach> fragment.

Lines [29,35] connects FEsyn fragment either to the forEach fragment which contains the direct successor
activities of Synrec, or directly to the successor activities of Synrec that do not reside within <forEach>.

(45) if (PrecActsrec ≠ null)
(46) if (FEpred_rec != null)
(47) … connect PrecActsrec activity list to FEpred_rec

(48) else
(49) … connect PrecActsrec activity list to FEsyn

(50) fi
(51) fi
(52) end

59

All opaque activities that do not precede any synchronization activity (and residing inside forEach
activity) are left in their corresponding original forEach loop fragments and need to be connected to FEsyn
fragment which contains their preceding Synsend and Synrec respectively.

Lines [38,51] are for handling activities not residing inside any of forEach activities. As they were
grouped into two lists on lines [3,6], now those two lists of activities need to be connected respectively
either to FEpred_rec (or FEpred_send), if exists, or to FEsyn directly.

Figure 3.15 illustrates abstract example of two processes - which need to be consolidated into one process,
before loop fragmentation:

Figure 3.15 Two abstract business processes before applying loop fragmentation

Figure 3.16 demonstrates the result of loop fragmentation algorithm applied to the example in Figure 3.14:

60

Figure 3.16 Loop fragmentation applied to example described in Figure 3.14

<opaque> activities from 1 to 3, and from 8 to 10 reside outside parallel <forEach> activity, they
remain unchanged after fragmentation algorithm is applied. <opaque> activities 4 and 5 – which reside
inside <forEach> activity, also precede synchronization activity Syn_send, are moved from its original
container into new <forEach> container named FEpred_send. Pair of synchronization activities (Synsend and
Synrec) are replaced with <assign> and <empty> activities respectively and moved into new
<forEach> container named FEsyn. <opaque> activities from 11 to 13 were preceding activities of
Synrec activity, they are moved into new container called FEpred_rec and connected to FEsyn fragment with
new control link. <opaque> activities from 14 to 16 were the activities succeeding Synrec, are moved into
new fragment named FEsucc_rec and connected to FEsyn fragment with new control link. <opaque>
activities 6 and 7 – resided inside <forEach> activity and were succeeding activities of Synsend activity,
were moved into new container named FEsucc_send.

61

<opaque> activities from 1 to 3 are executed first. Secondly <opaque> activities residing inside
FEpred_send get executed. Execution of FEsyn fragment starts by execution of FEpred_rec fragment, followed by
execution of Syn_assign and Syn_empty activities and then proceeds with execution of FEsucc_rec fragment.
FEsyn fragment finishes its execution only after FEsucc_rec fragment terminates. FEsucc_send fragment and
opaque activities from 8 to 10 are executed in consecutive order.

Figure 3.17 illustrates the result of loop fragmentation algorithm applied to the executable business
processes – travel agency and airline:

Figure 3.17 Travel agency and airline consolidation after fragmentation

62

Figure 3.17 illustrates result of applying loop fragmentation algorithm to travel agency and airline
business process consolidation model. There is no preceding and succeeding activities of Synsend in parallel
ForEach loop in travel agency container scope, thus FEpred_send is missing. AirlineFE1 fragment represents
FEpred_rec fragment. It can also be seen that each <empty> activity part of synchronization consolidation
is moved into same fragment of <assign> activity part of synchronization consolidation. Extra created
control links cl1, cl2 and cl3 ensures that activity execution order is preserved as in original
choreographies before consolidation.

3.6.4 Link Status Propagation Technique

After <forEach> activity in dynamic container scope is divided into several new <forEach>
fragments, control links become broken. The links become broken due to the reason that source and target
communicating activities may be residing in two different fragments after loop fragmentation is applied to
the container scope. Thus, further steps need to be completed for handling broken control links between
different <forEach> fragments:

1) The control links between activities which resides inside of same FE fragment must be kept in
order to maintain the original execution (before consolidation) order of activities.

2) All incoming links of activities whose predecessors reside within another FE fragments are
removed

3) When the successor activities of an activity are moved to another fragment, then all of its outgoing
links are removed.

Khalaf and Leymann [KL06] describe an approach to split a single process into several individual process
fragments, as a solution to broken control links, they described technique to propagate the link status from
one process fragment to another fragment via message exchange. This thesis adapts this approach to
propagate the link status from one FE fragment into another fragment by using variables, instead of
message exchanges. Let activities Src and Trg be connected via control link CL(Src,Trg, tc) and transition
condition tc. Before consolidation Src and Trg activities were in the same fragment - <forEach>
container, but after consolidation they are put into different FE fragments FEsrc and FEtrg. In order
consolidation phase complete successfully FEsrc and FEtrg fragments need to go through some changes.
The steps described below need to be executed consecutively in FEsrc fragment:

63

Listing 3.3 Link status propagation - adapting changes to source fragment

At first new variable, named LinkStatus, is created in the parent scope of FEsrc and FEtrg fragments.
LinkStatus variable will hold the value of link status transition. Second new <scope> Scopesrc is created
as child of FEsrc fragment and its suppressJoinFailure attribute is set to “no”. Third new fault handler
FHsrc is created and added into <scope> Scopesrc. Fourth new <assign> activity Assigntrue is created
and added as child of <scope> Scopesrc. Assigntrue activity writes “true” to the value of LinkStatus
variable. Fifth new <assign> activity Assignfalse is created and added as a child of fault handler FHsrc.
Assignfalse activity writes value “false” to variable LinkStatus. At last new control link CLsrc(Src, Assigntrue,
tc) is created.

These changes in FEsrc fragment cover all potential paths of process exertion flow:

a) When transition condition tc in control link CLsrc(Src, Assigntrue, tc) evaluates to “false”, then
bpel-joinFailure fault will be raised. This fault will be caught by FHsrc and Assignfalse activity will
be executed by setting LinkStatus variable to “false”.

b) If tc n control link CLsrc(Src, Assigntrue, tc) evaluates to “true”, then Assigntrue activity will be
executed by assigning “true” to LinkStatus variable.

In order link status propagation complete successfully, FEtrg fragment need to adapt these changes (in
consecutive, order described in Listing 3.4):

Listing 3.4 Link status propagation - adapting changes to target fragment

(1) ... create new LinkStatus boolean variable in the parent scope FEsrc and FEtrg
(2) performLinkStatusPropagation(FEsrc, FEtrg)
(3) begin
(4) … create new scope Scopesrc as child of FEsrc
(5) Scopesrc.supressJoinFailure=false
(6) … create new fault handler FHsrc
(7) Scopesrc.addFaultHandler(FHsrc)
(8) … create new assign activity Assigntrue
(9) Scopesrc.getChildren.add(Assigntrue)
(10) … create new assign activity Assignfalse
(11) FHsrc.getChildren().add(Assignfalse)
(12) … create new control link CLsrc (Src, Assigntrue, tc)
...

(13) ... create new empty activity Emp
(14) FEtrg.getChildren().add(Emp)
(15) … create new control link CLtrg(Emp, Trg, read(LinkStatus))
(16) end

64

FEtrg fragment hosts Trg activity as its child. In order to adapt changes to target fragment for link status
propagation, new <empty> activity Emp is created and added as child of FEtrg fragment. Then new
control link CLtrg(Emp, Trg, read(LinkStatus)) is created for connecting Emp <empty> activity to Trg
activity.

All changes done to FEsrc fragment and then to FEtrg fragment ensure that:

1) The value of LinkStatus is always set before Emp <empty> activity reads it.

2) The instance of Emp <empty> activity is started as soon as the corresponding <forEach>
branch becomes active.

3) The execution order of Src and Trg activities is preserved by the execution order of their hosting
fragments FEsrc and FEtrg respectively.

Figure 25 illustrates of link status propagation approach [20]. In this figure Airline scope and its two
fragments are described. At first link status variable (named varLS) is created, and optionally initialized to
value false. First fragment contains source activity – Calculate price, and newly created CL (Src,
Assigntrue, tc) control link and Scopesrc <scope> activities. Assigntrue <assign> activity is created and
inserted into Scopesrc <scope> activity. Also fault handler FHsrc is created and attached to Scopesrc.
Assignfalse <assign> activity is created and inserted into FHsrc. Second fragment contains
synchronization activity for quoting calculated ticket price. Emp <empty> activity and CL’(Emp, Trg,
read(varLS)) control link are newly created activities inside fragment two of Airline scope.

Figure 3.18 Link status propagation from one fragment into another adapted from

65

Another advantage of link propagation approach is that it also ensures dead-path elimination which can be
performed easily. If an incoming link’s transition condition evaluates to false, then synchronization
activity it is connected to, will have all its outgoing links set to false.

3.6.5 Data Flow between Fragments in and across Container Scopes

After processes get consolidated in PMerged certain variables and links need to be made global to enable
data sharing between activities residing in different (container) scopes. This goal can be accomplished by
applying variable-lifting approach. There are mainly two rules to follow in variable-lifting approach:

1) All variables that are used in different FE fragments but only in the same dynamic container scope
CS, have to be made global only to that dynamic container scope CS.

2) All variables that are accessed in different container scopes have to be lifted up to the process
scope PMerged, in other words made global to the whole process PMerged.

Figure 3.19 and Figure 3.20 illustrates abstract example of variable lifting approach. Variable a is declared
in the scope of Process_1 - inside forEach activity.. After Process_1 and Process_2 get consolidated and
loop fragmentation is applied, variable a becomes unreachable for other fragments inside Process_1
container scope. Figure 3.20 illustrates the solution for two cases. In first case a) it is assumed that
variable a is only accessed throughout container scope of Process_1 even after process consolidation. In
second case b) it is assumed that after process consolidation phase variable a need also be accessed and
updated in container scope of Process_2.

Figure 3.19 Before Applying Variable Lifting Technique

66

Figure 3.20 After Applying Variable Lifting Technique

In one-to-one interaction, only one variable of the same type is created, as only one instance of partner
need to be consolidated in PMerged. In case of one-to-many interaction scenario, let’s say there are three
instances of same partner choreography need to be consolidated in PMerged. Then three variables of the
same type need to be created for each instance. But in case of unknown number of instances to be
consolidated, number of multi-instance variables (same variables serving for same purpose in different
instances) is also unknown. To cover this case also, a map data structure is created for each variable type.

Let’s say there is a variable named VarPrice declared in each instance of airline process. This variable holds
the value of requested ticket price.

Listing 3.5 Price Variable

New variable of map data structure type is introduced. Let’s call this map as MIPMPrice – multi instance
partner map for price variable. This map will have entries:

67

Listing 3.6 MIPMPrice map entry

Xsd:ID is a key of each entry, and variable VarPrice will be the value of each entry. The key of the map
xsd:ID is a unique key for determining instance of airline participant type. VarPrice is the price variable
used in instance of airline participant type determined by xsd:ID key. MIPMPrice map data structure can be
expressed as message type in wsdl artifact of airline process (which will be automatically injected into it)
as:

Listing 3.7 MIPM map complex type and variable priceMap of type MIPM

All references to VarPrice variable inside each instance of airline process (in assign activities, join or
transition conditions) need to be modified: now they need to refer to the corresponding entry of MIPMPrice
map. For instance the below code snippet shows how from part of <assign> activity need to be
modified to adapt the changes:

Listing 3.8 Change of from part of <assign> activity

The id attribute helps to select the entry of priceMap with instance id equals to i. Xsd:ID field needs to
uniquely identify the corresponding <forEach> activity and its corresponding iteration. This is the fact
that once the instance started its execution, there is no technical way to insert instance id into instance of a
<forEach> activity from outside. The counterVariable of <forEach> activity is the only information
which is not changing during that iteration and can uniquely identify an instance within a <forEach>
activity. But if there are several dynamic containers created in merged PMerged process, then
counterVariable value is not unique determining instance id throughout the whole process, but only within
that particular dynamic container – <forEach> activity. In order to create global unique id, it is
recommended to combine the static id feid (defined at design time) and the dynamic instance counter
value iid (defined at runtime) are concatenated. Then xsd:ID will be equal to xsd:ID=feid_iid. Let’s say n
instances of airline process need to be consolidated. The first instance will get instance key AirlinfeFE_1,
the second instance AirlineFE_2 and nth instance will get instance key AirlineFE_N. In case of key

68

AirlineFE_1 (which is feid_iid key), feid is equal to “Airline FE_” part of the key (common name chosen
for FE fragments being generated from same <forEach> loop), and “1” is iid part (dynamic instance
counter value) of the key. If the container needs to be fragmented into several fragments during
consolidation phase instance key does not need to be changed. Let’s say AirlineFE_1 fragment of instance
one need to be divided into three fragments. Then the key for instance one and fragment one, for instance
one and fragment two and for instance one and fragment three will be AirlineFE_1. In other words, only
one entry in multi-instance variable map is created for the fragments created as division of one fragment.
Thus it becomes obvious to determine all the fragments which are executed by the same instance of airline
and travel agency choreography in one-to-many interaction scenario. CollectPricesFE_1 and AirlineFE_1
can be related to each other, and all related fragments can share data between each other through multi
instance variable stored in multi instance map. By variable-lifting approach introduced above. All multi-
instance variables which are updated inside related fragments need to be accessed through xsd:ID key in
priceMap.

3.7 Hybrid MIP Instantiation in Merged Process
Hybrid MIP instantiation happens when there exist both dynamic and static <forEach> activities. There
doesn’t exist any specific rule for handling hybrid MIP instantiation, instead dynamic <forEach>
activities in the PBD must be used for dynamic MIP instantiation, and static <forEach> activities must
be used for static MIP instantiation.

Figure 3.21 illustrates hybrid multi-instance-partner instantiation and container generation scenario. PA
process has one dynamic parallel <forEach> activity (which contains A4 <invoke> activity inside)
and one A2 <invoke> activity which are calling B2 <receive> activity (with createInstance attribute
set to “yes” value). In process PA, A2 <invoke> activity causes static container generation - covering
static MIP case and A4 <invoke> activity inside <forEach> activity causes dynamic container
generation - covering dynamic MIP case.

Figure 3.21 Hybrid MIP Instantiation and Container Generation

69

70

4 Implementation

In the following section implementation details for process consolidation in one-to-many interaction
scenarios will be introduced. Eclipse was chosen as an integrated development environment. Debicki
[DEB13] explains installing required packages and frameworks for setting up the environment.

4.1 Design
Figure 4.1, illustrates four consecutive steps for choreography based process consolidation in one-to-many
interactions. First step is initialization phase – where input data is read from 3 (or more) files: participant
behavior description(s), participant topology and participant grounding. Read input data are stored in data
structures corresponding to WS-BPEL 2.0 specifications for further handling. Second step analyzes
participant behavior descriptions and participant topology files for determining type and count of
container scopes to be created.

Figure 4.1 Four steps for choreography based process consolidation in one-to-many interactions

Third step analyzes message links from participant topology and participant grounding artifacts. Message
links can be merge able and non-merge able. If there exist asynchronous (synchronous) patterns for
merging communicating activities, then best matching pattern is chosen and asynchronous (synchronous)
consolidation takes place. For some communicating activities corresponding synchronization patterns are
not introduced yet, thus not all message links can be grounded. The best matching pattern is pattern which
covers the exact (or almost exact) scenario of interaction between communicating activities (i.e., two
different scenarios - when there is activity succeeding the synchronization activity and when there is not,
have different best matching patterns). If merge pattern is not yet implemented for communicating

71

activities, then they cannot be replaced with synchronization activities, and the corresponding message
link is moved into Non-Mergeable-Message-Links list.

Fourth step is mainly for handling merged process by applying loop fragmentation to <forEach> loop
which is dynamic container in it. After container has been fragmented, control links need to be managed to
keep most of control flow constraints between business activities. The business activities are the activities
that implement a certain business function. Variable lifting approach changes locality of variables to
scopes and in this way enables data flow between fragments, as well as across container scopes.

Figure 4.2 illustrates UML class diagram of org.bpel4chor.mergeChoreography package.
ChoreographyMerger is responsible for determining type and count of MIP instantiations and generating
corresponding container scopes, then applying consolidation techniques (loop fragmentation, link status
propagation, variable lifting) to them. ChoreographyPackage represents the class for holding input read
data about PBDs, grounding, topology and wsdl artifacts. ChoreographyPackage will also store new
created merged process in its instance. CommunicationMatcher is mainly responsible for searching and
finding best matching (a)sync pattern for merging communicating activities. Best matching pattern is
selected among suitable matching patterns for merging. MLEnvironment class stores some required
information such as preceding and succeeding activities of communicating activities, which is used for
determining suitable pattern for merging communicating activities.

72

Figure 4.2 UML Class Diagram of org.bpel4chor.mergeChoreographyPackage, adapted from

[DEB13]

The method names written in red color are new methods implemented in
org.bpel4chor.mergeChoreography for enabling choreography based process consolidation in one-to-
many interactions.

4.2 Grounding Non-Mergeable-Message-Links (NMML)
This thesis does not cover all merge patterns for communication activities. Message links - whose
communicating activities cannot be replaced by synchronization activities, are grouped as NMML list.
Details about message links in NMML list can be found in participant grounding; technical details such as
portType and operation can be gathered from participant behavior description artifact of choreography.
Listing 4.1 (with Listing 4.2, Listing 4.3) illustrates asynchronous intra-process communication activities

73

and the corresponding message link which is in NMML list. One extra partner link is added for each pair
of asynchronous intra-process communicating activities which cannot be replaced by synchronization
activities.

Listing 4.1. Consolidation of asynchronous intra-process communicating activities-

topology, grounding and wsdl artifact of PBD2, adapted from [DEB13]

74

Listing 4.2 Consolidation of asynchronous intra-process communicating activities- merged

process before consolidation, adapted from [DEB13]

Listing 4.3 Consolidation of asynchronous intra-process communicating activities – merged

process after consolidation, adapted from [DEB13]
75

As Listing 4.1 (with Listing 4.2, Listing 4.3) illustrates, send activity and rec activity remains as intra-
process communicating activities in their corresponding scopes in MergedProcess. New partner link is
created and inserted into scope of send and rec activities.

In case of synchronous intra-process communicating activities at least two message links (msgLinkSend
and msgLinkReply) need to be analyzed and inserted into the corresponding scope. Listing 4.4(with
Listing 4.5, Listing 4.6) describes synchronous intra-process communicating activities consolidation:

Listing 4.4 Consolidation of synchronous intra-process communicating activities – topology,
grounding and wsdl of PBD2, adapted from [DEB13]

76

Listing 4.5 Consolidation of synchronous intra-process communicating activities – merged process

before consolidation, adapted from [DEB13]

Listing 4.6 Consolidation of synchronous intra-process communicating activities – merged process

after consolidation, adapted from [DEB13]

77

Implementation hierarchy of synchronous and asynchronous merge patterns and matchers is illustrated as
UML class diagram in Figure 4.3:

Figure 4.3 UML Class Diagram describing relations between (a)sync matcher and (a)sync pattern,

taken from [DEB13]

Figure 4.3, illustrates only AsyncPattern 15 and SyncPattern 15 pattern used as an example of
merge patterns throughout this thesis. Full list of implemented merge patterns can be found in
[DEB13].

4.3 Determining Type and Count of MIP Instantiation
Choreography is given as input to org.bpel4chor.mergeChoreography package. After choreography
related data is read and stored in corresponding data structures, merge() method is called. Type of MIP
instantiation is determined by analysis of topology artifact of choreography and PBDs. If
<participantSet> was not defined in topology artifact, then this is one-to-one interaction. Then one
container scope is created for each participant type, and all the activities are copied to the corresponding
container scope. Number of container scopes to be generated will be equal to number of participants
defined in topology artifact.

78

If <participantSet> was defined in topology artifact, then <forEach> activity names are
extracted from forEach attribute value. Then the PBDs which need to be merged are searched for the
given <forEach> name extracted from <participantSet>. It is assumed that all <forEach>
activities in the same and different PBDs have unique names. Then found <forEach> activity is
analyzed for determining if it is static (with finalCounterValue attribute has value known at design time)
or dynamic (with finalCounterValue attribute having value N, which will be initialized only at run time).If
<forEach> activity is dynamic, then dynamic MIP instantiation will be applied, and one dynamic
container scope (which is <forEach> activity) will be created in consolidated process PMerged. If
<forEach> activity is static, then static MIP instantiation will be applied, and the number of static
containers (static container is just <scope> activity containing all the activities of PBD whose instance
need to be consolidated) to be created will be equal to finalCounterVariable of <forEach> activity.

Figure 4.4 Determining type and count of MIP instantiations

determineMIPInstantiationType() and participantSetExists() methods try to determine MIP instantiation
type by reading topology artifact. If there is no <participantSet> defined in topology artifact, then
this is one-to-one interaction, and then the number of participants is calculated by counting the involved
processes. If there is <participantSet> defined in topology artifact, then this is one-to-many
interaction. getTypeOfForEach(ForEach feAct) determines type of <forEach> activity : if this is static
<forEach> activity, then this will be static MIP instantiation; if this is dynamic <forEach> activity
then this will be dynamic MIP instantiation. Then the number of multi-instance partners is determined by
finalCounterVariable of <forEach> activity.

79

The next three sections demonstrate business process consolidation after choreography is being read and
stored in corresponding data structures. The consolidation operation begins with calling of merge()
method.

4.4 Consolidation of Business Processes in One-to-One Interactions
Choreography-based business process consolidation in one-to-one interactions starts by creating separate
static container in merged process PMerged for each PBD of involved choreography. Then communicating
activities are replaced by synchronization activities. But as there does not exist matching patterns for all
kinds of communicating activities, thus non-mergeable message links need to be handled in separate step.
After involved business processes get consolidated, data flow in and across container scopes need to be
analyze, and if required, variable lifting technique need to be applied. Finally, the container scopes are
added choreography package, which results in executable merged business process. Figure 4.5 illustrates
sequence diagram for finding message patterns for message links from topology artifact:

80

Figure 4.5 Sequence diagram for finding MergePatterns for message links in one-to-one

interactions, adapted from [DEB13]

createSTaticContainerScope() creates new static container scope – which is <scope> activity.
match(ml) method analyzes PBD files, and finds the matching merge patterns which suits for the
interaction scenario of communicating activities. Interaction scenarios differ depending if there is any
preceding (succeeding) activity after (before) communicating activities. Also the type of preceding
(succeeding) activities influences on choice of merging patterns. evaluateConditions() method helps to
choose the best matching merge pattern which resembles interaction scenario in closest way. merge() is
applying the consolidation operation based on chosen best matching merge pattern.

81

4.5 Consolidation of Static MIP Instances
Static MIP instantiation and consolidation operation is logically same as business process consolidation in
one-to-one interactions. The only difference is in the number of container scopes to be created. Thus
additional step determines count of MIP instantiations. Count of container scopes of multi-instance
process to be created in merged process PMerged is equal to finalCounterVariable’s value of <forEach>
activity in one part of one-to-many interaction. So sequence diagram will be same as in one-to-one
interactions with the only change in outer loop, as the number of process instances will be more than
PBDs in choreography. Then for each static MIP instantiation the following steps are executed in
consecutive order:

1) Create new container scope corresponding to static MIP instantiation

2) For each message link in topology file, try to find corresponding merge pattern. If found apply
merge pattern. Else add that message link to NMML list.

3) ConfigureNMMLActivities() method is handling merge of NMML.

82

Figure 4.6 Sequence diagram for finding MergePatterns for message links in one-to-many

interactions – static MIP consolidation, adapted from [DEB13]8

4) applyVariableLiftingTechnique() method applies variable lifting technique for ensuring data flow
across container scopes.

5) Finally addNewContinerScopeToChorPkg() method added container scope (which has gone the
changes to enable data flow in and across container scopes) to merged process which resides in a
choreography package.

8 ContainerScopeHandling part is marked abstract and will be explained in next sequence diagrams
83

Step four and five are same for one-to-one interactions and static MIP consolidation in one-to-many
interactions. Again the only difference will be on number of process instances the outer loop iterates
through:

Figure 4.7 Static MIP consolidation in one-to-many interactions

4.6 Consolidation of Dynamic MIP Instances
In case of dynamic MIP consolidation, instead of createStaticContainer() method,
createDynamicContainer() method is called in first part of consolidation (finding MergePatterns for
message links).

Then for each instance the following steps are executed in consecutive order:

1) Create new container scope corresponding to dynamic MIP instantiation

2) For each message link in topology file, try to find corresponding merge pattern. If found apply
merge pattern. Else add that message link to NMML list.

84

Figure 4.8 Sequence diagram for finding MergePatterns for message links in one-to-many

interactions – dynamic MIP consolidation, adapted from [DEB13]

3) configureNMMLActivities() method is handling merge of NMML.

4) peformFragmentationOfContainerScope() method is dividing container scope into several
fragments.

5) performLinkStatusPropagationBtwFragments() method handles cross-boundary link violations.
This method adapts some changes to source and target fragments to enable correct execution order
of fragments. Link status propagation, Section 3.6.4,explains the technique in detailed way.

6) handleDataFlowBtwFragmentsAndInstanceContainerScopes() method applies variable lifting
technique for ensuring data flow between fragments, as well as in and across container scopes.
This method adjusts visibility scope of variables accessed in and across container scopes.

7) Finally addNewContinerScopeToChorPkg() method added the container scope (which has
undergone loop fragmentation, link status propagation and variable lifting techniques) to merged
process which resides in choreography package.

85

Figure 4.9 demonstrates dynamic MIP consolidation operation. The major difference is creation of
dynamic container in merged process PMerged, which is <forEach> loop. Then that <forEach> loop is
divided into several fragments for handling cross-boundary link violations entering and leaving
<forEach> loop. Control links’ statuses are propagated between connected fragments. Then variable
lifting technique is applied for adjusting visibility scope of variables. The final step is adding container
scopes to choreography package.

Figure 4.9 Choreography-based dynamic MIP consolidation in one-to-many interactions

4.7 Consolidation of Hybrid MIP Instances
There is no separate implementation for hybrid MIP consolidation. As hybrid MIP consolidation is
mixture of static and dynamic MIP consolidations, the appropriate implementation is chosen for MIP
instantiation type (static or dynamic).

86

5 Summary & Future work

The aim of this thesis was extension of choreography based process consolidation for one-to-many
interactions. Introduced concepts were implemented as extension of BPLE4Chor choreography merge
package. The input to this package are choreography artifacts: PBD that describes each participant
process, control and data flow between activities in that process; topology artifact defines participant
types, participant references and message links which binds communicating PBDs to each other;
grounding artifact contains technical details about message links and the involved communicating
activities from corresponding WSDL files. The output of the extended merge package is a consolidated
executable BPEL process. The consolidated BPEL process retains most of the control flow dependencies
between business activities of involved processes.

Business process consolidation in one-to-one interactions was introduced in Section 3.3. Section 3.4
demonstrates business process consolidation for one-to-many interaction scenarios. At first BPEL4Chor
choreography artifacts are read and stored in corresponding data structures. One new process
(consolidated process) is created to hold merged process activities. Determining type and count of MIP
instantiations is next step to follow. There can be static, dynamic or hybrid MIP instantiation types.
Thereafter, corresponding to MIP instantiation count and type, respective containers are created and filled
with activities of corresponding PBDs in consolidated process. In case of one-to-one interaction scenarios
and static MIP instantiation scenarios static container is created. Static container is new <scope> activity
holding corresponding PBD’s activities in it. In case of dynamic MIP instantiation dynamic container is
created and then corresponding PBD’s activities are added into it as its children. Dynamic container is
new <scope> activity holding new <forEach> activity inside it. Afterwards, communicating activities
are replaced by synchronization activities during (a)synchronous consolidation phase, which avoids the
overhead of excess communication through sending and receiving SOAP messages. Depending on type of
communication (asynchronous or synchronous) best matching pattern is searched for synchronization of
communicating activities. Best matching pattern is the pattern the most resembling communicating
scenario. For some communicating activities no merge patterns are defined yet, and those message links
are added to NMML list. Then NMML list is grounded.

Consolidation phase generates control links – violating cross-boundary constraint, between
synchronization activities that cross-boundaries of <forEach> loops. Only in the case of dynamic MIP
instantiation, loop fragmentation technique is applied to divide original <forEach> activity into several
<forEach> fragments as a solution to cross-boundary link constraint.

During the split of the original <forEach> activity into several fragments, it is possible that the source
and the target activities that were connected by control link will be scattered into two different fragments
by causing the break of that control link. Link status propagation technique was introduced for
propagating link status from one <forEach> fragment into another by using variables.

Dividing original <forEach> activity into different fragment segments makes some variables
unreachable to some fragments. Variable lifting technique is applied by changing the scope of unreachable
variables – either global to container scope or global to the whole merged process scope, which enables
data flow between different fragments of same container scope, also across different container scopes.

87

5.1 Future Work
Currently <receive> activity is the only supported receiving part of communication in the
implementation. However, this implementation can be extended for different receive activities as
receiving part of communicating activities. <onMessage> construct of <pick> activity can also be a
receiving part of communicating activities.

This thesis has covered consolidation of multi-instance processes that are instantiated by an instance
creating activity not residing inside any of loop activities or inside <forEach> loop only. Besides
<forEach> activity, BPEL4Chor choreography supports other loop constructs provided by BPEL 2.0
specification, such as <while>, <repeatUntil>. Extending process consolidation by handling
<while> and <repeatUntil> activities, as well as nested loops are also focus of future work.

Reference passing was not covered in this thesis, but it is one of the important aspects in multi-instance
interaction scenarios. In case of FTBS scenario, travel agency could have passed endpoint references of
several airlines - providing the same cheapest price flight tickets, to traveler process. This could have
given a flexibility to the traveler in choice of airline.

Wagner et al. [WRKUL13] have stated that consolidation of several processes of choreography into one
merged process can reduce execution time and performance of original choreography. The performance
optimization is achieved by the reduction in number of message exchanges and message (de)serializations.
In future work, performance of consolidated choreography (representing multi-instance processes
scenarios) needs to be compared against non-consolidated choreography for deriving performance and
runtime measures.

Furthermore this thesis could have been extended by analyzing how BPEL’s compensation handling
mechanism can be applied to different <forEach> fragments originated from single <forEach> loop.

As Business Process Model and Notation (BPMN) is a standard for business process modeling, it should
be studied how consolidation approach, introduced in this thesis, can be applied to BPMN collaboration
diagrams.

88

Bibliography

[ACKM04] G. Alonso, F. Casati, H. Kuno, V. Machiraju. Web Services. Book pp. 123-149, 2004.
Online: http://www.inf.ethz.ch/personal/alonso/Web-book/Chapter-5.pdf

[AGA07] S. Agarwal. Formal Description of Web Services for Expressive Matchmaking.
Dissertation, Universität Karlsruhe, Fakultät für Wirtschaftswissenschaften,
Deutschland, 2007. Online: http://people.aifb.kit.edu/sag/papers/phdthesis.pdf

[ALL83] J.F. Allen. Maintaining knowledge about temporal intervals. Communications of the
ACM, Volume 26 Issue 11, pp. 832-843, Nov. 1983

[BDH05] A. Barros, M. Dumas, A.H.M. ter Hofstede. Service Interaction Patterns. Lecture Notes
in Computer Science, Volume 3649, 2005, pp. 302-318, 2005.

[JMS06] M.B. Jurich, B. Mathew, P. Sarang. Business Process Execution Language for Web
Services. Book, 2nd edition, pp. 19-21, Jan. 2006

[DEB13] P. Debicki. Choreographie-basierte Konsolidierung von BPEL Prozessmodellen.
Diplomarbeit, Universität Stuttgart, Fakultät Informatik, Elektrotechnik und
Informationstechnik, Feb. 2013.

[DEC09] G. Decker. Design and Analysis of Process Choreographies. Dissertation, University of
Potsdam, Potsdam, Germany, Jun. 2009.

[DKLW07] G. Decker, O. Kopp, F. Leymann, M. Weske. BPEL4Chor: Extending BPEL for
Modeling Choreographies. Web Services, pp. 296–303, 2007.

[DKLW09] G. Decker, O. Kopp, F. Leymann, M. Weske. Interacting services: from specification to
execution. Data & Knowledge Engineering, Volume 68 Issue 10, pp. 946–972, 2009.

[HL00] R. Hirscheim, M. Lacity. The myths and realities of information technology insourcing.
Communications of the ACM, Volume 43 Issue 2 pp. 99-107, Feb. 2000.

[KELLN11] O. Kopp, L. Engler, T. van Lessen, F. Leymann, J. Nitzsche. Interaction Choreography
Models in BPEL: Choreographies on the Enterprise Service Bus. Communications in
Computer and Information Science, Volume 138, pp. 36-53, 2011.

[KL06] R. Khalaf, F. Leymann. Role-based Decomposition of Business Processes using BPEL.
In International Conference on Web Services (ICWS 2006), pp. 770–780. IEEE
Computer Society, 2006.

[KLW10] O. Kopp, F. Leymann, F. Wu. Mapping Interconnection Choreography Models to
Interaction Choreography Models. Proceedings of the 2nd Central-European Workshop
on Services and their Composition, Berlin, Germany, Feb. 2010.

[OAS07] OASIS. Web Service Business Process Execution Language Version 2.0, 11 April 2007.
Online: http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.pdf

89

http://www.inf.ethz.ch/personal/alonso/Web-book/Chapter-5.pdf
http://people.aifb.kit.edu/sag/papers/phdthesis.pdf
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.pdf

[PAS05] J. Pasley. How BPEL and SOA Are Changing Web Services Development. Internet
Computing, IEEE, Volume 9 Issue 3. pp. 60-67, Jun. 2005.

[PEL03] C. Peltz. Web services orchestration and choreography. Computer, Volume 36 Issue
10. pp. 46-52, Oct. 2003.

[WASKV13] Weiß, V. Andrikopoulos, S.G. Saez, D. Karastoyanova, K. Vukojevi. Modeling
Choreographies using the BPEL4Chor Designer: an Evaluation Based on Case Studies.
Report 2013, University of Stuttgart, Institute of Architecture of Application Systems.

[WCLSF05] S. Weerawarana, F. Curbera, F. Leymann, T. Storey, D.F. Ferguson. Web Services
Platform Architecture. Book, 2005.

[WKL11] S. Wagner, O. Kopp, F. Leymann. Towards Choreography-based Process Distribution
In The Cloud. Proceedings of the 2011 IEEE International Conference on Cloud
Computing and Intelligence Systems. pp. 490-494, 2011.

[WKL12] S. Wagner, O. Kopp, F. Leymann. Towards Verification of Process Merge Patterns
with Allen’s Interval Algebra. Proceedings of the 4th Central-European Workshop on
Services and their Composition (ZEUS 2012). pp. 1-8, 2012.

[WKL13] S. Wagner, O. Kopp, F. Leymann. Consolidation of Interacting BPEL Process Models
with Fault Handlers. Proceedings of the 5th Central-European Workshop on Services
and their Composition, 2013

[WRKUL13] S. Wagner, D. Roller, O. Kopp, T. Unger, and F. Leymann. Performance optimizations
for interacting business processes. IC2E, 2013

[ZDH06] J.M. Zaha, M. Dumas, A. ter Hofstede. Service Interaction Modeling: Bridging Global
and Local Views. Enterprise Distributed Object Computing Conference, pp. 45-55, Oct.
2006.

All links were last followed on October 30, 2013.

90

Declaration

I hereby declare that the work presented in this thesis is entirely my own. I did not use any other sources
and references that the listed ones. I have marked all direct or indirect statements from other sources
contained therein as quotations. Neither this work nor significant parts of it were part of another
examination procedure. I have not published this work in whole or in part before. The electronic copy is
consistent with all submitted copies.

Signature:

91

	Abstract
	Acknowledgement
	List of Figures
	List of Tables
	List of Listings
	1 Introduction
	1.1 Motivation for Business Process Consolidation
	1.2 Service Composition by Orchestration and Choreography
	1.2.1 Orchestration
	1.2.2 Choreography

	2 Background on BPEL and BPEL4Chor
	2.1 BPEL Activities used in FTBS Motivation Scenario
	2.1.1 <receive>
	2.1.2 <invoke>
	2.1.3 <reply>
	2.1.4 <sequence>
	2.1.5 <flow>
	2.1.6 <scope>
	2.1.7 <if>
	2.1.8 <partnerLinkType>
	2.1.9 <partnerLink>
	2.1.10 <assign>
	2.1.11 <wait>
	2.1.12 <pick>
	2.1.13 <forEach>6F
	2.1.14 <link>
	2.1.15 <sources> and <targets>
	2.1.16 Standard Attributes and Standard Elements

	2.2 BPEL4Chor
	2.2.1 Participant Behavior Descriptions (PBDs)
	2.2.2 Participant Topology
	2.2.3 Participant Grounding

	2.3 Allen’s algebra

	3 Consolidation of Multi Instance Partner Business Processes
	3.1 Allen’s Algebra applied to FTBS Scenario
	3.2 Asynchronous and Synchronous Consolidation
	3.3 FTBS Scenario: Traveler – Travel Agency as an Example of One-to-One Interaction
	3.3.1 Determining Number of Containers for One-to-One Interaction
	3.3.2 Container Generation Phase

	3.4 FTBS Scenario: Travel Agency – Airlines as an Example of One-to-Many Interactions
	3.4.1 Multi Instance Partner (MIP) Instantiation from BPEL4Chor Perspective
	3.4.2 Determining Type of MIP Instantiation
	3.4.2.1 By Analysis of Participants and Participant Sets in Topology Artifact
	3.4.2.2 By Analysis of Message Links in in Topology Artifact

	3.5 Static MIP Instantiation in Merged Process
	3.5.1 Determining Number of Static Containers to be created in Merged Process
	3.5.2 Static Container Generation Phase

	3.6 Dynamic MIP Instantiation
	3.6.1 Determining Number of Dynamic Containers to be created in Merged Process
	3.6.2 Dynamic Container Generation Phase
	3.6.3 Loop Fragmentation for resolving Cross Boundary Link Violations
	3.6.4 Link Status Propagation Technique
	3.6.5 Data Flow between Fragments in and across Container Scopes

	3.7 Hybrid MIP Instantiation in Merged Process

	4 Implementation
	4.1 Design
	4.2 Grounding Non-Mergeable-Message-Links (NMML)
	4.3 Determining Type and Count of MIP Instantiation
	4.4 Consolidation of Business Processes in One-to-One Interactions
	4.5 Consolidation of Static MIP Instances
	4.6 Consolidation of Dynamic MIP Instances
	4.7 Consolidation of Hybrid MIP Instances

	5 Summary & Future work
	5.1 Future Work

	Bibliography

