

Institut für Architektur von Anwendungssystemen (IAAS)

Universität Stuttgart
Universitätsstraße 38

D - 70569 Stuttgart

Diplomarbeit Nr. 3361

Enabling the Compatible
Evolution of Services

based on a Cloud-enabled ESB Solution

Sumadi Lie

Course of Study: Informatik

Examiner: Prof. Dr. Frank Leymann

Supervisor: Dr. Vasilios Andrikopoulos

Commenced: 16.07.2012

Completed: 15.01.2013

CR-Klassifikation: D.2.7, D.2.12, H.4.0

2

3

Abstract

Software services are susceptible to changes because of the rapid growth and
challenges in business environment. Business operations offered by service providers
have to able to cope with various and countless service demands from service
consumers. Such a case could also be experienced in cloud environment. As cloud
platform, the Platform-as-a-Service (PaaS) platform allows application developers as
tenants to deploy and configure their service artifacts in cloud infrastructure. A
multi-tenant aware Enterprise Service Bus (ESB) as applications integrator is
introduced to serve tenants in terms of management and administration. The purpose
is to ensure data isolation between tenants.

The goal of this diploma thesis is to extend an open source multi-tenant aware ESB
with service version control management framework so that the ESB can facilitate
the version management of service providers and consumers in a transparent
manner, and ensure service compatibility among tenants. The extension can be
further decomposed in terms of management and administration, as well as message
flows in versions inside the multi-tenant ESB.

4

Table of Contents

List of Figures ... 7

List of Tables... 9

List of Listings..11

1. Introduction ...13

1.1. Motivation Scenario ..13

1.2. Problem Definition and Scope of Work ...15

1.3. Research Design ..16

1.4. Outline ...16

2. Background and Related Work ...19

2.1. Fundamental...19

2.1.1. Java Business Integration..19

2.1.2. Enterprise Service Bus ..20

2.1.3. Service Registry..21

2.1.4. Service Versioning and Compatibility...22

2.2. State of Art ...23

2.2.1. Service Versioning ..23

2.2.2. Service Compatibility..24

2.2.3. Identification Model of Service Change ...25

2.3. The Compatible Evolution Framework ..26

2.3.1. Abstract Service Description Model...26

2.3.2. T-Shaped Change ...28

3. Requirements and Specification..29

3.1. Service Version Control Management ...29

3.2. Service Version Control Management Requirements for Multi-tenant aware ESB..............31

3.2.1. Management Application ...31

3.2.2. Multi-tenant aware ESB ..35

4. System Design and Architecture ...39

4.1. High-level System Overview ...39

4.2. System Design ...40

4.2.1. Use Cases ..40

4.2.2. Database Schema...43

5

4.3. System Architecture ..45

4.3.1. Functionalities of System Architecture ..45

4.3.2. Communication between Components..47

4.3.2.1. Version Control Management ..48

4.3.2.2. Message Processing Logic ..51

5. Implementation ...57

5.1. Foundational Technologies ..57

5.2. Implemented Components ..58

5.2.1. Version Registry ...58

5.2.2. Java Method Definitions Extensions ..61

5.3. Deployment Guide ..63

6. Conclusion and Future Work...65

Bibliography ..67

Declaration ..71

6

7

List of Figures

Figure 1.1: Taxi Company and Taxi Service Provider integration by multi- tenant E SB [10] .. 14
Figure 2.1: Abstract Service Description Model [34] ..27
Figure 4.1: High-level view of multi-tenant aware E SB with version control management ...39
Figure 4.2: Use Case Diagram extending the uses cases for JBIMulti2 [6] 41
Figure 4.3: E R-Diagram of Version Registry ...44
Figure 4.4: Building blocks of system architecture ...45
Figure 4.5: Table representation of Version Registry ...46
Figure 4.6: Activity diagram of replace service use case ..49
Figure 4.7: Activity diagram of deploy service in parallel use case ...50
Figure 4.8: Activity Diagram of deploy service assembly use case .. 51
Figure 4.9: Message flow for incoming message request..52
Figure 4.10: Sequence Diagram of processing compatible message ...53
Figure 4.11: Sequence Diagram of processing incompatible message54
Figure 4.12: Sequence Diagram of processing identical message ...54
Figure 4.13: Sequence Diagram of processing undetermined message55
Figure 5.1: Java package files describing the object-relation mapping.....................................60

8

9

List of Tables

Table 2.1: Guideline for compatibility assessment [27] ..25
Table 3.1: Tenant roles and corresponding actions for service registration and employment 30
Table 3.2: Mapping of use cases, roles, and databases for service-related information...........32
Table 3.3: E xtension for enabling version control management based on tenant roles.34
Table 4.1: Description of use case replace service ..42
Table 4.2: Description of use case deploy service in parallel ...43

10

11

List of Listings

Listing 2.1: Service versioning using XML Schema Definition ..23
Listing 2.2: Compatibility Checking Function (CCF) algorithm [12] 28
Listing 3.1: Service endpoint replacing pattern for service version-aware HTTP BC in
Extended Backus-Naur Form (E BNF) ..37
Listing 4.1: Algorithm for message processing in Apache Camel ..55
Listing 5.1: DDL of Version Registry ..59
Listing 5.2: E xample of query cache that holds information from the result query60
Listing 5.3: Method definitions of replace and deploy service in parallel use cases 61
Listing 5.4: Method implementations of replace and deploy service in parallel use cases 61
Listing 5.5: E xcerpt from Java Interfaces definition for required permission to perform
replace and deploy service in parallel...62
Listing 5.6: E xtension to CamelProviderE ndpoint.java to support service version-aware......62
Listing 5.7: E xtension to CamelConsumerE ndpoint.java to support service version-aware ...63

12

13

1. Introduction

A software service tends to change over time because of rapid growth and challenges in the
business environment [1]. Service signatures, for example, might change their service data
types, messages and operations in order to adapt to the new functionality that the service is
offering. Such service changes could break the interaction between service consumer and
service provider, and might have unexpected effects; thus it is important to be able to
control and handle it properly.

Cloud computing, on the other hand, is a new computing paradigm that changes the way
how computing resources such as software services and virtual servers are offered by
service providers and used by service consumers [2]. The project 4CaaSt [3] is an E U-funded
project which target a Platform-as-a-Service (PaaS) cloud platform. This project allows
application developers as tenants to deploy and configure their own artifacts, for example,
software services or libraries to the cloud infrastructure.

E nterprise Service Bus (E SB) solutions are at the heart of Service-oriented Architecture
(SOA) [4]. An E SB integrates applications by taking benefits of the standardized
technologies, loose coupling, and distributed deployment [5]. To realize the cloud
capabilities, the E SB has to support multi-tenancy, and the works in [6] have identified and
presented a multi-tenant E SB in management and administration aspects. This implies that
each tenant who deploys the software and configuration artifacts should not be aware of
other tenant presences, and moreover, the data produced by the corresponding tenant is
completely isolated from other tenants [7].

In addition to the management and administration features supported by the multi-tenant
E SB, the E SB has to also be equipped with a framework which enables the evolution of
services as described previously. This allows the tenants to focus on new software services
introduction and deployment while relieving them from the service version management
itself. The multi-tenant E SB has to facilitate the version management of service providers
and consumers in a transparent manner, and ensure service compatibility among tenants.

1.1. Motivation Scenario

The Taxi Scenario, which is a use case in the 4CaaSt project [8], will be adopted as a running
example throughout this work. The Taxi Scenario describes a taxi booking service and it
involves Taxi Company GUI, Taxi Transmitter GUI, Taxi Service Provider process, Google
Maps Web Services Adapter, and Context Casting Context-Management Framework (C-
CAST CMF) Adapter [9] as system components. All components of the taxi booking service
are Web applications. The first two components can be deployed in a separate servlet
container and referred as Taxi Company, while the rest of the components can also be

14

deployed in another servlet container and will be referred as Taxi Service Provider (see

Figure 1.1). The multi-tenant E SB will integrate both Web applications by allowing each
application to communicate with an individual connectivity service provided by the E SB.
Herein, the Taxi Company and Taxi Service Provider will be assumed as tenants in multi-
tenant E SB because each of them might be a tenant of another.

The Taxi Scenario is illustrated as follows: Taxi Companies use taxi management software to
offer taxi booking service to Taxi Customers. The customers can request taxi transportation
by providing the pick-up location and the desired destination. The Taxi Company will then
forward this information to the Taxi Service Provider which in turn requests information
about nearby taxi cab location and taxi driver contact to service offered by C-CAST CMF,
and distance calculation between the cab location and pick-up location to Google Map Web
Services. By using this information the Taxi Service Provider will send requests to the Taxi
Transmitters which are carried by taxi drivers. The taxi drivers that are near the pick-up
location can confirm the taxi request by committing it to the Taxi Service Provider.
Confirmation is then sent to the corresponding Taxi Company, and finally it reaches the
Taxi Customer.

Figure 1.1: Taxi Company and Taxi Service Provider integration by multi-tenant E SB [10]

As described above, a tenant can be either a service consumer or producer. In case of the
Taxi Scenario, Taxi Company and Taxi Service Provider might participate in the role of
either service consumer or provider or even both using the multi-tenant E SB. The roles are
explained in the following:

15

 Taxi Company acts as service provider: it registers its services with the multi-tenant
E SB so that the services can be exposed to Taxi Customer.

 Taxi Company acts as service consumer: it uses services offered by the Taxi Service
Provider i.e. to get any available and nearby taxis for Taxi Customers.

 Taxi Service Provider acts as service provider: it registers its services so that the
services can be exposed to the Taxi Company.

 Taxi Service Provider acts as consumer: it consumes services provided by the Taxi
Transmitter for taxi driver confirmation purpose.

In either case, whenever the Taxi Company or Taxi Service Provider wants to expose or
consume services i.e. as service providers or consumers, they need to register the services
with the system, or choose which services they want to use, respectively. In the following
example, there are several possible service evolution paths that can be identified (for ease of
readability, the service versions are given in format Vx.x):

1. Taxi Service Provider deploys service version V1.0, Taxi Company uses the service of
Taxi Service Provider V1.0.

2. Taxi Service Provider might replace service version V1.0 to V1.1, this should be still
compatible with V1.0 so that the Taxi Company can still use V1.0 or update to newer
version V1.1. If the Taxi Company wants to keep using service version V1.0, the
incoming requests will be adapted to service version V1.1 as necessarily.

3. Assuming now the Taxi Company uses V1.1 of Taxi Service Provider. In order to
cover foreseen updates in the Taxi Service Provider, the Taxi Company upgrades
unilaterally to its own version of service version V1.2 . As long as the service version
V1.2 of the Taxi Company conforms to service version V1.1 of Taxi Service Provider
then the communication between both parties can be still performed. Otherwise an
error will be generated.

4. Taxi Service Provider might replace its service to version V2 .0. Assuming that service
version V2 .0 breaks its consumers, the Taxi Company is required to update its service
to V2 .0.

5. Taxi Service Provider might offer service version V2 .0 in parallel with service version
V1.1. Assuming that version V2 .0 breaks existing consumers, and the previous service
version V1.1 is still active. All requests from existing consumers i.e. from version V1.0

and V1.1 will be routed to the service version V1.1 while service version V2 .0 targets
new service consumers.

1.2. Problem Definition and Scope of Work

Based on the given roles and also the possible service evolution paths as described in the
previous section, the main objective of this diploma thesis is to extend the open source E SB
Apache ServiceMix [11] which has already been enhanced with multi-tenancy capabilities
[6] so that the E SB can enable a service version control management framework based on
the Compatible E volution Framework defined in [12]. This extension is decomposed in terms

16

of management and administration, as well as message flows in versions inside the multi-
tenant E SB.

The service version control management framework concentrates on the service descriptions
changes dimension as defined in [12]. This means that the evolution of service descriptions
does not address directly changes to the actual service implementation. Similarly, the
framework is aimed towards the Web services WS-* technological stack. In this case, Web
Service Description Language (WSDL) documents in the service description level are the
main focus on service versioning and service compatibility purposes. RE STful service is not
in the scope of this work. Moreover, the communication and interaction among the service
providers and consumers take place in the multi-tenant E SB. The E SB has to ensure that the
requests and the corresponding responses are wired correctly to related service providers
and consumers.

1.3. Research Design

The research design in this diploma thesis is to introduce a service version control
management framework based on a theoretical framework defined in [12]. The theoretical
framework provides a mechanism which guarantees a correct service versioning transition
and service compatibility checking so that the service changes can evolve consistently and
transparently. A multi-tenant E SB as applications integrator has to provide the capabilities
for managing service evolution by implementing the framework discussed in [12].

To realize this goal, the requirements for service version control management framework in
general should be investigated in the first case. This might include new use cases of how a
tenant registers, replaces, or deploys in parallel her service versions in the management
application. Moreover, a new data source, version registry, which maintains and holds the
service version-related information, should also be introduced. Together with these
fundamental specifications, the requirements for multi-tenant E SB can be examined. Any
necessary APIs that need to interconnect the existing multi-tenant E SB and service version
control management framework are proposed.

1.4. Outline

There are overall six chapters in this diploma thesis and each of them is structured and
shortly described as follow:

 F undamentals, Chapter 2—this chapter provides concepts and background related to
service evolution, the corresponding infrastructure, its current state of art, and also
the available theoretical methodologies.

17

 Requirements and Specification, Chapter 3—fundamental requirements for service
version control management are inspected to solve common issues in service
versioning. In addition, requirements for multi-tenant E SB are also examined. The
specifications to satisfy those requirements in conjunction are then proposed.

 System Design and Architecture, Chapter 4—in the first section of this chapter, a
high-level system overview is presented. Then it is followed by system design which
defines how the existing management system is extended and the database schema
of version-related registry is represented. The last section shows the entire system
architecture, and it can be observed from its functionalities and communication
between system components.

 Implementation, Chapter 5—any related technologies to implement the service
version control framework are shortly discussed. The implementation for the system
in terms of extending an existing multi-tenant aware E SB is performed.

 Conclusion and O utlook, Chapter 6—this chapter concludes the overall work and it
gives outlook how this work could be further extended.

18

19

2. Background and Related Work

This chapter provides an overview of fundamental concepts and background related to this
work. This information should give a better understanding and insight about which
infrastructures or components are involved in the context of service evolution, what is the
current state of art in service evolution, and which theoretical concepts and methodologies
can be adopted to support this work.

The first section of this chapter examines the JBI, E SB and service registry as important
foundations and infrastructures in service-oriented architecture world. The basic idea and
definition of service versioning and compatibility are also covered in this section. The
second section deals with the work contributions to service versioning and service
compatibility. The last section covers the compatible evolution framework that act as a
technology- and language-independent formal framework.

2.1. Fundamental

In this section background information on infrastructure and notions associated with
evolution of services shall be presented. The understanding of these principles will serve as
the basis for this work.

2.1.1. Java Business Integration

Java Business Integration (JBI) defines a standard-based architecture that enables the service
containers interoperability, services connectivity, and services integration [13]. The JBI
architecture allows integration artifacts to be constructed based on the components that are
pluggable into the JBI environment. These components are referred to JBI components and
can be classified into service engines (SE s) and binding components (BCs).

SE s can provide or consume services to/from other components in the JBI environment. For
example SE s might have the capability of messages routing and transformation as services.
In the other hand, BCs allow external system to communicate with the JBI environment by
providing various communication protocols such as HTTP and JMS. BCs and SE s do not
communicate directly. Instead, they communicate through a Normalized Message Router
(NMR). All message exchanges that flow inside the JBI environment are normaliz ed
messages i.e. a XML payload and meta-data.

The JBI specifications also specify a management framework that allows the system
administrator for an instance to install JBI components in the JBI environment, and deploy

20

service configuration artifacts on the components through Java Management E xtensions
(JMX). The artifact that can be deployed into running BCs or SE s is referred to a service unit.
A group of service units can be packaged together and can create a service assembly. Once a
service assembly is deployed into JBI container, each of the service units will be deployed to
its specific SE or BC.

2.1.2. Enterprise Service Bus

According to Rademakers et al. [14], there are several reasons why applications integration
using an enterprise service bus (E SB) should be taken into account. The first reason is that in
a large system landscape it is nearly impossible to have a homogeneous system because each
existing application has its own way to perform the business processes by implementing
different technologies and protocols. In order to communicate between any two applications
a custom interface has to be built on each side to translate a data format that both of them
can process. Such point-to-point integration would not make any sense in a large system
environment since the number of connections of various applications will grow rapidly as
the system grows. This only increases the overall system complexity and also makes the
system difficult to scale. Another reason is to minimize the total cost of system maintenance.
Applications’ maintenance in a traditional point-to-point architecture can become very
cumbersome and expensive. Therefore, the introduction of E SB as a central integration
solution could help to alleviate the system management task and cost.

An E SB is an open standard-based message backbone designed to enable the
implementation, deployment, and management of distributed service-oriented architecture
(SOA) [Papazoglou08]. In its essence, the E SB has to ensure that it provides interoperability
and connectivity among applications since it has to deal with different protocols, for
example HTTP, JMS, and SOAP [5]. The E SB provides a layer abstraction of system
integration which enables system developers to fully focus on service design and
development.

As a SOA centerpiece, E SB must implement or support some core functionalities. In the
following the core functionalities that are closely related to the diploma thesis will be
discussed briefly [14], [15].

Message Transformation
It is very common that a data format of source application differs from the data format of
target application. For the communication to take place properly a message from the source
application must be transformed into a message format that is understood by the target
application before it can be forwarded. The message transformation is performed based on
open standards such as E xtensible Stylesheet Language Transformation (XSLT) and XPath.

21

Message E nhancement
The message transformation described above can perform its jobs by cooperating with
message enhancement. After a source message is transformed to target data format, one
might need to add some additional information before sending the message out to
destination. This is desirable because the target destination might require information which
is not available from the source message. An external source e.g. a database could provide
such additional data.

Intelligent Routing
Message routing is another important functionality that an E SB must support. Its task is to
deliver requests from service consumers to correct service providers, and then forward
responses back to the service consumers. There are some criteria how messages are routed.
Content-based routing is a routing capability that sends messages based on their contents.
Another example is message routing that routes a specific message to several destinations.
In this case the service consumers subscribe to a certain topic and receive responses based
on the topic.

Service Management
In a rapid changing SOA environment it is necessary to somehow govern and handle the
environment in a proper way. Services that reflect business tasks need to be managed in
order to ease service discovery and reuse. Service registry as a fundamental part of E SB
gives a great deal of service management. This topic will be reviewed again in next section
in greater details.

2.1.3. Service Registry

Service registry is a place where all information about services at runtime is stored. Its
historical background comes from one of the main roles of the well-known SOA triangle,
service broker. In SOA triangle, a service provider registers its services to a service broker. A
service consumer that wants to use a particular service can find the related information in
the registry. By using this information the service consumer can now locate and call the
service [15].

According to Daigneau [16], a service registry might contain data types and messages
definitions which are defined by XML Schema Definition Language. Moreover, WSDL files
that identify the input and output message types, binding protocols, and addresses of
services are also stored in the registry.

A mature service registry has several important responsibilities in SOA architecture. It has
to be able to support the reuse of Web services and ease the communication between service

22

providers and service consumers. More importantly it should have the capability to deal
with the evolving SOA, that is, it maintains the evolution of services [17].

2.1.4. Service Versioning and Compatibility

In a SOA environment, services grow and evolve over time to reflect new business
requirements which could drive existing services to be changed or modified. This might
result in new variant of services, that is, the original services with upgraded or customized
functionality. The creation and management of existing and new releases of services is
called service versioning [18].

An upgraded service could be either compatible or incompatible with its older version of
services. It means whether or not the new service version could be understood and
processed by existing service consumers. There might be a possibility that the new version
introduces e.g. different data types than the previous one causing the existing service
consumers to break. Moreover, service compatibility can be divided into backward
compatibility and forward compatibility [19]. Backward compatibility means a new version
of service provider can be introduced without breaking the existing service consumers,
while forward compatibility means a new version of service consumer can be carried out
without breaking the existing service producer. If both conditions are fulfilled then it is
called full compatibility [1].

Service versioning can appear either in service interface or service implementation [1].
Service interface versioning deals with service description, that is, metadata which defines
the characteristic and interaction of services [4]. Meanwhile, service implementation
versioning is versioning related to software code and its documentation, and can be
managed by Software Configuration Management (SCM) techniques [20]. This diploma
thesis will solely focus on interface versioning i.e. on WSDL files [21].

Based on the notion of service versioning and compatibility, old and new service interfaces
should be managed in a way to avoid having too many active versions for the same service
interfaces. On [12] it is proposed that the number of active versions should be kept as
minimum as possible. When a compatible new service version is brought into production,
the older version can be marked as deprecated and then withdrawn in a certain period of
time as long as no service consumers are using it anymore. This could help reducing the
high cost of service provision and management [15], [22].

23

2.2. State of Art
After a brief discussion of the basic notions of service versioning and service compatibility
on Section 2.1.3, several existing approaches for them will be introduced. These approaches
are classified into:

 How service versions are specified and which kind of methods can be adopted to
implement them.

 How compatibility assessment is performed.

 How service consumers are aware of new service releases.

2.2.1. Service Versioning

Service versioning on service interfaces should support old and new version of services. One
common way to realize this is by naming the service version with major and minor release
sequence. For an example a service with version “2.3” indicates that the service has a major
version of 2 and a minor version of 3. In addition, the version number is arranged in
increasing order, and it is assumed that the higher the version number the newer the service
version implies. Major releases are introduced when significant changes have occurred on
the service interfaces that make the service consumers to break. Normally minor releases
will not cause service consumers to break since the modifications are still compatible with
the previous version [23].

Another way to name a service version is by using date. The following listing shows how to
deploy versioning on the data structure defined by XML Schema Definition.

<types>

 <schema targetNamespace="http://example.com/2012/09/01/Schema.xsd"

 xmlns="…">

 <element name="GetWeatherRequest">

 …

 </element>

 <element name="GetWeatherResponse">

 …

 </element>

 </schema>

</types>

Listing 2.1: Service versioning using XML Schema Definition

This approach does not provide any information whether the release is compatible or
incompatible with the previous version, but it can be used to validate the data types before
messages exchange occurs [16].

There are several service versioning methods and each of them will be summarized as
follows.

24

 A common method for implementing service versioning is to impose a new XML
namespace. Unfortunately every introduction of a new namespace will break existing
service consumers. This indicates that something new about the service or data types
has been released, and the existing consumers that bind the previous namespace
need to update their references. Applying a new XML namespace is always assumed
to create a major version of services. If a minor release or compatible version wants
to be achieved, version identifiers can be employed together with the namespace. In
this case new XML namespaces will describe a major or incompatible service version,
while version identifiers will indicate a minor or compatible change [24].

 As discussed on Section 2.1.2 an advanced service registry should be able to maintain
the historical information of service interfaces. For an instance, how Universal
Description, Discovery, and Integration (UDDI) as a public registry to support service
evolution will be discussed. In UDDI, service versioning is realized through the
extension of tModel [25]. tModel is a generic description of registered services in
UDDI registry. The extension is carried out by providing a service version (major
minor sequence) on instanceDetails data structure contained in tModel. Another
approach is to have multiple tModels, that is, each tModel represents one service
version [25].

 The service version graph approach proposed on [26] is another method to represent
service versioning. One service interface is represented by exactly one version graph.
The service version graph is a directed graph whose nodes contain versioning
information and edges shows the relationship between service versions. The
relationship creates a successor and predecessor role, that is, successor represents a
changed service description of its predecessor. In the version graph, all successors
refer to one original service. Service version graphs could also be stored in service
registry.

In the work on service versioning by Yamashita et al. [27], versioning is applied only on a
portion of WSDL/XML Schema such as operations and data types. These fragments are
referred as features. The goal of this versioning approach is to create a version only to the
features that have been changed either directly or indirectly influenced, not the entire
service description for a better control and comprehension of interface changes impact.
Indirect feature influenced mean the feature itself does not change but the other feature it
depends on has been changed. For an example data type change from int to double might
affect message element that is using the data type.

2.2.2. Service Compatibility

Service compatibility is an important notion in service evolution. It allows the introduction
of a new service version while continuing supporting the old version of services.
Maintaining backward compatibility defined on Section 2.1.3 always serves as a goal for
service providers, and the term compatible should be by default regarded as backward

25

compatible. On the other hand forward compatibility is harder to realize because it requires
the ability to deal with a major change.

The works on service compatibility have been proposed and contributed to let service
consumers of either the previous or the new version to successfully process the new
message or old message format, respectively. References to the current works of service
compatibility are summarized below.

1. Beside proposed service versioning method, Yamashita et al also define compatibility
assessment that based on current guidelines or best practices as pointed in [28], [26],
[29]. Table 2.1 shows the summary of these guidelines. Moreover the algorithm
presented in [27] is an adaptation from [30] that takes two service features and
evaluates them recursively based on guideline bellow for compatibility checking.

No. Feature Type C hange Description Backward

C ompatible
1 Add operation Add new operation to service interface Yes
2 Add type Add new type to a new operation or a

new type
Yes

3 Add type Add new type to existing operation or
type

No

4 Update type Modification in description e.g.
cardinality or order

No

5 Remove Type Remove type dependency No
6 Remove Operation Remove operation dependency No

Table 2.1: Guideline for compatibility assessment [27]

2. In order to avoid breaking changes introduced by new release of services, either
service consumers or producers should be able to somehow ignore new contents in
terms of new messages and data types that they do not understand. This is what the
service design pattern Tolerant Reader should realize and it can be implemented on
consumers or producers side. The Tolerant Reader must have the capability to
differentiate and extract which information it can process and ignore the remaining
one as long as the semantic of the service is not violated. In this way Tolerant
Reader can preserve the backward or forward compatibility [16].

2.2.3. Identification Model of Service Change

There are several possibilities for service consumers to identify a new release of a service.
The most straightforward way is that a service consumer itself has to recognize the new
service version. This can be done by regularly checking the service registry whether the
services being used are already deprecated. If that is the case then it implies that a new
service is available regardless of whether it is a major or minor version [23], [31].

26

In the other way round, a service consumer will get a notification once a new version is
ready to deploy. In [24] consumer using a certain service will get a first notification when a
new service is released. After the old service is decommissioned the consumer will obtain
another notification, e.g., a fault message indicating that the old version has already been
taken out from production. Another example is to extend UDDI with service versioning
functionality and allow service consumers to subscribe to an event related to the versioning
information [32].

The approaches like client and notification models are deployed without any concerns
whether or not new services break service consumers. However, transparent model ensures
that as long as the new service is compatible with its previous version, the consumers will
not be aware of the service modification and can keep using the existing service without any
impact [33].

2.3. The Compatible Evolution Framework

The state of the art in service versioning and compatibility presented above is insufficient to
build a solid framework supporting services evolution. For an example, the method that
incorporates XML namespace and version identifier, when used intensively will create a
maintenance problem. In addition this approach also requires service consumers to validate
the version compatibility on their own. The approaches also depend heavily on particular
standards e.g. WSDL and XML Schema Definition.

The compatible evolution framework proposed in [34] tries to overcome such drawbacks by
providing a robust technology- and language-independent theoretical framework which
guarantees the evolution of services can take place correctly and uniformly. The main
purposes of this framework are to preserve the service compatibility and ensure a
transparent version identification model so that every compatible change will have a
seamless and consistent version transition.

2.3.1. Abstract Service Description Model

Service interfaces should not be specified restricted to a particular technology or language
implementation because they have to be able to be deployed in any infrastructures or
frameworks. The Abstract Service Description (ASD) meta-model allows a general
representation of service descriptions as defined in [1]. The meta-model comprises three
layers, namely structural, behavioral, and non-functional layer as shown in Figure 2.1 below.
The structural layer describes service signatures of a service such as service data types,
messages and operations. A behavioral layer shows how services behave when
communication between service consumer and provider takes place. The non-functional
layer is concerned with Quality of Service (QoS) represented by a set of policy constraints or
assertions.

27

From here on, only the structural layer of ASD will be discussed since the behavioral and
non-functional layers are out scope of this diploma thesis. As depicted in Figure 2.1, the
structural layer contains operation, message, and information type constructs. These
constructs are associated and can be mapped into a WSDL operation, message, and data
type, respectively. E ach construct is called an element and each element relates to each other
based on their syntactical and semantic dependencies. E lements and their relationships are
referred as records. E ach element might have properties that describe its role in ASD, and
attributes that contain a particular value. The property of an element can be assigned with a
number of allowable predefined values e.g. Datatype of valueType property can be assigned
with one of simple data types in XML Schema such as int, double, and string. Document data
type refers to a complex type of XML.

As service interface representations, ASDs are also inevitable to being changed or modified.
E very change results in a new version of ASD. So this reflects to the structural layer, that is,
every record on this layer will be maintained and versioned accordingly. A versioned ASD
contains a collection of the versioned records , and each record is identified by a
unique version identifier.

Figure 2.1: Abstract Service Description Model [34]

The compatibility among records can be defined using the help of subtyping relation.
Subtyping evaluates whether one record is a subtype of another record, and this can be

28

denoted as . Compatibility between service versions defined in [ABP12] allocates
versioned records into two proper subsets and which represent a set of records

of message producer and message consumer, respectively. Recall the service compatibility
definitions described on Section 2.1.4service compatibility definitions between and can
be extended in terms of subtyping as follows:

 Backward compatibility:
 .

 Forward compatibility:
 .

 Full compatibility: .

2.3.2. T-Shaped Change

The term compatibility has been further extended and classified by Andrikopoulos [34] into
two dimensional scopes: horizontal and vertical compatibility. The horizontal compatibility
or interoperability between services means that service versions can interoperate
successfully with each other, either as a service producer or as a service consumer. On the
other hand, the vertical compatibility or substitutability (provider’s point of view) or
replaceability (consumer’s point of view) between services means that one service version
can replace another version. The combination of the two definitions above results in so-
called T-shaped changes.

In correlation to service compatibility in terms of subtyping, a change set resulting into
an ASD is considered a T-shaped change if and only if it results in a full compatibility of
service description. In this case, the Compatibility Checking Function (CCF) algorithm
defined below can be applied on and . The first for iteration (line 1 – line 5) and

the second for iteration (line 6 - line 11) evaluate whether the changes on
 and

 comply with the backward compatibility and forward compatibility, respectively. If

the result returns the value true, it means the new service version is fully compatible with
its previous one.

 1: for all
 do

 2: if then
 3: return false;

 4: end if

 5: end for

 6: for all do

 7: if
 then

 8: return false;

 9: end if

10: end for

11: return true;

Listing 2.2: Compatibility Checking Function (CCF) algorithm [12]

29

3. Requirements and Specification

This chapter will discuss about requirements which are needed to build a service version
control management system. In the first section, version control management requirements
in general are introduced, and are used to address several common issues related to service
versioning. In the second section, version control management in conjunction with multi-
tenant E SB is defined. The required system specifications for the version control
management are based on an existing multi-tenant E SB architecture [10].

3.1. Service Version Control Management

One of the main tasks of service version control management is to govern and maintain all
service interface descriptions which were registered by service providers. This implies that
the version control system will not only keep track of each service description registration
with the E SB, but also of the corresponding service provider. In order to completely define
the service version control management functionalities, there are several important
considerations to take into account when dealing with service versioning:

1. Which service interface descriptions – the WSDL documents – are going to be
managed and versioned.

2. When service compatibility assessment between service versions is carried out.
3. Where the service interface versioning information and history are stored.
4. How to uniquely distinguish the service versions.
5. What kind of possibilities that are offered by the underlying system so that a tenant

(as a service consumer or service provider) can decide which service version that she
wants to consume or expose, respectively.

In general, all service descriptions should be managed and versioned, that is, the ones which
are registered with a system and exposed as service endpoints. From the motivation scenario
(Section 1.1) this will include the service descriptions of Taxi Service Provider, Taxi
Company, C-CAST CMF, and Google Maps Web Services as they are registered with the
E SB. Although the service versioning is closely related to service compatibility assessment,
both tasks are independent to each other. However, the compatibility assessment will be
typically performed after a new service is registered and there are at least two services
available for the compatibility evaluation. All service interface versioning and compatibility
assessment information should be stored in a separate database that is managed by a service
version control system, leaving the main system to fully concentrate only on its core
functionalities.

30

Service versioning should not be a concern for service providers. It is not necessary to
explicitly define for example a particular service version name or number (see Section 2.2.1)
on the service descriptions to implement the service interface versioning. The version
control management system will decouple this task from the service provider by adding
service versioning information internally to differentiate between the services.

To describe the last point of the considerations above, it is necessary to recall the roles of
tenant presented in the motivation scenario. A tenant can act either as a service provider, a
service consumer, or both. The association between two tenants can be classified into the
following relationship:

 One-way relationship: this is a typical case where a service consumer consumes
services exposed by a service provider. However, it is not valid in the other way
round. For an example Taxi Customer will use services from the Taxi Company to
make a taxi order.

 Reciprocal relationship: a service consumer consumes services from a service
provider, and for some reasons the service provider will also use services provided by
the service consumer to accomplish the whole communication task. In this case each
tenant has both roles as service provider and service consumer. From the Taxi
Scenario, Taxi Company will use services from the Taxi Service Provider. To fulfill
the taxi request from the Taxi Company, the Taxi Service Provider will utilize
services from Taxi Transmitter which are parts of the Taxi Company services in
order to communicate with the taxi driver.

Depending on in which role the tenant participates, she might have several possibilities with
respect to how she registers and chooses the service versions. This will be summarized into
the following table.

Role of Tenant Action
Service Provider When a tenant registers her services, she can define whether she

wants to add a new service, replace an existing service, or
deploy a new service in parallel to an existing one.

Service Consumer 1. When a tenant is added, she will be able to choose which
service provider she wants to use.

2. A tenant can also decide for groups of her users to use a
particular version of services from the service provider.

3. A tenant has an option to unilaterally move to another
version of the service, even one that is not registered by the
service provider. This allows tenant as the service consumer
to evolve independently from the service providers.

Service Provider and
Service Consumer

1. One-way relationship: a tenant implements actions as
described for the service provider and consumer.

2. Reciprocal relationship: the same actions as in one-way
relationship but with an additional task. After a tenant has
registered her services and chose a service provider, she
needs to explicitly notify the service provider to employ her
services so that the communication between both parties can
be established.

Table 3.1: Tenant roles and corresponding actions for service registration and employment

31

3.2. Service Version Control Management Requirements for Multi-tenant

aware ESB

The work in [6] has identified the requirements for multi-tenancy on E SB (multi-tenant
aware E SB) [10] in terms of administration and management level. The requirements for
multi-tenant aware E SB involve a management application that connects to the E SB, and
also the enhancement of the E SB itself. The requirements from [6] will be shortly
introduced, and together with the fundamental functionalities specified in the previous
section, the requirements for multi-tenant aware E SB which support service version control
management shall be investigated.

3.2.1. Management Application

To enhance the E SB with multi-tenancy functionality, a management application is required.
This application needs to maintain a group of tenants that want to access the E SB. Moreover
there should be data sources that hold all important tenant-related information as well.

JBIMulti2 is management prototype developed in [6] to support multi-tenancy on E SB level.
All multi-tenant functionalities required for management application are encapsulated into
the JBIMulti2 system. The system implements role-based access model [35] that allows
tenants to interact with the system in restrictive manner, and JBIMulti2 also assumes that
tenants might be both service producers and consumers. JBIMulti2 is built on top of Apache
ServiceMix [36] and connected to a collection of data sources.

In JBIMulti2 the actors play an important part in the system because the functionalities in
the underlying system are performed by different roles. In addition, a set of databases in
JBIMulti2 store different kind of information including tenant-, system configuration-, and
service-related information. By carefully investigating the roles and the databases involved,
it is possible to point out which system functionalities and information can be carried out in
relation to service versioning.

Role-based Access

In JBIMulti2, all administration and management operations are restricted based on role
access control. E ach role has its own privileges to access the underlying system and data
sources. The role-based access control can be classified into system role and tenant role
which are represented by three actors of the system, namely system administrator, and
tenant administrator and tenant operator, respectively. In the following the responsibilities
of the JBIMulti2 system actors will be explained briefly:

 System administrator: she is responsible for the JBIMulti2 system and inherits all
functionalities from tenant administrator and tenant operator. Her main tasks are to
add tenants and provide them with resource usage.

32

 Tenant administrator: she can create other tenant administrator and tenant operator
roles, and assign a set of permitted operations to them. She also uses the resource
partitions provided by system administration to create service unit and service
registration contingent for the tenant operators.

 Tenant operator: the service registration and service unit contingent created will be
consumed by tenant operators to register services and deploy service assemblies to
the system, respectively.

Databases in Management Application

A management application needs access to databases. In the case of JBIMulti2, there are
three databases that the system currently relies on to store the system information, namely
Tenant Registry, Configuration Registry, and Service Registry. Tenant Registry stores all
information about the tenants and also the tenant users. Configuration Registry maintains
configurations produced by the system administrator and tenant administrator. The third
database, Service Registry keeps all service-related information. This includes service
description documents and also the service assembly files. The JBIMulti2 accesses the
databases using Tenant Registry-, Configuration Registry-, and Service Registry Manager.

The responsibilities of the JBIMulti2 actors described previously are translated into a list of
use cases [37]. These use cases describe the interaction between the actors, the underlying
system and the databases in specified permissions. Based on the use cases and the given
system, the investigation about the operations supported or involved in the service-related
information can be explored. This information is crucial because it gives indication which
parts of the system could be extended for service version-aware purposes. The result is
presented in the following table.

Use case Role Database
Integrate tenant registry System administrator Configuration-, Service-,

Tenant registry
Delete tenant System administrator Configuration-, Service-,

Tenant registry
Unregister JBI Container System administrator Configuration-, Service registry
Uninstall JBI component System administrator Configuration-, Service registry
Change JBI container cluster of
tenant

System administrator Configuration-, Service registry

Delete service unit contingent Tenant administrator Configuration-, Service registry
Delete service registration
contingent

Tenant administrator Configuration-, Service registry

View service assemblies Tenant operator Configuration-, Service registry
View service registrations Tenant operator Configuration-, Service registry
Register and unregister service Tenant operator Configuration-, Service registry
Deploy and undeploy service
assembly

Tenant operator Configuration-, Service registry

Table 3.2: Mapping of use cases, roles, and databases for service-related information

33

Based on the use cases shown in Table 2.1, the related key operations are listed below:

 Register service: the tenant operator can register services that she wants to expose
by submitting the WSDL documents to the Service Registry.

 Unregister service: the WSDL files can be removed if they will not be used anymore.

 Deploy service assembly: when the configuration files in the service assembly are
deployed to JBI components on the ServiceMix, a new service will be created on the
components and it can be invoked through its service endpoints. The target service
endpoint is also important to be specified for message exchange purpose.

 Undeploy service assembly: the created services are removed from JBI components.

All operations are implemented by the Service Registry Manager. The system administrator
has also permissions to conduct the use cases since she inherits all functionalities from
tenant operator. But from here on only tenant operator will be referred when dealing with
these operations. For more comprehensive information about the access control and
JBIMulti2 in general, please refer to the JBIMulti2 documentation [6].

E xtensions to Management Application
This section will describe the extension for the management application to enable service
version awareness based on the requirements in Section 3.1, and given the roles and use
cases described above. The requirements are revisited again and the solutions are proposed
after each requirement.

1. Where the service interface versioning information and history are stored.
The current Service Registry database aims to keep the actual service descriptions
only (services in runtime – see Section 2.1.2). For service interface versioning
purposes, a new database – Version Registry – shall be introduced to maintain all
versioning information and history.

2. How to uniquely distinguish the service versions.
After service descriptions are registered by the tenant operator, a unique identifier
will be assigned to each of them to distinguish them in the Version Registry.

3. What kind of possibilities that are offered by the underlying system so that a tenant
(as a service consumer or service provider) can decide on which service version that
she wants to consume or expose.
The proposed approaches depend on which role the tenants play. Therefore, Table
2.1 is revisited again with extension or additional action, and is summarized into
Table 3.3.

34

Role of
Tenant

Action E xtension/Additional Actions

Service
Provider

When a tenant registers her
services, she can define whether
she wants to add a new service,
replace an existing service, or
deploy a new service in parallel
to an existing one.

There are two use cases that need to be
added beside the existing ones, namely
replace and deploy service in parallel use
cases.

Service
Consumer

1. When a tenant is added, she
will be able to choose which
service provider she wants
to use.

2. A tenant can also decide for
groups of her users to use a
particular version of services
from the service provider.

3. A tenant has an option to
unilaterally move to another
version of the service, even
one that is not registered by
the service provider. This
allows tenant as the service
consumer to evolve
independently from the
service providers.

There is no extension needed for the
system, but some additional tasks should be
implemented:
1. The tenant operator has to configure

the service unit file by specifying the
target service endpoint of the preferred
service provider before deploying the
service assembly.

2. In order to decide on which service
versions to be adopted, one particular
service has to be available at least in
two versions i.e. they must be deployed
in parallel in advance. Then based on
policies the tenant users can be
assigned to a certain service version.

3. The tenant operator has to register her
service and apply the compatibility
checking against the version(s) offered
by the service provider. As long as both
services are compatible, message
requests can be created from the service
description.

Service
Provider
and Service
Consumer

1. One-way relationship: a
tenant implements actions
as described for the service
provider and consumer.

2. Reciprocal relationship: the
same actions as in one-way
relationship but with an
additional task. After a
tenant has registered her
services and chose a service
provider, she needs to
explicitly notify the service
provider to employ her
services so that the
communication between
both parties can be
established.

1. The tenant operator employs the
extensions and additional operations as
defined for the service provider and
consumer.

2. In this case, it is assumed that the
tenant operators of the service provider
should have knowledge who will
consume her service and whose service
she will consume. For instance, after the
tenant operator has registered her
service and deploy the service
assembly, she should inform the chosen
service provider at which location the
WSDL document can be found. The
service provider can then use the
document to create message requests
for communication purposes.

Table 3.3: E xtension for enabling version control management based on tenant roles.

35

4. Which service descriptions – the WSDL documents – are going to be managed and
versioned.
All service descriptions that are registered and exposed by the E SB should be
managed and versioned. However, the challenges are to separate the actual service
descriptions (in Service Registry) from the service versioning information (in Version
Registry) while preserving the existing service registration, unregister service
operation, and also the new use cases (replace and deploy parallel) proposed in Table
3.3. In other words the Service Registry Manager should act as a front-end interface
that deals directly with the tenant operators, and the version control management
will sit behind the interface in order to monitor any service interface descriptions-
related actions and add any service versioning information as necessarily.

5. When service compatibility assessment between service versions is carried out.
The compatibility assessment might be performed in the background after the tenant
operator has invoked the register or replace service operation.

3.2.2. Multi-tenant aware ESB

In addition to role-based access control and the registries described in the previous section,
the work in [6] has also identified requirements for the Apache ServiceMix to support multi-
tenancy on E SB level. The requirements should also work for E SBs that implement the JBI
specifications. In the case of ServiceMix, JBI components (binding components and service
engines) must be multi-tenant aware to ensure data isolation between tenants, thus the
motivation will be on the service assembly/service units processing. When tenant operators
execute the deploy service assembly operation, a management message will be sent from the
management application to ServiceMix instance. Before the service assembly is deployed,
there are two steps that need to be performed:

 The tenant context must be fetched from the management message. Information
such as the tenant identifier, user identifier or tenant URI will be injected into the
service assembly name, service unit names, and JBI deployment descriptor.

 The service units targeting different JBI components will create new services for
each tenant by reading the tenant context and replacing the service name of the
service endpoint with tenant identifier, user identifier, or tenant URI to generate
multi-tenant aware JBI service endpoints. Therefore, the data isolation between
tenants can be preserved.

Extensions to Multi-tenant aware ESB

Based on the information provide by Table 3.3, several use cases extensions or additional
actions should be provided to the overall system to support version control management.
The extensions for the use cases for management application have been covered in the
previous section. In this section, the extension to the actual E SB will be explored.

Binding components (BCs) and service engines (SE s) are JBI components in a JBI
environment. The BCs provide connectivity to existing external applications and can expose

36

internal JBI services to external JBI environments. The SE s offer functionality to other
components and can also consume services. Therefore, JBI components are the target
extension in this case. To implement a message flow of the communication between service
consumers and service providers, tenant operators have to define the service unit
configuration files and deploy them as a service assembly.

There are two requirements needed to support version control management on multi-tenant
aware E SB:

1. The most important of the E SB capabilities is message routing and this functionality
is provided by a service engine. The routing engine of the multi-tenant aware E SB
has to be aware of the versions of each incoming messages to route the messages to
correct service endpoints. Hence, it should be provided with additional information
such as tenant identifiers, user identifiers, target service endpoints, compatibility
status between service versions, and version of expected and actual incoming
message. The routing engine has to implement a message interceptor. Before any
routing operations are executed, the message interceptor has to verify every
incoming message with the information specified earlier to make a proper routing
decision whether the message can be wired to an active compatible service version,
or an error message should be generated. The compatibility information is important
because it can be used as an indicator by the message interceptor whether the
incoming messages are necessary to be transformed and routed to the target service
endpoints despite of different service versions.

2. Besides the capability to internally transform endpoint URIs and JBI service
endpoints to the ones that are multi-tenant aware, the multi-tenant aware E SB needs
to be extended in order to create endpoints that have the functionality to interpret
services in version (essential when services are deployed in parallel). However, the
endpoint URIs that expose services to external JBI environment should not be
enhanced with service version information. The rationale behind this is to release
tenants from service version intricacies, and allow the transparency of service
evolution. Nevertheless, service version awareness has to be enabled inside the JBI
environment targeting the JBI service endpoints for outgoing message exchanges.
This is because the routing capability needs to properly wire the messages to the
correct service endpoints. This is important when service providers deploy services
in parallel. To fulfill this requirement the multi-tenant aware E SB could be enhanced
by adopting the same approach like the one for multi-tenancy i.e. by adding a unique
service version identifier in management messages sent by JBIMulti2 when deploying
service assemblies. Then the endpoint name of the outgoing JBI service endpoint can
be extended by adding a service version identifier (see Listing 3.1).

37

/*

Input: tenantId, serviceLocalPart, endpointName, configuredLocationUriPrefix,

serviceId

Example:{jbimulti2:tenant-endpoints/tenantId}ExampleService:ep/service_version_id

*/

serviceEndpoint ::=serviceName “:” endpointName (serviceId)

serviceName ::=”{”serviceNamespacePrefix tenantId”}”serviceLocalPart

serviceNamespacePrefix ::=”jbimulti2:tenant-endpoints/” |

 configuredServiceNamespacePrefix

serviceId ::=”/service_version_id”

Listing 3.1: Service endpoint replacing pattern for service version-aware HTTP BC in
E xtended Backus-Naur Form (E BNF)

The Listing 3.1 above explains how a service endpoint in multi-tenant HTTP BC servicemix-

http-mt [6] can be extended to enable service version-aware. A Service endpoint is

composed of a service name and endpoint name. In case of multi-tenancy, the service name

of the service endpoint has been extended to include tenant context, thus, each tenant can

have separate service endpoint. Similarly, in order to support service version-aware the new

endpoint name has to be concatenated with a unique service identifier indicating a specific

version of a service.

38

39

4. System Design and Architecture

This chapter proposes a system design and corresponding architecture to realize the system
requirements defined in the previous chapter. First, a system overview of the service version
control management based on multi-tenant aware E SB will be introduced. In the second
section, a system design that reflects the system requirements is presented. The system
architecture that represents the system functionalities and interactions will conclude this
chapter.

4.1. High-level System Overview

In Chapter 3, the service version control requirements in conjunction with multi-tenant
aware E SB have been covered. Based on the specified requirements there are three main
components that build up the overall system. The system consists of the Version Control
Manager (as an extension of JBIMulti2), the Version Registry database, and the Multi-tenant
aware E SB. Figure 4.1 depicts a high-level view of the system and how each component is
connected to each other.

Figure 4.1: High-level view of multi-tenant aware E SB with version control management

Version Registry
As a data source the Version Registry should be able to provide the Version Control
Manager and the E SB the service versioning information. The information contained in the
Version Registry includes service version-related information, compatibility status, and
tenant context. The database schema and the functionalities of Version Registry can be
viewed in Section 4.2.2 and Section 4.3.1, respectively.

40

Version Control Manager
At its very basic functionalities the Version Control Manager should be able to retrieve data
from the Version Registry, and update the multi-tenant aware E SB with the most current
state of the service versioning information. The complete functionalities of Version Control
Manager can be found in Section 4.3.1.

Multi- tenant aware E SB
Multi-tenant aware E SB must be able to forward a request message from a particular tenant
to a service provider that employs a certain service version, and vice versa by using the
information updated by the Version Control Manager.

Communication between components
The version control manager might retrieve service versioning information from Version
Registry and then forward it to the E SB. This communication way is the most
straightforward approach that can be applied. In the following several patterns are
introduced to realize the communication between the components.

1. Communication between Version Registry and Version Control Manager.

 A timer pattern can be implemented to poll the database from the Version
Control Manager in interval basis.

 E vent listener in the Version Control Manager reacts whenever there is an
update in the Version Registry.

2. Communication between Version Control Manager and multi-tenant aware E SB.

 Any of the patterns introduced above can serve as a complement to publish-
subscribe pattern [38]. The information retrieved from the Version Registry
will be published to the multi-tenant aware E SB because it listens on the topic
subscription from the registry.

4.2. System Design

The proposed system design is based on the design for JBIMulti2 management system. In the
first section, the use cases as required for the version control purposes are given and
represented as a use case diagram. The first section is followed by database schema design
for Version Registry in Section 4.2.2.

4.2.1. Use Cases

In this section the related use cases of a tenant operator that were examined in Table 3.2 are
put together and presented as one use case diagram. In addition to the existing operations
there are also new use cases, namely the replace service operation and deploy service in
parallel operation as stated in Table 3.3. The replace service use case has an include

41

relationship with the existing use cases: the register and unregister service; while the deploy
service in parallel use case also has an include relationship with register service operation.
The use case diagram is shown in Figure 4.2, and the description of the replace and deploy
service in parallel operation are given in Table 4.1 and Table 4.2, respectively.

Tenant Operator

Deploy Service in
Parallel

Replace Service

Undeploy Service
Assembly

Register Service

View Service
Assembly

Delete Service
Unit Contingent

View Service
Assembly

Delete Service
Registration Contingent

Integrate Tenant
Registry

Delete Tenant

Unregister JBI
Container

Uninstall JBI
Component

Change JBI container
cluster of tenant

Unregister Service

«include»

«include»

Deploy Service
Assembly

«include»

Legend

existing use case

new use case

Figure 4.2: Use Case Diagram extending the uses cases for JBIMulti2 [6]

42

Name Replace Service
Goal The tenant operator wants to replace an old service version with a

new service version using an existing service registration
contingent.

Actor Tenant Operator
Pre-Condition The tenant operator has the permission to use the service

registration contingent.
Post-Condition The old service version is unregistered and the new service version

is registered
Post-Condition in
Special Case

The old service version is not unregistered and the new service
version is not registered.

Normal Case 1. The tenant operator will instruct the system to unregister the old
service version by removing it from Service Registry and then
update the service state in Version Registry into decommissioned.

2. Tenant operator registers the new service version with the
system by adding the WSDL document into Version Registry and
Service Registry. Additional service versioning information
including setting the service state to active is stored in the
Version Registry.

Special Cases 1. The tenant operator has lost the permission to use the service
registration contingent.
a) The system shows an error message and aborts.

2. The system cannot finish the transaction with the Service
Registry or Version Registry.
a) The system shows an error message and aborts.

3. The file for service registration purpose does not exist.
a) The system shows an error message and aborts.

4. The service description document is not a valid WSDL file.
a) The system shows an error message and aborts.

Table 4.1: Description of use case replace service

43

Name Deploy Service in Parallel
Goal The tenant operator wants to deploy a new service version in

parallel with an existing service version using an existing service
registration contingent.

Actor Tenant Operator
Pre-Condition The tenant operator has the permission to use the service

registration contingent.
Post-Condition The new service version is registered and is available in parallel with

the old service versions. The number of available service
registrations is decreased by one for the used service registration
contingent.

Post-Condition in
Special Case

The new service version is not registered and cannot be deployed in
parallel with the old service version.

Normal Case 1. The tenant operator will instruct the system to register the new
service version by adding WSDL document into Service Registry
and Version Registry. Additional service versioning information
including setting the service state to active is stored in the
Version Registry.

Special Cases 1. The tenant operator has lost the permission to use the service
registration contingent.
b) The system shows an error message and aborts.

2. The system cannot finish the transaction with the Service
Registry or Version Registry.
b) The system shows an error message and aborts.

3. The file for service registration purpose does not exist.
b) The system shows an error message and aborts.

4. The service description document is not a valid WSDL file.
b) The system shows an error message and aborts.

Table 4.2: Description of use case deploy service in parallel

4.2.2. Database Schema

Figure 4.3 shows an E ntity Relationship Diagram (E R-Diagram) of the Version Registry. The
E R-Diagram is composed of three entities and they will be defined as follows:

1. Service version: it is an entity that stores the versioning information for a service
description. This entity contains several attributes.

 Service version identifier: an identifier that is uniquely assigned to each
service description. Universally Unique Identifiers (UUIDs) are used for this
purpose.

 Service name: a name of the service description. It is preferably related
WSDL:targetNamespace.

 Service status: a service might have one of the two states, namely active,
and decommission.

 Start time: time the service is being activated or in active state.
 E nd time: time the service was decommissioned.

44

 Service interface current: WSDL file of actual service description.

 Service interface previous: WSDL file of previous service description.
2. Service Compatibility: it is represented as a recursive relationship between service

versions and it describes the compatibility of the services. It also has an attribute of
compatibility status: compatible, incompatible, identical and undetermined.

3. Tenant details: this entity contains the tenant and user identifier.

The entities of the Version Registry also build relationships between each other. A particular
tenant user can only use at most one service version a certain point of time, but one service
version can be adopted by many tenant users. One service version can be related to many
other service versions, and vice versa. The attribute serviceEndpoint is an attribute
resulting from the relationship between service_version and tenant_details. This
attribute holds information about the enhanced outgoing endpoint name with service
version identifier of the JBI components.

Figure 4.3: E R-Diagram of Version Registry

45

4.3. System Architecture

This section serves as a result to the system requirements and system design discussed in the
preceding sections. Herein the system architecture can be observed in two facets, namely
from its functionalities, and communication or the wiring between the components.

4.3.1. Functionalities of System Architecture

From Figure 4.1 the overall system architecture can be refined into a composition of existing
core components and data sources of JBIMulti2 system, also in addition to the new Version
Control Manager and Version Registry as an extension of the existing system as depicted by
Figure 4.4.

Figure 4.4: Building blocks of system architecture

E xtending the JBIMulti2 System

 Service Registry Manager: it registers service assemblies and services to the Service
Registry. In addition to those operations, replace and deploy service in parallel
operations will be added as new functionalities of the Service Registry Manager.

46

 Tenant Registry Manager: it stores and retrieves tenant-related information to/from
the Tenant Registry.

 Configuration Manager: it stores configuration data created by system
administrators or tenants to the Configuration Registry.

 JBI Container Manager: it is designated to communicate with underlying multi-
tenant aware E SB implementation.

 Service Assembly Manager: it adds the tenant context to each service unit
contained in a service assembly, so that once deployed in multi-tenant aware E SB
they do not interfere with service units of other tenants.

 Service Registry: it is a database that stores service assemblies and the active
service interface.

 Tenant Registry: it is a database that stores tenant information.

 Configuration Registry: it keeps the configuration data.

Version Registry
The existing database Service Registry will not be used to maintain service versioning.
Service Registry is designated to act as a front-end database for service registration purposes
for the tenant operator, and it maintains only services in runtime. For service interface
versioning purpose a new data resource, Version Registry, is proposed. The Version Registry
is a special purpose database dedicated to holds all service versioning-related information
and history. This database serves as a back-end data source for the system i.e. it will not
have a direct connection with the JBIMulti2 system. The Version Control Manager is
responsible to abstract the communication from the JBIMulti2 by interconnecting the
Version Registry and the system, and it will act upon based on the new service registration,
unregister service, replace and deploy service in parallel operations.

The entities defined in E R-Diagram (see Section 4.2.2) are transformed into a set of tables

(see Figure 4.5). E ach table represents an entity with its corresponding rows representing
the attributes of the entity. The relationship between tables is also shown. The entity
tenant_details and service_version produces a separate table called
service_tenant_assignment which is represented by their respective primary keys.

Figure 4.5: Table representation of Version Registry

47

Version Control Manager
Version Control Manager consists of three main components and will be explained as
follows.

1. Version registry manager: it is an API that listens to events of new service
registration, unregister service, replace or deploy service in parallel operations
occurred in the Service Registry. It is also responsible to call CCF engine to assess the
compatibility of service versions, and update Version Registry and message
interceptor with the result from CCF engine. The version registry manager might
implement a registry cache that will retain a set of query results for period of time
from the Version Registry to avoid excessive access from the message interceptor.

2. CCF engine: it checks the compatibility of service descriptions. This component is
invoked by the version registry manager after the manager received an event of
service registration, or replace services. The CCF engine will perform compatibility
assessment and return the result in form of service compatibility status.

3. Transformer: it is invoked by the service engine from multi-tenant aware E SB side to
adapt the outgoing message when the incoming message request is compatible with
the service version implemented by the service endpoint, and vice versa.

Binding Component with service version-awareness
The outgoing JBI service endpoints have to support version control management. This can
be realized by enriching the endpoint names with unique service version identifiers for each
endpoint representing one service version offered by service producer. Incoming messages
targeting these endpoints will be routed correctly by routing engine of multi-tenant aware
E SB.

Service E ngine with Message Interceptor
In case of service engine which support routing capability, Apache Camel SE is used.
Message interceptor listens to the communication channel for messages in versions that are
compatible and triggers the Transformer in order to transform them appropriately, before
pushing them back to the channel.

4.3.2. Communication between Components

This section refines the high-level system components introduced in Section 4.1 in terms of
the communication between components. The first part of this section explains how the
system behaves in the management and administration aspects of the version control
management. In the second part, the message processing logic of the multi-tenant aware
E SB will be discussed.

48

4.3.2.1. Version Control Management

The new use cases described in Section 4.2.1 allow tenant operators to replace and deploy
services in parallel, thus, enabling the management application i.e. the JBIMulti2 system to
provide version control capability. The activity diagrams shown in this section will describe
the procedural executions and flows of related system components when tenant operators
apply the new use cases and deploy service assembly.

Figure 4.6 shows an activity diagram for service replacement. The system components
involve here are the Service Registry and Version Registry. In this case, the tenant operator
who acts as a service provider will replace an existing service version with another service.
The service replacement use case is just a chain of unregister and register service operation.
When the tenant operator execute the replace service action, the JBIMulti2 system will first
of all unregister the service by removing it from Service Registry and then setting the
service status in Version Registry to decommissioned. After the two operations have been
carried out, the system will continue with registering the new service to the Service
Registry, and in turn it will be stored into the Version Registry together with all service
version-related information. To indicate that the new service is the most actual version, the
service status is set to active. The replace service operation ends when the JBIMulti2 receives
an acknowledgement.

Another use case is the deploy service in parallel. The tenant operator will simply register a
new service version and let it be available at the same time with the existing service. In this
case the new service information will be added into Service Registry as well as into Version
Registry. The status of new service is set to active. The operation commits after the service
has successfully been stored in the registries.

49

Tenant Operator

Replace Service

Unregister

Service

Service Registry Version Registry

Remove

Service

Set Service Status to

Decommissioned

Register

Service

Add New Service and all

Service version-related

information

Add New

Service

Unregister

service

[done]

Set Service Status

to Active
Register Service

[done]

Figure 4.6: Activity diagram of replace service use case

50

Tenant Operator Version RegistryService Registry

Deploy Parallel

Register Service

Add New Service and all

Service version-related

information

Add New

Service

Set Service Status to

Active

Register Service

[done]

Figure 4.7: Activity diagram of deploy service in parallel use case

The last two activity diagrams showed a tenant operator as a service provider that replaced

or deployed service in parallel. In Figure 4.8, the tenant as service consumer or provider

needs to set up the configuration files to define which service she wants to consume or

expose, respectively. The configuration files in form of service units will be packaged into a

service assembly. When the deploy service assembly operation is performed by tenant

operator, the service assembly artifact will be stored in the Service Registry. Then the file will

be sent together with the management message from JBIMulti2 system to multi -tenant

aware ESB. Before the service assembly is deployed, tenant context and service version

identifier will be injected into the service assembly file. By using those information, multi -

tenant and service version-aware service endpoints are generated. In the end, the JBIMulti2

will receive an acknowledgment from multi-tenant aware ESB indicating that the service

assembly has been successfully deployed.

51

Tenant Operator

Deploy Service

Assembly

Service Registry ESB-MT

Add Service

Assembly artifacts
Add Tenant

Context to SA

Add Service Version

Identifier to SA

Multi-tenant Service

Endpoints are created

Service version-aware

JBI Service Endpoints

are created

Deploy Service

Assembly

[done]

Figure 4.8: Activity Diagram of deploy service assembly use case

4.3.2.2. Message Processing Logic

After the system interactions in management and administration perspective have been
illustrated in previous section, it is also important to see how incoming messages targeting a
particular service endpoint are being processed. shows the message flow of an incoming
request from a tenant. It also illustrates how the message interceptor in the routing engine
intercepts the incoming message and route it to the correct outgoing service endpoint. The
message flow for incoming requests is explained in the following:

 A request message comes from a particular tenant user targeting an endpoint URL of
BCin.

 The message is normalized by the BC in and wired to a SE for the corresponding BC in.

 The normalized message is intercepted by the message interceptor on SE .

52

 Based on the service versioning information from the registry cache, the message
interceptor can decide whether the message payload needs to be transformed before
being forwarded to BCout.

 The normalized message is routed by SE to BCout.

Likewise, the response message for the tenant user can be described as follows:

 A reply message comes from BCout for the tenant user.

 The message is normalized by the BCout and wired to a SE for the corresponding
BCout.

 The normalized message is intercepted by the message interceptor on SE .

 Based on the service versioning information from the registry cache, the message
interceptor can decide whether the message payload needs to be transformed before
being forwarded to BC in.

 The normalized message is routed by SE to BC in where the request message came
from.

Figure 4.9: Message flow for incoming message request

Depending on the compatibility status information from the registry cache, the actions
performed by the message interceptor might vary. The compatibility status between two

53

services can be compatible, incompatible, identical, or even undetermined. To better
illustrate how the E SB reacts, the sequence diagrams for each compatibility status will be
presented.

Figure 4.10 shows a sequence diagram of how the system components behave when
incoming message and the target service have the compatibility status of compatible. When
the incoming message comes for BC in, the message is normalized and wired to the SE of
corresponding BCin. The message interceptor on SE will fetch the compatibility information
from the registry cache. If the result returns a compatible status, the message interceptor
will invoke the transformer to adapt the incoming message payload as necessarily. The
transformed normalized message will be finally wired to BCout.

Figure 4.10: Sequence Diagram of processing compatible message

Figure 4.11 shows a sequence diagram of how the system components process the

incompatible incoming message. When the incoming message comes for BC in, the message is

normalized and wired to the SE of corresponding BCin. The message interceptor on SE will

retrieve the compatibility information from the registry cache. When the compatibility status

is incompatible, it means that the transformer will not be invoked. In this case an error

message will be returned to the BCin.

54

Figure 4.11: Sequence Diagram of processing incompatible message

In the case of identical message, it simply means that the incoming message has the same

service version with the one adopted by the service provider. When the message interceptor

gets a result of identical service version, the SE will directly route the message to the BC out.

This process is depicted in Figure 4.12.

Figure 4.12: Sequence Diagram of processing identical message

55

The sequence diagram for processing the undetermined message in Figure 4.13 is similar to

the sequence diagram of processing incompatible message. What makes difference is only

the information returned by the registry cache i.e. undetermined compatibility status. No

transformer will be called and an error message will be returned as a result to the BC in.

Figure 4.13: Sequence Diagram of processing undetermined message

The sequence diagrams depicted above can be represented as an algorithm that shows how a
message interceptor implements the message processing logic. The algorithm is given as
pseudo code and is listed in Listing 4.1.

IF incoming message = “identical” THEN

 Forward message to corresponding target endpoint

ELSE IF incoming message = “compatible” THEN

 Invoke Transformer AND

 Forward transformed message to corresponding target endpoint

ELSE IF incoming message = “incompatible” THEN

 Generate error message OR

 Generate a message for new service version update

ELSE

 Generate error message

ENDIF

Listing 4.1: Algorithm for message processing in Apache Camel

56

57

5. Implementation

This chapter gives an overview of the foundational technologies being used in the first
section. The second section presents the system components that have been implemented.
This includes the Version Registry creation, and also the JBIMulti2 and Apache Camel
extensions. The last section gives a short deployment guide how the entire system can be set
up.

5.1. Foundational Technologies

This section describes the adopted technological solutions to implement the system design
and architecture specified in Chapter 4. A short overview of the related technologies will be
presented below.

PostgresSQ L 9.1.1
PostgresSQL is an open-source object-relational database system [39] that can be run on all
major operating system such as Linux, UNIX, or Windows, and it also supports native
programming interfaces for many programming languages i.e. Java, C/C++, or .NE T. The
PostgresSQL implementations follow ANSI-SQL:2008 standard.

Java Platform, E nterprise E dition v.5 (Java E E 5)
Java E E 5 platform [40] provides APIs and runtime environment for developing enterprise
applications. The enterprise applications can be deployed to any application server that
conforms to Java E E 5 or later specifications. In the following a set of APIs that implement
the business logic, and Web services shall be given:

 E nterprise Java Bean (E JB) 3.0 : E JB 3.0 is server-side components that can be used
to build parts of the enterprise application such as the business logic or
persistence layer. These components comprise of session beans, message-driven
beans, and entity beans. The components live in a container which manages and
provides services to them [41].

 Java Message Service (JMS) 1.1: the JMS specification defines a messaging
standard that allows applications integration in loosely-coupled manner by
connecting to a JMS provider interface [42].

 Java API for XML-based Web Services (JAX-WS) 2.0: JAX-WS is used to map Java
Interfaces to WSDL documents, and vice versa. It also allows the development of
Web service providers and clients [43].

 Java Architecture for XML Binding (JAXB) 2.0 : this API can be used to marshal
Java objects into XML file and unmarshal XML file back into Java objects [44].

58

Apache ServiceMix 4.3.0
Apache ServiceMix [11] is an open source E SB from Apache Software Foundation that
adopts OSGi framework for its kernel layer. ServiceMix that implements JBI specification is
shipped with JBI components which expose the E SB core functionalities. BCs that provide
service connectivity offer various communication protocols like HTTP, JMS, FTP, and Mail.
Meanwhile SE s can provide services such as the implementation of E nterprise Integration
Patterns (E IP) defined in [38] and messaging foundation. The former is bundled into Apache
Camel SE [45], and the latter into Apache ActiveMQ [46]. In addition, ServiceMix provides a
console management that allows its users to perform any management tasks such as JBI
components installation and service assembly deployment.

Apache Camel 2.7.0
Apache Camel [45] is an open source integration framework based heavily on the E IP. The
core functionalities of Camel are routing and mediation engine. The routing rules in Camel
can be configured by using either Java based Domain Specific Language (DSL) or Spring
DSL. The RouteBuilder class describes how a route in Camel can be created. By using this
class, it gives developers capability to define the routing logic and message filtering rule for
examples. The endpoints representation in Camel is based on URI. This allows Camel to
integrate with many messaging transport protocol supported e.g. HTTP, JMS, etc. Camel is
embedded into ServiceMix as a routing engine to wire messages.

Apache ActiveMQ 5.3.1
Apache ActiveMQ [46] is a message broker for system communication using JMS in an
asynchronous and loosely coupled manner, and it can be integrated with any Java compliant
application servers. ActiveMQ supports point-to-point and publish-subscribe messaging
model. The point-to-point message model describes a single message produced by message
producer is consumed by a single message consumer, while publish-subscribe model means a
single message is consumed by a group of message consumers. In ServiceMix, ActiveMQ is
used to receive a management messages in form of JMS messages.

5.2. Implemented Components

JBIMulti2 adopts three-tier-architecture that consists of presentation layer, business logic
layer, and data sources. The service version control management components such as
Version Registry and version control manager will become additional parts of the existing
data source and business logic components, respectively.

5.2.1. Version Registry

The database schema of Version Registry (Section 4.2.2) will be realized and implemented by

using PostgreSQL 9.1.1. The PostgreSQL will generate a database for Version Registry which

comprises of four tables. The Data Definition Language (DDL) for the Version Registry is

shown is Listing 5.1.

59

CREATE DATABASE versionregistry;

CREATE TABLE service_version (

 service_version_id varchar(255),

 service_name varchar(255),

 service_status varchar(20) NOT NULL,

 start_time date,

 end_time date,

 service_interface_current text NOT NULL,

 service_interface_previous text,

 PRIMARY KEY (service_version_id, service_name)

);

CREATE TABLE service_compatibility (

 service_name_prev varchar(255),

 service_version_id_prev varchar(255),

 service_name_curr varchar(255),

 service_version_id_curr varchar(255),

 compatibility_status varchar(20) NOT NULL,

 PRIMARY KEY (service_name_prev, service_version_id_prev,

 service_name_curr, service_version_id_curr),

 FOREIGN KEY (service_name_prev, service_version_id_prev) REFERENCES

 service_version (service_name, service_version_id),

 FOREIGN KEY (service_name_curr, service_version_id_curr) REFERENCES

 service_version(service_name, service_version_id)

);

CREATE TABLE tenant_details (

 tenant_id varchar(255),

 user_id varchar(255),

 PRIMARY KEY (tenant_id, user_id)

);

CREATE TABLE service_tenant_assignment (

 tenant_id varchar(255),

 user_id varchar(255),

 service_version_id varchar(255),

 service_name varchar(255),

 service_endpoint varchar(255),

 PRIMARY KEY (tenant_id, user_id),

 FOREIGN KEY (tenant_id, user_id) REFERENCES tenant_details

 (tenant_id, user_id),

 FOREIGN KEY (service_version_id, service_name) REFERENCES

 service_version(service_version_id, service_name)

);

Listing 5.1: DDL of Version Registry

O bject and Database Mapping
One of the E JB types is entity beans which are Java objects with @E ntity annotation. The
object-relational mapping (ORM) defines how data in the entity beans are mapped into
database tables. In Java world, JPA is the Java solution to persist entity beans into database.
E ntity beans are managed by persistent provider through JPA E ntityManager. The
E ntityManager is an API for performing persistence operations for entities.

The package versioncontrol.domain in Figure 5.1 contains the Java files that map to the

database tables of Version Registry. The ServiceCompatibility, ServiceVersion,

60

TenantDetails classes are mapped to service_compatibility, service_version,

and tenant_details tables of Version Registry respectively. The table

service_tenant_assignment is defined and mapped by TenantDetails class because

it is the ManyToOne side of the relationship with service_version. The

ServiceCompatibility-, ServiceVersion-, TenantDetailsPK define the composite

primary key for the corresponding ServiceCompatibility, ServiceVersion,

TenantDetails classes. The composite primary key classes will be embedded into the
entity classes by using @EmbeddedId annotation.

Figure 5.1: Java package files describing the object-relation mapping

Registry Cache
Caching will increase database performance by reducing the database round-trips. When the
data in the database does not change so often caching might be the right approach to be
considered. The registry cache that resides in version control manager is required to query
information from Version Registry database. Since the query is used to retrieve tenant-, and
service-related information from the database, same parameters will always be used and
executed frequently. In this case, query cache can be adopted to hold the query result sets.

Listing 5.2 shows a query cache that retrieves information from the table

service_compatibility and service_tenant_assignment. The setHint method

is responsible for storing the query result in a certain time interval. So the same query

retrieval will not result into database access.

Query query = entityManager.createQuery

 ("SELECT sc, td FROM ServiceCompatibility sc, TenantDetails td" +

 " WHERE sc.compositePrimaryKey.serviceVersionIdCurr” +

 “ = td.serviceEndpoint");

query.setHint("org.hibernate.cacheable", true);

Listing 5.2: E xample of query cache that holds information from the result query

61

5.2.2. Java Method Definitions Extensions

This section describes how the extensions to corresponding system components can be
implemented. First, the JBIMulti2 extensions with respects to the new use cases will be
presented. Then it is followed by the Apache Camel enhancement for service version-aware.

E xtensions to JBIMulti2
The new use cases, namely replace and deploy service in parallel will be added as Java
methods in the service registry manager of business logic layer. The method definitions and
the implementations will be presented in Listing 5.3 and Listing 5.4, respectively.

public interface ServiceRegistry {

...

 public void replaceService(String tenantId, String userId,

 Service service, String serviceName, String wsdlFile);

 public void deployParallel(String tenantId, String userId,

 String serviceName, String wsdlFile);

...

}

Listing 5.3: Method definitions of replace and deploy service in parallel use cases

The replace service use case is just a chain of existing unregister and register methods. The

replaceService method will reuse the existing unregisterService and

registerService methods to remove a particular service and to register a new one.
Meanwhile, the deployParallel method uses registerService method to register another
service version.

public class ServiceRegistryBean implements ServiceRegistry {

...

 public void replaceService(String tenantId, String userId,

Service service, String serviceName, String wsdlFile){

 unregisterService(service);

 registerService(tenantId, userId, serviceName, wsdlFile);

 }

 public void deployParallel(String tenantId, String userId,

String serviceName, String wsdlFile){

 registerService(tenantId, userId, serviceName, wsdlFile);

...

}

Listing 5.4: Method implementations of replace and deploy service in parallel use cases

62

@PermissionType(type = PermissionTypeEnum.USE_SERVICE_REGISTRATION_CONTINGENT)

public ServiceRegistrationEntry replaceService(String userUUID, String wsdlFile,

 String chargeContingent, String serviceName)

 throws AuthorizationException, ExecutionException;

@PermissionType(type = PermissionTypeEnum.USE_SERVICE_REGISTRATION_CONTINGENT)

public ServiceRegistrationEntry deployParallel(String wsdlFile,

 String chargeContingent)

 throws AuthorizationException, ExecutionException;

Listing 5.5: E xcerpt from Java Interfaces definition for required permission to perform
replace and deploy service in parallel

Listing 5.5 shows an excerpt from TenantOperatorFacade.java that defines the
required permissions to execute the replaceService and deployParallel methods
specified above. Based on the role-based access described in Section 3.2.1, whenever the
system actor, in this case, the tenant operator wants to execute one of these methods, the
system will check the corresponding Tenant Registry and Configuration Registry to verify
whether the tenant operator has a permission to perform this method call. The Java
annotation @PermissionType define which permission type has been assigned to the
corresponding actors.

Extensions to Apache Camel

In order to enable service version-aware on Apache Camel, the multi-tenant Camel SE
servicemix-camel-mt [6] has to be modified. In class CamelProviderEndpoint there is a
method called ensureMultiTenancy that modified the original service namespace URI to
support multi-tenancy. This method can be overridden to also include service version
identifier (see Listing 5.6). In the case of class CamelConsumerEndpoint, it contains a
method configureTenancyAwareExchange that transforms Camel URIs dynamically to
JBI service endpoint names and includes tenant context to the service name for outgoing
message exchanges.

public void ensureMultiTenancy(String tenantId, String versionId) {

 QName configuredService = this.getService();

 String endpointPrefix = getTenantsEndpointURI();

 if (!endpointPrefix.endsWith("/")) {

 endpointPrefix = endpointPrefix + "/";

 }

 // rename service namespace URI

 QName modifiedService = new QName(endpointPrefix + tenantId,

 configuredService.getLocalPart() + “/” + serviceId);

 this.setService(modifiedService);

 }

Listing 5.6: E xtension to CamelProviderE ndpoint.java to support service version-aware

63

Likewise, a service version identifier can be appended (see Listing 5.7). The message
interceptor can process incoming messages based on the URIs information provided by the
configureTenancyAwareExchange and information retrieved from the registry cache.
By matching outgoing Camel URIs and target service endpoint, the routing engine can wire
the incoming messages to the correct service endpoints.

private void configureTenancyAwareExchange(MessageExchange exchange,

ComponentContext context, String destinationUri, String endpointUri)

{

…

else if (destinationUri.startsWith("endpoint:")) {

 String uri2 = destinationUri.substring(9);

 String[] parts = URIResolver.split3(uri2);

 if (isTargetServiceGlobal(destinationUri, endpointUri)

 && !parts[0].startsWith(tenantsEndpointURI))

 {

 ServiceEndpoint se = context.getEndpoint(new

 QName(parts[0], parts[1]), parts[2]);

 exchange.setEndpoint(se);

 }else {

 QName modifiedService = new QName(tenantsEndpointURI

 + tenantId, parts[1]);

 ServiceEndpoint se =

 context.getEndpoint(modifiedService, parts[2]+ “/” + serviceId

);

 exchange.setEndpoint(se);

 }

…

}

Listing 5.7: E xtension to CamelConsumerE ndpoint.java to support service version-aware

5.3. Deployment Guide

In order to put the entire system into the motion, there are several steps that need to be
carried out in each architectural layer. On the data source layer, the new database Version
Registry has to be created besides the existing databases. The Version Registry can be
generated by using an SQL script that can be executed by the PostgreSQL commands.

The JBIMulti2 Web application consists of different Java modules and libraries. Because the
Java modules share common libraries, they are packaged into a single enterprise application
(E AR file). The extension of JBIMulti2, that is, the service control manager can be added into
the existing E AR file. The new E AR file is then deployed on Java Open Application Server
(JOnAS) 5.2.2 [47]. To connect the application server with the Version Registry, the
jonas.properties file in JOnAS application server has to be configured to support the new
datasource Version Registry.

64

On the side of E SB, Apache ServiceMix 4.3.0 has to be installed. To manage to ServiceMix
instance from JBIMulti2, a graphical SOAP-based Web services testing tool called soapUI
[48] is used. All use cases described in [6] can be executed from soapUI. In the case of this
work, soapUI is used to test the wiring between components to see whether the incoming
messages in version are correctly routed to the target service endpoint.

65

6. Conclusion and Future Work

The main focus of this diploma thesis is to introduce a service version control management
framework in line with the multi-tenant aware E SB, thus, resulting in system design and
architecture of the entire participating system components. In Chapter 2, the fundamental
concepts and background related to this work are discussed. This includes infrastructures or
components involved in the context of service evolution, current state of art, and available
theoretical concepts and methodologies. In Chapter 3, the requirements for service version
control management in general are investigated. There are several key considerations when
dealing with service versioning. These issues lay a foundation of what functionalities have
to be provided by the version control framework in order to address them. Based on this
fundamental specification, the service version-aware requirements for multi-tenant aware
E SB should be pointed out. In order to add the service version-aware functionality properly,
the management application and multi-tenant aware E SB itself should be considered as
target extensions. The management application maintains a group of tenants and the tenants
access the system in restrictive manner based on their access role. For service version-aware
purposes, the use cases of the role tenant operator have to be extended. The tenant operator
as service provider has to be able to replace an old service version with a new service
version. Moreover, she can also deploy services in parallel with the existing ones. In another
case, when a tenant acts as service consumer, she needs to deploy service configuration file
to indicate which services she wants to use. The requirements inside the multi-tenant E SB
have to be defined as well. The most important functionality for E SB is the routing
capability that must be able to wire messages in version to correct service endpoint despite
of different service version available.

In Chapter 4, a system design and architecture illustrates the solutions of specifications from
the previous chapter. Following the management application requirements that need to add
the new use cases to reflect to service version-aware capabilities, a use case diagram is
given. The new replace and deploy service in parallel use cases are reuse the existing
register and unregister service operation. To keep service versioning-related information,
Version Registry as a new data source is also introduced. The database schema is explained
using E R-Diagram. The system architecture that represents the entire system components is
given in terms of the functionalities and wiring between components. Besides the existing
components of the JBIMulti2 management application, the version control manager is added
to retrieve data from the Version Registry, and update the multi-tenant aware E SB with the
most current state of the service versioning information. From the E SB side, the JBI
components should also be extended. The main target extension is the routing engine of the
multi-tenant aware E SB. In the routing engine, a message interceptor has to be applied
because it listens to the communication channel for messages in versions that are compatible
and triggers the Transformer in order to transform them appropriately, before pushing them
back to the communication channel. In the message processing logic section, an algorithm of

66

how the message interceptor works is given in Listing 4.1, and the illustrations are depicted
in form of sequence diagrams.

Chapter 5 presents the components implementation. In the persistence layer, the Version
Registry is generated and accessed through Java Persistence API. Then the Java methods
definitions for JBIMulti2 and Apache Camel extensions are covered. The former shows how
the new use cases presented in Chapter 4 can be implemented and accessed by a proper
system role. The latter shows which method of the CamelProviderEndpoint and
CamelConsumerEndpoint can be enhanced with unique service version identifier.

For the future work, the multi-tenant aware E SB should be extended to support behavioral
and policy-induced changes as defined in [12]. The behavioral changes means changes in
way of interaction between service producers and consumers, while policy-induced changes
describe changes in policy assertions and constraints. The multi-tenant aware E SB should
also be provided with Web GUI to ease the interaction between the underlying system and
the tenants, especially when tenants perform the management and administration tasks such
as service registration and service assembly deployment.

67

Bibliography

[1] M. P. Papazoglou, V. Andrikopoulos and S. Benbernou, "Managing Evolving Services," IEEE

Software's SWSI: Component Software beyond Software Programming, vol. 28, pp. 49-55,

May/June 2011.

[2] F. Leymann and R. Mietzner, "Applications in the Cloud," in ITPC Cloud Day, 2009.

[3] "The 4CaaSt Project," [Online]. Available: http://www.4caast.eu.

[4] S. Weerawarana, F. Curbera, F. Leymann, T. Storey and D. F. Ferguson, Web Services Platform

Architecture: SOAP, WSDL, WS-Policy, WS-Addressing, WS-BPEL, WS-Reliable Messaging and

More, NJ, USA: Prentice Hall PTR Upper Saddle River, 2005.

[5] D. A. Chappel, Enterprise Service Bus: Theory in Practice, O’Reilly Media, 2004.

[6] D. Muhler, Extending an Open Source Enterprise Service Bus for Multi -Tenancy Support Focusing

on Administration and Management. Diploma Thesis 3226, Institute of Architecture of

Application Systems, University of Stuttgart, 2012.

[7] F. Chong and G. Carraro, "Architecture Strategies for Catching the Long Tail," Microsoft, 2006.

[Online]. Available: http://msdn.microsoft.com/en-us/library/aa479069.aspx#docume_topic5.

[8] S. G. Gomez, "Use Case Applications eMarketplace for SMEs: Scenario Definition," in Deliverable

D8.1.1, the 4CaaSt Consortium, August 2011.

[9] "The C-CAST project:," [Online]. Available: http://www.ict-ccast.eu.

[10] S. Strauch, V. Andrikopoulos, F. Leymann and D. Muhler, "ESB^MT: Enabling Multi -Tenancy in

Enterprise Service Buses," in Proceedings of the 4th IEEE International Conference on Cloud

Computing Technology and Science (CloudCom'12), 2012.

[11] "Apache ServiceMix," [Online]. Available: http://servicemix.apache.org.

[12] V. Andrikopoulos, S. Benbernou and M. P. Papazoglou, "On the Evolution of Services," In: IEEE

Transactions on Software Engineering (TSE), vol. 38 (3), pp. pp. 609-628, May-June, 2012.

[13] "Java Business Integration (JBI) 1.0, Final Release, 2005. JSR-208," [Online]. Available:

http://jcp.org/aboutJava/communityprocess/final/jsr208/.

[14] T. Rademakers and J. Dirksen, Open Source ESBs in Action, Manning Publications Co, 2009.

[15] N. M. Josuttis, SOA in Practice: The Art of Distributed System Design, O’Reilly Media Inc, 2007.

[16] R. Daigneau, Service Design Patterns: Fundamental Design Solutions for SOAP/WSDL and RESTful

Web Services, Pearson Education, Inc, 2012.

68

[17] M. P. Papazoglou, Web Services: Principles and Technology, Pearson Education Limited, 2008.

[18] M. Rouse, "Versioning Definition," SearchSofwareQuality.Techtarget, 2007. [Online]. Available:

http://searchsoftwarequality.techtarget.com/definition/versioning.

[19] D. Orchard, "Extending and versioning languages: XML languages [Editorial Draft]," World Wide

Web Consortium (W3C), July 2007. [Online]. Available:

http://www.w3.org/2001/tag/doc/versioning-xm.

[20] K. Bennett and V. T. Rajlich, "Software maintenance and evolution: a Roadmap.," in Proceedings

of the Conference on The Future of Software Engineering , Limerick, Ireland, 2000.

[21] E. Christensen, F. Curbera, G. Meredith and S. Weerawarana, "Web Services Description

Language (WSDL) 1.1," March 2001. [Online]. Available: http://www.w3.org/TR/wsdl.

[22] M. Endrei, M. Gaon, J. Graham, K. Hogg and N. Mulholland, "Moving forward with web services

backward compatibility," May 2006. [Online]. Available:

http://www.ibm.com/developerworks/java/library/ws-soa-backcomp/index.html?ca=drs-.

[23] K. Jerijærvi and J. Dubray, "Contract versioning, compatibility and composability," December

2008. [Online]. Available: http://www.infoq.com/articles/contract-versioning-comp2.

[24] C. Peltz and A. Anagol-Subbarao, "Design strategies for web services versioning," 2004. [Online].

Available: http://soa.sys-con.com/node/44356.

[25] D. Parachuri and S. Mallick, "Service versioning in SOA, December," 2008. [Online]. Available:

http://www.infosys.com/offerings/IT-services/soa-services/white-papers/pages/index.aspx.

[26] P. Leitner, A. Michlmayr, F. Rosenberg and S. Dustdar, "End-to-end versioning support for web

services," In Services Computing 2008. SCC’08. IEEE International Conference, vol. 1, pp. 59-66,

2008.

[27] M. Yamashita, B. Vollino, K. Becker and R. Galante, "Measuring Change Impact based on Usage

Profiles," in IEEE 19th International Conference on Web Services, 2012.

[28] K. Brown and M. Ellis, "Best practices for web services versioning," Jan 2004. [Onli ne]. Available:

http://www.ibm.com/developerworks/webservices/library/ws-version/.

[29] D. Frank, L. Lam, L. Fong, R. Fang and M. Khangaonkar, "Using an interface proxy to host

versioned web services.," in Services Computing, 2008. SCC’08. IEEE International Conference on,

vol. 2. IEEE, 2008, pp. 325-332.

[30] K. Becker, A. Lopes, D. Milojicic, J. Pruyne and S. Singhal, "Automatically determining

compatibility of evolving services," in Web Services, 2008. ICWS’08. IEEE International

Conference on. IEEE, 2008, pp. 161–168..

[31] J. Kenyon, "Web Service Versioning and Deprecation," January 2003. [Online]. Available:

69

http://soa.sys-con.com/node/39678.

[32] R. Fang, L. Lam, L. Fong, D. Frank, C. Vignola, Y. Chen and N. Du, "A version-aware approach for

web service directory," in ICWS 2007, July, 2007, pp. 406-413..

[33] A. Narayan and I. Singh, "Designing and versioning compatible web services," March 2007.

[Online]. Available: http://www.ibm.com/developerworks/websphere/library/techarticles/0705

narayan/0705 narayan.html.

[34] V. Andrikopoulos, A Theory and Model for the Evolution of Software Services, Ph.D. Dissertation,

Tilburg University Press, 2010.

[35] R. S. Sandhu, E. Coyne, H. Feinstein and C. E. Youman, Role-based Access Control Models.

Computer, 29:38–47, February 1996.

[36] "Apache ServiceMix," The Apache Software Foundation., [Online]. Available:

http://servicemix.apache.org.

[37] D. Muhler, "JBI Multi-tenancy Multi-container Support (JBIMulti2) – Requirements

Specification," 2012.

[38] G. Hohpe and B. Woolf, Enterprise Integration Patterns: Designing, Building, and Deploying

Messaging Solutions, Addison-Wesley Professional, 2003.

[39] "PostgreSQL," [Online]. Available: http://www.postgresql.org/.

[40] "Java Platform, Enterprise Edition 5 (Java EE), Final Release, JSR-244," 2006. [Online]. Available:

http://jcp.org/aboutJava/communityprocess/final/jsr244/.

[41] "Enterprise JavaBeans (EJB) 3.0, Final Release, 2006. JSR-220," [Online]. Available:

http://jcp.org/aboutJava/communityprocess/final/jsr220/.

[42] "Java Message Service (JMS) 1.1, Final Release, 2002. JSR-914," [Online]. Available:

http://jcp.org/aboutJava/communityprocess/final/jsr914/.

[43] "The Java API for XML-Based Web Services (JAX-WS) 2.0, Final Release, 2006, JSR-224," [Online].

Available: http://jcp.org/aboutJava/communityprocess/final/jsr224/.

[44] "The Java Architecture for XML Binding (JAXB) 2.0, Final Release, 2006. JSR-222," [Online].

Available: http://jcp.org/aboutJava/communityprocess/final/jsr222/.

[45] "Apache Camel User Guide 2.7.0," The Apache Software Foundation, 2011. [Online]. Available:

http://camel.apache.org/manual/camelmanual2.7.0.pdf.

[46] "Apache ActiveMQ," The Apache Software Foundation, [Online]. Available:

http://activemq.apache.org.

70

[47] "OW2 Consortium. JOnAS: Java Open Application Server," [Online]. Available:

http://wiki.jonas.ow2.org.

[48] "SmartBear Software. soapUI," [Online]. Available: http://www.soapui.org.

71

Declaration

All the work contained within this thesis, except where otherwise acknowledged,
was solely the effort of the author. At no stage was any collaboration entered into
with any other party.

Stuttgart, January 15, 2013 ----------------------------
 (Sumadi Lie)

