
  

 

 

 

 

 Study Program: 
 

INFOTECH 

  
 

 

 Examiner: 
 

Prof. Dr. Kurt Rothermel 

  
 

 

 Supervisor: 
 

Dipl.-Inf. Stephan Schnitzer 

 External Supervisor: 
 

Dipl.-Inf. Simon Gansel (Daimler AG) 

  
 

 

 Begin date: 
 

01.11.2012 

 End date: 
 

05.07.2013 

  
 

 

 CR-Classification: 
 

D.4.1 

Institute for Parallel and Distributed Systems 
Universität Stuttgart 

Universitätsstraße 38 
70569 Stuttgart 

Germany 

 

 

 

 

 

 
 
 

Master Thesis Nr. 3385 
 

DEVELOPMENT OF GENERIC 
SCHEDULING CONCEPTS 

FOR OpenGL ES 2.0 
 

Waqas Tanveer 





  

i 

 

ABSTRACT 

The ability of a Graphics Processing Unit (GPU) to do efficient and massively 

parallel computations makes it the choice for 3D graphic applications. It is been 

extensively used as a hardware accelerator to boost the performance of a single 

application like 3D games. However, due to increasing number of 3D rendering 

applications and the limiting resource constraints (especially on embedded platforms), 

such as cost and space, a single GPU needs to be shared between multiple concurrent 

applications (GPU multitasking). Especially for safety-relevant scenarios, like, e.g., 

automotive applications, certain Quality of Service (QoS) requirements, such as average 

frame rates and priorities, apply.  

In this work we analyze and discuss the requirements and concepts for the 

scheduling of 3D rendering commands. We therefore propose our Fine-Grained 

Semantics Driven Scheduling (FG-SDS) concept. Since existing GPUs cannot be 

preempted, the execution of GPU command blocks is selectively delayed depending on 

the applications priorities and frame rate requirements. As FG-SDS supports and uses the 

OpenGL ES 2.0 rendering API it is highly portable and flexible. We have implemented 

FG-SGS and evaluated its performance and effectiveness on an automotive embedded 

system. 

Our evaluations indicate that FG-SGS is able to ensure that required frame rates 

and deadlines of the high priority application are met, if the schedule is feasible. The 

overhead introduced by GPU scheduling is non-negligible but considered to be 

reasonable with respect to the GPU resource prioritization that we are able to achieve. 

           

 

 

 

  



  

ii 

 

  



  

iii 

 

ACKNOWLEDGEMENTS 

First of all I would like to thank Almighty God who has given me all the strength 

and the abilities to conduct this work.  

I would like to pay special gratitude to my supervisor at the university, Mr. 

Stephan Schnitzer, who has encouraged, guided and motivated me during my thesis. He 

was always ready to take my questions patiently and arrange meetings whenever needed. 

I would also like to thank Mr. Simon Gansel for all the support he gave me at Daimler 

AG during this work. 

Moreover, I am also thankful to Prof. Dr. Kurt Rothermel for giving me an 

opportunity for the thesis in his department. 

I am also grateful to my family for their continuous support and encouragement 

which has helped me to meet my goals. Lastly, I am thankful to all those who have helped 

me in any way during the course of this work.  

 

  



  

iv 

 

  



  

v 

 

TABLE OF CONTENTS 

Abstract .................................................................................................................................................. i 
Acknowledgements ............................................................................................................................... iii 
Table of Contents .................................................................................................................................... v 
List of Figures.......................................................................................................................................vii 
List of Tables ...................................................................................................................................... viii 
Acronyms .............................................................................................................................................. ix 

1. INTRODUCTION ................................................................................................................................ 1 

1.1. Motivation ....................................................................................................................................... 1 
1.2. Challenges in GPU Scheduling ......................................................................................................... 3 
1.3. Contribution ..................................................................................................................................... 4 
1.4. Organization .................................................................................................................................... 6 

2. RELATED WORK .............................................................................................................................. 7 

2.1. DRI .................................................................................................................................................. 7 
2.2. GERM ............................................................................................................................................. 8 
2.3. TimeGraph ....................................................................................................................................... 9 
2.4. WDDM .......................................................................................................................................... 10 
2.5. Real-time scheduling algorithms ..................................................................................................... 10 

3. TECHNICAL BACKGROUND ........................................................................................................ 11 

3.1. OpenGL ES and OpenGL ES 2.0 .................................................................................................... 11 
3.2. EGL ............................................................................................................................................... 11 
3.3. OpenGL ES 2.0 Graphics Pipeline .................................................................................................. 12 

3.3.1. Vertex Arrays and Buffer Objects .......................................................................................... 12 
3.3.2. Primitive Assembly ............................................................................................................... 14 

3.3.2.1. Primitives ........................................................................................................................ 14 
3.3.2.2. Primitive Assembly Operations ........................................................................................ 16 

3.3.3. Rasterization ......................................................................................................................... 20 
3.3.4. Vertex Shader ........................................................................................................................ 21 

3.4. Basic Scheduling Concepts ............................................................................................................. 23 
3.4.1. A Generic Scheduling Scenario.............................................................................................. 23 

4. FINE-GRAINED SEMANTICS DRIVEN SCHEDULING .............................................................. 25 

4.1. Basic Idea ...................................................................................................................................... 25 
4.1.1. Scheduling Goals ................................................................................................................... 25 
4.1.2. Scheduling challenges ........................................................................................................... 25 
4.1.3. FG-SDS ................................................................................................................................ 26 

4.2. System Model ................................................................................................................................ 27 
4.3. A Sample GPU Multitasking Scenario ............................................................................................ 28 

5. IMPLEMENTATION ........................................................................................................................ 31 

5.1. Overview ....................................................................................................................................... 31 
5.2. FG-SDS Queues Architecture ......................................................................................................... 32 

5.2.1. GPU Scheduler Queue ........................................................................................................... 33 
5.2.2. GPU Command Block Queue ................................................................................................ 34 
5.2.3. GPU Command Queue .......................................................................................................... 35 

5.3. GPU Command Classes.................................................................................................................. 35 
5.4. Rendering Thread Context .............................................................................................................. 36 
5.5. Rendering Thread Functional Behavior ........................................................................................... 37 

5.5.1. RT Initialization .................................................................................................................... 37 



  

vi 

 

5.5.2. Enqueue Commands .............................................................................................................. 37 
5.5.3. Command Block End ............................................................................................................ 38 
5.5.4. Dispatch Policy ..................................................................................................................... 39 
5.5.5. RT Exit Policy....................................................................................................................... 42 

5.6. GPU Scheduler Initialization .......................................................................................................... 43 
5.7. Scheduling Thread Functional Behavior ......................................................................................... 43 

5.7.1. Sorting Based on RT Priorities............................................................................................... 45 
5.7.2. Scheduling Policy .................................................................................................................. 46 

6. EVALUATION AND RESULTS ....................................................................................................... 49 

6.1. System Specifications .................................................................................................................... 49 
6.2. Multitasking Scenarios ................................................................................................................... 49 

6.2.1. Multitasking Scenario 1 ......................................................................................................... 50 
6.2.2. Multitasking Scenario 2 ......................................................................................................... 50 

6.3. Evaluation Metrics ......................................................................................................................... 51 
6.3.1. Average Frame Rate (AFR) ................................................................................................... 51 
6.3.2. Probability of Meeting Deadlines (PMD) ............................................................................... 51 
6.3.3. Probability Distribution of Frame Finish Times (PD-FFT)...................................................... 51 

6.4. Results ........................................................................................................................................... 51 
6.4.1. MTS-1 .................................................................................................................................. 52 

6.4.1.1. Average Frame Rates ...................................................................................................... 52 
6.4.1.2. Probability of Meeting Deadlines ..................................................................................... 53 
6.4.1.3. Probability Distribution of Frame Finish Times ................................................................ 54 

6.4.2. MTS-2 .................................................................................................................................. 57 
6.4.2.1. Average Frame Rates ...................................................................................................... 57 
6.4.2.2. Probability of Meeting Deadlines ..................................................................................... 58 
6.4.2.3. Probability Distribution of Frame Finish Times ................................................................ 59 

6.5. Summary ....................................................................................................................................... 63 

7. CONCLUSION AND FUTURE WORK ........................................................................................... 65 

7.1. Conclusion ..................................................................................................................................... 65 
7.2. Future Work................................................................................................................................... 65 

8. BIBLIOGRAPHY .............................................................................................................................. 67 

Declaration ........................................................................................................................................... 70 

 



  

 vii  

 

LIST OF FIGURES 

Figure 1.1) Mercedes-Benz F125! research vehicle .................................................................................... 2 

Figure 1.2) system overview (a) typical  (b) Fine-Grained Semantics Driven Scheduling (FG-SDS) ............ 5 

Figure 2.1) DRI - a high-level overview ..................................................................................................... 7 

Figure 3.1) OpenGL ES 2.0 graphics pipeline [28] ................................................................................... 12 

Figure 3.2) An example of representing and storing vertex attributes ........................................................ 13 

Figure 3.3) An overview of data objects in client and graphics memory .................................................... 14 

Figure 3.4)  Examples of triangle primitive types in OpenGL ES 2.0 ........................................................ 15 

Figure 3.5)  Examples of line primitive types in OpenGL ES 2.0 .............................................................. 16 

Figure 3.6) Example of points primitive type in OpenGL ES 2.0 .............................................................. 16 

Figure 3.7) Primitive assembly stage operations and ................................................................................. 17 

Figure 3.8) Viewing volume for clipping [28] .......................................................................................... 18 

Figure 3.9) A depiction of perspective division [28] ................................................................................. 19 

Figure 3.10) viewport transformation operation [28]................................................................................. 19 

Figure 3.11) A depiction of a window ...................................................................................................... 20 

Figure 3.12) An overview of rasterization stage with an example .............................................................. 20 

Figure 3.13) OpenGL ES 2.0 vertex shader, overview [28] ....................................................................... 21 

Figure 3.14) OpenGL ES 2.0 vertex shader, example  [28] ....................................................................... 22 

Figure 3.15) Generic scheduling scenario with some requirements and goals ............................................ 24 

Figure 4.1) System Model ........................................................................................................................ 27 

Figure 4.2) Frame rendering of a sample graphic application set using GPU ............................................. 29 

Figure 5.1) FG-SDS implemetation architecture ....................................................................................... 31 

Figure 5.2) FG-SDS Queues Architecture ................................................................................................ 33 

Figure 6.1)  AFRs of applications without any scheduling ........................................................................ 52 

Figure 6.2) A comparison of AFRs of applications with FRRS and FG-SDS (HPF) scheduling schemes ... 53 

Figure 6.3) A comparison of PMDs of applications with FRRS and FG-SDS (HPF) schemes .................... 53 

Figure 6.4) Application 1, PD-FFTs using FRRS scheme ......................................................................... 54 

Figure 6.5) Application 1, PD-FFTs using FG-SDS (HPF) scheme ........................................................... 54 

Figure 6.6) Application 2, PD-FFTs using FRRS scheme ......................................................................... 55 

Figure 6.7) Application 2, PD-FFTs using FG-SDS (HPF) scheme ........................................................... 55 

Figure 6.8) Application 3, PD-FFTs using FRRS scheme ......................................................................... 56 

Figure 6.9) Application 3, PD-FFTs using FG-SDS (HPF) scheme ........................................................... 56 

Figure 6.10) AFRs of applications without any scheduling ....................................................................... 57 

Figure 6.11) A comparison of AFRs of applications with FRRS and FG-SDS (HPF) scheduling schemes . 58 

Figure 6.12 ) A comparison of PMDs of applications with FRRS and FG-SDS (HPF) schemes ................. 58 

Figure 6.13) Application 1, PD-FFTs using FRRS scheme ....................................................................... 59 

Figure 6.14) Application 1, PD-FFTs using FG-SDS (HPF) scheme ......................................................... 59 

Figure 6.15) Application 2, PD-FFTs using FRRS scheme ....................................................................... 60 

Figure 6.16) Application 2, PD-FFTs using FG-SDS (HPF) scheme ......................................................... 60 

Figure 6.17) Application 3, PD-FFTs using FRRS scheme ....................................................................... 61 

Figure 6.18) Application 3,  PD-FFTs using FG-SDS (HPF) scheme ........................................................ 61 

Figure 6.19) Application 4, PD-FFTs using FRRS scheme ....................................................................... 62 

Figure 6.20) Application 4, PD-FFTs using FG-SDS (HPF) scheme ......................................................... 62 

  



  

 viii  

 

LIST OF TABLES 

Table 2-1) A summanry of key differences between ................................................................................... 9 

Table 4-1) sample soft real-time graphic application set ........................................................................... 28 

Table 5-1) List of parameters in a GSQH  and a GSQE .............................................................................. 34 

Table 5-2) List of parameters in a GCBQH  and a GCBQE ......................................................................... 34 

Table 5-3) List of parameters in a GCQH  and a GCQE ............................................................................. 35 

Table 5-4) List of OpenGL ES 2.0 Command Classes, their description and ............................................. 36 

Table 5-5) Parameters stored in Rendering Thread Context ...................................................................... 36 

Table 5-6) Function called by an RT for initialization of required resources .............................................. 37 

Table 5-7) Function called by an RT for enqueuing commands................................................................. 38 

Table 5-8)  Function called by an RT at the end of a command block ....................................................... 39 

Table 5-9) Function called by an RT for dispatching its command blocks (Part-1) .................................... 40 

Table 5-10)  Function called by an RT for dispatching its command blocks (Part-2) ................................. 41 

Table 5-11)  Function called by an RT when it exits ................................................................................. 42 

Table 5-12)  Function called for GPU Scheduler initialization .................................................................. 43 

Table 5-13) Function called by the ST ..................................................................................................... 44 

Table 5-14) Function called by the ST for sorting RTs accoring to their priorities ..................................... 45 

Table 5-15) Function which implements the Highest Priority First (HPF) scheduling policy ..................... 47 

Table 6-1) An overview of the system specification of the i.MX6 embedded platform [31] ....................... 49 

Table 6-2) MTS-1 application set with some QoS parameters ................................................................... 50 

Table 6-3) MTS-1 application set with some QoS parameters ................................................................... 50 

 

  



  

 ix  

 

ACRONYMS 

 

AFR Average Frame Rate 

FG-SDS Fine-Grained Semantics Driven Scheduling 

FRRS Frame Rate Restricted Scheduling 

GCBQ GPU Command Block Queue 

GCQ GPU Command Queue 

GPU Graphics Processing Unit 

GPU Multitasking Execution of multiple concurrent applications on a GPU  

GSQ GPU Scheduler Queue 

HPF  Highest Priority First 

MTS - I Multitasking Scenario - I 

PD-FFT Probability Distribution of Frame Finish Times  

PMD Probability of Meeting Deadlines  

RT Rendering Thread 

RTC Rendering Thread Context 

ST Scheduling Thread 





 

 1  

 

1. INTRODUCTION 

1.1. Motivation 

As we move forward in this technological era, besides discovery of new 

technologies there is also a strong focus on the efficient and optimal use of those we 

already have. For example, in terms of computing technology on one side there is a thirst 

for more and more computational power on a single small chip which is being addressed 

in one way by scaling down individual transistor size and increasing its density [1, 2]. 

While on the other side, there is an effort to use this computational power efficiently for a 

variety of application areas such as graphics, simulations, multimedia and 

communications etc.  

One of the parts of this latter effort is multitasking, concurrent execution of 

multiple applications sharing common computing resources. It is needed due to the 

tightness of the resource constraints, such as processing power, memory, space and cost 

etc., and increasing number of applications of the computing devices. The challenge in 

multitasking is to find a scheduling mechanism for the applications sharing computing 

resources, as per specified requirements such as priorities. This mechanism is typically 

enforced with the help of a scheduler which works on the basis of a scheduling policy. 

For this purpose numerous scheduling techniques [3, 4] have been developed depending 

on different requirements of applications and scheduling goals. This work contributes to 

the latter effort, as discussed earlier, by providing some scheduling concepts for the 

multitasking of graphic applications on a Graphics Processing Unit (GPU). 

Computer graphics, like many other application areas, is growing rapidly [5] due 

to the rise of ubiquitous computing and the advances in processor technology. There is a 

wide range of graphical applications [6], such as Graphical User Interfaces (GUIs), video 

games, animation, advanced visualization, augmented and virtual reality etc., which 

facilitate enhanced user experience, entertainment and scientific research etc. Most of 

these applications use traditional 2D rendering techniques such as rasterization; however, 

due to advances in hardware capabilities 3D rendering techniques [7], such as ray tracing, 

bump mapping etc., are also getting pace in their usage. The applications which use 3D 

rendering are highly compute intensive and typically require a hardware accelerator to 

boost their execution. A GPU serves that purpose by working in cooperation with a 

Central Processing Unit (CPU). 

A GPU is also a processor like CPU. However, it has more processing power due 

to a larger number of cores. It has the ability to perform efficient and massively parallel 

computations. It is extensively used as a graphics engine for 3D rendering in graphic 

applications such as 3D games, advanced navigation etc. It is also used for general 

purpose computing (GPGPU) to boost the performance of many compute intensive 

applications, such as advanced scientific simulations, using CUDA framework [8].  Due 

to these capabilities it is now an integral part, integrated or dedicated [9], of many 



Chapter 1: Introduction 

 2  

 

computing systems that range from desktop PCs, laptops and handheld devices like smart 

phones and tablets at one end to supercomputers on the other. By having a huge 

computational power bank, these systems can address the computational needs of a broad 

scope of applications.  

However, as the number of applications accelerating on GPU increase with having 

less flexibility in constraints such as power, space and cost especially on small handheld, 

mobile and embedded devices, a GPU has to allow multitasking in such a way that 

applications meet their Quality of Service (QoS) requirements besides maximizing GPU 

utilization. In case of multitasking for 3D rendering applications, QoS requirements could 

be average frame rates, priorities and frame deadlines (for real-time applications).  

Consider an example of a future car, as shown in Figure 1.1, providing 

infotainment and telematics applications [10]. The displays on the dashboard are used to 

provide an interactive interface and seamless experience to the user/users. In this 

environment we could have a number of applications, such as navigation, displaying 

speedometer & fuel statistics, audio and/or video communication and advanced driving 

assistance etc. Some of these applications, such as speedometer, tachometer and 

navigation etc., use 3D rendering for their execution which is done with the help of GPU 

platform/platforms.  

 

 

 
Applications 
 Navigation 
 Speedometer 
 Tachometer 
 Seamless user  

experience 
 Advanced driver 

assistance 

Typically, each 3D rendering application has its own QoS requirements, as 

discussed earlier, depending on its quality and safety. For example, the real-time 

applications, such as speedometer, must be prioritized over other applications such as a 

video call or some non real-time application. Additionally, frame rendering of these real-

time applications have to be done before their deadlines, otherwise it may cause an 

accident due to the delayed response.  

Figure 1.1) Mercedes-Benz F125! research vehicle 

future telematics “@yourCOMAND”  [11] 

Displays for 

rendering and 

multimedia 

applications 



Chapter 1: Introduction 

 3  

 

In the earlier discussion we pointed out some constraints on the computing 

resources, same constraints apply in this example and a single GPU has to be shared by 

multiple applications executing concurrently. From the user’s point of view some 

applications may seem to be running at the same time, however, a scheduling mechanism 

is needed at the device end which can grant access to the applications for execution on the 

GPU depending on their QoS requirements. 

Multitasking on a GPU can be done either in time domain [12, 13, 14] by allowing 

concurrent execution of multiple applications or in spatial domain [15] by partitioning 

GPU resources among applications and allowing them to run in parallel. This work comes 

under the domain of the former approach and is focused on the development of 

scheduling concepts for multitasking of OpenGL ES 2.0 graphic applications executing 

concurrently on a GPU. In order to understand the challenges of GPU scheduling we have 

to analyze the concepts of CPU scheduling which are not fully applicable for a GPU. 

These challenges are discussed in the following subsection. 

1.2. Challenges in GPU Scheduling 

Typically, a CPU scheduler has the flexibility of preemption, which means it can 

stop an application’s execution at any time and grant access to another application for 

execution on the CPU, depending on the scheduling policy. This capability of preemptive 

multitasking enables a CPU to comply with the requirements of high priority applications 

executing concurrently with other applications. Moreover, it also enables the scheduler to 

grant access to an application without knowing its execution cost.  

However, once a task is submitted for execution to a GPU it cannot be preempted 

which is an unpleasant limitation for real-time multitasking [14]. The main reason for this 

limitation is the dependency of GPU commands of graphic applications on specific 

execution context or GPU state such as transformation matrices, lighting parameters etc. 

Since graphic applications, such as those discussed in car example, have to maintain 

average frame rates and some also have real-time requirements, GPU preemption will not 

only result in QoS degradation but also the execution results of commands may not be 

correct due to their execution against incorrect or undetermined GPU state. If it occurs in 

time critical application then it may also result in bad consequences as well. Therefore a 

GPU scheduling approach is needed which has to meet QoS requirements of applications 

without preemption.  

Additionally, the execution cost of command/commands has to be known before 

dispatching them to the GPU [12, 13, 14]. In this way an application can also be stopped 

from monopolizing the GPU resources thus allowing other applications to execute their 

commands on the GPU and meet their real-time requirements.  

  



Chapter 1: Introduction 

 4  

 

Normally a graphic application is linked to a graphics library, such as OpenGL 

[16] for desktop computers or OpenGL ES [17] for embedded or handheld platforms, 

which is part of the user-level GPU driver. Here the commands are translated to low level 

GPU specific commands. In Direct Rendering Infrastructure (DRI) [18], applications 

accumulate their commands in a command buffer before they are sent to the GPU. There 

are two cases in which these buffered commands are dispatched to the kernel level driver, 

either the command buffer is full or there is an explicit flush, using ioctl [13] call. The 

kernel level driver handles this call and enqueues the command group metadata to the 

ring buffer. The GPU has direct access to the ring buffer from where it takes the 

command group metadata and using DMA fetches the commands and executes them [13]. 

To the best of our knowledge, once the commands are in the ring buffer it may not be 

possible to change their order of execution. Therefore for GPU multi-tasking any 

scheduling has to be performed before the commands are inserted into the ring buffer.  

There are two possibilities for the implementation of a GPU scheduler, it could be 

implemented either in user space or kernel space. In kernel space a better GPU utilization 

could be achieved as commands are enqueued in groups or batches [12, 13, 14]. Also 

scheduling at this coarse granularity also results in less scheduling overhead. However, 

because we cannot interpret command semantics at this level, it is possible that GPU gets 

occupied longer by an application which can delay the execution of another high priority 

application’s commands. Also the lack of accuracy in the execution time prediction of 

command groups can cause errors in scheduling decisions. Therefore for real-time multi-

tasking environments scheduling at this level may not be the optimal solution. 

1.3. Contribution  

In this thesis we have devised, implemented and evaluated a GPU scheduler in user 

space for multiple OpenGL ES 2.0 applications executing concurrently on a GPU.  

A comparative overview of a typical system and our Fine-Grained Semantics Driven 

Scheduling (FG-SDS) system is presented in Figure 1.2 (a) and (b) respectively. At the 

top level, we have multiple OpenGL ES 2.0 applications running concurrently. For the 

execution of their GPU commands these applications need access to the GPU hardware, 

shown at the lowest level in the figure, which is provided with the help of a software 

mechanism consisting of a run time framework and a kernel level driver. Normally, as 

shown in (a), an application executes its commands by calling the native implementation 

of the OpenGL ES 2.0 in the user level driver. The final access to the GPU is provided by 

kernel level GPU driver depending on its scheduling policy. The disadvantages of 

scheduling at this level are already discussed in the previous section. 



Chapter 1: Introduction 

 5  

 

In FG-SDS system, as shown in (b), instead of calling the native implementation 

of the OpenGL ES 2.0 directly, the commands of each application are passed to the GPU 

scheduler by forwarding component using shared memory. The GPU scheduler makes 

logical command blocks for each application’s thread separately and depending on its 

scheduling policy selects one of these threads to dispatch their commands to the GPU. In 

Once an application’s thread is granted permission to dispatch, it does so by calling the 

native implementation of the commands in its command block one by one through 

forwarding component. This scheduling approach is driver independent, however, it is 

runtime dependent and works for OpenGL ES 2.0.  

The main advantage we get by scheduling in user space is the possibility to 

interpret individual command semantics. By using command semantics the granularity at 

which the scheduling is performed is fine grained to a command block level which may 

consist of one to a few number of commands.  Moreover, it allows us to dispatch 

command blocks on per frame basis which enables the applications to meet their frame 

deadlines. It also reduces the time for which an application can occupy GPU thus 

allowing other applications to execute their commands. This idea uses time prediction for 

individual command blocks. This prediction is based on an earlier work [19] which 

measures execution times of different OpenGL ES 2.0 commands.  

Based on these concepts, we have devised a scheduling policy known as Highest 

Priority First (HPF). The main features of HPF are as follows: 

 Highest priority application always gets a chance to execute its commands 

therefore there is a high probability that it meets its frame deadline. 

 Low priority applications cannot monopolize the GPU and are only allowed to 

execute their command blocks if the highest priority application is not ready 

and if its deadline is guaranteed. 

 

Figure 1.2) system overview (a) typical  (b) Fine-Grained Semantics Driven Scheduling 
(FG-SDS) 



Chapter 1: Introduction 

 6  

 

 The opportunity for execution of an application follows a descending order of 

their priorities, therefore higher priority applications have more chance to 

execute than lower priority applications. 

 Because of the fine-grained granularity (command blocks) of scheduling, there 

is a possibility for low priority applications to execute if feasible. 

1.4. Organization 

The rest of this report is organized in the following sequence. In Chapter 2, some 

related work has been presented briefly which is also focused on similar scheduling 

challenges of GPU multitasking. Chapter 3 discusses the concepts related to OpenGL ES 

2.0, EGL, graphics pipeline and basic scheduling. The basic idea and the detailed 

concepts of our FG-SDS model are presented in Chapter 4. In Chapter 5, the 

implementation details of FG-SDS model and the HPF scheduling policy are discussed. 

The generic evaluation metrics and the results obtained for some multitasking scenarios 

are presented in Chapter 6. Finally, all the work we have done has been concluded in 

Chapter 7 along with its future direction. 



 

 7  

 

2. RELATED WORK 

We discussed in Chapter 1 that a GPU needs multi-tasking in order to cope with 

increasing number of applications and narrowing resource constraints. We also pointed 

out some of the challenges in GPU scheduling that are posed in this regard due to non-

preemptive behavior of GPU execution model. We also introduced our FGS system, 

incorporating a GPU scheduler, to address the QoS requirements of OpenGL ES 2.0 

applications. In this Chapter we briefly discuss some of the previous works, which are 

also focused on resolving similar issues, along with the key conceptual comparisons to 

our scheduling concepts. We also look in to the limitations of driver support, provided by 

Windows and Linux, for real-time multitasking on a GPU.  

2.1. DRI 

Direct Rendering Infrastructure (DRI) [18] [20] is a software framework which 

allows a GPU to be used directly, without making a path through the X server (although it 

is used to render frames to the screen), for 3D hardware acceleration on UNIX like 

platforms in a safe and efficient manner [18]. Primarily, it has been developed to support 

fast implementations using Mesa 3D graphics library [21], an open source 

implementation of OpenGL specification. Besides OpenGL, Mesa also provides support 

for OpenGL ES [21], an open source graphic library for 3D graphic applications running 

on embedded and handheld platforms.   

 

Under DRI framework several open source drivers [21], such as Nouveau [22] for 

Nvidia graphic cards, are available. A high level overview of DRI is presented in Figure 

2.1. The user level driver translates commands of a 3D graphic application to device 

specific commands and passes them to the kernel level driver which is also known as 

Direct Rendering Manager (DRM). Depending on the scheduling policy the DRM 

submits these commands to the command ring buffer from where they are read and 

executed by the GPU [13]. The next two subsections describe the modifications proposed 

to this basic DRI frame-work for GPU multitasking. 

  

Figure 2.1) DRI - a high-level overview 



 Chapter 2: Related Work 

 8  

 

 

2.2. GERM 

In order to provide a fair share, approximately same amount of GPU execution 

time, of GPU resources for multiple applications concurrently executing on a GPU, 

Graphic Engine Resource Manager (GERM) [12, 13] was introduced. It provided 

modifications to both user level and kernel level drivers to address the limitations of 

Direct Rendering Infrastructure (DRI) [20]. Prior to GERM, applications were not 

provided with fair share of GPU resources due to following limitations [13] of DRI: 

 Before submitting commands to the kernel level driver a client application needed 

hardware lock to ensure isolation, one application executing its commands on a GPU 

against its correct graphics state. The user level driver used to fulfill this requirement 

for each client application. However, it made possible for a malicious application to 

hold lock for indefinite time thus starving other applications of their share of GPU 

time. 

 There was also an imbalance between the times consumed by an application on a CPU 

and a GPU. Moreover, the granularity of scheduling was a command batch, 

commands sent between lock acquisition and its release by a client application. Since 

the execution time was not known for a command batch, could be an arbitrarily long 

value, some applications got more share than others. 

GERM removed these limitations by introducing command queues in the kernel space for 

each client application. Additionally, the granularity of scheduling was also fine grained 

from command batch to a command group which is a group of commands sent atomically 

to the GPU. The GPU scheduler, with the help of command group execution time 

prediction, dispatched commands to the command ring buffer based on deficit round 

robin policy [12, 13]. It was implemented in kernel space as part of the device driver.     

However, there are some key differences between GERM and FG-SDS 

approaches. A summary of these differences is also presented in Table 2-1. First of all, 

the scheduling goals of GERM are fundamentally different from those of FG-SDS. 

GERM’s main scheduling goal is to provide fairness between multiple applications with 

no real time requirements or priorities, while FG-SDS has soft real-time requirements and 

it also has to provide prioritization. If we also compare the granularity of scheduling in 

GERM, based on command groups, to that of FG-SDS, based on command blocks, the 

one in former is coarse-grained as compared to the latter one. Using such a coarse-grained 

scheduling granularity it is difficult to meet real-time requirements. Moreover, the 

complexity of implementation, modification to both user level and kernel level drivers, 

makes GERM less portable which is not the case for FG-SDS. 

 



 Chapter 2: Related Work 

 9  

 

2.3. TimeGraph 

One of the works related to our work is TimeGraph [14]. It is a scheduling 

mechanism implemented in the kernel space, as part of the device driver (Nouveau [22]), 

to support multi-tasking on a GPU in soft real-time environments. It provides 

prioritization and isolation for multiple OpenGL applications with the help of a GPU 

Command Scheduler and a GPU Reserve Manager respectively. The high priority 

applications are prioritized over low priority applications and at a time only one 

application executes on the GPU.  The scheduling is performed at the granularity of GPU 

command groups where each such group may consist of multiple GPU commands. 

Moreover, for the prediction of the execution time of a GPU command group, TimeGraph 

also provides a GPU Command Profiler.    

However, there are some key differences between TimeGraph and our FG-SDS 

model. The major difference is the level of implementation which is kernel space and user 

space in each case respectively. The other differences and benefits are intuitively derived 

on the basis of this basic difference. TimeGraph doesn’t interpret individual command 

semantics whereas FG-SDS model is based on command semantics interpretation. This is 

one of the major benefits we get at the user space level. Due to this capability we can 

create fine-grained scheduling granularity of command blocks. Moreover, FG-SDS model 

takes care of frame deadlines in case of time critical applications whereas there is no such 

notion in TimeGraph.    

A summary of major differences between the GERM, TimeGraph and our        

FG-SDS approaches are listed in the following table.     

 GERM TimeGraph FG-SDS 

1. Scheduling goals 
Fairness (non real-
time requirements, no 

priorities) 

Prioritization and 

Isolation with  

real-time 
requirements 

Prioritization and 

Isolation with  

real-time 
requirements 

2. Implementation 

level 

Both user space and 
kernel space 

kernel space user space 

3. Scheduling 

granularity  

Coarse-grained based 

on 

command groups 

Coarse-grained based 

on 

command groups  

Fine-grained based on 
command blocks  

4. Frame deadlines No notion No notion Yes 

5. Individual 

command 

semantics 

Are not interpreted Are not interpreted 

Based on the 

interpretation of 

command semantics  

 

Table 2-1) A summanry of key differences between  

GERM,TimeGraph and FG-SDS  



 Chapter 2: Related Work 

 10  

 

2.4. WDDM 

Windows Display Driver Model (WDDM) provides basic architectural design 

principles for the display driver development for Windows Vista and later [23]. Typically, 

the graphic applications for Windows are developed using Direct3D API. However, 

OpenGL applications are also portable to Windows. Applications need one of these API’s 

to communicate to the user level driver which is a Dynamic-link library [23]. The GPU 

access for an application is finally provided by kernel level driver, known as display 

miniport driver, through DirectX graphics subsystem which manages display port, video 

memory and GPU scheduling [23].  

The commands of an application are passed to the GPU in the form of batches, 

which are coarse-grained with indefinite execution time, similar to the command batch 

idea discussed in section 2.2. If a command batch takes longer than the time it is 

permitted on a GPU then the GPU scheduler tries to preempt currently executing 

application’s task by initiating a “wait” on a timeout [24]. If this task is not preempted 

within timeout then GPU scheduler initiates a Timeout Detection and Recovery (TDR) 

process to reset the GPU [24]. GPU preemption is possible at various granularities for 

graphics and compute applications sharing a GPU [24]. In order to avoid the initiation of 

TDR process the preemption granularity has be less than timeout.   

To the best of our knowledge, although the preemption mechanism, as discussed 

above, allows high priority GPU tasks to be more responsive, however, it is not suitable 

for real-time applications because of following reasons [24]: 

 Time taken by preemption is not known and could be indefinite; therefore 

there is no guarantee that high priority or time-critical applications would 

meet their deadlines. In worst case, GPU would be reset resulting in a 

system failure.  

 GPU state has to be saved which adds more latency, therefore making it 

more difficult to meet real-time requirements.       

2.5. Real-time scheduling algorithms 

There are many classical scheduling algorithms [4], such as Rate-Monotonic 

scheduling (RMS), Earliest Deadline First (EDF) etc., which are used for real-time 

multitasking on a CPU. However, owing to the limitations of 3D graphical applications, 

such as dependency of GPU commands on specific graphic context, indefinite execution 

time of tasks executed on a GPU and non-preemptive nature of GPU scheduling, most of 

these algorithms are not applicable, as it is, in case of a GPU. In order to overcome these 

limitations, a new preemption mechanism is needed with a fine-grained preemption 

granularity. Moreover, execution time prediction of each individual grain, block of 

commands, is also required which can be used before the submission of a task to the GPU 

to stop an application from monopolizing a GPU. However, basic concepts remain the 

same such as deadlines, priorities etc.   



 

 11  

 

3. TECHNICAL BACKGROUND  

In the previous chapter, we discussed some of the related work and also presented 

some key conceptual differences to our work. Before going in to the discussion of our 

main idea, in this chapter we briefly look into some background concepts that are needed 

to facilitate the understanding of details presented in the next chapters.  

This chapter has been divided into two major parts. The first part includes an 

introduction to OpenGL ES [17]/OpenGL ES 2.0 [25] and a brief description of OpenGL 

ES 2.0 graphics pipeline (individual stages and related concepts with some examples). It 

also includes a brief introduction to EGL [26], a native platform graphics interface [27]. 

In the second part, some basic concepts related to scheduling are discussed.          

3.1. OpenGL ES and OpenGL ES 2.0 

OpenGL ES [17] is an open source and cross-platform API for advanced 2D/3D 

graphics on embedded and handheld platforms such as smart phones, gaming consoles 

and others used in vehicles, avionics etc [28]. Besides providing high performance 

graphics, it is specifically designed to address the resource constraints, such as processing 

power, memory and power budget, of these platforms.  

It has been derived from OpenGL [16] which is also an open source and cross-

platform API for 2D/3D desktop graphics. To address the constraints, as mentioned 

previously, unnecessary redundancies have been removed from OpenGL API and 

required extensions have been added.  Each version of its specification has been derived 

from the corresponding version of OpenGL, e.g. OpenGL ES 2.0 has been derived from 

OpenGL 2.0.  

As we are focused on the development of scheduling concepts for OpenGL ES 2.0 

specification, which consists of OpenGL ES 2.0 API specification [25] and OpenGL ES 

Shading Language specification (OpenGL ES SL) [29], therefore some important 

concepts from these specifications along with some details from OpenGL ES 2.0 

Programming Guide [28] are presented in this chapter unless specified otherwise.  

3.2. EGL 

Typically, the graphic applications need surfaces such as windows to which they 

can render, which are managed by native windowing system such as X window system 

for UNIX like systems. EGL [26] is an interface between client graphic APIs such as 

OpenGL ES 2.0 and a native platform window system. Some of the major services 

provided by EGL to client APIs are summarized as follows [27, 28]: 

 Communication mechanisms between different client APIs (e.g. OpenGL 

ES 2.0 and OpenVG) and the native window system. 



 Chapter.3: Technical Background 

 12  

 

 Management of on-screen and off-screen rendering surfaces (windows, 

pbuffers and pixmaps) which include their creation and sharing between 

different APIs. OpenGL ES 2.0 supports double-buffered windows only.     

 Creation and management of graphics contexts for client applications 

 Synchronization between client APIs and native windowing system 

3.3. OpenGL ES 2.0 Graphics Pipeline 

Typically in graphics, objects in 3D space are represented by polygon meshes 

which are collections of vertices, edges and faces [30]. The graphics pipeline, typically 

same as shown in Figure 3.1,   takes these vertices with appropriate attributes, discussed 

in the next section, along with some other data as input and perform geometric operations 

specified by shaders, vertex and fragment shaders (programs), with some additional 

operations. The end result is a 2D image, stored in framebuffer as a pixel collection, 

which can be displayed on a screen such a monitor.   

 

The graphics pipeline of OpenGL ES 2.0 is shown in Figure 3.1. There are a 

number of stages in this pipeline, with grey boxes showing programmable stages. A brief 

description of each stage with some examples is presented in the upcoming sections. 

3.3.1. Vertex Arrays and Buffer Objects 

In the previous section, we discussed that vertices are the basic input to a graphics 

pipeline besides some other input parameters such as constants. Before any operations are 

performed on these vertices, they need to be stored in an efficient manner. In OpenGL ES 

2.0, vertex arrays and buffer objects provide methods for storing and caching vertex data, 

also known as vertex attributes, respectively [28].  

Vertex arrays are buffers mapped to the application’s address space, also known 

as client’s space. They are used to store per-vertex attributes in an efficient manner and 

are specified using glVertexAttribPointer function. Figure 3.2 (a) shows an 

Figure 3.1) OpenGL ES 2.0 graphics pipeline [28] 



 Chapter.3: Technical Background 

 13  

 

example of six vertices represented in 3D coordinate space. Each of these vertices can 

represented by its attributes, such as position, normal, color and texture coordinates etc., 

as shown in Figure 3.2 (b). 

 Since OpenGL ES 2.0 implements a programmable pipeline, the names of these 

attributes can also be specified by the application. In OpenGL ES 2.0, the minimum 

number of per-vertex attributes is eight and the maximum number is specified by 

GL_MAX_VERTEX_ATTRIBS parameter [28]. Moreover, each attribute is specified by a 

generic attribute index ranging from 0 to GL_MAX_VERTEX_ATTRIBS-1. There are two 

commonly used methods for specifying, allocating and storing vertex attributes, each 

having different performance benefits [28], which are:  

 array of structures - all the attributes of a vertex are stored in a single buffer, 

contiguous memory. This method has been elaborated in Figure 3.2 (c) where v1 

attributes, shown in Figure 3.2 (b), are stored in a single buffer. 

 structure of arrays - each attribute is stored in a different buffer, not shown here.  

In OpenGL ES SL, vertex attributes variables are declared in vertex shaders using 

attribute qualifier. Before a primitive, discussed in section 3.3.2, can be drawn, these 

attribute variables need binding to appropriate generic vertex attribute indices. This 

binding can either be specified by an application or by the OpenGL ES 2.0 itself. In this 

way vertex data is read from correct locations into the vertex shaders. 

However, sometimes vertex data from vertex arrays have to be fetched into the 

high performance graphics memory before drawing any primitives. Vertex buffer objects 

 
 

Vertices (V & V1 – V5) in 3D Per-vertex attributes 

 

A way of storing vertex attributes in memory 

Figure 3.2) An example of representing and storing vertex attributes 



 Chapter.3: Technical Background 

 14  

 

are locations in graphics memory specified for this purpose. They are allocated to store or 

cache the vertex data. Since graphics memory offers a higher bandwidth as compared to 

the client’s memory, buffer objects can significantly improve the performance when the 

same vertex data is used frequently by the draw commands. Besides vertex data, element 

indices specifying how the primitives are to be drawn can also be cached in to appropriate 

buffer objects. OpenGL ES 2.0 provides array buffer objects and element array buffer 

objects for storing/caching vertex data and primitive indices respectively. A generic 

overview of vertex arrays and buffer objects has been presented in Figure 3.3.       

 

The next stage in the graphics pipeline is vertex shader (cf. section 0), however, 

primitive assembly and rasterization stages are discussed next due to the fact that the type 

of individual primitives that are to be drawn and their corresponding vertex indices are 

specified before they are actually passed to the vertex shader.       

3.3.2. Primitive Assembly 

In this stage of the graphics pipeline various primitives, basic geometric objects, 

are drawn by assembling vertices, transformed by vertex shader, in a specified order. 

Prior to the explanation of operations that are performed in this stage, these primitives are 

discussed below. 

3.3.2.1. Primitives 

 In OpenGL ES 2.0 three kinds of primitives are supported which are triangles, 

lines and points sprites. These primitives can be drawn by executing glDrawArrays or 

glDrawElements command. A brief description of each primitive type along with its 

subtypes, if any, is presented in the next three subsections.   

3.3.2.1.1. Triangles 

There are three ways in OpenGL ES 2.0 by which triangles primitives can be 

drawn.  An example for each one, named by its specific type, is shown in Figure 3.4 (a), 

(b) and (c). In Figure 3.4 (a) two triangles are drawn using two sets, (V1, V2, V3) and 

(V4, V5, V6), of vertices with each one consisting of three unique and adjacent vertices. 

This mode is specified as GL_TRIANGLES.    

Figure 3.3) An overview of data objects in client and graphics memory 



 Chapter.3: Technical Background 

 15  

 

 

Similarly in (b), four triangles are drawn with (V1, V2, V3), (V2, V3, V4), 

(V3, V4, V5) and (V1, V2, V3) sets of vertices respectively, using primitive mode 

GL_TRIANGLE_STRIP. Note that in each case of two consecutive triangles, two vertices 

are common between the two sets, the last two from the first one and the first two from 

the second one.  Another type of triangle primitive is specified as GL_TRIANGLE_STRIP 

which is shown in Figure 3.4 (c). In this case four triangles are drawn by (V1, V2, V3), 

(V1, V3, V4), (V1, V4, V5) and (V1, V5, V6) sets of vertices respectively. As 

its name suggests, a fan is drawn with the common vertex between all the sets at the 

center and all other vertices making its wings. Note the relation between two adjacent sets 

of vertices in each case. 

3.3.2.1.2. Lines 

Figure 3.5, (a), (b) and (c), shows three ways in which line primitives can be 

drawn in OpenGL ES 2.0. In the first case, i-e (a) specified by GL_LINES, three separate 

line segments are drawn with (V1, V2), (V3, V4) and (V5, V6) sets of vertices. The 

next one, shown in (b), is specified as GL_LINE_STRIP. In this case five connected lines 

are drawn by connecting each vertex with its preceding vertex, with the exception of the 

vertex with a starting index.  

 
 

GL_TRIANGLES GL_TRIANGLE_STRIP 

 

GL_TRIANGLE_FAN 

Figure 3.4)  Examples of triangle primitive types in OpenGL ES 2.0 



 Chapter.3: Technical Background 

 16  

 

The third case, shown in (c) is similar to (b), however, the vertex with the last index (6) is 

also connected to the vertex with the starting index (1). It is specified as   

GL_LINE_LOOP.  

3.3.2.1.3. Point sprites 

Each vertex can also be drawn separately with the help of GL_POINTS primitive 

type. An example of this type is shown in Figure 3.6 where 20 vertices are drawn.  

 

3.3.2.2. Primitive Assembly Operations  

As the vertices are processed through different stages of the graphics pipeline, 

their coordinates such as position coordinates undergo various transformations. Figure 3.7 

gives an overview of the transformations which are performed as the vertices are 

processed through the vertex shader and the primitive assembly stages. Moreover, it also 

  

GL_LINES GL_LINE_STRIP 

 

GL_LINE_LOOP 

  Figure 3.5)  Examples of line primitive types in OpenGL ES 2.0 

 

GL_POINTS  

Figure 3.6) Example of points primitive type in OpenGL ES 2.0 



 Chapter.3: Technical Background 

 17  

 

gives information about the operations that are performed during primitive assembly 

stage.  

In the real world objects are typically represented or modeled in object or local 

coordinate system as shown in Figure 3.2 (a). Referring to Figure 3.7, it can be seen that 

the input vertices to the vertex shader are in this coordinate system. After the processing 

by the vertex shader the vertices are in clip coordinates and are passed to the primitive 

assembly stage which comprises clipping, perspective division and the viewport 

transformation operations.  

In the following subsections these operations and their corresponding coordinate 

systems are described briefly. In each case the example is given from the vertex position 

attribute represented as           . 

3.3.2.2.1. Clipping 

The input and output vertex coordinates in this operation remain in the same 

coordinate system which is clip coordinate system as shown in Figure 3.7. However, 

considering position of a vertex which is represented as                in this coordinate 

system, each primitive, such as triangle etc., is clipped to a viewing volume as shown in 

Figure 3.8. 

 

 

Figure 3.7) Primitive assembly stage operations and  

corresponding coordinate systems 



 Chapter.3: Technical Background 

 18  

 

The viewing volume is bounded by six clipping planes which are briefly described 

as below: 

 In the direction of line of sight (along z-axis), a near plane and a far plane as 

shown in Figure 3.8. 

 A top and a bottom plane along y-axis. 

 A left and a right plane along x-axis. 

The clipping planes discussed above can be found out with the help of following 

equations which set bounds on clip coordinates. 

 

 

 

Once the clipping 

planes are known each individual primitive goes through clipping operation separately 

and the portion which is outside the viewing volume is clipped away. In some cases, such 

as for triangles or lines, clipping could result in the generation of new vertices as well. 

However, if a primitive is completely inside the clipping volume it passes as it is to the 

output. Similarly, if it is completely outside it is discarded away.   

3.3.2.2.2. Perspective Division 

The next operation after clipping in the primitive assembly stage is the perspective 

division as shown in Figure 3.7. With this operation vertex coordinates from clip 

coordinate system are transformed to the normalized device space. The transformation 

through perspective division for the position coordinates               is depicted in 

Figure 3.9.  

 

Figure 3.8) Viewing volume for clipping [28] 

           ...... Equation 3-1 [28] 

           ...... Equation 3-2 [28] 

           ...... Equation 3-3 [28] 

 



 Chapter.3: Technical Background 

 19  

 

                
  
  

 
  
  

 
  
  

              

The normalized device coordinate system has a range specified as from     

        . 

3.3.2.2.3. Viewport Transformation 

The viewport transformation is the last operation of the primitive assembly stage, 

as shown in Figure 3.7. It transforms vertex coordinates from normalized device 

coordinate system to the window coordinate system of the window to which an 

application renders. Figure 3.10 specifies the mathematical operation on each vertex 

coordinate as it goes through this operation. 

  

  
  
  

   

 
 
 
 
 
  

 

 
      

 
 

 
      

     

 
   

     

  
 
 
 
 
 

    

  
  
  

  

 

In the central part of the figure, 

   and   represent the width and height of a window respectively, an 

example is shown in Figure 3.11.  

     
       

 
 ,     

      

 
 

   and   represent the depth range values with a specified range of 

         . The values outside this range are clamped to the boundary 

values which are also the default value.  

clip 

coordinates 

perspective 
division 

normalized device 
coordinates 

Figure 3.9) A depiction of perspective division [28] 

normalized device 
coordinates 

viewport 
transformation 

window 
coordinates 

Figure 3.10) viewport transformation operation [28] 



 Chapter.3: Technical Background 

 20  

 

3.3.3. Rasterization 

This stage of the graphics pipeline, as shown in Figure 3.12 (a), transforms 

individual primitives, such as triangles, lines etc., to a 2D image of fragments. Each such 

fragment has a unique location represented in window coordinates as         . However, 

unlike the coordinates, represented by floating point values which come out from the 

primitive assembly stage, these coordinates are represented by integral values. In addition 

to the position coordinates, each fragment holds some other data values which is used by 

the fragment shader for further per-fragment procressing. 

The process of rasterization is also illustrated with the help of an example as 

shown in Figure 3.12 (b). In this example, a triangle and a line primitive are rasterized 

which is represented by the shaded squares of the grid in each case.    

In addition to fragment generation, for primitives like triangles rasterization stage 

also determines whether a primitive be rasterized at all or not. For this purpose each 

primitive goes through culling process which is discussed below. 

 

Figure 3.11) A depiction of a window  

  

Rasterization stage [28] An example of primitive rasterization 

Figure 3.12) An overview of rasterization stage with an example  



 Chapter.3: Technical Background 

 21  

 

3.3.3.1.1. Culling 

In order to avoid unnecessary rasterization, culling process helps determining 

whether a triangle primitive is front-facing or back-facing. The primitives which are 

visible to the viewer are called front-facing and the primitives that are hidden are known 

as back-facing. Once it is known, rasterization is only performed for the front-facing 

primitives.  

For this purpose, orientation of the triangle has to be known which is determined 

by calculating the signed area of the primitive, under culling process, in the window 

coordinates. The orientation of a triangle primitive could either be clockwise or counter-

clockwise and which orientation represents front-facing or back-facing primitives can be 

specified by the application. Thus by using appropriate commands the rasterization for 

the specified primitives, that are to be culled, could be avoided. 

Before the discussion of a fragment shader, we first discuss the operations 

performed by a vertex shader. 

3.3.4. Vertex Shader 

A vertex shader, as shown in Figure 3.13, is a graphics pipeline stage which 

implements a general programmable function. The input to this function includes 

parameters such as per-vertex attributes, uniforms and samplers. Typically, this function 

applies various mathematical operations on the input data such as position 

transformations, computation of lighting equation to generate per-vertex color values etc. 

The output of this stage is 1:1 mapped with respect to the input and the output variables 

are known as varyings. 

 

 

Figure 3.13) OpenGL ES 2.0 vertex shader, overview [28] 



 Chapter.3: Technical Background 

 22  

 

 

Figure 3.14) OpenGL ES 2.0 vertex shader, example  [28] 

A simple example of a vertex shader, written in OpenGL ES SL, is shown in Figure 3.14. 

The input parameters, shown in Figure 3.13 and also specified from line 1 to line 7 in 

Figure 3.14, to a vertex shader are briefly discussed as follows: 

Attributes: Each vertex is represented by its attributes, as discussed in the previous 

section and also shown in Figure 3.2 (b). The input attributes to the vertex shader shown 

in Figure 3.13 are represented by generic attribute indices from 0 - 7. In Figure 3.14, line 

6 and 7 indicate position and color attributes of a vertex.  

Uniforms: These are the constants that are used by the vertex shader. Typically, a 

vertex shader can take the vertex attribute values either from vertex arrays or from these 

uniforms.  In Figure 3.14 line 2 indicates a uniform, which is actually a transformation 

matrix. 

Samplers: These are special type of uniforms which represent textures. 

Shader program: It is an computer program that is executed on each vertex.  

The shader program applies the required operations and writes output varying variables 

accordingly. In Figure 3.13, output of the vertex shader is specified by varying variables 

denoted by indices 0 – 7. In Figure 3.14 , line 10 shows a single varying variable which 

represents color information. 

In addition to the input and output variables discussed earlier, there are also some 

built-in variables, such as gl_Position shown in Figure 3.13 and also specified in line 

16 of Figure 3.14, used to store some specific information. Moreover, temporary variables 

may also be declared and used by a vertex shader. 

  



 Chapter.3: Technical Background 

 23  

 

3.4. Basic Scheduling Concepts 

The idea of scheduling is not so uncommon and is being used in our daily lives. 

It’s all about how well can we manage the time and resources we have to do our tasks. A 

fair schedule helps us to do more tasks and makes us more productive. If we think for a 

while, we see that all the tasks we have to do don’t have same priorities. Some tasks are 

more urgent than others and have to be done in time; otherwise we could miss their 

deadlines which in some cases could even lead to bad consequences. Therefore, these 

tasks need our special attention so that we don’t miss their deadlines while being busy 

with some unimportant task. Even though some tasks might not be that much important, if 

we just forget doing them makes us less productive. In order to avoid forgetting some 

important tasks, like an appointment for example, we insert calendar entries by 

mentioning its time thus making sure its execution in future. That’s how we use these 

scheduling concepts.  

The use of scheduling in the context of GPU resource management is also not so 

different. As we have discussed in Chapter 1, multiple concurrent applications may not 

leverage GPU’s high computational power efficiently without having a scheduler. A GPU 

scheduler does that job by providing a fair share of GPU resources to applications as per 

specifications. The specifications of the applications, such as frame rates and priorities, 

influence the scheduling policy used by the scheduling algorithm. In order to address QoS 

(Quality of service) requirements of applications these specifications must be met. In this 

chapter, we discuss in detail some generic scheduling concepts and those we have devised 

for OpenGL ES 2.0 applications.  

3.4.1. A Generic Scheduling Scenario 

A generic scheduling scenario with some usual requirements and goals is depicted 

in Figure 3.15. We have N number of tasks which are to be executed on a system with M 

number of resources, as shown in Figure 3.15 (a) and (c) respectively. M is usually less 

than N and also a task may use 1 to M resources at a time for its execution. It constrains 

the order of execution of these tasks and limits the amount of time a task can grab some 

resource or resources. The scheduler, shown Figure 3.15 (b), implements a scheduling 

algorithm which takes some scheduling parameters of these tasks such as their periods, 

execution times etc. as input and finds a solution that can meet some scheduling goals, as 

shown in Figure 3.15 (d). 



 Chapter.3: Technical Background 

 24  

 

A general scheduling goal is to maximize the utilization of the system which 

means that the system must be doing some useful work most of the time. Another goal is 

to maximize throughput, number of tasks done per unit time, which helps a system to 

execute more than one task concurrently. It is also desired to minimize scheduling 

overhead and response time of the system, which result in greater utilization and makes 

the system lively respectively. Some tasks may be more important than others which is 

specified by giving priorities to individual tasks. For real time tasks, it is also required to 

meet deadlines. In hard real-time systems missing deadlines could result in system failure 

or even loss of life. However, in soft real-time systems it could result in some quality 

degradation. In general, scheduling algorithm has to find a fair tradeoff between these 

scheduling goals. 

 

 

Figure 3.15) Generic scheduling scenario with some requirements and goals       

        



 

 25  

 

4. FINE-GRAINED SEMANTICS DRIVEN 

SCHEDULING 

So far we have discussed the importance and the challenges of GPU multitasking. 

We also briefly introduced our scheduling approach. Some basic concepts regarding 

OpenGL ES 2.0 and scheduling are also described.  

In this chapter, we discuss our Fine-Grained Semantics Driven Scheduling      

(FG-SDS) model in detail. The organization of this chapter is as follows. In the first 

subsection the core idea of our work has been presented. In the next subsection, the 

complete system model is described which illustrates the way in which the scheduler is 

integrated within the system and how the components interact with each other. Finally a 

sample GPU multitasking scenario has been chosen to describe the way in which our idea 

works.  

In the discussion that follows in this section when we refer to the applications, it is 

implicit that these are OpenGL ES 2.0 applications. 

4.1. Basic Idea 

In order to present the basic idea of our work, we proceed as follows. Firstly, the 

scheduling goals of the FG-SDS model are discussed. Secondly, the challenges in 

achieving these goals are described briefly. Finally, we discuss how the FG-SDS model 

can overcome these challenges to meet the scheduling goals.  

4.1.1. Scheduling Goals 

As we discussed in section 1 that applications have some QoS requirements, 

considering these requirements the major scheduling goals of FG-SDS model are as 

follows: 

Prioritization: The high priority applications have to be prioritized over the low 

priority applications.  

Maintaining Average Frame Rates: Each application has to maintain a desired 

Average Frame Rate (AFR).  

Meeting Frame Deadlines: Besides maintaining an average frame rate, the time 

critical applications also have to meet their frame deadlines. 

4.1.2. Scheduling challenges 

The key challenges to meet the scheduling goals, which are mentioned above, are 

as follows. 



 Chapter. 4: Fine-Grained Semantics Driven Scheduling  

 26  

 

No Preemption: The GPU execution model is non-preemptive. Each application 

has to be executed with correct graphics context and during the execution it cannot be 

preempted. Therefore scheduling has to be performed without preemption. 

Indefinite Execution Time Cost:  To avoid the occupation of the GPU resources 

by an application for an indefinite time, the execution time cost for a task must be known 

before dispatching its commands to the GPU.   

4.1.3. FG-SDS  

As its name implies, the FG-SDS model is an approach of GPU scheduling by 

splitting the tasks of an application into fine grain components, also known as command 

blocks, using the command semantics. The core features of this model are as follows. 

Fine-Grained Scheduling Granularity - The scheduling granularity has been 

reduced from a command group (coarse-grained), which is used in [12, 13, 14], to a 

command block (fine-grained) level in FG-SDS model. The number of commands in a 

command block can range from one command, which is the minimum possible 

scheduling granularity, at least to a few commands at most. Reducing the granularity to 

such a level results in the reduction of time for which an application can occupy a GPU 

whenever it is allowed to execute. After dispatching the commands of a command block 

to the GPU, an application safely returns back the control to the scheduler.  

In this way the limitation of non-preemption, regarding the GPU execution model, 

has been addressed in an efficient manner. On one hand it creates more possibilities for 

the scheduler to address the requirements of high priority applications. On the other hand 

it allows the low priority applications to dispatch their commands without affecting the 

high priority applications.   

Using the Predicted Execution Times of the Command Blocks - The FG-SDS 

model also has the knowledge of the predicted execution time for each command block. 

However, the prediction is not the part of FG-SDS. It has been done in an earlier work 

[19]. This availability of this knowledge in advance helps FG-SDS model to grant 

permission to low priority applications in such a way that the high priority applications do 

not miss their deadlines. It creates a kind of determinism in the system.   

Using Command Semantics - The type of commands to be included in a command 

block, its size and the dispatch procedure is based on the interpretation of command 

semantics. The knowledge of command semantics helps in splitting the tasks and making 

command blocks in such a way that each application renders correctly during the 

interleaving.  

  



 Chapter. 4: Fine-Grained Semantics Driven Scheduling  

 27  

 

 

4.2. System Model 

A complete overview of the system model has been presented in Figure 4.1. The top 

most layer represent the N number of applications which need a concurrent access to the 

GPU for the execution of their commands. Each application may further have several 

rendering threads of execution.  

Typically, in order to execute their commands each application’s thread calls a 

function in the user level driver or the native implementation. The user level driver 

converts the function call in to the GPU commands which are dispatched to the GPU 

through the kernel level driver.  

 

However, in our system model the function calls by the application threads are 

directed to the server process through a forwarding component.  The forwarding 

component provides communication channels between the applications and the server 

process using shared memory. The server process creates a separate thread for each 

corresponding application’s thread locally which can also be considered as a duplicate of 

it regarding their execution behaviour. Now each of these created threads of the server 

process communicate with its corresponding application’s thread using its assigned 

communication channel. These threads are responsible for dispatching commands of their 

corresponding applications to the GPU. For this purpose they have to take permission 

from the GPU Scheduler. In this way applications communicate with the GPU Scheduler 

and forward their commands to it.   

The GPU Scheduler provides a queue for each thread where it can temporarily place 

its commands. In addition to these queues, the GPU scheduler also provides appropriate 

functions for the application threads to arrange their commands in to the command blocks 

 

Figure 4.1) System Model 



 Chapter. 4: Fine-Grained Semantics Driven Scheduling  

 28  

 

by using the forwarded command semantics. Similarly, an application thread becomes 

ready to dispatch its command blocks to the GPU after it forwards commands of some 

specific semantics such as the command which changes the contents of frame buffer 

(eglSwapBuffers) or a synchronous command. At this point the thread stops 

forwarding commands and waits for the scheduler permission to dispatch its command 

blocks. The GPU scheduler has a separate scheduling thread which then grants 

permission to an application’s thread to dispatch by using a specified scheduling policy. 

When an application’s thread is allowed to dispatch, it calls the native implementation 

in the user-level drive and then it follows the typical execution behavior until the 

command block under consideration is executed on the GPU. However, an application 

cannot dispatch indefinite commands to the GPU. The number of command blocks to be 

dispatched at a time is decided by the scheduler and then the allowed thread can only 

dispatch those command blocks. The order of the commands for a single thread does not 

change no matter how long it waits or how often it dispatches. 

4.3. A Sample GPU Multitasking Scenario 

To understand the FG-SDS model, consider a sample application set consisting of 

three OpenGL ES 2.0 graphic applications with some QoS parameters as specified in 

Table 4-1. Each application has a priority and an average required frame rate. Moreover, 

each application has a frame period which is derived from its desired average frame rate. 

Let’s also assume that these applications have soft real-time requirements of meeting their 

frame deadlines as well. The frame deadlines for an application can be derived as follows: 

Application Priority Frame Rate 

(FPS) 

Frame Period  

[1/FPS]  (ms) 

1 High 50 20 

2 Medium 25 40 

3 Low 20 50 
 

By using the above information we have to schedule these applications to execute 

on the GPU with our FG-SDS model. Figure 4.2 shows a scheduling approach for the 

multitasking of applications in the sample set based on FG-SDS model. 

 

                                    

                           

                                                    

Table 4-1) sample soft real-time graphic application set  

with some specified QoS parameters 



 Chapter. 4: Fine-Grained Semantics Driven Scheduling  

 29  

 

In order to simply the scenario we assume that each frame of an application is 

composed of three command blocks. It is also assumed that each application has to 

render the same frame periodically. The required execution time for each command block 

of an application is also known. Moreover, we also assume that command blocks are 

executed on the GPU immediately after they are dispatched by an application. 

 

In the figure above, the command blocks of a frame along with the frame arrival 

times for each application, A1, A2 and A3, are shown on the timeline. The deadline for 

each frame is also indicated which is also the arrival time for the next frame. As we 

mentioned in the previous subsection that each applications has its own queue where it 

enqueues its command blocks, although in the above figure these queues are not shown 

but we assume that command blocks are inserted in to these queues before being 

dispatched by an application. The scheduler executing on the CPU selects one application 

 

Figure Legend: 

 
First Frame Arrival Time 

 
Frame deadline/Next Frame Arrival Time 

CB Command Block 
 

Scheduler Overhead 

 
Required Execution Time 

 Frame  CB-1 CB-2 CB-3 

A1: Application-1 
    

A2: Application-2 
   

 

A3: Application-3 
    

 

Figure 4.2) Frame rendering of a sample graphic application set using GPU 



 Chapter. 4: Fine-Grained Semantics Driven Scheduling  

 30  

 

from the sample set and grants it the permission to dispatch its command block to the 

GPU.  

For example in the start at time 0, all the applications of the sample set are ready 

to dispatch their commands. However, the scheduler selects A1, which has a High 

priority, and allows it to dispatch. During this scheduling decision the scheduler takes 

some time which is known as scheduling overhead. It is shown on the CPU time-line. The 

A1 after dispatching its first command block sends an acknowledgement to the scheduler 

that it has dispatched. The scheduler selects A1 in the next two scheduling decision as 

well as it is the highest priority application. After A1 finishes its first frame, the next 

application with medium priority is A2 which is given permission the next two times in 

which a scheduling decision is made. 

As the time reaches 20ms, A1 gets ready again to dispatch its next frame 

command blocks.  Again it is selected by the scheduler until its current frame ends. Then 

A2 is selected. At this point only A3 is ready to dispatch. Now the scheduler selects this 

low priority application to dispatch. In this way the applications are selected and are 

given the permission to dispatch. 

Within 100 ms, which is the end time shown on the time-line, only A1 and A2 are 

able to render their frames before their deadlines. While A3 only manages to dispatch the 

two command blocks of its first frame.  

In this way FG-SDS model allows high priority applications to meet their 

deadlines without allowing low priority applications to occupy the GPU. 

  

 



 

 31  

 

5. IMPLEMENTATION 

5.1. Overview 

This chapter discusses the implementation details of our FG-SDS model. The 

implementation architecture of this model is presented in Figure 5.1. The shaded boxes 

(without color) represent the active components (threads) which can communicate with 

each other and also perform specified operations on passive components (queues). They 

can write to (shown with an arrow pointing to the queue to be written) or read from 

(shown with an arrow pointing away from the queue to be read) the respective queues. 

Moreover, all the threads shown in the figure belong to the same process. For the sake of 

clarity, the upper layers (forwarding layer and application layer) are not shown in this 

diagram. The major components of this architecture are described as follows.  

Rendering Thread (RT) – An application’s thread which needs scheduling to 

dispatch its command blocks to the GPU. In Figure 5.1, N such threads are shown in the 

shaded boxes labeled as RT1 to RTN. Each RT  has to perform five steps, shown as R1 to 

R5 in the figure, in sequence during its initialization phase before it can enqueue new 

command blocks in its GCBQ. After dispatching its command blocks the first time, every 

next time during its life time it has to perform steps R2 to R5 in a sequential order each 

time it wants to dispatch its command blocks to the GPU. 

 

Scheduling Thread (ST) – The thread that runs a scheduling algorithm and, based 

on the implemented scheduling policy, selects one of the RTs which are waiting for a 

 

  Figure 5.1) FG-SDS implemetation architecture 



 Chapter.5: Implementation 

 32  

 

scheduling decision in the dispatcher. For this purpose, during each scheduling cycle it 

has to take two steps in general which are labeled as S1 and S2 in the Figure 5.1. 

GPU Scheduler Queue (GSQ) – The queue that is written by RTs, one at a time, 

during their initialization. It is also read by the ST for the identification and selection of 

an RT during a scheduling decision. See steps R1 and S1 in the Figure 5.1.  

GPU Command Block Queue (GCBQ) – Each RT initializes one such queue for 

itself at the start of scheduling. During the execution it inserts its GPU Command Blocks 

(GCBs) in this queue which are later to be dispatched to the GPU for execution. See step 

R2 in the Figure 5.1.   

Dispatcher – Whenever an RT gets ready to dispatch its commands to the GPU, it 

gets blocked in the dispatcher, a logical component, until it is selected in a scheduling 

decision by the ST. Once it is selected, the ST gives it the permission to dispatch its 

command block which is enqueued earliest in its GCBQ. After dispatching its commands 

to the GPU it acknowledges the ST from within the dispatcher. See steps R3,R4 and R5 

of an RT and step S2 of the ST. 

The rest of this chapter is organized as follows. In the next subsection we describe 

the architecture of the queues in detail which are used by the FG-SDS model. The 

functional behavior of the Rendering Thread and the Scheduling Thread are presented in 

the next two subsequent subsections respectively.  

5.2. FG-SDS Queues Architecture 

In order to handle commands from multiple OpenGL ES 2.0 applications, three 

types of queues are managed in the FG-SDS model which are mentioned as follows. 

1. GPU Scheduler Queue 

2. GPU Command Block Queue 

3. GPU Command Queue 

For simplicity of making a reference to all these queues we call them FG-SDS 

Queues. An illustration of the FG-SDS Queues Architecture is shown in Figure 5.2. Each 

queue in this architecture is composed of two entities, a Queue-Head (  ) and a     

Queue-Entry (  ). A    holds all the information required to perform an operation, such 

as insertion or removal of a   , on the queue and is created whenever a queue is 

initialized. The queue entries can be dynamically added or removed from a queue. More 

specifically, a    can be added at the tail of a queue and removed from the head. A 

detailed description of these queues is given in the following subsections. 

  



 Chapter.5: Implementation 

 33  

 

 

 

5.2.1. GPU Scheduler Queue  

A GPU Scheduler Queue (   ) is a queue which has references to all the       

of the RTs running at a time. In Figure 5.2, it is shown at the top level.  

In FG-SDS model there is one such queue in the system. As its name implies, this 

queue is used by the ST to have access to a RT specific data (stored in its     ). The 

information stored in a      and a      is listed in the following table. 

Figure Legend: 
                      

    
         

          
GPU Scheduler Queue       GPU Command Block Queue        

            first - Pointer to the first entry in the queue 

  
last - Pointer to the last entry in the queue 

      -  GCBQ of ith    

          -  jth GCQ of ith    

       

      - Current       

  - Pointer to the next entry in the queue 
GPU Command Queue        - Pointer to the head of a queue  

 

 

Figure 5.2) FG-SDS Queues Architecture 



 Chapter.5: Implementation 

 34  

 

The pointers listed in the 

above table are apparent from their description. Since there are multiple     which write 

to     concurrently, a locking mechanism is provided using a mutex variable  

mutex_st . It is used to grant exclusive access to one of the     to the     at a time. 

Similarly, sem_st is binary semaphore variable which is used by the      to 

synchronize their execution with the   . An    sends an acknowledgement to the    

after dispatching its command block by using this variable.  The sorting flag flag_sort 

is used by the    to perform sorting on its arrays if it is true.  

5.2.2. GPU Command Block Queue  

A GPU Command Block Queue (    ), is a queue of command blocks or    s. 

In Figure 5.2, three queues of this type are shown at the middle level.  

There is a 1:1 mapping between the number of     and the number of these 

queues in FG-SDS model. The parameters stored in a       and a       are listed in 

the table shown below.  

The pointers listed in the 

Table 5-2 are again clear from the description given. The other parameters are described 

as follows.  

The    signals an    to dispatch its commands by using its semaphore variable 

sem_rt. An    indicates that it is waiting for the scheduling decision by using 

                

 Pointer to the first       

 Pointer to the last      

 A mutex (mutex_st) 

 A Semaphore (sem_st) 

  Flag for sorting (flag_sort) 

 Pointer to a       

 Pointer to the next       

Table 5-1) List of parameters in a GSQH  and a GSQE 

                  

 Pointer to the first       

 Pointer to the last       

 A Semaphore (sem_rt) 

 Wait flag (flag_rt_wait)  

 Exit flag (flag_rt_exit) 

 Frame end flag (flag_rt_frame_end) 

 Dispatch all flag (flag_rt_dispatch_all) 

 Current frame deadline 

 Frame counter 

 Pointer to a      

 Pointer to the next       

Table 5-2) List of parameters in a GCBQH  and a GCBQE 



 Chapter.5: Implementation 

 35  

 

flag_rt_wait. Similarly, when an    needs to exit it sets flag_rt_exit. The end of a 

frame is indicated by an    with the help of flag_rt_frame_end. An RT  tells the ST 

whether it wants to dispatch all command blocks or not by using 

flag_rt_dispatch_all. Current frame deadline of an    is calculated based on the time 

of a scheduling decision and the period of a frame. The number of frames dispatched by 

an    are also recorded with the help of a frame counter during the execution. 

5.2.3. GPU Command Queue  

A GPU Command Queue (   ), which can also be called as a GPU Command 

Block (   ), consists of a block of commands that are to be executed in order and 

without preemption on the GPU. It is also specified as the minimum scheduling 

granularity of the FG-SDS model.  

These queues are shown at the bottom level in Figure 5.2. The information held by 

a    -Head (    ) and      is shown in the following table. 

The PET of a     is the 

time required by all the commands of that     to finish their execution on a GPU. The 

GPU command class represents one of the command classes in FG-SDS model. These 

command classes are discussed in the next subsection. 

5.3. GPU Command Classes  

Since there are different kinds of commands with their own semantics and 

execution requirements, in FG-SDS model we have defined different classes of 

commands based on their semantics. These Command Classes (CClasses), along with 

their description and an example for each, are listed in the following table. 

  

                

 Pointer to the first      

 Pointer to the last      

 Predicted Execution Time (PET) of the 

command block 

 Pointer to an GPU command 

 Pointer to the next      

 GPU command class  

 

Table 5-3) List of parameters in a GCQH  and a GCQE  



 Chapter.5: Implementation 

 36  

 

 

5.4. Rendering Thread Context 

In order to get the references to its queues and to access other required information 

quickly, each RT  uses a Rendering Thread Context  (RTC )  to store this information 

locally. The parameters stored in the RTC  of an RT  are shown in the following table.  

The first parameter tells an RT  the      which belongs to it. By using the second 

parameter an RT  identifies the     on which it has to perform an enqueue or a dequeue 

operation. Since command semantics are used to drive the FG-SDS model, the third 

parameter tells an RT  the CClass of the recently enqueued command in the    . The last 

parameter stores the identity of the application to which the RT  belongs.  

In the next subsection the steps followed by an RT  during its execution are 

discussed in detail. 

GPU Command Class Description Example 

GPU_COMMAND_UNKNOWN 
Commands for which a 

class is not defined 
- 

GPU_COMMAND_CPUONLY 
Commands that are 
executed on a CPU 

glClear() 

GPU_COMMAND_DRAW 
Commands for drawing 

primitives 
glDrawArrays() 

GPU_COMMAND_MEMCOPY 

Commands performing 
a memory write 

operation 

glTextImage2D() 

GPU_COMMAND_SYNCHRONOUS 

Commands that return 
something or perform 

synchronization 

glGetVertexAttribiv() 

GPU_COMMAND_SWAP 

Command which 

change the contents of  
the framebuffer 

eglSwapBuffers() 

Table 5-4) List of OpenGL ES 2.0 Command Classes, their description and  

an example in FG-SDS model 

1. A reference to the       associated with the calling RT  

2. A reference to the Current     (     ) , in which the commands will be 

inserted 

3. The CClass of the command enqueued most recently in the      

4. Application id of the calling RT 

Table 5-5) Parameters stored in Rendering Thread Context 



 Chapter.5: Implementation 

 37  

 

5.5. Rendering Thread Functional Behavior 

Whenever an RT of an OpenGL ES 2.0 application wants to execute its commands 

on the GPU it has to follow the steps which are described in sequence in the following 

subsections.  

5.5.1. RT Initialization 

Before any of the command blocks are dispatched to the GPU, an RT has to 

initialize the required resources first. For this purpose it has to call the function shown in 

the following table.  

In the start if the scheduler is not initialized, the calling RT  waits until it is 

initialized. Then it proceeds and performs the steps marked on the lines 4-10 in the above 

table. 

The steps at lines 4, 5 and 6 indicate the resources which are initialized by the 

calling RT.   The step at line 6 initializes the RTC, which is described in section 5.4. In 

line 7, the first two parameters of the RTC  are initialized with the references to the 

queues initialized at lines 4 and 5 respectively. Moreover, Application Id  is also stored 

in RTC. Then a      is initialized and a reference to the       is stored in it. It is 

indicated at line 8. At line 9, the      is inserted at the tail of     and the sorting flag is 

set. This operation is performed with a locking mechanism (locking mutex_st), 

described in section 5.2.1, which allows one of the calling RTs at a time to insert its      

in the    . If no error occurs during the aforementioned steps, the RT finally returns with 

a successful initialization (see line 10). 

5.5.2. Enqueue Commands  

Once an RT  has successfully initialized the required resources, it starts enqueuing 

its commands by calling the function shown in the Table 5-7. The sequence of steps in 

this function is described as follows.  

In step 1, the calling RT  gets its RTC. If it is initialized then it proceeds to perform 

steps mentioned in lines 3-8, otherwise it returns an error number. The step at line 3 

int InitRTresources( Application Id ) 

1.  If Scheduler is not initialized then {  

2.  wait until the scheduler is initialized  

3.  } 
4.  Initialize a       
5.  Initialize a      

6.  Initialize the RTC   
7.  Store      ,      and  Application Id  in the RTC 
8.  Initialize a       and store       in it 
9.  Insert the      at the tail of      and set the sorting flag with locking mutex_st 
10.  Return No_Error_Number 

Table 5-6) Function called by an RT for initialization of required resources  



 Chapter.5: Implementation 

 38  

 

indicates the initialization of a command block entry (    ). Then in the next step it 

initializes the first frame deadline. Then it stores the function parameters, GPU Command 

and CClass, in     . Then the calling RT  gets the reference to the      from the RTC 

(see line 5). This is the current command block in which it has to insert the     , which 

is done in the next step at line 6. Then it stores the command class of the recently 

enqueued command in its RTC. Finally, it returns successfully if no error occurs in the 

previous steps. 

This function is called each time an RT  wants to enqueue a command. The 

commands are inserted into the same command block until the RT calls 

enqueGPUtimePrediction ( ) function which is discussed next. 

5.5.3. Command Block End 

After enqueuing all the commands of a command block (   ), an RT  marks the 

end of it by calling the function shown in the Table 5-8. The steps taken by the calling RT  

in this function are described as follows. 

In the first step, the calling RT gets its RTC. If it is initialized then it proceeds and 

performs the steps between lines 3 and 13, otherwise it returns an error number. It 

identifies the current command block in the step at line 3. In the next step, it stores the 

function parameter, Predicted Execution Time (PET ), for the current command block.  

At this point the current command block is finished and becomes ready to be 

inserted in the      of the calling RT. For this purpose, the RT  performs the steps at 

lines 5-8 and finally the current command block is inserted at the tail of the     .   

In the next step (see lines 9 and 10), the calling RT  interprets the semantics of the 

last command in the current command block by using the CClass  stored in the RTC. If it 

is GPU_COMMAND_SWAP  or GPU_COMMAND_SYNCHRONOUS then the RT  calls 

the dispatch function (line 11), which is discussed in the next subsection, before 

proceeding to the next steps. At this point all the command blocks, which are enqueued 

int enqueGPUCommand(GPU Command, CClass ) 

1.  Get the RTC 

2.  If RTC  is initialized then{   

3.  Initialize a       
4.  Initialize the first frame deadline if not initialize before 

5.  Store the CClass and GPU Command  in      
6.  Get the reference to the       from RTC 

7.  Insert the      at the tail of       

8.  Store CClass  in the RTC 
9.  Return No_Error_Number 

10.  } 

11.  Else {  return Error_Number  } 

Table 5-7) Function called by an RT for enqueuing commands 



 Chapter.5: Implementation 

 39  

 

by the calling RT so far, are to be dispatched to the GPU before it can continue enqueuing 

its next commands. 

On the other hand, if the CClass  in the RTC of the calling RT is other than the 

aforementioned two command classes then it proceeds to the step at line 13 without 

calling dispatch function. In this case the currently enqueued command block (    ) 

remains in the      and the RT  initializes a new command block. Then it makes the 

newly initialized     as the      in the RTC.  This is the     in which the next 

commands will be inserted. 

Finally, if no error occurs in any of the previous steps the calling RT returns 

successfully (see line 14). 

5.5.4. Dispatch Policy 

When an RT  wants to dispatch its commands to the GPU it calls the function 

shown in the Table 5-9 and Table 5-10.  

In the start the calling RT  gets its RTC. If it is initialized then it proceeds with the 

dispatch otherwise it returns an error number. Line 2 indicates that it gets the reference to 

its      from RTC. Line 3 indicates that it stores the reference of the first entry in its 

     in a temporary variable Current_     .  

Lines 6-11 and 17-22 indicate the two blocking possibilities for the calling RT 

depending on the status of its flag_rt_dispatch_all flag. In the former case it blocks 

only in the start while in the latter case it blocks each time before dispatching a command 

block. However, in both the cases it performs the same steps which are as follows. 

  

int enqueGPUtimePrediction( PET  ) 

1.  Get the RTC 

2.  If RTC  is initialized then {   

3.  Get the reference to       from RTC   

4.  Store the PET  in       

5.  Initialize a       

6.  Store a reference to the       in       

7.  Get the reference to       from  RTC   

8.  Insert the       at the tail of        

9.  If  CClass  in the RTC  is  GPU_COMMAND_SWAP  or  

GPU_COMMAND_SYNCHRONOUS  then { 10.  

11.  Call dispatchCommands ( ) 

12.  } 

13.  Initialize a new      and make it      in the RTC 

14.  Return No_Error_Number 

15.  }Else { return  Error_Number  } 

Table 5-8)  Function called by an RT at the end of a command block 



 Chapter.5: Implementation 

 40  

 

int dispatchCommands( ) 

1.  Get the RTC 

2.  If RTC  is initialized then  

3.  { 

4.  Get the reference to       from RTC   

5.  Current_       =   First       in       

6.  If  flag_rt_dispatch_all is true then{  
7.  Set flag_rt_wait if not set  already 

8.  Wait on  sem_rt (RT  and ST  synchronization  point ) 
9.   

10.  Reset flag_rt_wait  if set 

11.  } 

12.  // start dispatching command blocks from       

13.  While( Current_       is Not Null) 

14.  { 

15.  Current_      =       stored in Current_      

16.  Current_     =   First      in  Current_      

17.  If  flag_rt_dispatch_all is false then{  
18.  Set flag_rt_wait if not set  already 

19.  Wait on  sem_rt (RT  and ST  synchronization  point ) 
20.   

21.  Reset flag_rt_wait  if set 

22.  } 

23.   

24.  While( Current_     is Not Null){ 

25.  Dispatch command in Current_     to GPU 

26.  Store CClass  of the command dispatched in RTC 

27.  Remove      from the head of Current_     

28.  Current_      =  First      in Current_       

29.  } 

30.  Remove       from the head of      

31.  Current_       =   First       in        

32.  If CClass  in RTC  is GPU_COMMAND_SWAP  then { 

33.  Record Current_Time as Frame_Finish_Time 

34.  Increment frame counter 

35.  Set flag_rt_frame_end if not set already 

36.  } 

37.  // signal ST  here after dispatching a     if blocking is on each     

38.  If  flag_rt_dispatch_all is false then { 

39.  Dispatch Flush command 

40.  Set scheduler next activation to Current_Time + Dispatched 

GCQ predicted time  41.  
42.  Post sem_st (RT  and ST  synchronization  point )  
43.  } 

44.  } // outer while end 

Table 5-9) Function called by an RT for dispatching its command blocks (Part-1) 

End of a 
frame 

( Case -1 ) 
Block only in the start, 
then dispatch all      

 

( Case – 2 ) 
Block before 
dispatching 
each     

 

Dispatch 
a 
comman
d block 
(   ) 

( Case – 2 ) 
Acknowled-
ge the ST  



 Chapter.5: Implementation 

 41  

 

 

It sets its wait flag flag_rt_wait to true and then waits on its semaphore to 

receive a signal from the ST. It is indicated at lines 7, 8 and 18, 19 respectively. When it 

receives a signal from the ST, it gets unblocked. Then it resets its wait flag 

(flag_rt_wait) if it is set before. Lines 10 and  21 indicate these steps. 

In order to dispatch its command blocks the calling RT iterates through its      

until it finds the last      . Line 13 indicates the while loop which checks this 

condition. Each time it gets a valid      , it gets the reference to a      from it and 

stores it in a temporary variable Current_     (see line 15). Line 16 indicates that it uses 

another temporary variable Current_     to store the first entry in the Current_    . 

Lines 24-29 indicate the while loop in which each command of the Current_     

is dispatched to the GPU. During this process entries are also removed from the head of 

the Current_     after dispatching their commands. Moreover, CClass of the most 

recently dispatched command block is also stored in the RTC. 

After dispatching the commands of the Current_    , the head entry of the      

is also removed. The next       in the      becomes both the first entry as well as the 

Current_     . Lines 30 and 31 indicate these steps. 

The current frame ends when a command with CClass =GPU_COMMAND_SWAP 

is dispatched. Lines 32-36 indicate the checking of this condition. If it is the case then the 

45.  // signal ST  here after dispatching all        if block was only in the start 

46.  If  flag_rt_dispatch_all is true then{ 

47.  Set scheduler next activation to  

48.  Current_Time + sum of predicted time of all GCBs  

49.  which are dispatched in current frame 

50.  Post sem_st (RT  and ST  synchronization  point )  
51.  } 

52.  // Set Next frame deadline  

53.  If CClass  in RTC  is GPU_COMMAND_SWAP  then { 

54.  If Frame_Finish_Time > Current_Frame_Deadline then{ 

55.  Reset flag_rt_frame_end  

56.  Current_Frame_Deadline = Current_Time + getPeriod( ); 

57.  }else{ 

58.  Wait until the Current_Time reaches the 

Current_Frame_Deadline 59.  
60.  Reset flag_rt_frame_end 

61.  Current_Frame_Deadline +=  getPeriod( ) 

62.  } 

63.  } 

64.  Return No_Error_Number 

65.  }Else { return an error number } 

Table 5-10)  Function called by an RT for dispatching its command blocks (Part-2) 

( Case – 1 ) 
Acknowled-
ge the ST  

Set next frame 
deadline and 
proceed 



 Chapter.5: Implementation 

 42  

 

calling RT records the finish time for the current frame, increments its frame counter and 

sets its frame end flag. 

At this point the calling RT checks its flag_rt_dispatch_all once again (see 

line 38-43). If it is false then it dispatches a flush command to ensure that all the 

commands that are sent before are sent to the GPU for execution. It also sets the next 

activation time for the ST. Then it sends an acknowledgement to the ST and blocks again 

if there are more command blocks in its     .  

On the other hand if flag_rt_dispatch_all is true then it continues dispatching 

until all the command blocks are dispatched. Then it sets the next activation time for the 

ST  and sends an acknowledgement to it. Line 46-51 indicate this case. 

Before continuing to enqueue the next commands the last step the RT  performs is 

to set the frame deadline for the next frame. Lines 53-63 indicate the procedure by which 

the deadlines are set.  

If no error occurs then after dispatching all the command blocks the calling RT 

returns successfully (see line 64). 

5.5.5. RT Exit Policy 

When an RT wants to exit, it calls the function shown in the Table 5-11. The 

description of the steps taken by the calling RT in this function is as follows. 

In the start the calling RT  gets its RTC, if it is initialized then it proceeds to free 

the allocated resources otherwise it returns an error number. 

 In order to free the allocated resources it sets the exit flag in its       and then 

waits for a signal from ST. Lines 3-5 indicate these steps. When it receives a signal from 

the ST , it unblocks and removes all the entries (if any) from its      and frees the 

memory allocated to those entries one by one (see line 6).  

int destroyGPUCommandQueue(  ) 

1.  Get the RTC 

2.  If RTC  is initialized then {   

3.  Get the reference to       from RTC   

4.  Set  flag_rt_exit 
5.  Wait on  sem_rt (RT  and ST  synchronization  point ) 
6.  Remove all queue entries from       and free the memory 

7.  Remove the      containing the       from     with locking 

mutex_st  and free the memory 8.  

9.  Post sem_st (RT  and ST  synchronization  point ) 
10.  Destroy RTC  

11.  Return No_Error_Number 

12.  } 

13.  Else { return  Error_Number  } 

Table 5-11)  Function called by an RT when it exits 



 Chapter.5: Implementation 

 43  

 

After removing all the command blocks, it removes the      which contains its 

      from the    . This operation is performed with taking a lock on     so that no 

write or read operation can be performed on     until the removal of       completes. 

In this step the memory allocated to the removed       is also freed (see lines 7 and 8). 

After the de-allocation of all the queue resources, the calling RT acknowledges the ST  so 

that it can proceed (See line 9). In the next step at line 10, the RT  destroys its RTC . If no 

error occurs, the RT  finally exits successfully (see line 11). 

5.6. GPU Scheduler Initialization 

The GPU scheduler is initialized at the start of scheduling. Before any RT can 

proceed, following function has to be called first. 

This function performs three major steps which are listed in the above table. In 

step 1, a     is initialized. The scheduling policy is defined in step 2. In the next step the 

ST  is created which runs the scheduling algorithm by calling the schedule ( ) function 

which is discussed in the next subsection.  

5.7. Scheduling Thread Functional Behavior 

The ST  created during the initialization of the GPU Scheduler, calls the function 

which is shown in Table 5-13.  

Lines 1-2 in Table 5-13 indicate the initialization of an array of the constant size. 

The size basically represents the number of possible RTs, which is set before the 

compilation. The array (                ) is used to store the references to the 

      of the RTs. In the start, all the locations of this array are initialized with the 

NULL values.  

The ST then enters an infinite loop to run the scheduling algorithm. In the 

beginning it checks the     status. It no RT  has yet initialized its      then it waits and 

continues checking this condition again (see lines 7-9). This process continues until an RT 

initializes its      and inserts an entry into the    . 

At this point, if there is currently a single entry in the     then the ST  takes the 

steps indicated in the lines 11-17. This block of code reduces the scheduling overhead if 

there is only one RT  in the system at a time. In this block two flags of an RT are checked 

(see line 14). If any of these flags are set by the RT, it will be selected by the ST . 

Lines 29-38 indicate the sending of a signal by the ST  to the selected RT and 

receiving of an acknowledgement from the corresponding RT. After receiving the 

initGPUscheduler(  ) 

1. Initialize a       

2. Define the scheduling policy 

3. Create the ST  which calls the schedule( ) 

Table 5-12)  Function called for GPU Scheduler initialization 



 Chapter.5: Implementation 

 44  

 

acknowledgement the ST checks its timing conditions for the next activation. If these 

conditions are met then it can proceed for the next scheduling decision. 

 

schedule (  ) 

1.  Define constant              // Maximum number of  RTs 

2.  Initialize                               with each value = NULL  

3.   

4.  While (1) 

5.  { 

6.  Selected_     = NULL 

7.  If      is empty then { 

8.  sleep for 1 micro second and then continue   

9.  } 

10.   

11.  If there is only one      in      then 

12.  { 

13.  Get       from the first      in      

14.  If flag_rt_exit or  flag_rt_wait in       is true then { 

15.  Selected_     =        

16.  } 

17.  } 

18.   

19.  If there are more than one      in      then 

20.  { 

If flag_sort in     is true then{ 21.  

22.  Call function sortUsingRTpriorities(                                        
23.    ,           ) 

24.  } 

Selected_     = selectRTusingHPFpolicy(                   25.  
26.             ) 

27.  } 

// If Selected_     is a valid pointer then signal the corresponding RT 28.  
29.  If Selected_     is not NULL then{ 

30.  Post sem_rt of the Selected_     (RT  and ST  synchronization 

31.  point ) 
32.   

33.  Wait on sem_st (RT  and ST  synchronization  point )         
34.  If Current_Time  <  Next_Activation_Time then { 

35.  Sleep for  (Next_Activation_Time – 1 micro second) if it is  

36.  Not negative 

37.  } 

38.  } 

39.  } // end while loop 

40.   

Table 5-13) Function called by the ST 

No RT  has initialized 
its      

Only one RT  has 
initialized its      

More than one RTs have 
initialized their       

Signal RT to dispatch or exit, then after 
receiving acknowledgement proceed if the 
timing conditions are fulfilled 



 Chapter.5: Implementation 

 45  

 

While on the other side, if more than one RTs  insert their entries in      then 

the steps mentioned in lines 19-27 are taken. In these steps two functions are called. The 

first function sorts the references of the       according to their priorities in 

                . The second function selects one of the RTs based on the Highest 

Priority First (HPF) scheduling policy. Both of these functions are described in the 

upcoming subsections. 

If a selection in made in the function shown at lines 25 and 26, then the 

corresponding RT  is signaled by the ST  to dispatch its command blocks (See lines       

29-38). In this way RTs  are selected by the ST  and are signaled to dispatch accordingly.        

5.7.1. Sorting Based on RT Priorities 

Whenever a new entry is inserted in to the     by an RT, it sets the sorting flag 

(see line 9 in Table 5-6). When the ST sees this flag being set while running the schedule 

function, as discussed in the previous subsection (see lines 21-24 in Table 5-13), it calls 

the function shown in the following table. 

This function iterates through the     and sorts the references to the       in 

the                  in descending order of their priorities. This function assumes 

that each of the RTs has a unique priority number from 1 to             where 1 

represents the highest priority and            represents the lowest priority. 

In the start, the ST  resets the sorting flag with a locking mechanism (see line 1). 

Then it iterates through the     (see lines 3-12). Each time it gets the       from the 

Current_     and then gets the associated RT’s  priority as shown at line 5. If the 

priority number is in the valid range then it places the      in                  as 

mentioned at line 10. This process continues until all the     s are being sorted. If no 

error occurs, the ST  finally returns successfully with                  being sorted. 

int sortUsingRTpriorities(                ,           )                       

1.  Reset  flag_sort with locking mutex_st 
2.  Current_      =   First      in      

3.  While ( Current_      is Not Null){ 

4.  Get       from Current_     

5.           =  Get priority of the RT  with       

6.               =             

7.  If              is negative or greater than                 then{ 

8.  Return  Error_Number   

9.  } 

10.                   [            ] =       

11.  Current_     = Next      in the      

12.  } 

13.  Return  No_Error_Number   

Table 5-14) Function called by the ST for sorting RTs accoring to their priorities 



 Chapter.5: Implementation 

 46  

 

5.7.2. Scheduling Policy 

When more than one RTs insert their GCBQ entries into the GSQ then for the 

selection of an RT, the ST  calls the function which is shown in Table 5-15. 

Line 1 and 2 indicate some of the variables which are initialized.         and 

        indicate the lower priority and the highest priority GCBQs respectively. The 

ST starts iterating through the array,                , until it finds a valid GCBQ. 

The first valid index is where the highest priority RT’s GCBQ is located. Lines 13-16 

indicate the identification of the highest priority RT. Lines 18-21 indicate that when the 

wait flag of the highest priority RT is true, it gets selected. 

If the highest priority RT  is not ready, the ST proceeds and checks the wait flags 

of the other RTs (see line 22 and 23). If a low priority RT’s wait flag is true, then it 

proceeds to the next step and checks whether the highest priority RT  has enqueued a 

swap command or not. If it is not the case then it continues with the next GCBQ of the 

next low priority RT  in the array. 

On the other hand if RT  has enqueued a swap command then ST checks whether 

the highest priority application has finished its frame or not. If the frame end flag of the 

highest priority application is true then the timing conditions are checked in such a way 

that if a low priority RT is dispatched it should not cross the deadline of the highest 

priority RT  (See lines 28-40).   

In each iteration the highest priority RT  gets a chance to be selected if it is ready.  

  



 Chapter.5: Implementation 

 47  

 

 

 

      selectRTusingHPFpolicy (                 ,            )                       

1.               = 0,          = NULL ,          = NULL 

2.               = False,            = 0   

3.  While(              <            ) 

4.  { 

5.                 =                   [             ] 

6.  If               is not a valid        then{ 

7.  Increment              and continue the loop 

8.  } 

9.  If flag_rt_exit of                 is True then { 

10.                   [             ] = NULL 

11.  Return                   

12.  } 

13.  If               = False then{ 

14.          =                  

15.           =                

16.  } 

17.   

18.  If  flag_rt_wait of         is true the { 

19.  Set flag_rt_dispatch_all of          

20.  Return           

21.  } 

22.  If  flag_rt_wait of                 is True and              is not  

23.           then { 

24.  If RT  with          has not enqueued a command of   

25.  GPU_COMMAND_SWAP command class yet then{ 

26.  Increment              and continue the loop 

27.  } 

28.  else{ 

29.          =                

30.                        = predicted time of the      at  

31.  the head of              

32.  If  flag_rt_frame_end of RT with          is True{ 

33.  If (Current Time +                       )  

34.  exceeds the Current Frame Deadline of RT 

35.  with          then{ 

36.  Increment              and continue  

37.  } 

38.  Return           

39.  } 

40.  } 

41.  } 

42.  } 

Table 5-15) Function which implements the Highest Priority First (HPF) scheduling policy 

Identification of the 

Highest Priority RT 

Selection of the 

Highest Priority RT 

Selection of a Low 

Priority RT 



 Chapter.5: Implementation 

 48  

 

 



 

 49  

 

6. EVALUATION AND RESULTS 

In the previous chapter we discussed the implementation details of the FG-SDS 

model. We also discussed the HPF scheduling policy that is used to grant permission to 

the RTs  to dispatch command blocks to the GPU using FG-SDS model.    

This chapter gives the description of, the system specifications on which the 

evaluation is performed, the multitasking scenarios which are chosen for evaluation, the 

evaluation metrics that is used to reach a conclusion about the performance of the FG-

SDS model and the results which are obtained based on the evaluation metrics.    

6.1. System Specifications 

Table 6-1 lists the important specifications [31] of the embedded platform i.MX6 

[31] by Freescale [32] on which the evaluation is performed.  

One of the important target applications of this platform is the telematics in the 

automotive industry.  As our multitasking scenarios are from telematics, we have chosen 

this platform for our evaluation. These scenarios are described in the following 

subsection. 

6.2. Multitasking Scenarios 

In the future car example that we discussed in section 1.1, we highlighted some of 

the 3D rendering applications which are executed on a GPU. Our multitasking scenarios 

are built by some specific applications, such as Speedometer, Tachometer etc., from this 

application domain.  

We have chosen two multitasking scenarios for the evaluation of FG-SDS model 

and the HPF scheduling policy which are described in the next subsections.  

 

 

CPU 4x ARM® Cortex™-A9 up to 1.2 GHz per core 

GPU 3D 
Vivante GC2000 

200Mtri/s 1000Mpxl/s, OpenGL ES 2.0 & Halti, CL EP 

GPU 2D(Vector 

Graphics) 

Vivante GC355 

300Mpxl/s, OpenVG 1.1 

GPU 2D(Composition) 
Vivante GC320 

600Mpxl/s, BLIT 

Operating System Linux (Ubuntu) 

Table 6-1) An overview of the system specification of the i.MX6 embedded platform [31]    



 Chapter.6: Evaluation and Results 

 50  

 

6.2.1. Multitasking Scenario 1 

The 3D applications which are included in the Multitasking Scenario 1 (MTS-1) 

are listed in the following table. 

Application 

No./Priority 
Application Name 

Desired Frame 

Rate (FPS) 

Period 

(ms) 

1 Speedometer 30 33.33 

2 Tachometer 30 33.33 

3 Menu  30 33.33 

In this scenario we 

have three applications. The priority, desired frame rate and the frame period for each 

application is specified and listed in the table above. The Speedometer is a time critical 

application with a highest priority therefore it has to meet frame deadlines besides 

maintaining the desired frame rate. The Tachometer is given a medium priority and the 

third application is a display Menu which is given the lowest priority. Our goal is to 

guarantee the frame deadlines for the time critical applications and to allocate the GPU to 

the lower priority applications only if it is feasible. 

In this scenario we have chosen the desired frame rates in such a way that the 

schedule is feasible and the GPU is not overloaded. Therefore all the three applications 

can maintain the desired frame rates without our scheduling scheme. The order of 

execution then depends only on the implementation of the driver. 

6.2.2. Multitasking Scenario 2 

The applications in the Multitasking Scenario 2 (MTS-2) are listed in the 

following table.  

Application 

No./Priority 
Application Name 

Desired Frame 

Rate (FPS) 

Period 

(ms) 

1 Speedometer 30 33.33 

2 Tachometer 30 33.33 

3 Menu  20 50 

4 Spam Application 20 50 

As we can see, in 

MTS-2 the first three applications are same as they are in    MTS-1; however, in MTS-2 

we have added a fourth application as well. This applicaion is a spam application which 

overloads the GPU. Moreover we have changed the frame rate for the Menu application 

from 30 FPS to 20 FPS to create some room for the low priority applications to execute.   

Table 6-2) MTS-1 application set with some QoS parameters 

Table 6-3) MTS-1 application set with some QoS parameters 



 Chapter.6: Evaluation and Results 

 51  

 

To measure the performance of the aforementioned scenarios, the evaluation 

metrics that we used is described in the following subsection. 

6.3. Evaluation Metrics 

There the three key parameters which define our evaluation metrics for an 

application. These are the Average Frame Rate (AFR), the Probability of Meeting 

Deadlines (PMD) and the Probability Distribution of Frame Finish Times (PD-FFT) with 

respect to their deadlines. These parameters are also somehow interrelated to each other 

but each of them gives its own measure of the performance of an application in a 

multitasking scenario. The way in which these parameters are calculated is briefly 

described below. 

6.3.1. Average Frame Rate (AFR) 

The AFR of an application is calculated by the following equation. 

    
            

                   
                                                

6.3.2. Probability of Meeting Deadlines (PMD) 

The PMD of an application is calculated by the following equation. 

    
                                 

            
                     

6.3.3. Probability Distribution of Frame Finish Times (PD-FFT)  

The PD-FFT of an application gives us the details of when exactly an application 

has finished its frames with respect to the deadlines.   

6.4. Results 

Before we present the results for both MTS-1 and MTS-2, we discuss the ways in 

which the results of the FG-SDS (HPF) scheme are compared with the other schemes. 

Both of these scenarios are executed in three ways which are: 

1. Execution without any scheduling, in this case the driver makes the decision about 

the granting permission to an application for execution on the GPU. In the following 

discussion of this chapter we will refer to this case as Without Scheduling. 

2. Execution with the Frame Rate Restricted Scheduling (FRRS). In this scheme each 

application cannot exceed the desired frame rate. However, there is no scheduler 

involved in this scheme. Each application, if it finishes its frame before the deadline, 

has to wait for its next activation time which depends on its period and the finish 

time of the current frame. 

3. Execution with our FG-SDS (HPF) scheme.    



 Chapter.6: Evaluation and Results 

 52  

 

The comparisons are made between the performance of FRRS and the FG-SDS 

(HPF) schemes, as we can enforce the frame deadlines in both of these cases. However, 

the case in which no scheduling is applied at all is also included to get an idea of the 

frame rates that we obtain in a multitasking scenario. 

 For each of the 3 cases discussed above, both in MTS-1 and MTS-2, applications 

were allowed to execute for at least 5 minutes so that we have enough samples to record 

the data for the evaluation. In the next subsection we present the results of our evaluation 

for MTS-1 and MTS-s.    

6.4.1. MTS-1 

6.4.1.1. Average Frame Rates 

Without Scheduling - we get frame rates as shown in Figure 6.1 for each 

application. Although in this scenario AFRs are well above the desired level, however, as 

the number of applications increase or the GPU is overloaded the time critical or higher 

priority applications get less chance to execute which results in their AFR degradation 

and missed frame deadlines.   

With FRRS – as expected due to the feasibility of the schedule, each of the 

applications is able to maintain the desired frame rate as shown in Figure 6.2. However, 

when the GPU is overloaded we get a different behavior as we will see in MTS-2.  

With FG-SDS (HPF) - the highest priority guarantees its desired frame rate 

which costs in the degradation of AFR of lowest priority application, as shown in Figure 

6.2. The reason behind this kind of behavior is because of the scheduling overhead 

introduced by FG-SDS model.  

 

Figure 6.1)  AFRs of applications without any scheduling 



 Chapter.6: Evaluation and Results 

 53  

 

6.4.1.2. Probability of Meeting Deadlines 

With FRRS – all three applications are able to meet their frame deadlines, as 

shown in Figure 6.3, due to the feasibility of the schedule.  

With FG-SDS (HPF) - the frame deadlines of the highest priority application are 

guaranteed which costs in less chance for the low priority applications to meet their 

deadlines. See the following figure. 

 

Figure 6.2) A comparison of AFRs of applications with FRRS and FG-SDS (HPF) 
scheduling schemes  

 

Figure 6.3) A comparison of PMDs of applications with FRRS and FG-SDS (HPF) schemes 



 Chapter.6: Evaluation and Results 

 54  

 

6.4.1.3. Probability Distribution of Frame Finish Times  

Figure 6.4 and Figure 6.5 represent the PD-FFT of the Application 1 for the FRRS 

and the FG-SDS (HPF) schemes respectively.  

In both cases this application has finished its frames well before its deadline. 

However, in the former case there is no guarantee that it will do so in a different scenario 

where the GPU is overloaded.  

 

Figure 6.4) Application 1, PD-FFTs using FRRS scheme 

 

 

Figure 6.5) Application 1, PD-FFTs using FG-SDS (HPF) scheme 



 Chapter.6: Evaluation and Results 

 55  

 

For the Application 2 the PD-FFTs are shown in Figure 6.6 and Figure 6.7, when 

FRRS and the FG-SDS (HPF) schemes are applied respectively. 

In case of FRRS, again all the frames have finished before their deadlines. 

However, in the second case some of the frames have missed their deadlines due to the 

reasons as discussed earlier.  

 

Figure 6.6) Application 2, PD-FFTs using FRRS scheme 

 

 

Figure 6.7) Application 2, PD-FFTs using FG-SDS (HPF) scheme   

 

 



 Chapter.6: Evaluation and Results 

 56  

 

For Application 3, in case of FRRS scheme all the frames have finished before 

their deadlines as shown in the following figure. 

In case of FG-SDS (HPF) scheme, most of the frames have missed their deadlines 

and get delayed as shown in the figure above. 

 

Figure 6.8) Application 3, PD-FFTs using FRRS scheme 

 

 

Figure 6.9) Application 3, PD-FFTs using FG-SDS (HPF) scheme 



 Chapter.6: Evaluation and Results 

 57  

 

6.4.2. MTS-2 

6.4.2.1. Average Frame Rates 

Without Scheduling – all the applications are given the same share of the GPU 

resources. The frame rates of the applications in this scenario are shown in Figure 6.10. 

The highest priority application’s frame rate dropped significantly from 30 FPS to only 

10 FPS. There is no prioritization and all the applications are treated in the same manner. 

 

With FRRS – the applications are treated in the same way as in case of Without 

Scheduling. From Figure 6.11, we can see that all four applications maintained an AFR of 

10 FPS. Clearly there is no prioritization therefore the highest priority application is not 

able to maintain its desired frame rate. 

With FG-SDS (HPF) – it can be clearly seen in Figure 6.11 that the highest 

priority application maintained its frame rate at the desired level although the GPU is 

overloaded. The Application 2 and 3 are also able to render according to their priorities 

therefore the former has a high rate as compared to the latter one. The spam application is 

not able to render a single frame in this case. 

 

Figure 6.10) AFRs of applications without any scheduling 



 Chapter.6: Evaluation and Results 

 58  

 

6.4.2.2. Probability of Meeting Deadlines 

With FRRS – there is very low probability that the applications, especially the 

highest priority application, meet their frame deadlines as shown in Figure 6.12.  

With FG-SDS (HPF) – the highest priority application meets the frame 

deadlines all the time as in this case shown in the following figure. Application 2 is also 

able to meet the deadlines. Only the low priority applications missed their deadlines. 

 

Figure 6.11) A comparison of AFRs of applications with FRRS and FG-SDS (HPF) 
scheduling schemes 

 

Figure 6.12 ) A comparison of PMDs of applications with FRRS and FG-SDS (HPF) 
schemes 



 Chapter.6: Evaluation and Results 

 59  

 

6.4.2.3. Probability Distribution of Frame Finish Times  

Figure 6.13 shows the PD-FFT of the highest priority application. Only few of the 

frames which are rendered by this application using FRRS scheme are able to meet their 

deadlines. On the x scale in this figure all those frames which are delayed by more than a 

factor of 5 are considered in the bar which appears just after 5.  

On the other hand, this application is able to render all its frames before their 

deadlines using FG-SDS (HPF) as shown in the figure above.  

 

Figure 6.13) Application 1, PD-FFTs using FRRS scheme   

 

 

Figure 6.14) Application 1, PD-FFTs using FG-SDS (HPF) scheme   



 Chapter.6: Evaluation and Results 

 60  

 

Similarly for Application 2, the difference between the results of FRRS and the 

FG-SDS schemes can been seen in Figure 6.15 and Figure 6.16 respectively. 

 

  

 

 

Figure 6.15) Application 2, PD-FFTs using FRRS scheme 

 

 

Figure 6.16) Application 2, PD-FFTs using FG-SDS (HPF) scheme   



 Chapter.6: Evaluation and Results 

 61  

 

The results for Application 3 are shown in Figure 6.17 and  Figure 6.18. Finally 

the results for Application 4 are shown in Figure 6.19 and Figure 6.20. 

 

 

Figure 6.17) Application 3, PD-FFTs using FRRS scheme 

 

 

 Figure 6.18) Application 3,  PD-FFTs using FG-SDS (HPF) scheme 



 Chapter.6: Evaluation and Results 

 62  

 

 

 

 

  

 

Figure 6.19) Application 4, PD-FFTs using FRRS scheme 

 

 

Figure 6.20) Application 4, PD-FFTs using FG-SDS (HPF) scheme   



 Chapter.6: Evaluation and Results 

 63  

 

 

6.5. Summary 

From the results of our evaluation we can safely say that there is very low 

probability that the highest priority application can miss its frame deadlines, if the 

schedule is feasible, using our FG-SDS model with HPF policy. However, since this 

model depends on the predicted execution time values of the command blocks for making 

scheduling decisions therefore the degree of accuracy in these values can change the 

behavior.  To the best of our knowledge, to guarantee that none of the frames miss their 

deadlines may not be possible without preemption. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 Chapter.6: Evaluation and Results 

 64  

 

 

 



 

 65  

 

7. CONCLUSION AND FUTURE WORK 

7.1. Conclusion 

In this work we have seen that the GPU’s non-preemptive behavior is the main 

obstacle in the way of GPU multitasking. To overcome this challenge we proposed our 

FG-SDS model. By using this model applications can accumulate their commands into 

fine-grained command blocks before submitting them to the GPU. The execution time for 

each individual command block is also known by using the prediction in advance. The 

scheduler then uses these predicted execution time values of the command blocks and the 

priorities of the applications to select one of them to dispatch its command blocks to the 

GPU. This selection is based on HPF scheduling policy. 

Using HPF policy the highest priority application always gets a chance to dispatch 

its command blocks whenever it becomes ready. The other low priority application can 

dispatch their command blocks only if the highest priority application is not ready and it 

has finished its current frame. 

We used two different scenarios to evaluate the performance of FG-SDS model 

with HPF policy. The results suggest that this model has significantly improved the 

possibility for the highest priority application to meet its frame deadlines.  

 

 

7.2. Future Work 

Since the applications use CPU to dispatch their commands to the GPU, the CPU 

priorities of applications have to be set accordingly so that we have same priority order 

for the applications, both on the CPU and the GPU. Therefore one of the directions of this 

work is that we set the priorities in the same order and then evaluate the performance of 

the FG-SDS model.  

Another direction is to quantify the scheduling overhead of the FG-SDS model 

with different CPU loads. By having this information the decision making of the 

scheduler can be improved. The scheduling algorithm may also be modified accordingly. 

To further improve the performance we have to understand the GPU driver’s 

behavior in detail.  

 

 

 

 



 Chapter.7: Conclusion and future work 

 66  

 

 

 

 

 



 

 67  

 

8. BIBLIOGRAPHY 

 

[

1]  

S. Borkar, N. P. Jouppi and P. Stenstrom, "Microprocessors in the era of terascale 

integration," in DATE '07, 2007.  

[

2]  

M. Hilbert and P. López, "The World’s Technological Capacity to Store, 

Communicate, and Compute," Science, vol. 332, pp. 60-65 , 2011.  

[

3]  

P. Brucker, Scheduling algorithms, Springer, 2007.  

[

4]  

G. C. Buttazzo, Hard real-time computing systems: predictable scheduling 

algorithms and applications, Springer, 2011.  

[

5]  

"A Critical History of Computer Graphics and Animation," [Online]. Available: 

http://design.osu.edu/carlson/history/lessons.html. 

[

6]  

[Online]. Available: http://www.b-u.ac.in/sde_book/compu_graphic.pdf. 

[

7]  

Wikipedians, 3D Rendering, http://books.google.de/books?id=1GZiB-

A5Y2kC&lpg=PR1&pg=PR1#v=onepage&q&f=false.  

[

8]  

NVIDIA. [Online]. Available: http://www.nvidia.com/object/cuda_home_new.html. 

[

9]  

A. Jenkins, "TopTenREVIEWS," TechMediaNetwork, [Online]. Available: 

http://computers.toptenreviews.com/gaming-laptops/graphics-cards-integrated-vs.-

dedicated.html. 

[

10]  

Daimler, [Online]. Available: http://www.daimler-technicity.de/en/f-125/. 

[

11]  

A.-L. Dorofte, "Mercedes-Benz-Blog," Daimler, 26 10 2011. [Online]. Available: 

http://mercedes-benz-blog.blogspot.de/2011/10/telematics-future-of-mercedes-

benz.html. 

[

12]  

M. B. a. A. D. a. T.-c. Chiueh, "Graphic Engine Resource Management," in Fifteenth 

Annual ACM/SPIE Multimedia Computing and Networking Conference (MMCN'08), 

2008.  



 

 68  

 

[

13]  

A. Dwarakinath, "A Fair-Share Scheduler for the Graphics Processing Unit," Stony 

Brook University, 2008. 

[

14]  

K. Shinpei, L. Karthik, R. Ragunathan and I. Yutaka, "TimeGraph: GPU scheduling 

for real-time multi-tasking environments," in USENIXATC'11, Portland, 2011.  

[

15]  

J. Adriaens, K. Compton and N. Sung Kim, "The Case for GPGPU Spatial 

Multitasking," in HPCA, 2012.  

[

16]  

SGI, "OpenGL - The Industry's Foundation for High Performance Graphics," 

[Online]. Available: http://www.opengl.org/. 

[

17]  

Khronos Group, "OpenGL ES - The Standard for Embedded Accelerated 3D 

Graphics," [Online]. Available: http://www.khronos.org/opengles/. 

[

18]  

"DRI Wiki," freedesktop, [Online]. Available: http://dri.freedesktop.org/wiki/. 

[

19]  

M. Thielefeld, "Analyse und Evaluation der Ausführungszeit von OpenGL ES 2.0-

Befehlen in Abhängigkeit von Parametern und Kontext," University of Stuttgart, 

Institute of Parallel and Distributed Systems, Stuttgart, 2012. 

[

20]  

B. Paul, "Introduction to the direct rendering infrastructure," Linux World, 2000.  

[

21]  

B. Paul and a. others, "The Mesa 3D Graphics Library," [Online]. Available: 

http://www.mesa3d.org/intro.html. 

[

22]  

[Online]. Available: http://nouveau.freedesktop.org/wiki/. 

[

23]  

Windows, [Online]. Available: http://msdn.microsoft.com/en-

us/library/windows/hardware/ff570589(v=vs.85).aspx. 

[

24]  

"Windows," Microsoft, [Online]. Available: http://msdn.microsoft.com/en-

us/library/windows/hardware/jj553428(v=vs.85).aspx. 

[

25]  

Khronos Group, "Khronos OpenGL ES API Registry," 02 11 2010. [Online]. 

Available: http://www.khronos.org/registry/gles/specs/2.0/es_full_spec_2.0.25.pdf. 

[

26]  

Khronos Group, "Khronos EGL API Registry," 04 12 2006. [Online]. Available: 

http://www.khronos.org/registry/egl/specs/eglspec.1.3.pdf. 

[Khronos Group, "EGL - Native Platform Interface," [Online]. Available: 



 

 69  

 

27]  http://www.khronos.org/egl. 

[

28]  

A. Munshi, D. Ginsburg and D. Shreiner, OpenGL ES 2.0 Programming Guide, 

Khoronos Group, Inc., 2009.  

[

29]  

Khronos Group, "Khronos OpenGL ES API Registry," 12 05 2009. [Online]. 

Available: 

http://www.khronos.org/registry/gles/specs/2.0/GLSL_ES_Specification_1.0.17.pdf. 

[

30]  

Wikipedia, Polygon Mesh, [Online]. Available: 

http://en.wikipedia.org/wiki/Polygon_mesh. 

[

31]  

Freescale. [Online]. Available: 

http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=i.MX6Q. 

[

32]  

[Online]. Available: http://www.freescale.com/. 

 

 

  



 

 70  

 

 

 

DECLARATION 

I hereby declare that the work presented in this thesis is entirely my own and that I 

did not use any other sources and references that the listed ones. I have marked all direct 

or indirect statements from other sources contained therein as quotations. Neither this 

work nor significant parts of it were part of another examination procedure. I have not 

published this work in whole or in part before. The electronic copy is consistent with all 

submitted copies. 

 

 

_________________ 

Stuttgart, 05.07.2013 

 


	Abstract
	Acknowledgements
	Table of Contents
	List of Figures
	List of Tables
	Acronyms
	1. Introduction
	1.1. Motivation
	1.2. Challenges in GPU Scheduling
	1.3. Contribution
	1.4. Organization

	2. Related Work
	2.1. DRI
	2.2. GERM
	2.3. TimeGraph
	2.4. WDDM
	2.5. Real-time scheduling algorithms

	3. Technical Background
	3.1. OpenGL ES and OpenGL ES 2.0
	3.2. EGL
	3.3. OpenGL ES 2.0 Graphics Pipeline
	3.3.1. Vertex Arrays and Buffer Objects
	3.3.2. Primitive Assembly
	3.3.2.1. Primitives
	3.3.2.1.1. Triangles
	3.3.2.1.2. Lines
	3.3.2.1.3. Point sprites

	3.3.2.2. Primitive Assembly Operations
	3.3.2.2.1. Clipping
	3.3.2.2.2. Perspective Division
	3.3.2.2.3. Viewport Transformation


	3.3.3. Rasterization
	3.3.3.1.1. Culling

	3.3.4. Vertex Shader

	3.4. Basic Scheduling Concepts
	3.4.1. A Generic Scheduling Scenario


	4. Fine-Grained Semantics Driven Scheduling
	4.1. Basic Idea
	4.1.1. Scheduling Goals
	4.1.2. Scheduling challenges
	4.1.3. FG-SDS

	4.2. System Model
	4.3. A Sample GPU Multitasking Scenario

	5. Implementation
	5.1. Overview
	5.2. FG-SDS Queues Architecture
	5.2.1. GPU Scheduler Queue
	5.2.2. GPU Command Block Queue
	5.2.3. GPU Command Queue

	5.3. GPU Command Classes
	5.4. Rendering Thread Context
	5.5. Rendering Thread Functional Behavior
	5.5.1. RT Initialization
	5.5.2. Enqueue Commands
	5.5.3. Command Block End
	5.5.4. Dispatch Policy
	5.5.5. RT Exit Policy

	5.6. GPU Scheduler Initialization
	5.7. Scheduling Thread Functional Behavior
	5.7.1. Sorting Based on RT Priorities
	5.7.2. Scheduling Policy


	6. Evaluation and Results
	6.1. System Specifications
	6.2. Multitasking Scenarios
	6.2.1. Multitasking Scenario 1
	6.2.2. Multitasking Scenario 2

	6.3. Evaluation Metrics
	6.3.1. Average Frame Rate (AFR)
	6.3.2. Probability of Meeting Deadlines (PMD)
	6.3.3. Probability Distribution of Frame Finish Times (PD-FFT)

	6.4. Results
	6.4.1. MTS-1
	6.4.1.1. Average Frame Rates
	6.4.1.2. Probability of Meeting Deadlines
	6.4.1.3. Probability Distribution of Frame Finish Times

	6.4.2. MTS-2
	6.4.2.1. Average Frame Rates
	6.4.2.2. Probability of Meeting Deadlines
	6.4.2.3. Probability Distribution of Frame Finish Times


	6.5. Summary

	7. Conclusion and future work
	7.1. Conclusion
	7.2. Future Work

	8. Bibliography
	Declaration

