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Abstract

The advances in Cloud computing and in modern Web applications have raised the need
for highly available and scalable distributed databases to accommodate the big data being
created and consumed. Along with the explosion in data growth comes the necessity to
rapidly evolve databases and schemas to meet user demands for new functionality. A special
attention is being paid to the vast amounts of semi-structured and un-structured data, and
the data management tools should reflect the support for these needs. This has lead to the
development of new Cloud serving systems such as "Not Only” SQL (NoSQL) databases.
NoSQL databases were driven by the scalability needs of the big companies, such as Google,
Facebook, Amazon, and Yahoo. While the demands of these key players are different from
those of small and medium enterprises in terms of scalability, the core problem is the same —
storage arrays are not scalable and force you into expensive, forklift upgrades.

These facts combined with changes in how IT resources are delivered and consumed through
the Cloud computing paradigm, projects adopting NoSQL solutions are not a hype anymore.
NoSQL databases are being offered as a service by the big Cloud providers, such as Google,
Amazon, Microsoft, but by smaller vendors as well. In this master thesis we investigate
the possibilities and limitations of mapping relational database schemas to NoSQL schemas
when migrating the database layer to the Cloud. Based on literature research we provide
recommendations and guidelines with regard to schema transformation and discuss the
implications at other application architecture layers, such as business logic and data access
layer.

We extend an existing data migration tool and methodology for incorporating the migration
guidelines and hints. Moreover, we validate our work based on a chosen sub-set of relational
and NoSQL databases by using example data from the established TPC-H benchmark.






Contents

1

Introduction
Motivating Scenarios
Problem Statement
Scope of Work
Research Questions

1.1
1.2
1.3
1.4

1.5 ResearchDesign . . .. .. ... .. ... .. ... ... .. .. .. . .. .. ...
1.6 Outline . . . . . . . . e e
1.7 Definitions and Conventions . . . . . . . . .. .. ... ...,
Fundamentals
21 CloudComputing . . . . ... .. ... ... ... ...
21.1 MigrationtotheCloud . . . .. ... ... ... ... .. ... .. ...
2.2 SQL,NoSQL and NewSQL . . . . . . . . . . .. . e
221 RDBMSandSQL . . ... ... ... ... . ...
222 NoSQLStores . . . . . . . . e e e e
223 NewSQL . . . . . . e e
224 NoSQL AdoptionDrivers . . . . .. ... ... ... ... ......
225 Polyglot Persistence . . ... ...... .. ... .. ... .. ...
2.3 Non-Functional Properties of NoSQL Systems . . . . ... ...........
231 CAPSystems . . ... ... .. ... ...
2.4 NoSQL Database Categories . . . . . . ... ... .. ...............
241 Key-ValueStores . . .. .. ... ... .. ... ... ..
242 DocumentDatabases . . . . . . .. .. ... ... ... . e
243 Column-Family Stores . . . . . ... ... ... ... ... . .....
244 GraphDatabases . . . ... ...... .. ... .. ... ...

Related Work

3.1 Traditional Schema Mappings . . . . . ... ....................
3.2 Migration Use Cases from RDBMStoNoSQL . . . . ... ............
3.3 Schema Mappings Frameworks . . . . ... ... ... .. ... ... .....

Analysis, Concept and Specification

4.1
4.2
4.3
44

System Overview
Relational Model

Non-Relational Model
Relational Databases Analysis . . . . ... ... ..................

441
442

MySQL5.6 . . . .

PostgresSQL 9.2

NN OOl O =N =

©

iii



Contents

45 NoSQLStores Analysis . . . . ... ... ... ... .. ... . 51
451 AmazonSimpleDB . . ... .. ... ... ... . 0o L oL 51
452 ApacheCassandral2 . .. ... ... ........ ... ........ 53
453 MongoDB24 . ... ... ... 54
4.6 Modeling Practices . . . . ... ... ... ... ... L 57
47 Concept. . . .. . . L e 60
471 Schema Objects Mapping . . . ... ... ................. 60
472 SystemsTrade-offs . . ... ... ... .. ... ... .. .. ... .. 62

473 Extending Cloud Data Hosting Solution Taxonomy for Functional Re-
quirements . . ... ... 65

474 Extending Cloud Data Hosting Solution Taxonomy for Non-Functional
Requirements . . . ... ... ... ... ... . ... .. .. 66
475 Application Layer Adaptation . .. .. .. ... ... .. ..... ... 68
476 Data Access Layer Adaptations . . . . ... ................ 71
5 Design 73
51 System Overview . . . .. .. ... . ... 73
5.2 Architectural Overview . . . . . . . . . . ... 73
6 Implementation 77
6.1 Realization and Validation . . . . . . ... .. ... ... 77
6.2 Discussion and Lessons Learned . . . . . ... ... .. ... ... . ..., 82
7 Outcome and Future Work 85
7.1 Recommendations . . ... ...... ... ... ... ... 85
7.2 Contributions and Future Work . . . . . .. ... ... ... ... .. ... .. 86
73 Conclusion . . . . . . ... e e 87
8 Appendix 89
8.1 MySQL and PostgreSQL Data Types Summary . . .. ... ... ........ 89
8.2 More NoSQL Stores Analysis . . .. ... ..................... 91
8.2.1 GoogleApp Engine Datastore . . . . . ... ... .. ... ..... ... 91
822 AzureTableStorage . .. ... ......... ... . ... . ... ... 93
823 AmazonDynamoDB . .. ... ........ .. ... .. .. ... ... 94
Bibliography 97

iv



List of Figures

2.1
2.2
2.3
24

3.1

4.1
4.2

5.1
52
5.3
5.4

6.1
6.2
6.3
6.4

Codd’s Relational Model . . . ... ........ .. ............ ... 12
Polyglot Persistence . . . . . ... ... ... ... ... ... 19
CAPSystems . . . ... ... . ... e 23
Column-oriented DataModel . . . . . ... ... ... ....... . ..... 29
Relational Schema Mapping Example . . . .. ... ............... 34
Cloud Data MigrationTool . . . . . ... ... .. .. ... .......... 40
Valueless columninCassandra . . . . ... .. ... ............... 59
System Architecture. . . . . . ... ... L 74
Data Migration Methodology - FirstSteps . . . . . .. ... ... ... ..... 74
Methodology for Migration Scenario RDBMStoNoSQL . . . . ... ... ... 75
Migration Component Architecture. . . . . .. .. ... ... .. ..... ... 76
TPC-H Database Schema . . . . . ... ....................... 78
Cassandra Cluster Setup View . . . . . ... .. ... ... .......... 80
Decision Support System Screenshot . . . . .. ... ... .. ... .. L. 81
Decision Support System Screenshot . . . . .. .. ... ... ... . 0L 82



List of Figures

vi



List of Tables

21 SQLvs NoSQL vs NewSQL Summary . . . ... .. ... ............ 24
4.1 Application Use Cases for Key-Value And Document Databases . . . . . . . . 44
4.2 Application Use Cases For Columnar And Graph Databases . . . . ... ... 45
4.3 RDBMS versus NoSQL Features Comparison . . . . ... ............ 47
44 MySQL Limitations . . . . .. ... .. ... ... .. 50
45 SimpleDB Identifiers limits . . .. ... ... ... ... .. ... .. 0L, 52
4.6 Best Workloads and Use Cases for selected NoSQL Stores . . . . ... ... .. 57
47 Logical Data Model mapping . . . . ... ....... .. ... .. ... .. .. 61
48 IndexesMapping . . . ... . ... . ... 62
49 RDBMS Schema Objects Migration Summary . . . ... ... .......... 62
4.10 Cloud Data Hosting Solution Taxonomy . . . . ... ... .. .......... 69
8.1 PostgreSQL9.2DataTypes. . . ... ... ... .. .. ... ... ... ... 90
82 MySQLDataTypes . . .. ... ... ... ... . 91

vii






1 Introduction

With the advent of Web 2.0 sites where millions of users may both read and write data,
scalability for simple database operations has become more important. The increasing volume
and detail of information captured by enterprises and the rise of multimedia, as well as the
social media is putting companies in front of large datasets. Examples of these large datasets
are links, social networks, activity in Web or transactions logs, manufacturing data from
assembly line devices, scientific data collections, etc. Websites have started tracking activity
in a very detailed way in order to have more accurate and detailed performance information
to deal with the performance requirements posed by their customers.

Big data, a very controversial name for large datasets, according to IBM spans three basic
dimensions!: velocity, variety, and volume.

¢ Volume of data of different types is overgrowing in terabytes and even petabytes.

e Variety depicts the structured level of data: un-structured data (such as documents,
e-mail, multimedia and social media), semi-structured data (CSV files, log files, form,
reports), and structured data [IBM].

e Velocity is the speed with which these data are produced (e.g. real time data from
social networks) and the speed with which these data should be processed (e.g. for
time-sensitive processes such as fraud detection).

Companies are being faced with big data [Ins] and they are exploring ways on how to unlock
and create value out of these data, being innovative and gaining competitive advantage.
According to Gartner [Sta], in 2013, big data is forecast to drive $34 billion of IT spending
which shows the worldwide interest in this explosion. Even though there is no universal
agreement on what big data is, in this thesis we use it in the context of "data that exceed
the processing capacity of traditional database systems". According to EMC?, big data is
more characterized by a scale-out architectural style then by specific data sizes or processing
speeds [Gro].

Another definition given by National Institute of Standards and Technology (NIST)?: "where
the data volume, acquisition velocity, or data representation limits the ability to perform
effective analysis using traditional relational approaches or requires the use of significant
horizontal scaling for efficient processing" [CM]. Relational Database Management System
(RDBMS) will be challenged to scale up or out to meet the demands posed by this exponential
data growth [CM],[Gro].

While big data often gets associated with data analytics, in particular with Hadoop?, actually

IWhat is big data? http:/ /www-01.ibm.com/software/data/bigdata/

2EMC: http:/ /www.emc.com/index.htm

3US Agency of Department of Commerce which is responsible for developing standards and guidelines
4 Apache Hadoop: http:/ /hadoop.apache.org/
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it is much broader than that, and is far more concerned with data storage than analytics.
Technologies like Apache Hadoop are concerned with large scale data analysis and have
been widely recognized and studied, while NoSQL systems are developed for Cloud data
serving [CST*10]. Apache Hadoop, and its underlying file system Hadoop Distributed File
System (HDFS)?, store the bulk of big data today, the need was for a more structured way
to manage and expose data, stored in Hadoop or not — without the strong constraints that
relational databases impose. Thus, laid the groundwork for the rapid growth of NoSQL
systems.

NoSQL technologies, most commonly referred to as 'Not Only SQL’, is a term that describes
a broad class of technologies that provide a different approach to data storage compared
with traditional RDBMSs. Some refer to them as "No relational” or 'No RDBMS’, some simple
prefer to call them Distributed Database Management Systems. Whatever the literal meaning,
NoSQL is used today as an umbrella term for all databases and data stores that don’t follow
the traditional and well-established RDBMS principles and often relate to large data sets
accessed and manipulated on a Web scale [Tiw11]. They feature elasticity and scalability in
combination with a capability to store big data and work with Cloud computing systems, all
of which make them extremely popular at the time being. The reality is that one size doesn’t
fit it all. NoSQL databases are targeted at a particular set of applications scenarios; they will
not and cannot replace RDBMSs, they can address certain limitations and are a complement
to deal with issues such as complexity, performance, and scalability.

Looking at the interest shown for NoSQL databases, some RDBMSs have started introducing
NoSQL features into their products. For example, with the release of SQL Server 2008, a
number of features were added to the product under the moniker "beyond relational" to store
large binary objects in the file system with full transactional integrity [Lob]. It introduced a set
of features that can be classified as NoSQL-like in nature. Oracle announced the introduction
of a NoSQL-type interface into its MySQL Cluster product that is key/value in design. With
SQL and NoSQL access through a new Memcached API, MySQL Cluster represents a "best of
both worlds" solution allowing key value operations and complex SQL queries within the
same database [Orab]. Also, PostgreSQL now supports schema-less (document key-value
store) data as well, without losing the traditional database features, the hstore data type is
used for storing sets of key/value pairs within a single PostgreSQL value [Posb].

Not only the industry, with the most popular examples of [Ale], [Ana], [Pat], but also the
research domain is showing a big interest in exploring NoSQL technologies. EPIC, a large
research project on how do people use social media in times of crisis, has transitioned a
large-scale data collection infrastructure from the relational database MySQL to a hybrid
persistence architecture that makes use of both relational and NoSQL technologies [SA12].

1.1 Motivating Scenarios

In an era of high competition, having "always-on’ capabilities is fundamental for established
and new startup companies to survive. Being close to the customers and understanding their

SHDFS is a distributed file system designed to run on commodity hardware



1.1 Motivating Scenarios

preferences is the motto of today’s companies. According to McKensey survey [Ins], a retailer
could increase its operating margin by more than 60 percent using big data to the full. And
the adoption of NoSQL solutions by retailers seem to prove that.

DynamoDB?, or simply Dynamo, the database offering by Amazon is the result of 15 years of
learning in the areas of large scale non-relational databases and Cloud services. It is the system
being used by Amazon e-commerce itself. Riak database’ - a Dynamo clone with commercial
support by Basho - is based on Amazon’s architectural principles and has been adopted
successfully by retail and e-commerce platforms [Basc], offering architectural, operational
and development benefits for the retailers. Top retailers in US are using Riak for applications
such as shopping carts, product catalogs, API platforms, and mobile applications.

As retailers grow and have to store more and more data, traditional relational databases aren’t
always the best option. They want to scale easily, without the operational burden of manual
partitioning of data. Meanwhile, business requirements demand their data is always available
for reads and writes. For them failure to accept additions to a shopping cart, or serve product
information quickly, has a direct and negative impact on revenue. Many retailers now operate
online with an API or data services platform. They included Riak as an integral part in their
transformation push to re-platform the eCommerce platform as it offers high availability and
scale, so retailers can always serve customers, even under failure conditions, and rapidly
grow to meet peak loads.

Netflix,.inc [Ana], a movie and TV shows streaming provider, migrated from Oracle to Ama-
zon Web Services (AWS) SimpleDB® and Simple Storage Service (S3)° because AWS promised
better availability and scalability in a relatively short amount of time. Also, Alexa.com [Ale]
which offers web-scale services built on top of AWS, chose Amazon SimpleDB over MySQL
to store intermediate status and log data, and Amazon S3 for put and retrieves datasets.

Taking these use cases into consideration, we see that consumer facing applications benefit
the most from NoSQL solutions as they are more concerned about low latency and high
availability. This is the case for Amazon-like scenarios, where dealing with a huge traffic and
where availability is crucial. But for the transaction data in a normal scenario you might not
want to sacrifice the reliability of the RDBMS when dealing with transactions. This is the
reason why e-commerce has often been a domain exclusive to RDBMSs. Another reason is
that domains that require rich data models and sophisticated queries have been assumed to
tit best within the realm of the RDBMS [Ban11]. Instead, product catalogue and shopping
cart might be ideal use cases for migrating to NoSQL. Given these facts, we will migrate
partially a relational database schema for an e-commerce into the NoSQL datastores. We
use TPC-H benchmark as basis for example database schema, because it is business oriented
and is targeting systems examining large volumes of data and executing queries with a high
degree of complexity [Tra].

® Amazon DynamoDB: http:/ /aws.amazon.com/dynamodb/
7Riak: http:/ /basho.com/riak/

8SimpleDB: http://aws.amazon.com/simpledb/

953: http:/ /aws.amazon.com/s3/
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1.2 Problem Statement

RDBMS technology can no longer keep pace with the velocity, volume, and variety of data
being created and consumed. These systems are based on relations and data normalization.
Accommodating new big data into these systems causes the relational normalized schema
to become too complex. Normalizing data requires more tables, which requires more table
joins, thus requiring more keys and indexes. As databases size starts to grow into terabytes,
performance starts to significantly degrade. The main reason why Cloud computing is being
utilized by many organizations is to avoid high upfront costs and to avoid dealing with issues
such as scalability in which Cloud providers have an extensive experience. The decision to
start using NoSQL databases comprises a set of trade-offs, better said it’s all about trade-offs.
Migrating to the Cloud NoSQL databases, requires some preparation for the enterprise IT
that grew up with RDBMSs. The transition from legacy RDBMS to NoSQL requires careful
planning. It is a completely different mindset needed by the developers and architects in
order to get the most out of this new technology. Distributing data across multiple nodes in
a data center results in a linear performance improvement. However, understanding how
to store data in ways that allow scalability requires a rethinking of your overall approach to
systems design. Thus, designing the tailored data model for your application, and not being
only driven by the simple APIs these databases offer, should be at the core of the planning.
To make the right decision when choosing the NoSQL store for your business problem,
requires a very good low-level understanding of the target store. The plethora of NoSQL
products with many different feature sets, makes it almost impossible to recommend only by
the data model that they offer. Moreover, how will this transition impact the other application
layers is another very important aspect of this process. Therefore, we investigate the potential
and limitations when mapping relational schemas to NoSQL with the goal of providing
guideline and support.

1.3 Scope of Work

This master thesis has the goal to specify, design, and implement a methodology for migration
of the relational database schemas to a NoSQL database schema taking into consideration
lessons learned from companies that have already migrated their applications and from the
literature review. The relational databases we consider for the the validation of our approach
are MySQL version 5.6 and PostgreSQL version 9.2. There are four basic categories of NoSQL
databases: key-value stores, document, columnar, and graph databases. This classification is
arguable, and many prefer to classify also Object Oriented Database Management Systems
(OODBMS) and XML databases as NoSQL systems. In this thesis we focus on the three typical
data models, key-value, document, and columnar databases. The graph databases are meant
for a specific usage, i.e. highly interconnected data in social networking applications, this
is the reason this is left out of scope of this work. In this thesis we propose and implement
the extension of a multiple criteria decision support system for application migration from
RDBMS to NoSQL databases in the Cloud. Users will obtain hints and recommendations on
selecting the appropriate database based on their functional and non-functional properties.



1.4 Research Questions

Even though the right tool can be found by starting using and testing it, we provide a basis for
the relevant features to be considered before migration. We leave outside of scope the efforts
on estimating all the factors before migration including the pricing aspects of the solution and
the scalability costs. The focus of this master’s thesis is the schema transformation. The main
goal is to investigate the possibilities, limitations, and shortcomings when migrating from
relational to NoSQL databases. The efforts involved in this transition with respect to changes
at the application layer and the query transformation are not part of this work. Although
for these two aspects where appropriate we provide hints and guidelines when the schema
change has direct impact on them.

1.4 Research Questions

In the following we refine the major goal of investigating the potential and limitations when
migrating relational schemas to NoSQL in order to provide guidelines and support into
concrete research questions that are addressed in this thesis:

e What are the characteristics of NoSQL databases, and what are the characteristics of the
applications making use of this new technology?

e What relational schema elements can be migrated to NoSQL? Which ones can be
mapped directly, which cannot, which can be emulated differently?

e What are the trade-offs involved when choosing a NoSQL database, i.e. what trade-offs
make these systems in order to support specific application needs? What are the trade-
offs the application owner itself has to make related to: transactional behavior, complex
and ad-hoc queries, data integrity, data types, etc.? And for those features that can’t be
traded off, how can they (if possible) be emulated differently?

e What is the impact on other application layers, i.e. data acess layer and business logic
layer, in case of missing functionality or different non-functional properties of the
NoSQL target datastore, e.g. consistency, ACID transactions, etc.”?

e How to support the decision process, migration, and refactoring when migrating from
a relational database to a NoSQL store?

1.5 Research Design

For the first two research questions we performed a systematic review with the focus on iden-
tifying and appraising the functional and non-functional properties of the NoSQL databases.
Based on the different application migration use cases of the database layer to NoSQL in
the Cloud, we abstracted the state of the art on use cases including types of applications.
We performed a literature research on NoSQL stores and the different categories that fall
under this umbrella from online resources, official websites, books and different industry
reports. After the analysis, we abstracted the features to include in the methodology and
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the questionnaire in order to support the decision process. Based on the analysis we also
provide answers for the other research questions. Based on provider offerings we performed
an analysis on differences of relational and NoSQL and NoSQL categories, and the results
were incorporated to the Cloud Data Hosting Solution taxonomy.

Based on literature analysis and provider offerings, the outcome about application use cases
for NoSQL is derived. From best practices, use cases, experience reports from industry
and analysis of current state of tool, we model the extension of the methodology and the
requirements for prototypical extension. For the validation of our work we use example data
from established benchmark.

1.6 Outline

The following six chapters cover different phases of work that have been pursued to accom-
plish the given goals and to conceive future tasks on the topic.

e Fundamentals, Chapter 2—-At the beginning, relevant literature that covers the funda-
mentals of this master thesis was surveyed. The chapter gives an explanation of NoSQL
database categories, Data modeling, CAP Theorem, Software-as-a-Service (SaaS).

¢ Related Work, Chapter 3-This chapter presents the related work in the following do-
mains relevant for this thesis: application scenarios suitable for using NoSQL databases,
data modeling considerations and best practices when migrating from relational to
NoSQL schemas based on the industry reports of successful use cases migration.

¢ Analysis, Concept and Specification, Chapter 4-an analysis of relational modeling and
non-relational modeling, followed by an analysis of two relational databases and three
NoSQL stores. Lessons learned in the first chapters are considered when formalizing the
functional and non-functional requirements for the system. This includes a conceptual
overview, a set of best and worst modeling practices, a decision support system analysis,
and a taxonomy extension.

e Design, Chapter 5-An architectural overview devises components and their relations
that together fulfill the described system requirements. The design of the extended
architecture of the system developed by Bachman is shown. All the requirements
abstracted from the analysis are mapped into categories of the questionnaire.

¢ Implementation, Chapter 6- In this chapter we describe the tools, libraries, etc. used
for the implementation of the extensions.

e Outcome and Future Work, Chapter 7-This last chapter summarizes the outcomes of
this work, the findings and suggests future extensions to the system.
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1.7 Definitions and Conventions

The following definitions and abbreviations should be inspected for understanding the
descriptions in this work. They are used throughout the document.

Definitions
List of Abbreviations

The following list contains abbreviations used in this document.

BSON Binary JavaScript Object Notation

CAP Consistency Availability Partition tolerance
CLI Command Line Interface

CaAL Cassandra Query Language

DAL Data Access Layer

DBMS Database Management System

DDD Domain Driven Design

DDL Data Definition Language

ETL Extract Transform Load

laaS Infrastructure-as-a-Service

JSON JavaScript Object Notation

LDBC Liberty Database Connectivity

LOB Line of Business

NoSQL 'Not Only” SQL

OLTP Online Transaction Processing

OODBMS Object Oriented Database Management Systems
ORM Object-Relational Mapping

PaaS Platform-as-a-Service

RDBMS Relational Database Management System
SaaS Software-as-a-Service

SLA Service Level Agreement

SQL Structured Query Language
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UnQL Unstructured Query Language
UUID Universally Unique Identifier
YCSB Yahoo Cloud Serving Benchmark



2 Fundamentals

This master thesis relies on distinct conceptual and technological fundamentals that are
clarified in this chapter. Together they form the context for the outcomes of this work. As
the goal is to investigate the possibilities and limitations of mapping relational schemas to
NoSQL schemas when moving the database layer to the Cloud, initially an introduction to
Cloud computing is given in Section 2.1. We provide an overview on current trends in the
database market in Section 2.2, a generic overview of non-functional properties of NoSQL
data systems is given in Section 2.3, followed by a summary of NoSQL categories in Section
24.

2.1 Cloud Computing

The idea behind Cloud computing is to offer the computational power on demand in the same
way the public utility services like electricity, water, gas, and telephony are provided. We as
consumers are not aware of the whole infrastructure behind the electrical wall socket which
hides the power generation stations and a huge distribution grid [VBB11]. Cloud computing
is an evolving paradigm. It is the result of the convergence of a set of technologies which
were considered as hype in their early stages. Because of specification and standardization
processes, these technologies matured and form the foundation for Cloud computing. Such
advancement in technologies include [VBB11]:

e Hardware: Virtualization, Multi-core chips

e Internet technologies: Web Services, Service-Oriented Architectures, Web 2.0, Mashups
e Distributed computing : Utility and Grid Computing (clusters and grids)

e Systems management : Autonomic Computing, Data Center Automation

NIST defines Cloud computing as "...a pay-per-use model for enabling ubiquitous, conve-
nient, on-demand network access to a shared pool of configurable computing resources (e.g.,
networks, servers, storage, applications, and services) that can be rapidly provisioned and
released with minimal management effort or service provider interaction" [MGO09]. There are
five essential characteristics for the Cloud model deriving from this definition. Firstly, the cus-
tomer can provision computing resources without further intervention of the service provider.
Moreover, the computing resources are accessible by various types of client platforms via
standard protocols. In addition to raw computing and storage, Cloud computing providers
usually offer a broad range of software services. They also include APIs and development
tools that allow developers to build scalable applications upon their services. Below are given



2 Fundamentals

three basic service models that compose a Cloud model: Infrastructure as a Service (IaaS),
Platform as a Service (PaaS) and Software as a Service (SaaS).

e Software-as-a-Service (SaaS) is a service model where service providers offer appli-
cations running on a Cloud infrastructure to their customers. The underlying Cloud
infrastructure enables Cloud characteristics like elasticity and accessibility. In this
model the customer can only control individual configurations that are applied while
the customer uses the application.

¢ Platform-as-a-Service (PaaS) allows the customer to deploy and configure his own
artifacts to the Cloud infrastructure, such as applications, services, or libraries. These
artifacts are defined using programming languages, description languages, or modeling
languages predetermined by the service provider.

o Infrastructure-as-a-Service (IaaS) is the most flexible service model providing the
customer with control at the operating systems and virtual machines level. As a
consequence, the customer can deploy any software that runs on the available operating
systems.

There are many other flavors of these basic models, such as Database as a Service (DBaaS)
which is a form of PaaS, Integration as a Service which can be a form of PaaS or SaaS, etc. The
DBaaS is currently found in the public marketplace in three broad capabilities [PC]:

e Online relational databases such as Amazon RDS! (MySQL offering), Microsoft SQL
Azure (SQL-server like product)z.

¢ Non-relational databases or NoSQL databases: Google AppEngine Datastore, Amazon
SimpleDB and DynamoDB, Microsoft Azure Table storage, etc. Apart of the big Cloud
providers, many other companies are offering NoSQL as a Service, such as Datastax,
MongoHQ), Cloudera, Cloudant, Basho, etc.

e The ability to operate virtual machine images loaded with common open source
databases such as MySQL or similar commercial databases.

Regarding the ownership of the physical resources, four deployment models can be distin-
guished: A Private Cloud is used exclusively by one organization, possibly comprising many
divisions. A Community Cloud is shared by multiple organizations. Both deployment models
do not pretend the Cloud infrastructure to be off premise. On the contrary, a Public Cloud
is not restricted to a group of organizations, and therefore, must be provided by a separate
service provider. A Hybrid Cloud combines at least two different of the previous deployment
models [MGO09]. This approach allows an organization to use a public Cloud for its Business
Continuity Plan (BCP), if its own computing capabilities can not handle with the current
workload.

! Amazon Relational Database Service: http:/ /aws.amazon.com/rds/
2In’croducing Windows Azure SQL Database: http:/ /msdn.microsoft.com/en-
us/library /windowsazure /ee336230.aspx

10



2.2 SQL, NoSQL and NewSQL

2.1.1 Migration to the Cloud

Organizations migrate to the Cloud primarily for business and economic reasons, but also
for technological reasons. The economic reasons driving the migration to the Cloud are the
cost reduction of both IT capital expenditures (CAPEX) as well as the operational expenses
(OPEX) [VBB11]. Many applications take advantage of storing data in the Cloud to build
different kinds of clients — Web, mobile, desktop — that access the same data. The migration
can happen at one of the five levels of application, code, design, architecture, and usage.
Combined with the Cloud service models - [aaS, PaaS or SaaS model - it results in many
migration use cases. Applications are typically built using a three layer architecture pattern
consisting of a presentation layer, a business logic layer, and a data layer (Fowler et al., 2002).
The presentation layer is responsible for application-users interactions, the business layer
realizes the business logic and the data layer is responsible for application data storage. The
data layer is in turn subdivided into the Data Access Layer (DAL) and the Database Layer
(DBL). The DAL encapsulates the data access functionality, while the DBL is responsible for
data persistence and data manipulation. In order to take advantage of Cloud computing, the
applications either are designed to be run in the Cloud (Cloud-native application) or moved to
the Cloud (Cloud-enabling them) [SABL13]. Each application layer can be hosted in different
Cloud deployment models. Typically migration projects into the Cloud are implemented
using a phased approach. T.S.Mohan et al. propose a generic iterative process based on a
seven-step model for migration into a Cloud environment [VBB11]. By encapsulation your
application functionalities into services, it supports changing the data storage technologies as
the needs and technology evolve. Separating parts of applications into services also allows
you to introduce NoSQL technologies into an existing application [SF12].Decisions to migrate
existing systems to public IaaS clouds can be complicated as evaluating the benefits, risks
and costs of using Cloud computing is not a straightforward process. In this thesis we do
not consider such decisions, we assume that the decision to migrate to the Cloud has already
been taken.

2.2 SQL, NoSQL and NewSQL

Different DBMSs are emerging to address the different applications requirements that came
with the changes of the Web. Large enterprises have many Online Transaction Processing
(OLTP) systems for different transactions such as order, withdraw money, cash a check,
etc [Mica]. Extract Transform Load (ETL) products are used to extract data from these
systems and put them in a common format in a data warehouse for business analysis. These
activities were supported in large by traditional RDBMSs. The new Web-based workloads
(new OLTP), such as online games, location based services, social networking, etc., pose
new requirements for higher throughput and greater schema flexibility. This has led to the
emergence of new database management systems like NoSQL and NewSQL. These new
emerging workloads of modern Web applications are defined as serving workload and the
systems supporting them as Cloud serving systems. Such systems support online read and
write access to data [CST10].
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2.2.1 RDBMS and SQL

A RDBMS is a Database Management System (DBMS) that is based on the relational model
introduced by Edgar F. Codd in 1969. The relational model is solidly based on two parts of
mathematics: first-order predicate logic and the theory of relations. A mathematical relation
is a set with special properties. All of the relation’s elements are tuples, all of the same type
and unordered. Relation is the mathematical term for a table. Each row represents a tuple of
the relation, see figure 2.1. The ordering of rows is immaterial and all rows are distinct from
one another in content. There are twelve rules of the relational model that were adopted by
many open source and commercial DBMS implementations. The relational model provides
precise specification for what should be built by a DBMS, not how should it be built. He
defined twelve rules for relational management system, and rule number five says: "The
DBMS must support a clearly defined language that includes functionality for data definition,
data manipulation, data integrity, and database transaction control" [Cod90]. The following

Attribute
~—

— |

Figure 2.1: Codd’s Relational Model

are the most important data integrity features in the relational model and include primary
key, foreign key and constraints. Together with relations (tables), tuples (rows) and attributes
(columns) they form the basic blocks of the relational model.

A primary key identifies uniquely a row and may consist of a simple column or a combination
of columns. When it consists of a combination of columns, the key is said to be composite. A
composite primary key enables you to specify two attributes in a table that collectively form
a unique primary index. Each column participating in a composite primary key may be a
foreign key, but not necessarily [Cod90].

Codd defines the two following types of integrity:

Entity integrity: the Primary key of a table must contain a unique, non-null value for each row.
Referential integrity: if the Foreign key contains a value, that value must refer to an existing
row in the parent table. You want to make sure that no one can insert rows in the Orders
table that do not have a matching entry in the Customer table. This is called maintaining the
referential integrity of your data.

Integrity constraints imposed by the relational model that are supported by RDBMSs are:

o Uniqueness constraints to ensure that a given column is unique

e Foreign key or referential constraints to ensure that two keys share a primary key to
foreign key relationship
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o Not Null constraint to ensure that no null values are allowed

o Check constraint: defines a business rule on a column, enforce domain integrity by
limiting the values that are accepted by one or more columns (for example, a customer’s
age should always be > 18)

Indexing - a mechanism for providing faster access to data. Indexes are special data structure
to optimize the query for a specific set of columns (a.k.a performance-oriented objects). They
are built to avoid full table scans during queries. They can be created on any combination of
attributes on a relation.

Joins are read operations that take two separate tables and combining them in some way to
return a single table.

The relational DBMSs use Structured Query Language (SQL) as the industry standard lan-
guage for implementing the functionalities of Codd’s rules and for querying the data. Amer-
ican National Standards Institute (ANSI) passed the SQL as a standard in 1986. The Inter-
national Standards Organization (ISO) adopted it in 1987. It has seen many changes since
the first time it was published as a standard because most commercial vendors offered the
features that were missing in it. The 1989 standards were more complete, but still left many
important elements undefined. SQL is also interchangeably used to refer to databases that
use SQL as their query language.

RDBMS ensure the transaction control via the well known ACID guarantees. The ACID
model is one of the oldest and most important concepts of database theory. In the context
of transaction processing it refers to the four following properties. They constitute the basic
building blocks of any database transaction model. All four properties have to be met in
order for database transactions to be processed reliably.

e Atomicity - an operation is atomic if it either completes entirely or not at all

o Consistency - all operations will bring the database from one consistent state to another,
i.e. they will preserve the database rules.

e Isolation - ensures that the concurrent execution of transactions results in a system state
that would be obtained if transactions were executed serially, i.e. one after the other.

¢ Durability - once a transaction has been committed, it will remain so, even in the event
of power loss, crashes, or errors.

RDBMSs are in the market since three decades and are being offered by the big companies such
as Oracle, IBM, and Sybase, Microsoft and open source software products such as MySQL and
PostgreSQL. They generally guarantee ACID properties for transaction-oriented applications,
i.e. OLTP. They are mature and offer many advanced features such as transactions and logging
to ensure data integrity and query optimization features. These SQL databases work fine
as long as the data comes in at a reasonable speed and is of a normal variety. The problem
is that being relational and guaranteeing ACID is not necessary for some use cases and can
add unnecessary overhead, which popular heavily trafficked website don’t want. We will
describe such use cases later in this work.
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PostgreSQL® is a powerful, open source object-relational database system. It has more than 15
years of active development and a proven architecture that has earned it a strong reputation
for reliability, data integrity, and correctness. It runs on all major operating systems, including
Linux, UNIX, and Windows. It is fully ACID compliant and it has full support for foreign keys,
joins, views, triggers, and stored procedures (in multiple languages). Its SQL implementation
strongly conforms to the ANSI-SQL:2008 standard. There are active PostgreSQL systems in
production environments that manage in excess of 4 terabytes of data [Posa].

MySQL* is the most used open source RDBMS. Since April 2009, and since version 5.1,
MySQL is in two different variants: the open source MySQL Community Server and the
commercial Enterprise Server. MySQL is modular in design, provides pluggable storage
engines, and allows pluggable modules to support additional features as desired. It offers
ACID compliance when using transaction capable storage engines (InnoDB and Cluster).

2.2.2 NoSQL Stores

The NoSQL movement began as an effort to accommodate the big data phenomenon. The
Dynamo technology developed at Amazon [DHJ"07] and the BigTable distributed storage
system developed at Google [CDG™08], have inspired many of today’s NoSQL applications
and databases. The motivation behind BigTable was the need to store results from the
WebCrawlers which extracted HTML pages, images, sounds, videos and other media from
the Internet. The resulting data set was so large that it could not fit into a single relational
database, so Google built their own storage system.

There are about 150 NoSQL databases [NoS] in the world today, and new ones are being
worked on. This variety makes it difficult to select the best tool for a particular case. The
plethora of NoSQL databases can be grouped into the four basic categories based on the data
models that they use: key-value, document, columnar and graph databases which will be
explained in the next section.

Driven by people who thought that tabular structure is too limiting, NoSQL databases are
not a hype anymore but are being adopted by many applications. The most commonly
accepted interpretation of NoSQL is ‘Not Only SQL” and thus conveying the belief that
NoSQL databases will not replace the relational databases, they will just be part of a hybrid
architecture addressing needs such as scalability, high-performance, and high availability.
Rather than conforming to SQL standards and providing relational data modeling, NoSQL
databases have different design points compared to RDBMSs. They typically offer fewer
transactional guarantees in exchange for greater flexibility and scalability [PC]. NoSQL
movement is seen by the old-school database world as an heretical movement because
historically, databases almost always have tried to implement the relational model and be
fully ACID-compliant. For the NoSQL proponents, for the top-tier Web sites it is important to
enable massive scalability, low latency, and an easier programming model.

One of the great benefits of having a rich SQL implementation is that you hook into all of
the development, reporting, ETL and backup tools, etc., that are used in the enterprise. Old

3PostgreSQL: http:/ /www.postgresql.org/
4MySQL: http:/ /www.mysql.com/
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school Database Administrators (DBA) and relational system designers believe that NoSQL
supporters are going to stumble over the problems the veterans have already fixed [Moh13].
One of these arguments is about the querying features.

The programmer has limited control over the execution of the SQL statements; it is the
database engine that takes care of the statements execution optimization. A query optimizer
which is a very important architectural component of RDBMSs takes care of the execution by
deciding which query plans to execute to most quickly answer a query. The query optimizers
can leverage all the information and statistics that are available about the various tables
and allow the developers to focus on the "what", in NoSQL world the query optimization
responsibility is shifted to the application layer, i.e. choosing the right data model design.

There is no common query language for NoSQL stores, like the SQL for relational databases.
Even though there are some data stores like Cassandra and Hive that support a subset of
SQL standard. Unstructured Query Language (UnQL)® aims to be a language specifically
for unstructured data that can be used across the NoSQL landscape. With Couchbase as
an industry-leader, the approach aims to create an open query language for JSON, semi-
structured and document databases. It is much harder for a query optimizer to perform a
global optimization taking into account latency, errors, etc. Hence, most NoSQL databases
rely on explicit programmatic queries of a certain model such as MapReduce that can be
executed on a distributed architecture.

MapReduce is a programming model for analytic and aggregation tasks for large scale data
intensive applications. Actually the MapReduce framework is patented by Google, but ideas
are adopted in a number of open-source implementations. Programs written in this functional
style are automatically parallelized and executed on a large cluster of commodity machines.
The map function processes a key/value pair to generate a set of intermediate key/value pairs,
and the reduce function merges all intermediate values associated with the same intermediate
key [DGO8]. It is the equivalent of a relational table-scan. For the same purpose RDBMS
databases use SUM, AVG and GROUP BY. The main purpose of MapReduce is to process
large amounts of unstructured data and generate meaningful structured data as output.
There are certain scenarios where you cannot use the MapReduce model, for example if the
computation of a value depends on previously computed values.

2.2.3 NewSQL

As an alternative to NoSQL and custom deployments, a new class of parallel DBMSs, called
NewSQL is emerging. They were driven by the need to preserve ACID guarantees while
achieving scalability. This is based on using the ability of partitioning of OLTP work-
loads [PCZ12]. The same way the performance of applications using NoSQL stores depends
on the data model design, the scalability of OLTP applications on many of these newer DBMSs
also depends on the existence of an optimal database design. There are three approaches to
achieve the scalability and still preserve the ACID guarantees and SQL interface [Pra]:

SUnQL: http:/ /unglspec.org
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e New databases - designed from scratch to achieve scalability and performance. These
solutions can be software-only (VoltDB, NuoDB and Drizzle) or supported as an appli-
ance (Clustrix, Translattice). Examples of commercial offerings are: Clustrix, NuoDB
and Translattice, and open source offerings: VoltDB®, Drizzle’, etc,.

e New MySQL storage engines - to overcome MySQL's scalability problems, a set of
storage engines are being developed, which include Xeround, Akiban, MySQL NDB
cluster, GenieDB, Tokutek, etc. The still use the MySQL interface, but the data migration
from other databases (including old MySQL) is not supported. Examples of offerings
are, commercial: Xeround, GenieDB and TokuTek; open source: Akiban, MySQL NDB
Cluster and others.

e Transparent clustering - these solutions retain the databases in their original format,
but provide a pluggable feature to cluster or shard transparently in order to improve
scalability.

Note that this class of databases should not be confused with the new SQL database language.
NewSQL is also a new SQL database access language which is still in the phase of collecting
ideas and has partial functionality implemented. The idea is to have a standardized new
query language to access a SQL database from Java because SQL is outdated and too complex.
More importantly there is no real SQL standard, every product database has its own specifics,
e.g. data types, keywords, size restrictions etc. In order to support the existing applications
which are making use of SQL, to run with different databases, SQL to NewSQL and NewSQL
to SQL converters are needed. Based on the Liberty Database Connectivity (LDBC) - a JDBC
driver that provides vendor-independent database access - the SQL syntax is translated to
each database. Applications can start using another database with no changes required. LDBC
does not define a new database API, but it documents and enforces the expected behavior.
With LDBC, applications will just work on all major databases and there is no need to change
any source code 8.

2.2.4 NoSQL Adoption Drivers

The NoSQL databases were endorsed by the big companies, Google and Amazon, but their
adoption spread in other companies as well, of a comparable size such as Facebook, Yahoo,
EBay and many smaller ones. The drivers for NoSQL adoption are categorized as follows:

e Schema Flexibility
Managing the continuously evolving schema and metadata for semi-structured and un-
structured data, generated by diverse sources, is a convoluted problem [Tiw11]. Schema
flexibility can be translated as the ability to handle semi-structured and un-structured
data. Frequent changes to the schema are needed to react to frequent market changes
and product innovations. Hence, the schema flexibility - also referred to as being schema-
free or schema-less - is inducing organizations towards NoSQL solutions. According

6VoltDB: http:/ /voltdb.com/
"Drizzle: http:/ /www.drizzle.org/
8LDBC Liberty Database Connectivity: http:/ /ldbc.sourceforge.net/

16



2.2 SQL, NoSQL and NewSQL

to Couchbase’s’ survey [Cou] this is the main reason, together with scalability, why

businesses are moving to NoSQL solutions. The RDBMSs data model is not flexible
enough to handle big data that contain a mixture of structured, semi-structured, and
unstructured data. In NoSQL it is easier to deal with non-uniform data as most of
NoSQL databases do not impose schema restrictions. This feature will avoid the
insertion of many columns with null values or with naming such as CustomField in the
relational model when dealing with non-uniform rows.

The term schema-less is a bit misleading and thus it requires some explanation. The
lack of meaningful Data Definition Language (DDL) is conflated with the lack of a
schema. In the NoSQL world the schema has to be defined by the application, because
the data stream has to be parsed by the application when reading the data from the
database. This schema is a set of assumptions about the data’s structure in the code that
manipulates these data. As the data has to be parsed by the application, in case of a
schema mismatch is the application that should catch and throw these errors, not the
database as was the case with RDBMSs. Thus, even in schema-less databases, the schema
of the data has to be taken into consideration when refactoring the application [SF12].
For applications using document-based stores, in fact the application has schema which
is implicit to the documents. Nevertheless, you still have to think about modeling
aspects, such as: the type of relationship with graph databases, the names and order
of columns in column-family stores or how is the key assigned and what is the value
structure in key-value stores. The database doesn’t care if different documents don’t
follow the same schema or if different rows have different number of columns. Also, if
you find you don’t need some data anymore, you can just stop storing them, without
worrying about losing old data as you would if you delete columns in a relational
schema. They offer a flexible schema design that can be changed without downtime or
service disruption. This does not imply that you cannot do this in SQL, you can change
with SQL statements the schema at anytime.

e High Performance

The new Cloud OLTP workloads require higher throughput than traditional ones. The
in-memory features of these databases can offer higher performance for applications that
are ready to trade away some functionality, such as durability or consistency. NoSQL
stores are designed to run well on clusters. This is supported by the concept of Aggregate.
The first three NoSQL database categories have a big similarity: all have a fundamental
unit of storage which is a rich structure of closely related data: for key-value stores
it’s the value, for document stores it’s the document, and for column-family stores it’s
the column family. In Domain Driven Design (DDD) terms, this group of data is an
aggregate. You create small domains of ownership so that you don’t have to deal with
the whole domain model. An aggregate is a collection of related objects that you wish to
treat as a unit. The updates and the communication with the database is done in terms
of aggregates. They also make a natural unit for sharding and replication, by enabling
running of databases in clusters [SF12].

e Application Development Agility

9Couchbase: http:/ /www.couchbase.com/
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RDBMS schema should be changed before the applications changes, limiting this way
the adding /updating of application features. In NoSQL, the focus shifts to domain design
by empowering agile development of applications. Furthermore, NoSQL databases
are, in many cases, easier to get up and running than are relational databases. NoSQL
databases better fit modern application development. There is a shorter time needed
to go from concept to implementation, thus making NoSQL databases appealing for
growing companies looking for agility. This is the case when applications are designed
from the beginning to use Cloud technologies (Cloud-native application). The situation
is more complex when the application migrates from a local relational database to a
NoSQL in the Cloud (Cloud-enabling it) as it will impact the business layer and the data
access layer where further adaptations are needed. Going back at the case of [Ale], the
team highlights the ease of using Amazon Web Services by noting the time saved using
the pre-built libraries provided in Amazon Web Services’ resource center enabling Alexa
to kick start any new project with the comfort of building on top of existing libraries.

2.2.5 Polyglot Persistence

The kind of information that needs to be represented and stored has significantly changed
over time. Features such as performance and availability are becoming paramount for the
consumer facing applications, but the most critical enterprise applications still favor consis-
tency over the availability. Line of Business (LOB) applications is the set of critical computer
applications that are vital to run an enterprise, such as accounting, supply chain and enter-
prise resource planning. These applications will keep using the power of relational databases.
The database consistency, query optimization, and set-based declarative query capability that
relational databases have provided for decades is still required by most LOB applications;
this has not changed [BBBI].

This situation has led to the term Polyglot Persistence which means that enterprises will use
different databases that have different persistence approaches to solve different problems
within one application or across the enterprise. For example, in an e-commerce scenario,
transactional data storage and session information storage have different performance re-
quirements (consistency, availability, and backup). You can live without a backup of the
session information, it can be reconstructed in case something goes wrong, but you cannot
afford to lose customer orders. Or the payment information may be stored in a transactional
relational database to ensure consistency, while product catalogs and shopping carts might
achieve better performance by using NoSQL stores [SF12]. One can also mix the use of NoSQL
inside SQL. One benefit of this approach is that the same data store can be used for both
the SQL and the NoSQL data. For example, PostgreSQL implements the hstore data type
for storing sets of key/value pairs (simply text strings) within a single PostgreSQL value.
This can be useful in various scenarios, such as rows with many attributes that are rarely
queried, or when dealing with semi-structured data - the schema-less benefit of using NoSQL
databases.
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Figure 2.2: Polyglot Persistence in an e-commerce scenario [SF12]
2.3 Non-Functional Properties of NoSQL Systems

Features such as horizontal scalability, high availability, and low latency are considered
the main drivers for NoSQL databases adoption. For this reason, in this section we will
summarize the non-functional properties that are the actual adoption drivers of the NoSQL
systems. Scalability is the most discussed feature of NoSQL databases. For many Web
applications, scalability involves the elimination of latency in rather simple operations, such
as pulling up an individual note, writing out a status message, bringing up account settings
or the profile for a specific customer, and so forth [BBBI]. In order to keep up with the
transaction growth of modern applications, having systems able to scale is very important.
A system can scale either vertically, moving the application to a more powerful server (i.e.
one that has more RAM, CPU), or horizontally by adding more servers to the infrastructure.
Both approaches are expensive, but the first one is also limiting as there is an upper limit
to how large a system can be. Horizontal scaling is more flexible but brings also additional
complexity. It can be achieved in two dimensions when considering data storage:

e Functional partitioning - any good database design decomposes the schema into
functionality-related groups, also known as tables. For example in an e-commerce
scenario customers and orders are functionally distinct and typically are put into sepa-
rate tables. Functional partitioning is important for achieving high degree of scalability.
The database constraints such as foreign keys ensure the consistency between these
functional areas [Pri08].

e Sharding is splitting the data within one functional area across multiple databases. It is
also known as horizontal partitioning. Data can be distributed across multiple servers,
so each server acts as the single source for a subset of data. For example: customer data
of customers in different geographical regions can be put on different machines.
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If one node responsible for a subset of data goes down, the whole data becomes unavailable.
In order to avoid data loss and achieve high availability, the replication mechanism is ap-
plied - copying the dataset in more than one node (replica). There are two approaches to
replication:

e Master-slave When updates made in one master node are propagated to other replica
nodes. This kind of replication helps with read scalability as more than one node is
serving read requests but doesn’t help with the scalability of writes. Read resilience is
provided only against slaves, while the master is a single point of failure for writes. In
read-heavy workloads, should the master fail, the slaves can still handle read requests.
However, you are still limited by the ability of the master to process and propagate
those updates. So, it is not a good choice for datasets that are heavy write traffic.

e The master-master or peer-to-peer (or master-less) replication addresses the problem
of the single point of failure. In this architecture there is no master, all nodes are
functionally similar; each one is used to handle read and write requests. In case of a
node failure, the access to the data store is not affected and adding nodes to the cluster
in order to improve performance is easier.

The drawback of replication is the impact in consistency: you face the risk that different clients,
reading data from different nodes, will see different values because the changes haven't all
been replicated to the nodes. In distributed-storage systems that need to provide high
performance and high availability, like NoSQL systems, the number of replicas is in general
higher than two [Vogb]. Different NoSQL databases in order to have read consistency, ask
more than one replica before sending the reply to the client. Read performance is improved
further if replication is combined with caching techniques.

Relying on the database constraints to ensure consistency across functional groups creates a
coupling of the schema to a database deployment strategy. In order to be able to apply the
constraints, the tables must reside on a single database server, thus preventing horizontal
scaling as transaction rates grow. Schemas that can scale to a high degree will place function-
ally distinct data on different database servers. This shifts the implementation of the data
constraints to the application layer, not at the database level anymore [Pri08].

Partitions occur when some nodes in a system cannot reach other nodes, but both data sets
are reachable by different groups of clients. Partitions can happen within and across data
centers. A system that is not tolerant to network partitions can achieve data consistency and
availability, and often does so by using transaction protocol such as 2PC [BANEQ9]. The
2PC protocol was invented to enable running transactions on multiple database instances.
But to send a message over a WAN significantly increases the latency of a transaction (on
the order of hundreds of milliseconds), a cost too large for many Web applications that
serve heavy write requests. Horizontal scalability is easier to achieve without using the 2PC
protocol [CST*10].

The Consistency Availability Partition tolerance (CAP) theorem which lies at the heart of dis-
tributed systems has been used by the NoSQL movement as one of the arguments against
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traditional relational databases. Formulated by Eric Brewer in year 2000 in a keynote presenta-
tion, the theorem states that it is possible to optimize for any two of Consistency, Availability,
and Network Partition Tolerance, but not all three at the same time [Bre]. Said that, in case
of a network partition a distributed system that is partition tolerant, it can either provide
availability or consistency.

The rise of large Web applications and distributed data systems, makes the partition-tolerance
property inevitable, thus imposing compromise on either consistency or availability. Dynamo
was the pioneer of eventual consistency as a way to achieve high availability and scalability
for its shopping cart application; data reads are not guaranteed to be up-to-date but all the
nodes will see the updates eventually.

The relationship between CAP and ACID is more complex and often misunderstood, in part
because the "C" and "A" in ACID represent different concepts than the same letters in CAP
and in part because choosing availability affects only some of the ACID guarantees [Brel2].(In
case of a partition, there is no ACID "I" because concurrent operations may occur on both
sides of the partition. And there is no ACID "C" because you have only local integrity
checks). The "C" in CAP - Consistency - means that there is the same copy of data in all the
nodes where it is replicated, also referred to as single-copy consistency. When some nodes
crash or some communication links fail, it is important that the service still perform as
expected. This explains the "A" in CAP, and it has a different meaning than the classic one
we have for availability. A failed, unresponsive node doesn’t infer a lack of CAP availability.
The availability in CAP means that a request should always be responded by a non-failing
node [SF12].

This has introduced a new data semantics approach - BASE - a design philosophy created in
the late 1990s to capture the emerging design approaches for Internet services for which the
primary value was high availability of data. Compared to ACID which adopts a pessimistic
approach and forces consistency at the end of every operation, BASE follows an optimistic
approach that data will be available after a short period of time 1. It stands for Basically
Available, Soft state, Eventually consistent. The three techniques that achieve the BASE
semantics are [FGC197]:

e Stale data - services can tolerate stale data knowing that all copies will be eventually
consistent after a short time.

o Soft state - in order to achieve high performance data is not written persistently; in case
of failure it can be regenerated at the expense of additional computation.

e Approximate answers (based on stale data or incomplete soft state) delivered quickly
may be more valuable than exact answers delivered slowly.

The systems that favor availability on consistency have a BASE approach. Another trade-off
that is not part of CAP and which exists even when there are no network partitions, is the one
between consistency and latency. Deciding for an asynchronous replication strategy versus
a synchronous one comes to the point of choosing between consistency and latency. The
synchronous approach wait until all updates have made it to the replica(s) before returning to

10This time during which the client can see outdated data is called inconsistency window
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the user. It ensures strict consistency but as communication (especially over WAN) between
independent entities is involved, it brings latency. The asynchronous approach doesn’t
introduce latency, requests can be processed without waiting for the propagation of updates
to other nodes. But, there is the risk that read request will be served by outdated nodes.

This was the situation for year 2000. The modern view of CAP in 2012 is that the choice
between availability and consistency is much more fine grained and complex. Perfect avail-
ability and consistency in the presence of partitions is rare, but there is an incredible range of
flexibility for handling partitions and recovering from them. The modern CAP goal should
be to maximize combinations of consistency and availability that make sense for the specific
application. The decision can be made more than once, and at very fine granularity; not only
can subsystems make different choices, but the choice can change according to the operation
or even the specific data or user involved [Brel2].

Vogel, the CTO of Amazon distinguishes between client-side and server-side consistency. The
client-side deals with how consistency is perceived by the client, while server-side deals with
how updates are propagated through the system and that the developer of the system can
experience [Vogb].

e Client side: Strong, Weak, and Eventual (a specific form of weak consistency). The
eventual consistency has the following variation forms:

— Casual consistency (read your write consistency, i.e. not reading in between a
write)

- Read your write: if a process has updated a data item, it will always access the
updated value and not the old one.

— Session consistency: if a process has updated a data item, it will always access the
updated value and not the old one.

— Monotonic read consistency: if a process has seen an updated value, any subse-
quent access will never return an older value of that data item.

— Monotonic write consistency: the system guarantees to serialize the writes by the
same process.

e Server-side has to do with the configuration of the replicas. The following settings:
— N- total number of replicas for the dataset

— W- the number of replicas that need to acknowledge the receipt of the update
before the update completes

- R - the number of replicas that are queried during a read operation

depend on what is the common case and which performance path needs to be optimized.
For example, In R=1 and N=W (read only from one node) you optimize for the read
case, and in W=1 and R=N (write to only one node) you optimize for a very fast write.
In the latter case, durability is not guaranteed in the presence of failures, and if W <
(N+1)/2, there is the possibility of conflicting writes when the write sets do not overlap.
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W and R are respectively Write and Read quorums. The eventual consistency rises
when having W+R<=N configuration, i.e. having no overlapping of nodes.

2.3.1 CAP Systems

Given the different behaviors of database system when they have to deal with partitions, the
following is a popular classification of systems through the lens of CAP.
CP systems: database systems that adhere to ACID properties, focus on CAP consistency

Consistency
(all clients
have the same
view of data)

Few NoSQL

RDBMS

Partition Tolerance
(the system works
despite network
partitions)

Availability
(each client can
read and write)

Most of NoSQL

Figure 2.3: CAP Systems

first and then availability. They forfeit availability for consistency in case of partitions.

AP systems: NoSQL systems designed to support applications that need to be highly available,
in case of partitions they forfeit consistency, thus falling into the AP category. The case
of PNUTS, the NoSQL system from Yahoo, seem not to fit into this definition. PNUTS
relaxes consistency by only guaranteeing "timeline consistency" where replicas may not be
consistent with each other but updates are guaranteed to be applied in the same order at all
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Table 2.1: SQL vs NoSQL vs NewSQL Summary

Features RDBMS NoSQL NewSQL
Data model Relational model Domain driven Relational model
Transactions ACID (almost all) BASE ACID
Querying SQL REST, Client libraries, Protocol SQL
buffers
CAP classification CA AP/CP mainly CP

replicas [CRS™]. It also gives up availability - if the master replica for a particular data item is
unreachable, that item becomes unavailable for updates.

CA systems: refer to systems that are not tolerant to network partitions, traditional RDBMS
fall into this category. But what if a partition happens? It means that they loose availability,
thus falling into the same group as CP systems.

Tunable Consistency: allows the user to decide the level of consistency he wants. The
consistency level is a setting that clients must specify on every operation (insert, update, read)
and that allows the user to decide how many replicas in the cluster must acknowledge a write
operation or respond to a read operation in order to be considered successful. As many of the
NoSQL can tune the consistency level in case of partitions, this is the reason some NoSQL
systems fall into AP and CP categories.

Table 2.1 gives a summary at a high level of the features these systems provide.
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2.4 NoSQL Database Categories

A comprehensive summary of NoSQL databases and their features is given by Pramod and
Martin in their "NoSQL Distilled" [SF12] book and a very up to date list of the databases is
available online at [NoS]. In this thesis, we give a summary of NoSQL databases focusing on
the application functionalities and non-functional properties that each category support. This
summary is not claimed to be exhaustive as this is an immature and fast-growing market,
and adoption drivers are still evolving.

It is important to understand each category, because they serve certain scenarios (applications
and workloads) best. Comparison of data models is easy, while comparing them in terms
of performance is a challenging task. Attempting to evaluate NoSQL systems all together
conflates too many different needs with too many different kinds of required optimizations,
and prevents meaningful comparison [NE]. Yahoo Cloud Serving Benchmark (YCSB) is
an extensible framework from Yahoo Research that has become a standard for evaluating
the performance of NoSQL stores. Currently they have developed two benchmark tiers:
scalability and performance, while future addition on availability and replication have been
announced. Performance of these systems depend on the partitioning, replication, and
transactional consistency that they have chosen. To understand the performance implications
of these decisions for a given type of application is challenging [CST*10].

Enumerations of NoSQL categories tend to vary, and there are cases when a database can fall
in more than one group. In the following sections we will briefly introduce the four main
categories of NoSQL stores.

2.4.1 Key-Value Stores

Key-value stores are the simplest NoSQL data stores and can bee considered as the mother of
all NoSQL databases. Even though they are not the same, they have many things in common.
A HashMap!! is the simplest data structure that can hold a set of key-value pairs and they all
store data as maps [Tiw11]. They were inspired by Amazon DynamoDB storage model. The
APIs the databases of this category offer the "match query" options. A match query extracts
the value associated with a certain key.

o Get(key) - extracts the value given a key
o Put(key, value) - creates or updates the value given its key
e Delete(key) - removes the key and its associated value

They are easy to use from an API perspective. - the client can either get the value for the key,
put a value for a key, or delete a key from the data store; that is the reason why they are easy
to scale and generally have great performance. The aggregates can be stored into one single
bucket which is a namespace for keys. But storing all different objects in one single bucket
increases the chance of key conflicts. An alternate approach is to append the name of the

"'HashMap is an associative array where the index is called the "key"
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object to the key, for example 288790b8a421_userProfile so that can be accessed as needed.
The value can be a blob, text, JSON, XML, and so on. For the data store (not for all) the value is
opaque, it is the application that should understand what is stored. The query characteristics
make key-value stores likely candidates for storing session data (with the session ID as the
key), shopping cart data, and user profiles [SF12].

Some key-value stores get around the "opaque" nature of the value by providing the ability to
search inside the value, such as Riak. Rigk [Ria] - a Riak cluster is masterless, automatically
redistributes data when you scale, and keeps data available when physical machines fail. Mo-
tivated by Amazon alike use cases, it stores data as key-value pairs, has a simple operational
model, and comes with an HTTP API and many client libraries. Any data can be stored, in
any desired format as all objects are stored on disk as binaries. It provides a feature, Riak
Search which is a distributed, full-text search engine, that allows you to query the data just
like you would query it using Apache Lucene or Solr indexes.

Solr!? is the popular fast open source enterprise search platform from the Apache Lucene
project. Lucene is a simple search library that can be easily integrated into your application.
Its core facility manages indexes. Documents are parsed and indexed and stored away into a
storage scheme, which could be a filesystem, memory, or any other store.

Redis- is an open source, BSD licensed advanced key-value store. It is often referred to as
Data Structure server since keys can contain strings, hashes, lists, sets and sorted sets. It is an
in-memory system and thus, provides optional durability [Red].

Memcached'® - it’s a distributed memory object caching system which demonstrated that
in-memory indexes can be highly scalable, distributing and replicating objects over multiple
nodes. It dedicates blocks of memory on multiple servers to cache data from your data
store. It is free and open source, high-performance, generic in nature, but intended for use
in speeding up dynamic Web applications by alleviating database load. It is being used
Facebook, Twitter, Wikipedia, YouTube, and many others. It is an in-memory key-value store
for small chunks of arbitrary data (strings, objects) from results of database calls, API calls, or
page rendering.

MemcacheDB - is a persistent variant of memcached; it is a distributed key-value storage
system which is API-compatible with memcached. MemcacheDB uses BerkleyDB as a storing
backend, so lots of features including transaction and replication are supported [Mem].

BerkeleyDB is a high-performance embeddable database providing SQL, Java Object and
key-value storage. It offers advanced features including transactional data storage, highly
concurrent access, replication for high availability, and fault tolerance in a self-contained,
small footprint software library. It was recently bought by Oracle, the well established vendor
for the relational database.

Oracle, has also developed its NoSQL solution, Oracle NoSQL. It is also a distributed key-
value database. It offers high availability, rapid fail-over in the event of a node failure and

12 Apache Solr: http:/ /lucene.apache.org/solr/
13Memcached: http:/ /memcached.org/
Oracle Berkeley DB 11g: http:/ /www.oracle.com/technetwork /products/berkeleydb
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optimal load balancing of queries. At the core of Oracle NoSQL is BerkeleyDB.
Oracle Coherence'® - is a memory cache layer on top of a database that takes a key-value
approach.

The limitation for key-range processing of key-values stores is overcome by ordered key-value
model which significantly improves aggregation capabilities. Some of the above mentioned
systems are ordered key-value stores (BerkeleyDB, MemcacheDB) which provide the search
function of "range query" because it sorts the keys in ascending order. Preserving some order
while storing keys makes it possible to run efficiently a range query to extract the attributes
associated with a key [Sho].

Almost all of the other categories of NoSQL systems were built, whether physically or
conceptually, upon key-value store principles. Therefore you should expect their applications
to be more specialized than, but not completely distinct from, those of key-kalue stores
themselves [BBBI]. The main key-value stores offered as a service by the big Cloud vendors
are Google AppEngine Datastore'®, Amazon SimpleDB, Amazon DynamoDB, and Microsoft
Azure Table Storage that we will introduce in more detail later on.

2.4.2 Document Databases

Document-oriented databases were inspired by Lotus Notes, the IBM product for collabo-
ration. The model is basically a key-value in nature where the value is a document, namely
a collection of other key-value collections. And this is the difference with key-value stores
which store only scalar values and cannot embed an object into another object. A document
can be addressed by unique URL, and given the HTTP and URL orientation, they offer
RESTful APIs for the applications. The semi-structured documents are stored in formats
like JavaScript Object Notation (JSON), XML, Binary JavaScript Object Notation (BSON).
Documents can also contain attachments, thus making document stores useful for content
management. The value as opposed to key-value stores, is usually structured and understood
by the database. Querying is possible not only by the key, but by the fields of the value as
well.

Document databases are more suitable for low latency, high performance and are not suitable
if your application requires: multi-document transactions, complex security needs such
as: user roles, document level security, authentication, complex joins across collections, BI
integration, extreme compression needs. [Cou]. They support ACID transactions only at the
document level.

Examples of document databases: MongoDB, CouchDB, Couchbase, DjonDB, RavendDB
etc. The two leading document databases are CouchDB and MongoDB. They both are most
directly relevant to Business Intelligence because of their more flexible and extensive search
and retrieval functionality. They are both open-source and have a big community support.
We decided to chose MongoDB in this thesis work.

150racle Coherence: http:/ /www.oracle.com /technetwork /middleware/coherence
16GAE Datastore: https:/ /developers.google.com/appengine/docs/python/datastore/#Python_Datastore_API
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CouchDB, an eventually consistent database available under Apache 2.0 license, is being
used by BBC and Credit Suisse for dynamic content platforms to store configuration details
for its marketing data framework. Another successful use of CouchDB adoption was in a
streaming network analysis use case [WDDB12].The schema-free nature support the storage
of emails (arbitrary metadata fields) and the simple mechanism of storing binary data support
the storage of attachments. CouchDB support views which consist of MapReduce functions,
stored as documents and replicated between nodes like any other data.

Couchbase'” , which run on a CouchDB/Membase server, it is more suitable for interactive
Web applications. It also has a Hadoop connector for analytical heavy workloads. With the
new release Couchbase Server 1.8 replaces Membase Server 8.

RavenDB is transactional, open-source document database written in .Net. Its JSON objects
can be queried efficiently using Linq queries from .NET code or using RESTful API using
other tools.

XML databases is a category of databases that is often considered as document databases
because of the structured value they have. XML databases are very similar to document-
oriented, the document is stored in a data model compatible with XML. You can use various
forms of XML schema definitions (DTDs, XML Schema, RelaxNG) to check document formats,
run queries with XPath and XQuery, and perform transformations with XSLT [SF12]. Saving
the document in XML, which is a structured format offers the advantage of not treating the
value as simply a blob type. Document databases offer JavaScript server side functions. For
example a call of MapReduce function would be: mapreduce(keyList, mapFunc, reduceFunc)
- which invokes the functions across a key range. Some databases offer REST APIs, low-level
or standards-based APIs (Java, Python, etc.), some do provide a SQL-like query language,
like MongoDB, SimpleDB. The latter one might help ease the transition from the RDBMS
world by putting less effort in the query transformation.

2.4.3 Column-Family Stores

The databases in this category are based on Google’s BigTable model and this is the reason
they are also referred to as BigTable clones. They are built for storing and processing very
large amounts of data. They are also a form of key-value pairs, but they organize their storage
in a semi-schematized and hierarchical pattern. Google’s BigTable is: "...a sparse, distributed,
persistent multi-dimensional sorted map. The map is indexed by a row-key, column key, and
a timestamp; each value in the map is an un-interpreted array of bytes." [CDG"08]. This
model later influenced the column oriented data stores, like Cassandra, Hypertable, HBase.
These are the main databases here, making the competition less in this category compared to
relational and key-value stores [RWC12].

Cassandra and HBase feature column families. Column families are groups of related
data(columns) that is often accessed together. In a typical column-oriented store, you prede-
fine a column-family and not a column. The number of column families is virtually unlimited,

7Couchbase: http:/ /www.couchbase.com/
18Couchbase Server: http:/ /www.couchbase.com/membase
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thus making a fairly common use of the column name as a piece of runtime populated
data [OGOG™11]. A row key is mapped to column families which are mapped to column
keys, and this structure is more a two-level map than a table as shown in figure 2.4. They are

rowkey CFl:Coll |CFl:Col2z |CF1l:Col3 CF2:Coll m
CFl:Cnll CF1:Col2 | CF1:Col3 CF2: Col1 | CF2: Col2

rowkey |CFl:Coll | CF1:Col2 | CF1:Col5 CF2: Coll | CF2: Cold |

Figure 2.4: Column-oriented Data Model

less schema flexible than document databases, are best used for semi-structured data, not
for data whose structure changes from row to row. Said differently, wide columns do well
also in grouping entities that have high-level characteristics in common, but with different
context-specific attributes [BBBI]. Apache Cassandra [Hew11] is a schema-less data store,
meaning that it enforces no requirements that the rows contain similar columns. HBase’s
architecture is similar to BigTable (using synchronous updates to multiple copies of data
chunks). Just as BigTable leverages the distributed data storage provided by the Google
File System, Apache HBase provides BigTable-like capabilities on top of Hadoop and HDEFS.
Also, HBase is included as a component of the IBM InfoSphere Biglnsights product which is
targeted at the big data market [Moh13]. It is suitable when you need random, realtime read-
/write access to your big data'®. We will explain in more detail the data model of Cassandra,
as we have chosen it for our validation approach. Cassandra was originated by Facebook’s
inbox search, and it has now a full project status at Apache and also an active developer
group. It is in commercial use at a variety of companies, such as Digg, Reddit, and Twitter. It
has commercial support by DataStax?’.

2.4.4 Graph Databases

Relational databases are simply not great for hierarchical or graph data. These types of mod-
eling require lots of one-to-many and many-to-many relationships, which can’t be modeled
efficiently in a relational database. Graph databases are most suitable if relationships are
paramount as they are ideal for capturing any data consisting of complex relationships such
as social networks or product preferences. In other words, they are best suited when the
application has datasets with complex interconnection and do not offer support for ad-hoc

19HBase: http:/ /hbase.apache.org/
20DataStax: http:/ /www.datastax.com/
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queries [SF12]. They are a good choice for applications that need fast and extensive reference-
following, especially where data fits in memory [Cat]. They are not based on aggregates,
that is why they are also referred to as aggregate-ignorant. Entities are represented as nodes
and the relationship between them as edges. Both, nodes and edges can have attributes.
These databases focus more on the relationships between entities than the entities themselves.
Edges can be added or removed at any time, allowing one-to-many and many-to-many rela-
tionships to be expressed easily and avoiding anything like an intermediate relationship (aka
mapping )table that you might use in a relational database to accommodate many-to-many
joins. There will be plenty of competition from social networks and other proprietary vendors.
Google’s Knowledge Graph and Twitter’s Interest Graph are similar to Facebook’s Social
Graph, and traditional database vendors such as Oracle and IBM are getting into the Graph
act, too. Microsoft Research’s "Trinity" project is another example of a graph database [Neoa].
Additional examples for graph databases are:

FlockDB?! - Twitter’s database, is simply nodes and edges with no mechanism for additional
attributes.

Neo4] - allows you to attach Java objects as properties to nodes and edges in a schema-less
fashion. Neo4] is fully ACID compliant, without wrapping creation operation in a transaction
you get an exception. There are many reasons for using such database, mainly is performance
and scalability. If in your algorithm you need to do many join query to get your data from
a RDBMS, in Neo4] it is a simple traversal of nodes following a given relationship. Neo4j
Enterprise, which runs on clusters is being used by Cisco which is building a master data
management system. Other companies are making use of Neo4j, such as Adobe, Squidoo and
Intuit [Neob].

Infinite Graph®? - stores Java objects, which are subclasses of its built-in types, as nodes
and edges databases most suitable for navigating relationships, etc. FreeBase(Google). It
distributes the nodes across a cluster of servers as opposed to most of the graph databases
which run on single servers. And as most of them run on single servers, data is always
consistent within a server.

It is obvious that for good performance graph traversal, the related nodes should reside in
one server. Even though graph databases are not aggregate-oriented like document databases
and key-value stores, there are still some techniques to make these relationship oriented
databases scale across a cluster.

SPARQL? - is a W3C-standardized Web-scale graph query language that is distinctly more
powerful than SQL and is now becoming the de facto language for the emerging Linked Data
Web.

As stated previously, in reality this classification is too crude. OrientDB? calls itself both
a document database and a graph database. MariaDB foundation was created to bring
together many developers in the open source project MariaDB/MySQL with one of the goals

2Introducing FlockDB: https:/ /blog.twitter.com/2010/introducing-flockdb
ZInfiniteGraph: http://www.objectivity.com/infinitegraph

23SPARQL Query Language for RDF: http:/ /www.w3.org/TR/rdf-sparql-query/
24OrientDB: http:/ /www.orientdb.org/
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of MariaDB being to be a bridge between NoSQL and SQL. That is the reason they have
added support first for Cassandra and are now working on adding support for LevelDB: a
key-value store by Google®. From the above summary we can abstract and the common
characteristics of the NoSQL databases into the following:

e Not based on the relational model

Schema-free: allowing fast application development

Distributed: Running well on clusters

Mainly Open-source: there are some proprietary solutions as well

Horizontally scalable

Built for the 21st century Web estates

Bleveldb: https://code.google.com/p/leveldb/
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The reality is that many companies have migrated their applications to NoSQL databases and
have shared their experience they had during the migration process. In Section 3.1 we briefly
introduce what are the traditional schema mappings and schema mapping frameworks, and
how does our approach differ from them. Very little is done in terms of comparing the
relational and NoSQL database schema objects in detail. Mainly the focus has been on how
to model the data, but less is done with respect to data types, indexing, and constraints
mapping or migration possibility. And in our context mapping also means: in case some
schema elements are missing in the target schema, e.g. stored procedures, how can they be
emulated at the target data store. In Section 3.2 we will summarize some of the migration use
cases with respect to motivation drivers and the best practices during data modeling, and
more importantly the impact on the upper application layers. As it is impossible to cover
all of them in this thesis, we selected among them those applications that reflect different
requirements and cover the different NoSQL categories. Section 3.3 gives a summary of the
available tools for moving data from a RDBMS to NoSQL.

3.1 Traditional Schema Mappings

There are currently many kinds of scenarios in which heterogeneous systems need to ex-
change, transform, and integrate data. These include ETL applications, Object-Relational
Mapping (ORM) systems, Enterprise Application Integration (EAI) frameworks [BMPV]. In
all these scenarios many data sources with different data models and data formats need to
communicate. Schema mappings are high-level declarative specifications that describe the
relationship between data in two heterogeneous schemas [FHH]. The are widely used in
data exchange, data integration, schema evolution, etc. A schema mapping is the specification
on how an instance of a source schema corresponds to potentially many target instances.
Figure 3.1 illustrates a simple schema mapping where the two sources are mapped to a target
schema, in this case the mappings are simple correspondence lines. As schemas started to
become larger and more complex, transformation designers had to express their mappings in
complex transformation languages and scripts. In order to do this, first they had to obtain
a good knowledge and understanding of the semantics of the schemas and of the desired
transformation. Many frameworks have been developed and evolved over time [BMPV].
From the schema representations the frameworks can either generate:

e View - to reformulate the queries against a schema into queries for another schema for
data integration purposes or

e Data transformation - from one schema representation to another for data exchange.
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Mappings can be created not only between relational schemas, but also between relational and
nested schemas, such as XML documents. In our approach schema mapping has a broader

Customer

Cust_ID

Cust_name

Cust_address

ID

Employee Name
Eip , Address
EmpName

EmpAddress

Figure 3.1: Relational Schema Mapping Example

scope, meaning that we investigate which relational schema objects can be created in the
target NoSQL schema, and for those that cannot be mapped directly, we investigate how to
re-factor the application to emulate them. So, we do not have to deal with the constraints of
the target schema as in the normal schema mappings. Our approach consists in taking the
relational source schema, migrate it to a NoSQL schema by creating the target NoSQL schema
based on some assumptions about query patterns.

3.2 Migration Use Cases from RDBMS to NoSQL

As mentioned previously, there are many application use cases migrating from relational to
NoSQL, and it is impossible to cover them all in this thesis. We selected among them those
uses case that reflect different application requirements and use different NoSQL categories.
Most of use cases about migration to NoSQL don’t do a comprehensive analysis of all the
relational database schema elements, those that can be mapped at a high level like index
types and those that can be mapped physically, like tables, rows, columns.

Netflix.Inc, a company that provides movie and TV shows streaming, migrated from Oracle
to Amazon Web Services (AWS) SimpleDB and S3, because AWS promised better availability
and scalability in a relatively short amount of time [Ana]. Before migration they had only
one data center and were faced with interruption of services in case of outages. Instead
of building more data centers and dealing with scalability issues themselves, they chose
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to migrate to Amazon Web Services, focusing this way on their core competencies. Netflix
shared the experience in a report discussing the impacts at the data access and business logic
layer for the missing functionality. "SimpleDB’s support for an SQL-like language appealed
to our application developers as they had mostly worked within the confines of SQL" - thus,
we incorporate this feature into our questionnaire, i.e. Does the data store provides SQL-like
query language or not. Also, other recommendations for refactoring the application, such as
implementation of JOINs, Group BYs, constraints checking, sequences, recommended to be
done at the application layer. For the emulation of sequence, they recommend the usage of a
distributed sequence generator, in case no natural occurring key can be used as a sequence.

Alexa.com offers Web-scale services built on top of AWS. Building their application on
the notion that timely and relevant information is important to a positive Web experience,
they chose Amazon SimpleDB over MySQL to store intermediate status and log data, and
Amazon S3 to put and retrieve datasets. To power Alexa Site Thumbnail service, Alexa uses
Amazon S3 to store and deliver millions of thumbnail images and uses Amazon SimpleDB to
automatically index and efficiently query the stored images [Ale].

We learn from their experience that unique identifiers can be generated at the application
code, either using functions provided by the programming language, or using UUIDs for
more stringent applications. Thus, SimpleDB provides efficient scalability by shifting the
responsability of uniquely identifying the data to the application code. Also, because of its
SQL-like query language, the query reusability is high [Lea].

eBay has adopted Cassandra in their "Social Signal" project, which enables like/own/want
features on eBay product pages. A few use cases have reached production, while more are in
development. They give a summary of best practices of data modeling with Cassandra for
their use case, from which we subtract some good modeling practices when considering to
migrate to Cassandra [Pat].

Foursquare - a location-based social network originally started with MySQL, then moved
to PostgreSQL and then all changed when the service took off with users [10gb]. Growing
rapidly the company needed efficient scaling for which PostgreSQL promised to involve
significant work, so they started reviewing other options, such as MongoDB, Cassandra,
CouchDB, and sharded MySQL. They decided to migrate to MongoDB hosted on Amazon
Web Services for storing venues and check-ins, the latter being the largest dataset.

Also Art.sy which indexes and makes searchable high-quality images of 30000-plus works of
art from over 3000 artists, transitioned to MongoDB operated by MongoHQ'! which offers
MongoDB as a Service. We decide to chose this provider also for the validation of our
approach.

Nokia’s Ovi Places Registry [Far], moved from MySQL to an internally developed NoSQL
key-value data store as the data was growing bigger and bigger. They used Apache Solr,
the open source enterprise search platform from the Apache Lucene, for query performance.
Given their experience with an in-house developed data store they advice to consider an
open source NoSQL store if you decide to migrate to a NoSQL solution. This is an important

MongoHQ: https:/ /www.mongohq.com/
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feature to be included in our questionnaire, text-search integration with engines such as
Apache Lucene or Solr.

Riak is very popular key-value store. To help retailers evaluate and adopt Riak, Basho
has published a technical overview: "Retail on Riak: A Technical Introduction.” where they
discuss more in-depth information on modeling applications for common use cases, switching
from a relational architecture, querying, multi-site replication and more. We will reuse and
consider this knowledge as input especially during analysis and specification of functional
requirements.

Zynga - a provider of social game services - is serving over 235 million active users per month.
In a social game, the ratio of reads to writes could be as high as 1:1. In order to cope with this
challenging throughput they have redesigned the storage of their game platform. They started
using Couchbase which has a Memcached built in, the most widely deployed in-memory
caching technology, thus enabling consistently low-latency data reads and writes. They have
improved the performance and availability of their games while reducing hardware and
administration costs. The same experience we see in the case of ideeli? which wanted to
offer high performance and being always available for their "add to cart" application [Basb].
Taking this into consideration, for applications looking for high performance, we incorporate
the Built-in caching layer as a non-functional property for the Cloud data hosting solution,
and Integration of a caching layer in case the data store doesn’t provide one. Also, they built a
custom replication protocol atop the existing memcached binary protocol, given the fact that
it is open-source, which resulted in reducing the replication time of MySQL from seconds to
milliseconds [Zyn].

EPIC, faced with the challenge of scaling the persistence tier due to the enormous amounts
of data generated from a single mass event, moved from MySQL to Cassandra to handle
the large amount of data. From their experience we learn that the transformation of the
system’s existing data model is the key design change that must be accomplished for a
successful transition from relational to NoSQL technology. There are a lot of lessons learned
during this process, with the most important challenges in: software architecture, data
modeling, deployment, developers’ skills, etc. With respect to data modeling they provide
the lessons learned on how to model joins when moving to Cassandra. They have found
that in order to enable scalability many of the software engineering best practices, like data
normalization and object-oriented design heuristics must be implemented outside of the
persistence tier [SA12].

With respect to data modeling best practices, the online documentations of the NoSQL
databases provide guidelines on the best practices when using their data store [Mona], [Datb], [Sim].
Product and service specific recommendations and guidelines are available, but in our work

we want to abstract from them and provide in first place more general recommendations with
respect to the choice of NoSQL solution and the required adaptations of the upper application
layers. From the official tutorials about different NoSQL databases, we have abstracted also
features to include in our questionnaire.

2ideeli: http:/ /www.ideeli.com/
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3.3 Schema Mappings Frameworks

Schema mappings are high-level specifications that describe how data structured under
one schema (the source schema) is to be transformed into data structured under a different
schema (the target schema). This is a very complex task when mapping between RDBMS
schemas. The schema mappings are the essential building blocks in data exchange and
integration [ACKT]. Data exchange is the process to physically transform the source data
into the target format. Many tools and methodologies are developed with respect to RDBMS
to RDBMS schema mappings. In this thesis we have the relational data structure as given
objects and transform it into a NoSQL data structure.

As NoSQL systems are not in a mature state yet, there is no systematic theory of data
modeling techniques. In addition, different techniques apply to different categories as they
are based on different data models. Moreover, even within the same data model there
are different approaches and different features that different vendors offer. Most of the
online documentations of the NoSQL databases provide guidance on data modeling best
practices. The same focus is also other resources [Mona], [Sim], [Datb], [Hew11], [Basa]. No
one focuses on the migration from a specific relational database, like we do with MySQL 5.6
and PostegreSQL 9.2. Riak [Basd] provides a background and detailed level of understanding
when moving from relational to Riak data store.

A collection of data modeling techniques and patterns is given at [HSB]. Around seventeen
patterns are identified and explained. No relational database system is taken into considera-
tion. We take in consideration MySQL and PostgreSQL schema, analyze their features against
NoSQL offerings to identify what do you lose when migrating to NoSQL databases, identify
the solutions in form of patterns that can be applied to these shortcomings.

Datastax, the commercial support of Cassandra, combines Cassandra, Hadoop, and Solr
together into one big data platform. It includes in the Enterprise 2.0 version, support for
Sqoop, a tool designed to transfer data between a RDBMS and Hadoop. In this release data
can be moved with Sqoop not only to a Hadoop system, but to Cassandra as well. Only
MySQL tables and data is moved to Cassandra. The tool connect to MySQL via JDBC driver
which should be downloaded, while our approach connects to the source database through
command line, and no additional driver is needed.

Kettle® is an ETL tool from Pentaho for data integration. It provides connectivity with a
variety of data sources, among them the NoSQL databases MongoDB, Cassandra, HBase.
Kettle (unlike Sqoop that provides only extract load operations) allows developers to create
some transformation routines to customize how a MySQL schema and data are moved to
Cassandra. There is no comprehensive analysis available with respect to the impact on
the data access layer and on the business logic layer when moving to NoSQL databases.
Also, an important feature of our methodology is the mapping of data types, knowing that
RDBMSs are strongly typed and NoSQL are loosely typed, it’s very important to be aware
of data that might not be imported properly, or might lose precision in case of numeric
values. Furthermore, currently there is no general support that abstract guidelines that does

3Pentaho Kettle: http:/ /kettle.pentaho.com/
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not focus on a single concrete NoSQL solution. One of the main aspects of our work is the
decision support system for providing guidance when choosing the right NoSQL store. To our
knowledge there is no comprehensive decision support tool that incorporates the functional
and non-functional requirements of the NoSQL databases to support this process and provide
guidance about application refactoring. Our focus is on decision support system for NoSQL
solution and the adaptations of the application layers, and these aspects are not covered
by ETL tools. Migrating from RDBMS to NoSQL is a creative process and is difficult to be
automated because there are no standards that these databases adhere to. One has to look
beyond a given database and understand how the application uses the data, identify which
data sets need to be accessed fast, and which uses are not frequent and perhaps not even
required. Then you need to see how the target database can be used to best support these
uses.
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In the first part of this chapter we analyze the current state of the Cloud Data Migration
Methodology and Tool developed by Bachmann [Bac]. We refer to the tool as CDMT in the
rest of this work. In Section 4.5 the functional and non-functional requirements of NoSQL
stores are analyzed with respect to the questionnaire. We specify the features to be added to
the provider knowledge base in order to realize the decision support process. In Section 4.2
and 4.3 we analyze the relational model and the non-relational model with respect to data
modeling to identify the adaptations of data access and business logic layer. The selected
relational databases used for the validation of our work and their features, such as data
types, indexing, and some limitations are analyzed in Section 4.4. The same approach we
follow for the selected NoSQL stores in Section 4.5. We summarize a set of good and not
recommended modeling practices in NoSQL in Section 4.6. We provide a set of comparison
tables summarizing the findings of this analysis.

In the second part, Section 4.7, we map the findings of the analysis to the components of the
system. Section 4.7.1 gives a summary of the relational schema objects mapping to NoSQL.

4.1 System Overview

In his diploma thesis, Bachmann developed a methodology for migration of the database
layer to the Cloud [Bac]. Bachmann based his methodology on the methodology of Laszewski
et al [TN]. His methodology consists of the six following phases:

—_

. Identify Cloud migration scenario

2. Describe desired Cloud data hosting solution

3. Select Cloud data store

4. Identify patterns to solve potential conflicts

5. Adapt data access layer and upper application layers if needed
6. Migrate data to the selected Cloud data store

He identifies eleven migration scenarios, later reduced to ten [SABL13]. He developed a
tool that supports the decision process of selecting a Cloud data store and helps refactoring
the application architecture by providing suggestions on Cloud Data Patterns and potential
adaptations of the network, data access, and application layer. A Cloud Data Pattern describes
a reusable and implementation technology-agnostic solution that should be applied to the
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data to emulate the missing functionality when moving them to the Cloud [SABL13].

The application itself is a Java Web application, which uses a local MySQL database as
data layer. The tool consists of two components: decision support tool (classifications) and
migration tool (migration). The decision support tool includes also the gathering of different
Cloud data stores and supports various adapters for target systems, for relational databases
in the Cloud and one adapter for source system, MySQL. The focus of this thesis is on

Cloud
Migration
Scenario

Cloud Data

Hosting Data Layer

Pattern

e
Migration
T T l l Data
- £ * Cloud Data % Data Layer £ Wiy Data Croud
Questionnaire | = [ Questionnaire | ——— —_— Pattarn == | Data Access |=——3 —_— Data Stare
Store Selection Migration
Selaction Layer Service

Figure 4.1: Cloud Data Migration Tool[Bac].

Solution

migration scenario: RDBMS to NoSQL - migration from a RDBMS with strong transactional
and consistency guarantees to a NoSQL store with focus on being highly available and
offering high performance.

We develop a new methodology for this migration scenario. We extend the Cloud Data
Hosting Solution taxonomy incorporating all the features abstracted from Chapter 3 and
based on the analysis of NoSQL stores in Section 4.5 and Appendix 8.2. We also remove
some of the categories in the taxonomy that cannot be applied to NoSQL stores. For example:
Compatibility criteria, when adding a new NoSQL data store in the list of Cloud data stores,
makes no sense for NoSQL stores. We suggest the needed adaptations at the data access
layer and the business logic layer when considering the mapping of relational to NoSQL
database schemas. There are two types of users of the tool: software developer and Cloud
data store expert. A user can have multiple projects in which he defines the scenarios with
the corresponding migration strategy values. At the beginning we analyzed the current state
of the tool and methodology and in the following we describe the improvement suggestions.
When selecting the target data store, the comparison of the properties of the desired CDHS
with the actual data store selected, do not show all the conflicts. For example, if replication
method for the CDHS is set to synchronous, and the target data store offers only asynchronous,
no conflict is shown.

Step 1b - Refine Cloud Data Migration Strategy

Source Data Store type and Target Data Store type should not be editable. The user should
not be able to change the target data store type as this scenario is meant only for NoSQL
databases and is already defined in Step 1a. And if saved these changes, in Step 1c there are
shown the conflicts. Instead of generating conflicts we don’t allow the user to change the
settings, stating previously that the locked values are not possible for editing in this scenario.
Step 1c - the generation of conflicts based on the comparison of the migration strategy chosen
by the user and the values that apply to the migration scenario by default.

Step 4a - What is the data store type of the source system? This can be logically detected from
the migration scenario. Even though the logic is the same for all the criteria, to allow the user
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try many combinations and see the implications, for this migration scenario we don’t follow
this logic. Does the system support joins? Every RDBMS supports joins, thus to be removed
from the list. Only if the system uses joins should be as input, in order to generate the proper
adaptations when moving to NoSQL.

During the last step, i.e. the migration of the data, the user can choose between all the
available stores, it has to be limited only to the selected data store.

For our migration scenario, RDBMS to NoSQL, we distinguish between the categories that
are suitable for this scenario, and also within one category which properties make sense to
show and which not.

4.2 Relational Model

Database schema design is the process of choosing the best representation for a data set given
the features of the database system, the nature of the data, and the application requirements.
Data modeling in RDBMS is consistent, because the theory on which it is based is well
established and implementation is standardized. Therefore, consistent ways of modeling
and normalizing data are well understood and documented. The relational style allows
to model objects as database tables and the relationships between objects as primary and
foreign keys that link the tables together. These relationships can then be exploited by issuing
queries via SQL. One of the main aims of relational database design is to normalize an input
relation schema together with a set of data dependencies into an appropriate normal form.
The motivation behind the various normal forms (2NF, 3NF) is to eliminate the problems that
are caused by the update anomalies and redundancy problems [Cod90].

After normalizing data into multiple tables, the next step is to model the relations between
the tables. There are three major types of relations: one-to-one (relates a single record to a
single record in a different table), one-to-many (relates a single record to multiple records in a
different table) and many-to-many (relates multiple records in a table to multiple records in
a different table). Modeling many-to-many relationships requires an extra join-table” or a
‘mapping table’. The join-table contains two extra columns that reference the primary key
column of each table in the relation. If a relation has its own attributes, a join-table can be
used to model the relationship, regardless of the relationship type. The relational model goes
hand-in-hand with SQL - a declarative language in which a programmer specifies what data
he wants and not how the system should do it. The queries can range from simple SQL queries,
such as filters, e.g. retrieve all order records whose customer ID =100 to more complex ones.
More complex constructs cause the database to do some extra work, such as joining data
from multiple tables (e.g., what is the name of the product that employee with ID=100 has
ordered?). Other complex constructs such as aggregates (e.g., what is the average price of
orders per customer) can lead to full-table scans. It is the database engine that takes care of
query optimization.

Relational modeling is typically driven by the structure of the available data. The access
pattern is not known in advance. The tables are modeled, assumptions are made regarding the
access patterns, and these assumptions are translated into predefined optimizations like index
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definitions. In other words, in SQL, the data model does not enforce a specific way to work
with the data — it is built with an emphasis on data integrity, simplicity, data normalization
and abstraction, which are all extremely important for large complex applications. One of the
advantages of normalization over hierarchical data is the ability to perform ad-hoc queries,
i.e. to join tables on conditions not predicted in the original data model.

In RDBMSs primary keys are automatically indexed, and they are also called primary indexes.
Secondary indexes allow the system to lookup data by different keys, not only by the primary
key. For example, if you want to search for a customer ID knowing only his name, in SQL
you would write a query like this: SELECT CustKey from Customer where name ="John".
Then the database would inspect each row of the Customer table to find the name column
value that matches the search string. This is called a full-table scan. This slows down the
performance when the data size is big. That is why indexes are used. They store a copy of
data that the database can lookup very fast. Creating a secondary index on the name column,
results in a faster lookup in this case.

4.3 Non-Relational Model

In the NoSQL world there is no standardized and well-defined data model as in RDBMS
world. Running the database on clusters changes not only the rules of the data storage,
but also the rules of computation. In order to process and access the data efficiently you
have to think differently how you organize your processing [SF12]. The data model of these
systems represents a big shift from the relational model. In the NoSQL world data modeling
is typically driven by the query access patterns which are application specific. Based on the
queries you need, you define the candidate "keys" to use for partitioning. Doing so makes
sure that the data within the range is within one partition. These are application specific,
referring to how does the application read and update data. It is fundamental to know your
data access patterns before starting data modeling. For example, when retrieving the content
of a blog post, will also all the comments for that post be displayed? Or when accessing
customer profile information, will also all the orders he has done be displayed? These should
be distinguished from the data access patterns that describe the way read /write operations are
handled by the storage disks. There are four main data access patterns are: sequential reads,
sequential writes, random reads, random writes. It is fundamental to know also these data
access patterns before choosing a NoSQL store because the current storage systems focus on
optimizing for one type of workloads at the expense of other workloads due to limitations
in existing storage system data structures. With modern applications using increasingly
more complex queries and larger data-sets, data access patterns have also become more
complex and randomized [SSMT]. Accessing data sequentially is much faster than accessing
it randomly because of the way in which the disk hardware works [Micb]. To reduce random
writes, systems such as Cassandra, HBase, Redis, and Riak append update operations to
a sequentially-written file called a log (commit-log). The log is frequently synchronized to
disk. Cassandra groups multiple concurrent updates within a short window into a single
synchronization call, thus achieving high write throughput [Mar]. Data model is driven also
by the transaction needs, i.e. how are you going to update the data. Knowing that most
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of NoSQL stores do not support atomicity across multiple aggregates, you model the data
within the boundary of the transaction support: within one row (column-family), document
(document-based), item (SimpleDB, DynamoDB, etc), or entity group (GAE Data store).

In NoSQL you first design the queries and then model the data around them. The applications
that will make use of NoSQL solutions, have to give up the good software engineering princi-
ples such as object-oriented design heuristics and data normalization to gain performance
and application development agility. At the heart of NoSQL data model is the principle
of de-normalization. Application developers should not be reluctant of duplicated data as
the assumption with NoSQL technologies is that storage is cheap. Now the complexities of
design shift from the persistence layer to the application layer. Scaling out becomes easier
if the system doesn’t need joins, thus NoSQL stores sacrifice complex query capabilities. In
NoSQL systems, joins are often handled at design time during data modeling as opposed to
relational models where they are handled at query execution time [HSB].

Most NoSQL systems don’t support high level query languages with built-in query opti-
mization. But, there are some exceptions, e.g. MongoDB offers a query optimization feature,
the command cursor.explain() provides you information on a query plan. They sacrifice the
power of declarative query, thus relying on applications to enforce data integrity [SF12]. Even
though they don’t enforce referential integrity, consequently not being able to implement
joins, it is a common design principle to store IDs that reference other entities in your data
store. Contrary to the proponents of application development agility as a driver toward
adoption of NoSQL systems (together with the simple APIs argument), the skeptics highlight
the fact that the application developer will have to worry about optimizing the execution
of their data access calls with joins or similar operations as they have to be implemented in
the application layer. The query optimizations of NoSQL systems are not even close to the
sophisticated ones found in mature RDBMSs [Moh13]. Microsoft identifies eight applications
types that can be considered for migration to the Cloud (Microsoft Azure, 2012). Out of
these eight, the ones highlighted in bold are those applications that can benefit from NoSQL
solutions as well.

1. SaaS$ applications

Highly-scalable Web sites

Enterprise

Business intelligence and data warehouse applications
Social or customer-oriented applications

Social (online) games

N o ok DN

Mobile applications
8. High performance or parallel computing applications

Table 4.1 and 4.2 provides a summary of where each category of NoSQL databases is best
used for and for which use cases it’s not the appropriate solution. This classification is a
summary based on [SF12], [BBBI], [Oraa] and the analyzed use cases from the industry.
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Table 4.1: Application Use Cases for Key-Value And Document Databases

Subcategory

Best used for Not suitable for

Key-value

Document-oriented

e Big Data e Complex query and ag-

gregation needs
e Cache or Blob data

e Relationships between

e Session and Shopping cart sets of data

data
: . ) e Multi-operation transac-
e Online Social Gaming tion

o User profiles e Key ranges processing

e Big Data e Multiple document

. transaction
e Event Logging

e Ad-hoc queries
e Content Management Sys-
tems
¢ Blogging Platforms

e Web and Real-Time Analyt-
ics

e E-Commerce Application

e Online Social Gaming

44
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Table 4.2: Application Use Cases For Columnar And Graph Databases

Subcategory

Best used for

Not suitable for

Column-family

Graph databases

For massive scalable sys-
tems with (semi)structured
data

Big Data
Event logging

Content management sys-
tems

Mobile and Social platform

Web analytics purposes

Social networks
Semantic Web data

Routing, dispatch and
Location-based Services

Recommendations engines

e ACID transactions for
writes and reads

e For query patterns that
changes as it requires
changes in the column-
family design

Global graph operations
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We can categorize the drivers of NoSQL adoption as follows:

e Highly available: for consumer facing applications (Cloud OLTP workloads [CST*10])
or dynamic Web sites where high availability is crucial.

e High performance: The class of online gaming applications together with the explosion
of smart devices, poses high performance requirements as these applications allow
users to quickly launch a game, connect to a server, and collaborate with other players
that are online.

e Application development agility: when you are on a tight project schedule, but the data
tit more on the relation model. Nokia use case: having a project with a tight deadline,
they developed it all with MongoDB as it was very quick to develop. Now they are
going back and porting it to MySQL because it’s really more of a relational data set [Leo].
For this scenario document databases are recommendable, because they are easier to
use than Hadoop or Cassandra.

e Product innovation: when data stores provide high flexible schemas that can support
the continuous changing format of the data. The requirement for schema flexibility is
not necessarily connected to being highly scalable. You might have a small set of data
that their schema changes frequently. This is the reason of being classified as a different
use case.

The first two rely on the system being scalable to achieve their scope. The latter two exploit
the schema-less nature of the NoSQL databases and the agility they offer in terms of program-
ming.

Most of the data sets mentioned in Table 4.1 and 4.2 like Web traffic log files, social networking
status updates, advertisement click-through imprints, road-traffic data, stock market tick data,
and game scores are primarily, if not completely, written once and read multiple times. Such
data sets have limited or no transactional requirements at all [Tiwl1]. The commit/rollback
functionality across many tables as in RDBMSs is generally not available in NoSQL solutions
— a write either succeeds or fails. The atomicity of transactions is mainly guaranteed at
the aggregate level (even though there are some NoSQL systems, like RavenDB that says
to support multiple document transactions [Rav]. Using transaction protocols like 2PC and
Paxos makes it difficult for databases to scale out, especially between data centers, as WAN
communication is involved.
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Table 4.3: RDBMS versus NoSQL Features Comparison

Features RDBMS NoSQL

Data model Relational model Domain driven

Data modeling Start from available data Data access and update pat-

drivers terns

Transactions Almost all support ACID Atomic transactions at the ag-
gregate level

Data types Strongly typed Loosely typed

Joins Yes Emulated at the application
layer

Indexing Primary, secondary and different Limited

storage types

Design Complexity =~ Persistence layer Application layer

Role-based access Yes No support

functionalities

Data integrity Responsible is Persistence layer ~ Shifted at the application
layer

Consistency Strong (also tunable by the appli- Eventual (also tunable by the

cation) application)

Schema mismatch Database Application/Data  Access

detection layer

Query support Complex and ad-hoc queries Not suitable for ad-hoc and
complex queries

Query language SQL REST, Client libraries, Proto-
col buffers

Query optimization = Responsibility of database Responsibility is shifted to the
application

Table 4.3 summarizes based on the analysis, the differences between RDBMS and NoSQL
databases. Data integrity is not ensured by the database, as there is nothing like foreign key;,
cascade update/delete in NoSQL to preserve the integrity of data. This makes NoSQL stores
not suitable for applications that have high requirements for data integrity. Riak support
the three methods for querying, ie.e REST, client libraries and protocol buffers [Basc]. The
indexing features are more limited compared to RDBMSs, but we see that are being attempts
to enrich these features. For example, even key-value stores are adding new features with
time, like Dynamo recently announced secondary indexes support [Ama]. Also Riak database
supports secondary indexes. Even though NoSQL databases are not good in general for
complex and ad-hoc queries, there are exceptions like MongoDB which is famous for its
dynamic query capabilities.
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4.4 Relational Databases Analysis

Schemas are descriptions of data schema in a formal language supported by the database
management system. A schema consists of schema objects and their interrelationships. The
schema objects include: columns, tables, relationships, views, indexes, packages, procedures,
functions, queues, triggers, types, sequences, materialized views. There are others, such as
synonyms, database links, directories etc. which we do not consider in this work. All of
these schema objects names are known as identifiers. A very popular problem in dealing
with RDBMSs is the impedance mismatch problem. The object-relational impedance mismatch
problem arises when trying to combine object and relational artifacts, which results in con-
ceptual and technical difficulties. More specifically they arise when a RDBMS is being used
by an Object-Oriented Programming (OOP) language or style where class definitions are
mapped to database tables or relational schemas. One solution to this problem are the ORM
frameworks that handle the interactions with the database, enabling the client to interact
only with objects and their relationships. These object mappers are convenient, because they
facilitate validation, type checking, and associations. But, they can not scale well for large
datasets as it pulls the information on relationships between objects into memory[SA12].

The focus of this thesis is on tables, columns, relationships, data types, constraints, indexes
for MySQL version 5.6 and PostgreSQL 9.2.

e Constraints are used to constrain column data. The supported constraints by both
MySQL and PostgreSQL are: Primary key, Foreign key, Not-Null, Unique, Check.
MySQL accepts the Check constraints but it ignores them, while PostgreSQL enforces
them.

o Indexes - They are good for faster retrieval, but slow down insert and update operations.
They can be implemented using a variety of data structures such as B-Trees, Bitmap,
Hash, etc. MySQL and PostgreSQL create by default an (hash) index on the primary
keys of a table. B-tree indexes are more flexible for less-than, greater-than, equals-to
matches queries [RWC12]. Hash indexes are used only for equality comparisons,=,<=>
but are very fast. Most of the key-value stores rely on this type of single-value lookup.
They are not used for comparison operators such as < or > that find a range of values.

e Stored programs include stored procedures and functions: database objects defined in
terms of SQL code that are stored on the server for later processing. Stored program
definitions include a body that may use compound statements, loops, conditionals, and
declared variables. User-defined functions(UDF) can be regarded as an external stored
function.

o Triggers are named database objects that fire automatically when insert, delete, update
(or other events) occur. It is a type stored procedure, but it runs based on events on a
table instead of just being a set of instructions to be executed repeatedly.

e Events are tasks that the server runs according to a schedule.

e Views are stored queries that produce a result set when referenced. A view acts as a
virtual table.
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4.4.1 MySQL 5.6

MySQL doesn’t make a distinction between database and schema. MySQL knows many
storage engines such as MyISAM, Innodb, Memory, BerkleyDB, NDB and many more. The
implementation details (full text search, transactions, foreign keys, check constraints, upper
and lowercase, etc.) are dependent upon the engine. InnoDB storage engine is fully ACID
compliant, but using InnoDB in MySQL fails ACIDity, because MySQL doesn’t propagate the
triggers of foreign keys for this engine.

e Data types We consider for migration the MySQL version 5.6 and the following analysis
apply only to this version.

e Indexes - MySQL indexes all data types. It can store the indexes internally as B-Tree,
R-Tree, Hash, Fulltext. Knowing what kind of indexes does the data store uses to store
indexes is important because each of them supports better a class of query operators.
For example, Hash indexes are intended for queries that use equality operators. Prefix
indexes (also referred to as partial indexes) cover the first N characters of a string
column, making the index much smaller than one that covers the entire width of the
column.

Composite indexes are created on more than one column.

Full-text indexes are used for full-text searches and are created only on CHAR, VAR-
CHAR and TEXT columns.

Spatial indexes used for spatial data types.

Unique is an index on a column or set of columns that have a unique constraint. This
helps in enforcing data integrity.

Schema/database and table names’ case sensitivity depend on the underlying operating
system. While column names are case sensitive on all OS, Database and table names are not
case sensitive in Windows, but are case sensitive in most varieties of Unix, because they are
stored as files in the underlying operating system. The case sensitivity of the identifiers might
be relevant if you decide to preserve it, and in case the target data store is case in-sensitive.
So, if you are running your database in Unix and migrating to a NoSQL store with SQL-like
capabilities where identifiers are case sensitive, the re-usability of the queries will be much
higher.

4.4.2 PostgresSQL 9.2

PostgreSQL makes a distinction between a database and schema, as opposed to MySQL. Some
of its language features are extensions to the standard SQL. PostgresSQL use PL/pgSQL
which is a block-structured language. It is fully ACID compliant [Posa]. PostgreSQL does
not know different storage engines as compared to MySQL. A database contains one or more
named schemas, which contain other named objects such as: tables, data types, functions, and
operators. They are analogous to directories at the OS level, with the difference that they are
not nested. PostgreSQL uses transactions everywhere. PostgreSQL supports stored functions,
which are in practice very similar to MySQL stored procedures.
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Table 4.4: MySQL Limitations

Feature Size Limit Description

Storage 256TB MyISAM, 56TB InnoDB Depends on storage engine

Columns 4096 per table, but depends on E.g Innodb has 1020 columns
storage engine per table

Maximum row size 65,535 bytes In all storage engines

Secondary Indexes 64 per table

MVCC In InnoDB supported, no support Multi Versioning Concur-
in MyISAM rency Control

Foreign Key In InnoDB supported, no support To ensure data integrity
in MyISAM

e Data types - apart of the numeric, date and string data types, PostgreSQL allows
columns of a table to be defined as variable-length multidimensional arrays. Arrays can
be created on any built-in or user-defined base type, enum type, or composite type. In
New in PostgreSQL 9.2 are the JSON data type and the Range data type which stores
a range of values for a given data type. For a complete list of PostgresQL data types,
check 8.1. Text data type has a variable unlimited length. The SQL standard defines a
different binary string type, called BLOB or Binary Large Object. The input format is
different from bytea, but the provided functions and operators are mostly the same. For
the boolean type TRUE and FALSE are the preferred (SQL-compliant) usage.

o Indexes - PostgreSQL stores indexes internally as: B-tree, Hash, GiST, SP-GiST and GIN.
R-tree index method has been removed from version 9.2 because it had no significant
advantages over the GiST method.

Function based index: an index column may not be just a column of the underlying table,
but can be a function or scalar expression computed from one or more columns of the
table, e.g. CREATE INDEX testl_lower_coll_idx ON test1 (lower(coll)) creates an index
with on the lowercase values. This is supported only by PostgreSQL, not by MySQL.
Partial index: has a different semantic from the ones in MysQL. These are indexes
built over a subset of a table which is defined by a conditional expression (called the
predicate) using the Where clause. The index contains entries only for those rows that
satisfy the condition.

Multicolumn indexes (MySQL composite equivalent) are created on more than one
column. Currently, only the B-tree, GiST and GIN index types support multicolumn
indexes.

e Constraints
Apart of the constraint mentioned above, Exclusion is a constraint specific to PostgreSQL.
It ensures that if any two rows are compared on the specified columns or expressions
using the specified operators, at least one of these operator comparisons will return
false or null. Table and column names are case sensitive.
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4.5 NoSQL Stores Analysis

We dive into each of the data stores with respect to data model, data types, keys, indexing,
querying, partitioning and the limitations they have.

4.5.1 Amazon SimpleDB

e Data Model - simply large collections of items organized into domains. Items are
described by attribute name-value pairs. Customer account, the equivalent of a RDBMS
instance, is Amazon Web Services account to which all domains are assigned. Because
of the flexible nature of Amazon SimpleDB, it is entirely possible to use a single domain
to store all of the data for an application. Each item can have different number of
attributes, an item can have multiple attributes with the same name, an (attribute name,
value) pair should be unique.

e Data types - in SimpleDB, everything is stored as a UTF-8 string value. Primitive data
types like integers and floats are not natively supported. Developers choose a unique
string name for each item at creation time. Whatever format that MySQL chose to
export your data it will be retained as String in SimpleDB. This makes your migration
easier because it minimizes application logic changes [Leal].

e Keys - to assign unique identifiers, RDBMSs utilize locking so that to avoid dupli-
cates. But locking has a negative impact on scalability. Amazon SimpleDB chooses a
much simpler approach. By shifting the responsibility of creating a unique identifier
to the application code, the creation of a unique value is a trivial operation for any
programming language. For more stringent applications, you can use a Universally
Unique Identifier (UUID) instead. As it doesn’t matter whether the identifier follows
a pattern or not, when migrating data to SimpleDB, the old values generated by the
source databases can be kept.

¢ Indexing- data in each domain is indexed on all attributes. They require no formal
definition because the SimpleDB service creates and manages them behind the scenes.

e Querying - predefined libraries, languages specific wrappers can be used for the Ama-
zon SimpleDB operations. Attributes can be searched with various lexicographical
queries. Conditional puts and deletes are exposed via the PutAttributes and DeleteAt-
tributes APIs by specifying an optional condition with an expected value. They are
useful for preventing lost updates when different sources write concurrently to the same
item. Sorting is lexicographical in SimpleDB. If you plan on sorting by certain attributes,
then zero-pad logically-numeric attributes. For example, the string "10" comes before
"2" in lexicographical order. If you zero pad the numbers to five digits, "00002" comes
before "00010" and are compared correctly.

e Partitioning- you need partitioning in SimpleDB when:
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Table 4.5: SimpleDB Identifiers limits

Identifier Limit Allowed characters Sensitivity
Domain name  3-255 chars a-z, A-Z,0-9,’_’,’-,"’ Yes
Item name 1KB All UTF-8 characters that are Yes

valid in XML documents

Attribute name 1KB All UTF-8 characters that are Yes
valid in XML documents

Attribute value 1KB N/A N/A

- The required throughput cannot be provided by a single domain. In order to
achieve high performance data can be partitioned across multiple domains, to
parallelize queries, thus improving overall throughput. But, this partitioning
across domains should be done manually.

— Queries of your application may require most of the items in the domain to be
examined. In this case, the size of your domain will likely influence the query
performance.

— When the data produced by your application exceeds the storage limit of 10GB per
domain.

In case when the dataset does not naturally present an easy parameter for partitioning,
hash functions can be applied to create a uniform distribution of items across multiple
domains.

Joins are not supported natively by SimpleDB. The data you normally would store in a
related table could be de-normalized into multiple values in a single attribute, to avoid
intersections.

Transactions - SimpleDB does not support complex transactions. The transactional
semantics offered: Conditional Puts/Deletes — enable you to insert, replace, or delete
values for one or more attributes of an item if the existing value of an attribute matches
the value you specify.

Limitations - Many of the structures defined in a typical relational schema such as:
stored procedures, triggers, relationships, and views do not exist in SimpleDB. Fields
and types exist in SimpleDB but are flexible and are not enforced on the server. Attribute
size limit is 1KB, and combine that with the limitation of a maximum of 256 attributes,
the maximum size of an item can be 256 KB. A consideration to consider during data
migration, also for the storage requirements of your data sets.
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4.5.2 Apache Cassandra 1.2

¢ Data model of Cassandra consist in the following:

— Keyspace is the first dimension of the Cassandra hash, and is the container for
column families. Keyspaces are of roughly the same granularity as a schema or
database (i.e. a logical collection of tables) in the RDBMS world.

— Rowis a collection of columns or super-columns identified by a key. Each column
family is stored in a separate file, and the file is sorted in row (i.e. key) major order.
The row key determines which node the data is stored on. Related columns, that
are accessed together, should be kept within the same column family.

— Column Families is the analogous of a RDBMS table. A column family (CF) is a
container for columns. A column family holds an ordered list of columns, that can
be referenced by the column name. They are also called sparse tables, because the
number of columns can vary per row.

— Column is the smallest increment of data. It’s a triplet that contains a name, a
value and a timestamp. The timestamp is used by Cassandra for last write conflict
resolution.

— Super Columns is a column whose values are columns, i.e. a (sorted) associative
array of columns.

The questions you should ask before start the modeling in Cassandra is how do you can
organize data into that map to satisfy your query requirements of fast look-up, ordering,
grouping, filtering, aggregation, etc. Because of Cassandra’s highly distributed nature,
you cannot introduce new queries in Casandra by just adding secondary indexes. Still
you can start with entities and relationships modeling and then continue modeling
around query patterns by de-normalizing and duplicating. A change in schema required
a server restart in < 0.7 versions.

¢ Data types - the only schema information that must be defined for a table is the primary
key (or row key) and its associated data type. Composite built-in type for columns.
Unlike in relational database where column names can be only of String type, both row
keys and column names can also be long integers, UUIDs, or any kind of byte array.

e Keys - the primary key (row key) determines which node the data is stored on. Cas-
sandra offer the possibility to have compound primary keys: PRIMARY KEY (col-
umnl, column2,..,columnN). Composite partition keys: You can declare a composite
partition key formed of multiple columns by using an extra set of parentheses to
define which columns form the compound partition key: PRIMARY KEY ((column1,
column2),..,columnN). In this case all the rows with similar column1 and column2 values
will be stored into the same physical node.

e Indexes - primary indexes for a table is the index of its row keys. Each node maintains
this index for the data it manages. Secondary indexes - Cassandra offers secondary
indexes where the range of the indexes values is low and finite (low cardinality). For
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example if the table Customer has billion users, indexing the nation column is a good
choice, as many users will share the same value. If you create indexes on columns
that have many distinct values, a query between the fields will incur many seeks for
very few results. If the nation column had been indexed by creating a table such as
CustomersByNation, your client application will have to populate the table with data
from the Customer table. Cassandra implements secondary indexes as a hidden table,
separate from the table that contains the values being indexed. You can create multiple
secondary indexes. The limitation is that only equality queries are supported.

¢ Querying - Cassandra is optimized for hash tables rather than ordered tables in per-
forming read and range queries. It uses consistent hashing which ensures no remapping
of keys when slots are added or removed. Cassandra Query Language (CQL)is an
SQL-like query language, compatible with the JDBC API. Cassandra stores identifiers as
lower case. You can force the case by using double quotation marks (in CQL3). There is
no support for ORDER BY and GROUP BY statements in Cassandra as there is in SQL.
There is a query type called a SliceRange, it is similar to ORDER BY in that it allows a
reversal. It supports multidimensional range queries since version 0.7 with a limitation
that there must be one dimension with an equal operator in the query expression, which
hinders the broad usage of these queries. Cassandra does data validation only on
column names, not on row key data type or column value, and that only for sort order
purposes.

¢ Partitioning - the two major policies are: random partitioning(RP) and order-preserving
partitioning (OPP). OPP has one obvious advantage over RP: it provides the ability to
perform range queries, but it might cause load-balancing problems [OGOG'11].

Tunable consistency: The most usable level is quorum. Quorum level guarantees that
half of the nodes are updated before the action returns. Another option is the Write all
Read one model in which case every read will be consistent. Cassandra does not update
data in-place on disk, nor update indexes, so there are no intensive synchronous disk
operations to block the write. That is the reason why Cassandra is fast in writes. By
setting the durable_writes to no (default is set to True), you can bypass the data being
written to the commit log, and write only to the memtable. But, in this case you risk
losing data. Triggers Cassandra doesn’t support triggers natively. Even though you can
implement your own, like the case of Cassandra Async trigger [GH] a procedure that
is automatically executed by the database in response to certain events on the column
families. A trigger is set on a column family and is executed in case of any update to the
column family. In contrast to traditional triggers, which are synchronous, Cassandra
Async triggers are asynchronous and are implemented in Java, by implementing the
execute method of ITrigger interface.

4.5.3 MongoDB 2.4

MongoDB is one of the most popular document databases and with a strong community
support, and these were the reasons we chose this database for the validation in the document
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database category.

¢ Data Model - MongoDB manages collection of JSON documents. This allows data to

be nested in complex hierarchies and still be queryable and indexable. A collection is
the analogous RDBMS table with the difference that it has not a predefined schema.
Collection and attribute names are case sensitive. A document can contain complex
structures such as lists, or even documents.

An example of a MongoDB JSON document format for an order based on the TPC-H
database schema:

Order = {
_id: "123456789",
"OrderKey": 7556,
"CustKey": 9118,
"OrderDate": ISODate('2010-09-24"),
"OrderPriority": 1,
"OrderStatus": "SHIPPED",
"TotalPrice": 130,

"Clerk": 3,

"ShipPriority": 2,

"Comment": "This order has been shipped"
b

Listing 4.1: JSON Document Format

The value of comment can be also a list of documents, for example: comment:[ "by":
"Joe", "date": ISODate("2012-10-15") ].

Data types - each document is stored in BSON format, which is a binary-encoded
representation of a JSON-type document. MongoDB drivers and clients serialize and
de-serialize to and from BSON when they access BSON-encoded data, while the server
understands BSON and doesn’t need to apply serialization. The extra data types
supported by BSON are: regular expression, binary data, and date.

Indexing - each document has a unique identifier, which can be generated by MongoDB
or by the application. The _id is the primary key of each document. The _id can
be composite attribute as well, thus supporting composite primary keys. MongoDB
indexes every _id field in all collections. Indexes can be as well defined on any other
attributes of the document. MongoDB supports indexes that include content on a single
tield, as well as compound indexes that include content from multiple fields. When
queried, documents in a collection are returned in natural order of their _id in the
collection.

Querying - one of the good features of document databases, as compared to key-value
stores, is that you can query the data inside the document without having to retrieve
the whole document by its key and then introspect the document. This feature brings
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these databases closer to the RDBMS query model.

Server-side JavaScript execution: where aggregation functions written in JavaScript are
sent directly to the database to be executed. There is a special system collection named
system.js that can store JavaScript functions for reuse on the server side. MongoDB
offers a new mechanism called Aggregation Framework for queries that require things
like MAX, AVG or GROUP BY from SQL, which allows to run some ad-hoc aggregation
queries without need to write cumbersome Map-Reduce scripts [MB11]. Some of the
new features included in version 2.4 is Text indexing which offers native, real-time text
search. Also, in order to detect peak times, Working Set Analyzer provides data about
server resource usage. API - MongoDB provides drivers for most of the programming
languages. Cloud providers for MongoDB as a Service, like MongoHQ and MongoLab
do offer REST API as well. MongoDB has good support for Web framework integration.
Rails, one of the most popular Web application frameworks, can be used effectively
with MongoDB. The data from Rails applications can be persisted via an object mapper.

Sharding and Replication - MongoDB supports ordered, range based partitioning with
the any user specified field. MongoDB provides automatic sharding, but you need it
only in the following cases, otherwise you will just add extra complexity. 1. Your data
set approaches or exceeds the storage capacity of a single node in your system.

2. The size of your system’s active working set will soon exceed the capacity of the
maximum amount of RAM for your system.

3. For write-heavy applications, when a single MongoDB instance cannot write data
fast enough to meet demand.

Sharding is done in an order-preserving manner, thus making it easier to support range
queries and indexes.

Shard Key determines the distribution of the collection’s documents among the clus-
ter’s shards. The shard key is a field that exists in every document in the collection.
MongoDB distributes documents according to ranges of values in the shard key. A
given shard holds documents for which the shard key falls within a specific range of
values. They can be either single field or compound of more than one field.

Hashed Sharding are new in MongoDB 2.4. They use a hashed index of a single field
as the shard key to partition data across your sharded cluster. They work well with
fields that have a good cardinality and increase monotonically like ObjectID values or
timestamps.

Replica Sets and Master-Slave are alternatives for achieving replication in MongoDB.
The original implementation was Master-Slave until version 1.6 onwards which con-
tained the Replica Set feature. From then on, Replica Set is a functional superset of the
Master-Slave setup which supports asynchronous replication, automatic fail-over and
automatic recovery of a member node. Features that master/slave didn’t originally
support.

You can specify in the code different levels of consistency at the operation level. This
involves a trade-off that you need to carefully make, based on your application needs
and business requirements, to decide what settings make sense for slaveOk (i.e. you
can read from the replicas) during read or what safety level you desire during write
with WriteConcern (if set to REPLICAS_SAFE a write is not acknowledged before being
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Table 4.6: Best Workloads and Use Cases for selected NoSQL Stores

NoSQL vendor Best for workload Use cases

Fast reads/ Not very large and Online games, logging, metadata

SimpleDB complex datasets iggsexmg, click-stream logs, cata-

Real time/ For complex and Content and Product data man-
MongoDB 1

arge datasets agement

Wite of 41 1 Applications that need both real-
Cassandra rite often read less/ Very large ;110 ang analytics capabilities;

datasets Enterprise content search

written to disk or propagated to two or more replicas/slaves). By setting slaveOk, you
can increase the read performance allowing read requests to be served by slaves. The
same feature can be set per operation as well.

e Limitations - the maximum BSON document size is 16 megabytes. Indexed items can
be no larger than 1024 bytes. A single collection can have no more than 64 indexes.
Database and collection name, must be shorter than 123 bytes. There can be no more
than 31 fields in a compound index. The dot character is not permissible in database
names and in attribute names.

MongoDB has: capped collections and tailable cursors that allows MongoDB to push data to the
listeners. These collections can be used to emulate triggers. Potential for injection attacks in
MongoDB are high as it heavily utilizes JavaScript as an internal scripting language. Most of
the internal commands available to the developer are actually short JavaScript scripts. It is
even possible to store JavaScript functions in the database in the db.system.js collection that
are made available to the database users. Because JavaScript is an interpreted language, there
is a potential for injection attacks [OGOG™11].

Table 4.6 gives a summary of the workloads and uses cases best suited for the NoSQL stores
we have chosen for the validation of our approach.

The reserved words in the target databases are stored in a table, so that during migration it
can be checked whether an identifier contains one of those reserved words, and in this case
an error alert should be displayed to the user.

4.6 Modeling Practices

It is not logical to think of canonical modeling patterns that apply to all NoSQL categories
because of the different data models that underpin them, but also because vendors of the
same category provide different features. Still, there are some modeling patterns that apply
to more than one category.
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De-normalization- in contrast to a relational database, a NoSQL data store attempts to group
similar data together (the aggregate) on disk to limit the number of seeks required to ma-
nipulate data. In this way it improves access times, thus achieving performance. It means
copying the same data into multiple documents or tables. This pattern is referred to as
de-normalization. Apart from high performance, another reason for de-normalization is
retaining the integrity of data. For example: when making an invoice, it’s risky to store keys
that refer to Customer or Price information as they can change over time, and then you would
lose the integrity of the invoice document as it was on the invoice date. The price to pay
for de-normalization is that the application needs to know all the places where the data are
duplicated and needs to correct them, synchronously or asynchronously. If the data is too big
to be de-normalized, store them in separately and join at the application level. In this case,
the parent-child integrity can be enforced at the data access layer.

De-normalization is a data modeling practice that applies to most of NoSQL stores. It is the
key design principle in all data models in order to shape the data for simulating joins or for
faster access. Different data stores implement different de-normalization techniques.

Embedding [column-family, document, key-value]: To de-normalize data, store two related
pieces of data in a single document. This applies when you have "contains" relationships
or you have one-to-many relationships where the "many" objects always appear with or are
viewed in the context of their parent documents. The usage of this practice is limited by the
update queries you will have, and by the size limitations of the value. In SimpleDB it can be
implemented by a multi-value attribute.

Referencing is similar to the foreign keys in the relational world. Instead of embedding, store
the ID of the referenced object to indicate the relationship between them. This can be used
when modeling complex relationships. As there is no concept of joins, it is the client side
application will issue more follow-up queries, i.e. more round trips to the server.

Valueless column [column-family databases] - sometimes also referred to as Valuable key: a
key can itself hold a value, thus the column value may not be defined at all. For example, if
you have a column family for holding the orders of costumers (OrdersByCustomer) then the
customer ID will be row key of the new column family and the column names will be his
order IDs, thus is not needed to store the column values at all. The Figure 4.2 illustrates the
idea behind this practice.

Composite Column - build your column name out of one or more component values. This
pattern fuses together two scalar values with a separator to use as a key.

Nested set [Document databases] is a practice used for modeling the hierarchical data set.
Rich documents - in document databases is a good practice to keep and design rich docu-
ments, so that data can be accessed together. The size of the document has to be kept into
account while applying this practice.

In addition to good practices during modeling, there are also some not recommended practices
derived from the industry use cases when using NoSQL solutions.
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Figure 4.2: Valueless column in Cassandra

¢ Do not use super columns - [Column-family databases].

They are a legacy design from a pre-open source release and have been criticized by the
Cassandra community for performance issues and the lack of support for secondary
indexes. This design was structured for a specific use case and does not fit most use
cases. Super columns read entire super columns and all its sub-columns into memory
for each read request. This results in severe performance issues. Additionally, super
columns are not supported in CQL 3. The same "super column like" functionality
(or even better) can be achieved by using composite columns [Pat]. "However super
columns have been shown to impose a 10-15% performance penalty on reads and writes,
so we have decided not to use them as our current object modeling tasks do not require
their use." [SA12]. Use composite columns instead. Composite columns provide most
of the same benefits as super columns without the performance issues [Ant].

e Motley types - [MongoDB databases]
Even though it is allowed, avoid mixing of types in a single key’s value within one
collection, it makes the application logic complex, and makes BSON documents difficult
to parse in certain strongly typed languages [Ban11].

e Fat documents - [Document databases]
Don’t think of a document as a real-life document, avoid to create such fat and compli-
cated documents. You should make the difference between a rich and a fat document.
Relationships between collections can exist. Keep the document size small (e.g. in Mon-
goDB under 100KB per document unless unless storing raw binary data) and do not
nest more than few levels deep [Ban11]. This helps with faster updates when bringing
the document to memory and better readability of the documents.

One-to-one relationship: use Embedding pattern, unless you know the document size might
exceed the target document storage limit or if you don’t need joins. In this case use Referencing.
One-to-many: can be modeled using either Embedding or Referencing.

Many-to-Many relationships in RDBMS are modeled using mapping tables which store the
pair of keys. In NoSQL store these tables can be modeled using the Array keys or the Embedding
pattern.
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The below are recommendations for the naming conventions:

e Preserving case-sensitivity - If you want to store the case sensitivity of your identifiers,
in Cassandra you should quote them, because it stores them internally as lower case.
Also while querying them, you should use the quotation marks. This should be kept
in mind during query transformation. Also Amazon SimpleDB doesn’t provide case-
insensitive query. The query clause LIKE in MySQL does not distinguish between upper
and lower case, while in PostgreSQL LIKE is for case sensitive searches, and ILIKE case
insensitive searches. MongoDB collections names are case insensitive.

e Short column/attribute names as they are stored for every row/document and will re-
sult in increased storage. For example, Amazon S3 limits the length of object identifiers,
so you must organize your data in a way that accommodates this and other Amazon S3
constraints. MongoDB has a limit to the length of the field to be indexed, which is 800
bytes.

Data type conversion:

SimpleDB zero-padding - when the data store support only lexicographical queries, like the
case with SimpleDB, zero pad the value in order to achieve numerical comparison. MySQL
has the ZEROFILL feature which can help to fill columns with zero at the beginning while
selecting (they are stored without 0). You may alter the integer columns to ZEROFILL before
exporting the data, so that lexicographical queries in SimpleDB will return correct numerical
comparisons.

Cassandra has only Text and Varchar, so all the char, varchar and text data types should be
converted to one of these two when migrating to Cassandra.

4.7 Concept

4.7.1 Schema Objects Mapping

NoSQL stores do not make any distinction between a database and a schema as PostgreSQL
does. You will have to create a different database to accommodate each of your schemas. There
is no one-to-one translation between a RDBMS schema and a NoSQL schema. What drives
the schema model of the target data store, as stated many times before, are the application
specific access patterns and the storage size limitations of the data store.

e Tables, Columns: for these objects a one-to-one mapping exist with a NoSQL object on
the target store. Table 4.7 shows a summary of this mapping.

o Object Identifiers - the SQL standard is to use single quotes for data and double quotes
for identifiers. MySQL allows to use single and double quotes for data and for identifiers,
while PostgreSQL sticks to the SQL standard.

e Data types mappings - is the data type supported by the target store? In case the
target data store doesn’t have the data types being used by the application, additional
techniques if possible can be used. For example, SimpleDB provides hints how to
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Table 4.7: Logical Data Model mapping

Database Family Database Vendor Logical Data Model
RDBMS MySQL Schema/Database, Table, Row, Col-
umn
RDBMS PostgreSQL Schema, Table, Row, Column
Key-value Amazon SimpleDB tC%st?mer Account, Domain, Item, At-
ribute
Key-value Amazon DynamoDB Database, Table, Item, Attributes
Key-value GAE Datastore Account, Kind, Entity, Properties
Key-value Windows Azure Table storage ?torage Ao, T, By, Propear
ies .
Column-family ~ Apache Cassandra Keyspace, Column family, Row, Col-
umn )
Document-based MongoDB IF\TaIlC*ltespace, Collection, Document,
ie

convert the Date and Numerical types so that lexicographical queries return correct
results. You can apply the zero-padding technique to achieve numerical-like comparison.
For example, the string "10" comes before "2" in lexicographical order. If you zero pad to
five digits, "00002" comes before "00010" and are compared correctly[Sim]. This doesn’t
work with negative numbers.

MySQL doesn’t have a real boolean value. BOOL and BOOLEAN are synonyms for
TINYINT(1). A value of zero is considered false. Nonzero values are considered true.
PostgreSQL knows a real boolean data type; it can store for the value True many options,
True, 't’, "true’, 'y’, 'yes’, “on’, "1’; same for the False value. MySQL doesn’t support
array data type, while PostgreSQL does, it supports also multidimensional arrays. This

is important when migration from PostgreSQL.
e Index types - a summary is given in Table 4.8.
MongoDB support Unique index but only on non-sharded collections.

After describing the schema objects of MySQL and PostgreSQL, and analyzing the features
of NoSQL stores, the following are the schema objects that cannot be migrated to NoSQL.
For some of them we provide the corresponding impact in the data access layer and the
application layer on how to simulate them.

e Stored procedures and triggers because they are composed of SQL statements which is
not supported by the NoSQL databases (partially supported). The security context like
Definer, Invoker in which the stored procedures execute, is not possible to achieve in
NoSQL databases because of missing role-based access functionalities.

o Indexes are usually created on-the-fly, as data is added. For example, SimpleDB indexes
data automatically, you cannot define indexes.

e Referential integrity constraints

e Security privileges
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Table 4.8: Indexes Mapping

Index type MySQL PostgreSQL Migration to NoSQL
Primary Yes Yes Yes

Secondary Yes Yes Partially

Unique Yes Yes Mostly no

Full-text Yes Yes Mostly no

Prefix Yes N/A Mostly no

Partial N/A Yes No

MongoDB (32

16 columns per 32 columns per fields per in-

Multi-column (Composite)

index index d
ex)
Function-based N/A Yes No
Sparse Yes Yes MongoDB
Mainly
Spatial Yes Yes document
databases
Hash Yes Yes Yes
Bitmap N/A Yes Few
B-Tree Yes Yes Yes

Table 4.9: RDBMS Schema Objects Migration Summary

Fully migrated Partially migrated Cannot be migrated
Constraints (FK, Not Null, Check,

Tabl Data types, in- } -
Ri}zNesS, dexes c};lr)\straints Unique), Stored Procedures, Trig-
Colur;ms (PK) ’ gers, Operators, Functions, Autoin-

crement

e Partitioned table definitions

There is no support for auto increment (Roll-Your-Own): this functionality it is not supported
natively by the database, but it can be emulated; for example, invoking a function that set
the value of the field by counting the existing ones. This will impact the application layer
where this functionality has to be implemented (reading the last value either from a queue, a
collection or a table, and then increment it). The idea of a globally sequential number is not a
good idea in distributed systems as you have to make all participants agree and accept the
evolution of the sequence, which prevents scalability.

4.7.2 Systems Trade-offs

Every data model is meant to solve different problems. Different NoSQL data models are
meant for different application workloads and scenarios. To make the right decision when
choosing the NoSQL store for your business problem, requires a very good low-level under-
standing of the target store. The plethora of NoSQL products with many different feature
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sets, makes it almost impossible to recommend only by pure data model alone. Furthermore,
the most obvious differences between NoSQL systems are between the various data models,
and thus introducing a lack of apples-to-apples comparison. In addition, the number of
emerging Cloud serving systems and the wide range of proposed applications, makes it
difficult to understand the trade-offs between these systems and the workloads for which
they are suited [CST"10]. This questionnaire provides a support for the different properties
that an application requires its data store to have by extending the existing questionnaire by
Bachmann.

No system can be best for all workloads, and different NoSQL systems make different trade-
offs in order to optimize for different applications [CST*10].

It is very important to understand how the features of RDBMS and NoSQL technologies
compare (or complement each other) to understand and make the right choice for the database
that suits best the functional and non-functional properties of your application. Even though
some databases seem to offer all the features an application might need, they don’t have
the appropriate industry or community support to allow for a confident choice for critical
applications. You have to know the capabilities and constraints in details in order to pick up
the right database.

The best schema design is a product of deep knowledge of the database and the applica-
tion making use of this database. The new Cloud serving systems sacrifice complex query
capabilities, transactional model, data integrity features for achieving high performance,
elasticity and high availability. This was also the main motivation to the development of
these new systems, the difficulty in achieving these three properties in traditional relational
databases [CST'10].

We have abstracted the at the high level the following trade-offs that these systems make
to serve different application needs to incorporate in our methodology. For each of these
trade-offs, specific properties of the Cloud data hosting solution will be affected.

e Read performance versus Write performance
Every data store is designed to be best at read or write performance, but not at both of
them. For example, column-family stores are designed for high throughput in writes,
while key-value stores for high read throughputs. For small read /write requests the
document databases are more suitable. Apache HBase is suitable when you need
random, real-time read/write access to your big data. Most disk access patterns in
MongoDB do not have sequential properties [10ga].

e Durability versus Latency
We can distinguish between applications that have strong durability needs, where
every transaction must be committed to disk and replicated in case of node failure and
applications that are willing to relax these requirements in order to achieve the highest
possible speed. This is made possible by the tunable persistence design approach of
some databases. For example, in MongoDB, the Write concern allows you to trade write
performance with knowing the status of the write [Wri]. If you can afford to lose some
data (in case mongod process crashes or some network error occurs), e.g. in case you
are doing high throughput logging, then you can set this feature to low. The same
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with durable_uwrites feature in Cassandra. Redis gains amazing performance by caching
writes in memory before committing to disk, in exchange for increased risk of data loss
in the case of a hardware failure [RWC12].

This trade-off is mapped to the two following decisions:

Persistence approach choice for the data store: on-disk, in-memory or tunable durability.
The on-disk writing technique flushes data to disk before acknowledging a request,
writing to disk requires more time, thus you gain durability by trading off some perfor-
mance. During the query transformation this should be taken into consideration, i.e. to
set the appropriate settings when issuing write requests.

Replication strategy: synchronous versus asynchronous replication:

With synchronous replication (a node doesn’t acknowledge a write request without
propagating to all replicas), you can achieve higher durability. In asynchronous ap-
proach, the data store acknowledges the request and then propagates in the background
to the replicas, thus reducing write latency.

Consistency versus Latency

This trade-off translates into the decision between synchronous or asynchronous repli-
cation strategy, as in the previous trade-off. A synchronous replication ensures replicas
consistency, but potentially introduces high latency during writes/updates. The require-
ment for consistency level will drive the data model of your application. For example,
knowing that document databases offer consistency at a document level and not across
documents, this will drive the grouping of related data of a transaction in one document.
In case of weak consistency, how will the application deal with versions? Because the
conflict resolution is the responsibility of the application, you have to pay attention
to the efforts you will put in resolving such conflicts. In a simple key-value model it
is easy to compare versions to determine the latest value written to the system, but in
systems that return sets of objects it is more difficult to determine what is the correct
last updated set [Vogb].

Performance predictability versus Query features

For NoSQL stores it is difficult to predict throughput. Not all Cloud data stores offer this
feature. Amazon DynamoDB provides fast and predictable performance with seamless
scalability. It automatically spreads the data and traffic for a table over a sufficient
number of servers to meet the request capacity specified by the customer in the Service
Level Agreement (SLA) [Voga]. In order to yield predictable performance under all
circumstances, it imposes limitation in querying the data. For example, the SimpleDB
Query API, supports only comparison operators that map to efficient index access
operations [AWS]. But, since the domains maintains a large number of indexes, its
working set does not always fit in memory. This impacts the predictability of a domain’s
read latency, particularly as dataset sizes grow [Voga]. To simply look at the different
benchmarks for some of the NoSQL databases is not a good idea. The document size,
number and size of indexes, and the type of operation will all play a part in the actual
numbers of benchmark results. You cannot judge on the performance based on the
benchmark numbers with dummy workloads [Myt]. The most important thing you
should do is to test their performance in the scenarios that are specific to you. Reasoning
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about how a database may perform can help you build a short list, but the only way you
can assess performance properly is to build something, run it, and measure it [SF12].

All the trade-offs explained above are translated into properties of Cloud Data Hosting
Solution categories, thus extending the choices of the criteria when selecting a Cloud
NoSQL data store. Also, depending on the chosen trade-off, the respective adaptations
of the upper application layers will be shown to the user.

Looking at the industry use cases we abstract the following workloads that modern applica-
tions have to deal with.

e Read-heavy application
Some characteristics of the data store that can be suitable for this workload: A Mas-
ter/Slave deployment where the adding of slaves increases the read performance, like
the case of Wordnik, an online dictionary on how words are used today [Wor]. Also,
data stores that offers built-in caching layers or can integrate another caching layer on
top of them, such as Memcached.

e Write-heavy application
For write-heavy applications a master-less architecture like the one of Cassandra or
Riak is more suitable. A system with a Master-slave replication is most helpful when
you have a read-intensive workload, because in this case you are limited by the ability
of the master to process updates [SF12].

There are applications that deal with a mix workload, i.e. read and write heavy work-
loads. EBay recommends given its experience to keep read-heavy data separate from
write-heavy data because they scale differently, even though this is a recommendation
also for the world outside NoSQL [Pat].

4.7.3 Extending Cloud Data Hosting Solution Taxonomy for Functional
Requirements

The Cloud Data Hosting Solution taxonomy is extended with many categories, and some
existing categories are extended with more possible options from which the user can chose.
Instead of the existing options: Schema and Schema Customizable, we change these criterias
into Schema definition and Schema flexibility level.

e Schema flexibility level in order to identify the suitable storage model
— Unstructured: Blob store
— Minimally structured : key-value store

— Semi-schematized: document-based, column-oriented or graph database. Docu-
ment databases compared to column family stores offer higher flexibility because
of the allowed nested structure.

¢ Querying features
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- SQL-like query language - so that SQL query reusability is high and less efforts are
put into query transformation.

Aggregate queries support

RegExp queries support

Full-text search

Map-Reduce functions

Secondary indexes
— Geo-spatial indexes which are useful for location-based applications.
e Transaction level support
- Atomicity at aggregate level: single document, item, single entity group

— Across many entities: Windows Azure Table Storage and Google App Engine
Datastore support atomicity across multiple entities, still with the restriction of
being within one partition. (WATS supports batch transactions across group
entities, but within the same partition, with the limitation of 5 entity groups per
transaction). Also Cassandra in its version of 1.2 introduced batch operations, but
they are not real ACID, they do not support the isolation during the execution, i.e.
one process can read the first operation after being executed, even though the rest
is still in execution.

4.7.4 Extending Cloud Data Hosting Solution Taxonomy for Non-Functional
Requirements

e Partitioning - the physical location of a table is based on the Partition Key (sharding key
in MongoDB) selection. The partition key selection is one of most important architectural
decisions for a Cloud application. If chosen properly it avoids the hot-spots and makes
querying easier. Partitioning support can be:

- Automatic: the datastore itself takes care of the partitioning of data by using
consistent hashing usually. E.g. DynamoDB automatically partitions the data and
workload over a sufficient number of servers to meet the scale requirements that
you provide.

— Manual: it is you that should manage the partitioning and re-partitioning of your
data. E.g. SimpleDB uses hashing algorithms to create a uniform distribution of
items among multiple domains. Still, you have to write your own sharding logic
across domains in case they exceed 10GB of storage.

In case of automatic partitioning, it is important to know which partitioning algorithm
the data store supports because it has impact on the range queries.
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1. Hash/Random Partitioning - routing is simple, e.g. Cassandra, MongoDB

2. Range/Order-Preserving Partitioning - is a prerequisite to support the range
queries and scans (Cassandra, MongoDB, Azure Table). But this requires more
overhead in terms of maintaining routing and configuration nodes.

e Durability - What persistence design model does the data store adopts, defines the
durability.

— Durable: when the data store writes only to disk, e.g. DynamoDB.
- Non-durable: when the data store writes only in-memory, e.g. Redis.

- Tunable durability: when both disk and in-memory methods are applied by the
data store. Cassandra and MongoDB offer tunable durability. If the data store
supports both techniques you can specify with each write request the durability
level.

e CAP (Consistency, Availability, Partition Tolerance):
Consistency Model: Currently it has Strong, Weak and Eventual. NoSQL stores offer also
Client Tunable consistency, a customizable per operation consistency approach where
the settings can be set per operation. Thus, each operation can result in being strongly
consistent, or eventually consistent. As already explained this is a decision you make
based on the priorities of the requests. Thus, the options to choose from are: strongly
consistent, eventually consistent, tunable for reads, tunable for reads and writes.

In case of partitioning: The choices for the data store, instead of available versus not
available, should be between: consistent, available or tunable. As explained in 2.3, the
choice between availability and consistency is much more fine grained and complex.
Perfect availability and consistency is rare to achieve in the presence of partitions, but
there is a range of flexibility for handling partitions and recovering from them.

Replication - apart of the replication strategy which can be synchronous or asyn-
chronous, another aspect of replication might be relevant for some use cases. A data
store can offer the rack-aware feature which can keep replicas of data in different physical
racks, which helps ensure uptime in the case of single rack failures (e.g. Cassandra
supports this feature).

Performance: Distinguish between read and write performance because the application
might be read or write heavy. (e.g. event logging require fast writes, product catalog
requires fast reads).

Data Constraints: In addition to Max Item, Max Domain, Max Item/Row /File Number
Per Instance, Max Size Per Instance (All Domains, All Tables, All Buckets), adding
maximum Index size.

Caching

1. Built-in caching layer (e.g. Cassandra has built-in caching layer)
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2. Support for integrating a caching layer such as Memcached, on top of the data
store. In this case the data store offers Memcached API.

e Server-side scripting
The MapReduce functions can be offered by the NoSQL store itself, databases such as
CouchDB, MongoDB, Riak, offer this functionality. They give the user the possibility to
define MapReduce functions in Java, Python, PHP, etc. and run them against the data.

e Community support
Even though some databases seem to offer all the features an application might need,
they don’t have the appropriate industry or community support to allow for a confident
choice for critical applications.

In Table 4.10 we give a summary of the categories that extended the Cloud Data Hosting
Solution.

4.7.5 Application Layer Adaptation

The following are a set of adaptations needed when using a NoSQL database. Not all might
apply to one case.

e Schema validator

In the NoSQL world the data has to be parsed by the application and in case of a schema
mismatch it is the application that should catch and throw these errors, not the database
as was the case with RDBMSs. This should be taken into consideration when refactoring
the application [SF12]. You might avoid this, by implementing a schema validation at
the Data Access Layer as was the approach followed by Netflix [Ana]. This doesn’t
apply to all NoSQL systems and might also change in the future as new features will
be added to the existing solutions. For example, a number of mature MongoDB object
mappers provide an extra layer of abstraction on top of the basic language drivers, and
you might consider using one on a larger project [Ban11].

e Outsource Complex Queries: "NoSQL data stores usually don’t support complex queries
using joins and aggregate functions on the data store level, but there are external
services that could be used to defere complex queries on NoSQL data stores, e.g. using
a MapReduce cluster. Using those services located closely to the data store can increase
performance and reduce traffic compared to simulating complex queries on the client."
For example, Amazon DynamoDB doesn’t support MapReduce, but it can be integrated
with Amazon Elastic MapReduce (Amazon EMR) [Gra].

e Joins
If you embed in one document, or in a multi-value attribute the data that needs to be
joined, there is no need to impact the application tier. The document databases are the
best fit for this requirement as they allow nested objects. Otherwise, you have to rewrite
multiple queries to get the join results.
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Table 4.10: Cloud Data Hosting Solution Taxonomy

Category Property Data store
Caching Built-in caching layer Cassandra
Integration with a caching layer  Riak, Drupal
D periomi Manual Cassandra
Automatic Riak, Drupal
Partitioning method Random Cassandra, Riak
Order-Preserving/Range Cassandra, DynamoDB,
WSAT, MongoDB
Multi version Client side DynamoDB, Riak, Voldermort
conflict resolution Server side Cassandra, Riak
Built-in text-search Riak, MongoDB
Full-text search Integration with text-search en- Cassandra
gines such as Lucene, Solr
Predictable SimpleDB, DynamoDB,
Performance WSAT
Non predictable Cassandra, MongoDB
Strongly consistent WSAT
Consistency model Eventually consistent Riak
Tunable for reads/writes Cassandra, MongoDB
Tunable for reads SimpleDB, DynamoDB

Querying
Hybrid deployment
support

Sharding

Replication

SQL-like query language
MapReduce

Materialized views
N/A

Auto

Manual
Synchronous

Asynchronous

MongoDB, SimpleDB, Cassan-
dra

Cassandra, MongoDB, Riak,
Couchbase

CouchDB, VoltDB, Couchbase
Cassandra

MongoDB, DynamoDB,
Couchbase, Riak, WATS
SimpleDB

Cassandra, SimpleDB, Dy-
namoDB, GAE HRS, Mem-
base

Cassandra, MongoDB, GAE
Master-slave datastore
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e Stored procedures/functions

The stored procedures and triggers, which are an important part of a RDBMS, cannot be
migrated to NoSQL systems. You can emulate them by making the appropriate changes
in your code. For example, the corresponding stored procedures of the relational world,
are JavaScript programs in MongoDB and CouchDB (in the latter one also known as
views). All the NoSQL databases with server-side scripting support are suitable if you
need to implement such functionality in the application.

Integrity Constraints: Not Null, Check, Unique can be implemented at this application
tier.

Contflict resolution - applicable when you chose the data store to be available in case
of partitions. The inconsistencies that arise when systems chose availability over
consistency can be solved by using causal ordering mechanisms like vector clocks
and application-specific conflict resolution procedures. These conflicts rises when
multiple nodes can write at the same time to the same object, resulting in different
versions, i.e. inconsistent replicas. The data store might solve this conflict resolution
during reads, e.g. the mechanisms last write wins in which the data store simply ignores
the earlier versions and returns the last updated one to the client. This removes the need
for a round-trip to the client and simplifies the API. Another approach at the application
layer might be taken, Programmatic Merge, where all versions are returned to the
application and it can decide how to solve the conflict, for example the DynamoDB
choses to merge the conflicted shopping carts.

Transactions

If the target data store does not support atomic transactions at multiple documents
level, and your application needs them, implement the transaction management logic
in your application code. This means managing locking with custom logic. Use "Time
Stamps" to manage currency of data, unless this is not provided by the database itself
(e.g. Azure Table Storage provides it by default for each item).

Autoincrement, Sequence, TimeStamp

Most of the NoSQL stores don’t provide the auto increment feature, if you want a
unique sequence number you have to generate it at the application code. DynamoDb
doesn’t have the feature of getting a server timestamp, you have to issue it from your
application code.

Triggers

There is no native support for triggers in NoSQL. Different approaches might be taken
that need a change at the application code. For example, if the data store has PubSub
features, the client that is writing a value might also publish that the value changed to a
channel. In this way the other interested application parts might read from that channel
and take the respective actions. This is an asynchronous trigger approach. MongoDB
also offers capped collections and tailable cursors that allows MongoDB to push data to the
listeners that can be considered triggers equivalents.
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e Secondary indexes computation logic
When the data store has no or limited support for secondary indexes, is the application
layer that has to implement the logic, e.g. when using Riak, the application has to tag
the objects being stored with the metadata that it wants to run queries on. Also, every
time you write to the database, you also need to maintain your index.

e Data Encryption
If the application requires storage encryption, to address this requirement one approach
is to encrypt field-level data within the application layer using the requisite encryption
type that is appropriate for the application. Another option is to use third-party libraries
that provide disk-level encryption as part of the operating system kernel. 10gen has a
partnership with Gazzang, which has a certified product for encrypting and securing
sensitive data within MongoDB.

e Integration logic with search engines - In case there is no internal integration with a
search engine, there is a need for writing code to interface with search systems like Solr,
Lucene or ElasticSearch!.

Sometimes might be need also manual interventions, e.g. Cassandra 1.2 introduced batch
operations, executing as atomic operations in the sense that if some part succeed, the batch
will succeed. But, if the client and coordinator fail at the same time — because the client is an
application server in the same data center, and suffers a power failure at the same time as
the coordinator — then there is no way to recover other than manually crawling through the
records and reconciling inconsistencies.

4.7.6 Data Access Layer Adaptations

e Schema validation
The schema validator can also be implemented at the DAL, like the case of Netflix.
Because of the lack of domain-specific schema validation in NoSQL stores, querying
a misspelled attribute, you might not get an error at all. In order to avoid the schema
mismatch problem, the schema validation can be implemented in a common data access
layer [Ana].

e Data integrity enforcement
As integrity constraints like foreign keys are not supported by NoSQL stores, the
parent-child integrity can be also enforced at the data access layer.

e Case sensitivity - in case the data store is case sensitive, like SimpleDB, the updates
with wrong case will fail silently [Ana]. Stick to either upper or lower case of identifier
names and in this case the data access layer normalizes (e.g. TO_UPPER or to_lower)
all access to attribute and domain names in case of SimpleDB, collection names in case
of MongoDB, etc.

IElasticSearch: http:/ /www.elasticsearch.org/

71



4 Analysis, Concept and Specification

72



5 Design

In this chapter we present the architectural solution taken into account to build the system
which fulfills the requirements specified in Chapter 4. This chapter describes an architectural
and technological solution for the concepts and specified system requirements of Chapter
4. Section 5.1 gives and overview of system architecture and in Section 5.2 we provide an
overview of the design of the migration component.

5.1 System Overview

Figure 5.1 shows an overview of the system architecture. The system has still two components,
the decision support system and the migrations component which are enhanced and extended
based on the requirements specified in Chapter 4. The methodology is realized at the decision
support system, and the migration component is extended with another database source
adapter and three target adapters.

5.2 Architectural Overview

The component decision support system shown in Figure 5.1 is decomposed in the Figure 5.3.
Figure 5.2 shows the first steps of the decision support system. As we extend and existing
methodology and tool, we focus only on one migration scenario, i.e. from RDBMS to NoSQL.
After creating a project, if the user choses another migration scenario, he will go through the
existing methodology developed by Bachmann.
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Figure 5.3: Extended Methodology for RDBMS to NoSQL Migration Scenario

If the migration scenario is from RDBMS to NoSQL, the extended methodology steps are
described in Figure 5.3. The trade-offs that NoSQL systems make, analyzed in Section 4.7.2,
are incorporated into the second step of the methodology. Describe local data layer is the Step
4a in Bachmann’s methodology which describes the local database layer that the application
is using. In case of our migration scenario, we extend the list of properties for the two existing
criteria, and add Querying category. Moreover, we move this step before the user describes
the CDHS, in order to suggest default values for the criterias based on the selection of the
local database requirements. What type of indexes does your application use? Are range
queries utilized by the application? The operating system on which the local database is
running (Windows, Unix). If the OS is Unix, the database and table names are case sensitive.
This has to be preserved during migration, e.g. utilizing double quotes.

Adapt data access layer and upper application layers if needed - when migrating to NoSQL
there will always be adaptations needed at these two layers because of the missing function-
ality and different query languages of the source and target databases.

75

Migrate
Data



5 Design

Source Adapter
- Local RDBMS

Schema
export
gata export

Output

MySQL

plsql
pg_dump
Y __ Port: 5432

PostgreSQL

Column
Headings

N~

SQL
statements

AN

Table data

~— "

Input

Target Adapter
- Cloud Data
Store

(__JFiltering of not
supported SQL
(C statements
() pata types
) mapping

Figure 5.4: Migration Component Architecture

As the MySQL source adapter was developed by Bachmann, we preserve the same output
format for PostgreSQL adapter, so that PostgreSQL adapter can be used for the other migration
scenarios too, see Figure 5.4. For each table in the PostgreSQL source database, we generate
three files with the same name and different types:

o .txt with the data

e .csv file that contains the column names of the table

e .sql stores the SQL statements for the schema elements creation

Given the fact that there are not referential integrity constraints in NoSQL, such as foreign
key declaration statements, we ignore these from the content of the .sq files.
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We selected three NoSQL databases of different data models with the purpose to cover the
three main categories of the spectrum of NoSQL databases, and also leveraging the NoSQL
options of the big Cloud vendors. In this chapter we describe the implementation of the
decision support system and the migration component (i.e. the source and target database
adapters) and the challenges faced during the implementation phase.

6.1 Realization and Validation

To validate our approach we use the schema and the sample data from TPC-H bench-
mark [Tra]. TPC-H is a benchmark that illustrates decision support systems that examine
large volumes of data, execute queries with a high degree of complexity, and give answers
to critical business questions. In our work we use this benchmark only for the purpose of
having standardized relational schema (Figure 6.1) to migrate to a NoSQL database. Given
the fact that this benchmark is designed to examine large volumes of data, it fits well with the
purpose of why do organizations consider migrations of applications to NoSQL databases.
We loaded the sample data provided by TPC-H in the two source databases, MySQL 5.6 and
PostgreSQL 9.2. in a system running on Ubuntu 12.4 operating system. dbgen -h command
gives us 1GB of data divided into eight tables. After the loading of the data, the integrity
constraints between tables specified in the file dss.dri were applied.
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6.1 Realization and Validation

PostgreSQL Source Adapter:

pg_dump is the utility, that uses the default port 5432 for backing up a PostgreSQL database.
With the option -n schema it selects both the schema itself, and all its contained objects. The
source adapter of PostgreSQL also takes the schema name as a parameter, because within
a database there can be more than one schema, as opposed to MySQL. While for getting
the SQL statements we use psql command We implement this adapter based on the MySQL
adapter, i.e. following the same output format, developed by Bachmann with the purpose
that our PostgreSQL adapter can be used by his migration scenarios as well, meaning when
transitioning to relational databases in the Cloud. For each Cloud NoSQL data store, we save
the list of reserved words in a table, and during migration check if each of the object being
migrated, like database name, table and column name are not part of this list. The data types
that need to be replaced, are also saved in a table, which has two fields only, data store name,
data type name. Based on the data source selected, we read the respective data types, for
example Varchar type has to be mapped to String type in the NoSQL database.

As there is no Ul for entering the data for example, for data access layer and business
logic layer adaptations, entering new CDHS categories, for updating existing ones, etc., the
data were entered directly through MySQL Workbench SQL Development component. A
development of a GUI for such purposes can be considered for future work.

DataNucleus Access Platform is an open-source implementation of several Java persistence
standards, provides support for interfaces of the persistence frameworks: Java Data Objects
(JDO) and the Java Persistence API (JPA). There are two approaches for persisting application
data in a NoSQL system, either through the Persistence API or a Mapping framework like
DataNucleus. The former one is tailored to a specific NoSQL solution. DataNucleus is unique
in that it supports all standardized persistence APIs for a very wide range of datastores, thus
having the needed functionality for the CDMT which supports different data storage types.
DataNucleus supports persisting and retrieving objects to and from MongoDB datastore
(using the datanucleus-mongodb plugin), but in this work we used the Java driver for
MongoDB. It has support also for Cassandra. Amazon SimpleDB:

We reuse the SimpleDB adapter from Bachmann, but we create the target attributes of the
items taking into consideration the assumptions we make about one-to-many relationships,
i.e. embedding or referencing, not just a simple mapping of one table column name to one
item attribute name.

Apache Cassandra 1.2 on Amazon EC2:

We created an account on Amazon EC2 using the educational grants provided by Amazon
for students. With official support from Datastax, we use Amazon EC2 to set up a Cassandra
cluster provided the Amazon Machine Image (AMI) by Datastax Community edition [Data].
The configuration of the cluster is as follows: —clustername myDSCcluster —totalnodes 6
—version community.

We start with creating an EC2 security group for Datastax Community Edition which allows to
choose which protocols and ports are open in our cluster. EBS volumes are not recommended.
Initially we found difficulties in launching the cluster in some availability zones, like Eu-
Ireland and Asia Pacific, while it was successful using US-West Oregon zone. In Cassandra
data volumes, EBS throughput may fail in a saturated network link and adding capacity by
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Figure 6.2: Cassandra Cluster Setup View

increasing the number of EBS volumes per host does not scale. A .pem file is a private key
created and saved locally in order to login to the Cassandra community cluster. In order to
access the Cassandra system from the secure shell of our Ubuntu OS, we had to change the
file permissions with chmod 400 in order to be able to use it for authentication.

Cassandra clients:

There are many high-level Cassandra clients for Java, Scala, Ruby, Python, Perl, PHP, C++,
and other languages, written as conveniences by third-party developers. It is important to
chose a client that will stay up to date with Cassandra’s updates [Hew11]. Thrift is low-level
API, it is a code generation library for clients in Java, C++, Erlang, Haskell etc. Many drivers
encapsulate Thrift in their implementations. We use the Astyanax driver provided by Netflix
on github repository. After cloning and building the driver, we use the generated JAR files:
astyanax-cassandra-1.56.43-SNAPSHOT jar, astyanax-core-1.56.43-SNAPSHOT jar, astyanax-
thrift-1.56.43-SNAPSHOT jar, and in addition two other JARs: cassandra-thrift-1.2.0-rc1.jar
and cassandra-all-1.2.0-rc1.jar downloaded separately. We can connect either to the cluster
through the command line and using Command Line Interface (CLI) with the command:
cassandra-cli -host localhost -port 9160 or we can connect to a specific node in the cluster using
the private IP of the node, e.g. cassandra-cli -host 10-255-1-202 -port 9160.

Cassandra is more strongly typed compared with the other two databases.

CREATE COLUMN FAMILY Customers

WITH comparator = UTF8Type

AND key_validation_class=UTF8Type

AND column_metadata = [

{column_name: C_NAME, validation_class: UTF8Type}
{column_name: C_ADDRESS, validation_class: UTF8Type}
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7 {column_name: C_NATIONKEY, validation_class: UTF8Type}
s {column_name: C_PHONE, validation_class: UTF8Type}
o 1

Listing 6.1: Cassandra Column Family Creation

MongoHQ! provides MongoDB as a service with the limitation of 2GB of data which is
enough for our validation approach. It itself is hosted on Amazon EC2. MongoHQ provides
users with an API token that should be passed to all the URLs during the interaction with
database. After starting using the REST interface, we switched to using the Java driver as
it provides better and faster access even for basic operations, an advice given to us by the
support team of MongoHQ. Compared to the other two databases, MongoDB is easier and
has a shorter learning curve. It consists in only one JAR java driver and a set of simple APIs
for creating collections and inserting JSON documents into them.

@ Migration to NosQL in the cloud

& localhosk 1/cla E . 172 284 a - @ ‘."‘V Q @

@ Cloud Data Migration

@ Cloud Data Migration # Cloud T s EPojects A4 o B

My Project Eat »

Follow Your Migration Steps: 1. Identify Cloud migration scenario - 2. Identify the trade-offs for your application - 3. Describe the Local Data Layer - 4. Describe the Cloud data hosting solution reflecting
the suggestions - - 5.5elect Cloud Data Store 8. Identify paiterns fo solve polential conflicts - 7. Adapt data access layer and upper application layers if needed - 8. Migrate data to the selected Cloud
data store

Step 1: Select Migration Scenario Edit

Scenario

Moving from RDBMS to NoSQL databases

Step 2: Identify the trade-offs for your application Edit »
When you describe the tradeoffs your want to make for your application . it will be |ET\E:::S: in the properties of a Cloud data hosting solution as default values
Step 3: Describe Local Data Layer Edi -

When you describe your current data layer we can Identify potential patiemns and solutions that help you during your Cloud data migration

Step 4: Describe Desired Cloud Data Hosting Solution (reflecting the suggestions based on Step 2 and the criterias chosen at Step 3)

Edit =

When you describe the requirements for a Cloud data hosting solution you can laster select from a number of Cloud data stores that maich your requirements

Step 5: Select Cloud Data Store 20

u defined your desired Cloud data hosting solution you can select from a number of Clot

tores that match your requirements

Figure 6.3: Decision Support System Screenshot

For easier comparison with the existing methodology steps, refer to Section 4.1.

Thttps:/ /www.mongohq.com
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i Cloud Data Migration  # tome B Cioua Daia Stores 8 Projects

After you defir from a number of Cloud data stores thal mafch your requirements.

sired Cloud data hosting solution you car

Step 6: Identify Patterns to Solve Potential Migration Conflicts

dl Currently there are no pailems o

15 for potential conflicts

Step 7: Adapt Data Access Layer And Upper Application Layers

Network layer adaptations Data access layer

Data Store Type Change

If the type of the data store (RDBMS, NoSQL, Blob) changes during the data migration it is usually not sufficient enough to simulate missing functionality in the data access layer.
If for example the schema is no fixed, or joins, strict consistency and ACID transactions are not supported any more, the application logic has to be adapted to reflect the
conceptual changes. In case of migrating from a RDBMS to a NoSQL and Blob store, a small part of the data could still be required to be stored in a RDBMS to support e.g.
financial transactions.

Cloud Data Pattern Effects

If Cloud Data Patterns for Confidentiality are used in the data access layer, the application layer has to be aware that it might not have a full view on the actual data, since it could
be anonymized, filtered or pseudonymized.

Product Change (Data Types, etc.)

If the product of the data store changes during the migration the semantics of e.g. cnmpansor&peramrs could have changed which cannot be translated by the data access
layer and requires the application layer to be adopted.

Transaction Management
NoSQL stores do not provide ACID transactions across documents or items. If you need such functionality you have to implement at your business logic layer.

Figure 6.4: Decision Support System Screenshot (contd)

6.2 Discussion and Lessons Learned

At the heart of NoSQL data modeling is the principle of de-normalization. Data modeling
and consequently the schema design is driven by the application specific query patterns, thus
it can’t be thought of an automatic way of moving from RDBMS to NoSQL in case of complex
relational schemas and unknown application query patterns. This is the reason and a great
finding of our work, why it is not feasible to have a plug-in mechanism for mapping from a
concrete relational database to a NoSQL store.

Data integrity is not ensured by the NoSQL database, as there are no referential integrity
constraints, cascade update/delete, that are the proven mechanisms of RDBMS to preserve
the integrity of data. This makes NoSQL stores not suitable for applications that have high
requirements for data integrity. Even though, also if you use the MyISAM engine of MySQL
it does not ensure data integrity and transaction support. In traditional RDBMS, the data
can be retrieved using any query tools. In NoSQL databases, there are query tools but is the
application the owner of the data and serves them using services.

When considering adoption of NoSQL databases, there are many barriers that might prevent
the companies from doing so. They have to be carefully considered based on the use case.
One of these are the security features when considering a NoSQL for the Cloud. Most of the
NoSQL stores were not designed with security in mind and exposing those instances in the
Cloud might be too risky. Even though some might offer more security features than others,
still they are not in a mature state. Also, the community and commercial support is a factor

82



6.2 Discussion and Lessons Learned

that influences decisions, especially for production systems.
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7 Outcome and Future Work

In this final chapter we summarize the results and contributions of our work and provide
recommendations for future work.

7.1 Recommendations

Many successful NoSQL adoptions are an example of polyglot persistence. You should not
think of NoSQL databases as a magical hammer for all the problems. They are meant for
specific use case and make trade-offs to achieve those objectives. Design your data model
such that operations are idempotent. In an eventually consistent and fully distributed system
idempotent operations can help a lot. They allow partial failures in the system, as the opera-
tions can be retried safely without changing the final state of the system. It can allow you to
work with eventual consistency without causing data duplication or other anomalies [Pat].
In order to achieve good performance, building a caching layer on top of the NoSQL store
back-end, in case it doesn’t have a built-in, has been proved to be a successful approach and is
being applied by Web social applications, especially gaming sites. Also using key-value store
of Oracle NoSQL for gaming application and using RDBMS for ad-hoc analytics, is another
example of a polyglot persistence [Oraa].

You can make use of queues to separate writes to the database and maintenance of indexes in
case of no indexing support from the database, thus you shorten the response time as you
don’t have to wait for the index to be created or updated. For those NoSQL stores that have
limited search functionality, an integration with other search engines like Apache Solr or
Lucene, is a good practice. And this might be useful for media and content based applications.
In MongoDB, it takes time and resources to deploy sharding, and if your system has already
reached or exceeded its capacity, you will have a difficult time deploying sharding without
impacting your application [Monb]. So the recommendation here is to think of sharding
during your data modeling, think of which collections you want to shard and which are the
sharding keys.

When using MongoDB as a Service from MongoHQ, it is recommendable based on advices
received from the MongoHQ support during communication with them, in case your appli-
cation is in Java to use the MongoDB driver for Java and not the REST APIs, because even
for basic interactions using the driver is going to provide faster and better results than going
over HTTP. MongoDB also recommends to use replica sets instead of master/slave setup to
achieve replication for production environments. In NoSQL stores it is very important how
you decide to split the data. This is a decision you should pay a great attention since the
beginning, in order to avoid impacting negatively the performance and operations. A bad
partitioning key can result in "hot spots", i.e. certain machines responsible for serving the
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biggest amount of data and requests. One of the means to avoid these hot spots is consistent
hashing which distributes data evenly across nodes.

If you want the query transformations efforts to be minimal, you can use a NoSQL that
support SQL-like query language (a subset of SQL), like SimpleDB, Cassandra (with its CQL),
and making the necessary changes at the data access layer. If your application uses range
queries, chose a database that supports range partitioning, so that you avoid crossing partition
or servers boundaries that will result in decreased performance.

Use MapReduce in a controlled manner and outside your peak production hours, cause it
might effect your performance. Successful use cases of using NoSQL in the Cloud, show
that they migrated also the business logic layer to the Cloud. If you put into the same AWS
availability zone, the application and the database layer, you reduce the communication
latency of the application with the database.

7.2 Contributions and Future Work

In this section we summarize the main contributions of our work with respect to the research
questions specified in Section 1.4. In this thesis we provide a comprehensive analysis of
NoSQL databases characteristics, commonalities and differences with RDBMS. Suitable ap-
plications for using NoSQL are applications that do not have high requirements for ACID
transactions, data integrity, complex queries. We provide a summary about the relational
schema objects that can be migrated and for those that cannot be migrated, the respective
impact on upper application layers is provided.

General trade-offs are involved when moving from RDBMS to NoSQL, related to transactional
behavior, querying features, data integrity, and trade-offs that NoSQL databases make to
serve certain application workloads. We incorporate these trade-offs as part of the question-
naire. As NoSQL stores were driven by different needs than those of RDBMSs, we provide
recommendations on how to refactor the other application layers when moving from RDBMS
to NoSQL, i.e. data access layer and business logic layer. We support the decision process, mi-
gration and the refactoring of the application by extending the Cloud Data Hosting Solution
with properties for NoSQL databases; by extending a methodology based on a questionnaire
for migration of the database layer to the Cloud. Moreover, in order to support the migration
we extended a prototype by offering support for migration from PostgreSQL and MySQL to
AWS SimpleDB, MongoDB and Apache Cassandra.

We make implicit assumptions with regard to data modeling in the target store, i.e. how
the data is accessed. For some of the one-to-many relationships we save only the ID of the
referenced object, and for others we embed the values in the parent document. As future
work we propose a more complicated data set with all types of indexes and more data types
to be used for migration data. Also, finding a way to materialize the best modeling practices
of the selected NoSQL store before migrating the data.

86



7.3 Conclusion

7.3 Conclusion

Migrating from RDBMS to NoSQL is a creative process and is difficult to be automated,
because there are no standards that these databases adhere to. One has to look beyond a
given database and understand how the application uses the data, identify which data sets
need to be accessed fast, and which uses are not frequent and perhaps not even required.
Then you need to see how the target database can be used to best support these uses. For
achieving high performance and high availability, the NoSQL stores make trade-offs, such
as no ACID transactions, most of them do not support ad-hoc and complex queries. Data
modeling in RDBMS is consistent because the theory on which it is based is well established
and implementation is standardized, while NoSQL stores are not in mature state yet and there
are many proprietary implementations. In order to judge about a NoSQL store performance,
the document (item) size, number and size of indexes, and the type of operation will all play
a part in the actual numbers of benchmark results. You cannot judge on the performance
based on the benchmark numbers with dummy workloads. The language drivers have an
impact on the data types you can utilize. Different drivers for the same NoSQL database do
not support the same data types. The decision depends on your data sets and the rule number
one to NoSQL design is to define the query scenarios first. Once you really understand how
you want to query the data, then you start exploring the various NoSQL solutions in the
market. The default unit of distribution is key. Therefore you need to remember that you
need to be able to partition your data between the nodes effectively in case your application
deals with big data, otherwise you will end up with a horizontally scalable system, but still
with all the work being done by one node. Because of lack of standards which is normal
for all new technologies until they mature, interoperability is a concern when thinking to
moving applications from one NoSQL system to another. Some companies are developing
their proprietary system and some of them are open-source. Also, the differences in data
models of the different systems will make the portability of applications to a different system
a very complicated process. There is no magic hammer for all the problems, you have to find
for each one the right persistence approach.
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8 Appendix

Because we did an analysis of other NoSQL databases, apart of those used for validation, and
the knowledge gained from them was incorporated in our questionnaire, we put the analysis

in this appendix chapter.

8.1 MySQL and PostgreSQL Data Types Summary
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Table 8.1: PostgreSQL 9.2 Data Types

Type Subtypes Description
int, smallint(2), real, double pre-
SQL types cision, char(N), varchar(N), date, variable-length with limit
time, timestamp, and interval,
smallint(2), integer(4), bigint(8), dec- .
N . imal, numeric, real(4), double pre- ;zana}bile—‘ h
vmeric cision(8), smallserial(2), serial(4), ?nfgt Rt
bigserial(8) limit
Monetary money(8) currency amount
Character char(n), varchar(n), text variable-length with limit
. variable-length,1 or 4 byte bi-
Binary bytea .
1r1a1?‘/l string ‘ ‘
Date/Time timestamp(8), date(4), time(8 or 12) E(());e)date el {itsme (0o oz
Boolean boolean :lil:lj)i' F;isé,n’lf(?,”n}:, ',O}Zes , Onty
Enumerated enum (4) static, ordered set of values
Geometric money(8) currency amount
store IPv4(7 or 19 byte), IPv6(7
Network Address cidr, inet, macaddr or 19 byte), and MAC ad-
dresses (6 byte)
Bit string bit(n), bit varying(n) strings of 0’s and 1’s, 8 byte
Text search type tsvector represen‘t > 'a document in a
form optimized for text search
UuID UUID (128bit) Also referred to as GUID
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Table 8.2: MySQL Data Types

Data type Type (byte) Description

TINYINT(1), SMALLINT(2), MEDI-
UMINT(3), INT(4), BIGINT(8),
Numeric FLOAT(4), DOUBLE [PRECISION],
REAL(8); variable for DECIMALY(),

NUMERIC(), BIT(M)
Date(3), Time(3), DateTime(8),

TimeStamp(4), Year(1)
CHAR, VARCHAR, BINARY,

String VARBINARY, BLOB, TEXT, ENUM,
SET

Depends on the
storage engine

Date and Time

8.2 More NoSQL Stores Analysis

The following are the NoSQL databases that we analyzed but didn’t use for validation.
Because we have subtracted information from this analysis, we are including it here.

8.2.1 GoogleApp Engine Datastore

Datastore is a dedicated back-end storage mechanism for AppEngine applications. As such
it does not provide direct access for development tools or applications owned by different
accounts. From a functionality perspective, this may be considered limiting; however, from a
security perspective, it minimizes the possibilities to invade into a Datastore database [PC].
The Datastore comes with two flavors:

e Master/Slave Datastore which is suitable only for a limited class of applications that do
not require high availability of data and can tolerate spikes in latency

e High Replication Datastore (HRD) released after provides high availability for reads
and writes by storing data synchronously in multiple data centers. It provides strong
consistency only for reads and ancestor queries. All the other queries are eventually
consistent. The HRD implements the Paxos algorithm for an increased fault tolerance
and data consistency, by having slower writes.

The Master/Slave version is not recommended to be used by Google. The following applies
to the HDR.

e Data Model
Data objects are known as entities. An entity has one or more named properties, each of
which can have one or more values. The schema-less nature of the data stores consist
in entities of the same kind (equivalent to the RDBMS table) need not have the same
properties, and an entity’s values for a given property need not all be of the same data
type. (If necessary, an application can establish and enforce such restrictions in its own
data model.) The key of an entity consist of the following three attributes { The kind:
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categorizes the entity for the purpose of Datastore queries

An identifier: for the individual entity (a key name string created by the application or an
integer numeric ID automatically assigned by the Datastore)

ancestor path: locates the entity within the Datastore hierarchy, but is optional.

The entities in the Datastore form a hierarchically structured space similar to the direc-
tory structure of a file system. An entity can optionally designate another entity as its
parent and have many children entities. Entities of the same kind may not have the same
properties. Root entity is an entity without a parent. Entity group - entities descended
from a common ancestor. They are a unit of both consistency and transactionality.

The sequence of entities beginning with a root entity and proceeding from parent to
child, leading to a given entity, constitute that entity’s ancestor path. The complete
key identifying the entity consists of a sequence of kind-identifier pairs specifying its
ancestor path and terminating with those of the entity itself, e.g. Person:GreatGrandpa
/ Person:Grandpa / Person:Dad / Person:Me RDBMS composite keys can map to an
ancestor chain.

Data Types
The following are the property values types supported by GAE Datastore: Integers,
Floating-point numbers, Strings, Dates, Binary data.

Indexing

The Datastore predefines a simple index on each property of an entity, except long text
strings (Text), long byte strings (Blob), and embedded entities (EmbeddedEntity). Also,
if you don’t want to maintain an index for a certain propery, you set it as unindexed. An
App Engine application can define further custom indexes in an index configuration file
named datastore-indexes.xml. These predefined indexes are sufficient to perform many
simple queries, such as equality-only queries and simple inequality queries. For all
other queries, the custom indexes defined in the configuration file datastore-indexes.xml
are used. If the application tries to perform a query that cannot be executed with the
available indexes (either predefined or specified in the index configuration file), the
query will fail with a DatastoreNeedIndexException. The Datastore imposes limits on
the number and overall size of index entries that can be associated with a single entity.
Number of index entries per entity <=20,000 or more than a total of 200 markers are not
allowed. For this, the service scales very well even for large amounts of data.

Querying

The Datastore offers low-level or standards-based APIs (java and python) that decouple
your application from the underlying App Engine services, making it easier to port your
application to other hosting environments and other database technologies. Queries
over a single entity group, called ancestor queries, refer to the parent key instead of a
specific entity’s key. Datastore only cares about the pieces of data it needs to build
indexes, the rest of your entity is seen as a sealed blob of bytes. Joins and aggregate
queries aren’t supported within the Datastore. Also it doesn’t offer a full-text search
engine yet, the feature is under development. The low-level Java Datastore API provides
class Query for constructing queries and the PreparedQuery interface for retrieving
entities from the Datastore.



8.2 More NoSQL Stores Analysis

e Transactions - Datastore supports atomic transactions. A single transaction can apply to
multiple entities, as long as these entities are descended from a common ancestor. In
designing your data model, you should determine which entities you need to be able to
process in the same transaction. Then, when you create those entities, place them in the
same entity group by declaring them with a common ancestor.

e Limitations Kind names starting with two underscores (__) are not allowed, as they
are reserved. A record must be up to 1 MB in size. Operations such as joins, filters for
inequality or sub-queries are not supported.

8.2.2 Azure Table Storage

Windows Azure Table Storage (WSAT) is a NoSQL database offering from Microsoft which
fits more with Key-Value stores. It stores large amounts of structured data. The service is a
NoSQL datastore which accepts authenticated calls from inside and outside the Windows
Azure cloud. To allow clients to address all of their storage in the Cloud and scale to arbitrary
amount of storage over time, Azure leverage DNS as part of the storage namespace and break
the storage namespace into three parts: an account name, a partition name, and an object
name. The service can be one of the following: blob, table or queue. The Table is for the
NoSQL service.

e Data model A storage account is a globally unique entity within the storage system.
The storage account is the parent namespace for the Table service, and is the basis for
authentication. You can create any number of tables within a given storage account,
as long as each table is uniquely named within the account and doesn’t succeed the
100TB storage size. Each Entity defines a collection of Properties. A property is name/-
value/type pairs, similar to a Column. Thus it supports flexible schema: no schema is
associated with a table and within one table different entity types can be solved. There
are two types of properties:

— System properties whose names are reserved and included automatically for every
entity in a table. PartitionKey - string value that identify the partition that an entity
belongs to. If you have unique PartitionKey values for your entities, then each
entity belongs in its own partition. If the values are increasing or decreasing then
Azure might create range partitions. RowKey - string value that uniquely identify
entities within each partition. Timestamp - DateTime value that holds the last time
the entity was modified. A property that is needed for versioning and is only set
by the Table service during insert/update operations. You should treat it as an
opaque value as it is used only internally to provide optimistic concurrency.

— Custom properties that can be supplied by the user. Scaling is affected by the
PartitionKey values. It is a best practice to favor smaller partitions because they
offer better load balancing. Larger partitions may be appropriate in some scenarios,
and are not necessarily disadvantageous. For example, if your application does
not require scalability, a single large partition may be appropriate.
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— Data types
Property types: Binary (array of bytes up to 64KB),Boolean, DateTime (64-bit
value), Double, GUID(A 128-bit globally unique identifier), 32-bit (int) and 64-bit
(long) Integer, String (UTF-16 encoded, up to 64KB).

¢ Indexing Unlike a table in relational databases that allow you to manage indexes,
Windows Azure tables can only have one index which is always comprised of the
PartitionKey and RowKey properties. You cannot add more indexes or alter the existing
ones, thus you cannot tune the performance of your table. You should put the emphasize
on how you will choose the PartitionKey and the RowKey have to consider during
modeling.

¢ Querying Querying tables and entities in the Table service requires careful construction
of the request URI. Query results are sorted by PartitionKey, then by RowKey. Ordering
results in any other way is not currently supported.

e RESTful API - Open Data Protocol (OData) is Microsoft’s generalized XML data seri-
alization format used to query, create, update data in the repositories it wraps [BBBI].
Any application can interact via REST APIs with the Table service as long as it can send
HTTP requests to ODATA-based data services and process the OData feed that a data
service returns. The commands to retrieve data use intuitive URL patterns and open
HTTP verb conventions, they can return results not only in ATOM /XML format, but in
JSON format too. Also through Java, Nodej.js, PHP, .NET client libraries.

e Consistency WATS is strongly consistent within one data center. It provides local
replication: synchronous replication before returning success. Geo replication across
data centers using asynchronous replication after returning success to user, thus being
eventually consistent. If you want to have consistent writes across multiple data centers,
then that it has to be done at the application level.

e Partitioning is automatically done partitioning data across servers. It provides local
replication: synchronous replication before returning success. Geo replication across
data centers using asynchronous replication after returning success to user, thus being
eventually consistent. If you want to have consistent writes across multiple data centers,
then that it has to be done at the application level.

Batch transactions or entity group transactions can be performed either via REST or by using
NET Client Library for WCF Data Services. Table service provides a limited form of ACID
semantics. With a limit of 100 operations per transaction, they provide also economic benefit
as it is billed as a single operation. As the Table service doesn’t enforce referential integrity,
you have to provide meta-data for it. The primary key for a Windows Azure table is: the
PartitionKey and RowKey properties which form a single clustered index within the table.

8.2.3 Amazon DynamoDB

DynamoDB is another highly scalable and predictable in performance NoSQL offering from
Amazon.
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e Data Model Table is a collection of items. When defining tables (or updating), you also
specify the capacity to be reserved in terms of reads and writes: Number of item ops
per second x item size. Item is a collection of attributes and is identified by its primary
key. Items within the same table can have different number of attributes (schema-free).
Attribute is a name-value pair. Name is a String and the value can be: string, number,
binary, string set, number set, or binary set.

¢ Data types There are two types of data types: Scalar (Number, String and Binary) and
Multi-valued (String Sets, Number Set and Binary Sets). Sets are not lists, their elements
are unique.

¢ Keys Hash Type Primary Key - in this case the primary key is made of one attribute
only, a hash value. Hash and Range Type Primary Key - is made of two attributes. The
first attribute is the hash attribute and the second one is the range attribute. Amazon
DynamoDB builds an unordered hash index on the hash primary key attribute and
a sorted range index on the range primary key attribute. The Hash Type property is
used for partitioning, the Range Type property is for optimizing range based operations
within a partition.

¢ Indexing Amazon DynamoDB stores structured data, indexed by primary key, and
allows low latency read and write access to items ranging from 1 byte up to 64KB. It
didn’t support Secondary Indexes till April 2013. And thus, it was not a good fit a for
a majority of interactive Web applications that need to present data in many different
dimensions, and for each dimension an index is needed in order to perform efficient
queries.

¢ Querying - mainly uses primary keys to access the data. It supports two query APlIs:
QUERY and SCAN.
A Query operation gets the values of one or more items and their attributes by primary
key (Query is only available for hash-and-range primary key tables). You must provide
a specific HashKeyValue, and can narrow the scope of the query using comparison oper-
ators on the RangeKeyValue of the primary key. Use the ScanIndexForward parameter
to get results in forward or reverse order by range key. Dynamo doesn’t support the
SQL concept of NULL.

SCAN : The Scan operation scans the entire table and returns one or more items and its
attributes. In order to yield predictable performance under all circumstances, the Query
API only supports comparison operators that map to efficient index access operations.
The BatchGetltem is an eventually consistent operation returns the attributes for multi-
ple items from multiple tables using their primary keys. You can set ConsistentRead to
True and have strong consistency reads at the operation level or per-table basis (when
issuing Batch get operations). You can specify filters to apply to the results to refine the
values returned to you, after the complete scan. JSON is used as the format for sending
data and for responses, but it is not used as the native storage schema.

e Partitioning Amazon DynamoDB automatically partitions data over a number of
servers to meet your request capacity. In addition, DynamoDB automatically replicates
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your data synchronously across multiple Availability Zones within an AWS Region
to ensure high-availability and data durability. It provides automatic replication and
fail-over.

Limitations Size item(row) up to 64KB. This limits the use cases of DynamoDB. For
example a page crawler may store the entire page content in one field. Also, if you
want to store a document as a field, e.g. an image, which much likely exceeds the 64KB.
You simply cannot use DynamoDB for such use cases. One workaround to store binary
data is to encode them using base64 enconding, but it increases the size. Query or Scan
operations: The maximum number of item attributes that can be retrieved for a single
operation is 100. Also, the number of items retrieved is constrained by a 1 MB the size
limit.
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