
Media Engineering and Technology Faculty

German University in Cairo

Institute for Visualization and Interactive Systems

Stuttgart University

An expectation-based editing
interface for OpenStreetMap

Bachelor Thesis

Author: Ahmed ElSafty

Supervisors: Prof. Thomas Ertl

Dipl.-Inf. Bernhard Schmitz

Submission Date: 31 August, 2013

Media Engineering and Technology Faculty

German University in Cairo

Institute for Visualization and Interactive Systems

Stuttgart University

An expectation-based editing
interface for OpenStreetMap

Bachelor Thesis

Author: Ahmed ElSafty

Supervisors: Prof. Thomas Ertl

Dipl.-Inf. Bernhard Schmitz

Submission Date: 31 August, 2013

This is to certify that:

(i) the thesis comprises only my original work toward the Bachelor Degree

(ii) due acknowlegement has been made in the text to all other material used

Ahmed ElSafty
31 August, 2013

Abstract

Building an open-source world map was one of the main reasons OpenStreetMap (OSM)
was founded. Over 1.3 million contributors participate in editing the the world map
collaboratively. Unfortunately, there is no support or any assistive technology solutions
that helps blind and visually impaired users to blend into the OSM community. The
aim of this thesis is to provide them with an assistive OSM editing application with an
adaptive user interface that matches their needs. A mobile application for OSM editing
was developed with an assistive recommendation system that helps predicting changes
users might need to commit. The thesis describes in details the application design,
decisions made, workflow and modularity.

V

VI

Acknowledgments

First of all, I would like to thank my supervisor Dipl.-Inf. Bernhard Schmitz for his
assistance, priceless guidance and advice. Also, I would like to thank the Visualization
and Interactive Systems department (VIS) and the International center (IZ) in Stuttgart
Universität for providing me with a good environment and needed facilities to complete
this project.

I would like to express my deep gratitude to Jolly for her continuous support and
invaluable motivation to continue this bachelor thesis, I couldn’t have done it without
you. Finally, I would like to acknowledge the tremendous sacrifices my parents made to
ensure that I had an excellent education. For this and much more, I am forever in their
debt.

VII

VIII

Contents

Acknowledgments VII

1 Introduction 1
1.1 Motivation . 1
1.2 Aim . 1
1.3 Thesis Structure . 2

2 Background 3
2.1 OpenStreet Map . 3
2.2 XML . 5
2.3 XML Parsers . 5
2.4 Semantic Web . 8
2.5 Java RDF libraries . 10
2.6 SPARQL . 11

3 State of the Art 15
3.1 Recommendation System . 15
3.2 Openstreetmap Editor . 18
3.3 Blind Friendly User Interface . 19

4 Design 21
4.1 Approach . 21

4.1.1 Designing the core editing application 21
4.1.2 Designing the recommendation system 22
4.1.3 Designing a blind-friendly user interface 23
4.1.4 Design workflow . 24

4.2 User Interface Design . 25
4.2.1 Introduction . 25
4.2.2 Authentication layout . 25
4.2.3 Nearby Nodes layout . 26
4.2.4 Node layout . 27

5 Implementation 31
5.1 Authentication . 31
5.2 Nearby points of interest . 32

IX

5.3 Recommendation systems . 34
5.4 Boundaries detector . 36
5.5 Uploading . 39

6 Conclusion 41
6.1 Summary . 41
6.2 Future Work . 41

Appendix 43
List of Figures . 44
Code Listings . 45

References 48

X

Chapter 1

Introduction

1.1 Motivation

From the beginning of time, travelers and wanderers relied heavily on landmarks, trends
and even the locations of the stars to identify their trading routes. In order to transfer
knowledge and information from one generation or culture to another, cartography was
needed. Cartography, or the art of map creation, has been playing a substantial part in
human history. In the last decades, commercial mapping corporations have been building
up their credibility, selling their maps with high costs and limiting the use of the data by
copyrights and licences.

Building an open-source world map was one of the main reasons OpenStreetMap
(OSM) was founded. In April 2006, the OpenStreetMap foundation was established to
encourage the development and utilization of free geospatial data to provide it for any-
body to use and share. A great number of participants (over 1.3 million) contribute in
editing the world map collaboratively using the OSM infrastructure, and the number of
contributors is growing every month [24].

However, there is a group of contributors who haven’t been involved yet in Open-
StreetMap. In 2012, the World Health Organization estimated that there were approxi-
mately 39 million people who are blind and 285 million who are visually impaired world-
wide [32]. Unfortunately, there is no support or any assistive technology solutions that
helps them blend into the OSM community.

1.2 Aim

The aim of this thesis is to provide blind and visually impaired users with an assistive
OpenStreetMap editing application with an adaptive user interface that matches their

1

2 CHAPTER 1. INTRODUCTION

needs. The application has to be mobile so that users can edit OSM features on the
fly while navigating in an environment. Also, it has to include a logical and sensible
recommendation system that acts as an assistive solution for blind users which helps
predicting changes users might need to commit.

1.3 Thesis Structure

The thesis is divided into the following chapters:

• Chapter 2 gives a short background description on technologies used in the thesis,
including OpenStreetMap, XML parsers, semantic web, the Resource Description
Framework and the SPARQL query language.

• Chapter 3 gives an overview of the main research topics used, including context-
aware recommendation systems, OpenStreetMap editing applications and user in-
terface for blind people. Also, it provides brief notion on related work and currently
implemented applications.

• Chapter 4 introduces the system design and decisions that were taken throughout
the thesis along with the design workflow.

• Chapter 5 gives an introduction on the most considerable technical scenarios im-
plemented in the thesis, including authentication process, implementation of the
recommendation system, the boundaries detector and more.

• Chapter 6 provides a summary and final conclusion as well as discussing future
work.

Chapter 2

Background

This chapter will describe the background of the technologies used in this thesis. It will
start by giving an overview of OpenstreetMap . Thereafter, XML and parsers used in
this approach will be demonstrated along with the Semantic Web, Resource Description
framework (RDF) and related examples. Finally, the SPARQL query language on triple
databases is explained.

2.1 OpenStreet Map

OpenStreetMap (OSM) aims to create a free world map and freely licensed geographic
data. Data is being collected by contributors about roads, railways, rivers, forests, houses
and everything else that is commonly seen on the world map. OSM provides editing tools
that allow users to add, update or delete geographical features through an intuitive and
easy interface. A great number of participants (over 1.3 million) edit the world map
collaboratively using the OSM infrastructure [24]. OSM data is available for further use
across different application domains, software platforms and hardware devices.

OpenStreetMap was founded in July 2004 by Steve Coast. In April 2006, the Open-
StreetMap Foundation (OSMF) was established to encourage the growth, development
and distribution of free geo-spatial data and provide it for anybody to use and share.
In December 2006, Yahoo confirmed that OSM could use its aerial photography as a
backdrop for map production [7].

OpenStreetMap data can be exported in different formats. Tiles can be downloaded
as OSM data, PostGIS1 or shapefiles then rendered using a software called Mapnik2.

1 More info http://postgis.net/
2Mapnik is an open source toolkit for rendering maps. It is used to render the four main Slippy Map

layers on the OpenStreetMap website. It supports a variety of geospatial data formats and provides
flexible styling options for designing many different kinds of maps. more info http://mapnik.org/

3

4 CHAPTER 2. BACKGROUND

Moreover, raw data can be downloaded in XML format As shown in the XML document
below:

Listing 2.1: OpenStreetMap XML output structure

<?xml version="1.0" encoding="UTF-8"?>

<osm version="0.6" generator="CGImap 0.0.2">

<bounds minlat="54.0889580" minlon="12.2487570" maxlat="54.0913

900" maxlon="12.2524800"/>

<node id="1831881213" version="1" changeset="12370172" lat="54.

0900666" lon="12.2539381" user="lafkor" uid="75625" visible="tr

ue" timestamp="2012-07-20T09:43:19Z">

<tag k="name" v="Neu Broderstorf"/>

<tag k="traffic_sign" v="city_limit"/>

</node>

<way id="26659127" user="Masch" uid="55988" visible="true" vers

ion="5" changeset="4142606" timestamp="2010-03-16T11:47:08Z">

<nd ref="292403538"/>

<nd ref="298884289"/>

<nd ref="261728686"/>

<tag k="highway" v="unclassified"/>

<tag k="name" v="Pastower Strae"/>

</way>

<relation id="56688" user="kmvar" uid="56190" visible="true" ve

rsion="28" changeset="6947637" timestamp="2011-01-12T14:23:49Z"

>

<member type="node" ref="364933006" role=""/>

<member type="way" ref="4579143" role=""/>

<tag k="name" v="Kstenbus Linie 123"/>

<tag k="network" v="VVW"/>

</relation>

</osm>

OSM represents its data as a list of nodes, ways and relations (also known as ele-
ments). Each node defines a geospatial point using its longitude, latitude and a set of
features that define the node. A town, mall or shop can be represented as a node, with
tags like amenity=shop to give the node more characteristics.

The second primitive element is the way, which is a list of two or more nodes. Ways
can be used to represent linear features like roads and ways, or polygons like buildings
and areas using distinct tags, i.e, building=yes.

Finally, the relation groups a set of nodes, ways and even other relations to describe
a certain connection between them. For example, a bus route could be described as a

2.2. XML 5

relation of type=route, route=bus and operator=* tags containing the ways over which
the bus travels, along with the bus stop nodes.

2.2 XML

XML stands for“eXtensible Markup Language”. Its a “markup” language i.e, a lan-
guage that contains special ”markup” elements to describe the structure and format the
document. However, unlike most markup language, XML is “eXtensible”: the elements
used in the document are not fixed, giving XML its flexibility to store data in a clean
structured way as it allows the user to define his own tags [9].

Although XML design focuses on documents, it is widely used for the representation
of arbitrary data structures. A Simple XML document would look like this:

<?xml version="1.0" encoding="UTF-8"?>

<name>

<first>John</first>

<last>Snow</last>

</name>

Even from this simple example, it is clear why markup languages like XML are called
“self-describing”. The first line is called the XML declaration. It contains information
about which version is in use. It also contains information regarding the character en-
coding of the document. Looking at the data, information can be interpreted with ease.
A tag called <first> with parent node <name> intuitively resembles first name, the
same is true with the last name tag. Thus, it is advised to use meaningful tag names
when creating XML documents, while following a proper format and choice of wording
throughout the whole document [15].

XML documents have to satisfy few syntax rules, as some of them are shown in the
example. A single “root” element contains all the other elements, i.e, the name tag is
the root containing first and last names. Also, beginning and ending tags should be cor-
rectly nested, with none missing or overlapping. This allows computer programs to read
the XML document and easily tell information from its markup, an XML ’processor’ is
commonly called a parser [15].

2.3 XML Parsers

XML parsers simply read XML documents and provide the application with any infor-
mation it needs. It reads through the characters in the document and determines which

6 CHAPTER 2. BACKGROUND

represents markup characters and which are data [15]. There are two main parsers which
are included in android. Each parser has its pros and cons. They are called SAX and
DOM parsers:

DOM Parser

DOM stands for Document Object Model. DOM builds an in-memory tree representa-
tion of the XML document. Generally it is an application for validating XML Documents.
[20] It defines the objects and properties of all elements in xml and the methods to access
them, where the elements and attributes are represented as nodes in a hierarchical tree
structure as shown in figure 2.1.

Each node stores the element’s name and attributes along with pointer information in-
dicating the parent-child-sibling relationship and the node value. Although it is memory
inefficient, this memory structure provides DOM with its basic feature, random access.
Unlike SAX sequential parsing, DOM provides fast random access to any and every node,
due to its tree hierarchical structure [12].

Figure 2.1: DOM parser workflow

However, DOM has one major flaw: the data in the tree can only be accessed when
the tree is finished i.e the parser is done with parsing the whole XML document. Thus,
complex and large XML documents will not be available anytime before the needed
memory and space are allocated and the parsing is complete [31].

2.3. XML PARSERS 7

SAX Parser

Sax stands for Simple API for XML. Sax is an event based XML parser, as it parses XML
documents step by step. It is considered a light-weight and fast parser with low memory
consumption when compared to a DOM parser due to the fact that, instead of creating
hierarchical structure representation of all elements and maintaining pointers to indicate
the parent-child-sibling relationship between them, it fires when it encounters opening
tag, element or attribute and work accordingly. When a certain event is triggered, it calls
the corresponding function to handle the event as shown in figure 2.2.

Figure 2.2: SAX parser workflow

A SAX parser is recommended with large XML files that do not require frequent
modification, because SAX doesn’t require to load the whole XML file in Java if the
application needs to parse specific parts in the XML document. Also, the memory con-
sumption is not affected by XML document size since the objects associated with the
triggered events could be destroyed on a regular basis. Moreover, it supports partial data
access before the XML document parsing is done [12].

However, DOM is more powerful. It is more suitable for complex and frequent up-
dates despite its high memory consumption. Since a DOM parser uses a hierarchical tree
structure for the data representation of the XML document, it is much easier to add,
modify or delete nodes in the DOM tree. This could be achieved by pointer maneuvers
between the tree nodes for fast editing, insertion and deletion. On the other hand, SAX
is more useful with applications with limited memory that require simple or rare modifi-
cations [12].

8 CHAPTER 2. BACKGROUND

2.4 Semantic Web

The semantic web - as W3C stated - is a common framework that allows data to be shared
and reused across application, enterprise, and community boundaries. The semantic web
has many applications. Examples include data integration, knowledge representation and
analysis, cataloging services, improving search algorithms and methods, social networks
and more. In order to share data across different applications, it was substantial to define
and describe relations among data. Thus, The Resource Description Framework was used
to depict and delineate these connections [13].

Resource Description Framework

The Resource Description Framework (RDF) is a data model that was proposed by the
World Wide Web Consortium (W3C) as a standard for representing metadata about se-
mantic data. [14] RDF was mainly designed to express and exchange information about
Web resources. Moreover, the framework is designed to be read and interpreted by com-
puters, which allows computers to self-integrate information from the web. RDF is one
of the main pillars of the so-called Linked Data Web, known nowadays as the Semantic
Web [5].

RDF describes the relationship of information among resources using a set of state-
ments. An RDF statement is represented by a triple, consisting of a subject, its predicate
and Object. The triple can be simply interpreted as a subject having a specific relation-
ship with its object [14]. For example, “Leopard” would be the Subject, “eat” would be
the relation and “meat” would be the Object in a “Leopard eat meat” RDF statement.

• Subject: is anything that can have a URI, such as “http://www.informa tik.uni-
stuttgart.edu/RDF/”

• Predicate: is a string that describes the relation between a subject and its object.

• Object: is the data value of the Subject, it could be a literal value such as “study”
or a URI as in “http://www.informatik.com”

URI is short for Uniform Resource Identifier. It is a string of characters that acts as
a name or a locator for a resource. It is used to enable interaction with representations
of a resource over the World Wide Web using specific protocols. [30]

2.4. SEMANTIC WEB 9

Figure 2.3: RDF graph example

As shown in figure 2.3, RDF can be represented in a form of directed graph data
model, RDF uses a graph data model, where different entities are vertices in the graph
and relationships between them are represented as edges. Information about an entity is
represented by directed edges emanating from the vertex for that entity, where the edge
connects the vertex to other entities, or to literal that represents the value of a particular
attribute for that entity. All the information provided builds up the RDF vocabulary also
known as RDF schema [14] the following example shows how to represent information in
RDF XML:

Listing 2.2: RDF database example

<?xml version="1.0"?>

<rdf:RDF

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns\#"

xmlns:cd="http://www.recshop.fake/cd\#">

<rdf:Description

rdf:about="http://www.recshop.fake/cd/Empire Burlesque">

<cd:artist>Bob Dylan</cd:artist>

<cd:price>10.90</cd:price>

<cd:year>1985</cd:year>

</rdf:Description>

</rdf:RDF>

Few notes can be easily interpreted from the above XML Document:

• The first line is the XML declaration. The XML declaration is followed by the root
element of RDF documents: <rdf:RDF>.

• The xmlns:rdf namespace, specifies that elements with the RDF prefix are from the
namespace “http://www.w3.org/1999/02/22-rdf-syntax-ns”.

10 CHAPTER 2. BACKGROUND

• The <rdf:Description> element contains the description of the resource identified
by the rdf:about attribute.

• The elements <cd:artist> and <cd:price> are among properties of the resource.

The following can be concluded from the above RDF document: The album is Empire
Burlesque by Bob Dylan, 1985 edition and it costs 10.90 unit currency.

Subject Predicate Object
http://www.recshop.fake/cd/Empire Burlesque cd:artist Bob Dylan
http://www.recshop.fake/cd/Empire Burlesque cd:price 10.90
http://www.recshop.fake/cd/Empire Burlesque cd:year 1985

Table 2.1: Triples in data model

Most RDF-triple-stores (also known as RDF database) represent the graphs as a table
of triples. The Triples take the form <subject,predicate,object>. Many RDF-stores uses
a single relational table containing three columns to store the triples as illustrated in
table 2.1. A group of relations form an ontology [14].

An Ontology - as Gruber clarified - is “a specification of conceptualization” or “ a set
of representational primitives with which to model a domain of knowledge or discourse”.
It is used for classifying terms used in particular application or group of applications,
identifying possible relations and defining constraints on such relationships. The primi-
tives used for description are usually concepts, properties and relationships. Ontologies
are used in the semantic web, artifical intellegence, system engineering or in our case, it
can be used for expectation based and simple recommendation systems. RDF is one of
the languages used to describe such ontologies [11].

2.5 Java RDF libraries

There are few Java RDF libraries for modeling RDF datasets. KAON (Karlsruhe ontol-
ogy) - for example - is an ontology infrastructure developed by the University of Karlsruhe
and the Research Center for Information Technologies in Karlsruhe. It provides an API
for OWL ontologies, a module for extracting ontology instances from relational databases
and more. However, it strays from pure standards with their own special syntax and ex-
tensions [22].

The Jena and Sesame Framework share the same features. However, according to the
Berlin SPARQL Benchmark Results, It takes 90 minutes to load 100 million triples of data
using Jena framework and 3 days 6 hours to load them using Sesame’s [6]. Moreover, Jena
framework has the best support and widest community of the three frameworks, growing
everyday. Therefore, Apache’s Jena RDF framework was picked for our approach in this
thesis.

2.6. SPARQL 11

Apache Jena Framework

Jena is a Java framework for building semantic web applications. It provides program-
matic environment for RDF, RDFS (schema), OWL (Web Ontology Language), SPARQL
(Sparql Protocol And RDF Query Language) and includes a rule based reference engine
[17]. It has a huge library that allows developers to create, manipulate and execute RDF
graph queries. The Jena framework includes:

• An API for reading, processing and writing RDF data in XML, N-triples and Turtle
formats.

• An ontology API for handling OWL and RDFS ontologies.

• Stores to allow large numbers of RDF triples to be efficiently stored on disk.

• A query engine compliant with the latest SPARQL specification.

• Servers to allow RDF data to be published to other applications using a variety of
protocols, including SPARQL.

Jena has object classes to represent graphs, resources, properties and literals. Also, a
graph is called a model and is represented by the Model interface. Basically, an empty
model is initialized, thereafter - for example - the leopard resource is created and a
property added to it. [28]

Model model = ModelFactory.createDefaultModel();

Resource leopard = model.createResource(leapardURI).addProperty

(live, Africa);

There are various ways to extract the data from RDF model to be used in the ap-
plication. One way is to iterate over all the triples in the model and extract the data.
However, this iteration technique would be tiresome if the model had different or distinct
triples. As mentioned earlier, the triple-store acts like a triples database, so a more flex-
ible solution would be to use queries to educe the data. Luckily, Jena framework has a
built-in Query engine called ARQ that supports the SPARQL RDF Query Language.

2.6 SPARQL

As explained in the official W3C Recommendation documentation for SPARQL [27], most
forms of SPARQL queries contain a set of triple patterns called a basic graph pattern.
Triple patterns are like RDF triples except that each of the subject, predicate and object
may be a variable. A basic graph pattern matches a sub-graph of the RDF data when
RDF terms from that sub-graph may be substituted for the variables. Hence, executing
SPARQL queries generally involves graph pattern matching [25].

12 CHAPTER 2. BACKGROUND

SPARQL is an RDF query language, it is a recursive acronym which stands for
“SPARQL Protocol and RDF Query Language”. SPARQL supports triple patterns and
optional graph patterns along with their conjunctions and disjunctions. The results of
SPARQL queries can be results sets or RDF graphs [27].

An RDF dataset that shows information regarding Ludwig van Beethoven is shown be-
low. Ludwig van Beethoven is the Subject, placeOfBirth is the predicate and Bonn, Ger-
many is the literal Object. The prefix notation followed is called Notation3, the complex
URIs like “http://dbpedia.o rg/property/place OfBirth” can be divided into user-defined
prefixes dbpprop: <http://dbpedia.org/property/> and then prefix dbpprop is concate-
nated with placeOfBirth to shorten the complex URI to just dbpprop:placeOfBirth in
what known as QNames [4].

PREFIX dbpedia-owl: <http://dbpedia.org/ontology/>

PREFIX dbpprop: <http://dbpedia.org/property/>

PREFIX dbres: <http://dbpedia.org/resource/>

dbres:Ludwig_van_Beethoven dbpprop:placeOfBirth "Bonn,Germany".

SPARQL queries are simple in concept, they match a triple like < ludwig,place,germany>
to <x,y,z>. If the developer wants to know the birthplace of Beethoven, the following
query should be used in the SPARQL Endpoint:

PREFIX dbpedia-owl: <http://dbpedia.org/ontology/>

PREFIX dbpprop: <http://dbpedia.org/property/>

PREFIX dbres: <http://dbpedia.org/resource/>

SELECT ?place

WHERE

{

dbres:Ludwig_van_Beethoven dbpprop:placeOfBirth ?place .

}

This example tries to find entities in the data set that have at least one edge emanat-
ing from them, labeled “placeOfBirth” and connected to the “Ludwig van Beethoven”
entity. Entities that match this pattern are referred to using the variable name ?place
(the ? character is used to indicate pattern variables). For these entities, SPARQL looks
for matched patterns and returns the edge if it exists.

The SPARQL syntax is pretty simple and self-explanatory like MYSQL’s. Both share
common clauses like Where, Select, Filters and Groupby. Select clause has the output
entities the user would like to see , Where clause has the requested query pattern(s),
Filter clause adds more restrictions and constrains to the output results.

2.6. SPARQL 13

A more complex example could be that the user wants to know all Composers for piano
who were born between 1784 and 1884, as shown in the query below. First, SPARQL
tries to match the first predicate that gets all composers. Then it joins the results of
the previous query with the current one, for each composer it tries to match the second
predicate and get the date of birth, then applies the filter.

SELECT ?composer ?dateofbirth

WHERE

{

category:Composers_for_piano dcterms:subject ?composer.

?composer dbpedia-owl:birthPlace ?dateofbirth.

FILTER(xsd:dateTime(?birth) >= "1784-01-01T00:00:00Z"^^xsd:dat-

eTime &&

xsd:dateTime(?birth) <= "1884-00-00T03:00:00Z"^^xsd:date-

Time) .

}

The nature of SPARQL - as seen in earlier examples - allows second, third and Nth-
levels of pattern matchmaking, making it one of the optimal methods for relations dis-
covery, or in our approach, a reasonable solution for recommendation and preferences.

14 CHAPTER 2. BACKGROUND

Chapter 3

State of the Art

Our research is positioned at the intersection between Context-aware Recommendation
Systems, OpenSteetMap Editors and User Interface for blind users. This chapter provides
a short overview of these areas and related work.

3.1 Recommendation System

“The smaller the difference between what a client wants and what he gets, the better the
quality of the service. The value co-created by the pair provider-client through the use
of services has received great attention from researchers in the past few years.” [18].

Recommendation systems are implemented to predict the ‘rating’ and ‘preferences’
that users would give to a specific item such as music records, books and movies. Also,
to predict connections of people and points of interests when it comes to social networks
[26].

Recommendation systems have become extremely common in recent years. Netflix
suggests movies that a user might like to watch based on the user’s previous ratings and
watching habits. Pandora Radio picks up an input of a song or musician and plays music
in the same genre with similar characteristics. Amazon.com will recommend additional
items based on what other shoppers bought along with the currently selected item [26].

In general, recommendation systems can use very simple and basic data, such as
user ratings/evaluations for items, also known as knowledge poor recommendation sys-
tems. Different techniques involves using ontological information regarding users, items,
constraints , social relations or activities. These techniques are more knowledge depen-
dent, and offers accurate preferences predictions and forecast. At any rate, data used by
recommendation systems circles around the relations between users and items [26].

Recommendation systems are made to produce a list of alternatives and recommen-
dations using one of two ways, collaborative or content-based filtering.

15

16 CHAPTER 3. STATE OF THE ART

Collaborative filtering

Collaborative filtering is based on analyzing and crowdsourcing large amounts of data
and information on users’ activities or preferences and predicting what users are likely
to choose based on what other similar users already picked. One advantage of using col-
laborative filtering is that it relies on user similarities and therefore it does not need any
understanding of the item itself. Many algorithms are used to measure user-item similar-
ities in recommendation systems, K-nearest Neighbour approach [8], Pearson Correlation
[10] and more.

Content-based filtering

Content-based filtering is based on information and the characteristics of the items which
will be recommended. Different algorithms regarding information filtering and retrieval
try to suggest items related to what the user liked, shared, bought or searched about in
the past as shown in figure 3.1.

Figure 3.1: Content-based filtering search recommender (taken from Sony Technologies -
content recommender system1)

Basically, Items are “broken” down to set of features. The system creates a model
based on how important the item feature is. The weight of the feature can be determined
by simple approaches like rated or boolean questions. It can also be determined by
complex techniques such as decision trees and artificial neural networks to guess the
likelihood of the user picking a specific item [19].

1“Http://www.sony.net/SonyInfo/technology/technology/theme/contents 01.html”

3.1. RECOMMENDATION SYSTEM 17

Related Work

Many research and industry efforts are focusing on location and context aware resource
discovery in mobile computing. Ontology-based annotations have been considered as a
tool for the implementation of recommendation systems because of its properties and
flexibility. However, the main challenge is to provide paradigms and techniques that are
efficient, resilient and intuitive enough to be of practical interest for a potentially wide
user base.

Noppens et al. [23] implemented a mobile application for semantic-based mobile ser-
vice discovery. His aim was to create a flexible graph-based representation that allows
OWL ontology browsing. However, preference specification required a rather long inter-
action process, which could be unwieldy on mobile devices due its limited capabilities in
hardware and user interface.

Beckar and Bizer [3] introduced a mobile application, which allows a user to search
for resources located nearby, using data extracted from DBpedia or any Linked Open
Data (LOD). The system also allows users to publish pictures and reviews that add more
details to the point of interest. Moreover, the user may use SPARQL queries to narrow
down search results on the map. Yet, users should have prior experience in SPARQL
syntax and how to build its queries.

Auer et al. [1] presented an open source framework, that permits the OpenStreetMap
data to be translated and imported to an Open Linked Data repository in RDF. Con-
sequently, as mentioned in Chapter 2, users were able to use the SPARQL RDF query
language at a public endpoint on the Web, in order to retrieve geodata of a particular
region. However, no semantic matchmaking or SPARQL-aid was offered.

Ballatore et al. [2] have developed an OSM Wiki Crawler, that extracts a semantic
network from the OSM wiki website in the form of an RDF graph as shown in 3.2.
Moreover, co-citation algorithms were used to find similarities in a graph of inter-linked
objects, based on the intuition that similar objects are referenced together. Then the
RDF result was imported to a Linked Open Data repository and accessible for SPARQL
querying.

18 CHAPTER 3. STATE OF THE ART

Figure 3.2: A subset of the OSM Semantic Network with concepts ‘amenity’, ‘university’,
‘building’ and ‘school’ (Taken from OSM semantic network2)

On the other hand, due to the the fact that OSM is open for huge amount of con-
tributors, OSM rules and syntax are not followed from time to time, and there are no
restrictions by OSM servers, i.e, anyone can add any tag or value, the Wiki and XML
data might have tons of redundancies waiting to be resolved by OSM developers.

3.2 Openstreetmap Editor

OpenStreetMap editors are designed to manipulate OSM geodata. Editors allow users
to add roads, pubs or change features of streets, buildings and points of interest. There
are several editors already implemented to edit OSM features. However, none was imple-
mented for the sake of visually impaired users or with a blind-friendly user interface.

Vespucci

Vespucci 1.0 was one of the first mobile platform applications to ever allow users to
edit OpenStreetMap on android devices. It allows them to create and edit new nodes,
ways, tags, append nodes to existing ways, edit geometries and more. However, it has no
support for relations editing [21].

ShareNav

ShareNav is a cross platform open source navigation application, tracker, map editor and
map viewer software. The first version of ShareNav is based on GpsMid code version

2Http://wiki.openstreetmap.org/wiki/OSM Semantic Network

3.3. BLIND FRIENDLY USER INTERFACE 19

0.8.2 (which does not differ much from ShareNav, except it has support for non smart
phones). It has even less editing capabilities than Vespucci as it does not allow users
to edit geometries. However, it has more navigational features like GPS point-to-point
guidance and more [16].

Figure 3.3: Screenshots from Vespucci and ShareNav

OSMapTuner

OSMapTuner is an OSM editable application available for android. Its main and only
feature is editing existing POI and arbitrary tags of existing OSM objects. No POI ad-
dition, no geometry or relations editing.

There are tons of OSM editing applications with support to Windows, Linux, OS X,
android and IOS. Most share common features, some have unrelated extras, e.g, using
the app as a navigator and not as an editor, and much more. However, as mentioned
earlier, blind users did not have the chance to contribute to OpenStreetMap, as there are
no editing interfaces implemented in a way that matches their needs.

3.3 Blind Friendly User Interface

In 2012, the World Health Organization (WHO) estimated that there were approximately
39 million people who are blind and 285 million who are visually impaired in the world

20 CHAPTER 3. STATE OF THE ART

who face many challenges that arise in daily life. Therefore, assistive technology solu-
tions, especially regarding mobile devices, are needed to overcome these daily challenges
in a reliable, easy-to-use, functional way [32].

One of the most obvious yet credible solutions is the Text-to-Speech (TTS) engines.
Speech synthesis artificially converts normal language text into speech. TTS proved to
be one of the most fruitful user interface feature for visual impaired users. Also, the
use of widened buttons that covers equal squared portions of the layout and exploits ev-
ery available space on screen, greatly avoid miss-clicks and triggering unintended events.
Finally, the use of magnifiers, mobile built-in vibration feature and dialog alerts for verifi-
cation helps blind users finish their intended tasks with as little confusion as possible [29].

In the modules shown above, reliable technologies have been introduced regarding
recommendation systems, OSM editing applications and functional techniques to make
life easier for blind users. However, there are no applications that get blind and visual
impaired users involved in OSM editing with the assistance of recommendation systems
or without.

Chapter 4

Design

Before implementation, a schema was needed to make the application as assistive as
possible for blind and visually impaired users. This chapter will introduce the approach
followed, the decisions made and the design workflow. Also, it discusses the user interface
design and gives a simple application walkthrough.

4.1 Approach

This section will introduce the system design and decisions that were taken throughout
the thesis duration along with the design workflow. Designing an OpenStreetMap editing
application for blind users involves three main parts, a core editing application, a simple
recommendation system and a blind-friendly user interface.

4.1.1 Designing the core editing application

The first step towards building the editing application is the core editing interface for
OpenStreetMap using its API. Thus, the application proposed was implemented to fulfill
these goals:

• The user should be able to sign in with his username and password to the OSM in
order to authenticate his editing activities.

• The user should be able to get all nearby Points of Interest around him in a specific
radius.

• The user should be able to select, add, edit or delete any tag, key and value of any
Point of Interest around him.

• The user should be able to add a new node at his current location, longitude and
latitude, in the OpenStreetMap database.

• The user should be able to save and upload his changes to the OpenStreetMap
database.

21

22 CHAPTER 4. DESIGN

4.1.2 Designing the recommendation system

One of the aims of this thesis is to make the application as assistive as possible to blind and
visually impaired users. Thus, users are given a list of preferences and recommendations
he can choose from when editing or creating a new Point of Interest. Consequently, the
list should be determined by few rules:

• The recommendation list has to be linked and related. When the user edits or
creates a new tag and value in a point of interest, the recommendation list should
be modified to match the related existing tags inside the POI. The more the user
keeps feeding data and further enrich the POI, the more specific and accurate the
recommendation gets.

• The recommendation list has to be rational and sensible. e.g, a tree doesn’t grow
inside a house or a park doesn’t exist within a crossroad. Thus, every tag inside a
POI should have its ”unrelated” tags removed from the recommendation list.

• If the user wants to add a new POI within boundaries, e.g, building or park, the
tags of the boundaries are added with its related tags to the recommendation list,
and any invalid tags are excluded. This can be achieved using the current location
and a simple geometry library to determine whether the user is located within a
closed area or not.

• A list of recommended values are offered whenever the user is editing a specific key
in a tag.

As mentioned in 2.6, the nature of SPARQL allows second, third and Nth levels
of pattern matchmaking, making it one of the optimal methods for relations discovery.
Therefore, SPARQL was used to query the model of expectations (see section 5.3).

4.1. APPROACH 23

4.1.3 Designing a blind-friendly user interface

The proposed application aims to make life easier for blind and visually impaired users.
Thus, most features mentioned in 3.3 should be implemented in a sensible and intuitive
way. Such features include:

• The use of wide buttons that fill the screen in equal rectangular areas, seven wide
buttons per layout to avoid misclicks and triggering unintended events.

• A text-to-speech engine to facilitate and simplify utilizing the application. A side
swipe will tell the user more information about every button in the layout.

• Changing scroll views to view flippers with next and previous buttons, as scrolling
wouldn’t be appropriate for blind users.

• Exploiting vibration features and alert dialogues to constantly make sure that the
user is doing his intended task correctly with the least confusion possible.

24 CHAPTER 4. DESIGN

4.1.4 Design workflow

Figure 4.1: Application Workflow

An overview of the workflow is shown in figure 4.1. First, the user is requested to sign in
using his credentials. A geometry library call is sent with the user’s current position to
determine if he is bounded by a closed area or not. If he is, the related tags of the closed
area are added to the list of recommendations along with the existing tags. After that
the user can edit a nearby node from a list of nearby nodes in a specific radius, or create
a new node using the help of the recommendations given. Finally, the user can click on

4.2. USER INTERFACE DESIGN 25

the upload button to commit his changes and the application will save and upload to the
OSM database while receiving the HTTP success response.

4.2 User Interface Design

This section introduces the user interface design in order to make life easier for blind users
while navigating and using the application. Thus, Canedroid will be discussed along with
the decisions taken regarding the user interface options.

4.2.1 Introduction

The application starts with the introduction layout as shown in figure 4.2, where the
Text-to-speech engine greets the user, “Welcome to Canedroid”. The introduction layout
lasts until the application is done with converting the model of expectation RDF file to
a java model in background for recommendation system querying and matching.

Figure 4.2: The introduction layout greets the user until the model of expectation is
loaded in the background

4.2.2 Authentication layout

The text-to-speech engine informs the user that the layout is divided equally into three
main parts, the username and password text areas and the sign-in button. Also, the
engine informs the user to enter his credentials when he clicks anywhere inside the text
areas. Finally, the user is asked to click the sign-in button at the end of the screen as
shown in figure 4.3.

26 CHAPTER 4. DESIGN

Figure 4.3: Authentication layer text-to-speech scenario

The user’s credentials are checked using the OSM API with the server. If his creden-
tials are correct, the application proceeds to the nearby nodes layout. The TTS notifies
the user and asks him to enter his username and password again.

4.2.3 Nearby Nodes layout

The layout is designed to list all nearby points of interest to the user for applying changes
and further actions. As shown in figure 4.4, the design contains the following:

• The user can swipe the Margins to get more information regarding the layout
buttons or the data in the listed nodes using the Text-to-Speech engine.

• The Get Location button lists all nearby points of interest in a specific radius.
Enabling GPS and Wifi gives better results by pinpointing the user location for
more precise and accurate OpenStreetMap API calls.

• The Body contains all nearby points of interest in a radius around the user, they
are limited to seven wide buttons per view that occupy proper portions of the layout
to avoid triggering unintended events. Each button refers to a point of interest that
switches the user to the Node Details layout - when clicked - for further changes.

4.2. USER INTERFACE DESIGN 27

• If the user is not satisfied by the list and not interested in amending any of the
nearby points of interest around him, the Create Node button can be clicked to
create a new node using his current longitude and latitude.

• Tests showed that using layouts with sliders was not the most suitable navigation
technique for blind and visually impaired users, as it drives them to miss POIs and
get lost in the scrollable view. Viewflippers were used with Previous and Next
Buttons to navigate a fixed layout and give the user full insight on the list.

Figure 4.4: Text-to-speech engine responses to swiping different areas in the nearby nodes
layout. TTS announcer when clicked on locations shown above: 1) Click to get nearby
points of interest, 2) Click to create new point of interest, 3&4) Building, entrance,
telekom shop, operator, Deutsche Telekom, shop, mobile shop

4.2.4 Node layout

After getting all nearby points of interest, the user has to follow two routes, creating a
new node or amend an existing one. If the user wants to enhance an existing node, he
gets switched to the node layout containing current tags in a list. An empty list is shown
if he wants to create a new node.

In both cases, a layout similar to figure 4.5 will be displayed, where the layout shares
almost all UI features of the nearby nodes layout. The margins are used to read the tags

28 CHAPTER 4. DESIGN

information using the Text-to-Speech Engine. Moreover, when the user long clicks on the
tag button, an alert dialogue will prompt to double check if the user wants to delete this
tag along with the TTS voice “Are you sure you want to delete this node?”.

Figure 4.5: The node representation in the editing layout, the tags are listed in adequately
sized buttons, a deletion prompt will pop up to the user on long click

When the user adds a new tag, the recommendation layout is rendered with available
suggestions based on the model of expectation. The user can identify these tags with
swiping margins and going through the list using the previous and next buttons. However,
if the user is unsatisfied with the list of recommendations, he can click on the ‘add
manually’ button, which allows him to enter his own tag and value as shown in figure
4.6.

Figure 4.6: The recommendation list contains all suggested items, the user can add his
own tags if he is unsatisfied with the list

4.2. USER INTERFACE DESIGN 29

At any point, the user can click the back button in the device to get back to the
previous layout. Finally, when the user is done creating a new node or satisfied with
the changes he did to a specific point of interest, the upload button in figure 4.5 can be
clicked to send his contributions to the OpenStreetMap database using his credentials,
and get back to the nearby POIs layout.

30 CHAPTER 4. DESIGN

Chapter 5

Implementation

This chapter explains several technical details regarding the implementation of Canedroid.
It gives an overview of the authentication process, the implementation of the points of
interest layout , the recommendation system structure, the boundaries detector and the
uploading phase.

5.1 Authentication

Authentication is the first phase in Canedroid after the loading screen. The user is asked
to enter his username and password and click the sign in button at the end of the screen.
There are two main techniques that can be used to authenticate credentials, Oauth and
Basic Authentication.

Oauth

OAuth is an open protocol that provides a standardized, secure API-Authentication
for desktop, web and mobile applications. It also provides a process for end-users to
authorize third-party access to their server resources without sharing their credentials
using a server-client protocol.

Basic Authentication

HTTP Basic authentication (BA) implementation is a simple technique for enforcing ac-
cess controls to web resources. It does not need cookies, session tokens or sign-in pages.
HTTP Basic authentication uses static, standard HTTP headers which means that no
handshakes have to be done in the process.

Basic authentication was used in Canedroid for its simplicity , plainness and having
the basic functions needed for straightforward authentication concerning certified editing

31

32 CHAPTER 5. IMPLEMENTATION

in OSM. First, the username and password are concatenated, then the resulting String
is attached to HTTP requests as a header in Base641 encoded format.

OpenStreetMap provides a set of API calls using HTTP REST methods. For in-
stance, a GET request can be used to return the permissions granted to the current
API connection. If the API client is not authorized, an empty list of permissions will be
returned.

URL url = new

URL("http://api.openstreetmap.org/api/0.6/permissions");

URLConnection urlconn = url.openConnection();

urlconn.setRequestProperty("Authorization", "Basic "+

authStringEnc[0]);

InputStream is = urlconn.getInputStream();

As shown in the code snippet above, a URL connection is opened with the encoded
credentials to authenticate the signed-in user permissions. If the user is authorized, the
resulting tags from the connection should contain the permissions needed to continue
editing, e.g, <permission name=“allow write gpx” />.

However, a user must request a permission to access the network, which is why the
following permission should be added to the Android manifest:

<uses-permission android:name="android.permission.INTERNET" />

Moreover, the Asynctask class is used with HTTP requests as it enables proper and
easy use of the UI thread. It allows to perform background operations and publish results
on the UI layout without having to manipulate threads or handlers. On authentication,
the user is allowed to do various changes with full control on the OSM database.

5.2 Nearby points of interest

In the second phase in Canedroid, after the user passes the authentication test, a list of
nearby points if interest will appear to the user, that allow him to pick a node and start
editing it. The relevant parts of this phase will be explained in details: The location
manager to get the user’s longitude and latitude, the bounding box to get nearby points
of interest, and XML parsing to extract the data to represent the nodes as buttons in the
layout.

1 more info https://tools.ietf.org/html/rfc4648

5.2. NEARBY POINTS OF INTEREST 33

Location Manager

The location manager is used to determine the user’s geo-location that is used to get
nearby points of interest. First, an instance of the LocationManager class is instantiated
as shown in the code snippet below. If GPS or WIFI are enabled, the LocationManager
class calls requestLocationUpdates(). Finally, getLongitude() and getLatitude() are called
if the last known location is valid.

Listing 5.1: Location Manager

Location Manager locationManager =

myContext.getSystemService(LOCATION_SERVICE);

locationManager.requestLocationUpdates(

LocationManager.NETWORK_PROVIDER,

MIN_TIME_BW_UPDATES,

MIN_DISTANCE_CHANGE_FOR_UPDATES, this);

if (locationManager != null) {

location = locationManager.getLastKnownLocation(

LocationManager.NETWORK_PROVIDER);}

if (location != null) {

latitude = location.getLatitude();

longitude = location.getLongitude();}

Bounding Box

After successfully getting the user’s geo-location, the longitude and latitude are added to
an input String of a GET method to the API server.

String input =

"http://api.openstreetmap.org/api/0.6/map?bbox="

+ left + "," + bottom + "," + right + "," + top;

The variables left, button, right and top are computed from the current longitude and
latitude of the user by adding and subtracting 9 meters radius, which proved to display
adequate amount of POIs around the user. The GET request above returns all nodes
that are inside a given bounding box, any relations that reference them, all ways that
reference at least one node that is inside the given bounding box, relations that reference
these ways, and any nodes outside the bounding box that these ways may reference.

XML parsing

The GET methods’ output mentioned earlier is in XML format. As mentioned in section
2.3, XML DOM parsers are used to parse the OpenStreetMap data coming from the

34 CHAPTER 5. IMPLEMENTATION

server. The XML is parsed and processed to get all node and way IDs, and set a button
in the nearby nodes layout for each of them. An OnclickListener() is attached to each
button to switch the user to the Node details for further amends.

When the user clicks on a specific node to edit it, a GET request with the node’s ID
is sent to the OSM API. The response containing all tags and information regarding this
node is parsed and displayed to the user as a set of buttons waiting for further changes
as shown in section 4.2.4.

5.3 Recommendation systems

One of the main tasks of the thesis was providing the users with a list of suggestions
when they want to add or edit new tag. First, the model is sketched to match the design
in Chapter 4. The Model is transformed into RDF format and SPARQL query language
was used to query the RDF model for recommendations.

Model of Expectation

The model of expectation was designed to be as related and sensible as possible as shown
in figure 5.1. Every tag has zero or more related tags, e.g, Building is related to con-
struction, amenity or entrance. Moreover, the model is designed to include irrelevant and
invalid tags, e.g, a building can not have a highway feature or a railway stations can not
exist in a football court.

Figure 5.1: Model of Expectation design

The model is transformed into a triple XML format file, also known as the RDF file,
as illustrated in the example.

Listing 5.2: RDF file format

<?xml version="1.0" encoding="UTF-8"?>

5.3. RECOMMENDATION SYSTEMS 35

<rdf:Description rdf:about="term/k:building">

<skos:related rdf:resource="term/k:amenity"/>

<skos:related rdf:resource="term/k:construction"/>

<skos:related rdf:resource="term/k:entrance"/>

<skos:invalid rdf:resource="term/k:highway"/>

<skos:invalid rdf:resource="term/k:park"/>

<skos:invalid rdf:resource="term/k:crossroad"/>

</rdf:Description>

Finally, to allow the SPARQL query language to query and represent the results, the
RDF file is processed by Apache Jena library to convert it into a java model for further
actions as clarified in the snippet below.

Model m = FileManager.get().loadModel("rdf_file.rdf");

SPARQL

As mentioned in section 2.6, the SPARQL query language was used because of its distinct
nature, as it allows second, third and Nth-levels of pattern matchmaking, making it ideal
for relations discovery across RDF models, and a reasonable solution for recommendations
and preferences.

PREFIX skos: <http://www.w3.org/2004/02/skos/core#>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

select *

where { <term/k:"building"> skos:related ?o. }

The SPARQL syntax is fairly easy to comprehend, as shown in the query above. The
query tries to match all related items to key:building. Eventually, the list of recommenda-
tion will be filled with all related items to all the Tags inside a point of interest. However,
invalid items has to be removed from the list by querying the relation “skos:invalid”. The
list will contain with all the recommended tags that need to be displayed for the user.

Prioritized Recommendation list

The final recommendation list is not yet sorted and still contains a few redundant tags.
Therefore, the list is prioritized according to the number of occurrences, i.e, common
related tags to existing ones are more likely to be on top of the list. Thus, the more the
existing tags are somehow related, the more the recommendation list get more specific
and precise. Tree maps are used in implementing the prioritization as stated in the
following code snippet.

Listing 5.3: Priority recommendation list algorithm

36 CHAPTER 5. IMPLEMENTATION

//create hashmap for tags along with their keys

Map<String, Integer> map = new HashMap<String, Integer>();

//increment tag key whenever a redundant tag is found

for (String s11 : Results) {

if (map.containsKey(s11))

map.put(s11, map.get(s11) + 1);

else

map.put(s11, 1);

}

//Comparable was implemented to compare keys

ValueComparable<String, Integer> comparable =

new ValueComparable<String, Integer>(map);

// tree map instantiated with tags, keys and the comparable

Map<String, Integer> sortedMap =

new TreeMap<String, Integer>(comparable);

//input the hashmap to get sorted

sortedMap.putAll(map);

5.4 Boundaries detector

The boundaries detector helps the blind and visually impaired users with more sugges-
tions when they create new node and are located inside a boundary. A boundary can be
a building, a park, a football field and more. Thus, the tags of the boundary can be used
to generate a recommendation list for more assistance.

The first step toward implementing the boundaries detector was expanding the Bound-
ing radius by 300 meters and get all ways around the user. Each way is checked if it forms
a closed polygon by checking the nodes that form it. If the first and last node have iden-
tical IDs, then it forms a closed shape, otherwise it gets discarded.

Listing 5.4: Railway platform example showing the identical start and the final nodes.

<way id="50060849" uid="35560" changeset="11070866">

<nd ref="635771597"/> #start_node

<nd ref="1686688594"/>

<nd ref="1686688567"/>

<nd ref="1686688596"/>

<nd ref="635771597"/> #final_node

5.4. BOUNDARIES DETECTOR 37

<tag k="area" v="yes"/>

<tag k="bench" v="yes"/>

<tag k="railway" v="platform"/>

<tag k="shelter" v="yes"/>

<tag k="waste_basket" v="yes"/>

</way>

In order check whether the user’s location is inside any of the closed ways, the GeoLib
geometry library was used. It is a free to use, efficient, computational geometry library
that contains a collection of classes like vectors, points, lines, circles, rectangles, polygons
and more.

Each node in the closed polygon way has its ID concatenated in a GET message to
get more information regarding the node’s longitude and latitude. The points are then
used to create a virtual polygon using the GeoLib. As illustrated in the code snippet
below for each closed polygon, it is checked if the user location is inside the polygon. If
the user proved to be inside one of these areas, the corresponding tags will be used to
generate the recommendation list as mentioned in section 5.3. Otherwise the user will
have to enter his own tags manually.

Listing 5.5: Boundaries detector algorithm

//instantiate an arraylist to hold the polygons coordinates

ArrayList<Coordinate> arrayofpoints =

new ArrayList<Coordinate>();

//points associated with ways added to the arraylist

Coordinate wx = new Coordinate(longitude,latitude);

//instantiate the polygon with coordinates

Polygon p = new Polygon(new LinearRing(arrayofpoints));

// check intersection

boolean intersects = p.intersects(

new Point(new Coordinate(userlong,userlat);

Limitations

The example below shows a case where intersection between user’s current location and
the boundary containing him will not be the optimal solutions, where the user is inside
two coincided boundaries with different tags that might cancel out each other when the
recommendation list is processed.

38 CHAPTER 5. IMPLEMENTATION

Figure 5.2: Concentric boundaries

One solution proposed was to get the tags of the smaller area of the two polygons.
However that wouldn’t work if the boundaries detector got three or more boundaries
nearby where the user’s position coincide with them all. Also, the above solution was
based on the assumption that a polygon is containing the other. which will not work in
the following case.

Figure 5.3: Intersecting boundaries

5.5. UPLOADING 39

If the smallest area technique is applied, important tags from the larger boundary area
will be discarded. Thus, all tags from all boundaries the user might be inside are taken in
consideration, processed and used to generate the recommendation system. Future work
may include more restrictions and test scenarios to get more specific tags regarding the
user’s location.

5.5 Uploading

When the user is done with creating and customizing a new node, or satisfied with his
current changes, he can click on the upload button to send his changes to the server using
his credentials. First, a new changeset has to be created using the following code snippet:

//instantiate the Output Stream Writer where

//httpCon variable is an open PUT HTTP connection

OutputStreamWriter out =

new OutputStreamWriter(httpCon.getOutputStream());

//send the XML string and wait for response

out.write("<osm> <changeset> <tag k="created_by"

v="Caescus Vagus 1.0"/><tag k="comment" v="testing."/>

</changeset></osm>);

The above code snippet returns the newly created changeset’s ID, Changesets are used
by the OpenstreetMap API for backups and possibility to revert back to a recent revised
version. Thus, every change to the database has to be stamped with an ID of an open
changeset. Due to the fact that changesets are only open for 24 hours and some limited
data restrictions, a changeset is created and opened every time the user wants to edit or
create a node.

Every existing node has a version tag, which shows how many time this node has been
edited. When the user wants to edit a node, the version tag is parsed, implemented and
attached to the new XML output tag.

The example below shows the output string to the API, where the newly created
changeset is attached, along with the ID of the node being edited, the incremented
version and the tags the user wants to commit. The new version number is returned by
the API on successful updating. Finally, the open changeset ID can be used to call the
API and close the changeset to avoid blacklisting the user for redundantly opening new
changesets in short amount of time.

40 CHAPTER 5. IMPLEMENTATION

//httpCon variable is an open PUT HTTP connection

OutputStreamWriter out =

new OutputStreamWriter(httpCon.getOutputStream());

//send the XML string and wait for response

out.write("<osm> <node id="12323" changeset="12" lon=".."

lat=".." version="2"> <tag k="building"

v="yes"/><tag k="name" v=" Stuttgart hauptbahnhof"/>

</node></osm>);

Chapter 6

Conclusion

The purpose of this chapter is to summarize the thesis research, summing up all goals
and tasks, as well as offering suggestions for future work and how to improve and develop
the proposed application.

6.1 Summary

The main goal of this thesis was to implement an assistive OpenStreetMap editing ap-
plication for blind and visual impaired users on mobile devices, in order to introduce
blind contributors to the OSM community. The application includes a reasonable recom-
mendation system that helps predicting amends and changes users might wish to perform.

Throughout the course of the bachelor thesis, three major tasks were realized and
completed. The first task was to create a fully editable interface for OSM using its API.
The application allows the user to create new Points of Interest at his location. Also, it
is capable of getting all nearby Points of Interest for editing and deletion. The second
task was to create an intuitive and logical model of expectation to help building a simple
recommendation system for the application. The model offers the user a dynamic list of
recommendations the user might like to add or amend using SPARQL query language.
The third and final task was to implement a blind-friendly user interface for the applica-
tion. The UI consists of introducing a text-to-speech engine, manipulating vibrations in
mobile devices and exploiting the layout for the proper distribution of buttons to avoid
misclicking and triggering unintended events.

6.2 Future Work

To further optimize the implemented application and overcome the problems faced, future
work may include:

41

42 CHAPTER 6. CONCLUSION

• Voice commands that can be used and compared to a built-in voice library of tags.

• Before uploading changes, the altered data can be matched with surrounding POIs
around the user in a specific radius, alerting him if the same set of tags are found
to reduce redundancies.

• Nearby Points of interest, ways and relations in a radius around the user can be
used as an input of the recommendation system when creating new nodes.

• The use of crowdsourcing to enhancing the model of expectation based on users’
activities and modifications .

• Adding special prefix to the ID of the users, to alert other blind and visually im-
paired contributors with special tags changes that might be of interest, e.g, tactile
paving. Thus, using the application to help blind users and give them something
back in return for their contribution.

• Using full SPARQL capabilities, i.e, more prioritization of recommendation using
second, third and Nth level of matchmaking using the model of expectation.

• The thesis lacks the evaluation phase on real users which classifies it as a non
experimental research. Thus, feedbacks from blind and visually impaired users can
be helpful to upgrade the user interface and add more features.

To sum up, Canedroid is the first OpenstreetMap editing application that offers direc-
tive assistance to blind users. A recommendation system was proposed and implemented
to act as an assistive tool, where the user is offered a list of suggested changes he might
want to commit. Also, Canedroid is designed to match blind and visually impaired users’
needs by exploiting text-to-speech engines, vibrations and alert dialogues to allow them
to commit their intended changes with as little confusion as possible.

Appendix

43

List of Figures

2.1 DOM parser workflow . 6

2.2 SAX parser workflow . 7

2.3 RDF graph example . 9

3.1 Caption for LOF . 16

3.2 Caption for LOF . 18

3.3 Screenshots from Vespucci and ShareNav 19

4.1 Application Workflow . 24

4.2 The introduction layout greets the user until the model of expectation is
loaded in the background . 25

4.3 Authentication layer text-to-speech scenario 26

4.4 Text-to-speech engine responses to swiping different areas in the nearby
nodes layout. TTS announcer when clicked on locations shown above:
1) Click to get nearby points of interest, 2) Click to create new point
of interest, 3&4) Building, entrance, telekom shop, operator, Deutsche
Telekom, shop, mobile shop . 27

4.5 The node representation in the editing layout, the tags are listed in ade-
quately sized buttons, a deletion prompt will pop up to the user on long
click . 28

4.6 The recommendation list contains all suggested items, the user can add
his own tags if he is unsatisfied with the list 28

5.1 Model of Expectation design . 34

5.2 Concentric boundaries . 38

5.3 Intersecting boundaries . 38

44

Listings

2.1 OpenStreetMap XML output structure 4

2.2 RDF database example . 9

5.1 Location Manager . 33

5.2 RDF file format . 34

5.3 Priority recommendation list algorithm 35

5.4 Railway platform example showing the identical start and the final nodes. 36

5.5 Boundaries detector algorithm . 37

45

Bibliography

[1] Sören Auer, Jens Lehmann, and Sebastian Hellmann. Linkedgeodata: Adding a
spatial dimension to the web of data. In The Semantic Web-ISWC 2009, pages
731–746. Springer, 2009.

[2] Andrea Ballatore, Michela Bertolotto, and David C Wilson. Geographic knowledge
extraction and semantic similarity in openstreetmap. Knowledge and Information
Systems, pages 1–21, 2012.

[3] Christian Becker and Christian Bizer. Exploring the geospatial semantic web with
dbpedia mobile. Web Semantics: Science, Services and Agents on the World Wide
Web, 7(4), 2009.

[4] Tim Bray. Namespaces in xml 1.0 (third edition), dec 2009.

[5] Irene Celino and Francesco Corcoglioniti. Towards the formalization of interaction
semantics. In Proceedings of the 6th International Conference on Semantic Systems,
page 10. ACM, 2010.

[6] Andreas Schultz Chris Bizer. Berlin sparql benchmark results, mar 2009.

[7] Steve Coast. Yahoo! aerial imagery in osm, Dec 2006.

[8] D Coomans and DL Massart. Alternative¡ i¿ k¡/i¿-nearest neighbour rules in su-
pervised pattern recognition: Part 1. k-nearest neighbour classification by using
alternative voting rules. Analytica Chimica Acta, 136:15–27, 1982.

[9] Marin Dimitrov. Xml standards for ontology exchange. In Proceedings of OntoLex,
pages 8–10. Citeseer, 2000.

[10] ANTONIO Estepa and FRANCISCO T Sanchez-Cobo. Evaluation of the compre-
hension of correlative and regression through problems. Statistics Education Research
Journal, 2(1):54–68, 2003.

[11] Tom Gruber. A translation approach to portable ontologies. Knowledge Acquisition,
5(2):199–220, 1993.

[12] Elliote Rusty Harold. Processing Xml with Java. Addison-Wesley Longman Pub-
lishing Co., Inc., Boston, MA, USA, 2002.

46

BIBLIOGRAPHY 47

[13] Ivan Herman. W3c semantic web frequently asked questions @ONLINE, November
2009.

[14] Jiewen Huang, Daniel J Abadi, and Kun Ren. Scalable sparql querying of large rdf
graphs. Proceedings of the VLDB Endowment, 4(11):1123–1134, 2011.

[15] David Hunter, Jon Rafter, Andrew Watt, and Linda McKinnon. beginning XML.
John Wiley & Sons, 2011.

[16] Jkpj. Sharenav wiki page, nov 2011.

[17] Prasad Kulkarni. Distributed sparql query engine using mapreduce. Master of Sci-
ence, Computer Science, School of Informatics, University of Edinburgh, 2010.

[18] Ioan Alfred Letia and Anca Nicoleta Marginean. Service monitoring with ontology
based expectations. In Intelligent Computer Communication and Processing (ICCP),
2011 IEEE International Conference on, pages 111–114. IEEE, 2011.

[19] Pasquale Lops, Marco de Gemmis, and Giovanni Semeraro. Content-based recom-
mender systems: State of the art and trends. In Recommender Systems Handbook,
pages 73–105. Springer, 2011.

[20] M.Rajasekhara Babu M V Uttam Tej, Dhanaraj Cheelu and P Venkata Krishna.
Analyzing xml parsers performance for android platform. VIT University, Tamil
Nadu, 2011.

[21] Matt Lacchiato Marcus Wolschon. Vespucci wiki page, apr 2011.

[22] Boris Motik. Reasoning in kaon2, nov 2006.

[23] Olaf Noppens, Marko Luther, Thorsten Liebig, Matthias Wagner, and Massimo
Paolucci. Ontology-supported preference handling for mobile music selection. In
Proceedings of the Multidisciplinary Workshop on Advances in Preference Handling,
Riva del Garda, Italy (August 2006). Citeseer, 2006.

[24] OSM. Openstreetmap stats, jul 2013.

[25] Jorge Pérez, Marcelo Arenas, and Claudio Gutierrez. Semantics and complexity of
sparql. In The Semantic Web-ISWC 2006, pages 30–43. Springer, 2006.

[26] Francesco Ricci, Lior Rokach, and Bracha Shapira. Introduction to recommender
systems handbook. In Recommender Systems Handbook, pages 1–35. Springer, 2011.

[27] Andy Seaborne. Sparql query language for rdf, oct 2006.

[28] Andy Seaborne. Jena documentation, 2011.

BIBLIOGRAPHY 48

[29] Akbar S Shaik, Gahangir Hossain, and Mohammed Yeasin. Design, development
and performance evaluation of reconfigured mobile android phone for people who are
blind or visually impaired. In Proceedings of the 28th ACM International Conference
on Design of Communication, pages 159–166. ACM, 2010.

[30] Mark Needleman Norman Walsh Tony Coates, Michael Mealling. Uris, urls, and
urns: Clarifications and recommendations 1.0, jul 2009.

[31] Fangju Wang, Jing Li, and Hooman Homayounfar. A space efficient xml dom parser.
Data & Knowledge Engineering, 60(1):185–207, 2007.

[32] WHO. Visual impairment and blindness, jun 2012.

	Acknowledgments
	Introduction
	Motivation
	Aim
	Thesis Structure

	Background
	OpenStreet Map
	XML
	XML Parsers
	Semantic Web
	Java RDF libraries
	SPARQL

	State of the Art
	Recommendation System
	Openstreetmap Editor
	Blind Friendly User Interface

	Design
	Approach
	Designing the core editing application
	Designing the recommendation system
	Designing a blind-friendly user interface
	Design workflow

	User Interface Design
	Introduction
	Authentication layout
	Nearby Nodes layout
	Node layout

	Implementation
	Authentication
	Nearby points of interest
	Recommendation systems
	Boundaries detector
	Uploading

	Conclusion
	Summary
	Future Work

	Appendix
	List of Figures
	Code Listings

	References

