+ Institut fir Architektur von Anwendungssystemen (IAAS) M

Universitat Stuttgart
Universitatsstral3e 38
D - 70569 Stuttgart

Diplomarbeit Nr. 3361

Enabling the Compatible
Evolution of Services
based on a Cloud-enabled ESB Solution

Sumadi Lie
Course of Study: Informatik
Examiner: Prof. Dr. Frank Leymann
Supervisor: Dr. Vasilios Andrikopoulos
Commenced: 16.07.2012
Completed: 15.01.2013

CR-Klassifikation: D.2.7,D.2.12, H4.0






Abstract

Software services are susceptible to changes because of the rapid growth and
challenges in business environment. Business operations offered by service providers
have to able to cope with various and countless service demands from service
consumers. Such a case could also be experienced in cloud environment. As cloud
platform, the Platform-as-a-Service (PaaS) platform allows application developers as
tenants to deploy and configure their service artifacts in cloud infrastructure. A
multi-tenant aware Enterprise Service Bus (ESB) as applications integrator is
introduced to serve tenants in terms of management and administration. The purpose
is to ensure data isolation between tenants.

The goal of this diploma thesis is to extend an open source multi-tenant aware ESB
with service version control management framework so that the ESB can facilitate
the version management of service providers and consumers in a transparent
manner, and ensure service compatibility among tenants. The extension can be
further decomposed in terms of management and administration, as well as message
flows in versions inside the multi-tenant ESB.



Table of Contents

LISt OfFIGUIES .....oeiiiiiiiiiieiiie ettt et san e st be e s 7
LiSt Of TaAbIES......cccco i 9
List Of LASHINES. ....cuviiiiiiiiiiii it e 11
O [ 4 (e To [0 Lol (o] o DR PP P PP PP PPPPPPPPPPPPPPPPPPRt 13
0 TR |V [ Yo A= L o] g Y of =T =1 o RPN 13
1.2.  Problem Definition and Scope of WOrk.........coooeiiuiiiiiiiiiii e 15
1.3, RESEAICN DESIGN ..o 16

I S O 11 o 11T OO P PP PPUPPPUPPPPP 16

2.  Background and Related WOrK ...........ccoooiiiiiiiiiiieiee e 19
2.1, FUNameNntal......oooo ittt 19
2.1.1. Java BuSiNeSS INtEEIratioN. .. .cuu i 19
2.1.2. ENTEIPriSE SEIVICE BUS .. iiiiiiiiiiiii e ee e e et e e s e ea s e et e eaneeanaeas 20
2.1.3. SBIVICE REGISTIY ettt e e et e e e e e eaaes 21
2.1.4. Service Versioning and Compatibility...........coouuiiiiiiiiiiii e, 22

2.2, SHAtE Of Attt aaeee 23
2.2.1. SEIVICE VOISIONING . ctutiiiieiiii ittt et et e e et e et s e e et s e et s e et s eaaaneeaaeaenns 23
2.2.2. Service CompPatibility........oeeieiiiiiie e 24
2.2.3. Identification Model of Service Change ............ceeviiiiiiiiiiiiiie e 25

2.3. The Compatible Evolution FrameWOrK...........ccuuuiiiiiiiiiiiii e e e 26
2.3.1. Abstract Service Description MOdel........coeeeiiiiiiiiiiiiie e 26
2.3.2. T-Shaped CHANEE ... e et e e et e e e e e e e et eeeaaaans 28

3. Requirements and SPedfiCation................oooiiiiiiiiiiii i 29
3.1.  Service Version Control Management.........ccouuiiiiiiiiiiiiiiie et e e e e et e e e e eaaa 29
3.2.  Service Version Control Management Requirements for Multi-tenant aware ESB.............. 31
3.2.1 Management APPliCatioN ..... oo 31
3.2.2. Multi-tenant @Ware ESB............ceeeiiiriiiiiiiieeiieee e e e ettt e e e e e e st er e e e e s s snereeeeas 35

4. System Design and Archit@Cture .............cooooiiiiiiiiii e 39
4.1, High-level System OVEIVIEW.......uu i ittt s s es 39
I Y1) (=Y 1 4 11 T= ] = o PPN 40
4.2.1. USE CaSES ettt ettt et ettt ettt e et e ettt e e et e et e e te e e e e e e ta e e et e e enenanes 40
4.2.2. Database SChemMa........coiiiiiiiiiiii et 43



e Y £y (=] ¢ AN el 1 =Tt (U1 I 45

4.3.1. Functionalities of System ArchiteCture ...........uuceeeiiiiiiieiicc e 45
4.3.2. Communication between COMPONENES........cciiviiieieiiiie e e et e e e e e eaa e a7
4.3.2.1. Version Control Management........couiiiiiiiiiiiiiiiiiiie ettt ettt ee e e eeeeeeeebebeaeeeneee 48
4.3.2.2. MeSSage ProcesSiNg LOZIC . ..iuuuiiiiiiiiiiiiiie et e e e e et e e e s e et e e et e e aa e enaas 51

5. IMPIEMENTAtION.... ..o e e et aerar 57
5.1. Foundational TECNOIOZIES ....uuuniiiiiiieeeeiii e e et e e e et e e e e e e e eaaen 57
5.2. Implemented COMPONENTS ......cciiiiiiiiiiei e e e e e e e e e e et e e e e e e e e e aaraaaeeeaaaeens 58
5.2.1. VLY o T U=y = ) o Y RPN 58
5.2.2. Java Method Definitions EXTENSIONS .....ccoeeiiiiiiiiiiiiii 61

LT T BT o] Yo}V 0 0 T=T o' A GV Ko [T 63

6.  €Conclusion aNd FUBUFE WOKK............uii e 65
23 o ETeT={ =T o] 1|V S 67
D =Tol T o] DU PO P PP PP PPPPPPPPPPPPPPPPIRt 71






List of Figures

Figure 1.1: Taxi Company and Taxi Service Provider integration by multi-tenantE SB [10].. 14

Figure 2.1: Abstract Service Description Model [34] .......ccccooeiiiiiiniiiiniiiiceccccee 27
Figure 4.1: High-level view of multi-tenant aware E SB with version control management...39
Figure 4.2: Use Case Diagram extending the uses cases for JBIMulti2 [6] .......cccccovvevieriennnne. 41
Figure 4.3: ER-Diagram of Version RegiStry .........cccocerviiiiiiiiiniiiiiiiiieiccicsceeeeceeeee 44
Figure 4.4: Building blocks of system architecture ..............coceoieiiniiiniinniininccecce 45
Figure 4.5: Table representation of Version Registry ........ccocceeviiiiiiieniiiiiiinieeecee e 46
Figure 4.6: Activity diagram of replace SErvice US€ CASE ........cccervveriierieriieniienieeienienieeieeeeees 49
Figure 4.7: Activity diagram of deploy service in parallel use case .......c..cccccecvereevirieneenncnne 50
Figure 4.8: Activity Diagram of deploy service assembly use case ..........cccccevvevierierieneenncnne. 51
Figure 4.9: Message flow for incoming message request.........c..cecevierierienieneenenieneenieneene 52
Figure 4.10: Sequence Diagram of processing compatible message ..........cccccecveveevicnvcnecnnenn 53
Figure 4.11: Sequence Diagram of processing incompatible message ...........ccccoveeveervenennenne. 54
Figure 4.12: Sequence Diagram of processing identical message ..........ccoceeevevveneevierveneennenn 54
Figure 4.13: Sequence Diagram of processing undetermined message .........c..ccoccevuerveneencene 55
Figure 5.1: Java package files describing the object-relation mapping..........ccccoeceeriienennncns 60






List of Tables

Table 2.1: Guideline for compatibility assessment [27] .......cccoeoeviieniriinienienieeeeeeee e 25
Table 3.1: Tenant roles and corresponding actions for service registration and employment 30
Table 3.2: Mapping of use cases, roles, and databases for service-related information........... 32
Table 3.3: E xtension for enabling version control management based on tenant roles........... 34
Table 4.1: Description of use case replace SEIVICE ..........cccevieriiriierieniienienieneeieeee e 42
Table 4.2: Description of use case deploy service in parallel ...........ccoceveriiniiiinnininine. 43



10



List of Listings

Listing 2.1: Service versioning using XML Schema Definition .........c.cccccervveneenenciiiicnennennne. 23
Listing 2.2: Compatibility Checking Function (CCF) algorithm [12] ......cccccoeviniiiiiniieee 28
Listing 3.1: Service endpoint replacing pattern for service version-aware HI' TP BC in

Extended Backus-Naur Form (EBNF).........ccooviiiiiiiiiieceece et 37
Listing 4.1: Algorithm for message processing in Apache Camel............ccccoooeiniiiiinnnn. 55
Listing 5.1: DDL of Version ReISIIY ........cooiiiiiiiiiiiieriiesieie e 59
Listing 5.2: E xample of query cache that holds information from the result query ................ 60
Listing 5.3: Method definitions of replace and deploy service in parallel use cases................ 61

Listing 5.4: Method implementations of replace and deploy service in parallel use cases ......61
Listing 5.5: E xcerptfrom Java Interfaces definition for required permission to perform

replace and deploy service in parallel.............ccooiiiiiiiiiiii 62
Listing 5.6: E xtension to CamelProviderE ndpoint.java to support service version-aware......62
Listing 5.7: E xtension to CamelConsumerE ndpoint.java to support service version-aware...63

11



12



1. Introduction

A software service tends to change over time because of rapid growth and challenges in the
business environment [1]. Service signatures, for example, might change their service data
types, messages and operations in order to adapt to the new functionality that the service is
offering. Such service changes could break the interaction between service consumer and
service provider, and might have unexpected effects; thus it is important to be able to
control and handle it properly.

Cloud computing, on the other hand, is a new computing paradigm that changes the way
how computing resources such as software services and virtual servers are offered by
service providers and used by service consumers [2]. The project 4CaaSt [3] is an E U-funded
project which target a Platform-as-a-Service (PaaS) cloud platform. This project allows
application developers as tenants to deploy and configure their own artifacts, for example,

software services or libraries to the cloud infrastructure.

Enterprise Service Bus (ESB) solutions are at the heart of Service-oriented Architecture
(SOA) [4]. An ESB integrates applications by taking benefits of the standardized
technologies, loose coupling, and distributed deployment [5]. To realize the cloud
capabilities, the ESB has to support multi-tenancy, and the works in [6] have identified and
presented a multi-tenant ESB in management and administration aspects. This implies that
each tenant who deploys the software and configuration artifacts should not be aware of
other tenant presences, and moreover, the data produced by the corresponding tenant is
completely isolated from other tenants [7].

In addition to the management and administration features supported by the multi-tenant
ESB, the ESB has to also be equipped with a framework which enables the evolution of
services as described previously. This allows the tenants to focus on new software services
introduction and deployment while relieving them from the service version management
itself. The multi-tenant ESB has to facilitate the version management of service providers

and consumers in a transparent manner, and ensure service compatibility among tenants.

1.1. Motivation Scenario

The Taxi Scenario, which is a use case in the 4CaaSt project [8], will be adopted as a running
example throughout this work. The Taxi Scenario describes a taxi booking service and it
involves Taxi Company GUI, Taxi Transmitter GUI, Taxi Service Provider process, Google
Maps Web Services Adapter, and Context Casting Context-Management Framework (C-
CAST CMF) Adapter [9] as system components. All components of the taxi booking service
are Web applications. The first two components can be deployed in a separate servlet
container and referred as Taxi Company, while the rest of the components can also be

13



deployed in another servlet container and will be referred as Taxi Service Provider (see
Figure 1.1). The multi-tenant ESB will integrate both Web applications by allowing each
application to communicate with an individual connectivity service provided by the ESB.
Herein, the Taxi Company and Taxi Service Provider will be assumed as tenants in multi-
tenant E SB because each of them might be a tenant of another.

The Taxi Scenario is illustrated as follows: Taxi Companies use taxi management software to
offer taxi booking service to Taxi Customers. The customers can request taxi transportation
by providing the pick-up location and the desired destination. The Taxi Company will then
forward this information to the Taxi Service Provider which in turn requests information
about nearby taxi cab location and taxi driver contact to service offered by C-CAST CMF,
and distance calculation between the cab location and pick-up location to Google Map Web
Services. By using this information the Taxi Service Provider will send requests to the Taxi
Transmitters which are carried by taxi drivers. The taxi drivers that are near the pick-up
location can confirm the taxi request by committing it to the Taxi Service Provider.
Confirmation is then sent to the corresponding Taxi Company, and finally it reaches the
Taxi Customer.

Taxi Service
Provider
Process

Customer GUI Taxi Drivers’ GUI

Google Map || C-CAST CMF

1

i |
! 1
! 1
! 1
! 1
! 1
! 1
! 1
! 1
! 1
! 1
: " P Web Services || Adapter 1
! : LW & yd 4 Adapter :
i |
! 1
! 1
! 1
! 1
! 1
! 1
! 1
! 1
! 1
! 1
! 1
! 1

Taxi Service Provider

Figure 1.1: Taxi Company and Taxi Service Provider integration by multi-tenant ESB [10]
As described above, a tenant can be either a service consumer or producer. In case of the
Taxi Scenario, Taxi Company and Taxi Service Provider might participate in the role of

either service consumer or provider or even both using the multi-tenant ESB. The roles are
explained in the following:

14



e Taxi Company acts as service provider: it registers its services with the multi-tenant
E SB so that the services can be exposed to Taxi Customer.

e Taxi Company acts as service consumer: it uses services offered by the Taxi Service
Provider i.e. to get any available and nearby taxis for Taxi Customers.

e Taxi Service Provider acts as service provider: it registers its services so that the
services can be exposed to the Taxi Company.

e Taxi Service Provider acts as consumer: it consumes services provided by the Taxi
Transmitter for taxi driver confirmation purpose.

In either case, whenever the Taxi Company or Taxi Service Provider wants to expose or
consume services i.e. as service providers or consumers, they need to register the services
with the system, or choose which services they want to use, respectively. In the following
example, there are several possible service evolution paths that can be identified (for ease of
readability, the service versions are given in format Vx.x):

1. Taxi Service Provider deploys service version V;, Taxi Company uses the service of
Taxi Service Provider V.

2. Taxi Service Provider might replace service version Vi, to Vi, this should be still
compatible with Vi, so that the Taxi Company can still use V;, or update to newer
version Vi;. If the Taxi Company wants to keep using service version Vi, the
incoming requests will be adapted to service version V;; as necessarily.

3. Assuming now the Taxi Company uses V;; of Taxi Service Provider. In order to
cover foreseen updates in the Taxi Service Provider, the Taxi Company upgrades
unilaterally to its own version of service version V;,. As long as the service version
Vi, of the Taxi Company conforms to service version V;; of Taxi Service Provider
then the communication between both parties can be still performed. Otherwise an
error will be generated.

4. Taxi Service Provider might replace its service to version V;, Assuming that service
version V,, breaks its consumers, the Taxi Company is required to update its service
to Vi

5. Taxi Service Provider might offer service version V;, in parallel with service version
Vi1. Assuming that version V;, breaks existing consumers, and the previous service
version V; is still active. All requests from existing consumers i.e. from version Vi,
and Vi; will be routed to the service version V;; while service version V;, targets
new service consumers.

1.2. Problem Definition and Scope of Work

Based on the given roles and also the possible service evolution paths as described in the
previous section, the main objective of this diploma thesis is to extend the open source ESB
Apache ServiceMix [11] which has already been enhanced with multi-tenancy capabilities
[6] so that the ESB can enable a service version control management framework based on
the Compatible E volution Framework defined in [12]. This extension is decomposed in terms

15



of management and administration, as well as message flows in versions inside the multi-
tenant E SB.

The service version control management framework concentrates on the service descriptions
changes dimension as defined in [12]. This means that the evolution of service descriptions
does not address directly changes to the actual service implementation. Similarly, the
framework is aimed towards the Web services WS-* technological stack. In this case, Web
Service Description Language (WSDL) documents in the service description level are the
main focus on service versioning and service compatibility purposes. RE STful service is not
in the scope of this work. Moreover, the communication and interaction among the service
providers and consumers take place in the multi-tenant ESB. The ESB has to ensure that the
requests and the corresponding responses are wired correctly to related service providers
and consumers.

1.3. Research Design

The research design in this diploma thesis is to introduce a service version control
management framework based on a theoretical framework defined in [12]. The theoretical
framework provides a mechanism which guarantees a correct service versioning transition
and service compatibility checking so that the service changes can evolve consistently and
transparently. A multi-tenant ESB as applications integrator has to provide the capabilities
for managing service evolution by implementing the framework discussed in [12].

To realize this goal, the requirements for service version control management framework in
general should be investigated in the first case. This might include new use cases of how a
tenant registers, replaces, or deploys in parallel her service versions in the management
application. Moreover, a new data source, version registry, which maintains and holds the
service version-related information, should also be introduced. Together with these
fundamental specifications, the requirements for multi-tenant ESB can be examined. Any
necessary APIs that need to interconnect the existing multi-tenant ESB and service version
control management framework are proposed.

1.4. Outline

There are overall six chapters in this diploma thesis and each of them is structured and
shortly described as follow:

e Fundamentals, Chapter 2—this chapter provides concepts and background related to
service evolution, the corresponding infrastructure, its current state of art, and also
the available theoretical methodologies.

16



Requirements and Specification, Chapter 3 —fundamental requirements for service
version control management are inspected to solve common issues in service
versioning. In addition, requirements for multi-tenant ESB are also examined. The
specifications to satisfy those requirements in conjunction are then proposed.

System Design and Architecture, Chapter 4—in the first section of this chapter, a
high-level system overview is presented. Then it is followed by system design which
defines how the existing management system is extended and the database schema
of version-related registry is represented. The last section shows the entire system
architecture, and it can be observed from its functionalities and communication
between system components.

Implementation, Chapter 5—any related technologies to implement the service
version control framework are shortly discussed. The implementation for the system
in terms of extending an existing multi-tenant aware E SB is performed.

Conclusion and Outlook, Chapter 6—this chapter concludes the overall work and it
gives outlook how this work could be further extended.

17



18



2. Background and Related Work

This chapter provides an overview of fundamental concepts and background related to this
work. This information should give a better understanding and insight about which
infrastructures or components are involved in the context of service evolution, what is the
current state of art in service evolution, and which theoretical concepts and methodologies
can be adopted to support this work.

The first section of this chapter examines the JBI, ESB and service registry as important
foundations and infrastructures in service-oriented architecture world. The basic idea and
definition of service versioning and compatibility are also covered in this section. The
second section deals with the work contributions to service versioning and service
compatibility. The last section covers the compatible evolution framework that act as a

technology- and language-independent formal framework.

2.1. Fundamental

In this section background information on infrastructure and notions associated with
evolution of services shall be presented. The understanding of these principles will serve as
the basis for this work.

2.1.1. Java Business Integration

Java Business Integration (JBI) defines a standard-based architecture that enables the service
containers interoperability, services connectivity, and services integration [13]. The JBI
architecture allows integration artifacts to be constructed based on the components that are
pluggable into the JBI environment. These components are referred to JBI components and

can be classified into service engines (SE s) and binding components (BCs).

SEs can provide or consume services to/from other components in the JBI environment. For
example SEs might have the capability of messages routing and transformation as services.
In the other hand, BCs allow external system to communicate with the JBI environment by
providing various communication protocols such as HI'TP and JMS. BCs and SEs do not
communicate directly. Instead, they communicate through a Normalized Message Router
(NMR). All message exchanges that flow inside the JBI environment are normalized
messages i.e. a XML payload and meta-data.

The JBI specifications also specify a management framework that allows the system
administrator for an instance to install JBI components in the JBI environment, and deploy

19



service configuration artifacts on the components through Java Management E xtensions
(JMX). The artifact that can be deployed into running BCs or SEs is referred to a service unit.
A group of service units can be packaged together and can create a service assembly. Once a
service assembly is deployed into JBI container, each of the service units will be deployed to
its specific SE or BC.

2.1.2. Enterprise Service Bus

According to Rademakers et al. [14], there are several reasons why applications integration
using an enterprise service bus (ESB) should be taken into account. The first reason is that in
a large system landscape it is nearly impossible to have a homogeneous system because each
existing application has its own way to perform the business processes by implementing
different technologies and protocols. In order to communicate between any two applications
a custom interface has to be built on each side to translate a data format that both of them
can process. Such point-to-point integration would not make any sense in a large system
environment since the number of connections of various applications will grow rapidly as
the system grows. This only increases the overall system complexity and also makes the
system difficult to scale. Another reason is to minimize the total cost of system maintenance.
Applications’ maintenance in a traditional point-to-point architecture can become very
cumbersome and expensive. Therefore, the introduction of ESB as a central integration

solution could help to alleviate the system management task and cost.

An ESB is an open standard-based message backbone designed to enable the
implementation, deployment, and management of distributed service-oriented architecture
(SOA) [Papazoglou08]. In its essence, the ESB has to ensure that it provides interoperability
and connectivity among applications since it has to deal with different protocols, for
example HTTP, JMS, and SOAP [5]. The ESB provides a layer abstraction of system
integration which enables system developers to fully focus on service design and

development.

As a SOA centerpiece, ESB must implement or support some core functionalities. In the
following the core functionalities that are closely related to the diploma thesis will be
discussed briefly [14], [15].

Message Transformation

It is very common that a data format of source application differs from the data format of
target application. For the communication to take place properly a message from the source
application must be transformed into a message format that is understood by the target
application before it can be forwarded. The message transformation is performed based on
open standards such as Extensible Stylesheet Language Transformation (XSLT) and XPath.

20



Message E nhancement

The message transformation described above can perform its jobs by cooperating with
message enhancement. After a source message is transformed to target data format, one
might need to add some additional information before sending the message out to
destination. This is desirable because the target destination might require information which
is not available from the source message. An external source e.g. a database could provide
such additional data.

Intelligent Routing

Message routing is another important functionality that an ESB must support. Its task is to
deliver requests from service consumers to correct service providers, and then forward
responses back to the service consumers. There are some criteria how messages are routed.
Content-based routing is a routing capability that sends messages based on their contents.
Another example is message routing that routes a specific message to several destinations.
In this case the service consumers subscribe to a certain topic and receive responses based
on the topic.

Service Management

In a rapid changing SOA environment it is necessary to somehow govern and handle the
environment in a proper way. Services that reflect business tasks need to be managed in
order to ease service discovery and reuse. Service registry as a fundamental part of ESB
gives a great deal of service management. This topic will be reviewed again in next section
in greater details.

2.1.3. Service Registry

Service registry is a place where all information about services at runtime is stored. Its
historical background comes from one of the main roles of the well-known SOA triangle,
service broker. In SOA triangle, a service provider registers its services to a service broker. A
service consumer that wants to use a particular service can find the related information in
the registry. By using this information the service consumer can now locate and call the

service [15].

According to Daigneau [16], a service registry might contain data types and messages
definitions which are defined by XML Schema Definition Language. Moreover, WSDL files
that identify the input and output message types, binding protocols, and addresses of
services are also stored in the registry.

A mature service registry has several important responsibilities in SOA architecture. It has
to be able to support the reuse of Web services and ease the communication between service

21



providers and service consumers. More importantly it should have the capability to deal
with the evolving SO A, that is, it maintains the evolution of services [17].

2.1.4. Service Versioning and Compatibility

In a SO A environment, services grow and evolve over time to reflect new business
requirements which could drive existing services to be changed or modified. This might
result in new variant of services, that is, the original services with upgraded or customized
functionality. The creation and management of existing and new releases of services is
called service versioning [18].

An upgraded service could be either compatible or incompatible with its older version of
services. It means whether or not the new service version could be understood and
processed by existing service consumers. There might be a possibility that the new version
introduces e.g. different data types than the previous one causing the existing service
consumers to break. Moreover, service compatibility can be divided into backward
compatibility and forward compatibility [19]. Backward compatibility means a new version
of service provider can be introduced without breaking the existing service consumers,
while forward compatibility means a new version of service consumer can be carried out
without breaking the existing service producer. If both conditions are fulfilled then it is
called full compatibility [1].

Service versioning can appear either in service interface or service implementation [1].
Service interface versioning deals with service description, that is, metadata which defines
the characteristic and interaction of services [4]. Meanwhile, service implementation
versioning is versioning related to software code and its documentation, and can be
managed by Software Configuration Management (SCM) techniques [20]. This diploma
thesis will solely focus on interface versioning i.e. on WSDL files [21].

Based on the notion of service versioning and compatibility, old and new service interfaces
should be managed in a way to avoid having too many active versions for the same service
interfaces. On [12] it is proposed that the number of active versions should be kept as
minimum as possible. When a compatible new service version is brought into production,
the older version can be marked as deprecated and then withdrawn in a certain period of
time as long as no service consumers are using it anymore. This could help reducing the

high cost of service provision and management [15], [22].

22



2.2. State of Art

After a brief discussion of the basic notions of service versioning and service compatibility
on Section 2.1.3, several existing approaches for them will be introduced. These approaches
are classified into:

e How service versions are specified and which kind of methods can be adopted to
implement them.
e How compatibility assessment is performed.

e How service consumers are aware of new service releases.

2.2.1. Service Versioning

Service versioning on service interfaces should support old and new version of services. One
common way to realize this is by naming the service version with major and minor release
sequence. For an example a service with version “2.3” indicates that the service has a major
version of 2 and a minor version of 3. In addition, the version number is arranged in
increasing order, and it is assumed that the higher the version number the newer the service
version implies. Major releases are introduced when significant changes have occurred on
the service interfaces that make the service consumers to break. Normally minor releases
will not cause service consumers to break since the modifications are still compatible with
the previous version [23].

Another way to name a service version is by using date. The following listing shows how to
deploy versioning on the data structure defined by XML Schema Definition.

<types>
<schema targetNamespace="http://example.com/2012/09/01/Schema.xsd"
xmlns="..">
<element name="GetWeatherRequest">

</element>
<element name="GetWeatherResponse">

</element>
</schema>
</types>

Listing 2.1: Service versioning using XML Schema Definition

This approach does not provide any information whether the release is compatible or
incompatible with the previous version, but it can be used to validate the data types before
messages exchange occurs [16].

There are several service versioning methods and each of them will be summarized as
follows.

23



e A common method for implementing service versioning is to impose a new XML
namespace. Unfortunately every introduction of a new namespace will break existing
service consumers. This indicates that something new about the service or data types
has been released, and the existing consumers that bind the previous namespace
need to update their references. Applying a new XML namespace is always assumed
to create a major version of services. If a minor release or compatible version wants
to be achieved, version identifiers can be employed together with the namespace. In
this case new XML namespaces will describe a major or incompatible service version,
while version identifiers will indicate a minor or compatible change [24].

e As discussed on Section 2.1.2 an advanced service registry should be able to maintain
the historical information of service interfaces. For an instance, how Universal
Description, Discovery, and Integration (UDDI) as a public registry to support service
evolution will be discussed. In UDDI, service versioning is realized through the
extension of tModel [25]. tModel is a generic description of registered services in
UDDI registry. The extension is carried out by providing a service version (major
minor sequence) on instanceDetails data structure contained in tModel. Another
approach is to have multiple tModels, that is, each tModel represents one service
version [25].

e The service version graph approach proposed on [26] is another method to represent
service versioning. One service interface is represented by exactly one version graph.
The service version graph is a directed graph whose nodes contain versioning
information and edges shows the relationship between service versions. The
relationship creates a successor and predecessor role, that is, successor represents a
changed service description of its predecessor. In the version graph, all successors
refer to one original service. Service version graphs could also be stored in service
registry.

In the work on service versioning by Yamashita et al. [27], versioning is applied only on a
portion of WSDL/XML Schema such as operations and data types. These fragments are
referred as features. The goal of this versioning approach is to create a version only to the
features that have been changed either directly or indirectly influenced, not the entire
service description for a better control and comprehension of interface changes impact.
Indirect feature influenced mean the feature itself does not change but the other feature it
depends on has been changed. For an example data type change from inf to double might
affect message element that is using the data type.

2.2.2. Service Compatibility

Service compatibility is an important notion in service evolution. It allows the introduction
of a new service version while continuing supporting the old version of services.
Maintaining backward compatibility defined on Section 2.1.3 always serves as a goal for
service providers, and the term compatible should be by default regarded as backward

24



compatible. On the other hand forward compatibility is harder to realize because it requires
the ability to deal with a major change.

The works on service compatibility have been proposed and contributed to let service
consumers of either the previous or the new version to successfully process the new
message or old message format, respectively. References to the current works of service
compatibility are summarized below.

1. Beside proposed service versioning method, Yamashita et al also define compatibility
assessment that based on current guidelines or best practices as pointed in [28], [26],
[29]. Table 2.1 shows the summary of these guidelines. Moreover the algorithm
presented in [27] is an adaptation from [30] that takes two service features and
evaluates them recursively based on guideline bellow for compatibility checking.

No. Feature Type Change Description Backward
C ompatible
Add operation Add new operation to service interface Yes
Add type Add new type to a new operation or a | Yes
new type
3 Add type Add new type to existing operation or | No
type
4 Update type Modification  in  description e.g. | No
cardinality or order
5 Remove Type Remove type dependency No
Remove Operation Remove operation dependency No

Table 2.1: Guideline for compatibility assessment [27]

2. In order to avoid breaking changes introduced by new release of services, either
service consumers or producers should be able to somehow ignore new contents in
terms of new messages and data types that they do not understand. This is what the
service design pattern 7Tolerant Reader should realize and it can be implemented on
consumers or producers side. The 7Zolerant Reader must have the capability to
differentiate and extract which information it can process and ignore the remaining
one as long as the semantic of the service is not violated. In this way Z7olerant
Reader can preserve the backward or forward compatibility [16].

2.2.3. Identification Model of Service Change

There are several possibilities for service consumers to identify a new release of a service.
The most straightforward way is that a service consumer itself has to recognize the new
service version. This can be done by regularly checking the service registry whether the
services being used are already deprecated. If that is the case then it implies that a new
service is available regardless of whether it is a major or minor version [23], [31].

25



In the other way round, a service consumer will get a notification once a new version is
ready to deploy. In [24] consumer using a certain service will get a first notification when a
new service is released. After the old service is decommissioned the consumer will obtain
another notification, e.g., a fault message indicating that the old version has already been
taken out from production. Another example is to extend UDDI with service versioning
functionality and allow service consumers to subscribe to an event related to the versioning
information [32].

The approaches like client and notification models are deployed without any concerns
whether or not new services break service consumers. However, transparent model ensures
that as long as the new service is compatible with its previous version, the consumers will
not be aware of the service modification and can keep using the existing service without any
impact [33].

2.3. The Compatible Evolution Framework

The state of the art in service versioning and compatibility presented above is insufficient to
build a solid framework supporting services evolution. For an example, the method that
incorporates XML namespace and version identifier, when used intensively will create a
maintenance problem. In addition this approach also requires service consumers to validate
the version compatibility on their own. The approaches also depend heavily on particular
standards e.g. WSDL and XML Schema Definition.

The compatible evolution framework proposed in [34] tries to overcome such drawbacks by
providing a robust technology- and language-independent theoretical framework which
guarantees the evolution of services can take place correctly and uniformly. The main
purposes of this framework are to preserve the service compatibility and ensure a
transparent version identificaion model so that every compatible change will have a
seamless and consistent version transition.

2.3.1. Abstract Service Description Model

Service interfaces should not be specified restricted to a particular technology or language
implementation because they have to be able to be deployed in any infrastructures or
frameworks. The Abstract Service Description (ASD) meta-model allows a general
representation of service descriptions as defined in [1]. The meta-model comprises three
layers, namely structural, behavioral, and non-functional layer as shown in Figure 2.1 below.
The structural layer describes service signatures of a service such as service data types,
messages and operations. A behavioral layer shows how services behave when
communication between service consumer and provider takes place. The non-functional
layer is concerned with Quality of Service (Qo0S) represented by a set of policy constraints or

assertions.
26



From here on, only the structural layer of ASD will be discussed since the behavioral and
non-functional layers are out scope of this diploma thesis. As depicted in Figure 2.1, the
structural layer contains operation, message, and information type constructs. These
constructs are associated and can be mapped into a WSDL operation, message, and data
type, respectively. Each construct is called an element and each element relates to each other
based on their syntactical and semantic dependencies. Elements and their relationships are
referred as records. Each element might have properties that describe its role in ASD, and
attributes that contain a particular value. The property of an element can be assigned with a
number of allowable predefined values e.g. Datatype of valueType property can be assigned
with one of simple data types in XML Schema such as int double, and string. Document data
type refers to a complex type of XML.

As service interface representations, ASDs are also inevitable to being changed or modified.
Every change results in a new version of ASD. So this reflects to the structural layer, that is,
every record on this layer will be maintained and versioned accordingly. A versioned ASD
contains a collection of the versioned records R , and each record 7 is identified by a
unique version identifier.

<<enumeration>>
Intention
<<genumeration>> promise
obligation
<<enumeration=> DimensionType
IType monotonic =~
Profile AND antitonic =~
p— Assertion
. — | oor —_
=~ —— +dimension
<1Type= ~ 1..N-
—_— —>|+dimtype: DimensionType
<1Type> +value
\‘ yp +role: Intention
1..N~ 1..M
—»| AssertionSet
\J/ Non-functional
1..N o - o o o o o — — — -

Constraint

Protocol
IG..N~. 1..N~
_0..N —»| Operation Conditions J —»|+expression
<<enumerations> b b],.N--.) +role: ConditionRole - tstatus: boolean
Action sType> R —
=slype= -~
receive = - <<gnumerations> S v
invake b <<enumeration>>
re s L=]
reply o T — L TyP ConditionRole
— — = follows
= —q Activity ichoice pre;
; post-
+act: Action echo{:el I ]
paralle
| 1..N Behavioral
1..N
/1.1 1N e t
e Operation Message . ] 1 in lor:na znt'lrpe
. 1..N — +valueType: DataType
+pattern: MessagePattern [«lis—r— P irole: WMessageRole +valueRange
T —
= /7 - ’
<<enumeration>>
<<enumeration>>
MessagePattern V4 DataType
ol ~WE <<enumeration>>
y MessageRole int
notification double
request-response input string
solicit-response output . Structural
fault document

Figure 2.1: Abstract Service Description Model [34]

The compatibility among records can be defined using the help of subtyping relation.
Subtyping evaluates whether one record is a subtype of another record, and this can be

27



denoted as 7 < #'. Compatibility between service versions defined in [ABP12] allocates

versioned records R into two proper subsets R, and R, which represent a set of records

con
of message producer and message consumer, respectively. Recall the service compatibility
definitions described on Section 2.1.4service compatibility definitions between R and R’ can

be extended in terms of subtyping as follows:

e Backward compatibility: R <, R' & Vr'€R’ ., , I3 € R ., , 7 < 7.
e Forward compatibility: R <; R' & V7 €R,,, ,Ir" € R’
o Full compatibility: R<, R'& R<, R' A R<, R".

!
pro ¥ =T

2.3.2. T-Shaped Change

The term compatibility has been further extended and classified by Andrikopoulos [34] into
two dimensional scopes: horizontal and vertical compatibility. The horizontal compatibility
or interoperability between services means that service versions can interoperate
successfully with each other, either as a service producer or as a service consumer. On the
other hand, the vertical compatibility or substitutability (provider’s point of view) or
replaceability (consumer’s point of view) between services means that one service version
can replace another version. The combination of the two definitions above results in so-

called 7-shaped changes.

In correlation to service compatibility in terms of subtyping, a change set AR resulting into
an ASD R’ is considered a T-shaped change if and only if it results in a full compatibility of
service description. In this case, the Compatibility Checking Function (CCF) algorithm

defined below can be applied on R ., and R The first for iteration (line 1 — line 5) and

the second for iteration (line 6 - line 11) evaluate whether the changes on R',,, and

pro con*

R',ro comply with the backward compatibility and forward compatibility, respectively. If
the result returns the value #rue, it means the new service version is fully compatible with
its previous one.

1: for all »'€eR',, do

2: if Ar €R,y, ,» <7’ then
3: return false;

4: end if

5: end for

6: for all » € Ry, do

7: if Ar'€R'yp, 7" <7 then
8: return false;

9: end if

10: end for

11: return true;

Listing 2.2: Compatibility Checking Function (CCF) algorithm [12]

28



3. Requirements and Specification

This chapter will discuss about requirements which are needed to build a service version
control management system. In the first section, version control management requirements
in general are introduced, and are used to address several common issues related to service
versioning. In the second section, version control management in conjunction with multi-
tenant ESB is defined. The required system specifications for the version control
management are based on an existing multi-tenant ESB architecture [10].

3.1. Service Version Control Management

One of the main tasks of service version control management is to govern and maintain all
service interface descriptions which were registered by service providers. This implies that
the version control system will not only keep track of each service description registration
with the ESB, but also of the corresponding service provider. In order to completely define
the service version control management functionalities, there are several important
considerations to take into account when dealing with service versioning;:

1. Which service interface descriptions — the WSDL documents — are going to be
managed and versioned.

When service compatibility assessment between service versions is carried out.
Where the service interface versioning information and history are stored.

How to uniquely distinguish the service versions.

What kind of possibilities that are offered by the underlying system so that a tenant
(as a service consumer or service provider) can decide which service version that she

A

wants to consume or expose, respectively.

In general, all service descriptions should be managed and versioned, that is, the ones which
are registered with a system and exposed as service endpoints. From the motivation scenario
(Section 1.1) this will include the service descriptions of Taxi Service Provider, Taxi
Company, C-CAST CMF, and Google Maps Web Services as they are registered with the
ESB. Although the service versioning is closely related to service compatibility assessment,
both tasks are independent to each other. However, the compatibility assessment will be
typically performed after a new service is registered and there are at least two services
available for the compatibility evaluation. All service interface versioning and compatibility
assessment information should be stored in a separate database that is managed by a service
version control system, leaving the main system to fully concentrate only on its core
functionalities.

29



Service versioning should not be a concern for service providers. It is not necessary to
explicitly define for example a particular service version name or number (see Section 2.2.1)
on the service descriptions to implement the service interface versioning. The version
control management system will decouple this task from the service provider by adding

service versioning information internally to differentiate between the services.

To describe the last point of the considerations above, it is necessary to recall the roles of
tenant presented in the motivation scenario. A tenant can act either as a service provider, a
service consumer, or both. The association between two tenants can be classified into the
following relationship:

e One-way relationship: this is a typical case where a service consumer consumes
services exposed by a service provider. However, it is not valid in the other way
round. For an example Taxi Customer will use services from the Taxi Company to
make a taxi order.

® Reciprocal relationship: a service consumer consumes services from a service
provider, and for some reasons the service provider will also use services provided by
the service consumer to accomplish the whole communication task. In this case each
tenant has both roles as service provider and service consumer. From the Taxi
Scenario, Taxi Company will use services from the Taxi Service Provider. To fulfill
the taxi request from the Taxi Company, the Taxi Service Provider will utilize
services from Taxi Transmitter which are parts of the Taxi Company services in
order to communicate with the taxi driver.

Depending on in which role the tenant participates, she might have several possibilities with
respect to how she registers and chooses the service versions. This will be summarized into

the following table.

Role of Tenant Action

Service Provider When a tenant registers her services, she can define whether she
wants to add a new service, replace an existing service, or
deploy a new service in parallel to an existing one.

Service Consumer 1. When a tenant is added, she will be able to choose which
service provider she wants to use.

2. A tenant can also decide for groups of her users to use a
particular version of services from the service provider.

3. A tenant has an option to unilaterally move to another
version of the service, even one that is not registered by the
service provider. This allows tenant as the service consumer
to evolve independently from the service providers.

Service Provider and 1. One-way relationship: a tenant implements actions as

Service Consumer described for the service provider and consumer.

2. Reciprocal relationship: the same actions as in one-way
relationship but with an additional task. After a tenant has
registered her services and chose a service provider, she
needs to explicitly notify the service provider to employ her
services so that the communication between both parties can
be established.

Table 3.1: Tenant roles and corresponding actions for service registration and employment
30




3.2. Service Version Control Management Requirements for Multi-tenant
aware ESB

The work in [6] has identified the requirements for multi-tenancy on ESB (multi-tenant
aware ESB) [10] in terms of administration and management level. The requirements for
multi-tenant aware ESB involve a management application that connects to the ESB, and
also the enhancement of the ESB itself. The requirements from [6] will be shortly
introduced, and together with the fundamental functionalities specified in the previous
section, the requirements for multi-tenant aware ESB which support service version control
management shall be investigated.

3.2.1. Management Application

To enhance the ESB with multi-tenancy functionality, a management application is required.
This application needs to maintain a group of tenants that want to access the ESB. Moreover
there should be data sources that hold all important tenant-related information as well.

JBIMulti2 is management prototype developed in [6] to support multi-tenancy on ESB level.
All multi-tenant functionalities required for management application are encapsulated into
the JBIMulti2 system. The system implements role-based access model [35] that allows
tenants to interact with the system in restrictive manner, and JBIMulti2 also assumes that
tenants might be both service producers and consumers. JBIMulti2 is built on top of Apache
ServiceMix [36] and connected to a collection of data sources.

In JBIMulti2 the actors play an important part in the system because the functionalities in
the underlying system are performed by different roles. In addition, a set of databases in
JBIMulti2 store different kind of information including tenant-, system configuration-, and
service-related information. By carefully investigating the roles and the databases involved,
it is possible to point out which system functionalities and information can be carried out in
relation to service versioning.

Role-based Access
In JBIMulti2, all administration and management operations are restricted based on role
access control. Each role has its own privileges to access the underlying system and data
sources. The role-based access control can be classified into sysfem role and fenant role
which are represented by three actors of the system, namely system administrator, and
tenant administrator and tenant operator, respectively. In the following the responsibilities
of the JBIMulti2 system actors will be explained briefly:
e System administrator: she is responsible for the JBIMulti2 system and inherits all
functionalities from tenant administrator and tenant operator. Her main tasks are to
add tenants and provide them with resource usage.

31



e Tenant administrator: she can create other tenant administrator and tenant operator
roles, and assign a set of permitted operations to them. She also uses the resource
partiions provided by system administration to create service unit and service
registration contingent for the tenant operators.

e Tenant operator: the service registration and service unit contingent created will be
consumed by tenant operators to register services and deploy service assemblies to
the system, respectively.

Databases in Management Application

A management application needs access to databases. In the case of JBIMulti2, there are
three databases that the system currently relies on to store the system information, namely
Tenant Registry, Configuration Registry, and Service Registry. Tenant Registry stores all
information about the tenants and also the tenant users. Configuration Registry maintains
configurations produced by the system administrator and tenant administrator. The third
database, Service Registry keeps all service-related information. This includes service
description documents and also the service assembly files. The JBIMulti2 accesses the
databases using Tenant Registry-, Configuration Registry-, and Service Registry Manager.

The responsibilities of the JBIMulti2 actors described previously are translated into a list of
use cases [37]. These use cases describe the interaction between the actors, the underlying
system and the databases in specified permissions. Based on the use cases and the given
system, the investigation about the operations supported or involved in the service-related
information can be explored. This information is crucial because it gives indication which
parts of the system could be extended for service version-aware purposes. The result is
presented in the following table.

Use case Role Database

Integrate tenant registry System administrator Configuration-, Service-,
Tenant registry

Delete tenant System administrator Configuration-, Service-,
Tenant registry

Unregister JBI Container System administrator Configuration-, Service registry

Uninstall JBI component System administrator Configuration-, Service registry

Change JBI container cluster of | System administrator Configuration-, Service registry

tenant

Delete service unit contingent | Tenant administrator Configuration-, Service registry

Delete  service registration | Tenant administrator Configuration-, Service registry

contingent

View service assemblies Tenant operator Configuration-, Service registry

View service registrations Tenant operator Configuration-, Service registry

Register and unregister service | Tenant operator Configuration-, Service registry

Deploy and undeploy service | Tenant operator Configuration-, Service registry

assembly

Table 3.2: Mapping of use cases, roles, and databases for service-related information

32



Based on the use cases shown in Table 2.1, the related key operations are listed below:

Register service: the tenant operator can register services that she wants to expose
by submitting the WSDL documents to the Service Registry.

Unregister service: the WSDL files can be removed if they will not be used anymore.
Deploy service assembly: when the configuration files in the service assembly are
deployed to JBI components on the ServiceMix, a new service will be created on the
components and it can be invoked through its service endpoints. The target service
endpoint is also important to be specified for message exchange purpose.

Undeploy service assembly: the created services are removed from JBI components.

All operations are implemented by the Service Registry Manager. The system administrator
has also permissions to conduct the use cases since she inherits all functionalities from
tenant operator. But from here on only tenant operator will be referred when dealing with
these operations. For more comprehensive information about the access control and
JBIMulti2 in general, please refer to the JBIMulti2 documentation [6].

E xtensions to Management Application

This section will describe the extension for the management application to enable service
version awareness based on the requirements in Section 3.1, and given the roles and use
cases described above. The requirements are revisited again and the solutions are proposed
after each requirement.

1

Where the service interface versioning information and history are stored.

The current Service Registry database aims to keep the actual service descriptions
only (services in runtime - see Section 2.1.2). For service interface versioning
purposes, a new database — Version Registry — shall be introduced to maintain all
versioning information and history.

How to uniquely distinguish the service versions.

After service descriptions are registered by the tenant operator, a unique identifier
will be assigned to each of them to distinguish them in the Version Registry.

What kind of possibilities that are offered by the underlying system so that a tenant
(as a service consumer or service provider) can decide on which service version that
she wants to consume or expose.

The proposed approaches depend on which role the tenants play. Therefore, Table
2.1 is revisited again with extension or additional action, and is summarized into
Table 3.3.

33



Role of Action E xtension/Additional Actions

Tenant

Service When a tenant registers her | There are two use cases that need to be

Provider services, she can define whether | added beside the existing ones, namely
she wants to add a new service, | replace and deploy service in parallel use
replace an existing service, or | cases.

deploy a new service in parallel

to an existing one.

Service 1. When a tenant is added, she | There is no extension needed for the
Consumer will be able to choose which | system, but some additional tasks should be
service provider she wants | implemented:
to use. 1. The tenant operator has to configure

2. A tenant can also decide for the service unit file by specifying the
groups of her users to use a target service endpoint of the preferred
particular version of services service provider before deploying the
from the service provider. service assembly.

3. A tenant has an option to | 2. In order to decide on which service
unilaterally move to another versions to be adopted, one particular
version of the service, even service has to be available at least in
one that is not registered by two versions i.e. they must be deployed
the service provider. This in parallel in advance. Then based on
allows tenant as the service policies the tenant wusers can be
consumer to evolve assigned to a certain service version.
independently = from  the | 3. The tenant operator has to register her
service providers. service and apply the compatibility

checking against the version(s) offered
by the service provider. As long as both
services are compatible, message
requests can be created from the service
description.
Service 1. One-way relationship: a| 1 The tenant operator employs the
Provider tenant implements actions extensions and additional operations as
and Service as described for the service defined for the service provider and
Consumer provider and consumer. consumer.
2. Reciprocal relationship: the | 2. In this case, it is assumed that the

same actions as in one-way
relationship but with an
additional task. After a
tenant has registered her
services and chose a service
provider, she needs to
explicitly notify the service

provider to employ her
services SO that the
communication between
both  partes can  be
established.

tenant operators of the service provider
should have knowledge who will
consume her service and whose service
she will consume. For instance, after the
tenant operator has registered her
servicee and deploy the service
assembly, she should inform the chosen
service provider at which location the
WSDL document can be found. The
service provider can then wuse the
document to create message requests
for communication purposes.

Table 3.3: E xtension for enabling version control management based on tenant roles.

34




4. Which service descriptions — the WSDL documents — are going to be managed and
versioned.
All service descriptions that are registered and exposed by the ESB should be
managed and versioned. However, the challenges are to separate the actual service
descriptions (in Service Registry) from the service versioning information (in Version
Registry) while preserving the existing service registration, unregister service
operation, and also the new use cases (replace and deploy parallel) proposed in Table
3.3. In other words the Service Registry Manager should act as a front-end interface
that deals directly with the tenant operators, and the version control management
will sit behind the interface in order to monitor any service interface descriptions-
related actions and add any service versioning information as necessarily.

5. When service compatibility assessment between service versions is carried out.
The compatibility assessment might be performed in the background after the tenant
operator has invoked the register or replace service operation.

3.2.2. Multi-tenant aware ESB

In addition to role-based access control and the registries described in the previous section,
the work in [6] has also identified requirements for the Apache ServiceMix to support multi-
tenancy on ESB level. The requirements should also work for ESBs that implement the JBI
specifications. In the case of ServiceMix, JBI components (binding components and service
engines) must be multi-tenant aware to ensure data isolation between tenants, thus the
motivation will be on the service assembly/service units processing. When tenant operators
execute the deploy service assembly operation, a management message will be sent from the
management application to ServiceMix instance. Before the service assembly is deployed,
there are two steps that need to be performed:

e The tenant context must be fetched from the management message. Information
such as the tenant identifier, user identifier or tenant URI will be injected into the
service assembly name, service unit names, and JBI deployment descriptor.

e The service units targeting different JBI components will create new services for
each tenant by reading the tenant context and replacing the service name of the
service endpoint with tenant identifier, user identifier, or tenant URI to generate
multi-tenant aware JBI service endpoints. Therefore, the data isolation between
tenants can be preserved.

Extensions to Multi-tenant aware ESB

Based on the information provide by Table 3.3, several use cases extensions or additional
actions should be provided to the overall system to support version control management.
The extensions for the use cases for management application have been covered in the
previous section. In this section, the extension to the actual ESB will be explored.

Binding components (BCs) and service engines (SEs) are JBI components in a JBI
environment. The BCs provide connectivity to existing external applications and can expose

35



internal JBI services to external JBI environments. The SEs offer functionality to other
components and can also consume services. Therefore, JBI components are the target

extension in this case. To implement a message flow of the communication between service

consumers and service providers, tenant operators have to define the service unit

configuration files and deploy them as a service assembly.

There are two requirements needed to support version control management on multi-tenant

aware E SB:

1.

36

The most important of the ESB capabilities is message routing and this functionality
is provided by a service engine. The routing engine of the multi-tenant aware ESB
has to be aware of the versions of each incoming messages to route the messages to
correct service endpoints. Hence, it should be provided with additional information
such as tenant identifiers, user identifiers, target service endpoints, compatibility
status between service versions, and version of expected and actual incoming
message. The routing engine has to implement a message interceptor. Before any
routing operations are executed, the message interceptor has to verify every
incoming message with the information specified earlier to make a proper routing
decision whether the message can be wired to an active compatible service version,
or an error message should be generated. The compatibility information is important
because it can be used as an indicator by the message interceptor whether the
incoming messages are necessary to be transformed and routed to the target service
endpoints despite of different service versions.

Besides the capability to internally transform endpoint URIs and JBI service
endpoints to the ones that are multi-tenant aware, the multi-tenant aware ESB needs
to be extended in order to create endpoints that have the functionality to interpret
services in version (essential when services are deployed in parallel). However, the
endpoint URIs that expose services to external JBI environment should not be
enhanced with service version information. The rationale behind this is to release
tenants from service version intricacies, and allow the transparency of service
evolution. Nevertheless, service version awareness has to be enabled inside the JBI
environment targeting the JBI service endpoints for outgoing message exchanges.
This is because the routing capability needs to properly wire the messages to the
correct service endpoints. This is important when service providers deploy services
in parallel. To fulfill this requirement the multi-tenant aware ESB could be enhanced
by adopting the same approach like the one for multi-tenancy i.e. by adding a unique
service version identifier in management messages sent by JBIMulti2 when deploying
service assemblies. Then the endpoint name of the outgoing JBI service endpoint can
be extended by adding a service version identifier (see Listing 3.1).



/*
Input: tenantId, servicelocalPart, endpointName, configuredlLocationUriPrefix,
serviceld

Example: {jbimulti2:tenant-endpoints/tenantId}ExampleService:ep/service_version id

*/

serviceEndpoint ::=serviceName “:” endpointName (serviceId)

serviceName ::="{"serviceNamespacePrefix tenantId”}”servicelocalPart

serviceNamespacePrefix ::="jbimulti2:tenant-endpoints/” |
configuredServiceNamespacePrefix

serviceId ::="/service_version_id”

Listing 3.1: Service endpoint replacing pattern for service version-aware HI'TP BC in
E xtended Backus-Naur Form (E BNF)

The Listing 3.1 above explains how a service endpoint in multi-tenant HTTP BC servicemix-
http-mt [6] can be extended to enable service version-aware. A Service endpoint is
composed of a service name and endpoint name. In case of multi-tenancy, the service name
of the service endpoint has been extended to include tenant context, thus, each tenant can
have separate service endpoint. Similarly, in order to support service version-aware the new
endpoint name has to be concatenated with a unique service identifier indicating a specific
version of a service.

37



38



4. System Design and Architecture

This chapter proposes a system design and corresponding architecture to realize the system
requirements defined in the previous chapter. First, a system overview of the service version
control management based on multi-tenant aware ESB will be introduced. In the second
section, a system design that reflects the system requirements is presented. The system
architecture that represents the system functionalities and interactions will conclude this
chapter.

4.1. High-level System Overview

In Chapter 3, the service version control requirements in conjunction with multi-tenant
aware ESB have been covered. Based on the specified requirements there are three main
components that build up the overall system. The system consists of the Version Control
Manager (as an extension of JBIMulti2), the Version Registry database, and the AMulti-tenant
aware ESB. Figure 4.1 depicts a high-level view of the system and how each component is
connected to each other.

Figure 4.1: High-level view of multi-tenant aware E SB with version control management

Version Registry

As a data source the Version Registry should be able to provide the Version Control
Manager and the ESB the service versioning information. The information contained in the
Version Registry includes service version-related information, compatibility status, and
tenant context. The database schema and the functionalities of Version Registry can be
viewed in Section 4.2.2 and Section 4.3.1, respectively.

39



Version Control Manager

At its very basic functionalities the Version Control Manager should be able to retrieve data
from the Version Registry, and update the multi-tenant aware ESB with the most current
state of the service versioning information. The complete functionalities of Version Control
Manager can be found in Section 4.3.1.

Multi-tenant aware E SB

Multi-tenant aware ESB must be able to forward a request message from a particular tenant
to a service provider that employs a certain service version, and vice versa by using the
information updated by the Version Control Manager.

Communication between components

The version control manager might retrieve service versioning information from Version
Registry and then forward it to the ESB. This communication way is the most
straightforward approach that can be applied. In the following several patterns are
introduced to realize the communication between the components.

1. Communication between Version Registry and Version Control Manager.

e A timer pattern can be implemented to poll the database from the Version
Control Manager in interval basis.

e Event listener in the Version Control Manager reacts whenever there is an
u