
Institute of Architecture of Application Systems
University of Stuttgart
Universitätsstraße 38
D–70569 Stuttgart

Diplomarbeit Nr. 3468

Provisioning of Customizable
Pattern-based Software Artifacts

into Cloud Environments

Andreas Schraitle

Course of Study: Computer Science

Examiner: Prof. Dr. Frank Leymann

Supervisor: Dipl.-Inf. Christoph Fehling

Commenced: March 6, 2013

Completed: September 6, 2013

CR-Classification: Cloud Computing, Patterns,
Automation, Software Product Lines

Abstract

Software architects and engineers frequently face reoccurring problems, when implementing
cloud computing applications, leading towards reduced productivity and an increased time
to market factor. These issues can be faced by the commonly known concept of patterns.
Thus, researchers identified and documented patterns for the cloud computing domain, to
preserve gained knowledge about cloud application architectures and service offerings [FLMS11,
FLR+12]. These patterns can be used to from the foundation of aggregated cloud computing
applications. Dependent on the corresponding cloud service model, such applications require
different provisioning steps, which can be performed by individually implemented actions or
can be executed by pre-provided cloud services.

Yet, these cloud computing patterns are offered in non-technical, written form, which does
not allow to aggregate corresponding implementation binaries to pattern-based applications.
Therefore, this thesis combines software product line engineering methods, open source build
management tools, and open source infrastructure management tools to implement a software
product line for cloud computing patterns, which allows to reduce human-driven efforts to
implement aggregated cloud computing applications. This approach enables the possibility to
create, aggregate and customize cloud computing pattern implementations; and store them in
a so-called pattern template catalogue. Hence, each pattern, stored in such a catalogue, is
associated with so-called customization points, which allow to adapt instantiated patterns to
individual needs.

To accomplish these challenges, Apache Maven [Mava], an open source build management
tool, is extend with means to create, customize and aggregate pattern-based cloud computing
applications. Corresponding provisioning tasks are accomplished, by combining PuppetLabs’
Puppet [Pup] and pre-offered cloud provisioning services. Pattern-specific customization points
are stored within a serialized, so-called variability model, embedded in each pattern. Moreover,
the presented structure model allows to decouple direct pattern dependencies through common
interfaces, which allows to switch pattern implementations transparently, without adapting
dependent patterns. Furthermore, combinable reference patterns are presented and discussed,
to provide a proof of concept of the implemented software product line approach.

3

Contents

1 Introduction 9
1.1 Motivation . 9
1.2 Focus . 10
1.3 Definitions and Conventions . 10
1.4 Outline . 11

2 Fundamentals 13
2.1 Cloud Computing . 13

2.1.1 Essential Characteristics . 13
2.1.2 Multi-Tenancy . 14
2.1.3 Cloud Service Models . 14
2.1.4 Deployment Models . 16
2.1.5 Distinction to Related Technologies . 17

2.2 Software Product Line Engineering . 17
2.2.1 Terminology . 18
2.2.2 Product Variability . 20
2.2.3 The Software Product Line Process . 21

2.3 Patterns . 23
2.3.1 Christopher Alexander’s Architecture Patterns 23
2.3.2 Software Engineering Patterns . 24

3 Related Works 27
3.1 Cloud Computing Patterns . 27

3.1.1 Intention . 27
3.1.2 Structure of a Pattern . 28
3.1.3 Cloud Computing Pattern Catalogue . 29

3.2 Cafe - Composite Application Framework . 31
3.2.1 Cafe’s Variability Model . 31

3.3 Apache Maven . 33
3.3.1 Terminology . 34
3.3.2 Life-Cycles, Phases, Goals and Plugins 35
3.3.3 Maven Repository Types . 36
3.3.4 The Project Object Model . 38
3.3.5 Maven Profiles . 38

5

3.3.6 Maven Project Types . 40
3.3.7 Distinction to Related Tools . 40
3.3.8 Relation to Software Product Line Engineering 41

3.4 Puppet Labs Puppet . 42
3.4.1 Terminology . 42
3.4.2 Puppet Constellations . 43
3.4.3 Related Technologies . 44

4 Concept and Specification 45
4.1 Superordinate Context . 46
4.2 Requirements . 48

4.2.1 Functional Requirements . 48
4.2.2 Non-Functional Requirements . 48

4.3 Functional Architecture . 49
4.4 The Cloud Computing Pattern Development Process 51
4.5 Functional Project Structure Model . 53
4.6 Functional Variability Meta-Model . 55
4.7 Formal Variability Graph Model . 58
4.8 The Configuration Flow Computation Algorithm 60
4.9 Functional Workspace Agent Components . 62

5 Design and Implementation 65
5.1 Abstract Reference Architecture . 66
5.2 Maven Workspace Plugin Design . 67

5.2.1 Technical Components . 68
5.2.2 The Pattern Goal Invocation Flow . 71
5.2.3 Pattern Defined Action Invocation . 72
5.2.4 Maven Workspace Plugin Goal Invocation Syntax 73
5.2.5 XML Representation of the Functional Variability Meta-Model 75

5.3 Used Technologies and Tools . 78
5.4 Implemented Reference Pattern(s) . 79

5.4.1 Three-Tier Cloud Application . 79
5.4.2 Message-Oriented Middleware . 86

6 Summary and Outlook 91
6.1 Summary . 91
6.2 Outlook . 92

A Use Case Appendix 93

B Variability Graph Appendix 101

C XML Schema Appendix 103

Bibliography 107

6

List of Figures

2.1 Overview - Cloud Service Models. [Feh09]. 15
2.2 Overview - The Software Product Line Methodology. 19
2.3 Overview - Benefits of Software Product Line Engineering. 20
2.4 Overview - The Software Product Line Process and its Sub-processes [LSR07]. 22
2.5 Overview - The CapGemini sd&m Quasar 3.0 Domain Model [EKN+12]. 26

3.1 Example - Cafe Application Template and Variability Descriptor [Mie08]. . . . 32
3.2 Example - Dependencies between Maven-based Projects. 35
3.3 Example - Constellation of Maven and Code Repositories within Development. 37
3.4 Puppet Constellations - Standalone and Master/Agent Constellation. 43

4.1 Overview - Components of a Software Product Line for Cloud Patterns. 47
4.2 Overview - Functional Architecture of the Developed Concept. 50
4.3 BPMN Representation - The Pattern Creation Process. 51
4.4 BPMN Representation - The Pattern Usage Process. 52
4.5 Class Diagram - The Functional Project Structure Model. 54
4.6 Example - Skeleton Instantiation, Configuration, Provisioning and Deployment. 55
4.7 Class Diagram - The Functional Variability Meta-Model and its Interrelations. 57
4.8 Overview - The Configuration Flow Computation Steps 60
4.9 Component Diagram - Functional Workspace Agent Components. 63

5.1 Reference Architecture of the Software Product Line for Cloud Patterns. 67
5.2 Component Diagram - Technical Components of the Maven Workspace Plugin. 70
5.3 Overview - The Project Invocation Propagation Mechanism. 71
5.4 XML Schema Illustration - The Variability Model Element. 75
5.5 XML Schema Illustration - The Variability Point Element. 76
5.6 XML Schema Illustration - Implemented Alternatives. 76
5.7 XML Schema Illustration - Alternative Extension Hierarchy and Locators. . . . 77
5.8 XML Schema Illustration - Variability Locator Types. 77
5.9 Overview - The Three-Tier Cloud Application Pattern. [FLR+12] 80
5.10 Three-Tier Web Shop - Maven Projects and Generated Archetypes. 81
5.11 Sequence Diagram - EC2-ActiveMQ Provisioning and Queue Communication. . 89

B.1 Extended OVM Notation - Example Application Variability Model. 101

7

List of Tables

A.1 Use Case - Create Archetype from Existing Pattern. 93
A.2 Use Case - Store Existing Archetype into the Pattern Catalogue. 94
A.3 Use Case - Instantiate an Archetype from the Pattern Catalogue. 95
A.4 Use Case - Instantiate an Implementation Archetype from the Pattern Catalogue. 96
A.5 Use Case - Configure Pattern. 97
A.6 Use Case - Provision Nodes and Middleware. 98
A.7 Use Case - Deploy Pattern. 99

Listings

5.1 Outline - Binding of a Maven Plugin Goal to the Workspace Plugin Deploy Goal. 72
5.2 Shop-WebUI Variability Descriptor - Implementation Alternatives. 83
5.3 Elastic Beanstalk Implementation - Variability Point Definition. 84
5.4 Provisioning Profile Binding - Definition of Plugins and Goal Executions. . . . 85
5.5 Elastic Beanstalk Implementation - Variability Locations in the POM File. . . 86
5.6 Abstract Queue Variability Descriptor - Defined Implementation Alternatives. . 87
5.7 Abstract Queue - Common Interface Definition 88

C.1 XML Schema - Representation of the Functional Variability Meta-Model. . . . 103

List of Algorithms

4.1 The Configuration Flow Computation Algorithm. 61

8

Introduction

This chapter contains motivation in Section 1.1, for the topics, covered in this thesis. Section
1.2 provides a focus for the discussed problems. Common abbreviation definitions are made in
Section 1.3. Finally, contents of subsequent chapters are outlined in Section 1.4.

1.1 Motivation

Cloud computing has evolved to a widely adopted technology by industry as well as science,
providing various services on different levels to customers via web-based technologies. These
services, combined with their on-demand delivery model, enable customers to fully exploit the
benefits of utility-computing: scalability, visualization, pay-per-use and automated provisioning
[NIS]. As cloud computing offers new service models to cloud users, these models require
software architects, developers, managers and customers to be aware of underlying concepts.
The challenge to deal with these concepts, in a unified and efficient fashion, can be achieved by
the usage of patterns. The concept of patterns is well known across various engineering fields,
thus, software engineering researchers and industry partners have identified and documented
patterns for the cloud computing domain [FLMS11, FLR+12]. Due to the on-demand nature
of cloud computing, provisioning tasks of pattern-based software artifacts and their run times
become more complex, as the newly introduced cloud service models enable dynamic creation
and decommissioning of cloud-based services. This system management can be handled by
the cloud user itself, using Infrastructure as a Service (IaaS); or it can be shifted to the cloud
provider, using Platform as a Service (PaaS). Still, development of software artifacts, the
corresponding provisioning and system management tasks involve human interaction and form
a major cost factor of cloud-driven projects [VVE10]. These issues can be challenged by means
of software product line engineering: reusability of created software artifacts and variability
of products - combined with flexible provisioning. Therefore, providing an easy manageable
and accessible infrastructure is a key factor within this attempt. Thus, a new field within
industry-driven software engineering has been established so-called DevOps [Smi11], focusing on
automating the various stages of a software product and interconnecting involved departments,
i.e., development, operations and quality assurance. Within DevOps, infrastructure is modeled
in code-based documents, to enable provisioning automation for arbitrary amount of nodes.

Combining all of theses approaches in a single solution could speed up the development,
provisioning and management of pattern-based cloud computing software artifacts, leading
towards a reduced time to market factor for pattern-based products.

9

1 Introduction

1.2 Focus

This thesis focuses to define a method to create, aggregate and customize reference imple-
mentations for recently identified cloud computing patterns [FLMS11, FLR+12] by means of
software product line engineering. Furthermore, a concept to provision these artifacts into
different cloud environments is provided. Implemented reference patterns are stored in a
so-called pattern template catalogue, from which they can be instantiated into a developer
workspace. Developers, then, may enrich such a template with further code or aggregate it
with further patterns. Afterwards, the so created application can be published, as another
pattern, into the pattern template catalogue.

The variability of such pattern-based applications is a major key concept to reduce development
efforts. Therefore, the idea of a variability model is adopted from the software product line
engineering community and is embedded within the pattern structure. This enables developers
to address configuration values, relevant for the build and provisioning process and adjust
instantiated patterns to their needs.

To accomplish these goals, within this diploma thesis, open source build management and
infrastructure management tools, i.e., Apache Maven [Mava] and Puppet Labs’ Puppet [Pup],
are extended and combined, to provide the mentioned functionalities.

1.3 Definitions and Conventions

Common definitions and conventions are introduced here, as they are used through the entire
diploma thesis document.

Definitions

• The term provisioning describes the mechanism to start computation machines within a
network and deploy required middleware stacks on top of them.

• The term deployment describes the mechanism required to transfer pattern-based binary
artifacts into their run time environments.

• The term undeplyoment describes the mechanism required to remove pattern-based
binary artifacts from their run time environments.

• The term decommission describes the mechanism required to remove deployed middleware
stacks and suspend related computation machines.

• The term user describes an entity, using a specific software functionality, provided by
the implemented software product line components.

Conventions
The terms pattern, artifact and pattern-based project are traded equally, as a pattern requires
an implementation in the form of an artifact, such an artifact is modeled with code, which is
nested in a pattern-based project.

10

1.4 Outline

1.4 Outline

This diploma thesis consists of six chapters: Introduction, Fundamentals, Related Works,
Concept and Specification, Design and Implementation, and Summary and Outlook.

• Chapter 1, Introduction - Chapter 1 provides a motivation, which introduces the chal-
lenges of pattern-based development, combined with means of the DevOps movement.
Furthermore, it defines the focus of this thesis. Finally, an outline is provided, which
briefly discusses the content and structure of this document in detail.

• Chapter 2, Fundamentals - Chapter 2 provides an introduction in related scientific
fields, including: Cloud Computing, Software Product Line Engineering and Patterns;
to establish a common, scientific background, which forms the foundation for further
chapters of this diploma thesis.

• Chapter 3, Related Works - Chapter 3 discusses related, scientific works as well as
established open source tools, related in the field of build management and infrastructure
management. Apache Maven and Puppet Labs’ Puppet, are presented as they are used in
advanced chapters. Also, the concept of so-called variability descriptors, which model
possible customization points of patterns, is introduced within this chapter.

• Chapter 4, Concept and Specification - First, Chapter 4 discusses the superordinate
context of this thesis; a software product line for cloud computing patterns. Then, func-
tional, as well as non-functional requirements, are defined, for the later on implemented
approach, to support the creation of reusable, customizable and combinable pattern-
based artifacts. Thus, the human-driven cloud computing pattern development process
is introduced, which allows pattern developers to implement such artifacts. Afterwards,
the corresponding functional architecture is represented in combination with required
variability and project structure models. Finally, the functional components, which
implements these features, are presented.

• Chapter 5, Design and Implementation - Chapter 5 first introduces an abstract refer-
ence architecture, which is obligatory for all implemented components of this thesis.
Then, design decisions, relevant for the implemented approach of this thesis, are pre-
sented. Including: the implemented event propagation mechanism, corresponding handler
implementations and the xml implementation of the specified variability meta-model.
Afterwards, technologies and tools, used during the implementation, are presented. Fi-
nally, implemented reference patterns, i.e., the Three-Tier Cloud Application Pattern
and the Message-Oriented Middleware Pattern, are presented.

• Chapter 6, Summary and Outlook - Chapter 6 summarizes the results of this thesis and
provides an outlook of possible, further work.

11

Fundamentals

This chapter includes related scientific fields of research and introduces their major topics
to establish a common foundation for upcoming chapters. Thus, the terms cloud computing,
software product line engineering and pattern are covered in the following.

2.1 Cloud Computing

In this section, the term cloud computing is defined, using the established NIST-Definition.
During this definition, the multi-tenancy term is briefly discussed to point out the various
scenarios of resource sharing. Furthermore, so-called cloud service models and deployment
models are introduced. Finally, a distinction to other, related technologies is provided.

2.1.1 Essential Characteristics

A cloud, according to the NIST-Definition [NIS], provides the following characteristics:

• On-demand self-service - Indicates that cloud service users are able to provision and
decommission resources on-demand, in an automated fashion.

• Broad network access - Means that provided services are offered via network-based
technologies and can be accessed by any web-capable device.

• Resource pooling - Large amount of resources are shared between cloud users, which
allows cloud providers to exploit economies of scale and utilize load variations. Thus,
virtual resources, hosted on commonly shared physical hardware, are offered.

• Rapid elasticity - Resources can be acquired and released in an unlimited fashion,
using web-technologies. Thus, consumed resources can be horizontally scaled on demand.

• Measured service - Consumed resources are billed according to the offered payment-
model, e.g., pay-per-use or temporary acquisition. This model is commonly based on
the type of resource. A queue service, e.g, can be charged per delivered message or on a
monthly base.

13

2 Fundamentals

2.1.2 Multi-Tenancy

Resources, located in a cloud, can be shared by multiple so-called tenants, which allows the
cloud provider to leverage economies of scale more efficient. This characteristic forms a major
property of cloud services. Thus, the term tenant and its corresponding term multi-tenancy is
defined in the following.

Definition: A tenant is an entity, which consumes a cloud service.

This generic definition allows to cover single persons, as well as groups or companies.

Definition: Multi-Tenancy depicts that cloud resources are shared between several tenants.

Thus, a single tenant has not to be aware of other tenants, using the same resource, when
interacting with a resource 1.

2.1.3 Cloud Service Models

Offered cloud services are categorized by their so-called cloud service model. This model
describes features, as well as properties of the offered services. These service models are
introduced in the following paragraphs.

Cloud Service Model Types:

• Infrastructure as a Service (IaaS) - IaaS offers cloud users the possibility to provision
a virtual machine on-demand, offering specified Service Level Agreements (SLAs). The
specified SLAs are ensured by the cloud provider, as well as isolation of tenants. Such
an acquired machine is only bound to a specific location when it’s running. Therefore,
rebooting the machine may result in a different location within the used cloud. Depending
on the cloud provider, customers can specify a geographic region, where the created
machine is hosted. This guarantees an upper communication bound, as round trip times
(RTT) vary between instances. Yet, scaling hosted resources is liable to the cloud user
himself. Well known IaaS clouds are: Amazon EC2 [EC2], Rackspace Cloud Services
[Rac] and VMWare vCloud [VCl].

• Platform as a Service (PaaS) - PaaS offers customers a platform model to host their
applications in an managed fashion. Thus, it can be distinguished in two sub-models:

– aPaaS - This PaaS model focuses on hosting applications, offering scalable run
time environments and various middleware services, like: queues, data stores and
integration services. Well known PaaS are, e.g., Google App Engine [App], Salesforce
Herkoku [Her], Salesforce Force [For] and Amazon Elastic Beanstalk [Ela].

1Detailed information about patterns, implementing multi-tenancy, can be found in [KM08] and [MUTL09]

14

2.1 Cloud Computing

– iPaaS [Pez11] - This PaaS model is focused on integration tasks, offering scalable
integration services, which establish communication with external applications.
The iPaaS model is still evolving, thus, products vary in provided service types.
FuseSource’s Fuse Fabric [Fus], e.g., aims to provide an environment to automat-
ically provision, configure and load balance requests on nodes, with open source
integration software, like Apache ActiveMQ [Act] and Apache Service Mix [Ser]. In
contrast, CloudHub [Clo] provides pre-build adapter services, running in a man-
aged environment to connect to existing applications like ERP systems. In both
models, the iPaaS acts as virtual intermediary to establish communication between
applications. Yet, in case of CloudHub, the responsibility of hosting the iPaaS
middleware lies on the iPaaS provider side, while in case of FuseFabric, its located
at the consumer side.

• Software as a Service (SaaS) - SaaS offers pre-build, customizable software solutions,
hosted in the cloud. SaaS customers subscribe to a service and pay the usage, depending
on the negotiated payment model. The SaaS provider guarantees SLAs, isolates tenants
and scales the application in a transparent manner. Known examples for SaaS are:
GitHub [Git], SalesForce [Sal] and Google Docs [Goo].

Figure 2.1 illustrates the introduced cloud service models. Typically PaaS and SaaS offerings
are implemented by extending service models beneath them. Therefore, system management
tasks of sub-ordinate service layers are shielded from the service user.

Figure 2.1: Overview - Cloud Service Models. [Feh09].

Each of the above presented layers offer different benefits to users. Hence, aggregated function-
ality of higher services is often established using services of previously existed layers. Elastic
Beanstalk [Ela], e.g., is Amazon’s aPaaS product, which is build on top of Amazon’s IaaS
[EC2] offering, combined with other Amazon products.

15

2 Fundamentals

2.1.4 Deployment Models

Deployment models describe the way clouds are structured. This structuring has impact on
the degree cloud users have to be aware of underlying resource sharing concepts, concerning
potential resource access of other tenants.

Each of the following models provide different resource sharing semantics:

• Private Cloud - A private cloud is isolated from other tenants; the underlying resource
pool can only be accessed by a single tenant. This isolation can be established by
different means, e.g., the virtual machines can be isolated into virtual networks, by
filtering access requests on different OSI layers [OSI]. Also, physical machines can
be hosted in an isolated region of the cloud provider, to establish a physical network
separation. Depending on the selected alternative, this model may be limited by the
amount of machines. This may result in a resource bottleneck, when long running load
peaks are expired.

• Community Cloud - This deployment model allows multiple tenants to share a common
resource pool, therefore the amount of tenants is limited. This constellation is often the
case when large amount of resources are required for a short time and the total cost of
ownership is not efficient enough for a single tenant. Hence, the costs of ownership are
split among the participating tenants.

• Public Cloud - A public cloud allows accessing its resources to a wide amount of
tenants. Thus, tenants share the underlying resources in an unlimited fashion. The
isolation of these tenants lies in the responsibility of the cloud provider. Such a shared
resource pool is a potential security risk and may violate compliance agreements. Thus,
this model requires consumers to be aware of these issues.

• Hybrid Cloud - A hybrid cloud is an interconnected cloud, consisting of any deployment
models mentioned before. These hybrids enable customers to exploit the benefits provided
by each used cloud deployment model and still fulfill legal terms. A common practice is,
to host sensible resources within a private cloud, while hosting none-sensible resources in
a public cloud. This allows to focus on-premise resources to secure areas and exploit
benefits of public clouds.

Note: A cloud is always described by both factors: service model and deployment model; to
describe its nature, since arbitrary combination of them are possible.

16

2.2 Software Product Line Engineering

2.1.5 Distinction to Related Technologies

Cloud computing is a product of different, preceding technologies and approaches. Thus, this
subsection covers related technologies and their distinction to cloud computing.

• Grid Computing - Grid Computing bundles computation centered resources, provided
by several entities into a virtual resource. These resources can be used by contributing
entities on a scheduled base, enabling them to gain more computation resources for
a short period of time. Grid computing, in contrast to cloud computing, focuses on
acquiring contributors to expand the virtual resource, while cloud computing focuses on
providing independent resources in a pooled-fashion to exploit economies of scale.

• OnPremise Resources - This model assumes a static data center, where resources
seldomly move from their physical position. Due to its nature, resources can not be
provisioned or decommissioned on a on-demand self-service base. Thus, resources are
paid on a subscription base. These properties distinguish on premise resources from
cloud provided ones, which implement the previously defined characteristics, covered in
Subsection 2.1.1.

• Web Services and Service Oriented Architecture (SOA) - Cloud offerings are
often accessible via Web Service Technologies, like REST and SOAP based web services.
Thus, these services can be embedded in service oriented architectures. Yet, they
only encapsulate the functionalities of the underlying cloud offerings. Thus, these
functionalities can often be accessed by other technologies as well, depending on the API
of the cloud provider.

Required cloud computing terms have been briefly introduced. More information and possible
solutions to occurring issues can be found in the book Cloud Computing Patterns [FLR+12].

2.2 Software Product Line Engineering

This chapter introduces a sub-category of software engineering: Software Product Line Engi-
neering. Key concepts within this field are discussed, since a major topic of this thesis is to
implement a software product line for cloud computing patterns, which is capable of creating
reusable software artifacts.

Product Line Engineering is a known concept in various engineering fields, it focuses on creating
reusable artifacts in a unified manner. These artifacts can be used to create new products, in a
more efficient way, since development costs are shared and, thus, are reduced per product. This
approach has been adopted by various industries, like aerospace and automotive industries.

Cars, e.g, within a series share major components, like: engines, chassis, gears etc.. Hence,
manufacturers are able to produce larger amounts of these components and exploit economies
of scale, while still meeting the customer specific requirements and providing several solutions
to the market. These concepts can also be used in the field of software engineering. Thus,
software product line engineering is introduced in the following subsections.

17

2 Fundamentals

2.2.1 Terminology

Definition: “A software product line is a set of software-intensive systems that share a
common, managed set of features satisfying the specific needs of a particular market segment
or mission and that are developed from a common set of core assets.” 2 [Spl]

Definition: A feature represents a certain amount of functional respectively non-functional
requirements of the product to be built. 3

Features are implemented by so-called system artifacts. These artifacts occur on various phases.
Thus, the term system artifact is represented in greater detail.

Definition: A system artifact implements a certain number of features, encapsulates them
and offers them in a unified manner.

Such system artifacts are offered to software engineers in a so-called catalogues, from where
they may be instantiated, to become part of new products.

Definition: A product space consists of all possible products, that can be created by aggre-
gating arbitrary system artifacts of the related software product line.

So-called archetypes provide the foundation of reusable system artifacts. They form a unified
reference, how artifacts are structured and provide means to be instantiated. Thus, they
preserve previously gained knowledge. Each produced system artifact is created from such an
archetype and may be used as an archetype again, for further system artifacts.

The term archetype relates with the well known term stereotype. Yet, a stereotype is class-bound,
while the term archetype is instance-bound. This means that an archetype is instantiated,
while a stereotype only classifies a set of existing instances. Therefore, the Oxford English
Dictionary’s definition states, that an archetype is “a very typical example of a certain person
or thing.” [Oxf] This definition implies that an archetype provides implementations for various
patterns. Yet, the definition does not fit the terminology of software product line engineering,
thus a different definition is introduced.

Definition: An archetype preserves gained knowledge about previously realized features, it
provides methods to instantiate reusable system artifacts from it.

To enable a unified creation process, which allows to create reusable artifacts, a generic
reference architecture is mandatory for all system artifacts, created by the software product
line. This common reference architecture guarantees that the structure of all created artifacts is
equal and that parts of such an created artifact can be exchanged easily, as the different layers

2The particular market, mentioned in the above definition, is referred to as domain. The related engineering
process inside Software Product Line Engineering is referred to as Domain Engineering. Combined with the
Application Engineering, these two processes form the foundation of the so-called Software Product Line
Process and are discussed later on in Subsection 2.2.3

3Functional requirements represent use cases and communication semantics, since they describe the way the
system interacts with external entities, while non-functional requirements, like reliability, scalability, response
times, throughput etc., have no influence on the correctness of the system, but describe conditions which
have to be met to guarantee an up and running semantic for various, possible conditions.

18

2.2 Software Product Line Engineering

are decoupled through unified interfaces. Such a set of reference architectures is combined
within the so-called productline architecture.

Definition: A productline architecture covers a set of reference architectures, mandatory
for all developed system artifacts. It contains common features for functional as well as
non-functional requirements for the complete engineering cycle.

The offered features, of such an architecture, are expressed via variability points 4, which need
to be bound when the reference architecture is instantiated.

Figure 2.2 offers an overview of the introduced terms and points out their relations within the
software product line process to create a new product out of existing archetypes.

Figure 2.2: Overview - The Software Product Line Methodology.

As a result of this process, software product line engineering offers various benefits, which are
discussed in the following.

From a software engineers point of view:

• Reusability - Enabled through unification and combinable artifacts.

• Stable core features - Since testing efforts and the achieved quality increase is shared.

• Increased development speed - Reusability enables software architects and developers to
focus on their project-specific business requirements.

From a managers point of view:

• Cost reduction - As a result of reduced development time.

• Increased competitiveness - Due to cost and time to market reduction.

• Potentially increased customer confidence - As quality may increase, while costs and
delivery times decrease.

4Variability points form a major concept of software product line engineering and are thus covered in detail in
Subsection 2.2.2.

19

2 Fundamentals

From a customers point of view:

• Reduced total cost of ownership - Since maintenance as well as acquisition costs decrease.

These benefits, along with corresponding expectations of users, are illustrated in Figure 2.3.

Figure 2.3: Overview - Benefits of Software Product Line Engineering.

2.2.2 Product Variability

Variability is captured in so-called variability models, which enable flexible product spaces
and allows to adapt them to individual needs. Such variability models cover different kinds of
variability types. These variability types, are discussed in the following paragraphs.

Product Space Variability
Variability, occurring on a product-base, describes that used artifacts may vary. Four major
dependency types [GBS01] can be identified and are described in the following:

• Mandatory - Indicates that this artifact is required in any case.

• Optional - States that this artifact is an optional part of the product.

• Variant - Indicates that this artifact is part of a set of artifacts, from which exactly one
has to be chosen. Thus, the relation is often expressed with a xor-operation.

• External - This artifact is provided by an external source. Thus, it is not required to be
built. Yet, it has to be present when the product is running.

20

2.2 Software Product Line Engineering

Artifact Variability
Artifacts, used to build a product, offer customization points to adapt the artifact during the
instantiation phase. These so-called variability points are discussed in the following.

Definition: Variability points occur on the archetype and architecture level and influence the
delivered features of the product.

These variability points need to be bound, to instantiate a concrete system artifact. The so
customized artifact then becomes part of the final product.

The binding time [RH06] of such a variability point can be done at:

• Design-time - Set by a designer during the system specification.

• Compile-time - Set during the compilation of the source code.

• Development-time - Set by a developer during the implementation.

• Deployment-time - Set during the deployment process by the deployment engine.

• Run-time - Set when the artifact is running within its run time.

2.2.3 The Software Product Line Process

After introducing the mandatory terms of software product line engineering, the process of
creating artifacts and products is introduced; the software product line process. The process
itself consists of two interrelated sub-processes: domain engineering and application engineering;
which implement an abstract engineering life-cycle that creates reusable artifacts.

Domain Engineering focuses on creating common reusable artifacts within the product
space. Thus, artifacts created within this cycle preserve domain specific knowledge and form
a platform for further artifacts or products. This platform consists of code-based as well as
diagram-based artifacts to support the full application engineering life-cycle.

Application Engineering focuses on creating new products with domain engineering gen-
erated artifacts as well as artifacts from previously developed products. Generated artifacts,
identified for common usage then may move back to the domain specific catalogue.

The passed phases within an abstract cycle are 5:

• Requirements Engineering - This phase generates artifacts that contain specific features,
which implement functional requirements. Such artifacts are commonly document-based,
since they model logic functionality as functional components.

• Design - The design phase generates document-based design artifacts, which encapsulate
related functional and non-functional requirements.

5These phases are well known, since they form the foundation of all software engineering methodologies.

21

2 Fundamentals

• Realization - During the realization phase, generated artifacts implement common
business requirements. Usually these artifacts are code-based.

• Testing - Artifacts, generated within this phase, are used to establish a unified testing
approach. Such an artifact, e.g., may be a tool, capable of generating load test scenarios;
a generic test scenario or an extendable test suite.

Furthermore, the domain engineering cycle extends the ones stated above and adds:

• Product Management - This phase focuses on making artifact centered decisions about
resource distribution, time schedules, product-variant planning and project coordination6.

Figure 2.4 illustrates the above introduced terms and their relations.

Each artifact, generated during one of the cycles mentioned above, is instantiated by using:
its defined reference architecture, to meet non-functional requirements; its corresponding
archetype, to meet structure agreements and comply reusability; and its variability point
bindings, to select concrete features.

Figure 2.4: Overview - The Software Product Line Process and its Sub-processes [LSR07].

6Note: Since various definitions exist for the software product line process, the management phase is often not
only bound to the domain engineering cycle, but coordinates the complete process, including the application
engineering cycle.

22

2.3 Patterns

2.3 Patterns

Patterns are a well known and widely accepted phenomenon, since they occur widely in
aggregated entities in nature and - as a result - in science. Such aggregated entities may
be models, describing reality, like: biological models, physical models, behavior models or
construction models. Even in models themselves such patterns may occur. Thus, the term
is discussed and different pattern domains are shortly presented. The concept of using such
patterns to solve common, reoccurring problems has been adopted by various engineering fields
such as: Architectural Engineering, Electrical Engineering, Mechanical Engineering, Automotive
Engineering, Aviation Engineering and Software Engineering as well 7. These patterns are
often stored in so-called catalogues to document knowledge, preserved by them, and offer a
non-technical platform for solving problems in the related domain. Furthermore, patterns
can be interrelated and composable, which may result in forming a pattern again. Thus,
documenting such patterns is often done with an approach to document this pattern structure
as well. The inner structure of such interrelations are modeled by a pattern meta-model. These
interrelations form a so-called pattern-language, where a single pattern can be interpreted as a
word, while the interrelations form the grammar 8.

To establish a common sense of the nature of patterns in software engineering, various domains
are discussed in the upcoming subsections.

2.3.1 Christopher Alexander’s Architecture Patterns

Within the field of engineering, the term pattern, as well as the corresponding term pattern-
language, have first been identified and defined by the architect Christoph Alexander in his
books: The Timeless Way of Building [Ale79] and A Pattern Language: Towns, Buildings,
Construction [AIS77]. Alexander introduces pattern-based concepts in The Timeless Way
of Building by example and discusses design theory from a pattern-based point of view.
Additionally the concept of “the quality without a name” is discussed. This property describes
the obvious observable quality of a being, which, yet, can not be named. Even the way Alexander
discusses these things underlines his intention of restructured thinking of architecture, since
the structure of the book itself is a pattern, allowing the reader to “read the whole chapter
in a couple of minutes, simply by reading the headlines”[Ale79]. This outlines a property of
patterns; to occur on macroscopic as well as microscopic levels.

Alexander’s pattern definition
“A pattern is a careful description of a perennial solution to a recurring problem within a
building context, describing one of the configurations that brings life to a building. Each pattern
describes a problem that occurs over and over again in our environment, and then describes

7Note: These are only some engineering fields, as the term pattern is of generic nature. Thus, it can be used
in nearly any engineering or scientific field.

8Note: A possible implementation of such a pattern langugage meta-model can be found in [Gri11], which
allows to define pattern-based languages.

23

2 Fundamentals

the core solution to that problem, in such a way that you can use the solution a million times
over, without ever doing it the same way twice.” [AIS77]

This definition was done in a building context, but it is not bound to it, since the term building
could be easily replaced by the term software or any other domain-describing term, without
loosing correctness. Because of that, Alexander’s books became widely accepted by various
domain experts, adopting his ideas for their domains.

Alexander’s second book, A Pattern Language: Towns, Buildings, Construction; provides
patterns by example for architecture, building and planning of communities. Within the book
he discusses patterns on various levels. Again, he uses a pattern-based approach to document
the identified patterns.

Each pattern definition consists of the following, ordered sections:

1. Introduction - The intention of the pattern is briefly pointed out. Then, a picture is
presented to get familiar with the context. After that, the impacts of the issue are shortly
discussed.

2. Solution - A solution, fitting the introduced issue, is presented to the reader, including a
sketch, which presents the used components.

3. Discussion - This part is used to discuss the impacts of the originated problem constella-
tion as well as the corresponding solution itself, including: observed effects, historical
origins and alternatives. It is designed to be skipped by the reader, thus it is placed
between two region symbols, build of three asterisks (***).

4. Related Patterns - At the end, interrelated patterns are listed as links.

These links allows the reader to descent or ascent from the graph based hierarchy. A night
life square, e.g., designed for nightly activities may consist of a cluster of night spots; shops,
offering different services; and benches, allowing people to rest. Each of these artifacts are
again patterns, described in the book.

Alexander’s third book, The Oregon Experiment [Ale78], documents the usage of his previously
introduced design theory and his architectural patterns. The book describes the implementation
of some of those patterns and documents the master plan of the University of Oregon. It again
guides the reader with illustrations of the solutions and discusses six major design principles:
patterns, participation, organic order, diagnosis, piecemeal growth, and coordination.

In the field of software engineering, different domains exist, where analogous patterns occur.
Thus, related domains are introduced briefly in the following.

2.3.2 Software Engineering Patterns

Software engineering focuses on the process how software is created in a guided manner,
by executing various phases, i.e., requirements engineering, design, realization, test and
maintenance. Each phase requires abstract tasks to be executed with concrete methods
and technologies. Within this execution of phases, reoccurring issues and solutions can be

24

2.3 Patterns

documented by patterns. These patterns offer software engineers the possibility to speed up
development and increase quality, since they provide means for unified solutions in prevailed
fashion and form the basis for efficient communication within projects. Hence, patterns have
been identified for the phases stated above, technologies and project management strategies.

Note: This thesis - especially the implementation - is strongly based on patterns, thus, major
accepted pattern collections are briefly discussed.

Gang of Four Patterns
In object-oriented design, the term design pattern is often recognized with the patterns
identified by Erich Gamma, Richard Helm, Ralph Johnson and John Vlissides - forming the
so-called Gang of Four - and their book Design Patterns Elements of Reusable Object-Oriented
Software [GHJV95]. These patters focus on the design of reusable software modules and
provide detailed ideas how the implementation of software modules can be made flexible,
decoupled and structured in an efficient manner. Moreover, the patterns are designed at
an abstract level, independent of concrete programming languages, to be applicable on any
object-oriented programming language. Although Gamma et.al. demonstrate their approach
with C++ implementations, these patterns can also be adopted to other object-oriented
languages, like Java [Java].

The Gang of Four patterns are divided in three categories:

• Creational Patterns - These patterns focus on decoupling the dependencies of objects
from concrete classes, which implement the creation of the requested object.

• Structural Patterns - Structural patterns focus on simple and logical structures within
the overall system. They provide means of dependency reduction, to build large objects.

• Behavioral Patterns - Are used to hide algorithms or state. They simplify event handling
and offer methods to iterate and modify collections in a efficient fashion.

In UML-based design documents, these patterns can be found in component diagrams and
sequence diagrams, since they document structure and behavior of a system.

Enterprise Application Integration Patterns
Real systems often face the challenge to interact with various legacy systems, using different
programming languages, data models and communication models. The challenge to intercon-
nect such systems, without establishing a tight coupling can be faced with so-called Enterprise
Application Integration Patterns (EAI-Patterns). These patterns occur on the software ar-
chitecture level and enable architects to choose from existing solutions. The main objective
of EAI-Patterns is to provide loose-coupling, manifesting in decoupling of space or/and time,
meaning that a system communicating with such patterns, has not to be aware of the amount
of potential message receivers nor the concrete time, when the message is consumed by a
receiver.

Such patterns have been identified by Gregor Hophe et al. in Enterprise Integration Patterns:
Designing, Building, and Deploying Messaging Solutions [HW03]. These patterns provide ideas
for structuring components in such messaging solutions, transform messages and route them
to their destination, while not depending on concrete technologies.

25

2 Fundamentals

Quasar 3.0 Patterns
Within companies, divisions, departments and even teams problem constellations are faced
several times. Thus, companies have identified patterns, capable of solving these reoccurring
issues. While the previously discussed patterns mainly focus on technical issues, such patterns
focus on guiding decision making in the software development process. These patterns are
categorized according to the software development phase they occur in.

Inside Quasar 3.0 [EKN+12], the overall software engineering framework of CapGemini sd&m,
these categories are:

• Requirements Engineering - System Requirements are specified and modeled according to
the needs of the customer. Results of this phase form the foundation of later on created
documents.

• Analysis & Design - Functional as well as technical components are identified, designed
and modeled. The analysis documents provide a generic solution to the problem,
independent of the later on used technologies. In contrast, the design documents adapt
the analysis models, by adding technical relevant components as well as specific, technical
knowledge.

• Development - The pre-identified components are implemented, tested and integrated in
the overall business context.

• Software Configuration Management - Strategies for managing change requests, build as
well as release plans are nested in this phase, which provide foundations for technical as
well as operational decision making.

• Analytics - Strategies for testing, compliance and quality measurements are defined within
this domain, to increase the quality of the overall system. This, especially, includes
integration testing scenarios as well as measurements of code quality, to predict quality
changes.

Figure 2.5: Overview - The CapGemini sd&m Quasar 3.0 Domain Model [EKN+12].

26

Related Works

This chapter presents scientific as well as industrial related works, located in the field of
patterns, cloud computing and automated infrastructure provisioning.

First, Section 3.1, presents recently identified cloud computing patterns and the corresponding
pattern catalogue, since they form the foundation of later implemented software artifacts.
Afterwards, Section 3.2, introduces a related framework for creating composable applications
- Cafe - which is discussed, along with its underlying variability model. Then, Section 3.3
presents the build automation tool Apache Maven. Finally, Section 3.4 presents Puppetlabs’
Puppet to illustrate methods provided by recently developed infrastructure as code projects,
located within the DevOps movement.

3.1 Cloud Computing Patterns

Patterns in general have been discussed in Section 2.3, to establish a scientific background
about patterns, within this thesis. Later on implemented pattern-based artifacts are based
on the here discussed work of Fehling et al. [FEL+12, FLMS11, FLR+11, FLRS12] and, as
conclusion of those previous works, the book Cloud Computing Patterns [FLR+12].

3.1.1 Intention

Since cloud computing patterns are patterns in the sense of Alexander’s definition, introduced
in Section 2.3.1, they provide a unified structure to document captured knowledge and,
furthermore, offer solutions to reoccurring challenges within the cloud application life-cycle.
Fehling adopted these ideas for the cloud computing domain during his PhD studies and
published a pattern-based book. Within his book he documents the complete cloud computing
domain by the means of patterns; also including cloud service levels and multi-tenancy -
discussed in Fundamentals Section 2.1. This enables various persons: students, developers,
architects, managers and customers; to read the pattern book within a short period of time,
offering them the possibility to solve their requirements. This idea is based on the structure of
Alexander’s pattern books and had been adopted to the cloud computing domain.

Note: Since only a few of the documented patterns are implemented within this thesis, the
captured categories and their nested patterns are only discussed briefly, detailed information
can be found in the book Cloud Computing Patterns [FLR+12].

27

3 Related Works

3.1.2 Structure of a Pattern

Each pattern is documented in a unified fashion, to guarantee compatibility between the
identified patterns and capture the knowledge of the underlying solution. The used structure
splits the problem to be solved into several topics, to discuss its complexity from various point
of views and provide possible solutions. Moreover relations to other patterns are provided.
These patterns can be used to solve the problem or they solve similar issues.

The structure of a pattern is stated as follows:

• Pattern Name - Each pattern is assigned a unique name to identify it.

• Intent - The intent briefly outlines the purpose of the pattern and the embedded solution.

• Driving Question - The driving question enables readers to quickly identify whether
the pattern fit to their current needs, since it describes the core problem and the
corresponding solution of the pattern.

• Icon - The icon provides a visual representation of the pattern. It can be used to be
combined with other patterns graphically, forming architecture sketches. Furthermore, it
identifies the pattern visually. Since human comprehension is strongly based on visual
impression, it enables readers to remember the pattern in a more effective way.

• Context - The context provides detailed information about the environment, to which
the pattern can be applied to. It provides a description of the initial situation, including
the cloud deployment models, cloud service models and cloud offerings.

• Solution - The solution section provides an answer to the driving question and points out
how the initial problem can be solved in an abstract way, thus, an architectural sketch is
provided.

• Result - The solution, provided by the architectural sketch, is discussed with great detail
afterwards. Possible impacts on related patterns are outlined as well.

• Variations - The variations section focuses on describing variations of the reviewed
pattern and discusses the differences between them. Yet, these variations belong to the
identified pattern and do not form a new one.

• Related Patterns - This section is responsible for forming the so-called pattern language,
since it covers related patterns and, thus, outlines interrelations between them. The
discussed patterns may have similar initial problems, which could be used to solve the
driving question or they exclude each other.

• Known Uses - Products and applications, using the discussed pattern, are discussed here.

28

3.1 Cloud Computing Patterns

3.1.3 Cloud Computing Pattern Catalogue

Since a cloud computing application consists of a specific selection, from a set of various models,
like: service models, computation models, storage models, communication models, deployment
models, etc.; each identified pattern has been assigned to one of these categories, to provide a
categorization within the cloud computing pattern space. These categories and their nested
patterns form a so-called pattern catalogue. Such a catalogue, within the cloud computing
domain, has been identified by Fehling et al. [FLMS11] and forms the foundation of the book
of Fehling [FLR+12], on which this thesis is based on.

Thus, the identified categories and their sub-categories are discussed briefly:

• Cloud Computing Fundamentals

– Application Workloads: These patterns describe the different workloads, applications
may be exposed to and outline possible handling strategies.

– Cloud Service Models: These service models are presented according to the NIST
definition [NIS] and have also been discussed in Subsection 2.1.3.

– Cloud Deployment Models: Likewise cloud service models, cloud deployment models
are based on the NIST definition [NIS] - they can also be found in Subsection 2.1.4.

• Cloud Offering Patterns

– Cloud Environments: These patterns describe the functionality and semantics
of cloud environments, like: elastic infrastructure and elastic platform; and the
possible, corresponding availabilities: node-based availability and environment-based
availability.

– Processing Offerings: This pattern-map consists of: The execution environment
pattern, which could be an application server or a similar application container;
The map reduce pattern, a computation paradigm, which offers the possibility to
slice data into chunks and compute them in parallel; and the hypervisor pattern,
responsible for creating virtual environments.

– Storage Offerings: These Pattern describe the way data can be stored and retrieved
in the cloud. This sub-category covers different storage solutions like: block stor-
age, blob storage and relational database, as well as the corresponding consistency
semantics.

– Communication Offerings: Within this sub-category different communication se-
mantics - known from distributed systems - are defined, since they are widely
used within cloud computing. The discussed patterns focus on message delivery -
using different delivery semantics - as well as, required virtual network capabilities.
Furthermore, message oriented middleware - acting as message delivery provider -
is presented.

29

3 Related Works

• Cloud Application Architecture Patterns

– Fundamental Cloud Architectures: This sub-category covers fundamental architec-
ture styles, to enable easy composable and distribution-transparent applications.
Thus, the patterns: loose coupling and distributed application; are presented.

– Cloud Application Components: This sub-category covers the patterns required to
build an application, it identifies major component types like: stateless component,
stateful component, multi component, user interface component, data access compo-
nent and the processing components; which are required to build a scalable and
layered application that is accessing stored data.

– Multi-Tenancy: These patterns cover the possibilities of implementing multi-tenancy.
The term multi-tenancy has been briefly discussed in Subsection 2.1.2 - further
literature references can be found there.

– Cloud-Integration: Cloud-Integration patterns focus on integrating various appli-
cations - running in the cloud or on-premise. Thus, they provide means to bridge
application boundaries, with defined semantics.

• Cloud Application Management Patterns

– Management Components: These patterns aim to provide: abstraction of provider
specific APIs; configure components, to guarantee the loose coupling and the
stateless component paradigms; enable application elasticity; and observation of
deployed functionality, by the means of the watchdog pattern.

– Management Processes: This sub-category provides processes dealing with: updating
components, under different circumstances; recovery of failed components, while
the system is running; adjusting functionality, depending on the current load;
suspending resources, in a hibernate fashion to safe costs; and the possibility to
scale the application in a managed fashion.

• Composite Cloud Application Patterns

– Native Cloud Applications: These kind of applications run completely in the cloud.
Thus, they do not have dependencies to on-premise applications. They can be
created in different architecture styles - three-tier or two-tier layered - resulting in
different scaling behavior and in different benefits and drawbacks, depending on the
used environment. Such applications may also use transparent, distributed caches -
often referred as content distribution network - to speed up data retrieval and thus,
reduce the overall computation time.

– Hybrid Cloud Applications: Hybrid Cloud Applications are composed of: components
running in the cloud, as well as components running in a static environment.
However, core components are kept within the static run time environment. Cloud
resources are only requested to provide support, when components face workloads,
which exceed their local capabilities. These additional cloud resources can be added
- from an architectural point of view - within all application layers, depending on
the needs of the application.

30

3.2 Cafe - Composite Application Framework

3.2 Cafe - Composite Application Framework

Cloud service models have been introduced in Fundamentals Subcection 2.1.3. On top Mietzner
and Leymann proposed a possible, additional service model: Composition as a Service (CaaS).
This layer focuses on creating new applications from existing ones, provided by any service
model layer beneath. Based on this idea the Cafe platform [Mie10] was developed as part of
Mietzner’s PhD studies.

Cafe is an acronym and stands for: Composite Application Framework. Hence, the platform
provides means: to model composed applications, provision required resources and execute
them in the specified environment, which can be hosted in the cloud or on-premise. As part
of the Cafe idea, Mietzner developed a variability model to provide generic components with
variability points, which allows the configuration of the instantiated application template, to
fit the new situation.

This variability model is presented in greater detail below, as it forms the foundation of the
later on developed variability model, which is used to address customization points within
implemented patterns.

3.2.1 Cafe’s Variability Model

To address variability of developed application templates, Mietzner proposed a XML-based
variability model [Mie08], which provides means to: specify references to the concrete loca-
tions of variability, model dependencies between such variability points and specify possible
alternatives as well as enabling conditions for them.

Terminology
The variability descriptor element forms the root element of such a variability model. It
contains a set of variability points and a set of dependencies between those variability points.
Each variability point has a set of so-called locators, which reference the locations of variability
in the application template, furthermore, it contains definitions for the possible values; so-called
alternatives.

As the mechanism referencing variability varies, various locator types exist:

• XPath-Locator - This locator references a XML-based variability point via a single XPath
expression.

• Properties File Locator - This locator references a property within a property file, which
is embedded in the application template.

Also different alternative types exist, to model different scenarios:

• Explicit Alternative - An explicit alternative specifies values at design time, within a
pre-defined range.

• Expression Alternative - An expression alternative consists of an expression, which is
used to query the required information.

31

3 Related Works

• Empty Alternative - An empty alternative marks that a variability point may be filled
with an empty string, to indicate an optional point.

• Free Alternative - A variability point marked with this alternative can be filled with any
arbitrary text.

• Locator-based Alternative - A locator-based alternative marks that the referenced default
values are not touched.

Enabling Conditions are bound to dependencies and enable the referenced variability point
when the enabling condition is met.

Figure 3.1 illustrates a sample application, consisting of an application template, which is
referenced by its variability model.

Figure 3.1: Example - Cafe Application Template and Variability Descriptor [Mie08].

Note: Further literature about Cafe can be found at Mietzner’s PhD thesis [Mie10] and the
Cafe Website [Mie].

32

3.3 Apache Maven

3.3 Apache Maven

Patterns in general provide the ability to be combined and reused again. This is also true
for cloud computing patterns, since they inherit this pattern property. To implement this
property is a major approach towards automated aggregation and provisioning of pattern-based
solutions. Thus, Apache Maven [Mava] is used within this thesis. Maven offers the possibility
to manage Java-based projects in a unified fashion. This means, that projects can be combined
in a recursive way, forming new artifacts, which can be used for combining new ones again.
This core feature allows unlimited reusability of generated artifacts and speeds up development
drastically, since integration of third party code can be done within seconds, as long as the
third party code obeys the maven conventions. Maven evolved from the need to unify project
management and the corresponding project build life-cycle. It covers the complete project
specific workflow, by providing a unified, generic build workflow, on which developers can
bind actions fitting their needs. The unlimited ability to aggregate projects also results in the
aggregation of the corresponding build workflows. Hence, building a top-level project results in
building all dependent projects too. Because of those capabilities, Maven is often used within
the so-called software configuration management (SCM), which focuses on providing methods
and processes to rapidly change software, according to new requirements.

Maven is used within this thesis due to its primary objectives 1:

• Making the build process easy - Since Maven unifies the project structure and the build
life-cycle, it reduces frequent configuration efforts.

• Providing a uniform build system - This enables developers to rapidly aggregate and
build large projects with unified methods.

• Providing quality project information - Since Maven supports various plugins for generat-
ing reports about: code quality, test results and custom reports.

• Providing guidelines for best practices development - This enables a mutual understanding,
as the structure, the build process and the project itself is unified.

• Allowing transparent migration to new features - Maven supports a transparent update
process of the maven core, this guarantees to use new features, while still being able to
support features of previously versions.

Maven’s Core Paradigm
The above outlined objectives point out Maven’s core paradigm: Convention over Configuration;
Meaning, that unification of configuration at any level of the project configuration, leads to
reduced development efforts.

1These objectives have been formulated by the Apache Maven Community [Mava]

33

3 Related Works

3.3.1 Terminology

This subsection covers basic terminology required for Apache Maven.

• Project - A project consists at least of a pom file and generates, in case of a successful
build, a so-called artifact, which then can be referenced by other projects.

• Group - Within Maven, the term group can be applied to any entity publishing code
artifacts. These may be: persons, teams, projects, companies or organizations.

• Artifact - An artifact is the result of a successful project build life-cycle. It consists of
the created binary files, e.g. .jars, .wars, .ear and .class files, and is identified by a tuple,
consisting of a unique group id, project id and a version id.

• Archetype - An archetype acts as a template for new projects. Thus, it provides the
project structure and required files, related to the required project type.

• Dependency - A dependency is a relation between a project under development and the
binaries of a referenced project, identified by its group id, artifact id and version id.

• Scope - A scope specifies the phase of the standard build life-cycle, when the referenced
artifact has to be fetched by Maven and processed. Furthermore, it influences whether
the referenced artifact is embedded in the resulting build artifact or not.

Possible dependency scopes are:

• Compile - The artifact is visible on all build paths within the project. The dependency
is also propagated to all child projects. The generated artifact needs to be embedded in
the final package.

• Provided - The artifact is provided within the container, where it is going to be deployed.
It is mainly used for container specific libraries e.g. parts of the Java EE API.

• Run time - The artifact is provided within the target run time.

• Test - The artifact is only required during the test phase.

• System - The artifact is installed on the target system. Since it can not be loaded from
a repository, the location to the artifact need to be specified as well.

• Import - Imports the dependencies listed in the dependency management section of the
referenced target pom.

Figure 3.2 illustrates the above mentioned terms and relations - except the term archetype,
since an archetype acts as template for projects to be created.

34

3.3 Apache Maven

Figure 3.2: Example - Dependencies between Maven-based Projects.

Group A holds two projects: Project A-1 and Project A-2. Project A-1 has an internal
dependency to Project A-2 and the related artifacts, these artifacts will be fetched at compile
time and will be placed into a resulting package. Project A-1 also has external dependencies
to Project C-1, created by Group C, these artifacts are present during development but are
removed from the resulting package, since they are provided by the target run time. Project
A-1 also references Project B-1, created by Group B, which will be present only during testing.
Each Maven project consists of: a pom.xml file, specifying dependencies; binary artifacts,
implementing the features of the project; and possible attached source code, mainly used for
debugging purposes. When building Project A-1 Maven automatically fetches all required
artifacts, defined within the pom.xml of Project A-1, and generates the binary artifacts for
Project A-1, these artifacts then, again, can be referenced.

3.3.2 Life-Cycles, Phases, Goals and Plugins

Maven unifies various life-cycle phases within the development of Java-based software. Thus,
the Maven specific terms: life-cycle, phase, goal and plugin are introduced briefly, as they form
the foundation for the later on presented concept.

35

3 Related Works

Definition: A life-cycle focuses on executing various sub-tasks in an ordered fashion, to solve
an overall, artifact-centered, aggregated task. Such aggregated tasks are: build the application,
clean the workspace and generate relevant reports. Each sub-task, within those abstract flows,
is only executed when all of the sub-tasks defined above have been executed successfully.

The following standardized life-cycles exist:

• Clean - Results in cleaning the current workspace.

• Default - Results in building the current workspace, i.e., performing tests, creating
required code formats and deploying the created binaries into the local respectively
remote artifact repository.

• Site - Results in generating reports for the current workspace and putting them on the
maven generated project site. This may include: testing reports, code quality reports or
any other development-centered reports.

Life-cycles depend on each other, in the order mentioned above, meaning that executing the
site life-cycle results in the execution of the clean life-cycle, the default life-cycle and finally,
the site life-cycle. Yet, the clean cycle, will not force any other to be executed, since there is
no causal dependency.

Definition: A phase is a process within a life-cycle. It consists of various goals, also called
Mojos (Maven Plain Old Objects), which are invoked during the requested phase execution.

Definition: A goal is nested within a phase. It forms an atomic action, in the sense of Maven,
and is wrapped within a so-called plugin.

A goal can be: starting an application server, deploying application relevant files, or any other
implemented action.

Definition: A Maven plugin encapsulates the functionality of multiple goals. It is bound to a
phase of a specific life-cycle within the pom-file.

Within Maven standard plugins exist, e.g. performing steps to clean the workspace, package
the application or run unit-tests. Moreover, Maven provides the possibility to develop custom
plugins, which can be bound to any life-cycle phase.

3.3.3 Maven Repository Types

Repositories form the foundation of Maven’s reusability approach, as they store code artifacts
with related meta-data. These artifacts can be referenced and retrieved within the pom.xml
- which is going to be explained later on. Therefore, as different repositories exist within a
Maven-based project, common constellations are outlined in the following.

36

3.3 Apache Maven

The following repositories are commonly used during Maven-driven development:

• Local Artifact Repository - This repository is hosted on each machine using Maven to
build the project. It stores locally generated code artifacts as well as artifacts, which
have been fetched from remote repositories from different groups, required to build the
project. Thus, it acts as a local binary cache.

• Remote Artifact Repository - This repository, from a developers point of view, is hosted
on a remote machine and stores generated code artifacts from a group or company.
Artifacts can be retrieved and stored within the local repository, it is also possible to
push locally built code artifacts into the remote repository to make them accessible for
other developers.

• Code Repository - A code repository contains the source code of the related binary
artifacts. Such repositories may be: SVN [SVN], CVS [CVS], Git [HT] or any other
tool, capable of version control.

Code repositories are not Maven-specific and they are often used to manage source code, while
Maven is used to manage project dependencies and their related binary artifacts.

Figure 3.3 illustrates a common constellation between source repositories and maven repositories.
Developers fetch source code from code repositories, manipulate code, build the project and
publish artifacts to their local artifact repository. Manipulated code is pushed back into the
corresponding code repository. After building the project, the generated artifact binaries can
be pushed into the related remote repository, from where other groups/teams are able to fetch
them.

Figure 3.3: Example - Constellation of Maven and Code Repositories within Development.

37

3 Related Works

3.3.4 The Project Object Model

The Project Object Model (POM) forms the foundation of a Maven-based project, since it
contains definitions of dependencies to required projects and their related code artifacts. The
information, nested within a pom, is represented via XML, furthermore, pom files can reference
each other via aggregation or inheritance, enabling a so-called dependency graph, which is
resolved by Maven automatically, when the build process is invoked. As a result the so-called
effective pom is computed, which contains all information, reachable within the dependency
and inheritance graph, beginning from the initial project.

To provide a full overview of Maven’s capabilities of dependency management, the structure of
a pom.xml file and related parts are listed in the following.

A pom.xml file is a structured XML file, it mainly consists of:

• Potential References to a Parent POM - From where a child pom file can inherit
dependencies and properties.

• Potential Properties - Which are acting as variables for the pom and it’s children.

• Mandatory Artifact Information - This information consists of a group id, artifact id
and version id, to identify the generated code artifact uniquely.

• Optional Artifact Information - This information consist of authors, licenses etc..

• Dependencies - Dependencies define which artifacts have to be fetched and integrated by
Maven, during the build process.

• Life-Cycle Attachments - These definitions can be used to tell Maven which actions
should be performed when the standard life-cycle has reached a defined phase; such
actions are implemented in plugins.

• Profile Definitions - These definitions are used to influence the behavior of the build,
since profiles act as triggers, which enable or disable build functionality.

Further configuration options exist within the pom.xml, like: mailing list options, software
configuration management options, artifact repository configurations. Those can be found on
the Maven project site [Mava].

3.3.5 Maven Profiles

Profiles can be defined within the pom file of a Maven-based project, as different builds
require different dependencies, plugins, properties and configurations. Thus, profiles offer the
possibility to enable or disable parts of the effective pom, resulting in different build behavior.
Therefore profiles are used to express variability within Maven-based projects. Such variability
may affect the packaging format, deployment behavior, report generation, testing scenarios or
any other activity related to the corresponding maven life-cycle. As a major part of this thesis
is to identify customization points in the implemented cloud computing patterns, profiles are
introduced with greater detail in the following paragraphs.

38

3.3 Apache Maven

The following profile types exist: 2:

• Per User - These profiles are defined within the user settings.xml file.

• Per Project - These profiles are defined within the project’s pom.xml file.

• Global - These profiles are defined within the global settings.xml file.

These profiles can be activated:

• Via Explicit Invocation - Done by explicitly passing the profile name.

• Via POM Declaration - Frequently a property is declared acting as a trigger for the
related profile. Depending on the entered value, the profile is enabled or disabled.

• Via User Variables - These variables are nested within the user environment variables.
Maven is capable of querying them to activate profiles.

• Via Environment Variables - Like user variables, Maven is able to read operating system
variables to trigger profiles.

• Via Defined Conditions - These conditions can be defined within the profile definition
itself, e.g. the presence or absence of a specified file can be checked.

• Via Values in the Maven settings.xml files - Values defined within a settings.xml file can
also be used to trigger profiles.

Furthermore, two settings.xml files exist, which potentially store profiles. Maven includes these
profile definitions and variables during its executions.

The following types of settings.xml files exist:

• Global settings.xml - The global settings.xml stores maven run-time specific information,
which is used when building any Maven-based project.

• User settings.xml - The user specific settings.xml stores user specific information and
profiles, like: login credentials, server addresses, user centric profiles and proxy configu-
rations. Information specified in the user settings.xml file may override information form
the global inherited settings.xml file.

2Note: Maven 2.0 provided the possibility to define profiles within a separate profiles.xml file. Since this
thesis uses Maven 3.0, this type is not discussed here. Further information can be found on the Maven site
[Mava].

39

3 Related Works

3.3.6 Maven Project Types

As Maven provides the possibility to reference pre-build code artifacts, it also provides the
possibility to reference local sources, nested within Maven-based projects. This is used to
structure the applications to be developed into several sub-systems. Such sub-systems are
then mapped to single Java-projects. Each project consists of at least a pom file and may have
source code nested within. This enables developers to structure their projects according to
their design documents, giving the possibility to define spanning-projects as well as subordinate
projects.

All Java-based code developed in this thesis - especially Maven plugins and implemented cloud
computing patterns - use Maven as build management tool. Thus, the maven project types
are represented in detail:

• POM -Project - A POM -Project is an abstract project consisting only of a pom-file. It is
used as root-node within the project structure. It references projects of the type project
or module, to enable aggregation.

• Project-Project - A Project-Project is an independent project, which may be referenced by
other project types or may reference a root project, to inherit properties or dependencies.

• Module-Project - A Module-Project is part of an aggregated project, thus, it has to
reference a root project.

3.3.7 Distinction to Related Tools

This subsection briefly covers the differences to related build and project management tools.

Differences between Apache Maven and Apache Ant

While Ant [Ant] tries to provide means to automate development with build scripts, required
to be parametrized to the concrete project structure, Maven focuses on standardizations
on all relevant development levels, like: project structure, build life-cycle and dependency
management. This allows Ant to be more flexible than Maven, since it lacks a closed build
workflow, but makes it more complicated to integrate projects, as the structure and the build
workflows varies. Furthermore, Ant lacks the possibility of dependency management. This is
included in Maven by default, since Maven uses Apache Ivy [Ivy] as dependency management
provider.

Differences between Maven and Gradle

Gradle [Gra] combines the benefits of Maven and Ant. Therefore it provides a standardized
project structure, based on the Maven project-structure as well as an open build workflow,
which can be extended at any time by Ruby-based code. This enables Gradle developers
to simply integrate Maven-based projects without additional effort, while still be able to
add custom code, fitting their needs. Yet, the used domain specific language (DSL) is a
major drawback when building fully automated provisioning systems. As manipulating these
configuration files may require to parse the DSL file, which may not be possible all times, since

40

3.3 Apache Maven

the DSL is not restricted by default. Also gradle-based projects can not be easily integrated
into Maven-based projects, since the invocation of the Gradle build workflow is not supported
by default.
Thus, Maven is preferred within this thesis instead of Gradle, as manipulating XML-based con-
figurations can be done, in contrast to manipulating DSL-based files. Also Maven is compatible
with Ant and can be integrated into Gradle projects, while the opposite does not hold true.
Furthermore, Maven’s closed build workflow forces developers to wrap custom code within
plugins, this promotes reusability, since plugins can be plugged-in in the standardized life-cycles.

Hence, within this thesis, Maven is preferred over Ant and Gradle, as closed standardization is
a major issue when implementing reusable software artifacts.

3.3.8 Relation to Software Product Line Engineering

Various terms have been introduced during this chapter, which can be mapped on terms of
the previously discussed software product line engineering field, like: system artifact, archetype
and variability. These relations are outlined briefly within the following paragraphs.

Note: Software product line engineering demands methods for reusing created system artifacts,
Maven provides the implementations to these demands, as it offers possibilities to create, store
and retrieve artifacts in an automated fashion. Thus, Maven is used in this thesis to provide
reusability of implemented software artifacts.

Relations between Maven and Software Product Line Engineering:
The Maven-specific term artifact directly correlates to the software product line engineering
term system artifact. Likewise, the Maven-specific term archetype directly correlates to the
software product line engineering term archetype, as a maven archetype provides the structure
- respectively the pattern - for a well known project type. In contrast, the software product
line engineering term variability can not be mapped directly to Maven’s terminology, as the
Maven-specific files - pom and settings.xml - lack capabilities to model variability points and
the corresponding binding process.

Combining benefits, provided by build management tools, like Maven; the variability, provided
by software product line engineering; and the capabilities of infrastructure provisioning tools,
like Puppet; is a main objective of this thesis, as applying these benefits on the development
of pattern-based cloud software artifacts speed up the time-to market factor.

Thus, the following section covers functionality provided by puppet, which is required for
advanced sections.

41

3 Related Works

3.4 Puppet Labs Puppet

Automating processes within software development and operation life-cycles is a key factor
within technology driven IT businesses, as the amount of managed nodes grows rapidly
with new technologies, like Cloud Computing and the related Big Data Movement. Thus,
the complexity of provisioning nodes and deploying software on large clusters grows, while
developer capacities keep constant. This outlines the challenge of the DevOps Movement, which
tries to solve development and operations tasks with code-based infrastructure definitions;
called infrastructure as a code.
While Maven aims to unify and automate the software artifact life-cylce, similar tools exist
to automate infrastructure life-cycle tasks as well. Thus, this chapter focuses on introducing
Puppet Labs’ Puppet [Pup] - an open source infrastructure managing tool, which implements
the infrastructure as code idea.

3.4.1 Terminology

This subsection covers basic terminology required for Puppet Labs Puppet.

Puppet Terminology:

• Action - An action is a pre-defined task, which can be executed by puppet.

• Middleware - Middleware depicts the software artifacts puppet is supposed to manage,
like: application server, message oriented middleware, databases etc..

• Puppet Manifest - A manifest specifies infrastructure management actions that have to
be executed by puppet, in order to install demanded middlware.

• Puppet Module - Manifests can be aggregated in so-called modules, forming a collection
of actions, which can be executed by corresponding puppet agents.

• Puppet Node - A puppet node is a machine hosting the puppet specific environments.

• Puppet Agent - A puppet agent is a software environment that is able to perform actions,
defined in modules and manifests, in order to install middleware.

• Puppet Server - A puppet server dispatches actions, defined in modules respectively
manifests, to a set of subscribed puppet agents. It is installed on a puppet node.

• Puppet Client - A puppet client is a software client, which is able to connect to a puppet
agent and deploy manifests respectively modules into the agent’s environment.

• Puppet User - A puppet user is an entity, which interacts with puppet, using a client.

The required middleware configuration is stored in separate modules, thus, composing applica-
tion stacks is simplified, since combining those code-based modules is supported by Puppet.
This enables Puppet users to generate any combination of middleware, allowing them to
provision those solutions to any amount of nodes.

42

3.4 Puppet Labs Puppet

As Puppet encapsulates system details, within its domain specific language, it is possible to
configure systems from an abstract point of view, enabling users to speed up configuration
time, as system specific details are executed by Puppet transparently. Furthermore, Puppet
provides the possibility to integrate custom code, as its DSL is Ruby-based. Thus, provisioning
of cloud-based services can be integrated as well.

3.4.2 Puppet Constellations

Puppet provides two constellations to execute manifests on computation nodes. The standalone
constellation is used when the required middleware is only required on a single machine. The
puppet agent, running on the that node, is therefore invoked directly by the developer. The
master/agent constellation is used when the required middleware has to be deployed on various
nodes. Thus, the interaction takes place via a puppet client, which transfers the defined
configurations to the puppet master. Puppet agents, subscribed to that puppet master, then,
fetch the specified configurations and execute them on their nodes. Such nodes can be hosted
on-premise or in the cloud, as both deployment models run the same agent installation.

Figure 3.4: Puppet Constellations - Standalone and Master/Agent Constellation.

43

3 Related Works

3.4.3 Related Technologies

Puppet implements ideas of the DevOps Movement, which tries to shift development and
operations together. During this movement different tools emerged, providing functionality like
Puppet. Thus, this subsection covers related tools as well as relations to build management
tools.

Relations to Opscode Chef

Opscode’s Chef [Che] also implements the infrastructure as code idea and provides equal
functionality compared to Puppet. Single configurations are stored in so-called recipes, while
aggregated configurations are stored in so-called cookbooks. These terms directly correlate with
the puppet-specific terms manifest and module. Also the provided deployment constellations
can be mapped directly. Like Chef, Puppet provides a standalone constellation as well as a
client/server constellation.
The major difference between Puppet and Chef is, that Puppet uses a closed configuration
model. This means that custom actions have to be wrapped within custom manifests or
modules, while Chef provides the possibility to directly define custom actions within the
configuration model.

Relations to Build Management Tools

The ideas of Chef, as well as Puppet, correlate with the previously introduced build management
tools Maven and Gradle. Maven and Puppet aim to establish a closed configuration model,
where custom actions have to be implemented within pre-defined code containers: plugins
respectively manifests. Chef and Gradle provide an extensible configuration model, which
allows to directly include custom actions. This, however, results in reduced reusability, as
code is not wrapped within a pre-defined interface; and increased querying complexity, as
imperative code-based definitions complicate automated data retrieval.
Both ideas share benefits as well as drawbacks, thus, the usage of Gradle combined with Chef
also forms a possible tool combination to challenge the issues covered within this thesis as
well. Yet, the ability to query information within configuration files is an important topic
towards advanced automated pattern aggregation, as manipulations on the configuration files
are mandatory. Thus, Maven combined with Puppet is used within upcoming chapters.

44

Concept and Specification

The recently identified cloud computing patterns, presented in Section 3.1, may serve as a
base for aggregated cloud applications, which may form a cloud computing pattern again.
Implementing such aggregated patterns still involve redundant human interaction, when adding
such pattern artifacts to an application, as they need to be configured manually, to suit the
new situation. This configuration also requires the adaption of provisioning, deployment,
decommissioning and undeployment actions. Storing such created artifacts in a customizable
fashion, within a so-called pattern template catalogue, offers the possibility to store, instantiate
and combine crafted pattern artifacts in a reusable, automated fashion. A concept, capable of
implementing these benefits, combined with the possibility to configure and provision such
instantiated pattern artifacts, is presented in following.

Section 4.1 provides an overview of a possible software product line for cloud patterns, to
classify this thesis within its superordinate research context. This software product line is
capable of creating and managing aggregated cloud computing pattern artifacts. Therefore,
an abstract overview of the required architectural components and roles is provided. After-
wards, Section 4.2 discusses functional and non-functional requirements of the implemented
components, covered in this thesis, which implement major parts of the presented software
product line. Then, Section 4.3 covers the functional architecture of the developed concept
and introduces mandatory components, roles, their interrelations and associates corresponding
use cases. Section 4.4, describes the human driven pattern artifact development process, which
is assisted by the functionalities of the presented concept. Section 4.5 and Section 4.6 provide
subordinate, required models for the introduced concept, i.e, the functional project structure
model, which defines how aggregated, pattern-based applications are structured; and the
functional variability meta model, which defines how variability, respectively variability points
and their components, can be modeled. Section 4.7 formally introduces the so-called variability
graph, which forms the input of the configuration flow computation algorithm, presented in
Section 4.8. Finally, Section 4.9 introduces functional components, which form the foundation
for the Design and Implementation Chapter.

45

4 Concept and Specification

4.1 Superordinate Context

Offering pattern artifacts in a reusable fashion to various users in a so-called cloud computing
pattern template catalogue is an ongoing research topic [FLRS12]. This idea can be extended
by concepts provided by software product line engineering, discussed in Fundamentals Section
2.2. Such a software product line for cloud computing patterns allows to model aggregated
applications, instantiate them into a workspace and perform various tasks on the so created
artifacts. Moreover, it allows to store aggregated, created artifacts in a reusable fashion, which
enables the recursive composition of pattern artifacts.

Implementing essential parts, of the above mentioned software product line, forms the main
objective of this thesis. Thus, this chapter provides a concept to support: the storage, initializa-
tion, aggregation, configuration, provisioning, deployment, decommissioning and undeployment
of pattern-based cloud applications.

The following paragraphs provide an abstract overview of the architecture of the outlined
software product line, including their components, roles and interrelations. Succeeding sections
then refine components and scenarios, implemented within the work of this thesis.

A Software Product Line for Pattern-based Cloud Applications
A software product line requires different components to: model, store and instantiate pattern-
based applications; these components are outlined in the following paragraph.

The software product line consists of:

• The Pattern Template Catalogue - The pattern template catalogue stores pre-implemented
pattern archetypes, which offer customization points to developers. These artifacts form
the foundation of aggregated cloud applications and are offered for further usage.

• The Catalogue Console - The catalogue console offers a visual editor to an end-user
and provides functionality to model aggregated applications with stored, pattern-based
artifacts. These artifacts are stored within the pattern template catalogue. Therefore,
it provides a human readable interface and allows users to create a so-called pattern
solution archive, which contains meta-information about the modeled solution.

• The Pattern Factory - The pattern factory interprets the pattern solution archive and
executes required actions, specified within the passed meta-information. Such actions
may be the instantiation of artifacts into a workspace, the execution of a required
configuration process on the instantiated pattern artifacts, as well as the provisioning of
defined environments and middleware.

• The Workspace Agent - The workspace agent implements the tasks, triggered by the
pattern factory. Dependent on the selected pattern implementation, the agent performs
the requested actions on the pattern artifacts, like pattern instantiation, aggregation,
configuration and provisioning.

46

4.1 Superordinate Context

Figure 4.1 illustrates the above introduced components and defines various roles.
A pattern developer stores created pattern reference implementations, by installing pattern
artifacts into the pattern template catalogue repository and adding meta-information how
these pattern implementations can be addressed. These patterns, then, become visible within
the pattern template catalogue. Architects then create new pattern applications, by aggregating
pre-existing pattern artifacts and bind corresponding variability points. This can be done
via a graphical, web-based interface, called the pattern catalogue console. These aggregated
pattern artifacts may then again be stored in the pattern template catalogue. The pattern
factory forms a container environment for the created pattern solution archive, which hosts the
required meta-information about the created solution. This container, then, depending on the
defined actions, triggers functionality, provided by the workspace agent. The workspace agent
offers its functionality via an interface, that allows developers, as well as the pattern factory,
to trigger processes on pattern implementations, nested within the workspace.

Figure 4.1: Overview - Components of a Software Product Line for Cloud Patterns.

Implementing the pattern catalogue console as well as the pattern factory is out of scope of
this thesis, as it involves the development of a structural meta-model for aggregated, pattern-
based applications. Besides, the focuses of this thesis lies on the aspects of creating reusable,
customizable pattern artifacts and their automated configuration as well as their provisioning
and decommissioning. Hence, the following sections provide a concept, capable of these tasks.

47

4 Concept and Specification

4.2 Requirements

This section covers the required functional as well as non-functional requirements, to store
customizable pattern artifacts within the pattern template catalogue and to support the
automated instantiation into a workspace, by invoking goals on the workspace agent, presented
in Section 4.1. The so created pattern implementation can then be configured and various
actions can be invoked on it. These requirements are presented in detail in Subsection 4.2.1
and 4.2.2.

4.2.1 Functional Requirements

• Creation of a Pattern Artifact - Pattern artifacts should be implementable within a
pre-defined structure, which allows to store them in the pattern template catalogue.

• Instantiation of a Pattern Artifact - A previously stored pattern implementation should
be instanceable into a Java-based development workspace.

• Configuration of a Pattern Artifact - A pattern implementation should provide cus-
tomization points, which allow to configure the application individually.

• Provisioning of Nodes and Middleware - The selected cloud environment affects the
execution steps, required for the provisioning of nodes and middleware.

• Undeployment of a Pattern Artifact - A deployed pattern implementation should be
removable after a successful deployment.

• Decommissioning of Nodes and Middleware - Acquired resources should be deallocated,
at any time, after the pattern implementation has been removed.

4.2.2 Non-Functional Requirements

• Reusability - A created pattern artifact should be storable and retrievable, from a pattern
template catalogue to support reusability.

• Modularity - A created pattern artifact should be composable, to enable composition of
larger pattern-based projects by aggregating other pattern artifacts.

• Compatibility - The developed system should be able to integrate any external DevOps
tool, like Puppet or Chef.

• Independency - The mechanisms to deploy pattern artifacts and provision related mid-
dleware should be independent of any concrete cloud environment.

• Customizable - Implemented patterns should be customizable, to provide a wide scale of
possible configurations.

Note: The requirements discussed within this section are covered by the use cases supported
by the workspace agent and are described in detail in Use Case Appendix A.

48

4.3 Functional Architecture

4.3 Functional Architecture

This section presents the functional architecture, implementing the requirements introduced in
Section 4.2. The presented architecture focuses to support a managed creation, instantiation,
customization and provisioning process of cloud computing patterns, by utilize Apache Maven
and PuppetLabs’ Puppet, discussed in Related Work Section 3.3 and 3.4. These tools are
combined with the introduced concept of variability descriptors, presented in the Related Works
Section 3.2.1. The architectural roles, components and their interrelations are introduced in
the following section and are then presented in Figure 4.2.

Architectural Roles
The following architectural roles exist:

• Workspace User - A workspace user is an abstract entity, which instantiates, combines,
configures and provisions stored, pattern-based artifacts.

• Developer - A developer is a human workspace user.

• External System - An external system is a non-human workspace user.

Architectural Components
The following architectural components exist:

• Development Machine - The development machine is a node running Apache Maven, to
manage created, pattern-based artifacts. It hosts the so-called development workspace.

• Development Workspace - The development workspace is a directory, which hosts sources
for creating pattern-based artifacts. These sources are Maven-based, meaning that each
source is part of a maven project, consisting of a pom.xml file and a variability descriptor.

• Apache Maven - Within Maven, a plugin is running to support different workspace-users
tasks, these tasks are presented in detail in Use Case Appendix A.

• Workspace Maven Plugin - Dependent on the requested actions, the workspace plugin,
installed on the development machine, invokes actions on the pattern artifact, hosted
within the development workspace and performs the required actions to configure it,
provision its environment and to deploy its binaries.

• DevOps Tools - DevOps tools, like Chef or Puppet, can be integrated to execute required
provisioning tasks of nodes and middleware. Dependent on the bound maven plugin,
that is defined within the pattern’s pom.xml, the corresponding DevOps tool is invoked
and provisioning scripts are read from the workspace.

• Artifact Repository - The artifact repository stores required and generated artifacts,
i.e. Maven plugins, code artifacts and pattern archetypes, and offers them to external
usage. The workspace first accesses a local repository to fetch artifacts. If the requested
artifacts are not present, known remote repositories are traversed.

• Network - Network capabilities are used by Maven and the selected DevOps tools to
communicate with the addressed cloud environment.

49

4 Concept and Specification

• Environments - Environments are nodes within a network, hosting required artifact run
times. Such an environment might be:

– A IaaS-Cloud with installed middleware - A IaaS-Cloud environment provides nodes
to cloud users, yet, the provisioning of required middleware artifacts has to be done
by the corresponding Maven workspace plugin.

– A PaaS-Cloud with pre-installed middleware - A PaaS-Cloud environment provides
a pre-defined run time model to the cloud user, thus, created artifacts can be
deployed without the need to provision nodes and middleware

– An On-premise Environment - An on-premise environment is a non cloud specific,
static environment, hosting required middleware artifacts. These artifacts might be
pre-installed and thus, do not need to be provisioned.

Figure 4.2 illustrates the presented functional architecture. Maven-based abstract projects
and corresponding implementation projects are stored within the development workspace,
where they are managed by the workspace agent. In addition, possible provisioning and
deployment constellations for a tomcat-based application [Toma] are illustrated, along with
their environments, i.e., the Amazon IaaS-Cloud, running an EC2-instance with a Tomcat
server on top (1.); the Amazon PaaS-Cloud, running Elastic Beanstalk - a managed Tomcat
server (2.); and an on-premise environment, running a node with a Tomcat server on top
(3.).

Figure 4.2: Overview - Functional Architecture of the Developed Concept.

50

4.4 The Cloud Computing Pattern Development Process

4.4 The Cloud Computing Pattern Development Process

This section discusses the human-driven cloud computing pattern development process, which
consists of two sub-process: the pattern creation process and the pattern usage process. These
processes are supported by the workspace agent and the pattern template catalogue, presented
in Section 4.3. Therefore, the processes include actions that can be performed on pattern
implementations, i.e, create, store, initialize, configure, provision and deploy 1. These actions
are described in the following. Their interrelations and the corresponding workflows are then
presented in Figure 4.3 and 4.4; using the Business Process Model Notation (BPMN) [BPM].

The Pattern Development Process
Figure 4.3 illustrates the pattern creation process that is performed by a pattern developer,
to implement and store a pattern in the pattern template catalogue. The pattern developer
creates a Maven-based project, which represents a pattern implementation. This pattern
implementation is stored locally within the developer’s workspace. Afterwards, the pattern
developer generates a pattern archetype2, out of the existing pattern implementation, using
the generate archetype goal of the workspace agent. If the generated archetype fulfills all
required features, then the pattern developer persists it into the pattern template catalogue, via
the invocation of the persist archetype goal of the workspace agent. Otherwise the developer
manipulates the pattern implementation and again generates a new archetype from it.

Figure 4.3: BPMN Representation - The Pattern Creation Process.

1Corresponding actions are covered in detail in Use Case Appendix A.
2Discussed in Fundamentals Section 2.2.1 and Related Works Section 3.3

51

4 Concept and Specification

Figure 4.4 illustrates the pattern usage process. This process is executed by the workspace user,
to load pattern implementations into its workspace and build new, pattern-based applications.
Therefore, he initializes a set of pattern archetypes, stored in the pattern template catalogue,
into its workspace, via the initialize archetype goal of the workspace agent. Then, custom
features can be added to the pattern-based application. Afterwards, the workspace user
customizes its application, by binding the variability points of the application components.
This is done by enabling, respectively disabling, variability points and alternatives in the
variability descriptors of the pattern projects. Then, the configure pattern goal, which pushes
bound variability points into the addressed variability locations, can be triggered. The pattern
implementation binaries are, then, built by invoking the build pattern goal. After that,
the required provisioning steps can be executed by invoking the provision environments &
middleware goal. Finally, the generated pattern implementation binaries can be deployed into
their provisioned environments.

Figure 4.4: BPMN Representation - The Pattern Usage Process.

Note: The data exchange between the provision environments & middleware process and
the corresponding provisioning service is handled by passing a reference to the required
configuration data. This reference is stored within the exchanged message. The provisioning
service then interprets this reference and loads the addressed configuration from the workspace.
This is analogously done for the deploy pattern process and the deployment service.

52

4.5 Functional Project Structure Model

4.5 Functional Project Structure Model

This section provides the functional project structure model, required for the functional archi-
tecture, outlined in Section 4.3. Each pattern implementation, located in the workspace (see
Figure 4.2), is structured according to this model. This allows to decouple required patterns,
of aggregated pattern-based applications, from their implementations. Thus, contained entities
and their interrelations are introduced. The presented concept allows to initialize an abstract
application archetype and to plug in pattern implementations afterwards, in order to instantiate
individual, concrete applications. This concept allows to instantiate so-called application
skeletons, which can be enriched by concrete pattern implementations afterwards. This allows
developers, using the pattern development process, presented in Section 4.4, to benefit from a
wide product space of pattern-based applications.

The functional project structure model and the thereby enabled application skeleton con-
cept are introduced in the following.

The Functional Project Structure Model
The following entities and relations exist:

• Project - The project entity forms an abstract base entity for projects. It contains a
Maven Project Object Model, the pom.xml; and a variability descriptor, the vd.xml.
The following project subtypes exist:

– Abstract Project - An abstract project contains configuration information about
referenced implementation projects, this information is kept within its variability
descriptor. Referenced implementation projects implement a common interface,
which defines a common semantic for all referenced implementation projects.
Subtypes of abstract projects are:

∗ Root Project - A root project is an abstract project. It forms the root of every
project structure and contains arbitrary sub-projects.

∗ Sub-Project - A sub-project is an abstract project. It is a child project of a root
project or another sub project and provides means to structure the workspace.
Leave sub-projects reference so-called implementation projects.

– Implementation Project - An implementation project can be a custom component
project or a so-called commercial off-the-shelf project. It contains provisioning
scripts and offers implementations for required features.

∗ Custom Component - A custom component hosts Java-based code, which is
required to implement features of its related pattern.

∗ Commercial off-the-shelf - A commercial off-the-shelf - also called COTS - is a
pre-build component, which has to be configured and provisioned in order to
implement the features of the corresponding pattern. Such a COTS might be a
database, queue or any other arbitrary middleware component.

53

4 Concept and Specification

• Project Object Model - The Maven Project Object Model defines possible sub projects
and build specific configurations 3.

• Variability Descriptor - A variability descriptor is a file, which hosts the variability
model of the the corresponding project 4.

• Provisioning Script - A provisioning script contains provisioning code, to provision nodes
and install required middleware stacks on-top.

Figure 4.5 illustrates the functional project structure model and its interrelations.

Figure 4.5: Class Diagram - The Functional Project Structure Model.

The Application Skeleton Concept
The presented project structure model enables the possibility to offer so-called application
skeletons, which allow to plug in and switch implementations, since it provides unified slots
for pattern implementations, enabled through commonly known interfaces. These skeletons
can be stored in the pattern template catalogue to enable a variety of possible, individual
applications. From there, each skeleton can be instantiated by a workspace-user into his
workspace. Then, the workspace-user selects the offered implementation patterns from the
offered variability descriptors that are located within the abstract projects of the application
skeleton. The workspace-user then instantiates the selected patterns into his workspace and
performs the configuration for his newly created application. After that, the workspace-user
compiles the application into binaries. Finally, the workspace-plugin goals, to provision the
environments and deploy the binaries, using the previously made configurations, are invoked.
Figure 4.6 illustrates the required steps, to initialize a skeleton application into an individual
application.

3The Maven Project Object Model is discussed in Related Works Section 3.3.4
4The concept of variability descriptors is outlined in Section 3.2.1 and refined in the subsequent Section 4.6.

54

4.6 Functional Variability Meta-Model

Figure 4.6: Example - Skeleton Instantiation, Configuration, Provisioning and Deployment.

4.6 Functional Variability Meta-Model

Throughout this section, the functional variability meta-model, based on the variability model
of Mietzner - discussed in Related Works Section 3.2.1 - is presented. The functional project
structure model, introduced in Section 4.5, requires each pattern project to contain a variability
descriptor, which hosts its variability model, respectively its variability points. This model is
deserialized, interpreted and its defined actions are executed by the workspace-plugin, when
tasks are requested by the workspace-users. Thus, this section presents the modifications made
to support the OVM Notation [PBL05, MPH+ct], as well as the extensions required to support
the functionalities specified in Section 4.2. Afterwards, the OVM Notation, which is used to
represent variability graphs, is presented.

The variability model, presented by Mietzner [Mie08], is stored in a single variability descriptor,
pointing into the corresponding application template. This approach lacks the possibility
to distribute the variability model among the components that form the entire application.
Yet, this distribution is required, as the concrete combination of pattern implementations is
not known, since the final pattern artifact has been added to the overall solution. Therefore,
several modifications had been made to support the distributed definition of variability and
corresponding dependencies.

The following entities have been added to the model of Mietzner [Mie08]:

• Script Locator - Script locators point to scripts, nested in the developer-workspace. Each
script locator defines, which symbol indicates a variability location within the referenced

55

4 Concept and Specification

script. These parts of the document are then replaced later on by the workspace plugin by
their corresponding values. Referenced scripts may be Puppet Manifests, Chef Cookbooks
or arbitrary files, which are executed afterwards.

• Alternative Cardinalities - Alternative Cardinalities define a selection semantic, by
defining a minimum and maximum amount of alternatives, that have to be selected.

• Neutral Alternative - Neutral alternatives offer the possibility to reference variability
points, respectively alternatives, without pushing any value into any variability location.

• Locator Alternative - The locator alternative entity forms the base for all alternatives
that reference variability locations. The values, defined within these alternatives, are
later on pushed to their referenced variability locations.

• Property Alternative - The property alternative entity extends the locator alternative
entity. It reads a property value from a defined properties file and pushes it into its
referenced variability location.

• Implementation Alternative - Implementation alternatives are offered within the vari-
ability descriptors of abstract projects. They store required meta-information about the
location of referenced implementation projects.

The following entities have been modified:

• Dependency - Dependencies are classified into require and exclude dependencies. Require
indicates, that the referenced entity is required for the source of the reference. Exclude
indicates, that the referenced entity has to be disabled, when the source of the reference
is enabled.

• Free Alternative - The entity free alternative of Mietzner’s Model has been renamed into
String Alternative, to indicate that a string value is inserted.

• Explicit Alternative - The entity explicit alternative of Mietzner’s Model has been
renamed into XML Alternative, to indicate that an arbitrary xml value is inserted into
the referenced variability location.

• Variability Point/Alternative - Locators are hosted within alternatives, this allows the
definition of abstract variability points and arbitrary alternative combinations.

The following entities have been excluded:

• Locator-based Alternative - Locator-based alternatives have been excluded, as default
values are indicated by a default-flag attribute, nested within locator alternatives.

• Empty Alternative - Empty alternatives have been excluded, as optional choices are
indicated by so-called alternative-cardinalities, required by the OVM Notation.

• Expression Alternative - Expression alternatives have been excluded, as values determined
for variability locations are directly defined in the variability descriptor itself.

56

4.6 Functional Variability Meta-Model

The following relations have been modified:

• Variability Model to Variability Model - To support a variability model hierarchy, each
variability model references a potential set of child variability models.

• Alternative to Variability Point - Alternatives may reference a variability point via
a dependency. A require dependency indicates, that an alternative of the referenced
variability point has to be selected. An exclude dependency indicates, that the referenced
variability point has to be disabled and thus, none of its nested alternatives is allowed to
be selected.

• Variability Point to Alternative - An enabled variability point may directly reference an
alternative, to indicate that the referenced alternative has to be selected, in case of a
require dependency, respectively disabled, in case of an exclude dependency.

The following status attributes have been added:

• Enabled Status - An enabled status has been added to the variability point entity, to
indicate whether the variability point has been enabled, due to an enabling condition.

• Selected Status - A selected status has been added to the alternative entity, to indicate
whether the alternative has been selected or not.

Figure 3.1 illustrates the modified variability meta-model, based on the work of Mietzner
[Mie08] and the entities, added to support the requirements, stated in Subsection 4.2.

Figure 4.7: Class Diagram - The Functional Variability Meta-Model and its Interrelations.

57

4 Concept and Specification

The adapted version of the OVM Notation, supporting the previously introduced meta-model,
is briefly introduced in the following paragraph, as it can be used to illustrate single variability
points or the entire variability graph of an aggregated pattern-based application.

The OVM Notation
In the OVM Notation [PBL05, MPH+ct], variability points are illustrated as triangles, storing
references to alternatives. At the top, of each variability point, the corresponding name
attribute is located. The status of a variability point, as well as its description, is located in its
center. At the bottom, alternative place holders are nested, which reference the alternatives,
assigned to the current variability point. Below the variability point triangle, a curve, crossing
all referenced alternatives, is placed, which illustrates the alternative cardinalities, and, thus,
the alternative selection semantic. This curve is associated with the corresponding defined
minimum and maximum.
Alternatives are illustrated as boxes, which, again, contain boxes that store alternative values.
Alternative names are stored in register tabs at the top of each alternative box. Corresponding
attributes are located in alternatives at segregated boxes.
Locators, stored in an alternative, are stored in separate boxes, nested within the corresponding
alternative. Each alternative may depend on a variability point or an other alternative. These
dependencies are modeled with arrows, pointing from the source alternative to its target. Each
dependency is labeled with its corresponding type.

Note: Appendix Figure B.1 illustrates an exemplary variability model, instantiated form the
recently presented meta-model, using the adapted version of the OVM Notation.

4.7 Formal Variability Graph Model

Section 4.6 introduced the functional variability meta-model, stored within each pattern. This
model allows to define variability dependencies and, thus, to define a so-called variability
graph. The pattern configuration sequence is implicitly stored within this graph, as modeled
dependencies depict, which components have to be executed before others. These dependencies
guarantee, that flow-generated configuration values are present before referencing components
are configured. Thus, this section formally introduces the variability graph, to illustrate its
graph-nature. Therefore, its corresponding canonical and inverted forms are introduced, which
are combined, during the pattern configuration flow computation, presented in Section 4.8.

Formal Definition
Each pattern artifact defines its configuration dependencies by its local variability model,
forming a variability graph. These variability graphs can reference nodes, defined within
their corresponding variability model, as well as nodes, defined in external variability models.
Hence, these variability graphs can be combined into a global, resulting one, which defines
the customization semantic of the overall, aggregated pattern. This graph serves as input
for the configuration process, to compute the pattern configuration flow. Thus, the following
paragraphs formally define the variability graph, its corresponding canonical as well as its
inverted form.

58

4.7 Formal Variability Graph Model

Definition: A variability graph G is a directed, acyclic graph, consisting of a set of variability
points V, defining child alternatives of the alternative set A; and dependencies D, referencing
variability points or other alternatives.

Thus, a variability graph is defined as:
G = (V, A, D)
A = {a | a is an alternative of G}
V = {v | v is a variability point of G, v has child alternatives Vchildren ⊂ A }
D ⊆ ((A×A) ∪ (A× V))

Each variability graph fulfills the acyclic graph condition:

C = {(a1, ..., an) ∈ An| ∃n ∈ N : a1 = an} = ∅

In case that a variability point is referenced by an alternative, all selected child alternatives
have to be executed during the configuration process5. These dependencies can be replaced by
multiple references, which results in forming a canonical variability graph.

Definition: The canonical variability graph G∗ of G consists of all alternatives and variability
points defined in G; and the set of transformed dependencies D∗.

Thus, the canonical variability graph is defined as:
G∗ = (V, A, D∗)
D∗ ⊆ (A×A)
D∗ = D∆ ∪ {(a1, a2) ∈ (A×A) | ∃(aj , vi) ∈ (A× V) ∧ aj = a1 ∧ a2 is child of vi} 6

D∆ = D\{d | d ∈ (A× V)}

Inverting a variability graph G results in inverting its dependencies D. Yet, this operation is
only defined for dependencies of the type d ∈ (A×A), while inverting a dependency of the type
d ∈ (A× V) is undefined, as the resulting dependency d−1 ∈ (V ×A) violates the variability
graph dependency definition. However, inverting a canonical variability graph always results
in a defined, valid variability graph, as canonical variability graphs only consists of d ∈ (A×A)
dependencies.

Definition: The inverted variability graph G∗ of G consists of all alternatives and variability
points defined in G; and the set of dependencies D−1, that are generated by the so-called
graph inverter operator f−1(G).

Therefore the inverted variability graph and the graph inverter operator are defined as:
G−1 = (V, A, D−1)
D−1 = {(a1, a2) ∈ (A×A) | (a2, a1) ∈ D}

f−1(G) =

G−1, if ∀d ∈ D : d ∈ (A×A) ∧ d /∈ (A× V),
undefined, otherwise.

5This assumes, that all required variability points have been bound and the selected alternatives fulfill the
conditions, defined by their corresponding selection cardinalities.

6Dependencies in G, defined between alternatives and variability points, are replaced, by multiple dependencies
between the originated alternative and related child alternatives.

59

4 Concept and Specification

4.8 The Configuration Flow Computation Algorithm

Generating an execution sequence out of a dependency graph is a well known problem constel-
lation and relates to the widely known topological sorting algorithm; documented by Knuth
[Knu98]. Therefore, to transform the problem constellation of dependent configuration entries
into a topological sorting problem, the graph dependencies are inverted. However, a normaliza-
tion procedure, creating the previously introduced canonical form, is applied first, to guarantee
that all dependencies can be inverted. Thus, the configuration flow is computed according
to:

ConfigurationFlow (G) = InvertedTopsort(G∗) = Topsort((G∗)−1)

Figure 4.8 provides an exemplary overview of the executed steps, using the OVM Notation.

Figure 4.8: Overview - The Configuration Flow Computation Steps

Complexity
The presented algorithm, illustrated in Algorithm 4.1 is has linear time complexity of O(2|D|+
|A|), as the variability graph normalization and inverting is performed in O(|D|) and the
topological sorting is performed within O(D|+ |A|).

60

4.8 The Configuration Flow Computation Algorithm

Algorithm 4.1 illustrates a pseudo algorithm, performing the required computation steps. First,
the inverted normalized variability graph is computed, by replacing (A×A) dependencies with
their inverted ones and (A× V) dependencies with dependencies starting at the corresponding
child alternatives, pointing to the originated alternative. Afterwards, a topological sorting is
performed on the set of alternatives and their corresponding dependencies.

Algorithmus 4.1 The Configuration Flow Computation Algorithm.
procedure ComputeConfigurationFlow(V, A, D)
// Normalize & Invert

for all d ∈ D do
if d ∈ (A× V) then

for all a ∈ d.target.alternatives do
a.addDependencyTo(d.source)

end for
else if d ∈ (A×A) then

d.target.addDependencyTo(d.source)
end if
d.source.removeDependencyTo(d.target)

end for
// Topsort

result← ∅
workingSet← {a ∈ A | #a.incomingDependencies = 0}
while workingSet.size > 0 do

current← workingSet.first
result← result ∪ current
for all d ∈ current.outgoingDependencies do

d.source.removeDependencyTo(d.target)
if #d.target.incomingDependencies = 0 then

workingSet.add(d.target)
end if

end for
workingSet.remove(current);

end while
if workingSet.size > 0 then

Error − Case : Cyclic dependencies exist.
end if
return result

end procedure

Note: Algorithm 4.1 is based on the provisioning flow computation algorithm proposed by
Mietzner [Mie10]. Yet, the normalization procedure has been added, since the presented
variability model of this thesis is an adapted model of Mietzner’s variability model.

61

4 Concept and Specification

4.9 Functional Workspace Agent Components

This section provides a black box view of the required components for the workspace agent,
respectively the maven workspace plugin - introduced in Section 4.3 Figure 4.2. The workspace
agent implements the requirements presented in Section 4.2. Maven plugins consists of goals,
each use case, described in Use Case Appendix A, is associated with such a goal. The required
functional components, their interrelations and goals are outlined briefly in the following
section, as they form the foundation for the later implemented technical architecture7 of this
diploma thesis.

The workspace agent, respectively the maven workspace plugin, consists of the following
components:

• Controller Component - The controller component offers the plugin goals to external
users. It coordinates incoming requests and dispatches it to the corresponding goal-
implementation components.

• Archetype Generation Component - Implements use case A.1.

• Archetype Persistence Component - Implements use case A.2.

• Archetype Initialization Component - Implements use cases A.3 and A.4.

• Pattern Configuration Component - Implements use case A.5.

• Environment Provisioning Component - Implements use case A.6.

• Pattern Deployment Component - Implements use case A.7.

• Pattern Undeploy Component - The undeployment component implements the removal
of deployed artifacts, using the same mechanisms like use case A.7.

• Environment Decommissioning Component - The environment decommissioning compo-
nent releases acquired resources, using the same mechanisms like use case A.6.

Figure 4.9 illustrates the components of the workspace agent, respectively of the maven
workspace plugin. The components are ordered (left to right) according to their usual
execution order within the pattern development process, discussed in Section 4.4.

7The technical architecture is later on presented in Chapter 5 - Design and Implementation

62

4.9 Functional Workspace Agent Components

Figure 4.9: Component Diagram - Functional Workspace Agent Components.

63

Design and Implementation

This chapter provides detailed design and implementation information about the developed
maven workspace plugin, which implements the presented workspace agent, introduced in
Section 4.9. The realized plugin goals implement the use cases, defined in Use Case Appendix
A, to support the pattern development process, presented in Section 4.4. Moreover, implemented
cloud computing patterns are presented, as they can be used by the developed maven workspace
plugin to create, store and configure patterns. Besides, the implemented concept allows to
provision related pattern environments and to deploy aggregated pattern artifacts to them.
This provisioning can be handled by: pre-implemented services, by self-defined provisioning
actions or by any other provisioning action that is bound to the pattern.

First, Section 5.1 discusses the used abstract reference architecture, used in this thesis. This
architecture defines best practices about structuring an application and its corresponding
layers. It is presented, as the implemented maven workspace plugin is structured according to
this reference architecture. Furthermore, later on presented reference pattern implementations,
which can be managed with the implemented maven workspace plugin, are also implemented ac-
cording to this reference architecture. Afterwards, Section 5.2 covers technical design decisions
of the implemented maven workspace plugin. Thus, components, their tasks and interrelations
are presented in Subsection 5.2.1. Subsection 5.2.2 then covers the so-called pattern goal
invocation flow which propagates abstract events along the pattern project structure and
triggers concrete handler actions, defined in the corresponding patterns. Subsection 5.2.3 then
illustrates the implementation of such handlers, within the pom.xml files of corresponding
patterns. Subsection 5.2.5 provides graphical extracts of the variability model xml schema,
which implements the functional variability meta-model, presented in Section 4.6. Subsection
5.2.4 then presents the syntax of the implemented workspace plugin goals, along with their
invocation possibilities. Then, Section 5.3, presents technologies and tools, which have been
used during the development of the implemented reference patterns and the maven workspace
plugin. Finally, Section 5.4 outlines implemented reference patterns in detail, i.e., the Three-
Tier Cloud Application pattern, discussed in Subsection 5.4.1, and the Message-Oriented
Middleware pattern, discussed in Subsection 5.4.2, which can be managed by the implemented
approach.

65

5 Design and Implementation

5.1 Abstract Reference Architecture

The software product line, presented in Section 4.1, requires a reference architecture, which
is obligatory for all created patterns. This abstract architecture enables loose coupling
between application layers, by forcing the usage of interfaces. Thus, it allows the exchange of
implementation patterns, without any modification of dependent code. Due to its nature, this
architecture can be applied on arbitrary applications. Thus, relevant parts of the presented
reference architecture are used in Subsection 5.2.1, to implement the maven workspace plugin.
Section 5.4 then uses the presented reference architecture to implement reference patterns,
serving as artifacts of the presented software product line, introduced in Section 4.1. This
reference architecture, along with its corresponding layers, is introduced in the following.

The different layers are:

• Presentation Layer - The presentation layer dispatches incoming requests to the internal
representation of the application. It decouples request processing technologies from
internally used processing technologies.

• Process Layer - The process layer offers a superordinate controller, which is responsible for
coordinating request processing. It dispatches different requests to their processing com-
ponents, monitors requester access rights and handles exceptions. Moreover, it decouples
the orchestration of request processing from concrete component implementations.

• Business Logic Layer - The business logic layer hosts implementations of business use
cases. Each component is responsible for a single use case and may access data or
external systems via the data layer.

• Data Layer - The data layer offers a transparent view on data, by providing an API
to query data objects. It decouples technology specific data representation from their
internal object representation, by so-called Data Transport Objects (DTOs) 1.

• Integration Layer - The integration layer implements the required actions to interact
with external systems, like databases, message queues or web services, it dispatches
requests via adapters to middleware service providers.

• Access Control Layer - The access control layer monitors the privileges of requesters, by
allowing or denying requested operations, according to defined permission rules.

• Common - Common offers commonly shared functionality between all layers, such
functionality might be: object definitions, converters or validation components.

Figure 5.1 illustrates the layered software product line reference architecture, which implements
all of the above mentioned layers. Each dependency between the offered layers is decoupled by
interfaces. This abstraction allows to switch layers without effecting layers that dependent on
the switched one.

1A Data Transport-Object is a design pattern, which is widely used in the JavaEE design community.

66

5.2 Maven Workspace Plugin Design

Figure 5.1: Reference Architecture of the Software Product Line for Cloud Patterns.

5.2 Maven Workspace Plugin Design

This section provides design and implementation details about the maven workspace plugin,
which implements the concepts defined in Chapter 4. The plugin provides means to invoke
several actions on a pattern, stored within the developer workspace. The components, imple-
menting these actions, are discussed in detail, as well as their interactions. Subsection 5.2.1
covers the implemented technical components of the workspace plugin and illustrates these
components, by providing a component diagram. Subsection 5.2.2 covers the abstract project
invocation flow that results, when a plugin goal is invoked on the root-project of a pattern.
This flow is created by propagating the invoked goal to all reachable child projects. Bound
actions are then executed by the invoked pattern projects. Thus, subsection 5.2.3 covers the
technical details, which implement this behavior. Finally, subsection 5.2.5 provides graphical
extracts of the implemented variability model xml schema, which forms the foundation for all
implemented variability descriptors.

67

5 Design and Implementation

5.2.1 Technical Components

This subsection provides a glass box view of the implemented maven workspace plugin, specified
in Concept and Specification Chapter Section 4.9. Implemented components, their tasks and
their interrelations are discussed and are presented, afterwards, in Figure 5.2.

The following components have been implemented:

• Application Access Layer - The application access layer receives incoming plugin requests,
it consists of multiple, so-called Maven Mojo facade components.

– Maven Mojo Facade - AMaven Mojo Facade offers maven plugin goals and dispatches
the incoming invocations to the process layer.

• Process Layer - The process layer receives incoming plugin goal requests and coordinates
their execution. It consists of the controller facade and the plugin-goal controller.

– Controller Facade - The controller facade dispatches incoming goal requests to their
corresponding plugin-goal controllers.

– Plugin-goal Controller - A plugin-goal controller coordinates the execution of a
single plugin goal, by invoking the corresponding implementation components,
nested within the business logic layer.

• Business Logic Layer - The business logic layer offers goal implementations via an
interface to the process layer. It consists of goal-implementations, the variability graph
merger, the variability graph sorter and the customization engine.

– Goal-Implementations - A goal-implementation implements a use case specified in
Use Case Appendix A. These implementations require various sub use cases, like
merging multiple variability graphs into a single result, performing an adapted
topological sorting on the selected alternatives and pushing selected values into
their destinations.

– Variability Graph Merger - The variability graph merger joins multiple variability
graphs into a single one and replaces soft references by hard object references.

– Variability Graph Sorter - The variability graph sorter receives a variability graph
as input and computes the configuration sequence of alternatives that have to be
executed to perform the configuration goal. This sequence is computed in such a
way that for each alternative, which is referencing another one, is guaranteed that
the referenced alternative is configured first. Thus, the variability graph top sorter
component inverts the edges of the variability graph, by using the variability graph
inverter component, and then performs the topological sorting 2. This guarantees
that the leafs of the original graph are executed last.

2These steps are introduced in detail in Section 4.7.

68

5.2 Maven Workspace Plugin Design

– Customization Engine - The customization engine receives a sequence of selected
alternatives and interprets their defined values, by resolving their values. These
values are then pushed into the locations, defined within the locators of the current
alternative.

• Integration Layer - The integration layer provide means to integrate external infrastruc-
ture tools, like Opscode’s Chef, PuppetLabs’ Puppet or any other technology, capable of
provisioning environments. This layer is implemented across patterns and the workspace
plugin, as the concrete actions that have to be performed, are defined within the pattern
itself. Thus, the workspace plugin only propagates an abstract goal along the project
path invocation3.

– Infrastructure Tool Plugins - Infrastructure tool plugins perform the tasks, required
to provision environments and middleware. These actions are also encapsulated
within maven plugins and are bound to concrete pattern implementations.

• Data Access Layer - The data access layer provides means to access variability descriptors
and arbitrary files, nested within the developer workspace. It consists of the file access
facade and various file manipulators.

– File Access Facade - The file access facade offers the possibility to manipulate files,
to components of the business logic layer. It dispatches the calls to the corresponding
file manipulators.

– File Manipulators - A file manipulator accesses a file in the workspace. Two types
of file manipulators exist: The xml file manipulator, which manipulates xml files;
and the properties-file manipulator, which manipulates properties file.

• Common - Common offers commonly used functionalities to all components of the
workspace plugin. It consists of the variability descriptor converter, the XPathEngine,
several validators and common object definitions.

– Variability Descriptor Converter - The variability descriptor converter receives a
DOM representation of a variability descriptor and converts it, into the workspace
plugin specific, internal object representation; the variability graph object.

– XPathEngine - The XPathEngine component offers the possibility to query Docu-
ment Object Model (DOM) nodes in the passed DOM object 4.

– Validators - A validator component receives a variability graph and performs a
single validation goal on it, i.e, check cyclic dependencies, check self references,
check contradictions and check selection cardinalities.

– Object Definitions - The objects defined within the object definitions component
are commonly used by all components of the workspace plugin, and thus, form the
foundation for data exchange between components.

3This methodology is discussed in greater detail in section 5.2.2
4This component is mainly used by the variability descriptor converter to create the variability graph.

69

5 Design and Implementation

Figure 5.2 illustrates the implemented plugin components and their relations. Each subsystem
and component is implemented according to the presented reference architecture, defined
within section 5.1, to guarantee loose coupling between the different plugin layers.

Figure 5.2: Component Diagram - Technical Components of the Maven Workspace Plugin.

70

5.2 Maven Workspace Plugin Design

5.2.2 The Pattern Goal Invocation Flow

This subsection discusses the pattern goal invocation flow, which is executed each time a
workspace plugin goal is invoked on a Maven-based pattern project. The invocation flow
then propagates the goal execution within the workspace. This invocation is implemented by
extending the maven goal propagation flow and is used to propagate the invocation of goals,
presented in Section 4.9. Thus, the following paragraphs discuss the maven propagation flow
in combination with the implemented workspace plugin.

The Project Invocation Propagation Mechanism
When a workspace plugin goal is executed on an aggregated, Maven-based pattern, each sub
project of the pattern has to execute the goal as well, in order to guarantee the invocation
semantic. For this reason, the pre-implemented maven default propagation mechanism is used,
to propagate plugin goal invocations to sub projects within the workspace. The standard
maven propagation mechanism propagates the execution of the current goal to all reachable
child projects within the workspace, this propagation mechanism is leveraged, to invoke actions
on the patterns, hosted within the developer workspace.

Figure 5.3 illustrates the direct invocation of the workspace plugin. The plugin triggers
the default maven build life-cycle and activates an assigned, custom maven profile 5. Maven
then propagates this goal to all child projects, by enabling the corresponding profile in each
project. Each project, that has defined such a profile handler then executes the bound
actions.

Figure 5.3: Overview - The Project Invocation Propagation Mechanism.

5Introduced in Related Works Section 3.3.2 and 3.3.5.

71

5 Design and Implementation

5.2.3 Pattern Defined Action Invocation

Subsection 5.2.2 presented the abstract pattern goal invocation flow. This flow is refined by
each pattern, by reacting on propagated goals and performing bound actions. This pattern
defined action invocation is discussed in the following.

The execution of the workspace plugin goals configure, provision, deploy and undeploy are
bound, in each implementation pattern, to standard maven phases. This defines a custom
event handling on received goals. Bound actions are encapsulated within maven plugins and
are invoked when the pattern receives the corresponding goal, via the introduced pattern goal
invocation flow. Therefore, each goal handler, of an implementation pattern, is defined in
a separate maven profile, nested within the pattern’s pom.xml. When the implementation
pattern receives the request to execute such a goal, it sequentially executes the bound plugins.
This binding process allows to integrate arbitrary systems with the presented approach, as
arbitrary code can be wrapped within a maven plugin. Thus, patterns can address already
defined provisioning services, offered by PaaS provisioning services, like AWS Elastic Beanstalk,
or they can build their own provisioning service and invoke it via the bound maven plugin.
E.g., by reading provisioning scripts, stored in the pattern project and passing them to a
Puppet instance, running within an IaaS Cloud. This decouples the implementation of a
pattern from its provisioning actions and, thus, allows to switch the provisioning provider,
by simply redefining the bindings within the pattern’s pom.xml. This approach can even
be more decoupled, if common cloud integration services are integrated by this methods,
like Apache DeltaCloud [Del]. This allows to shield the current cloud provider behind the
integration service. Therefore, the cloud provider can be exchanged without affecting the
pattern implementation, respectively the binding. Figure 5.1 exemplary illustrates such a
binding, leveraging the standard maven pom syntax.

1 <profile>
2 <id>deploy</id> <!−− Handles the deploy goal. −−>
3 <build>
4 <plugins>
5 <plugin> <!−− Definition of the bound plugin −−>
6 <groupId>...</groupId>
7 <artifactId>...</artifactId>
8 <version>....</version>
9 <configuration> <!−− General plugin configuration values −−>

10 ...
11 </configuration>
12 <executions> <!−− Definition of the execution order −−>
13 <execution>
14 <id>...</id>
15 <phase>...</phase>
16 <goals>
17 <goal>...</goal> <!−− Definition of the invoked plugin goals −−>
18 </goals>
19 </execution>
20 </executions>
21 </plugin>
22 </plugins>
23 </build>
24 </profile>

Listing 5.1: Outline - Binding of a Maven Plugin Goal to the Workspace Plugin Deploy Goal.

72

5.2 Maven Workspace Plugin Design

5.2.4 Maven Workspace Plugin Goal Invocation Syntax

This section provides detailed information about the invocation syntax of the implemented
Maven workspace plugin goals. The following paragraphs briefly present the corresponding
goal invocation syntax, along with the required parameters and the possible projects, the goals
can be invoked on.

Note: The implemented workspace plugin is structured according to the technical architecture,
presented in Subsection 5.2.1, thus, each goal is offered via the workspace-plugin-facade.

The following goals have been implemented 6:

• generate-archetype

Invocation Location:
An arbitrary pattern project in the developer workspace.

Command:
mvn workspace-plugin:generate-archetype

• persist-archetype

Invocation Location:
A pattern project of a previously created archetype.

Command:
mvn workspace-plugin:persist-archetype

• initialize-archetype

Invocation Location:
An arbitrary pattern project in the developer workspace.

Parameters:
{x, y, z} = artifact information about the archetype to be instantiated.
{a, b, c} = artifact information about the new, cloned artifact.

Command:
mvn edu.diplom.thesis.maven.plugins:workspace-plugin-facade:1.0:
initialize-archetype -DarchetypeGroupId=x -DarchetypeArtifactId=y
-DarchetypeVersion=z -DgroupId=a -DartifactId=b -Dversion=c

Note:
The initialize-archetype goal is the only goal that requires explicit parameters
and fully specified plugin information, since no meta-information is stored,
in any pom.xml, before this step.

6Each goal implements a single use case, defined in Use Case Appendix A

73

5 Design and Implementation

• initialize-implementation-archetype

Invocation Location:
Base Project → Goal is executed in all reachable projects.
Single Abstract Project → Only executed in the current abstract project.

Parameters:
Automatically read from the provided vd.xml file.

Command:
mvn workspace-plugin:initialize-implementation-archetype

• configure

Invocation Location:
Base Project → Goal is executed in all reachable projects.
Single Project → Only executed in the current project.

Parameters:
Automatically read from the provided vd.xml files.

Command:
mvn workspace-plugin:configure

• provision, deploy, undeploy, decommission

Invocation Location:
Base Project → Goal is executed in all reachable projects.
Single Project → Only executed in the current project.

Parameters:
Automatically read from the provided vd.xml and pom.xml files.

Command:
mvn workspace-plugin:{provision, deploy, undeploy, decommission}

Note:
These goals trigger a build process and activate a corresponding build profile.
Actions, that are bound within the patterns’ pom.xml to these goals, are then
invoked.

Note: Not each of the above presented goal invocations, requires to specify the full meta-
information about the implemented workspace plugin, as this information is typically stored
within the root projects pom.xml file via the Maven-specific goalPrefix element.

74

5.2 Maven Workspace Plugin Design

5.2.5 XML Representation of the Functional Variability Meta-Model

The implemented workspace plugin requires a serialized variability model, to interpret bound
variability points and their interrelations. This variability model is serialized using XML
[XML] and is stored in each pattern project, within the so-called vd.xml. Hence, a xml schema
has been designed, serving as model of these variability models that implements the functional
variability meta-model, presented in Concept and Specification Section 4.6. The following
paragraphs provide graphically extracts of the implemented xml schema 7.

Figure 5.4 illustrates the xml root element of each vd.xml; the variability model element. A
variability model consists of a name, a description and a variability points element, which
contains several variability points.

Figure 5.4: XML Schema Illustration - The Variability Model Element.

Figure 5.5 illustrates the xml implementation of a variability point. Each variability point
is addressable via an id attribute. The so established reference forms a soft reference, as
the xml schema does not validate the existence of the addressed variability point, within the
current variability descriptor. Thus, this soft references are resolved in each goal invocation,
of the implemented workspace plugin. The referenced variability points then have to be
present, within variability descriptors that are reachable in the workspace. The status attribute
indicates, whether the variability point had been untouched, enabled or disabled. The requires
provisioning flag, indicates whether the variability points requires provisioning actions during
the configuration process, which may affect other variability points that reference received
configuration details. These actions are then triggered via the provisioning goal, of the
implemented workspace plugin, which then invokes the corresponding maven profiles, defined
within the pattern’s pom.xml 8. Such a provisioning flag, e.g, is required in case of Amazon’s
Simple Queueing Service (AWS SQS), which returns the address of a recently created queue,
after the queue has been created. Patterns that require this address then need to wait until
the queue has been provisioned. Hence, such provisioning actions are invoked during the
configuration flow, when the configure goal encounters a variability point that is marked with
such a provisioning flag. Remaining relations and attributes are modeled according to the
variability meta-model, presented in Section 4.6.

7The complete xml schema can be found in Appendix C.1.
8Subsection 5.2.3 discusses the invocation of concrete, pattern-defined actions in detail.

75

5 Design and Implementation

Figure 5.5: XML Schema Illustration - The Variability Point Element.

Figure 5.6 illustrates the implemented alternative types and their related attributes. Xml
alternatives, property alternatives and string alternatives store values, which are later on pushed
into referenced variability locations, during the configuration process. Neutral alternatives
and implementation alternatives do not reference variability locations. Thus, implementation
alternatives are simply selected, respectively deselected.

Figure 5.6: XML Schema Illustration - Implemented Alternatives.

Figure 5.7 illustrates the implemented alternative extension hierarchy, as well as the locators
that are used by the alternatives. Each alternative extends the alternative base element,
which provides a status attribute that indicates whether the alternative has been untouched,
selected or deselected. Furthermore, it provides a mandatory attribute that indicates whether
the alternative has to be selected during the configuration process. Each alternative may
contain a list of dependencies that reference a variability point or an other alternative. Locator

76

5.2 Maven Workspace Plugin Design

alternatives extend the base alternative element, by referencing variability locations, via
locators. The implemented Locator Alternative Types are: The string alternative, which
defines a string value; the xml alternative, which stores an arbitrary xml element; and the
properties alternatives that reads the alternative value from a referenced properties file.

Figure 5.7: XML Schema Illustration - Alternative Extension Hierarchy and Locators.

Figure 5.8 provides a detailed illustration of the implemented locator types: The xPath locator,
which references a set of xml elements, within a xml document; The properties file locator,
which references a property, within a properties file; and the script locator, which references a
variability location that is marked with a pre-defined symbol, located within an arbitrary script
file. These locators are used, by the implemented alternatives and point to variability locations.
The values, defined by the corresponding alternatives, are pushed, during the configuration
process, into the referenced locations. The combination, of the implemented alternatives
and locators, allows to model arbitrary configuration situations, where configurations can be
pre-defined, by the workspace user, or can be automatically read, during the configuration
process, which then pushes the alternative values into the addressed variability locations.

Figure 5.8: XML Schema Illustration - Variability Locator Types.

77

5 Design and Implementation

5.3 Used Technologies and Tools

This section briefly provides an overview of technologies and tools, which have been used
during the development of the concept, presented in Chapter 4. These technologies and tools
have been used, to implement the corresponding maven workspace plugin and reference cloud
computing patterns, i.e., the Three-Tier Cloud Application Pattern and one of its sub-patterns,
the Message-Oriented Middleware pattern.

• Java - Java [Java] and the related JavaEE [Javb] Standard have been used to implement
patterns and their pattern logic. Furthermore, the implemented maven workspace plugin
was implemented using Java.

• Apache Maven -Maven [Mava] has been used to: create, store and load pattern archetypes
into the pattern template catalogue - an Artifactory repository [Art]; execute workspace
plugin goals 9, on Maven-based pattern projects; and to execute pattern-defined actions.

• PuppetLabs’ Puppet - Puppet [Pup] has been used, to install required middleware on
provisioned IaaS computation nodes.

• Eclipse - Eclipse [Ecl], along with the Eclipse Maven Plugin m2Eclipse [M2E] and the
Cloudsmith Inc. Eclipse Puppet Plugin Gepetto [Gep], has been used to implement
Maven-based pattern projects and puppet modules.

• Amazon EC2 - Amazon’s EC2 Web Service (AWS EC2) [EC2] has been used as IaaS
environment provider, to create new computation nodes. Required middleware stacks are
placed on top, to provide the required run time environments, respectively middleware
services.

• Amazon Elastic Beanstalk - Amazon’s Elastic Beanstalk Service [Ela] has been used as
PaaS environment provider, to create a managed web container, where pattern-based
web projects can be deployed to.

• Amazon Simple Queuing Service - Amazon’s Simple Queuing Service (AWS SQS) has
been used as Commerical Off-The-Shelf Provider, to implement the Message-Oriented-
Middleware pattern. Apache ActiveMQ [Act] has been used as implementation alternative
to SQS, which can be placed on an IaaS node.

• Apache Deltacloud - Deltacloud [Del] has been used, by the implemented Deltacloud-
Maven-Plugin, to decouple dependencies between IaaS Provider APIs and patterns.

The following, pre-build Maven plugins have been used: Apache Tomcat’s Maven-Tomcat-
Plugin [Tomb], to deploy web project binaries to on-premise Tomcat instances; Ingenieux
Labs’ Maven Elastic Beanstalk Plugin, to deploy web project binaries into managed Tomcat
environments; and Apache Maven’s Maven-Wagon-Plugin[Mavb], to deploy puppet modules
via SSH to provisioned IaaS computation nodes.

9These goals are defined within Chapter 4 and in Use Case Appendix A.

78

5.4 Implemented Reference Pattern(s)

5.4 Implemented Reference Pattern(s)

This section provides an overview of implemented Java-based cloud computing reference pat-
terns, which serve as base artifacts for the implemented software product line. The implemented
patterns and code components are introduced in detail, in the following subsections, to provide
a proof of concept, for the concept, presented in Section 4. Furthermore, the implemented
reference patterns outline the instantiation, customization and provisioning capabilities, offered
by the maven workspace plugin. The plugin allows to construct aggregated solutions, by
instantiating previously stored pattern archetypes, customizing them and invoke various
actions on them. Arbitrary parts, of so implemented, pattern-based applications, can be stored
within the pattern template catalogue, by creating and persisting the so created archetypes.
Other developers then can instantiate these archetypes, customize them and integrate them
into their applications. These possible scenarios are outlined in the following, by providing
implementation details, about the implemented patterns.

First, Subsection 5.4.1, introduces the implemented Three-Tier Web Shop, which imple-
ments the Three-Tier Cloud Application Pattern, identified by Fehling et al. [FLR+12].
Implemented components, maven projects and the underlying variability descriptors, modeling
the variability points of the web shop, are presented in detail, as well as the corresponding
deployment scenarios. The Three-Tier Web Shop outlines the possibilities to create an aggre-
gated, pattern-based application. Subsection 5.4.2 then presents the implementation of the
Message-oriented Middleware Pattern [FLR+12], to present the concept of commonly known
interfaces and abstract patterns, introduced by the functional project structure model, pre-
sented in Section 4.5, which allows to offer abstract application skeletons and, then, instantiate
concrete, selected pattern implementations.

5.4.1 Three-Tier Cloud Application

This subsection presents the Three-Tier Web Shop, which implements the Three-Tier Cloud
Application pattern, identified by Fehling et.al. [FLR+12]. Its components, variability points
and the possible deployment scenarios are presented in the following.

Figure 5.9 illustrates the implemented components that form the Three-Tier Web Shop. The
web shop consists of three decoupled layers: the presentation tier, the business logic tier and
the data tier.

Presentation Tier
The presentation tier consists of a load balancer, which receives incoming requests and
dispatches them to the so-called presentation application component; related logic components
are implemented by using the stateless component pattern. Shop users interact with the
presentation application component by the user interface component. An elastic load balancer
monitors the number of requests and provisions new instances of the presentation application
component if required.

79

5 Design and Implementation

Business Logic Tier
The business logic tier consists of a queue (Message-Oriented Middleware), from which the
so-called business logic application component receives processing requests and propagates
processing results. The business logic application component also consists of stateless compo-
nents, which implement the so-called processing component. This component implements the
business use cases of the web shop. The business logic tier communicates with the data tier
via a separate queue. Instances of the business logic application component are scaled by the
elastic queue component, which measures the current number of messages in the request queue
and creates, respectively deletes instances.

Data Tier
The data tier offers data access via a so-called data access component. This component receives
incoming requests from a queue and queries the addressed information in the corresponding
storage offering. Instances of the data access component are dynamically created and deleted,
dependent on the current number of messages, stored within the corresponding queue.

Figure 5.9: Overview - The Three-Tier Cloud Application Pattern. [FLR+12]

The hierarchical structure of the Three-Tier Cloud Application Pattern, illustrated in Figure
5.9, can directly be mapped to maven projects, using the functional project structure model, pre-
sented in Section 4.5, where each component is implemented in a single maven project. The root
project includes all modules that are directly located under the overall pattern. Such a module
may be: an abstract project, which allows to decouple required components from concrete imple-
mentations; or a concrete implementation project, which allows to leverage full benefits of the
service provider’s API, but does not allow to switch the implementation without code adaption.

Figure 5.10 illustrates the implemented maven projects (left), located at an eclipse-based
workspace, as well as the corresponding, generated archetypes (right), stored within the pattern
template catalogue - implemented by an artifactory repository.

80

5.4 Implemented Reference Pattern(s)

Figure 5.10: Three-Tier Web Shop - Maven Projects and Generated Archetypes.

Note: Eclipse illustrates imported maven projects in a flat view, meaning that all projects
are presented at the same level, regardless of the defined dependency hierarchy.

Each shop project contains a maven pom.xml, which defines the hierarchy of the maven projects,
by defining dependencies to other projects. Moreover, each project contains a vd.xml, which
stores the variability descriptor, respectively the variability points, of the pattern project. The
stored variability points and their relations are hierarchically structured, according to the
structure of the related maven projects, meaning that each maven dependency can be mapped
to an alternative dependency, stored within the variability descriptor of the related project.

The shop also consists of an application skeleton, which defines the logical structure of the
shop. This is done by dependency definitions, pointing to abstract projects. Thus, the root
project of the shop (shop-base) defines, in its pom.xml, that it requires an abstract presentation
tier (shop-ui) and several other projects, respectively patterns. The shop-ui project defines
that an abstract web-ui is required. The web-ui project (shop-ui-webui) provides several
implementation alternatives that fit the common requirements of a web-ui. Abstract projects
contain neutral alternatives that delegate to concrete variability points. This allows to plug
in an arbitrary vd.xml file, nested within the corresponding implementation project, into the
overall variability graph, as long as it contains a root variability point with a compatible id.

81

5 Design and Implementation

All projects within the workspace, except the selected implementation projects, form the
application skeleton, as they only define the structure and dependencies, which are required
to build a concrete application. Variability descriptors, of abstract projects, contain so-
called implementation alternatives, presented in Section 4.6, which can be selected and
instantiated by developers, during the pattern development process, presented in Section 4.4.
Yet, additional projects that require code, offered by such an implementation alternative, need
to add dependencies to the instantiated implementation pattern 10.

Since the maven workspace plugin allows to invoke goals on arbitrary projects, archetypes can
be created at any scale of the project structure, meaning that an archetype can be created
for the entire pattern or for any sub-patterns. When the entire pattern archetype is created,
single archetypes, for all sub-patterns, are generated, which then can be stored in the pattern
template catalogue. This allows to the invocation of the create-archetype goal once, and generate
standalone, reusable patterns for each reachable sub-pattern. Figure 5.10 (right) illustrates
this behavior, as each pattern project has its own archetype. Aggregated archetypes, like
the shop-base-archetype, simply point at their module archetypes. During instantiation, these
archetypes are fetched by Maven.

Customization Points
The presented Three-Tier Web Shop offers various variability points to workspace users, which
can be bound to customize instantiated patterns. The web shops’ application skeleton projects
reference variability points, stored in abstract projects, from where the workspace user selects
implementations. Within such an abstract project, the selected implementation alternative
references a root variability point, defined by the selected implementation project. The refer-
enced id-attribute, defined within the root variability point of all compatible implementation
projects, are identical. This allows to switch implementation projects, without adapting
variability descriptors, since concrete variability points are stored within the projects, where
the corresponding variability locations occur. The so defined soft-references are resolved,
during workspace plugin goal executions, to concrete variability points, stored within the
workspace 11.

To outline the implemented concept and to provide an overview of customization possibilities,
the following paragraphs cover customization points of the web shops’ application presentation
component (shop-ui-webui). The application presentation component is implemented by a
so-called web-project, meaning that each implementation project creates a .war file that can
be deployed into a JavaEE conform web container. Such a web container can be running in
an on-premise environment, an IaaS Cloud or in a PaaS Cloud. Thus, the shop-ui-webui’s
vd.xml provides several implementation alternatives that cover these deployment scenarios.
A workspace user selects an implementation alternative, by switching the status attribute to
selected. Then he invokes the workspace plugin goal instantiate-implementation, which loads
the corresponding archetype, from the pattern template catalogue, into the workspace.

10Subsection 5.4.2 discusses this approach in detail, by presenting implementations of the Message-Oriented
Middleware pattern, along with the related, abstract interface definition.

11This concept is based on the Naming concept, commonly used within distributed systems.

82

5.4 Implemented Reference Pattern(s)

Listing 5.2 illustrates the particular implementation alternative definitions of the abstract
shop-ui-webui project. Each implementation alternative addresses a stored implementation
archetype, by its artifact meta-information. This meta-information is read, when the user
invokes the instantiate-implementation goal of the workspace plugin.

1 <alternatives>
2 <!−− AWS − Elastic Beanstalk −−>
3 <implementationAlternative status="selected" mandatory="false" id="#ElasticBeanstalk−Impl">
4 <name>Shop−WebUI−ElasticBeanstalk−Impl−Alt</name>
5 <dependencies>
6 <dependency type="requires">
7 <target>#Shop−WebUI−Implementation−VP</target>
8 </dependency>
9 </dependencies>

10 <archetypeGroupId>edu.diplom.thesis.webshop</archetypeGroupId>
11 <archetypeArtifactId>shop−ui−webui−elasticbeanstalk−impl−archetype</archetypeArtifactId>
12 <archetypeVersion>0.0.1−SNAPSHOT</archetypeVersion>
13 </implementationAlternative>
14 <!−− OnPremise − Tomcat −−>
15 <implementationAlternative status="deselected" mandatory="false" id="#OnPremiseTomcat−Impl">
16 <name>Shop−WebUI−OnPremiseTomcat−Impl−Alt</name>
17 <dependencies>
18 <dependency type="requires">
19 <target>#Shop−WebUI−Implementation−VP</target>
20 </dependency>
21 </dependencies>
22 <archetypeGroupId>edu.diplom.thesis.webshop</archetypeGroupId>
23 <archetypeArtifactId>shop−ui−webui−onpremisetomcat−impl−archetype</archetypeArtifactId>
24 <archetypeVersion>0.0.1−SNAPSHOT</archetypeVersion>
25 </implementationAlternative>
26 <!−− EC2 − Tomcat −−>
27 <implementationAlternative status="deselected" mandatory="false" id="#Ec2Tomcat−Impl">
28 <name>Shop−WebUI−Ec2Tomcat−Impl−Alt</name>
29 <dependencies>
30 <dependency type="requires">
31 <target>#Shop−WebUI−Implementation−VP</target>
32 </dependency>
33 </dependencies>
34 <archetypeGroupId>edu.diplom.thesis.webshop</archetypeGroupId>
35 <archetypeArtifactId>shop−ui−webui−ec2tomcat−impl−archetype</archetypeArtifactId>
36 <archetypeVersion>0.0.1−SNAPSHOT</archetypeVersion>
37 </implementationAlternative>
38 </alternatives>

Listing 5.2: Shop-WebUI Variability Descriptor - Implementation Alternatives.

Listing 5.3 illustrates the implemented variability descriptor for the elastic beanstalk imple-
mentation of the shop-ui-webui. The root variability point, #Shop-WebUI-Implementation-VP,
points to an elastic beanstalk configuration variability point. This variability point defines
four mandatory run time configurations, which reference variability locations, located in the
pom.xml 12 of the elastic beanstalk implementation project.

12Referenced properties are illustrated in Figure 5.5.

83

5 Design and Implementation

1 ...
2 <variabilityPoint status="enabled"
3 id="#Shop−WebUI−ElasticBeanstalk−Implementation:RunTimeConfig−VP">
4 <name>WebshopUI − Elastic Beanstalk Implementation RunTime Configuration</name>
5 <alternativeCardinalities> <!−− Cardinalities −−>
6 <minSelect>4</minSelect>
7 <maxSelect>4</maxSelect>
8 </alternativeCardinalities>
9 <alternatives> <!−− Runtime−Config −−>

10 <stringAlternative status="selected" mandatory="true"
id="#Shop−WebUI−ElasticBeanstalk−Implementation:Application−Name">

11 <name>AWS−Beanstalk−Application−Name</name>
12 <locators>
13 <xPathLocator>
14 <xPath>/project/properties/aws.beanstalk.application.name</xPath>
15 <relativePath>pom.xml</relativePath>
16 <action>replace</action>
17 </xPathLocator>
18 </locators>
19 <text>thesis−three−tier−webshop</text>
20 </stringAlternative>
21 <stringAlternative status="selected" mandatory="true"
22 id="#Shop−WebUI−ElasticBeanstalk−Implementation:S3−Bucket−Name">
23 <name>S3−Bucket−Namer</name>
24 <locators>
25 <xPathLocator>
26 <xPath>/project/properties/aws.beanstalk.s3.bucket.name</xPath>
27 <relativePath>pom.xml</relativePath>
28 <action>replace</action>
29 </xPathLocator>
30 </locators>
31 <text>thesis−webshop−bucket</text>
32 </stringAlternative>
33 <stringAlternative status="selected" mandatory="true"
34 id="#Shop−WebUI−ElasticBeanstalk−Implementation:Beanstalk−Region">
35 <name>Beanstalk−Region</name>
36 <locators>
37 <xPathLocator>
38 <xPath>/project/properties/aws.beanstalk.region</xPath>
39 <relativePath>pom.xml</relativePath>
40 <action>replace</action>
41 </xPathLocator>
42 </locators>
43 <text>us−east−1</text>
44 </stringAlternative>
45 <stringAlternative status="selected" mandatory="true"
46 id="#Shop−WebUI−ElasticBeanstalk−Implementation:S3−Key">
47 <name>AWS−S3−Key</name>
48 <locators>
49 <xPathLocator>
50 <xPath>/project/properties/aws.beanstalk.s3.key</xPath>
51 <relativePath>pom.xml</relativePath>
52 <action>replace</action>
53 </xPathLocator>
54 </locators>
55 <text>shop−ui−webui−impl</text>
56 </stringAlternative>
57 </alternatives>
58 </variabilityPoint>
59 ...

Listing 5.3: Elastic Beanstalk Implementation - Variability Point Definition.

84

5.4 Implemented Reference Pattern(s)

Each implementation project defines concrete handlers, by defining profiles located at its
pom.xml 13. This is done for the following, abstract workspace plugin goals: provision, deploy,
undeploy and decommission.

Listing 5.4 illustrates the implemented binding of elastic beanstalk provisioning actions to
the abstract workspace-plugin goal provision. Goals of the Ingenieux Labs’ beanstalk-maven-
plugin [bea], to provision the required tomcat environment, are bound to the corresponding
provision profile. The defined goals are executed sequentially and trigger the provisioning
actions, within Amazon’s PaaS Cloud, by invoking the corresponding web services. Required
parameters, respectively variability locations, are stored on top of the pom.xml, within the
so-called properties element, illustrated in Figure 5.5. During the configuration process, of the
workspace plugin, alternative values, that reference these parameters, are read and pushed into
the corresponding variability location. These parameters are then referenced within the plugin
invocation definition (binding), via ${parameter.name} and read during the plugin invocation.

1 ...
2 <!−− Binding Definitions −−>
3 <profile>
4 <id>provision</id>
5 <build>
6 <plugins>
7 <plugin>
8 <groupId>br.com.ingenieux</groupId>
9 <artifactId>beanstalk−maven−plugin</artifactId>

10 <version>0.2.8</version>
11 <configuration>
12 <server>aws.amazon.com</server>
13 <region>${aws.beanstalk.region}</region>
14 <applicationName>${aws.beanstalk.application.name}</applicationName>
15 <s3Bucket>${aws.beanstalk.s3.bucket.name}</s3Bucket>
16 <s3Key>${aws.beanstalk.s3.key}/${project.build.finalName}−${maven.build.timestamp}.war</s3Key>
17 <environmentName>shop−ui−webui</environmentName>
18 </configuration>
19 <executions>
20 <execution>
21 <id>deploy−to−elastic−beanstalk</id>
22 <phase>pre−integration−test</phase>
23 <goals>
24 <goal>upload−source−bundle</goal>
25 <goal>create−application−version</goal>
26 <goal>create−environment</goal>
27 </goals>
28 </execution>
29 </executions>
30 </plugin>
31 </plugins>
32 </build>
33 </profile>
34 ...

Listing 5.4: Provisioning Profile Binding - Definition of Plugins and Goal Executions.

13Discussed in Subsection 5.2.3 - Pattern Defined Action Invocation.

85

5 Design and Implementation

1 ...
2 <properties>
3 <!−− Variability Locations −−>
4 <aws.access.key>...</aws.access.key>
5 <aws.secret.key>...</aws.secret.key>
6 <aws.beanstalk.application.name>thesis−three−tier−webshop</aws.beanstalk.application.name>
7 <aws.beanstalk.s3.bucket.name>thesis−webshop−bucket</aws.beanstalk.s3.bucket.name>
8 <aws.beanstalk.region>us−east−1</aws.beanstalk.region>
9 <aws.beanstalk.s3.key>shop−ui−webui−impl</aws.beanstalk.s3.key>

10 </properties>
11 ...

Listing 5.5: Elastic Beanstalk Implementation - Variability Locations in the POM File.

This binding mechanism allows to integrate arbitrary actions, encapsulated within Java-based
maven plugins, to provision/decommission environments and to deploy/undeploy generated
pattern binaries. A possible integration scenario, e.g, would be to use the implemented
Deltacloud-Maven-Plugin, which interacts with a Deltacloud server, pointing at an OpenStack
based IaaS Cloud [Ope]. The Deltacloud server then provisions a computation node, which runs
a pre-installed TOSCA container [TOS]. After the computation node has been provisioned
and the TOSCA container is up and running, the required middleware definition scripts are
deployed into the TOSCA container, which then installs the required middleware components.

Note: A similar integration scenario, using Amazon’s EC2 Cloud and Puppet, is presented in
the subsequent Section 5.4.2, to provision an ActiveMQ server on top of an EC2 instance.

5.4.2 Message-Oriented Middleware

This subsection presents the implemented Message-Oriented Middleware pattern, identified
by Fehling et.al. [FLR+12]. The identified pattern is implemented by an abstract project,
which defines selectable, compatible implementation alternatives. Selected implementation
alternatives are then instantiated and plugged in the existing application skeleton project
structure. This concept allows to provide a map of implementations, defined within the
abstract projects vd.xml, which are compatible to the abstract pattern. The used interface
eliminates vendor dependencies and increases reusability. Yet, the common interface definition
reduces offered functionalities, provided by single vendors, as it defines functionalities that has
to be provided by all known implementations.

Figure 5.6 illustrates the implemented, compatible queue constellations, offered in the vd.xml
of the abstract queue project. Each implementation alternative points to a root variability
point, which is defined by each compatible implementation project; the AbstractQueue-Impl-
VP. This allows to switch implementation projects, without adapting the vd.xml files of the
corresponding projects.

86

5.4 Implemented Reference Pattern(s)

1 <?xml version="1.0" encoding="UTF−8"?>
2 <variabilityModel xmlns:xsi="http://www.w3.org/2001/XMLSchema−instance" id="#AbstractQueue−VM">
3 <name>AbstractQueue − Variability Model</name>
4 <variabilityPoints>
5 <!−− AbstractQueue − Variability Point −−>
6 <variabilityPoint status="enabled" id="#AbstractQueue−VP">
7 <name>AbstractQueue−VP</name>
8 <alternativeCardinalities><!−− Cardinalities −−>
9 <minSelect>1</minSelect>

10 <maxSelect>1</maxSelect>
11 </alternativeCardinalities>
12 <alternatives>
13 <!−− AWS − SQS −−>
14 <implementationAlternative status="selected" id="#SQS−Impl−Alt">
15 <name>SQS−Impl−Alt</name>
16 <dependencies>
17 <dependency type="requires">
18 <target>#AbstractQueue−Impl−VP</target>
19 </dependency>
20 </dependencies>
21 <archetypeGroupId>edu.diplom.thesis.single.patterns</archetypeGroupId>
22 <archetypeArtifactId>sqs−impl−archetype</archetypeArtifactId>
23 <archetypeVersion>0.0.1−SNAPSHOT</archetypeVersion>
24 </implementationAlternative>
25 <!−− EC2 − Active−MQ −−>
26 <implementationAlternative status="deselected" id="#EC2−ActiveMQ−Alt">
27 <name>EC2−Active−MQ−Impl−Alt</name>
28 <dependencies>
29 <dependency type="requires">
30 <target>#AbstractQueue−Impl−VP</target>
31 </dependency>
32 </dependencies>
33 <archetypeGroupId>edu.diplom.thesis.single.patterns</archetypeGroupId>
34 <archetypeArtifactId>ec2−activemq−impl−archetype</archetypeArtifactId>
35 <archetypeVersion>0.0.1−SNAPSHOT</archetypeVersion>
36 </implementationAlternative>
37 </alternatives>
38 </variabilityPoint>
39 </variabilityPoints>
40 </variabilityModel>

Listing 5.6: Abstract Queue Variability Descriptor - Defined Implementation Alternatives.

Each compatible implementation offers a factory object that returns a queue proxy object, which
implements the commonly known queue interface. Corresponding configuration parameters
are defined within the vd.xml of the instantiated pattern. After the configuration process,
parameters, required for the queue connection, are stored within a properties file, from where
the factory object reads them and creates a queue adapter object. This adapter object is then
used by the offered queue proxy object to send and receive messages 14. An application that
uses an instantiated, compatible queue implementation only need to add a maven dependency,
to the newly instantiated pattern. Then, after compiling the application, the communication
with the queue is handled by the plugged in queue proxy object. This allows to switch the
implementation without adapting previously written code. This concept correlates to the
Provider Adapter Pattern, identified by Fehling et.al. [FLR+12].

14The Factory Pattern, the Proxy Pattern and the Adapter Pattern are a well known patterns in the Java
Design Community and had been identified by the so-called Gang Of Four [GHJV95].

87

5 Design and Implementation

Figure 5.7 illustrates the commonly known, abstract queue interface definition, which is
supported by each queue implementation.

1 public interface QueueProxy {
2 /∗∗
3 ∗ Receives a message from an Abstract Queue.
4 ∗
5 ∗ @return An arbitrary message, stored within the addressed queue.
6 ∗ @throws QueueProxyReceiveException If no message can be received or the communication fails.
7 ∗/
8 public String receiveMessage() throws QueueProxyReceiveException;
9

10 /∗∗
11 ∗ Sends a message to an Abstract Queue.
12 ∗
13 ∗ @param message The message to be delivered.
14 ∗ @throws QueueProxySendException If the message can not be delivered.
15 ∗/
16 public void sendMessage(String message) throws QueueProxySendException;
17 }

Listing 5.7: Abstract Queue - Common Interface Definition

Figure 5.11 illustrates the executed EC2-ActiveMQ provisioning steps, which are performed
when a developer has invoked the workspace plugin goal provision. First the workspace plugin
triggers a build process, which compiles the project sources, and activates the build profile
provision. Then, within the EC2-ActiveMQ implementation project, the plugins, bound to
the provision profile, are interpreted. These plugins are then executed sequentially. First, the
Deltacloud-Maven-Plugin is executed. The corresponding deltacloud server 15 is addressed
via its HTTP/REST interface. It receives the incoming request, which defines an image
(by its image-id) that contains a Puppet installation and is stored within a blob storage
service. Deltacloud then looks up the current cloud provider (driver), and dispatches the
request to the corresponding provider adapter, which then starts the requested instance in
the currently addressed IaaS Cloud. The corresponding meta-information is returned and
stored in a properties file that is located in the implementation project folder. Then, the
Maven-Wagon-Plugin [Mavb] is executed to deploy the ActiveMQ Puppet module via SSH
into the puppet agent, which is running on the recently created computation node. The puppet
agent periodically monitors the modules, stored within its module folder, and installs defined
middleware, if the module is present. Hence, after the Maven-Wagon-Plugin has terminated,
the implemented Delay-Maven-Plugin is executed, which delays the execution of possible
subsequent plugins. After this, the developer invokes the workspace plugin goal deploy, which
triggers the deployment of a processing component. The processing component then calls the
factory, stored within the EC2-ActiveMQ implementation project, to create a new queue proxy
object that implements the interface illustrated in Figure 5.7. The returned queue proxy object
establishes the communication with the required queue, by instantiating a queue adapter object
with the previously stored meta-information. Afterwards, the communication transparently

15Corresponding location information is stored within the vd.xml of the implementation pattern.

88

5.4 Implemented Reference Pattern(s)

takes place via the provided queue proxy object, meaning that queue proxy consuming objects
do not need to be aware of the concrete queue location.

Figure 5.11: Sequence Diagram - EC2-ActiveMQ Provisioning and Queue Communication.

89

Summary and Outlook

6.1 Summary

This thesis outlined and implemented major components of a possible software product line for
cloud computing patterns, to create customizable pattern-based artifacts, for recently identified
cloud computing patterns, as well as an approach to provision these artifacts into different
cloud environments. These challenges were solved by combining approaches of software product
line engineering with open source tools, i.e., Apache Maven and PuppetLabs’ Puppet. Therefore,
Chapter 1 provided a motivation for this thesis and defined its focus. Chapter 2 discussed
relevant, scientific fundamentals about cloud computing, software product line engineering
and patterns. Chapter 3 presented related work, including: cloud computing patterns, which
form the foundation of implemented reference patterns; the Cafe platform and its concept of
variability descriptors; Apache Maven, a build management tool, offering the possibility to
manage Java-based projects; and PuppetLabs’ Puppet, an infrastructure management tool, that
allows to setup middleware stacks. These approaches have been combined within the concept
presented in Chapter 4. The outlined approach provides major parts of the introduced software
product line, which forms the superordinate context of this thesis. Moreover, the functional and
non-functional requirements for implemented components have been presented. Afterwards,
the abstract, functional architecture of the implemented approach has been introduced, in
combination with its project structure model and its variability meta-model. The presented
project structure model allows to decouple dependencies between applications and used
pattern implementations, by intermediate abstract projects. These projects define a common
interface, which is implemented by compatible pattern implementations and thus, allows
to switch them without code adaption. Customization points of aggregated, pattern-based
applications have been addressed with an adapted version of the presented Cafe variability
meta-model, which is distributedly stored within the variability descriptors of the corresponding
pattern implementations. Afterwards, functional components of the presented concept have
been specified, in combination with their corresponding use cases. Chapter 5 refined these
components, by providing detailed design decisions, about the implemented maven workspace
plugin and its components. Furthermore, technical details about the realized pattern goal
invocation flow have been presented, which is based on Maven’s internal goal propagation
mechanism, in combination with goal dependent handler definitions. This allows pattern
developers to integrate arbitrary provisioning actions. Finally, implemented reference patterns
and used technologies have been presented to provide proof of concept.

91

6 Summary and Outlook

6.2 Outlook

During this thesis, major parts of the superordinate software product line for cloud computing
patterns, presented in Section 4.1, have been implemented. Yet, not all of the correspond-
ing components have been fully implemented, i.e., the pattern catalogue console and the
pattern factory. Further work, may focus on implementing the pattern catalogue console,
which graphically illustrates cloud computing patterns, stored within the cloud computing
pattern template catalogue, and allows to model aggregated pattern-based applications, by
graphical means. The pattern catalogue console stores generated meta-information, about
the aggregated application, within a file container. This file container is interpreted by the
pattern factory, which triggers required goals, provided by the implemented maven workspace
plugin, to setup the workspace of the defined application. The implementation of these compo-
nents could even more reduce human interaction, when creating new pattern-based applications.

Furthermore, the implemented reference patterns provide support for integrating Apache
Deltacloud and PuppetLabs’ Puppet. These integration functionalities may be extended as part
of further works, e.g., by TOSCA or Chef provisioning functionalities. Also, further maven
plugins may be developed in the future, using JClouds [JCl] to overcome different IaaS Cloud
APIs. This would enable the possibility to directly communicate with the corresponding IaaS
Cloud, without a separate server installation. Moreover, further pattern implementations may
focus on different scaling strategies for the created applications, which can be handled by the
application itself or may be shifted to tools like Puppet, Chef or Scalr [Sca].

Moreover, the implemented reference pattern artifacts lack semantic descriptions, which
can be used to offer proposals for aggregation applications, fitting the needs of developers.
These descriptions are currently - at the time of this thesis - stored within a semantic wiki,
i.e., DataWiki [Dat]. Combining the benefits of this semantic wiki with the benefits of the
implemented approach of this thesis could be part of further research.

92

Use Case Appendix

Description

Name Create Archetype from Existing Pattern

Goal The workspace user wants to create an archetype from an existing
maven-based project.

Actor Workspace User

Pre-Condition(s) A maven-based project exists.
All required files and configurations are present.
The workspace plugin is installed and present.

Post-Condition The workspace plugin is ready for further actions.

Normal Case 1. The user executes the adapted maven-archetype plugin.
2. The plugin validates the pattern project(s).

2.1. The transitive shell of all projects is computed.
2.2. Each project within the shell is traversed.
2.2.1. The plugin checks if a variability descriptor is present.
2.2.2. The plugin checks if all required points are bound.
2.2.3. The plugin checks if all optional points are unbound.

2.3. The plugin globally checks for cyclic dependencies.
3. The plugin locally creates an archetype of the project.
4. A message about the successful processing status is logged.
5. The plugin terminates.

Special Cases 1.a. The custom plugin is missing.
a.) Maven raises an exception, that the plugin is unknown.
b.) Maven logs the reason and terminates.

2. Validation fails.
a.) The plugin logs the reason and terminates.

1-4. An unchecked exception occurs.
a.) The plugin logs the exception and terminates.

Note The creation of the archetype-project is pre-implemented by Maven,
yet the validation of the project structure had been added.

Table A.1: Use Case - Create Archetype from Existing Pattern.

93

A Use Case Appendix

Description

Name Store Existing Archetype into the Pattern Catalogue

Goal The user wants to store a previously created archetype into the
cloud computing pattern catalogue.

Actor Workspace User

Pre-Condition(s) A previously, locally created archetype-project exists.
The required catalogue address is passed during the invocation of
the plugin goal.
The workspace plugin is installed and present.

Post-Condition The workspace plugin is ready for further actions.

Normal Case 1. The user starts the plugin goal to execute the persistance steps.
1.1. The plugin generates the archetype binaries.
1.2. The plugin stores the binaries into the pattern catalogue.
1.3. The stored binaries become visible for external usage.

2. A message about the successful processing status is logged.
3. The plugin terminates.

Special Cases 1.a. The plugin is missing.
a.) Maven raises an exception, that the plugin is unknown.

1.b. The build life-cycle fails.
a.) The archetype binaries are not created.
b.) The archetype binaries are not stored.

1.c. The catalogue artifact repository is not reachable.
a.) The plugin builds the binaries.
b.) The plugin logs the reason and terminates.

1.d. An unchecked exception occurs.
a.) The plugin logs the exception and terminates.

Note This use case is partially pre-implemented by the standard func-
tionality of Maven, it is used as part of the overall method to create
reference pattern implementations.

Table A.2: Use Case - Store Existing Archetype into the Pattern Catalogue.

94

Description

Name Instantiate an Archetype from the Pattern Catalogue

Goal The user wants to instantiate a previously stored pattern into his
local workspace.

Actor Workspace User

Pre-Condition(s) The catalogue address is present in any settings.xml file.
The pattern catalogue is up and running.
The archetype is present in the catalogue.
The maven plugin is present.

Post-Condition The workspace plugin is ready for further actions.

Normal Case 1. The workspace user queries the possible archetypes.
2. Maven lists all archetypes, defined within its known repositories.
3. The workspace user selects an archetype.
4. Maven creates the project structure within the local workspace.
5. A message about the successful processing status is logged.
6. The plugin terminates.

Special Cases 1.a. The standard plugin is missing.
a.) Maven raises an exception, that the plugin is unknown.

2.a. The catalogue artifact repository is not reachable.
a.) The archetype is not listed within the archetype list.

4.a. The creation of the requested projects fails.
a.) The project structure is not created.
b.) Maven logs an exception about the reason.
c.) The standard plugin terminates.

1-4. An unchecked exception occurs.
a.) The plugin logs the exception and terminates.

Note This use case is pre-implemented by the standard functionality of
Maven, it is used as part of the overall method to create reference
pattern implementations.

Table A.3: Use Case - Instantiate an Archetype from the Pattern Catalogue.

95

A Use Case Appendix

Description

Name Instantiate an Implementation Archetype from the Cloud Comput-
ing Pattern Catalogue

Goal The user wants to instantiate a selected implementation project
into his local workspace.

Actor Workspace User

Pre-Condition(s) The catalogue address is present in any settings.xml file.
The pattern catalogue is up and running.
The archetype is present in the catalogue.
The user has selected an implementation alternative within the
project variability descriptor.
The maven plugin is present.

Post-Condition The workspace plugin is ready for further actions.

Normal Case 1. The workspace user starts the plugin to initialize the implemen-
tation archetype, selected within the variability descriptor.
2. The plugin reads the stored archetype information from the
variability descriptor.
3. The plugin initializes the implementation project.
4. A message about the successful processing status is logged.
5. The plugin terminates.

Special Cases 1.a. The plugin is missing.
a.) Maven raises an exception, that the plugin is unknown.

3.a. The creation of the requested projects fails.
a.) The project structure is not created.
b.) Maven logs an exception about the reason.
c.) The plugin terminates.

1-3. An unchecked exception occurs.
a.) The plugin logs the exception and terminates.

Note This use case is partially pre-implemented by the standard function-
ality of Maven. This functionality had been extended to support
the instantiation of selected implementation alternatives from the
corresponing varibility descriptor.

Table A.4: Use Case - Instantiate an Implementation Archetype from the Pattern Catalogue.

96

Description

Name Configure Pattern

Goal The user wants to set the selected alternative values.

Actor Workspace User

Pre-Condition(s) The pattern is present in the workspace.
All required variability models are present.
The maven plugin is present.

Post-Condition The workspace plugin is ready for further actions.

Normal Case 1. The user starts the configure project goal.
2. The plugin checks if all required variab. descriptors are present.
3. The effective variability descriptor is computed.

3.1. The root variability descriptor is loaded.
3.2. All reachable nodes are loaded, validated and aggregated.
3.2.1 For each loaded variability descriptor:
3.2.1.1. The plugin validates all variability points.
3.2.1.2. The plugin evaluates all enabling conditions.
3.2.1.3. All child elements are merged into the result.

4. The effective variability descriptor is validated globally.
4.1. Check if cyclic dependencies exist.
4.2. Check if contradictory relations exist.

5. The configuration execution sequence is computed.
6. The configuration execution sequence is executed.

6.1. For each enabled variability point:
6.1.1. The selected alternative is extracted.
6.1.2. The extracted value is written into the target.

7. The plugin logs the successful configuration.
8. The plugin terminates.

Special Cases 1.a. The plugin is missing.
a.) Maven raises an exception, that the plugin is unknown.

2.a. At least one project is missing its variability descriptor.
a.) The plugin logs the absence and terminates.

3-4. Validation fails.
a.) The plugin logs the violation and terminates.

5.a. Alternatives can not be set.
a.) Set alternatives are revoked.
b.) The plugin logs the reason and terminates.

Table A.5: Use Case - Configure Pattern.

97

A Use Case Appendix

Description

Name Provision Nodes and Middleware

Goal The user wants to start the required nodes and provision the
required middleware.

Actor Workspace User

Pre-Condition(s) The pattern is present in the workspace.
The required provisioning scripts are present.
The maven plugin is present.

Post-Condition The workspace plugin is ready for further actions.

Normal Case 1. The user starts the Prov. Nodes and Middleware goal.
2. Check if all required variability descriptors are configured.
3. Check if the referenced provisioning scripts are present.
4. The plugin traverses the pattern projects.

4.1. For each project:
4.1.1. Execute bound node starting plugins.
4.1.2. Execute bound provisioning plugins.

5. A message about the successful processing status is logged.
6. The plugin terminates.

Special Cases 1.a. The plugin is missing.
a.) Maven raises an exception, that the plugin is unknown.

2.a. At least a variability descriptor is missing.
a.) The plugin logs the missing descriptor.
b.) The plugin terminates.

2.b. At least a variability descriptor is not configured.
a.) The plugin logs the unconfigured descriptor.
b.) The plugin terminates.

3. At least one required provisioning script is missing.
a.) The missing provisioning script is logged.
b.) The plugin terminates.

4. The provisioning process fails.
a.) The plugin logs the reason and terminates.

1-4. An unchecked exception occurs.
a.) The plugin logs the exception and terminates.

Table A.6: Use Case - Provision Nodes and Middleware.

98

Description

Name Deploy Pattern

Goal The user wants to deploy the pattern related binaries into the
specified cloud environments.

Actor Workspace User

Pre-Condition(s) The pattern is present in the workspace.
The required maven deployment plugins are present.
The maven deployment plugins are bound in their pom.xml files.

Post-Condition The workspace plugin is ready for further actions.

Normal Case 1. The user executes the standard build life-cycle.
2. Maven builds the required binaries.

2.1 Maven traverses the projects
2.1.1 Each bound deployment plugin is executed.
2.1.1.1 The plugins authenticate themselves.
2.1.1.2 The plugins transfer the binaries.

4. A message about the successful processing status is logged.
5. The standard build life-cycle plugin terminates.

Special Cases 2.a. The maven build fails.
a.) The deployment is not executed.
b.) The plugin logs the build failure and terminates.

3.a. The authentication fails.
a.) The deployment process is not executed.
b.) The plugin logs the authentication failure and terminates.

3.b. The transfer of the binaries fails.
b.) The plugin logs the transfer failure and terminates.

1-3. An unchecked exception occurs.
a.) The plugin logs the exception and terminates.

Table A.7: Use Case - Deploy Pattern.

Note: The undeployment of a pattern, as well as the decommissioning of nodes and middleware,
is done analogous to the use cases A.6 and A.7, by executing the corresponding undeployment
actions, respectively decommissioning actions.

99

Variability Graph Appendix

Figure B.1: Extended OVM Notation - Example Application Variability Model.

101

XML Schema Appendix

1 <?xml version="1.0" encoding="UTF−8"?>
2 <xs:schema attributeFormDefault="unqualified"
3 elementFormDefault="qualified" xmlns:xs="http://www.w3.org/2001/XMLSchema">
4 <xs:annotation>
5 <xs:documentation>Represents a variability model, consisting of
6 locators , alternatives and dependencies.
7 </xs:documentation>
8 </xs:annotation>
9 <xs:complexType name="adressable">

10 <xs:attribute name="id" type="nonEmptyString" use="required" />
11 </xs:complexType>
12 <xs:complexType name="alternativeBase">
13 <xs:complexContent>
14 <xs:extension base="adressable">
15 <xs:sequence>
16 <xs:element name="name" type="nonEmptyString" />
17 <xs:element minOccurs="0" name="description" type="nonEmptyString" />
18 <xs:element minOccurs="0" name="dependencies">
19 <xs:complexType>
20 <xs:sequence>
21 <xs:element maxOccurs="unbounded" minOccurs="1"
22 name="dependency" type="dependency" />
23 </xs:sequence>
24 </xs:complexType>
25 </xs:element>
26 </xs:sequence>
27 <xs:attribute name="status" use="required">
28 <xs:simpleType>
29 <xs:restriction base="xs:string">
30 <xs:enumeration value="untouched" />
31 <xs:enumeration value="selected" />
32 <xs:enumeration value="deselected" />
33 </xs:restriction>
34 </xs:simpleType>
35 </xs:attribute>
36 <xs:attribute name="mandatory" type="xs:boolean" use="optional" default="false" />
37 </xs:extension>
38 </xs:complexContent>
39 </xs:complexType>
40 <xs:complexType name="locatorAlternativeBase">
41 <xs:complexContent>
42 <xs:extension base="alternativeBase">
43 <xs:sequence>
44 <xs:element name="locators">
45 <xs:complexType>
46 <xs:choice maxOccurs="unbounded">
47 <xs:element name="xPathLocator" type="xPathLocator" />
48 <xs:element name="propertiesFileLocator" type="propertiesFileLocator" />
49 <xs:element name="scriptLocator" type="scriptLocator" />
50 </xs:choice>
51 </xs:complexType>

103

C XML Schema Appendix

52 </xs:element>
53 </xs:sequence>
54 </xs:extension>
55 </xs:complexContent>
56 </xs:complexType>
57 <xs:element name="variabilityModel" type="variabilityModel" />
58 <xs:complexType name="variabilityModel">
59 <xs:complexContent>
60 <xs:extension base="adressable">
61 <xs:sequence>
62 <xs:element minOccurs="0" name="name" type="nonEmptyString" />
63 <xs:element minOccurs="0" name="description" type="nonEmptyString" />
64 <xs:element minOccurs="0" name="variabilityPoints">
65 <xs:complexType>
66 <xs:sequence>
67 <xs:element maxOccurs="unbounded" minOccurs="1"
68 name="variabilityPoint" type="variabilityPoint" />
69 </xs:sequence>
70 </xs:complexType>
71 </xs:element>
72 </xs:sequence>
73 </xs:extension>
74 </xs:complexContent>
75 </xs:complexType>
76 <xs:complexType name="variabilityPoint">
77 <xs:complexContent>
78 <xs:extension base="adressable">
79 <xs:sequence>
80 <xs:element name="name" type="nonEmptyString" />
81 <xs:element minOccurs="0" name="description" type="nonEmptyString" />
82 <xs:element minOccurs="0" name="tags" type="tags" />
83 <xs:element minOccurs="0" name="enablingConditions">
84 <xs:complexType>
85 <xs:sequence>
86 <xs:element maxOccurs="unbounded" minOccurs="1"
87 name="enablingCondition" type="enablingCondition" />
88 </xs:sequence>
89 </xs:complexType>
90 </xs:element>
91 <xs:element name="alternativeCardinalities">
92 <xs:complexType>
93 <xs:sequence>
94 <xs:element name="minSelect" type="xs:unsignedLong" />
95 <xs:element name="maxSelect" type="xs:unsignedLong" />
96 </xs:sequence>
97 </xs:complexType>
98 </xs:element>
99 <xs:element name="alternatives">

100 <xs:complexType>
101 <xs:choice maxOccurs="unbounded" minOccurs="1">
102 <xs:element name="xmlAlternative" type="xmlAlternative" />
103 <xs:element name="propertyAlternative" type="propertyAlternative" />
104 <xs:element name="stringAlternative" type="stringAlternative" />
105 <xs:element name="neutralAlternative" type="neutralAlternative" />
106 <xs:element name="implementationAlternative" type="implementationAlternative" />
107 </xs:choice>
108 </xs:complexType>
109 </xs:element>
110 </xs:sequence>
111 <xs:attribute name="status" use="required">
112 <xs:simpleType>
113 <xs:restriction base="xs:string">
114 <xs:enumeration value="untouched" />

104

115 <xs:enumeration value="enabled" />
116 <xs:enumeration value="disabled" />
117 </xs:restriction>
118 </xs:simpleType>
119 </xs:attribute>
120 <xs:attribute name="requiresProvisioning" use="optional" type="xs:boolean" default="false"/>
121 </xs:extension>
122 </xs:complexContent>
123 </xs:complexType>
124 <xs:complexType name="tags">
125 <xs:sequence>
126 <xs:element maxOccurs="unbounded" name="tag" type="nonEmptyString" />
127 </xs:sequence>
128 </xs:complexType>
129 <xs:complexType name="enablingCondition">
130 <xs:sequence>
131 <xs:element name="condition" />
132 </xs:sequence>
133 </xs:complexType>
134 <xs:complexType name="xmlAlternative">
135 <xs:complexContent>
136 <xs:extension base="locatorAlternativeBase">
137 <xs:sequence>
138 <xs:element name="value">
139 <xs:complexType>
140 <xs:choice>
141 <xs:any maxOccurs="unbounded" processContents="skip" />
142 </xs:choice>
143 </xs:complexType>
144 </xs:element>
145 </xs:sequence>
146 </xs:extension>
147 </xs:complexContent>
148 </xs:complexType>
149 <xs:complexType name="propertyAlternative">
150 <xs:complexContent>
151 <xs:extension base="locatorAlternativeBase">
152 <xs:sequence>
153 <xs:element name="relativePath" type="nonEmptyString" />
154 <xs:element name="property" type="nonEmptyString" />
155 </xs:sequence>
156 </xs:extension>
157 </xs:complexContent>
158 </xs:complexType>
159 <xs:complexType name="stringAlternative">
160 <xs:complexContent>
161 <xs:extension base="locatorAlternativeBase">
162 <xs:sequence>
163 <xs:element name="text" type="nonEmptyString" />
164 </xs:sequence>
165 </xs:extension>
166 </xs:complexContent>
167 </xs:complexType>
168 <xs:complexType name="implementationAlternative">
169 <xs:complexContent>
170 <xs:extension base="alternativeBase">
171 <xs:sequence>
172 <xs:element name="archetypeGroupId" type="nonEmptyString" />
173 <xs:element name="archetypeArtifactId" type="nonEmptyString" />
174 <xs:element name="archetypeVersion" type="nonEmptyString" />
175 </xs:sequence>
176 </xs:extension>
177 </xs:complexContent>

105

C XML Schema Appendix

178 </xs:complexType>
179 <xs:complexType name="neutralAlternative">
180 <xs:complexContent>
181 <xs:extension base="alternativeBase" />
182 </xs:complexContent>
183 </xs:complexType>
184 <xs:complexType name="dependency">
185 <xs:sequence>
186 <xs:element name="target" type="nonEmptyString" />
187 <xs:element minOccurs="0" name="enablingConditions">
188 <xs:complexType>
189 <xs:sequence>
190 <xs:element maxOccurs="unbounded" minOccurs="1"
191 name="enablingCondition" type="enablingCondition" />
192 </xs:sequence>
193 </xs:complexType>
194 </xs:element>
195 </xs:sequence>
196 <xs:attribute name="type" use="required">
197 <xs:simpleType>
198 <xs:restriction base="xs:string">
199 <xs:enumeration value="requires" />
200 <xs:enumeration value="excludes" />
201 </xs:restriction>
202 </xs:simpleType>
203 </xs:attribute>
204 </xs:complexType>
205 <xs:complexType name="xPathLocator">
206 <xs:sequence>
207 <xs:element name="xPath" type="nonEmptyString" />
208 <xs:element name="relativePath" type="nonEmptyString" />
209 <xs:element name="action" type="action" />
210 </xs:sequence>
211 </xs:complexType>
212 <xs:complexType name="propertiesFileLocator">
213 <xs:sequence>
214 <xs:element name="relativePath" type="nonEmptyString" />
215 <xs:element name="property" type="nonEmptyString" />
216 <xs:element name="action" type="action" />
217 </xs:sequence>
218 </xs:complexType>
219 <xs:complexType name="scriptLocator">
220 <xs:sequence>
221 <xs:element name="relativePath" type="nonEmptyString" />
222 <xs:element name="identifier" type="nonEmptyString" />
223 <xs:element name="action" type="action" />
224 </xs:sequence>
225 </xs:complexType>
226 <xs:simpleType name="action">
227 <xs:restriction base="xs:string">
228 <xs:enumeration value="replace" />
229 <xs:enumeration value="before" />
230 <xs:enumeration value="after" />
231 </xs:restriction>
232 </xs:simpleType>
233 <xs:simpleType name="nonEmptyString">
234 <xs:restriction base="xs:string">
235 <xs:minLength value="1" />
236 <xs:pattern value=".∗[^\s].∗" />
237 </xs:restriction>
238 </xs:simpleType>
239 </xs:schema>

Listing C.1: XML Schema - Representation of the Functional Variability Meta-Model.

106

Bibliography

[Act] Apache Software Foundation, Apache Active MQ. Apache Licence 2.0. URL
http://activemq.apache.org/. (Cited on pages 15 and 78)

[AIS77] C. Alexander, S. Ishikawa, M. Silverstein. A Pattern Language: Towns, Buildings,
Construction. Oxford University Press, New York, 1977. URL http://www.amazon.
fr/exec/obidos/ASIN/0195019199/citeulike04-21. (Cited on pages 23 and 24)

[Ale78] C. Alexander. The Oregon Experiment. Oxford University Press, New
York, NY, 1978. URL http://www.amazon.fr/exec/obidos/ASIN/0195018249/
citeulike04-21. (Cited on page 24)

[Ale79] C. Alexander. The Timeless Way of Building. Oxford University Press,
New York, 1979. URL http://www.amazon.fr/exec/obidos/ASIN/0195024028/
citeulike04-21. (Cited on page 23)

[Ant] Apache Software Foundation, Apache Ant. Apache Licence 2.0. URL http:
//ant.apache.org/. (Cited on page 40)

[App] Google, Goole App Engine. URL http://www.cloud.google.com/appengine.
(Cited on page 14)

[Art] JFrog, Artifactory. GNU Lesser General Public License. URL http://www.jfrog.
com/. (Cited on page 78)

[bea] Ingenieux Labs, Maven Elastic Beanstalk Plugin. URL http://beanstalker.
ingenieux.com.br/beanstalk-maven-plugin/. (Cited on page 85)

[BPM] Object Management Group, Business Process Model and Notation. URL http:
//www.bpmn.org/. (Cited on page 51)

[Che] Opscode, Chef. Apache Licence 2.0. URL http://www.opscode.com/chef/. (Cited
on page 44)

[Clo] MuleSoft, CloudHub. URL http://www.mulesoft.com/cloudhub. (Cited on
page 15)

[CVS] The CVS Team, Concurrent Versions System (CVS). URL http://cvs.nongnu.
org/. (Cited on page 37)

[Dat] DIQA, DataWiki. URL http://diqa-pm.com/de/DataWiki. (Cited on page 92)

107

http://activemq.apache.org/
http://www.amazon.fr/exec/obidos/ASIN/0195019199/citeulike04-21
http://www.amazon.fr/exec/obidos/ASIN/0195019199/citeulike04-21
http://www.amazon.fr/exec/obidos/ASIN/0195018249/citeulike04-21
http://www.amazon.fr/exec/obidos/ASIN/0195018249/citeulike04-21
http://www.amazon.fr/exec/obidos/ASIN/0195024028/citeulike04-21
http://www.amazon.fr/exec/obidos/ASIN/0195024028/citeulike04-21
http://ant.apache.org/
http://ant.apache.org/
http://www.cloud.google.com/appengine
http://www.jfrog.com/
http://www.jfrog.com/
http://beanstalker.ingenieux.com.br/beanstalk-maven-plugin/
http://beanstalker.ingenieux.com.br/beanstalk-maven-plugin/
http://www.bpmn.org/
http://www.bpmn.org/
http://www.opscode.com/chef/
http://www.mulesoft.com/cloudhub
http://cvs.nongnu.org/
http://cvs.nongnu.org/
http://diqa-pm.com/de/DataWiki

Bibliography

[Del] Apache Software Foundation, Apache Deltacloud. Apache Licence 2.0. URL
http://deltacloud.apache.org/. (Cited on pages 72 and 78)

[EC2] Amazon Web Services, Amazon Elastic Compute Cloud (EC2). URL http://aws.
amazon.com/ec2/. (Cited on pages 14, 15 and 78)

[Ecl] Eclipse Foundation, Eclipse. Eclipse Public License. URL http://www.eclipse.
org/. (Cited on page 78)

[EKN+12] G. Engels, M. Kremer, T. Noetzold, T. Wolf, K. Prott, J. Hohwiller, A. Hofmann,
A. Seidl, D. Schlegel, O. F. Nandico. Quasar 3.0 - A Situational Approach to
Software Engineering. Capgemini sd&m Research, 2012. (Cited on pages 7 and 26)

[Ela] Amazon Web Services, Amazon Elastic Beanstalk. URL http://aws.amazon.com/
elasticbeanstalk/. (Cited on pages 14, 15 and 78)

[Feh09] C. Fehling. Provisioning of Software as a Service Applications in the Cloud.
Master’s thesis, University of Stuttgart, 2009. (Cited on pages 7 and 15)

[FEL+12] C. Fehling, T. Ewald, F. Leymann, M. Pauly, J. Rutschlin, D. Schumm. Capturing
Cloud Computing Knowledge and Experience in Patterns. In Cloud Computing
(CLOUD), 2012 IEEE 5th International Conference on, pp. 726 –733. 2012. doi:
10.1109/CLOUD.2012.124. (Cited on page 27)

[FLMS11] C. Fehling, F. Leymann, R. Mietzner, W. Schupeck. A Collection of Patterns for
Cloud Types, Cloud Service Models, and Cloud-based Application Architectures.
Technical report, Institute of Architecture of Application Systems - University of
Stuttgart and Daimler AG, 2011. (Cited on pages 3, 9, 10, 27 and 29)

[FLR+11] C. Fehling, F. Leymann, R. Retter, D. Schumm, W. Schupeck. An Architectural
Pattern Language of Cloud-based Applications, 2011. (Cited on page 27)

[FLR+12] C. Fehling, F. Leymann, R. Retter, W. Schupeck, P. Arbitter. Cloud Computing
Patterns, volume 1. Springer, 2012. (Cited on pages 3, 7, 9, 10, 17, 27, 29, 79, 80,
86 and 87)

[FLRS12] C. Fehling, F. Leymann, J. Ruetschlin, D. Schumm. Pattern-Based Development
and Management of Cloud Applications. Future Internet, 4(1):110–141, 2012.
doi:10.3390/fi4010110. URL http://www.mdpi.com/1999-5903/4/1/110. (Cited
on pages 27 and 46)

[For] SalesForce, Force. URL http://www.force.com/. (Cited on page 14)

[Fus] FuseSource, Fuse Fabric. URL http://fuse.fusesource.org/. (Cited on page 15)

[GBS01] J. van Gurp, J. Bosch, M. Svahnberg. On the notion of variability in software
product lines. In Software Architecture, 2001. Proceedings. Working IEEE/IFIP
Conference on, pp. 45 –54. 2001. doi:10.1109/WICSA.2001.948406. (Cited on
page 20)

[Gep] Cloudsmith Inc., Gepetto. Apache end EPL. URL http://cloudsmith.github.
io/geppetto. (Cited on page 78)

108

http://deltacloud.apache.org/
http://aws.amazon.com/ec2/
http://aws.amazon.com/ec2/
http://www.eclipse.org/
http://www.eclipse.org/
http://aws.amazon.com/elasticbeanstalk/
http://aws.amazon.com/elasticbeanstalk/
http://www.mdpi.com/1999-5903/4/1/110
http://www.force.com/
http://fuse.fusesource.org/
http://cloudsmith.github.io/geppetto
http://cloudsmith.github.io/geppetto

Bibliography

[GHJV95] E. Gamma, R. Helm, R. Johnson, J. Vlissides. Design Patterns - Elements of
Reusable Object-Oriented Software. Addison-Wesley Longman, Amsterdam, 1
edition, 1995. 37. Reprint (2009). (Cited on pages 25 and 87)

[Git] GitHub Inc., GitHub. URL http://github.com. (Cited on page 15)

[Goo] Google, Google Docs. URL http://docs.google.com. (Cited on page 15)

[Gra] Gradleware, Gradle. Apache Licence 2.0. URL http://www.gradle.org/. (Cited
on page 40)

[Gri11] P. Grimm. Metamodell und Plattform fuer Mustersprachen und Musterkataloge.
Master’s thesis, University of Stuttgart, 2011. Language: German. (Cited on
page 23)

[Her] SalesForce, Heroku. URL http://www.heroku.com/. (Cited on page 14)

[HT] J. Hamano, L. Torvalds. Git. URL http://git-scm.com/. (Cited on page 37)

[HW03] G. Hohpe, B. Woolf. Enterprise Integration Patterns: Designing, Building, and
Deploying Messaging Solutions. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 2003. (Cited on page 25)

[Ivy] Apache Software Foundation, Apache Ivy. Apache Licence 2.0. URL http:
//ant.apache.org/ivy/. (Cited on page 40)

[Java] Oracle, Java. GNU General Public License. URL http://www.java.com/. (Cited
on pages 25 and 78)

[Javb] Oracle, JavaEE. GNU General Public License. URL http://www.oracle.com/
technetwork/java/javaee. (Cited on page 78)

[JCl] JClouds Inc., JClouds. Apache Licence 2.0. URL http://www.jclouds.org/.
(Cited on page 92)

[KM08] T. Kwok, A. Mohindra. Resource Calculations with Constraints, and Placement
of Tenants and Instances for Multi-tenant SaaS Applications. In A. Bouguettaya,
I. Krueger, T. Margaria, editors, Service-Oriented Computing - ICSOC 2008,
volume 5364 of Lecture Notes in Computer Science, pp. 633–648. Springer Berlin
Heidelberg, 2008. doi:10.1007/978-3-540-89652-4_57. URL http://dx.doi.org/
10.1007/978-3-540-89652-4_57. (Cited on page 14)

[Knu98] D. E. Knuth. The art of computer programming, volume 3: (2nd ed.) sorting and
searching. Addison Wesley Longman Publishing Co., Inc., Redwood City, CA,
USA, 1998. (Cited on page 60)

[LSR07] F. J. v. d. Linden, K. Schmid, E. Rommes. Software Product Lines in Action: The
Best Industrial Practice in Product Line Engineering. Springer-Verlag New York,
Inc., Secaucus, NJ, USA, 2007. (Cited on pages 7 and 22)

[M2E] Eclipse Foundation, m2eclipse. Eclipse Public License. URL http://eclipse.
org/m2e/. (Cited on page 78)

109

http://github.com
http://docs.google.com
http://www.gradle.org/
http://www.heroku.com/
http://git-scm.com/
http://ant.apache.org/ivy/
http://ant.apache.org/ivy/
http://www.java.com/
http://www.oracle.com/technetwork/java/javaee
http://www.oracle.com/technetwork/java/javaee
http://www.jclouds.org/
http://dx.doi.org/10.1007/978-3-540-89652-4_57
http://dx.doi.org/10.1007/978-3-540-89652-4_57
http://eclipse.org/m2e/
http://eclipse.org/m2e/

Bibliography

[Mava] Apache Software Foundation, Apache Maven. Apache Licence 2.0. URL http:
//maven.apache.org/. (Cited on pages 3, 10, 33, 38, 39 and 78)

[Mavb] Apache Software Foundation, Apache Maven Wagon Plugin. Apache Licence 2.0.
URL http://maven.apache.org/wagon/. (Cited on pages 78 and 88)

[Mie] R. Mietzner. Cafe Website. URL http://www.iaas.uni-stuttgart.de/
forschung/projects/cafe/. (Cited on page 32)

[Mie08] R. Mietzner. Using Variability Descriptors to Describe Customizable SaaS Applica-
tion Templates. Technical report, University of Stuttgart - Institute of Architecture
of Application Systems (IAAS), 2008. (Cited on pages 7, 31, 32, 55 and 57)

[Mie10] R. Mietzner. A method and implementation to define and provision vari-
able composite applications, and its usage in cloud computing. Ph.D. thesis,
Universitaet Stuttgart, Holzgartenstr. 16, 70174 Stuttgart, 2010. URL http:
//elib.uni-stuttgart.de/opus/volltexte/2010/5614. (Cited on pages 31, 32
and 61)

[MPH+ct] A. Metzger, K. Pohl, P. Heymans, P. Schobbens, G. Saval. Disambiguating the
Documentation of Variability in Software Product Lines: A Separation of Concerns,
Formalization and Automated Analysis. In Requirements Engineering Conference,
2007. RE ’07. 15th IEEE International, pp. 243–253. Oct. doi:10.1109/RE.2007.61.
(Cited on pages 55 and 58)

[MUTL09] R. Mietzner, T. Unger, R. Titze, F. Leymann. Combining Different Multi-tenancy
Patterns in Service-Oriented Applications. In Enterprise Distributed Object Com-
puting Conference, 2009. EDOC ’09. IEEE International, pp. 131 –140. 2009.
doi:10.1109/EDOC.2009.13. (Cited on page 14)

[NIS] The NIST Definition of Cloud Computing. URL http://csrc.nist.gov/
publications/nistpubs/800-145/SP800-145.pdf. (Cited on pages 9, 13 and 29)

[Ope] OpenStack LLC, OpenStack. Apache Licence 2.0. URL http://www.openstack.
org/. (Cited on page 86)

[OSI] OSI Reference Model. URL http://www.iso.org/iso/. (Cited on page 16)

[Oxf] Oxford English Dictionary, Archetype Definition. URL http://
oxforddictionaries.com/. (Cited on page 18)

[PBL05] K. Pohl, G. Boeckle, F. J. v. d. Linden. Software Product Line Engineering:
Foundations, Principles and Techniques. Springer-Verlag New York, Inc., Secaucus,
NJ, USA, 2005. (Cited on pages 55 and 58)

[Pez11] M. Pezzini. Integration Platform as a Service: Moving Integration to the Cloud.
Technical report, Gartner, 2011. URL http://www.gartner.com/id=1575414.
(Cited on page 15)

[Pup] Puppetlabs, Puppet. Apache Licence 2.0. URL https://puppetlabs.com/. (Cited
on pages 3, 10, 42 and 78)

110

http://maven.apache.org/
http://maven.apache.org/
http://maven.apache.org/wagon/
http://www.iaas.uni-stuttgart.de/forschung/projects/cafe/
http://www.iaas.uni-stuttgart.de/forschung/projects/cafe/
http://elib.uni-stuttgart.de/opus/volltexte/2010/5614
http://elib.uni-stuttgart.de/opus/volltexte/2010/5614
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
http://www.openstack.org/
http://www.openstack.org/
http://www.iso.org/iso/
http://oxforddictionaries.com/
http://oxforddictionaries.com/
http://www.gartner.com/id=1575414
https://puppetlabs.com/

Bibliography

[Rac] Rackspace, Rackspace Cloud Services. URL http://www.rackspace.com/. (Cited
on page 14)

[RH06] R. Reussner, W. Hasselbring. Handbook of Software Architecture, volume 2. Dpunkt
Verlag, 2006. Language: German. (Cited on page 21)

[Sal] SalesForce, SalesForce. URL http://www.salesforce.com. (Cited on page 15)

[Sca] Scalr Inc., Scalr. Apache Licence 2.0. URL http://www.scalr.com/. (Cited on
page 92)

[Ser] Apache Software Foundation, Apache ServiceMix. Apache Licence 2.0. URL
http://servicemix.apache.org/. (Cited on page 15)

[Smi11] D. M. Smith. Hype Cycle for Cloud Computing. Gartner Research, 2011. (Cited
on page 9)

[Spl] Carnegie Mellon Software Engineering Institute (SEI), Software Product Line
Definition. URL http://www.sei.cmu.edu/productlines/. (Cited on page 18)

[SVN] Apache Software Foundation, Apache Subversion. URL http://subversion.
apache.org/. (Cited on page 37)

[Toma] Apache Software Foundation, Apache Tomcat. Apache Licence 2.0. URL http:
//tomcat.apache.org/. (Cited on page 50)

[Tomb] Apache Software Foundation, Tomcat Maven Plugin. Apache Licence 2.0. URL
http://tomcat.apache.org/maven-plugin.html. (Cited on page 78)

[TOS] Organization for the Advancement of Structured Information Standards (OASIS),
Topology and Orchestration Specification for Cloud Applications (TOSCA). URL
https://www.oasis-open.org/committees/tosca/. (Cited on page 86)

[VCl] VMWare, vCloud. URL http://www.vmware.com. (Cited on page 14)

[VVE10] T. Velte, A. Velte, R. Elsenpeter. Cloud Computing, A Practical Approach. McGraw-
Hill, Inc., New York, NY, USA, 1 edition, 2010. (Cited on page 9)

[XML] World Wide Web Consortium (W3C), Extensible Markup Language (XML). URL
http://www.w3.org/XML/. (Cited on page 75)

All links were last followed on July 31, 2013.

111

http://www.rackspace.com/
http://www.salesforce.com
http://www.scalr.com/
http://servicemix.apache.org/
http://www.sei.cmu.edu/productlines/
http://subversion.apache.org/
http://subversion.apache.org/
http://tomcat.apache.org/
http://tomcat.apache.org/
http://tomcat.apache.org/maven-plugin.html
https://www.oasis-open.org/committees/tosca/
http://www.vmware.com
http://www.w3.org/XML/

Declaration

I hereby declare that the work presented in this thesis is
entirely my own and that I did not use any other sources and
references than the listed ones. I have marked all direct or
indirect statements from other sources contained therein as
quotations. Neither this work nor significant parts of it were
part of another examination procedure. I have not published
this work in whole or in part before. The electronic copy is
consistent with all submitted copies.

Ort, Datum, Unterschift

	1 Introduction
	1.1 Motivation
	1.2 Focus
	1.3 Definitions and Conventions
	1.4 Outline

	2 Fundamentals
	2.1 Cloud Computing
	2.1.1 Essential Characteristics
	2.1.2 Multi-Tenancy
	2.1.3 Cloud Service Models
	2.1.4 Deployment Models
	2.1.5 Distinction to Related Technologies

	2.2 Software Product Line Engineering
	2.2.1 Terminology
	2.2.2 Product Variability
	2.2.3 The Software Product Line Process

	2.3 Patterns
	2.3.1 Christopher Alexander's Architecture Patterns
	2.3.2 Software Engineering Patterns

	3 Related Works
	3.1 Cloud Computing Patterns
	3.1.1 Intention
	3.1.2 Structure of a Pattern
	3.1.3 Cloud Computing Pattern Catalogue

	3.2 Cafe - Composite Application Framework
	3.2.1 Cafe's Variability Model

	3.3 Apache Maven
	3.3.1 Terminology
	3.3.2 Life-Cycles, Phases, Goals and Plugins
	3.3.3 Maven Repository Types
	3.3.4 The Project Object Model
	3.3.5 Maven Profiles
	3.3.6 Maven Project Types
	3.3.7 Distinction to Related Tools
	3.3.8 Relation to Software Product Line Engineering

	3.4 Puppet Labs Puppet
	3.4.1 Terminology
	3.4.2 Puppet Constellations
	3.4.3 Related Technologies

	4 Concept and Specification
	4.1 Superordinate Context
	4.2 Requirements
	4.2.1 Functional Requirements
	4.2.2 Non-Functional Requirements

	4.3 Functional Architecture
	4.4 The Cloud Computing Pattern Development Process
	4.5 Functional Project Structure Model
	4.6 Functional Variability Meta-Model
	4.7 Formal Variability Graph Model
	4.8 The Configuration Flow Computation Algorithm
	4.9 Functional Workspace Agent Components

	5 Design and Implementation
	5.1 Abstract Reference Architecture
	5.2 Maven Workspace Plugin Design
	5.2.1 Technical Components
	5.2.2 The Pattern Goal Invocation Flow
	5.2.3 Pattern Defined Action Invocation
	5.2.4 Maven Workspace Plugin Goal Invocation Syntax
	5.2.5 XML Representation of the Functional Variability Meta-Model

	5.3 Used Technologies and Tools
	5.4 Implemented Reference Pattern(s)
	5.4.1 Three-Tier Cloud Application
	5.4.2 Message-Oriented Middleware

	6 Summary and Outlook
	6.1 Summary
	6.2 Outlook

	A Use Case Appendix
	B Variability Graph Appendix
	C XML Schema Appendix
	Bibliography

