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 Abstract

 Abstract

Software-defined Networking (SDN) [1] is a big trend in network research and 
industry.  The key idea of  SDN is  to  separate  the  control  and the  forwarding 
functionality. In conventional networks the firmware on the switches determines 
how the switches handle packets, so that they treat all  packets in exactly the 
same  way.  This  leads  to  static  networks,  that  can  not  adapt  to  changing 
requirements.  In  Software-defined  Networks  a  (logically)  centralized controller 
enables the network administration to change the routing simply by updating the 
controller. The controller then can change the flow table entries of a subset or 
even all the switches in the network. There is no longer the need to update every 
switch separately. SDN is in general used for highly adaptive routing to fit the 
requirements of  dynamic load,  frequent  topology changes,  migration of virtual  
machines and hosts.
This work is about consistent route updates in Software-defined Networks. Two 
classes  of  consistency  have  to  be  distinguished.  The  first  one  is  eventual  
consistency, that means during the update inconsistency's can occur, but the final  
state will be consistent. The second one is strict consistency, here the routes are 
always  consistent,  even during  the update process.  Inconsistent  updates  can 
lead  to  security  issues,  loss  of  connection,  inaccessibility  and  many  other 
problems.  In  current  networks  updates  are  necessary  to  fit  the  frequently 
changing requirements.
The problem with (strict) consistent updates in SDN is that there are no atomic 
updates because the switches are inherently distributed. And even if there would 
be such an update, it  would affect packets in transit.  Therefore the goal is to 
avoid transient route inconsistencies like “black holes” and loops.
There  are  already  a  couple  of  update  strategies  for  SDN  which   result  in 
consistent updates, but all of them are limited in some way, for example some 
can just be used for OSPF or BGP.  There is also one approach by Reitblatt et al. 
[3], that is not limited. This strategy is a two phase update which leads to a “per 
packet consistency”. The old route and the new route are installed at the same 
time, so that every packet  is on a consistent route (the old route, before the  
update, or the new one, after the update). This approach  has an overhead in  
terms of storage-use, because the new route exists at the same time as the old 
one and also needs rewriting of the packet headers to signal the phase. But the 
storage capacity  of  switches is  limited  and so a  doubling  of  forwarding  table 
space is a high burden. The approach shown in this work is more light-weight and 
requires no change of header fields and no additional forwarding table space or 
any other modifications of the switches.
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The key idea is to update the switches backwards according to the new route. 
That means the first switch that is updated is the predecessor of the destination 
and the last one is the source. So packets will follow the old route until they reach 
an already updated switch which will forward them along the new route. This is 
also true for  packets in  transit.  On the downside this  approach can in  some 
situations  “only”  lead  to  the  eventual  consistency,  which  is  a  result  of  the 
underlying  network  model  (asynchronous  communication).  To  achieve  strict 
consistency it  would be necessary to  avoid certain updates or  to  change the 
underlying network model.
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1. Introduction

In the last years the requirements for networks changed, such that the traditional 
network architecture no longer can satisfy the needs of the networks. In the past,  
networks  were  designed  to  fit  client-server  communication.  In  the  traditional 
network  architecture  switches  are  forwarding  packets  according  to  there  pre-
installed firmware. All packets are handled in the same way by the switch. That is 
the reason why it is a problem for common networks, which are static, to adapt to  
dynamic changes.
Today we are dealing with different requirements. Cloud-computing for example 
needs dynamic distribution of storage and processing power. Carriers today are 
facing a fast growing need for more bandwidth and mobility.
It  is  a  very  complex  and  challenging  task  to  adapt  the  traditional  network 
architecture to todays tasks. Complex protocols are developed to achieve this. To 
implement a new policy it can be necessary to update hundreds or thousands of  
devices manually. This is of course very time-consuming, so it can for example 
take a few hours to migrate a single virtual machine in a data center.
To  face  the  new  requirements,  Software-Defined  Networking  (SDN)  [1]  was 
developed  by  the  Open  Networking  Foundation  (ONF).  SDN  is  a  network 
architecture, where the control functionality (done by the controller in software) is 
decoupled  from  the  forwarding  functionality  (performed  by  the  switches  in 
hardware). In this way it is possible to abstract the underlying infrastructure, such 
that  applications  can  treat  the  network  as  a  logical  unit.  The  controller  is 
(logically) centralized and has a global view of the entire network, in contrast to  
traditional  networks,  where  on  each  switch  a  distributed  algorithm is  running 
independently.  Network  administrators  now can configure  the  network  just  by 
changing the software running on the controller and do not need to update every 
single device in the entire network separately, but only the controller. This makes 
SDN highly flexible so that it can face todays requirements.
The OpenFlow protocol [2, 5] offers a standard for the communication between 
the controller and the switches in SDN. OpenFlow was the first standard and is 
already accepted and supported by academia and industry.
As  described  above,  SDN provides  a  powerful  tool  for  adapting  networks  to 
changing requirements. Though SDN assumes a logically centralized controller 
the whole network is in fact still a distributed system. Therefore updates can not 
occur at precisely the same time on every switch. Even if the initial and the final 
state  are  consistent,  this  may  lead  to  inconsistent  updates,  which  result  in 
transient “black holes” or transient loops. If an already updated switch forwards a 
packet to a switch that was not part of the old route, then this new switch has no 
entry in its forwarding table and therefore does not know what to do witch this 
packet – the packet is in a black hole – which means the packet is lost. Loops 
cause  packets  to  circle  in  the  network,  so  that  they  may  not  reach  their 
destination before they are dropped because their time to life equals zero.
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But even if there would be an atomic update such that the forwarding tables of all  
switches  become  updated  at  the  same  time,  such  an  update  would  still  hit 
packets that are in transit.
There are several  approaches that address this problem, for example one by 
Reitblatt et al. [3] and another one by MCGeer [4]. The approach by Reitblatt et 
al. is a two phase update, that means during the update the old route persists 
and a second route is introduced, this approach modifies the packet header fields 
to signal to which phase (route) a packet belongs. This approach needs also a lot  
of forwarding table space on the switches, which is limited. The approach shown 
here does not need a modification of header fields and needs less forwarding 
table space.
The second approach by MCGeer needs much less forwarding table space than 
the one by Reitblatt et al. and also no modification of header fields, but it creates 
a  lot  of  additional  traffic  around  the  controller,  because  the  control  plane  is 
exploited to forward data during the update. The new approach described here 
does  not  use  the  control  plane  to  forward  packets,  therefore  it  creates  no 
additional traffic around the controller.
In  this  work  a new approach is  shown that  avoids  black  holes  and leads to 
eventual consistency. In some cases the approach can lead to strict consistency 
as well, but without modification of the basic approach this is not true in general,  
because it is possible that there occur transient loops during the update process. 
The idea is to update the route beginning with the destination, backwards to the 
source. In contrast to previous approaches this one will  not need changes of 
header fields. For each packet a guarantee can be given, that the packet will 
follow entirely the old path (before the update), entirely the new path (after the 
update), or it will  start on the old path and then, after is has reached the first  
updated switch, continue its way through the network on the new path (during the 
update). Furthermore it is guarantied that after a packet has reached an updated 
switch it will not reach a switch that is not updated.
In the following “OpenFlow” and SDN are described. Then there is an introduction 
to unicast-routing in general, followed by an overview of related work. In the third 
chapter the system model, this work is based on, is introduced. Furthermore it  
contains  a  formal  description  of  the  problem.  The  forth  chapter  contains  the 
solution of the described problem and a formal proof of the correctness of this 
solution.  Chapter five describes the implementation, which solves the update-
problem, in the way described in chapter four. The implementation was tested 
and  the  results,  as  well  as  informations  about  the  test-setup  and  the  used 
metrics,  can be found in chapter six.  All  this is finally summarized in chapter 
seven.
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2. Background and related work

2.1 Unicast-Routing
In this chapter an overview about unicast routing strategies is provided, note that 
just  routing  in  electronic  data  networks  using  packet  switching  technology  is 
concerned. In packet switching networks packets are forwarded from the source 
to the destination via intermediate nodes which can be for example routers or 
switches. The routers and switches (in the following just the term switch will be 
used) maintain forwarding tables that contain the information on what outgoing 
line a packet has to be forwarded to reach its destination. Routing is the task to 
find a path from the source to the destination. A routing decision can be made 
separately for each packet or can be done once for a whole stream (often called 
“flow”) of packets.
In  a  unicast  network  a  packet  is  forwarded  from one  source  to  exactly  one 
destination. This is in contrast to multicast networks where one packet can be 
forwarded to multiple destinations. Broadcast is a special case of multicast where 
one packet is forwarded to all nodes within the network.

Two kinds of routing strategies can be distinguished in general:

1. Static  routing  (also  called  non-adaptive  routing)  is  using  pre-computed 
routing  tables  and can therefore  only be  used in  static  networks  or  in 
networks, where changes are occurring very rarely.

2. Dynamic  routing  (also  called  adaptive  routing)  uses  routing  tables  that 
become  generated  automatically  by  routing  protocols,  this  makes  it 
possible to route packets in dynamic networks, where topology changes 
are occurring frequently.

In the following the focus is on dynamic routing, because SDN, which is the topic 
of  this  work,  is  a  design that  was invented to  face the flexibility  problems in 
dynamic networks.
There are three different strategies for dynamic routing:

1. Centralized routing uses a (centralized) Routing Control Center (RCC). 
In  general  centralized  routing  is  not  suitable  for  distributed  systems 
because it provides a single point of failure, but because SDN assumes a 
logically  centralized  controller  it  is  worth  a  closer  look.  The  main 
advantage of centralized routing is that, due to the global view of the RCC, 
it  is  possible  to  compute  optimal  routes.  Routes  can be  computed  for 
different metrics, for example minimum delay by using Dijkstra's algorithm. 
Another advantage is that not every node has to use resources to compute 
its routing table. 
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Depending on the algorithm (and the networkt topology) it is also possible 
that  a  centralized  algorithm  reduces  the  comunication  costs  (it  is  the 
number of messages send) for creating the routing table.
The main disadvantage is,  that the RCC is of  course a single point  of 
failure and if it fails no routing updates can be done, but messages are still 
forwarded based on the (outaged) routing tables of the switches. There is 
also a high communication effort for the RCC which has to send routing 
table updates to every switch and has to receive messages containing 
information about topology changes. Another problem closely related to 
the topic of this work is inconsistent updates. Inconsistent updates can 
occure in centralised routing, because the central computed routig tables 
have to be send to the switches. It is not possible to ensure that every 
switch will receive or install the update at the same time.

2. Isolated routing is a strategy, where every switch does its own routing. 
There is no exchange of routing information. A popular representative is 
the “Backward-Learning-Algorithm” which is introduced now.
If a switch has no entry in its routing table for a packet it will forward the 
packet  on all  outgoing lines,  this  is  called flooding.  Flooding creates a 
huge  message  overhead,  but  ensures  that  the  packet  will  reach  its 
destination  (If  it  is  reachable)  and it  also  finds  the  shortest  path(s).  In 
addition to this first rule, there is another rule: If a switch receives a packet 
it also learns a path to the source with the length coded in the header of 
the packet. If the learned route is better (the length of the path is smaller)  
then a new entry is added to the routing table. In this way not every packet 
has to be flooded because after every flooding all  switches will  know a 
route to the source. That means the switches are learning routs over time. 
The problems with  this  approach are,  at  first,  the overhead created by 
flooding and that the network is not learning about changes in the network, 
if  they  decrease  the  performance.  The  last  problem  is  solved  by 
introducing a time to live for the routing table entries, so a switch will forget 
about routes. This introduces, of course, a parameter which is critical for 
the performance of the algorithm. The first problem can not be solved, but 
its effect can be reduced by limiting the flooding and doing a more clever 
flooding (for example do not send messages to switches from which you 
already received the message or only flood a message once, even if you 
receive it multiple times).

3. Distributed  routing  is  an  approach,  where  every  node  periodically 
exchanges routing information with its neighbors. This information is then 
used by each node to set up its own routing table. There are two different 
types of algorithms for this approach.
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The first one is the “distance-vector routing”. To every connection between 
two nodes a number representing the costs is assigned. Each node knows 
the  costs  to  its  (direct)  neighbors  and  periodically  sends  this  routing 
information  (distance-vectors)  to  its  neighbors.  If  a  node  receives  a 
distance-vector from its neighbor, it can compute the communication costs 
to  all  neighbors  of  the  sender  via  the  sender.  In  this  way  the  locally 
measured costs are propagated through the network. Improvements in the 
communication costs are propagated fast, but if the communication costs 
become  worse,  then  the  algorithm  suffers  a  problem  called  “count  to 
infinity”.  If  a node A fails then its neighbors will  notice that and set the 
communication  costs  to  this  neighbor  to  infinity.  This  information  is 
propagated to their neighbors, but ,unfortunately,  the neighbors know a 
better path to A via another node and the neighbor of A. This is in fact a  
cycle! That means that the direct neighbors of A will learn a new path to A 
which is cheaper than infinity but does not exist in reality. Of course, finally, 
the communication costs within the cycle will increase to a value that is 
representing infinity, but this takes some time.
The second algorithm is the link-state routing. Each node measures the 
communication  costs  to  its  direct  neighbors  and  then  sends  this 
information as a link-state-packet to each node in the network, this creates 
a global  view of  the network.  To send the link-state-packets flooding is 
used. If  a node has received a link-state-packet from every other node 
within the network it can compute its routing table based on this global 
view. The downside is that every node computes exactly the same routing 
table, which is of course a waste of processing power. Furthermore this 
approach does not scale for large networks.
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2.2 SDN/OpenFlow
Software-defined  Networking  (SDN)  [1]  is  predicted  to  be  one  of  the  biggest 
network-trends  in  2013,  many big  companies  have  announced  SDN enabled 
hardware  products  for  this  year.  In  the  SDN network  architecture  the  control 
plane  is  decoupled  from  the  forwarding  functionality  and  is  directly 
programmable.  This  is  achieved  because  the  network-control  is  done  by  a 
logically  centralized  controller,  which  is  connected  to  all  switches  within  the 
network and can program the forwarding tables of this switches. Forwarding is 
then performed by the switches, according to the forwarding table entries, at line 
rate.  This  makes  it  possible  for  applications  to  abstract  the  underlying 
infrastructure and to treat the network as a logical unit. The network architecture 
is shown in figure [1]. The Application can access the SDN controller via an API, 
the control is done by this software-based controller, which has a global view and 
can  therefore  be  used  to  compute  optimal  routes  for  a  chosen  metric.  The 
centralized controller enables IT to change the networks behavior in real time and 
provides the full control over the network to the user. The fact that the controller is 
now programmable by the user, and not only by software updates provided by the 
hardware vendors, leads to an unprecedented flexibility of the networks.
Because SDN assumes a centralized controller which sends the routing tables to 
the switches, special switches are needed, that are able to communicate with the 
controller.
The OpenFlow protocol is the first standard communication interface between the 
control  and the forwarding  plane,  that  means it  describes the communication 
between the controller and a switch. OpenFlow is based on Ethernet switches 
and allows it to add or remove entries in the forwarding tables of switches. As the 
name  indicates  OpenFlow  uses  the  concept  of   flows,  that  means  each 
connection between two endpoints is described by a unique set of parameters 
like, MAC address, IP address or port number of source and destination. The 
usage of flows allows it to route the communication between two endpoints on 
different  paths,  for  example  based  on  QoS  (Quality  of  Service)  it  would  be 
possible that the data of a delay sensitive application is routed on a path with a 
low end-to-end delay, while a data transfer, which needs a high bandwidth, is 
routed on a path that provides a large bandwidth. Current IP based routing does 
not provide this flexibility, because it routes all the communication between two 
end points along the same path. In the meantime OpenFlow is well accepted and 
supported by academia and industry. Note that OpenFlow provides an interface 
which can be used for the communication between controller and switches, but it 
provides no functionality like to ensure the order of the execution of an update. 
Therefore OpenFlow is no solution to the basic problem of updates in distributed 
systems, which is the fact that it is impossible to ensure that all switches receive 
the update at the same time.
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Figure [1]: The SDN Architecture. Source: [1] on page 7
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2.3 Related work
There has been a lot of research around many aspects of SND and OpenFlow,  
there are also some papers that are closely related to the topic of this work. Two 
of  these  papers  are  introduced  in  the  following  section,  because  of  their 
importance  for  this  work.  The  first  one  is  interesting  because  the  approach 
described within it gives almost the same guarantees as the approach described 
in this work. The second one can be seen as “state of the art” and is therefore the 
approach this work will be compared with.

The first paper that is discussed here is “A Safe, Efficient Update Protocol for  
OpenFlow Networks” by Rick MCGeer [4]. The approach described by MCGeer 
exploits the SDN architecture in which a centralized controller is connected to 
each node via a control link, that is originally only used for transmitting control 
messages.
The update protocol consists of four epochs. In the first epoch the old ruleset is 
installed on the switches and all  packages are following the  old  path.  In  the 
second  epoch  an  intermediate  transfer  function  is  send  to  the  switches. 
According to this intermediate transfer function a switch is forwarding packets in 
the same way as in the old ruleset, if the new ruleset is equal to the old one. If the 
new  ruleset  differs  from  the  old  one,  the  switch  forwards  all  packets  to  the 
controller.  Every  switch  sends  a  completion  signal  to  the  controller  if  it  has 
installed the new ruleset. If the controller has received a completion signal form 
each switch it waits for the maximum network delay and then epoch three begins. 
In epoch three the controller sends the new ruleset to all switches, which send a 
message back that is indicating, that they are now forwarding packets according 
to the new ruleset.  If  the controller  has received such a message from every 
switch, it will again wait for the maximum network delay. After that the update is 
completed.
The maximum space that is required on the switches is the maximum of the three 
rulesets (the old, the intermediate and the new ruleset). The intermediate step is 
necessary  because  for  any  switch  it  is  unclear  if  it  is  forwarding  packets 
according to the new or the old ruleset, during the update process.
This approach gives the guaranty that a packet is handled by a consistent set of  
rules, either completely by the old ruleset, or completely by the new ruleset. If a 
packet  is  once  forwarded  under  the  new  ruleset,  all  following  packets  are 
forwarded according to the new ruleset. This leads to a “per flow consistency”, a 
flow is either entirely forwarded under the old ruleset, or entirely under the new 
ruleset, or the prefix of the flow is forwarded according to the old ruleset and the 
suffix is forwarded according to the new ruleset.
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The  approach  shown  in  this  work  has  similar  guarantees.  A packet  is  either 
following entirely the old route, entirely the new route, or it starts on the old route 
and after it reaches the first updated switch, it is forwarded from there on the 
remaining part of the new path. Furthermore the approach described in this work 
introduces the missing knowledge, that makes the intermediate transfer function 
necessary in MCGeer's approach.
The  downside  of  MCGeer's  approach  is  obviously  the  high  traffic  that  is 
generated around the controller, which is not only sending and receiving control 
messages, but also actively forwarding data packets (the ones that are forwarded 
to the controller during epoch two). In contrast the approach shown in this work is 
not using the control layer to forward packets and therefore the controller is not  
involved in the forwarding.

The second paper that is introduced now is “Abstractions for Network Update” by 
Reitblatt et al. and was published on the SIGCOMM'12. The approach avoids the 
inconsistencies that can occur during the update by using a two phase update 
strategy. The old route persists during the update and an additional flow, along 
the new route, is created. Therefore it is necessary to modify the header fields to 
indicate to which phase a packet belongs. At first packets follow the old route, 
then the controller creates the new flow along the new route. After this the ingress 
switch is updated to change the header field (typically the VLAN tag is used) to 
indicate that all following packets belong to the second phase. All packets that 
are  tagged  prior  to  the  ingress  switch  update  follow  the  old  route  to  their 
destination, all  packets that are tagged after the update of the ingress switch 
follow  the  new  route.  This  approach  provides  per  packet  consistency,  which 
means that each packet is handled by exactly one globally consistent state. This 
means each packet is processed either on the old path before the update, or on 
the new path after the update, but never on a mixture of them.
A strength of this protocol is that the properties of a path are preserved during the 
update, for example if the path is free of forwarding loops before and after the 
update, it is guaranteed, that there will be no loops during the update. On the 
downside this approach needs forwarding table space for both routes, the new 
and the old one, at the same time and it is necessary to modify the header field.  
The approach described in these works requires no modification of the header 
fields and needs less forwarding table space.
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3. System-Model and Problem Statement
In  the  following  a  description  of  the  System-Model  that  is  required  by  the 
algorithm,  described  in  this  work,  is  given.  The  algorithm  assumes  an 
asynchronous system, that means there is no maximum delay for messages that 
are sent. The only guaranty that is given an asynchronous system is that the 
messages arrive eventually – that means also that no messages are lost, which 
is important for an update-protocol. Furthermore the only other assumption is that  
we assume FIFO (First In First Out) channels, this is required for the use of TCP 
in practice. Note, that even if FIFO channels are used, that there is no guaranty 
that the FIFO order consists during an update. For example the old route could  
be one with a high delay, while the new route has a low end to end delay. In this  
case it would be possible, that the first packet send via the new route arrives 
before  its  predecessor,  which  is  the  last  packet  send  via  the  old  route.  The 
algorithm assumes  an  SDN,  the  components  used  within  such  an  SDN are 
introduced in the following.

3.1 System-Model
This section is about the network, more precisely the hardware components used 
within a SDN. There are three components: Hosts, multilayer switches and the 
controller. The hosts are connected  (they can exchange information/data) via the 
multilayer switches with other hosts. The multilayer switches are forwarding the 
packets,  send by the  hosts,  to  their  destinations.  The routing  is  done by the 
controller  which  calculates  the  routes  through  the  network  and  sends  the 
resulting forwarding tables to the switches.  In  the following section the single 
components are considered in detail.

Hosts are participants in a network, (Assuming the client-server model) they can 
be clients or servers . A client is a hardware component that is using services that 
are provided by another hardware component, which is called server. These two 
separate hardware components (Client and Server) are communicating with each 
other via the network. In addition to the client-server role a host can also be a 
node in a  peer-to-peer system. A peer is a network participant that is a server as 
well as a client. In general a host is a communication endpoint in a network.

Multilayer  switches are  a  group  of  switches,  that  are  using  more  packet 
information  for  the  switching  than  ordinary  switches,  which  only  use  the 
information provided on layer two (data link layer) of the OSI model. A Switch is a  
network device that forwards incoming packets to their destination based on the 
information  provided  in  the  header  of  the  packets.  Every switch  has  its  own 
forwarding table, which is of course limited in terms of storage capacity.
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The  Controller is  something  like  the  brain  of  a  SDN,  it  is  calculating  the 
forwarding table for each switch and sends these tables to the switches. To fulfill 
this task the controller has a direct link to each switch, these links are called 
control links and are used to exchange control messages. There are approaches 
that use the control links also for forwarding tasks, but the approach described 
here  is  only  using  them  for  control  messages.  The  controller  provides  two 
interfaces, the first one is the so called southbound interface which is responsible 
for the communication between the controller  and the switches.  As described 
above there is already a standard for the communication between controller and 
switch, which is the OpenFlow protocol. The second interface is the northbound 
interface, which defines the communication between controller and applications. 
For example the controller exposes information about network topology or traffic 
to the application. Until now there is no standard for this interface defined, for this 
work floodlight was used.

Figure [2] shows an example network with 5 hosts, 3 switches and one controller.

Figure [2]: An example topology showing a SDN with 5 hosts, 3 switches and one controller
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3.2 Problem Statement
As described above the problem with updating routes in SDN is, that it is hard to 
guarantee consistency during the update, because each update hits packets that 
are already in transit. In order to perform an update routing tables on distributed 
switches have to be updated by the (centralized) controller. Without a maximum 
message delay the only possibility to ensure the order in which the switches are 
updated is to update one single switch and to wait for its confirmation. But this  
strategy is no solution to the basic problem, which is how to determine the order  
for a consistent update. The next chapter shows an algorithm that solves this 
problem. In the following the problem is formalized.
A route is defined by a sequence of switches s, these switches can be numbered, 
starting with the first switch (switch1) that receives a packet. To the last switch
(switchn)  the number n is assigned, this switch is the one directly before the 

receiver  or  it  is  an  egress  switch  (switch  that  forwards  packets  out  of  the 
network). A route update u is a sequence of k instructions m j (j  ϵ [1..k]) that 
converts one route r old into another route r new . That means one sequence of 
switches  is  converted  into  another  sequence  of  switches.  The  problem of  a 
consistent update is to order the instructions m j in a way such that no black 
holes and no loops occur. A black hole occurs if a packet is forwarded to a switch 
that has no flow-table-entry for the flow the packet belongs to. This results in the 
drop of the packet. A loop is a sequence of switches, in which at least one switch 
occurs more than once. That means a packet that is forwarded according to such 
a sequence will reach at least one switch more than once. The packet is in a 
circle. Such a circle can be a transient loop, that occurs during the update but is  
not present in the final route after the update, but it can also be a permanent 
loop, that is also present in the final route after the update is finished.
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4. Conceptual Design
This chapter provides detailed information about the new algorithm that is the 
topic of this work. At first the algorithm is introduced in an informal way, than a 
formal description follows. After the formal descriptions it is shown that the update 
can cause transient loops and it is proven, that the update protocol avoids black 
holes.

4.1 The Algorithm
The key idea of the algorithm is to update the new route backwards. That means 
if there is an old route that has to updated to a new route, then the algorithm will  
at first update the last switch on the new route. After the last switch is updated the 
one before the last one is updated and so on until the update reaches the first  
switch. If a switch is part of the new route as well as of the old route, then its old  
routing table is replaced by the new one (this step helps to save routing table 
space and avoids the modification of header fields that is necessary in a two 
phase update, as the one by Reitblatt et al.). If a switch is part of the new route,  
but not part of the old route, than a new entry is added to its routing table.
More formal:
Given two sequences of switches s, that belong to two different routes r old and
r new , the one sequence can be converted into the other one by executing the 

following algorithm:
For each switch s on the new route there is one instruction m. There are two 
types of instructions, the first one is updating an existing flow-table-entry. The 
second one is adding a new flow table entry to the forwarding table of a switch.  
The first kind of instruction is used for switches that belong to both sequences. 
The second one is used for switches that belong only to r new . The instructions 
are  changing  the  forwarding-table-entries  of  the  switches  according  to  the 
sequence of  r new . The instructions m j are ordered in a way that their order 
matches the reverse of the sequence of switches s of the new route r new . If the 
sequence of switches is numbered consecutively by 1 to n, then the instructions 
are ordered starting with mn downwards up to m1 .
If  the  instructions  are  executed  in  this  order,  then  the  resulting  sequence  of 
switches s is free of loops. Furthermore during and after the update process there 
will  be no black holes. But it  is  possible that transient loops occur during the 
update process. Transient loops are discussed in detail in the following section. 
Note that during and after the update in each flow-table there is at most one entry 
per flow.
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4.2 Transient Loops
During the update the old  route  will  not  persist.  The old  route is  much more 
something like a bypass (or a sequence of bypasses) to the new route, that is 
used by packets that are in transit on the old route during the update. This also 
means, that during the update it is hard to tell what way each packet takes. A 
packet may start on the old route and continue its way completely on the old 
route, or it starts on the old route and continues on the new route. In general the 
following holds: After a packet has once been forwarded on the new route it will 
no longer be forwarded along the old route, because all switches below the path 
are already updated. However there is an exception to this general behavior. The 
update strategy described here prevents no transient loops. Transient loops are 
loops that occur during the update process but do not persist and are therefore 
not present after the update. Transient loops occur if  the new route connects 
(direct or indirect!) two switches that are connected (direct or indirect) on the old 
route in reverse order. If switcha forwards packets to switchb on the old route 
and switchb forwards  packets  to switcha according  to  the  new  route,  then 
packets  that  are  in  transit  between  this  two  switches  during  the  update  of
switcha will be forwarded back to switcha and therefore circle exactly one time.

Figure 2 shows an example for a topology that leads to a transient loop during  
the update. Figure 2 a) shows the topology before the update, figure 2 b) shows 
the loop during the update and figure 2 c) shows the resulting topology after the 
update.
According to the update protocol at first switchd (in the following per switch just 
one capital letter is used to address it.) is updated, in this case no changes occur. 
In the next step B is updated to forward packets to D instead of forwarding them 
to C. In this way an intermediate route is created that forwards Packets from A to 
B and from B to D. After that, C's routing table is updated to forward packets to B. 
This step creates the transient loop! Packets that are in transit between B and C 
during this update step will  be forwarded from C back to B. That  means this 
packets circle exactly one time. In the next step A is updated and the update is 
finished.
Always, if a transient loop is generated during the update, packets can circle in 
this transient loop at most once and all packets that enter such a transient loop 
will circle there exactly one time.
The Algorithm described in this work provides no solution to this problem.
However it is important, that even if the algorithm produces transient loops the 
final route will always be free of loops, because there is always at most one flow-
table-entry per flow at each switch at each time. With one flow-table-entry it is 
possible to create a loop, but in this case the destination is not part of the route 
with the loop. This case can not occur, because we start with the destination and 
update from there.
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4.3 Black holes
The update protocol described above will always lead to black hole free routes, 
that means every switch that receives a packet always knows to which switch it 
must forward the packet. This is not only valid for the start and the final state, but 
also for all intermediate occurring states. The proof of this is shown below.

Let the switches on the new route be consecutively numbered, where the start 
has the number 1 and the destination is labeled by n.

At the beginning there is just the old route, which is by definition black hole free.  
(Note: Even if there is no route at the beginning, the route created is black hole  
free)

According  to  the  update  protocol,  an  entry  to  the  flow  table  of switchn−1 is 
added,  so  that  arriving  packets,  which  belong  to  the  updated  flow,  will  be 
forwarded to switchn . If there already is an entry in the flow table, this entry is 
overwritten (changed). 
There are 3 cases that have to be distinguished.

1.) Switchn−1 is the start:
That means, there is now a new route from the start (n-1) to the destination (n) 
and every switch on this route has a flow table entry for the flow. In addition to 
that an modified version of the old route exists. It is not exactly the old route,  
because switchn−1 is of course also the start of the old route and the entry in its 
flow table has been changed. That means new packets will follow the new route,  
which also means that there are no new packets entering the old route. Packets 
that have entered the old route before the update will reach the destination on the 
old route. So there are neither black holes on the new route, nor on the old route.

2.) Switchn−1 is a switch on the old route, but not the start.
Like in the first case, packets arriving at switchn−1 are forwarded to switchn and 
packets that already have passed switchn−1 will continue their way on the old 
route to  switchn . New packets  will  be forwarded on the old  route until  they 
reach  switchn−1 then they will follow the new route to  switchn . As described 
above the old route is considered to be black hole free, furthermore the new route 
is black hole free.

3.) Switchn−1 is not on the old route.
That means no other switch will forward packets to switchn−1 and all packets will 
follow the old route. The change made has no effect to the network so far. The 
old route is completely unaltered and therefore black hole free.
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The next step is to update all the other switches along the new route in reverse 
order. That means the next switch updated is switchn−2 . In general the flow table 
of switchi−1 (1 < i < n) is updated, so that there is a connection from switchi−1

to switch switchi . Note there is also a connection from switchi to switchn .
Again 3 different cases must be distinguished.

1.) i=2: In this case switchi−1 is the start.
As described above switchi−1 is connected to switchi , which is connected to 
the  destination.  Therefore   the  new route  is  completely  established.  All  new 
packets will follow the new route. Packets on the fly will follow the old route until  
they reach a switch that belongs to the new route, after that they will follow the 
new route. If there is no switch, that belongs to the old route as well as to the new 
route, then packets on the fly will follow the old route to the destination.

2.) Switchi−1 is a switch on the old route and not the start (i > 2).
In this case all  packets arriving on switchi−1 are forwarded to the destination 
completely on the new route. Packets that already have passed switchi−1 are 
following the old route, until they reach another switch, that is part of the new 
route and already updated. then they will follow the new route to the destination.

3.) Switchi−1 is a switch, that is not on the old route.
As seen before this update is not affecting the old route. The new route stays 
also black hole free.

The last step of the update process is to delete all  flow table entries, for  the 
updated flow, on all switches that belong to the old route, but not the new route. 
This could cause black holes, if these entries are deleted before all packets on 
the fly are forwarded to the destination (that would be the maximum propagation 
time of the old route). If we avoid this, then there are no black holes at any time 
during the update process and of course the final state is black hole free.
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5. Implementation
The algorithm introduced above was implemented and tested on a testbed. The 
topology of this testbed is shown in figure [3]. This chapter contains a description  
of this testbed and explains how the algorithm was implemented. The testbed 
consists of 10 Open vSwitches and 2 virtual machines, each running 4 hosts (8 
hosts  in  total),  as  controller  Floodlight  was  used.  Because  OpenFlow  is  the 
standard for the communication between Switches and Controller (Southbound 
Interface), it was used in the testbed. In the following a short description of the 
floodlight controller is given, followed by an explanation, how the algorithm was 
implemented.

Figure [3]: The topology of the Testbed that was used to test the algorithm.

23



5. Implementation

5.1 The Floodlight Controller
Floodlight is a controller, but it also provides a collection of applications build on 
top of the Floodlight Controller. While the Floodlight Controller, which is written in 
JAVA, provides functionality to control an OpenFlow network, the applications are 
the  so  called  “Northbound  Interface”,  which  are  used  for  the  communication 
between controller and other applications that are using the controller in order to 
do their tasks. In fact Floodlight provides two different interfaces. The first one is 
the Module Interface the second one is the REST Interface. This architecture is 
shown in figure [4].
The Module Interface supports proactive as well as reactive routing. Proactive 
routing  means  that  the  entries  into  the  flow  tables  of  the  switches,  that  are 
needed to forward the packages correctly, are added to the flow tables before the 
first packet is sent. Reactive routing means that the first switch that receives a 
packet that belongs to a flow, it has no entry for in its flow table, forwards this 
packet to the controller, which then sets up the forwarding tables of all switches.  
In contrast to this the REST Interface is less powerful and only supports proactive 
flow  programming.  For  testing  the  algorithm  it  is  sufficient  to  use  proactive 
routing, therefore only the REST Interface is introduced.
Representational State Transfer (REST) is a software architecture that is used in 
distributed systems.  The REST architecture  assumes a  client-server-model  in 
which the client sends a request to a server that processes this request  and 
returns  a  reply.  REST  is  resource-oriented,  which  suits  it  well  for  the  task, 
because the single switches, that the user or an application (the client) wants to 
access, match the resources and the controller is the equivalent to a server. To 
manipulate resources (to modify flow tables) HTTP methods like GET, POST, 
PUT, etc. are used. Because of this it is possible to modify the flow tables with the 
following command line code:

curl -d '{"switch": "00:00:00:00:00:00:00:05",
 "name":"flow-mod-11",
 "priority":"32768",
 "ingress-port":"2",
 "active":"true",
 "actions":"output=3"
 }' http://localhost:8080/wm/staticflowentrypusher/json

The command line tool “cURL” posts HTTP requests, which be used to access 
the  REST API.  The  json payload  tells  the  Controller  which  switch  has to  be 
modified and the parameters of the flow, in this case name of the flow, priority, on 
which port the packets arrive and if the flow is active. The action dictates what is 
done with the arriving packets, in this case they are forwarded to port 3. The 
HTTP request is then forwarded to the Static Flow Entry Pusher.
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Figure [4]: The Floodlight architecture 

Source: http://docs.projectfloodlight.org/display/floodlightcontroller/The+Controller

5.2 Implementation

In fact there is no real implementation. As shown above cURL can be used to 
access the Floodlight controller and to setup or modify flows. This command lines 
can be scribed into a bash-script, which can be executed. This is an easy way to 
test the algorithm, but on the downside it is not possible to update one switch and 
to wait for its reply. Therefore just a modified version of the algorithm was tested. 
In this modified version the controller is sending the updates to the switches in 
the correct order, but it is not ensured by replies that they are executed in the 
correct  order.  However  tests  showed that  in  the  testbed,  that  was  used,  the 
switches are executing the updates most likely in the correct order. Even if this 
might not be the case in general, for the testbed, that was used, and therefore for  
the experiments this modification was no problem.
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6. Evaluation
In  order  to  test  the  algorithm  an  experiment  was  run.  In  this  chapter  the 
experiment is introduced and the results are shown and discussed. At first the 
topology, the goal and the results of the experiment are shown. After that the 
results of the experiment are discussed.

6.1 Experiment 
For this experiment the topology shown in figure [5] is used, where the red links 
indicate the old route and the green links are the ones used by the new route. At 
first,  only the old route is present,  then a file transfer from VM 1 to VM 5 is 
started. The time this file transfer takes is measured. This step is executed 10 
times to get more reliable results. In addition the same procedure is done with the 
new route (the route after the update).
After that again a file transfer is started. During this file transfer the route update 
is executed. Again the time required for the file transfer is measured.
Three different update strategies are tested and each strategy is tested 10 times. 
The first strategy is the one shown in this work, the second one is updating the 
switches  in  the  same order  as  the  packets  pass  them.  This  is  the  opposite 
direction compared the strategy described in this work and leads to black holes. 
The fourth strategy is a two phase update where the new route is created before 
the update starts, so that the update is only updating the ingress switch.
The File transfer is done by using netcat on both hosts. Netcat sets up a TCP-
Connection  between this  two hosts.  The time is  measured by using the unix 
“time” function, which measures the time needed for executing a function. The 
following code was executed:

On VM 5: nc -l 2000 > /dev/null
On VM 1: time nc VM1 2000 < test 

The first command makes netcat listening on port 2000 for incoming connections, 
if a connection is set up, the received data is dropped, because it is not needed.  
The  second  command  measures  the  time  that  netcat  needs  to  set  up  a 
connection to VM 1 and to send the “test” file, which is a 1GB big file filled with 
zeros.
After each single test all flow-table-entries on all switches are deleted and the old 
route is set up again, so that each test has the same preconditions. The updates 
are done by using bash-scripts for the Static Flow Table Pusher.
The goal of the experiment is to find out what influence the algorithm described in 
this work has on a TCP-Connection and how large this influence is compared to 
other strategies.
The results are shown in the table below.
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Old route 
without update

New route 
without update

End to 
Begin

Begin to 
End

Two Phase

Test 1 8.947 s 8.957 s 8.952 s 9.000 s 8.957 s
Test 2 8.949 s 8.951 s 8.953 s 8.987 s 8.951 s
Test 3 8.950 s 8.953 s 8.950 s 8.999 s 8.953 s
Test 4 8.947 s 8.955 s 8.946 s 9.775 s 8.955 s
Test 5 9.228 s 8.950 s 8.955 s 9.315 s 8.950 s
Test 6 8.956 s 8.949 s 8.951 s 9.631 s 8.949 s
Test 7 8.954 s 8.950 s 8.950 s 9.026 s 8.950 s
Test 8 8.947 s 8.951 s 8.949 s 9.905 s 8.951 s
Test 9 8.948 s 8.959 s 8.947 s 9.409 s 8.959 s
Test 10 8.947 s 8.965 s 8.950 s 9.170 s 8.965 s
min 8.947 s 8.949 s 8.946 s 8.987 s 8.949 s
max 9.228 s 8.965 s 8.955 s 9.905 s 8.965 s
average 8.977 s 8.954 s 8.950 s 9.322 s 8.954 s
Average 
without 
min and 
max

8.949 s 8.953 s 8.950 s 9.291 s 8.953 s

Figure [5]: The topology used for the experiment. Old route: red links, new route: green links
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6.2 Discussion
In this section the results of  the experiments above are discussed. The table 
shows the following results:
In the second column the results for the old route without update are shown. In 
the third column the results for the new route without update are shown. The 
columns four, five and six are show the results for the three update strategies. 
Column four shows the strategy that starts with the last switch and updates all 
other switches in reverse order (the approach shown in this work). Column five 
shows the counterpart, the update starts with the first switch and ends with the 
last one. Column six finally is the two phase update.
First of all it is important to notice, that both routes, the new and the old one, 
contain the same amount of switches, therefore the path length should be almost 
the same. If the outliers, the minimal and the maximal value, are removed and 
the remaining 8 values are compared this is indeed the case.
The next  interesting fact  is  that  the “reverse update” is much better than the 
update that starts  with  the first  switch.  This  is  the case,  because the second 
update strategy leads to black holes, which means that packets are lost during 
the  update,  this  leads  to  retransmissions,  which  further  lets  TCP assume  a 
congestion, which in result slows the data transfer down.
Another interesting result is that the “reverse update” is slightly better than the 
two  phase  update,  which  probably  is  the  case  because  the  reverse  update 
strategy needs no vlan tagging. But it is more likely that this result is based on 
errors in the measurements. For example the measurements for both algorithms 
where  done at  different  points  in  time.  That  means  the  conditions  within  the 
testbed may have changed. The big outliers in the second column show that the 
conditions within  the  testbed are unstable.  But  both  approaches lead to  very 
similar  results  and  are  better  than  the  update  strategy  that  is  updating  the 
switches along the route.
Also it is interesting how small the effect of the “reverse update” and the two 
phase update is on the performance. According to this result it  seems as the 
“reverse update is, at least, competitive to the two phase update strategy. But this 
could be different in topologies in which the reverse update strategy leads to 
transient loops.
To find out which of the two protocols is better under which conditions needs 
more tests with more different topologies.
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7. Conclusion
This work shows a new approach for consistent route updates in SDN. Even if 
the algorithm is not leading to strict consistency, at least eventual consistency is 
reached.

This is reached by updating the switches on a new route, that replaces the old 
one, in reverse order. Reverse order means that the update starts with updating 
the last switch on the new route and then the one before and so on until the first 
switch (ingress switch) is reached.

Many other existing approaches are limitted in some ways, for example only work 
with specific protocols like BGP (Border Gateway Protocol), even the approch by 
Reitblatt et al., wich can be seen as "state of the art", suffers under the restriction 
that it is necessary to modify the header fields. This is necessary, because this 
approach is a two phase update and therefore the packets must hold the state of 
the phase. For example vlan tagging can be used to do that.
This algorithm on the other hand has no such restrictions, this is reflected in the 
system model which makes only very general assumptions. On the downside the 
algorithm only reaches eventual consistency, because there exist some 
topologies in which the algorithm creates transient loops, loops that exist during 
the update is executed, but not after the update is finished.
There are two possible ways to avoid this transient loops. One would be to use a 
controller that recognizes such topologies, which is not a big deal, because this 
topologies all have in comon that there are two or more switches, which are used 
in both routes, the old and the new one, but in different directions.
The other possibility would be to modity the algorithm which is beond the scope 
of this work, but would most certenly be no big deal.

The experiment that was run in this work furthermore shows, that the algorithm is, 
at least in the topology that was used for the experiment, competitive to a two 
phase protocol in terms of performance. Also the ordering, that the algorithm 
uses to update the switches, achives much better results than a different ordering 
that updates the switches in the same direction as packets would pass them, 
which is the opposite direction compared to the one that the algorithm, shown in 
this work, uses. Probably the most surprising result of the experiment was, that 
the update algorithm has a very sligtly effect on the performance of a TCP file 
transfer that is executed before, during and after the update.

Further work is required to test the algorithm in more different topologies, for 
examples in topologies for which the algorithm creates transient loops. 
Furthermore the effect on a UDP file transfer could be tested and compared to 
the results for TCP-Connections. Also the algortihm could be modified in a way 
that it can avoid transient loops in certain topologies.
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