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Abstract

Cloud computing has the advantage of converting capital expenses into operational costs.
This student thesis evaluates a phase driven methodology for migration of the database
layer to the Cloud based on a research case study. In addition, a Cloud data migration
tool is evaluated. We build an evaluation design for the methodology and the tool. Based
on the methodology and with the help of the Cloud data migration tool, an application
from the e-Science field is migrated to Amazon Web Services. During the migration project
we collect data and document all shortcomings concerning the methodology and the tool.
This evaluation data is afterwards analysed, to see how well the methodology and the tool
support the migration. The results of the analysis lead to improvement suggestions on the
methodology and the Cloud data migration tool.
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1 Introduction

From an economic point of view Cloud computing has the clear advantage of converting
capital expenses into operational costs [14]. There are two scenarios how to take advantage of
Cloud computing. The first one takes an existing application and moves it to the Cloud. The
second one uses Cloud technologies from the beginning to design and build the application.

In order to create flexible and reusable applications, they are built using a n-tier architecture.
In such a n-tier architecture application developers can modify a specific layer or they can add
a new layer in between existing layers to add new functionality. They do not have to modify
the whole application. The most used n-tier architecture is the three layer architecture which
comprises a presentation layer, a business logic layer and a data layer. The presentation layer
encapsulates the application-users interactions, the business layer encapsulates the business
logic and the data layer encapsulates data storage. The data layer is in turn subdivided into
the Data Access Layer (DAL) and Database Layer (DBL). The DAL is responsible for the data
access functionality, while the DBL realises data persistence and data manipulation [46].

Right now there is only little support for migrating data into the Cloud and between Cloud
services. Bachmann developed a methodology for the migration of the DBL to the Cloud in
his diploma thesis [15]. The methodology covers state of the art data migration techniques,
different Cloud hosting solutions and Cloud data patterns. This work presents the evaluation
of the developed methodology based on a research case study.

1.1 Motivating Scenario

In this section we describe the scenario, which is used for evaluating the methodology for
migration of the DBL to the Cloud.

In the scientific domain there are several requirements for applications. For example the
processing of huge amounts of data, the need for scalability due to computing-intensive tasks
and the reproducibility of the results [41]. Leymann et al. identified distributed systems as
a good choice for the practical use in scientific applications, because they fulfill a lot of the
requirements [41].

Scientists follow a trial-and-error approach, when they create experiments. Sometimes they
need to repeat parts of the experiments with new parameters in order to gain better results.
Furthermore, they need to adapt running workflows so as to append new activities. Therefore,
the classic workflow technology that has existed in the business world for a long time, cannot
be used because of its rigidness. In order to overcome this obstacle, scientists from the
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1 Introduction

Stuttgart Research Center for Simulation Technology and Cluster of Excellence "Simulation
Technology"1 have developed the so called Model-as-you-go approach [43]. This concept
combines the modelling, execution, monitoring and adaptation life cycle phases of workflows
to fit the needs of scientists. The Model-as-you-go approach is implemented in the SimTech
prototype. Right now the SimTech prototype consists of different components that are running
locally on one machine. The components use Web service technology and message queuing
to communicate. This simplifies the distribution of the prototype along different machines. A
more detailed description of the SimTech prototype can be found in Section 2.3 .

In this work parts of the prototype are migrated to the Cloud temporarily. The scientific
workflow for the simulation is run in the Cloud to benefit from pay-per-use and rapid scalability.
Only the resources that are used during the execution of the workflow have to be paied. After
the simulation the results are migrated back to the local machine. We assume that changes
of the simulation workflow have no impact on the data required for the simulation. More
precisely, there is no need for additional data migration in case of changes of the simulation
workflow during runtime in the Cloud.

1.2 Scope of Work

This student thesis has the goal to evaluate the methodology for migration of the database
layer to the Cloud developed by Bachmann [15]. The evaluation is based on a research case
study which originates from the Stuttgart Research Centre for Simulation Technology and
Cluster of Excellence "Simulation Technology". We focus on the migration scenario Cloud
burst, where application data are moved to the Cloud for off-loading of peak loads [45]. The
scientist prepares the simulation on-premise. To be more exact, he models the workflow
using the SimTech Workflow Management System (SWMS) Prototype on a local machine.
In the rest of the student thesis we call the SWMS Prototype only SimTech prototype. The
simulation is run in the Cloud to draw advantages like rapid scalability and pay-per-use. After
the simulation the components are migrated back manually. Instead of migrating the DBL
of the SimTech prototype to the Cloud only, also parts of the business logic are migrated.
Without the migration of the business logic the data for the simulation has to be transferred
from the local machine to the Cloud storage solution. Since data in scientific simulations
can be enormous, the transfer over the network becomes the bottleneck for the simulation.
Especially with respect to latency and network errors.

Other migration scenarios are not taken into consideration.

Furthermore, Bachmann developed a tool that supports the migration of the data layer to the
Cloud (see Section 2.6). The focus for the evaluation of the tool is on the suitability for use.

1Stuttgart Research Centre for Simulation Technology and Cluster of Excellence "Simulation Technology":
http://www.simtech.uni-stuttgart.de
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1.3 Research Design

1.3 Research Design

In order to get a better understanding of the structure of the thesis and the contents of the
different chapters, we give a short overview of our research design. These are the main
components:

• Migration methodology and migration tool of Bachmann: These are the objects of
interest.

• Metrics: In order to be able to collect data for the evaluation we need metrics.

• SimTech prototype: This is the object to which the migration methodology and tool is
applied.

• Web services: In order to migrate the prototype we need real services. We use services
from AWS.
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Figure 1.1: Overview Research Design

The evaluation is done by using a case study as research method. We apply the methodology
and the tool of Bachmann in a typical scenario. The big picture of our research design is
shown in Figure 1.1. In the first step we apply the migration methodology of Bachmann to
the DBL of the SimTech prototype. We use a Cloud hosting solution of AWS. During the
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1 Introduction

migration process we collect data for the evaluation, which is analysed later. In the second
step we migrate the whole SimTech prototype. Since the migration methodology of Bachmann
focuses on the migration of the DBL, there is need for a holistic approach. AWS also delivers
such a holistic migration methodology. The AWS strategy is phase driven. We combine both
migration methodologies in such a way, that we replace the data migration phase of the AWS
model with the migration methodology of Bachmann. This helps us to evaluate, how well
Bachmanns methodology fits into an integrated Cloud migration scenario. Furthermore, we
gain knowledge about the ability of the methodology and tool to support the adaptation of
the architecture of the whole application.

1.4 Outline

In order to accomplish the given goals and to draft future tasks on the topic the work is
structured as followed:

• Chapter 2 – Background: This chapter gives an overview about Cloud computing and
the SimTech prototype with its architecture. Moreover, the Cloud data migration tool
and the migration methodology of Bachmann are described. Additionally, the AWS
technologies used for the migration and the AWS migration approach are illustrated.

• Chapter 3 – Related Work: An overview of existing approaches and state of research
in the fields of software processes and tool evaluation are presented. Furthermore,
a general view of evaluation is given and different types of data in evaluation are
discussed. Additionally, we position our research to each related work.

• Chapter 4 – Evaluation Design: This chapter is based strongly on the lessons learned of
the chapter related work. We describe the different components of the evaluation design
like focus of the evaluation or the kind of data which should be collected. Beyond, there
is argumentation for each of our decisions for the evaluation design.

• Chapter 5 – Evaluation Data Collection and Processing: In this chapter we perform
the actual migration to the Cloud. On the basis of the chapter evaluation design, we
collect the data for the evaluation. Furthermore, we process parts of the data.

• Chapter 6 – Discussion and Lessons Learned: Challenges that have emerged during
the evaluation are explained. Finally, the collected data is analysed. Improvement
suggestions on the methodology and on the Cloud data migration tool of Bachmann
are discussed.

• Chapter 7 – Outcome and Future Work: The last chapter summarizes the outcomes of
this work. Additionally, further tasks related to this student thesis are presented.

4
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1.5 Definitions and Conventions

This section contains a list of abbreviations used in this student thesis.

AWS Amazon Web Services

AMI Amazon Machine Image

BPEL Web Services Business Process Execution Language 2.0

CSI Continual Service Improvement

CMMI Capability Maturity Model Integration

DAL Data Access Layer

DB Database

DBL Database Layer

DeGEval Gesellschaft für Evaluation

EC2 Elastic Compute Cloud

GUI Graphical User Interface

IaaS Infrastructure-as-a-Service

IEC International Electronical Commission

ISO International Organization for Standardization

ITIL Information Technology Infrastructure Library

ITSM IT Service Management

NIST National Institute of Standards and Technology

ODE Orchestration Director Engine

PaaS Platform-as-a-Service

PGF Plugable Framework

RDS Relational Database Service

SaaS Software-as-a-Service

SDLC Systems Development Life Cycle

SEI Software Engineering Institute

SWMS SimTech Workflow Management System

URI Uniform Resource Identifier

URL Uniform Resource Locator
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WSDL Web Services Description Language
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2 Background

2.1 Application Layers

Hybrid Cloud 

Traditional 

Application 
Layers 

Presentation 
Layer 

Application 

Business 
Layer 

Data Access 
Layer 

Database 
Layer 

Presentation 
Layer 

Business 
Layer 

Data Access 
Layer 

Database 
Layer 

Private 
Cloud 

 

Community 
Cloud 

 

Deployment 
Models 

Public 
Cloud 

 

Presentation 
Layer 

Presentation 
Layer 

Business 
Layer 

Business 
Layer 

Data Access 
Layer 

Data Access 
Layer 

Database 
Layer 

Database 
Layer 

Figure 2.1: Overview of Cloud Deployment Models and Application Layers [46]

Applications usually consist of three layers:

• The presentation layer is on top and treats the interaction with the user.

• The business layer encapsulates the business logic.

• The data layer stores data. It can be divided in the DAL and DBL, where the DAL
encapsulates the data access functionality. Data persistence and data manipulation are
encapsulated in the DBL.

If the data layer is subdivided in DAL and DBL the application consists of four layers.
Figure 2.1 presents such an architecture.
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2 Background

2.2 Cloud Computing

The National Institute of Standards and Technology (NIST) developed a definition for Cloud
computing, which we use in this student thesis [32]. The main characteristics of Cloud
computing are on-demand self-service, broad network access, resource pooling, rapid elasticity and
measured service.

Cloud computing consists of three service models:

• Infrastructure-as-a-Service (IaaS): This service provides the user with computing
power, network resources and data storage.

• Platform-as-a-Service (PaaS): This service provides the user with programming lan-
guages and libraries to build own applications.

• Software-as-a-Service (SaaS): The capability provided to the user are the applications
running in the infrastructure of the provider.

Applications can be deployed in four different deployment models: private Cloud, community
Cloud, public Cloud and hybrid Cloud. A taxonomy of Cloud data hosting solutions can be seen
in Figure 2.2. Figure 2.1 additionally shows the different possibilities of outsourcing layers to
the Cloud.

Application
Layer

Deployment Model Location Data Store
Type

Compatibility

Database
Layer

Private 
Cloud (PrC)

Public
Cloud (PuC)

Community 
Cloud (CoC)

On-premise

Off-premise

Off-premise

On-premise

Off-premise

Centralized

Distributed

Compatible

IncompatibleSaaS

PaaS

IaaS

...

...

...

Service
Model

Hybrid
Cloud (HyC)

m x PrC
n x PuC
p x CoC

...

...

...

...

...

...

1 x PrC
1 x PuC

...

...

...

...

Figure 2. Taxonomy for Cloud Data Hosting Solutions

presented in Section II. Selected existing approaches are
classified using the taxonomy in Section III. The taxonomy
and its limitations are discussed in Section IV. Related work
in the field of classification of Cloud data hosting solutions
is presented in Section V. Finally, Section VI concludes and
provides an outlook on future work.

II. TAXONOMY FOR CLOUD DATA HOSTING SOLUTIONS

The taxonomy for Cloud data hosting solutions is presented
in Figure 2. The six distinguishing properties are:

• Application Layer (1 option)
• Deployment Model (4 options)
• Location (2 options)
• Service Model (3 options)
• Data Store Type (2 options)
• Compatibility (2 options)

The properties have been derived from our experience gained
from industry and research projects. They have been proven
to be essential for choosing a concrete Cloud data store.
There are more properties regarding technical aspects such
as virtualization, which have not been regarded as supportive
for decision making.

Without regarding the Hybrid Cloud, there are 1 · 3 ·
2 · 3 · 2 · 2 = 72 possibilities. A Public Cloud, however,
is per definition always hosted off-premise. Thus, for the
Public Cloud properties, 3 · 2 · 2 = 12 of the 72 entries
are invalid. This leads to a total of 60 pure Cloud data
hosting solutions. By using “pure” we denote that no Hybrid

Cloud deployment model is used. A Hybrid Cloud allows for
arbitrary combinations of pure deployment models as long
as at least two distinct pure deployment models are used.
As a result, the number of Cloud data hosting solutions is
infinite. The properties of each pure deployment model used
in a Hybrid Cloud setting are the same as shown for the
respective pure deployment model in the taxonomy (denoted
by “. . .” in Figure 2).

In the following, the properties are described in the order
they appear in the taxonomy. First, the application layer is
presented. It is followed by the presentation of the Cloud-
related properties. Finally, properties concerning functionality
of the database layer are tackled. An alternative solution is
to switch Cloud-related properties with the functionality. We
opted for the first solution to ease selection of Cloud offerings
based on the corresponding Cloud-related properties.

A. Application Layer

This taxonomy treats the database layer only. To indicate
that the taxonomy can be extended to other application layers,
we explicitly included the property application layer.

B. Deployment Model

First of all, the option of the deployment model has to
be taken. It answers the questions who is administrating
the Cloud infrastructure for whom. NIST distinguishes four
deployment models [2]:

579579579578

Figure 2.2: Taxonomy of Cloud Data Hosting Solutions [46]
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2.3 SimTech Prototype

The SimTech prototype is a central element for the case study. We migrate parts of the
prototype to the Cloud and such being the case we present the significant components of the
prototype in this section.

2.3.1 Scientific Workflows

The SimTech prototype supports scientific workflows and therefore, we give a short overview
of scientific workflows in the following. Leymann et. al identified in [40] three main reasons
why workflows are interesting for scientists: "(1) simulations often consist of manual steps
that can be automated with the help of workflows; (2) former monolithic (legacy) scientific
applications can be executed on multiple machines in a distributed manner; or (3) new
simulations/calculations can be created in a graphical manner by modelling workflows." In
the motivating scenario we have described the obstacles from classic business workflows in
the scientific domain. A solution for those obstacles is the Model-as-you-go principle, which
was described in the motivating scenario as well.

2.3.2 Architecture

In this section we provide a high-level description of the SimTech prototype.

Apache ActiveMQ

org.apache.ode.in

Topic

org.apache.ode.events

org.simTech.ode.eclipse

Apache Tomcat

Eclipse JEE

SimTech Auditing Application MySQL

  SimTech BPEL Designer

Message transfer

ODE-PGF

Data transfer

FragmentoRCP

Fragmento

PostgreSQL

Web Service call

MySQL

Opal

ODE Process 

Management

 Axis2

Opal Services

Mock Services

SimTech Fragment 

Extraction

Opal Resource Manager Views

Web Service return

Figure 2.3: Architecture of the SimTech Prototype [25]
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The SimTech prototype consists of three main components:

• Eclipse JEE with the SimTech extensions: This component uses Web Services Business
Process Execution Language 2.0 (BPEL) as workflow language and is based on the
Eclipse BPEL Designer as modeling tool [51]. We call this component Mayflower
(Model-as-you-go Workflow Developer) [42].

• Apache Tomcat Server: This component contains an extended Apache Orchestration
Director Engine (ODE) as a workflow engine, which we call ODE-Plugable Framework
(PGF) in the following [49]. Fragmento is an advanced process fragment library. Its goal
is to enable reuse of process fragments in order to speed up and ease the development
of process-based applications [36]. Apache Axis2 is a Web services / SOAP / Web
Services Description Language (WSDL) engine [50]. Opal is a workflow based solid
state simulation application in which structural changes of metallic solids over large
periods of time can be simulated [26].

• SimTech Auditing Application: It stores execution events for workflow instances
published by the engine [42].

The architecture of the SimTech prototype is shown in Figure 2.3. The three components
are loosely coupled and can therefore be distributed easier [25]. They are integrated via
Web services and messaging. The messaging server (Apache Active MQ) connects the
Mayflower instances with the ODE-PGF. The ODE-PGF provides a topic, which any number
of Mayflower instances can subscribe to.

A more detailed description of the whole prototype can be found in [25, 42]. Further-
more, there exist several demonstration videos of the SimTech prototype online. They
can be found here: http://www.iaas.uni-stuttgart.de/institut/ehemalige/sonntag/
videos_de.html.

2.4 Components for Migration

In this section we have a closer look at the components of the SimTech prototype that are
migrated to the Cloud.

As mentioned before, the Opal services are a workflow based solid state simulation ap-
plication in which structural changes of metallic solids over large periods of time can be
simulated [26]. Fist of all, we provide an overview of the different kinds of data that are
required for a simulation. In Figure 2.4 the Graphical User Interface (GUI) for entering
simulation parameters and a simplified outline of the file system structure of the Tomcat
installation is shown. The real structure and the names of the folders differ from this outline.
The Opal services require an energy configuration for the simulation. The user specifies the
file path in the GUI. The path is relative to the installation directory of Tomcat and points
to one energy configuration file (see Figure 2.4 red arrow marked with 1). In addition a file
that defines the structure of the crystal lattice is required for a simulation (see Figure 2.4 red
arrow marked with 2). At the beginning of a simulation a new folder in the file system is
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2.4 Components for Migration

created. The folder name is specified in the input field mgmtCtx (see Figure 2.4 blue arrow).
In the next step the lattice file is copied in the newly created directory for the simulation.
Then the opal.in file is generated. It is dependent on the selected energy configuration and
other simulation parameters that can be entered in the GUI. After this, the Opal manager
starts the BPEL process for the simulation. During the simulation several application data are
created. The folder Simulation Data contains intermediate results of the algorithm, whereas
the folder Analysis of Snapshots contains all files created during analysis of snapshots. The
folder Visualization contains all files generated in the context of the visualization.

Config1 Lattice1

Config2 Lattice2

Config3 Lattice3

… Lattice4

…

Lattice3

opal.in (dependent on configuration parameters) 

data1 data1 result_dat

data2 data2

data3 …

…

Pointer to file Dependency

Copy of file

filesystem

Crystal Lattice

Tomcat

<Simulation_XYZ>

Simulation Data Analysis of Snapshots Visualization

Energy Configurations
<Simulation_XYZ> 

1 

2 

4 
3 

Figure 2.4: Overview Opal Simulation Data

After the description of the GUI and main artefacts of the Opal services, we focus now on the
MySQL database, which is migrated to the Cloud. In order to develop a deeper understanding
of the data and the database queries, we describe both the resource manager and the Opal
manager. The information in the following two sections is taken from [27] and the related
source code.

Resource Manager

The Opal services are very CPU-intensive. Hence, there is need for a coordination instance,
which regulates the quantity of parallel simulations. By reason of modularization the coor-
dination logic is stored in a single component, the resource manager, and is not embedded
in the simulation workflows. During a simulation different kinds of data are created. This
data is collected by the simulation workflow and e.g. passed to the Web services for the
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visualization. BPEL is not able to directly access data storage of an operating system, but only
able to interact with Web services. The resource manager also provides a Web service interface
for reading and writing operations on the data storage. In avoidance of losing all registered
servers, Web services and the actual endpoints after a restart of the resource manager, this
information needs to be persisted in the MySQL database. The resource manager does not
query the database often during a simulation, since he stores the data mainly for backup at
the beginning of a simulation. Typical SQL queries are shown in Listing 2.1.

1 INSERT INTO rm_servers (server_url, server_cores, server_isactive);
2

3 SELECT * FROM rm_managementcontexts;
4

5 SELECT ctx_id FROM rm_managementcontexts WHERE ctx_id = X;
6

7 DELETE FROM rm_managementcontexts WHERE ctx_id = Y;
8

9 SELECT sep.server_id, sep.service_name, sep.sep_epr, sep.sep_req_cores, sep.
sep_isactive

10 FROM rm_serviceendpoints as sep, rm_servers as s
11 WHERE sep.server_id = s.server_id AND server_url= Z;

Listing 2.1: Typical SQL Queries of the Resource Manager

Opal Manager

The Opal manager connects the user with the ODE. In order to ease the creation of simulations,
energy configurations and initial crystal lattice should be saved in a single point, which is
accessible by all users. This information is stored in the data storage of the operating system.
Therefore, the Opal manager needs to interact with the resource manager to access this
information. Later on this configuration parameters can be reused by others. Furthermore,
the Opal manager creates entries in the MySQL database for every simulation. The current
status of the simulation and all starting parameters are stored in the MySQL database. The
SQL queries got the same complexity like the ones of the resource manager (see Listing 2.1).

2.5 Migration Methodology of Bachmann

In his diploma thesis Bachmann identified ten migration scenarios [15]. We focus on the
scenario Cloud burst! (Cloud burst!) because it fits best for the case study. Bachmann based
his methodology on the methodology of T. Laszewski et al. which can be found in [31].
A phase of the migration methodology of Bachmann consists of a description of the main
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objective of the phase, a condition for occurrence, an exit condition and a description of the
detailed steps [15].

In the following we give a short summary of the description and the most important steps for
each phase.

2.5.1 Assessment

In the assessment phase the information for the project-management is collected, e.g. cost
assessment.

The following are the most important steps in this phase:

1. Identification of drivers for migration [31]

2. Inventory of current environment [31]

3. Identification of requirements for the target database [31]

4. Identification of migration tools and hardware [31]

5. Identification of the migration scenario with its specific characteristics [15]

6. Project management [31]

2.5.2 Analysis and Design

The main goal of the analysis and design phase is to identify and describe the implementation
details on the target database.

The following are the most important steps in this phase:

1. Selection of the target database and registration at Cloud service providers to verify the
requirements [15].

2. Planning of the data cleansing [24]

3. Planning of changes on the different data types [31]

4. Identification of effects and planning of changes on higher levels of the application [31]

5. Planning of changes in the system landscape [31]
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2.5.3 Migration

The realization of the plans created in the analyse and design phase is the main goal of the
migration phase.

The following are the most important steps in this phase [31]:

1. Migration of the data types

2. Adaptation of the higher levels

3. Adaptation of adjacent systems

2.5.4 Testing

After the migration phase and the adjustments the success of the migration has to be evalu-
ated [15]. The focus of the testing is on the functionality.

The following are the most important steps in this phase [15]:

1. Test of the system

2. Adjustment of the system (if test cases fail)

3. Test of the adjacent systems

4. Adjustment of the adjacent systems (if test cases fail)

2.5.5 Optimization

After the functional testing in the testing phase, the system has to be checked for poor
performance.

The following are the most important steps in this phase:

1. Installation of the adopted and migrated system on the target infrastructure and simula-
tion of operation [15]

2. Optimization of the system, e.g. hardware sizing or index optimization [31]

3. Test of the optimizations [15]

14



2.6 Cloud Data Migration Tool

2.5.6 Deployment

After the functional testing (testing phase) and the non-functional testing (optimization phase)
the whole system can go live in the deployment phase [31].

The following are the most important steps in this phase [31]:

1. Hardware configuration (storage, network, cluster, recovery)

2. Software installation and configuration (schema, users, rights, groups, connection)

3. Data import and index creation

4. Test of the backup and recovery scripts and processes

2.5.7 Post-Production Support

In order to troubleshoot any issues after the deployment it is common to support the users
with personnel who where involved in the migration process. For instance there can emerge
problems with the new environment (functional and non-functional problems). [31]

2.6 Cloud Data Migration Tool

The Cloud data migration tool is based on questionnaires. It helps to identify the migration
scenario with its characteristics, the Cloud data solution and required Cloud data patterns [15].
Moreover, the tool limits the number of Cloud hosting solutions and identifies possible
conflicts for the migration [15]. Another important feature of the tool is the providing of
suggestions and help with respect to the adaptation of the application architecture according
to the choice of the Cloud data hosting solution. Furthermore, it provides information about
potential corresponding shortcomings.

Analyses, specification and design of the Cloud data migration tool are described in [15].
Here we only give a short overview of the questionnaires, the tool is based on.

• Scenario Identification: In the case study we only focus on the scenario Cloud burst,
but other migration projects might need other scenarios like outsourcing of the DBL or
using NoSQL, BLOB data storage. In addition, a specific migration scenario can consist
of a combination of different scenarios.

• Cloud Data Hosting Solution Identification: In this part the user can choose e.g. the
deployment model or service model.

• Description of the Source System: In order to detect conflicts between source and
target system, the tool requires information about the source system.
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• Identification of Cloud Data Hosting Solutions: After the user has answered the
questions in the previous sections, the tool provides a list of matching Cloud data stores.
If a Cloud data store lacks required functionalities, this might be compensated with
Cloud data patterns. The tool also provides the Cloud data patterns if needed.

2.7 Amazon Web Services

There exist several Cloud providers on the market. We choose AWS as Cloud hosting
solution, because they have an education program. Educators, academic researchers and
students can apply to obtain free usage credits for their projects [10]. Furthermore, AWS is
supported by the migration tool of Bachmann. According to our inquiry, AWS in general is
well documented. Therefore, we hope to find helpful information, when we have some issues
with the migration.

2.7.1 Migration Methodology

In Section 1.3 we gave on overview of our research design. In the second step we want to fit in
the migration methodology of Bachmann into the migration methodology of AWS. Therefore,
we present the basic concept of the AWS approach in the following.

The AWS paper addresses business users. It should help them to define a migration strategy
for their company. This includes steps, techniques and methodologies for moving existing
enterprise applications to the AWS Cloud. [52]

The phase driven approach is shown in Figure 2.5.

�
Figure 2.5: The Phase Driven Approach to Cloud Migration from AWS [52]

It consists of six phases that are outlined in short [52]:

• Cloud Assessment Phase: Costs, architecture and security are assessed.

• Proof of Concept Phase: A pilot is built in order to validate the technology.

• Data Migration Phase: A storage solution is selected and the data is moved to the
Cloud.
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• Application Migration Phase: A migration strategy is selected. An Amazon Machine
Image (AMI) is created for each component [7].

• Leverage the Cloud Phase: Elasticity and Systems Development Life Cycle (SDLC) are
automated.

• Optimization Phase: Efficiency is improved and usage based on demand is optimized.

A more detailed explanation of the phases can be seen in Figure 2.6.

Phases Benefits 

Cloud Assessment 

 Financial Assessment (TCO calculation) 

 Security and Compliance Assessment 

 Technical Assessment (Classify application types) 

 Identify tools that can be reused and the tools that need to 
be built 

 Migrate licensed products 

 Create a plan and measure success 

Business case for migration (Lower TCO, 
faster time to market, higher flexibility & 
agility, scalability + elasticity)  
 
Identify gaps between your current 
traditional legacy architecture and next -
generation cloud architecture 

Proof of Concept 

 Get your feet wet with AWS 

 Build a pilot and validate the technology 

 Test existing software in the cloud 

Build confidence with various AWS 
services 
 
Mitigate risk by validating critical pieces of 
your proposed architecture 

Moving your Data 

 Understand different storage options in the AWS cloud 

 Migrate fileservers to Amazon S3  

 Migrate commercial RDBMS to EC2 + EBS 

 Migrate MySQL to Amazon RDS 

Redundancy, Durable Storage, Elastic  
 
Scalable Storage Automated 
Management Backup 

Moving your Apps 

 Forklift migration strategy 

 Hybrid migration strategy 

 Build “cloud-aware” layers of code as needed 

 Create AMIs for each component 

Future-proof scaled-out service-oriented 
elastic architecture 

Leveraging the Cloud 

 Leverage other AWS services 

 Automate elasticity and SDLC 

 Harden security 

 Create dashboard to manage AWS resources 

 Leverage multiple availability zones 

Reduction in CapEx in IT  
Flexibility and agility  
Automation and improved productivity 
Higher Availability (HA) 

Optimization 

 Optimize usage based on demand 

 Improve efficiency 

 Implement advanced monitoring and telemetry 

 Re-engineer your application 

 Decompose your relational databases 

Increased utilization and transformational 
impact in OpEx 
 
Better visibility through advanced 
monitoring and telemetry 

 

Figure 2.6: Phases of the Migration from AWS [52]

A guide that explains the phases in depth can be found in [52].

2.7.2 Amazon Database Services

So as to migrate the DBL of the SimTech prototype to the Cloud, we need a real Cloud data
hosting solution. AWS offers four different products:

• Amazon RDS: This is a Web service for setting up, operating and scaling a relational
database in the Cloud [9].
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• Amazon DynamoDB: This is a fully-managed, high performance, NoSQL database
service that is easy to operate and scale [3].

• Amazon ElastiCache: This is a Web service that offers deployment, operation and
scaling of an in-memory cache in the Cloud [6].

• Amazon Redshift: This is a fully managed, petabyte-scale data warehouse service in
the Cloud [8].

The MySQL database of the Opal services is a relational database and therefore, we use
Amazon RDS. It supports the full features and capabilities of a relational database. According
to Amazon we need to do the following tasks, when we want to use Amazon RDS [9]:

• Launching a Database (DB) Instance, selecting the DB Engine (MySQL, Oracle or SQL
Server), License Type, DB Instance class and storage capacity that meets our needs best.

• Connecting to the DB Instance using our favourite database tool or programming
language. Since we have direct access to the native database engine, most tools designed
for theses engines should work unmodified with Amazon RDS.

• Via Amazon CloudWatch metrics, we can monitor compute and storage resource uti-
lization of our DB instance. With a few clicks, we can scale the compute and storage
resources.

2.7.3 Amazon Computing Services

In the second step of an iteration we want to migrate the whole Opal services. Therefore, we
also need computing capacity. Amazon provides four different products:

• Amazon Elastic Compute Cloud (EC2): This is a Web service that provides resizable
compute capacity in the Cloud [4].

• Amazon Elastic MapReduce: This is a Web service that enables researches, data ana-
lysts and developers to easily and cost-effectively process vast amounts of data [5].

• Auto Scaling: This is a Web service that allows to automatically scale the Amazon EC2
capacity up or down according to predefined conditions [11].

• Elastic Load Balancing: This is a Web service that automatically distributes incoming
application traffic across multiple Amazon EC2 instances [12].

We use a case study for the evaluation. In the context of the student thesis the Amazon EC2
instance fits our needs best, because it provides basic computing power. If the SimTech proto-
type is used on huge amounts of data, we recommend to add Amazon Elastic MapReduce. In
addition, we propose also the auto scaling service, when there is unpredictable use. In a real
world scenario, elastic load balancing can be useful, if greater fault tolerance in the applica-
tion is required. Amazon EC2 presents a true virtual computing environment. According to
Amazon we need to perform the following tasks, in order to use Amazon EC2 [4]:
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• Selecting a pre-configured, templated AMI. We also can create an AMI containing our
applications, libraries, data and associated configuration settings.

• Configuring security and network access on our Amazon EC2 instance.

• Choosing instance types, then starting, terminating and monitoring as many instances
of our AMI as needed.

• Determining whether we want to run in multiple locations, utilize static IP endpoints
or attach persistent block storage to our instances.
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This chapter provides an overview of existing approaches and state of the art in the domain
of the thesis. Moreover, we position our work towards the state of the art.

The Gesellschaft für Evaluation (DeGEval) defines evaluation as the systematic study of the
utility or value of objects [17, 23]. In addition the achieved results, implications or recommen-
dations have to be comprehensible and based on empirical gained qualitative or quantitative
data [17]. Additionally evaluations should feature four basic attributes: utility, feasibility,
propriety and accuracy [17]. Again Tergan et al. define evaluation as the systematic, target-
oriented collection, analysis and assessment of data for the purpose of quality assurance
and quality control [48]. Wottawa defines evaluation as the collecting and combining of
data with a weighted set of scales that should lead to a comparative or numerical assess-
ment [54]. We picked three definitions that differ from a large variety of existing definitions
of evaluation [17]. There exist many definitions, because there is need for evaluation in
several fields of application [17]. We did not find an evaluation method that fits perfectly
for our purpose. Therefore, we take a stand on other evaluation methods in related areas.
With the presentation of existing approaches and lessons learned concerning evaluation, this
chapter builds a foundation for the design of our evaluation method, which is presented in
Chapter 4.

There exist different empirical investigation methods. They are presented in Section 3.1. A
major part of any evaluation is collecting data [21]. Ways of collecting and classifying data
are presented in Section 3.2. As we evaluate not only the methodology for migration of the
DBL to the Cloud, but also the Cloud data migration tool, we focus on works in the fields
of software processes evaluation and tool evaluation. Existing approaches on evaluating
software processes can be found in Section 3.3. Strategies for evaluating tools are shown in
Section 3.4. Both objects of interest are directly designed for human beings. Therefore, we
focus on human-centred evaluation methods.

3.1 Empirical Investigation Methods

Although the title of this student thesis determines case study as the selected method, we
want to present an overview of the different empirical investigation techniques. Kitchenham
et al. categorize empirical investigation methods in case study, formal experiment and survey. A
study is called formal experiment, when it involves appropriate levels of replication. Moreover,
the experimental subjects and objects have to be chosen at random within the experimental
design. A formal experiment always requires an experimental hypothesis that is to be evaluated.
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Its scale is small and therefore, it is hard to scale up from the laboratory to a real project. In
contrast to that a study is called a case study, if it focuses on a single project. The advantage
of case studies is the applicability to real-world objects. A study is called a survey, when it
covers many teams and many projects. [30]

The scope of the work is wide-ranging and therefore, a formal experiment is not applicable.
In our case a survey could be designed with many user groups, which evaluate different
migration scenarios with different methodologies against the migration methodology of
Bachmann. Furthermore, they use different Cloud hosting solutions. In the context of a
student thesis a survey of this extent is not possible. The case study, where we evaluate a
typical scenario on our own, fits best.

3.2 Data in Evaluation

On a higher level data can be classified in qualitative data and quantitative data. Qualitative
data is expressed in words and it is useful to get a richer understanding of processes and
tools [37]. Quantitative data is numerical and it is useful for measuring a particular aspect
of a process or tool [37]. Nevertheless, qualitative data is usually verbally interpreted to
increase the understanding of the numerics [38]. In quantitative research authors begin
with a hypothesis, which is tested on a large number of cases, using accepted statistical
measures [38]. In contrast, a qualitative research starts with a single case, because e.g. of its
convenience or interest [38]. Shull et al. are of the opinion that evolving processes or tools
need both types of data: Measuring the effectiveness is usually quantitative and feasibility
or fit to the environment may be qualitative [37]. Since we do not have a single hypothesis
to evaluate, but a case study, we consider collecting qualitative data as the best approach for
our evaluation. Techniques for collecting data in qualitative research are questionnaires,
interviews and documentary materials [33]. Since we evaluate the case study on our own, we
use documentary materials. Additionally we measure the time spent in the different phases
of the migration scenario. Time is assigned to quantitative data. Finally, we use both types of
data, but with a clear focus on qualitative data.

3.3 Evaluation of Processes

Bachmann described several state of the art migration scenarios in his diploma thesis. He fi-
nally choose to base his methodology on the methodology of Laszweski [31]. Laszweski again
based his methodology on the traditional waterfall software development methodology [31].
Therefore, we have strong believe that the methodology developed by Bachmann with its
phases assessment, analysis and design etc. builds a convenient basement that is not to be
changed. The waterfall model has been around since 1970 and several problems occurred
when it was used in practice [39, 35]. The main points of criticism are the inflexibility to
changes of stakeholder requirements and the late occurrence of problems since they appear in
the testing phase only [35]. Sommerville outlines the need of iteration between the phases of
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the model in practical use [39]. Cloud computing is relatively new and we are of the opinion
that that there is uncertainty about requirements and goals at the beginning of a Cloud
migration project. As a result we analyse the methodology for the need of more iteration and
feedback loops.
Shull et al. differentiate global lessons and specific lessons when it comes to evaluation of
software processes. Global lessons affect the entire process. The main focus is on validating
the overall focus and direction of a process. Specific lessons are more a fine-tuning of the
individual steps to increase effectiveness. [37]
We also undertake a fine-tuning of the different phases since we agree with the general
phases of the waterfall model. Possible results of the fine-tuning might be providing more
information for an intermediate step or adding more intermediate steps if needed.

3.3.1 Standards

There exist several standards for evaluation or improvement of processes in a broader sense.
Based on our literature research we present two well known standards in the following.
The Capability Maturity Model Integration (CMMI) models of the Software Engineering In-
stitute (SEI) are a collection of best practices that help organizations to improve their pro-
cesses [19, 47]. CMMI aims on minimizing expenditures of the software development process.
Furthermore, it improves predictability of costs, expenditures and time while it improves
efficiency of allocation of resources. An CMMI assessment starts with a positioning of the
process with its strengths and weaknesses. This builds the basis for defining measures to
expand the strong points and to eliminate the weaknesses [22]. CMMI is a very complex
framework and therefore, we can not use it in our evaluation. Firstly, we would need to
spend more time with CMMI in order to be able to apply it correctly. Secondly, we detected
an approach that fits our needs better.
Information Technology Infrastructure Library (ITIL) is a collection of best practices for IT Service
Management (ITSM). According to their own declaration "ITIL is the most widely accepted
approach to IT service management in the world." [13]
ITIL provides recommendations for service providers on the provision of quality IT services
and on the processes and other capabilities needed to support them [44]. ITIL is a modular
system. ITIL Continual Service Improvement (CSI) aims on alignment of IT services with
changing business needs by identifying and implementing improvements to IT services
that support business processes [44]. According to [44] CSI uses a seven-step improvement
process, which is shown in Figure 3.1. We can reuse the general structure of the ITIL improve-
ment process. In order to evaluate the methodology and the tool, we also need to define a
strategy (phase 1). In our case this strategy is determined as a research case study due to
the title of the student thesis. Moreover, we also have to define what to measure and how
to gather the data (phase 2). In a live system there is always a trade-off between logging
of data and slowing down the system. Since we do not have a productive system, which
is used by others, there are no restrictions regarding the point in time or amount of data
gathering (phase 3). In addition, most of the data in our research is collected manually. Phase
4 focuses on processing of data. In Section 3.2 we outlined our focus on qualitative data for
our evaluation. We develop a standardized template for collecting the data. This helps us to
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Figure 3.1: ITIL Seven-Step Improvement Process [44]

minimize the time of processing the data. After the migration we also need to analyse the
information and data (phase 5). In contrast to phase 6 of the ITIL improvement process we
do not have to communicate our results to stakeholders. Certainly, we have to write down
the lessons learned. In the end we have to adopt the methodology and the tool (phase 7).

ITIL CSI always needs to be adapted to the specific environment [44]. Even if our research is
more technical and the case study is not based in an organization, we can reuse the seven-step
improvement process with the adaptations described above.

3.3.2 Metrics

In order to evaluate software processes we need metrics. Galin wrote a book about software
quality assurance [20]. He defined metrics for software processes in order to measure their
quality. Process metrics can be classified in four categories:

• Software process quality metrics

• Software process timetable metrics
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• Error removal effectiveness metrics

• Software process productivity metrics

Software process quality metrics involve two measures: software volume and errors counted.
Furthermore, errors in the development process can be weighted [20]. The errors are are put
in context with the total lines of code in order to calculate the metrics [20]. Since we evaluate
a methodology as well as the tool, we do not program lots of software. We use this kind of
metric with a little adaptation. All errors during the migration process are documented.
Software process timetable metrics are based on milestones. One method calculates the average
delay in completion of milestones [20]. The other approach puts the milestones completed in
time in context with the total number of milestones [20]. Because we do not have a project
plan, where we defined milestones, we would have to adapt this metrics. We lack experience
in migration projects and therefore, we can not estimate the time needed. This makes it
impossible to use this kind of metrics.
Error removal effectiveness metrics belong to the support phase. After a period of 6 or 12
months of regular operation this metric can be calculated [20]. The migration methodology of
Bachmann also contains a support phase. Since we do not have a productive system in the
end of the evaluation, we consider this phase less important. Therefore, we do not use this
kind of metric.
Software process productivity metrics aim on human resource productivity in a project as well as
on software reuse, because software reuse affects productivity substantially [20]. The human
resource productivity can be calculated with ’total working hours invested’ divided by ’lines
of code’ [20]. We build everything from the scratch and cannot reuse any fragments for the
migration process. Since we do not program software, we do not write a lot of code. We
would have to adopt this metric, but we do not find useful measures to base this metric on.
Hence, we do not use this kind of metric.

3.4 Evaluation of Tools

There exist many definitions of software quality. A good overview over software quality
models can be found in [2, 16]. We chose to use the ISO/IEC 9126 quality standard developed
by the International Organization for Standardization (ISO) and the International Electronical
Commission (IEC) [28]. We are aware of the fact that the ISO/ICE 250101 is the more extensive
successor of the ISO/ICE 9126. ISO/ICE 25000 also addresses compatibility, security, etc. [29].
The ISO/IEC fits our needs, because it contains the software quality characteristics, which we
consider most important for the migration tool. The standard consists of four parts:

• Part 1: Quality model

• Part 2: External Metrics

• Part 3: Internal Metrics
1This a series of standards on Software Engineering. It is called SQuaRE (Software product Quality Requirements

and Evaluation)
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3 Related Work

• Part 4: Quality in use metrics

The ISO/ICE 9126-1 quality model is presented in Figure 3.2. The grey components are gen-
eral characteristics of software. They are subdivided into sub-characteristics (white components),
which are decomposed into attributes. The attributes are not part of the standard, because they
differ from each project. Attributes that can be measured during the development process
of the software are referred to as internal [18]. The external behaviour can be measured in
the testing phase, whereas the quality-in-use metrics are measured from the user’s perspec-
tive [18].
The main focus of the student thesis is the evaluation of the Cloud data migration method-
ology. The tool supports the user when he is migrating the DBL to the Cloud (see Section
2.6). Since we can not evaluate all quality characteristics due to lack of time, we focus on the
evaluation of the functionality with respect to suitability. Moreover, we consider usability as
another important quality aspect in the context of this work. Therefore, we evaluate the tool
with focus on understandability and operability, too.
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Figure 3.2: The ISO 9126 Quality Model Attribute Tree [1]
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This chapter presents the design of the evaluation, which is based on the previous Chapter 3.
We have already positioned our work towards the work of other authors in the domain of the
thesis, but now we want to fit those pieces together. We reuse the seven-step improvement
process of ITIL, because it is a framework that comprises all necessary activities for our
evaluation. Nevertheless, we have to adapt it to our environment and put the process steps
in concrete terms. In order to achieve a neat arrangement, we accomplish a consolidation of
the process steps, that are linked closely together. The mapping of the process steps to the
chapters of this student thesis is shown in Table 4.1. Additionally, we assign the different
sections to the process steps.

ITIL step Chapter Section(s)

1. Identifiy the strategy for improvement 4 4.1

2. Define what you will measure 4 4.2, 4.3, 4.4, 4.5

3. Gather the data 5 5.1.1, 5.1.2, 5.1.3, 5.1.4, 5.2.1, 5.2.2, 5.2.3, 5.2.4

4. Process the data 5 5.1.5, 5.2.5

5. Analyse the information and data 6 6.1, 6.2, 6.3, 6.4

6. Present and use the information 6 6.1, 6.2, 6.3, 6.4

7. Implement improvement 7 -

Table 4.1: Mapping of ITIL Steps to our Research

As mentioned before, we use case study as evaluation method (see Section 3.1). Therefore,
we need a migration project, in which we use the methodology and tool of Bachmann.
The migration strategy and the components that are migrated, are presented in Section 4.1.
Section 4.2 points out the important aspects for the evaluation. Section 4.3 incorporates the
concrete approach for collecting evaluation data. In Section 4.4 the structure for the data
gathering is illustrated. Section 4.5 commands a view on the processing and analysis of the
collected data.

4.1 Components

Initially, only the DBL should be migrated to the Cloud. In our case of application this leads
to several shortcomings and therefore, we also migrate the business logic. The simulation
workflow needs data for the simulation. Without the migration of the business logic the
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4 Evaluation Design

data for the simulation has to be transferred from the local machine (hosted traditionally
on-premise) to the Cloud (off-premise). Since data in scientific simulations can be enormous,
the transfer over the network becomes the bottleneck for the simulation. Especially with
respect to latency and network errors. Since expenses of the migration scenario can not be
estimated, the migration process is executed in two stages. The first iteration includes the
migration of the Opal services (see Section 2.4). If there is still enough time for the second
iteration, we also migrate the auditing application. An iteration consists of two steps (see
Section 1.3):

1. Using the migration method and the tool of Bachmann for migrating the DBL

2. Migrating the business logic and the DBL of a whole component to the Cloud using the
phase driven methodology of AWS in combination with the methodology and tool of
Bachmann

Both migration steps are realized with Cloud services from AWS (see Section 2.7).

4.2 Focus

The following requirements are derived from the formulation of the student thesis and the
supervisor of the student thesis.
One key aspect for the evaluation is the quality of the technical migration of the DBL. We
need to evaluate, how well the methodology and the tool do support the user in the migration
project. In addition, we need to track the amount of errors during the migration. Another
important aspect for the evaluation is the support of the methodology and the tool for
the adaptation of the architecture. This issue especially gains greater significance in the
second step of the migration, where a whole component is migrated to the Cloud. Figure 4.1
illustrates the important matter of the second step. The data migration phase of AWS is
replaced by the methodology and tool of Bachmann. Since the methodology and tool cover
more than the pure data migration, we have to evaluate, which phases of Bachmann and
AWS are overlapping. In addition, the same phases can have different characteristics. We
have to point out the differences and common features.

Data Migration 

Methodology + Tool

Cloud 

Assessment 

Phase

Proof of 

Concept Phase

Data Migration Phase Application 

Migration 

Phase

Leverage the 

Cloud Phase

Optimization 

Phase

Bachmann

Amazon

Figure 4.1: Combination of AWS and Bachmann
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4.3 Data Collection Approach

In Chapter 3 we presented weaknesses of the waterfall model on which the methodology of
Bachmann is based on. One point of criticism was the inflexibility to changes of stakeholder
requirements. Since there are no stakeholders we can not evaluate this. Another point of
criticism was the missing iteration between the phases of the model in practical use. Therefore,
we focus on the detection of iterations, when we apply the methodology. Since we use case
study as evaluation method, we only utilize the methodology and tool for this purpose.
Therefore, the most import software quality attributes for the evaluation of the tool are
understandability, operability and suitability. Other aspects are not taken into consideration.
More precisely, our evaluation does not cover the whole methodology and the whole tool, e.g.
there exist further migration scenarios that are supported.
All challenges and issues during the migration project should lead to continuous improvement
and adaptation of the methodology as well as the tool.

4.3 Data Collection Approach

In Section 3.2 we gave an overview of the data classes in evaluation. We focus on qualitative
data, because qualitative data is useful to get a richer understanding of processes and tools [37].
This is exactly what we aim at. We want to evaluate the methodology and the tool. Therefore,
we need to document all shortcomings and problems (we conflate them under error) during
the case study in order to improve the methodology and the tool. In the domain of this
evaluation an error can have several meanings:

• traditional error: e.g. there is an error during the migration of data or the migration tool
crashes

• understanding problem: e.g. tool and methodology give us a recommendation and we are
in doubt what exactly to do

• time problem: there is a challenge and we spend a lot of time finding a solution

Our approach for documenting a single error is shown in Table 4.2.

An ID is compound of a letter and an integer. We use a running ID, because this helps us to
get a better understanding of the chronology of the errors. If the error occurs in step 1 of an
iteration the letter is B (Bachmann). If the error occurs in step 2 of an iteration the letter is A
(Amazon Web Services). In addition, each error has a name (e.g. migration-error).
The class specifies the belonging of the error. It can take the values methodology, tool or others. If
the class is tool, the corresponding software quality attribute has to be added in brackets. Due
to our focus (see Section 4.2) we can choose one of the following attributes: understandability,
operability and suitability. Since there is no hard limit between the different software quality
attributes, it can be hard to categorize the errors. Moreover, a shortcoming can sometimes be
assigned to different software quality attributes.
The severity of an error can take one of the following values: low, middle, high or critical.
Severity can be seen from different perspectives. E.g. severity as the difficulty to fix the error
or severity as threat to a successful migration. We score the severity with respect to the impact
on the migration result. A wrong database Uniform Resource Locator (URL) is easy to fix,
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4 Evaluation Design

Property Value

ID B17

Name migration-methodology-unclear

Class methodology

Severity high

Description We did not understand what to do in step X.

Error Handling We were searching in the diploma thesis of
Bachmann for more information concerning
X.

Solution In X it needs to be checked if compound pri-
mary keys exist in the database.

Adaptation More details need to be added to step X.

Table 4.2: Error Example

but critical for the migration project. Therefore, we rate an database URL error with severity
high. This helps us during the discussion in Chapter 6 to prioritize the different possible
adaptations.
In the description we write as much information as needed to understand the error. A critical
error is a special kind of error. It is an error, that leads to a step back in a prior phase (see
Section 4.5).
The error handling describes our approach to find a solution for the problem. If we can solve
the problem, we describe the solution. If we can’t work something out directly, the solution
contains our substitute solution. Sometimes it is not possible to specify an error handling or a
solution. E.g. if there is a problem concerning the understandability (usability) of the tool.
Adaptation is an important property. This field contains the required adaptations to trou-
bleshoot the tool or methodology. In Chapter 6 we discuss the required adaptations. If
we already have them documented together with the error, we can reconstruct their origin
better.

Even if we focus on the qualitative data, we also use quantitative data: We measure the time that
we spent in each phase. This data helps us to determine the most time consuming phases.

4.4 General Structure

In Section 4.1 we gave an overview of our research design. In iteration 1 we use the methodol-
ogy of Bachmann and in iteration 2 we use a combination of the AWS migration methodology
and Bachmann’s methodology. For each phase of the methodologies, we document all oc-
curring errors within the error template shown in Table 4.2. This helps us to minimize step
four process the data of the ITIL improvement process, since we already have data with con-
text and not just raw data. The following two sections describe the relevant phases of the
methodologies with respect to the case study.
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4.5 Data Processing Approach

4.4.1 Iteration 1 - Bachmann

Since we do not have users and a productive system, we do not use the phases deployment
and post-production support. Furthermore, there is no need for the optimization phase, because
we do not have high workload on the prototype. In order to structure the occurring errors,
we collect them for the following phases:

• Assessment

• Analysis and Design

• Migration

• Test

Additionally, we provide a brief conclusion for each phase of the methodology.

4.4.2 Iteration 2 - AWS and Bachmann

We do not apply all phases of the AWS migration methodology to the SimTech prototype. The
phase leveraging the Cloud focuses on automating elasticity and security hardening [52]. In our
case this is less relevant for the case study. In addition, we leave out the optimization phase,
since we do not have high workload on the prototype. In order to structure the occurring
errors, we collect them for the following phases:

• Cloud Assessment

• Proof of Concept

• Data Migration Phase

• Application Migration Phase

Additionally, we provide a brief conclusion for each phase of the methodology.

4.5 Data Processing Approach

In Section 4.2 we outlined, that we also focus on the detection of iterations, when we apply the
methodology. Therefore, we visualize the appearance of errors that lead to a return to a prior
phase of the methodology. A possible iteration of the different phases during a migration
scenario is shown in Figure 4.2. Bachmann defined matching conditions for the phases [15].
If we meet all the requirements of a phase, we can enter it. Following the methodology
we should not have to step back in a prior phase. Nevertheless, it is feasible that we have
to iterate between the phases. If we collect the errors by sequence only, the evaluation is
missing structure. If we collect the errors only for each phase, we are missing the chronology.
Therefore, we use the grouping of errors for each phase in combination with the visualization
shown in Figure 4.2. A step in time is marked green, when no critical errors occurred. A
critical error is an error, that leads to a step back in a prior phase. If such an error occurs, the
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Figure 4.2: Iteration Between Phases of the Methodology During a Migration Project

step in time gets marked red. Dependent on the origin of the error, we step back in a prior
phase. The error with ID 5 leads to a step back from the optimization phase into the analysis
and design phase (see Figure 4.2). An arrow marks the transitions between phases.

In Section 4.3 we described, that we measure the time spent in the different phases. Due to
possible iterations we have to summarize the time for each phase at the end of the migration
project. A possible distribution of time is shown in Figure 4.3. This should help us to detect
the most time consuming phases. As a consequence, we could support the user with more
detailed information for this phase or add additional intermediate steps.
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4.5 Data Processing Approach

Assessment 15 3,38%

Analysis and Design 30 6,76%

Migration 153 34,46%

Test 140 31,53%
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33



4 Evaluation Design

34



5 Evaluation Data Collection and Processing

In Figure 1.1 we presented the overview of our research design. Following this, we apply
the migration methodology and the tool of Bachmann to the MySQL database of the Opal
services in Section 5.1. We only apply the phases assessment to test to the SimTech prototype
(see Section 4.4.1). The phases deyployment and post-production support are not part of the
case study, because we do not have a productive system. Due to the characteristics of the
MySQL database, which is mainly used for storing configuration data, we do not have to
apply the phase optimization. In Section 5.2 we migrate whole parts of the SimTech prototype
to the Cloud. Therefore, we use the migration methodology of AWS in combination with
the methodology and the tool of Bachmann. In this section we pay special attention to the
ability of the methodology and the tool to support the adaptation of the architecture of the
application. In Chapter 4 we presented the evaluation design. We defined, which data we
want to collect for the evaluation and how we structure the collection. In addition to that, we
describe our actions and the results of the intermediate steps in the different phases to make
the whole evaluation more comprehensible.
The evaluation data, that we collect in this chapter, is analysed and discussed in Chapter 6.

After the completion of the first iteration (Opal services), we do not perform the migration
of the auditing application. We do not expect to gain new relevant insights concerning the
evaluation of the methodology and the tool by migrating the MySQL database of the auditing
application. The migration should work equivalent to the Opal services, because we migrate
from a local MySQL to a RDS MySQL instance. Most of all we proved in the first iteration
that the auditing application works well with an RDS MySQL instance.

5.1 Migration Method Bachmann

In this section we apply the methodology of Bachmann and the tool to the MySQL database
of the Opal services. In Section 2.5 we presented a rough overview of the different phases
of Bachmann’s methodology. Nevertheless, we follow every single step of the methodology.
The more detailed methodology can be found in [15]. Without the knowledge of the detailed
methodology, it can be hard to understand our actions and decisions that we present in the
following.

5.1.1 Assessment

In the following the results of the intermediate steps are presented:
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1. The migration is part of the student thesis. The focus was presented in Section 4.2.

2. Only the Opal manager and the resource manager access the MySQL database. We have
to change the DAL.

3. Since we migrate a MySQL database, we also use a relational database service in the
Cloud. The preferred database is a MySQL database in order to keep the adjustments
small. We choose AWS RDS as database service in Section 2.7. The MySQL DB engine
version on-premise is 5.1.67. Since the version 5.1.6.7 is not available in RDS, we choose
the MySQL DB engine version 5.5.27.

4. We use the Cloud data migration tool of Bachmann. There is no need for additional
hardware.

5. We use Cloud burst as migration scenario.

6. We do not use a project plan, because we can’t estimate the workload at all. The SimTech
prototype is dimensioned for a distribution along different components. We do not
expect the appearance of many problems during the migration of the DBL.

Conclusion: We didn’t have any problems in this phase.
Time spent: 0,2 days

5.1.2 Analysis and Design

In the following the results of the intermediate steps are presented:

1. We use a MySQL database from Amazon RDS. We choose the micro instance, since we
do not expect a high system load.

2. There is no need for additional data cleansing. The data in the local MySQL database is
expected to be correct. The data is migrated after the environment has been tested and
it was ensured that the environment was running on-premise before the migration.

3. We migrate from a local MySQL database to a MySQL database in the Cloud. We do
not carry out modifications on the data.

4. We have to change the database configuration in the configuration files of the Opal
manager and the resource manager in order to enable access to the AWS RDS.

5. We do not expect to carry out further adaptations on the system architecture. Therefore,
we do not need a plan for additional adaptations.

Instance Size db.t1.micro

DB Storage 5GiB

DB Engine mysql

DB Engine Version 5.5.27

Table 5.1: RDS Configuration
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5.1 Migration Method Bachmann

Conclusion: We didn’t have any problems in this phase.
Time spent: 0,2 days

5.1.3 Migration

In the following the results of the intermediate steps are presented:

1. We only have tables with data and no stored procedures or triggers. There are no
composite primary keys and therefore, we do not have to adapt them. We use the Cloud
data migration tool of Bachmann in order to migrate the data. No problems occurred.

2. We adapt the configuration files of the Opal manager and the resource manager.

3. No further adaptations on adjacent systems needed.

In this phase the errors with ID B1 (see Table 5.2), B2 (see Table 5.3), B3 (see Table 5.4) and B4
(see Table 5.5) occurred.

ID B1

Name Cancel

Class tool (operability)

Severity high

Description Pressing cancel during editing has not the expected effect. Instead of jumping
back to the prior page the project page is shown.

Error Handling Not clicking cancel anymore.

Solution None

Adaptation The bug needs to be fixed.

Table 5.2: Error B1
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ID B2

Name Fill in the form problem

Class tool (operability)

Severity high

Description In Step 2 (Describe Desired Cloud Data Hosting Solution) the user is asked about
the product version that is used by the Cloud data store in the background. The
cursor does not stay in the input field.

Error Handling The product version can only be typed in, when the left mouse button is pressed
down. Otherwise the cursor jumps out again.

Solution None

Adaptation This should be corrected so that the cursor stays in the input field.

Table 5.3: Error B2

ID B3

Name Status Bar Loading

Class tool (understandability)

Severity high

Description There is a window in which the log for the export is shown and a window in
which the log for the import is shown. There was a moment, where we did not
know, if the import works automatically or if we had to press the start migration
button again.

Error Handling We were insecure about the status of the export/import and just waited for a few
minutes.

Solution None.

Adaptation The user should be informed about the current status of the data migration.
There should be a status bar that shows the current status e.g. in percentage
terms or something like table 5 of 87 is exported. Apart from that it should be
pointed out to wait for the completion of the second window.

Table 5.4: Error B3

ID B4

Name Logging

Class tool (understandability)

Severity high

Description No timestamps for log messages are displayed.

Error Handling None

Solution None

Adaptation Date and time should be printed for each log message.

Table 5.5: Error B4
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5.1 Migration Method Bachmann

Conclusion: In this phase several errors with severity high occurred. But we only had minor
problems to fix or avoid them.
Time spent: 0,6 days

5.1.4 Test

In the following the results of the intermediate steps are presented:

1. Since the amount of data is small, we can compare all tables and all data sets one by
one. We do not find any discrepancy in the migrated data. The migration in the domain
of the case study works correctly.

2. Since we do not detect abnormalities in the migrated data, there is no need for adapta-
tions on the system.

3. The simulation was run with the SimTech prototype and the MySQL database hosted
on-premise. The same simulation was done with the migrated MySQL database. The
SimTech prototype delivered the same results for both simulations. As a consequence,
we do not perform further tests in the context of the case study.

4. No need for adaptations on adjacent systems

In this phase the errors with ID B5 (see Table 5.6), B6 (see Table 5.7) and B7 (see Table 5.8)
occurred.

ID B5

Name Connection failed

Class tool (operability)

Severity high

Description After the successful migration of the data the application was not able to connect
to the MySQL database in the Cloud.

Error Handling We tried to use the root connection. The application could then connect to the
MySQL database in the Cloud.

Solution With the user root and the root-password the application could connect to the
MySQL database in the Cloud.

Adaptation Since this is just a work-around we do not recommend to use the root and the
root-password for this purpose.

Table 5.6: Error B5
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ID B6

Name Connection failed

Class tool (operability)

Severity high

Description After the application could successful connect to the MySQL database in the
Cloud with root rights, we wanted the application to use the standard connection
information. Therefore, we created the required users and granted the rights on
the tables via a script. The application still could not connect to the database.

Error Handling We were searching for information about settings on the MySQL Workbench for
user administration.

Solution We added a new server instance to the server administration in the MySQL
Workbench for our AWS MySQL database. In the security options we assigned
the administrative role DBManager to the new users.

Adaptation The user should get a hint to create the needed users and to add the required
administrative roles.

Table 5.7: Error B6

ID B7

Name Connection failed

Class tool (operability)

Severity high

Description Although correct users with the required administrative roles existed in the
MySQL database in the Cloud, the application could not connect to the database.

Error Handling We were going through all the security (user and privilege) settings in the MySQL
Workbench.

Solution We set max queries, max. updates, max connections on a value greater than zero for
each user.

Adaptation The user should get information about the limitations for the different accounts
(users).

Table 5.8: Error B7
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Conclusion: In this phase several errors with severity high occurred. But we only had minor
problems to fix them. We suggest to add information concerning the adjustment of the
database security options. Furthermore, we would present information to the user about
necessary adaptations in the user administration.
Time spent: 1,0 days

5.1.5 Data Processing

In Section 4.5 we presented a way to visualize iterations in a phase-driven migration project.
However, no critical errors occurred during the migration of the MySQL database to the
Cloud. This is why we leave out the visualization for this phase.
In Table 6.4 the amount of time we spent in the different phases of the methodology is
shown. We did not manage to quantify the time we spent more accurate than in 0,2 day steps.
Sometimes we forget to measure the exact time and sometimes we got distracted from our
work. In the end we round to 0,2 day steps.

Assessment 0,2 days

Analysis and Design 0,2 days

Migration 0,6 days

Test 1,0 days

Table 5.9: Overview of the Time we Spent in the Phases of Bachmann’s Methodology

5.2 Migration Method AWS and Bachmann

In this phase we apply the migration methodology of AWS in combination with the method-
ology and tool of Bachmann. We introduced the methodology to migrate an application to
AWS in Section 2.7.1.

5.2.1 Cloud Assessment

The migration methodology of AWS addresses business users (see Section 2.7). They got
additional needs for a migration. For our purpose financial assessment, security assessment
and compliance assessment play a minor part. Therefore, we focus on the task plan creation in
this phase. The tendency of the AWS plan is toward project management and involves the
definition of success criteria for the migration project [52]. This includes CAPEX, OPEX, time
to market and availability [52].
In the domain of the case study those things take a back seat to the technical issues. This is
why our plan mostly addresses technical aspects and consists of the following steps:

1. Create an EC2 instance and choose an AMI (We chose the AWS Cloud services in
Section 2.7).
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2. Verify that the SimTech prototype runs locally on the EC2 instance (all components are
compatible).

3. Define the target architecture (see Figure 5.1).

4. Identify software packages that need to be installed on the different EC2 instances.

5. Install the software packages on the EC2 instance and configure the databases.

6. Check if all components work on the different Cloud services.

7. Identify all components that need adjustments. The architecture of the SimTech pro-
totype can be seen in Figure 5.1. All components that interact with the migrated
component need to be adapted.

8. Test, if the connection to the different components work.

9. Validate that the SimTech prototype delivers correct results with the migrated compo-
nents.

SimTech Auditing Application

Apache ActiveMQ

org.apache.ode.in

Topic

org.apache.ode.events

org.simTech.ode.eclipse

Apache Tomcat

Eclipse JEE

SimTech Auditing Application MySQL
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 Axis2
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Mock Services

SimTech Fragment 

Extraction

Opal Resource Manager Views

Web Service return

EC2On-premise

RDS 1

RDS 2

Figure 5.1: Distribution of the SimTech Prototype Components [25]

Conclusion: We didn’t have any problems in this phase.
Time spent: 0,6 days

5.2.2 Proof of Concept

In the following the results of this phase are presented:
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1. We create an EC2 instance and choose an AMI (see Table 5.10).

2. We install the whole prototype on the EC2 instance to make sure that the software
components are compatible with the selected AMI.

3. We migrate the MySQL database of the Opal services from EC2 to AWS RDS. The
MySQL DB engine version on-premise is 5.1.67. Since the version 5.1.6.7 is not available
in RDS, we chose MySQL DB engine version 5.5.27. The interaction between EC2 and
the migrated database works. The SimTech prototype produces the same results like
the local installation. The specification of the RDS instance can be seen in Table 5.1.

Instance Size m1.medium

Architecture x86

Total Memory 3.75 GB

Processing Power 2 ECU

AMI-ID ami-f1fa6ec1

Table 5.10: EC2 Configuration

In this phase the errors with ID A1 (see Table 5.11), A2 (see Table 5.12) and A3 (see Table 5.13)
occurred.

ID A1

Name Connection to MySQL database failed

Class tool (operability)

Severity high

Description After the successful migration of the data, the application was not able to connect
to the MySQL database in the Cloud.

Error Handling Configuring the AWS database security groups.

Solution Granting the EC2 instance access to the RDS MySQL database. Each EC2 belongs
to one EC2 security group. Each RDS instance belongs to one RDS security group.
For each security group there can be applied several rules. With one rule we
granted the EC2 security group access to the RDS security group (see Figure 5.2).
As a consequence the EC2 instance was able to connect to the RDS instance.

Adaptation Provide general information about security configuration of the Cloud services
to the user.

Table 5.11: Error A1
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EC2_1 EC2_2 … RDS_1 RDS_2 …

EC2 Security Group 1 grant access RDS Security Group 1

Rule_1 Rule_1

Rule_2 Rule_2

Rule_3 Rule_3

… …

Figure 5.2: Amazon Web Services Security Groups

ID A2

Name Connection EC2 failed

Class tool (Operability)

Severity high

Description After configuring the AWS security groups the EC2 instance could not be ac-
cessed from our local machine.

Error Handling Configuring the windows firewall of the EC2 instance.

Solution We disabled the windows firewall of the EC2 instance. Then we could access the
EC2 instance.

Adaptation No adaptations needed. This information was provided by the Cloud data
migration tool, but we missed it.

Table 5.12: Error A2

ID A3

Name SimTech related Challenges

Class others

Severity high

Description After installing the SimTech prototype on a EC2 instance with a 64-bit Windows
Server 2008 R2 AMI, the Opal services did not run correctly. Tomcat always
crashed with several Java and BPEL faults.

Error Handling We tried to solve the problem by adding additional parameters and configuring
parameters etc. We reinstalled all software components.

Solution We installed the whole SimTech prototype on a EC2 instance with a 32-bit Win-
dows Server 2008 R2 AMI. We are still not sure, whether we might got the
installation wrong on the 64-bit instance or we configured something wrong. The
SimTech prototype is running on the 32-bit version and therefore, we recommend
to install it on this version.

Adaptation We provide all lessons learned concerning the migration of the SimTech prototype
to the Cloud in a step-by-step guide [34]. This guide can be found on the CD
belonging to this student thesis.

Table 5.13: Error A3
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Conclusion: There where several challenges in this phase. The major challenge of this
phase was to get the Opal services to work on-premise. If we had more experience with the
technologies related to the SimTech prototype and the SimTech prototype itself, we would
not have spent so much time in this phase.
Time spent: 10,2 days

5.2.3 Data Migration Phase

We determined a MySQL database of AWS RDS as target database for the migration in
Section 2.7. The concrete version of the MySQL DB engine was determined in Section 5.2.2.
Therefore, we only apply the phases migration and test of Bachmann’s methodology. We
migrate the data of the MySQL database with the Cloud data migration tool of Bachmann.
This time no errors occur, because we know how to set up the RDS instance correctly due to
our experiences gained in Section 5.1 and Section 5.2.2.

Conclusion: We didn’t have any problems in this phase. The Cloud data migration tool
provides propositions for the adaptation of the DAL and the adaptation of the application
logic layer. In combination with our experiences of the proof of concept phase this helps us to
accomplish the application migration in the next phase.
Time spent: 0,6 days

5.2.4 Application Migration Phase

In the following the results of this phase are presented:

1. We identify all components that need to be changed. The target architecture of the
distributed SimTech prototype can be seen in Figure 5.1. All components that interact
with the migrated components need to be adapted. Amazon distinguishes two migra-
tion strategies in this phase: The Forklift Migration Strategy picks a whole application
and moves it to the Cloud, whereas the Hybrid Migration Strategy uses an iterative
approach, where parts of the system are moved to the Cloud [52]. We use the Hybrid
Migration Strategy, since only parts of the SimTech prototype are moved to the Cloud
(see Figure 5.1).

2. The connection to the different components works.

3. The prototype delivered correct results.

Conclusion: We didn’t have any problems in this phase. Most of the propositions of the
Cloud data migration tool could not be applied to the SimTech prototype, because we also
used a MySQL database in the Cloud and did not change the database schema. The tool
supports the user with hints concerning changes of database type and hints concerning
confidentiality and database product change.
Time spent: 1,0
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5.2.5 Data Processing

In Section 4.5 we presented a way to visualize iterations in a phase-driven migration project.
However, no critical errors occurred during the migration of the Opal services to the Cloud.
This is why we leave out the visualization for this phase.
In Table 5.14 the time we spent in the different phases of the methodology is shown. We did
not manage to quantify the time we spent more accurate than in 0,2 day steps. Sometimes we
forget to measure the exact time and sometimes we got distracted from our work. In the end
we round to 0,2 day steps.

Cloud Assessment 0,6 days

Proof of Concept 10,2 days

Data Migration Phase 0,6 days

Application Migration Phase 1,0 days

Table 5.14: Overview of the Time we Spent in the Different Phases of AWS Methodology
in Combination With Bachmann’s Methodology
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In this chapter we discuss aspects concerning the migration of the SimTech prototype. Ac-
cording to our evaluation design presented in Chapter 4, we analyse the evaluation data with
the focus presented in Section 4.2. First of all we describe the challenges with the SimTech
prototype and their effects on the evaluation (Section 6.1). In Section 6.2 we analyse all data
that leads to improvement suggestions for the Cloud data migration tool. In addition different
implementations for the improvement suggestions are discussed. Section 6.3 comprises all
lessons learned regarding the migration methodology of Bachmann. Another important
aspect is the overall quality of the migration. The quality of the migration and the final assess-
ment of the migration is comprised by Section 6.4. In order to make the SimTech prototype
run in the AWS Cloud several adaptations need to be performed. An overview of the most
important adaptations is presented in Section 6.5. A step-by-step migration manual can be
found in [34].

6.1 SimTech Prototype Challenges

We had to face several challenges with the SimTech prototype. We describe them in the
following, because they influence the results of the evaluation.
The SimTech prototype consists of many different software packages. Although there was
an installation guide provided, we were not able to get the SimTech prototype to work
on our local machine at the beginning. Not all current versions of the software and the
SimTech components are compatible. After we got new informations regarding the installation
(see [53]), we installed all correct components and nearly got the prototype to work. The
Opal services produced intermediate results until a certain workflow activity. As soon as the
createOpalMedia sequence was entered, the simulation stopped with an fault.1 Then we started
to evaluate the methodology and the tool with the AWS migration methodology. Therefore,
we had to migrate the SimTech prototype to the Cloud. In the AWS proof of concept phase
we selected an AMI with an operating system. We used a 64-bit system, because the Opal
services were running to a certain point on the 64-bit local machine. Indeed, several java
and BPEL engine faults occurred, when we started the Opal services on the EC2 instance
(see Table 5.13). Tomcat crashed before the createOpalMedia sequence was reached. Since we
were unsure about the origin of the errors, we tried to solve them by searching on google for
the error messages. Meanwhile we tried to get the Opal services to work fully on the local
machine. Those two processes are illustrated in Figure 6.1.

1There is no section in this student thesis, that describes the Opal services in detail. However, the services can be
found on the CD belonging to this student thesis.
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Trying to get the SimTech Prototype to work locally 

Migrating parts of the SimTech Prototype 

Figure 6.1: Two Parallel Processes in the AWS Proof of Concept Phase

Due to lack of time we had to work in parallel. This is why we spent additional time in the
AWS proof of concept phase, although several testing and configuration actions were not
migration related. We were not able to distinguish our actions and only assign the time of our
migration related actions to the proof of concept phase. The ideal chronology of actions for
our migration project is shown in Figure 6.2. We should have gotten the SimTech prototype
to run on our local machine first. With the running SimTech prototype as pre-condition for
the migration-project, we should have started with the migration in order to evaluate the
methodology and the tool of Bachmann.

Trying to get the SimTech Prototype 
to work locally 

Migration project 

SimTech 
Prototype is 
running correct 
on the local 
machine 

Figure 6.2: Ideal Sequence of Actions for the Case Study

Once we got the Opal services to work on the local machine, we created a new EC2 instance
with a 32-bit AMI and installed all components. This time we chose a 32-bit version, because
in the latest installation guide also a 32-bit machine was used [53]. After the testing in the
weeks before we knew exactly how to install and set up everything correctly. Then the Opal
services were also running in the Cloud without any problems. A detailed description of all
required software packages can be found in [34].
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6.2 Lessons Learned Tool

In this section we analyse the data that should lead to improvement suggestions on the Cloud
data migration tool of Bachmann. All errors collected in Chapter 5 related to the Cloud data
migration tool are analysed.
Firstly we present improvement suggestions with high priority. Secondly we focus on the
improvement proposals with middle priority. There are no proposals with low priority.

6.2.1 High Priority

Related to the error with ID B1 (see Table 5.2):
This improvement suggestion is based on a bug. Pressing cancel during editing has not the
expected effect. Instead of jumping back to the prior page the project page is shown. This
needs to be fixed, because such a bug subtracts the acceptance of the end user.

Related to the error with ID B3 (see Table 5.4):
With focus on usability, a status bar that shows the current export or import process is really
helpful to the user. He knows that the export or import has not finished yet and therefore, he
should wait for the progress to finish and not execute further actions. During the evaluation
there was a moment, where we did not know the current status of the application. There is a
log window for the export and a log window for the import of data. The export seemed to
be finished and we were not sure, whether we had to execute further actions (e.g. click the
migrate button again) or the import works automatically. A status bar can be implemented in
different ways. A neatly solution would base the progress on the amount of data that has
already been exported or imported. An easier solution would base the progress on the number
of tables that has already been exported or imported. If there is no time for implementing a
status bar, a simple hint to wait for the completion of export and import would be helpful,
too.

The errors with the ID B5 (see Table 5.6), B6 (see Table 5.7) and B7 (see Table 5.8) are strongly
related to database administration and database security. Therefore, we propose to add the
information presented in Table 6.1 to step 5 of the Cloud data migration tool. To be more
exact, we would add this information to the intermediate step Data Access Layer.

USERS All necessary users need to be added to the new database in the Cloud. All those
users need to be dedicated all the necessary administrative roles. In addition their
access rights (e.g. max queries, max connections) need to be configured properly.

Table 6.1: Improvement Suggestion for the Cloud Data Migration Tool

The errors with the ID A1 (see Table 5.11) and A2 (see Table 5.12) are strongly related to Cloud
provider specific security. We propose to add the information presented in Table 6.2 to step 5
of the Cloud data migration tool. To be more exact, we would add this information to the
intermediate step Network Layer.
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CLOUD
PROVIDER
SECURITY

It needs to be checked if the Cloud services require additional security configuration.
(E.g. the Cloud services RDS of AWS require additional configuration in security
group settings. Otherwise the RDS instances can’t be accessed.)

Table 6.2: Improvement Suggestion for the Cloud Data Migration Tool

6.2.2 Middle Priority

Related to the error with ID B2 (see Table 5.3):
In Step 2 (Describe Desired Cloud Data Hosting Solution) of the Cloud data migration tool, the
user is asked for the product version that is used by the Cloud data store in the background.
The product version can only be entered, when the left mouse button is pressed down.
Otherwise the cursor jumps out again. This should be corrected so that the cursor stays in the
input field.

Related to the error with ID B4 (see Table 5.5):
Right now the logging information is presented without a timestamp. We consider timestamps
to be important for debugging. The sequence of actions of the application can be tracked
better. While new timestamps are being produced, the application is still running and has not
crashed. So timestamps give also feedback about the current status of the application.

6.2.3 Support Adaptation of the Architecture

Information about the adaptation of the architecture was provided by the tool. However, we
missed useful information like the need for configuring the firewall (see Table 5.12). The tool
delivered suggestions, that were in most cases not relevant due to the focus of the evaluation
and our migration scenario. E.g. the tool suggested to take care of different semantics of
NULL. Since we migrated from MySQL to MySQL, we did not have to consider this aspect.
In a more complex scenario, where different kinds of databases are involved, the provided
hints would be useful.

6.3 Lessons Learned Methodology

This section focuses on the important aspects of the evaluation for the methodology (see
Section 4.2).

6.3.1 Methodology fit in

One important question is how well the migration methodology of Bachmann fits into a
holistic migration scenario. Therefore, we have to analyse which phases of Bachmann’s
methodology and the AWS methodology are overlapping. Figure 6.3 shows all phases
pertinent to the case study. During our evaluation with the SimTech prototype in Chapter 5,
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we realized that the phases assessment and analysis and design by Bachmann were covered by
the Cloud assessment phase and proof of concept phase of the AWS approach. The cooperation
of the migration methodology and the Cloud data migration tool of Bachmann and the
AWS migration approach is shown in Figure 6.3. The tool also provided us many proposals
concerning the adaptation of the DAL. However, due to the migration of a MySQL database to
a RDS MySQL instance, we did not have compatibility problems. Therefore, those suggestions
were not helpful in our case. We propose to hide all unnecessary hints.

In general Bachmann’s methodology and tool fit in well into the AWS approach in the case
study .

Cloud 

Assessment 

Phase

Proof of 

Concept Phase

Data Migration Phase Application 

Migration 

Phase

Bachmann

Amazon

Migration Assess-
ment 

Analysis 
and Design 

Test 

Cloud data 
migration 
tool 

supports 

migrates the data 

Figure 6.3: Result of Fitting in Bachmann’s Methodology in the Methodology of AWS

6.3.2 Possible Iterations

The evaluation should also focus on the detection of iterations between the different phases
of Bachmann’s methodology (see Chapter 4). Since no critical errors (see Section 4.5) occurred,
there was no need for a step back in a prior phase. In conclusion there were no iterations
between the phases in the case study.

6.3.3 Analysis of the Time Spent

Another important aspect was the discovery of the most time consuming phases (see Chap-
ter 4). We assume that the most time consuming phases are more difficult and therefore, we
might provide more helpful information to the user in those phases (see Section 4.5). We
split the analysis of the time spent in two parts. The first part focuses on the time spent in
Bachmann’s methodology, whereas the second part analyses the time spent in the holistic
migration scenario with AWS.
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Figure 6.4: Relative Time Spent in the Different Phases of Bachmann’s Methodology

In Figure 6.4 the relative time we spent in the first step of the iteration is shown (see Sec-
tion 4.1).

The phases assessment and analysis and design were applied straightforward. No errors
occurred and this is why we propose to not change those phases.

During the migration phase we used the Cloud data migration tool. In this phase we detected
some shortcomings concerning the tool. Those improvement suggestions were discussed in
Section 6.2.

The most time consuming phase was the testing phase. Three errors occurred. All of them are
related to the Cloud data migration tool. They have been discussed in Section 6.2.

AWS

In Figure 6.5 the relative time we spent in the second step of the iteration is shown. The phase
Cloud assessment was applied straightforward. No errors occurred and we do not recommend
to change anything in this phase.

The phase proof of concept has a considerable proportion of the time spent in the second step of
the iteration. It is also noticeable, that only errors in this phase of the methodology occurred.
On the one hand this can be explained due to the challenges with the SimTech prototype (see
Section 6.1). On the other hand this phase is predetermined for first tests and technology
validating [52]. This phase helped us to get to know the AWS EC2, because we had not
worked with AWS before. In our case, we spent a long time there, because we could not get
the Opal services to work locally. Locally in this case means locally on the EC2 instance without
distributing components of the SimTech prototype using further services from AWS.
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Figure 6.5: Relative Time Spent in the Different Phases of the AWS Methodology in Com-
bination with Bachmann’s Methodology

The important question is now, whether to add such a proof of concept phase to the methodology
of Bachmann. This question is not easy to answer, because from our point of view there is no
universal answer to this.
In the first iteration of our migration project (see Section 4.1) we would not extract advantages
from a proof of concept phase. To be more exact, the errors would occur in the proof of concept
phase and the succeeding migration phase would be faultless. So just the name of the phase,
in which the errors occur, would change. Therefore, the adding of a proof of concept phase to
Bachmann’s methodology would not yield an advantage.
Considering the background of a very complex system, a benefit of from a proof of concept
phase can be derived. A pilot that encloses the most important and critical parts of the system
can be tested. Furthermore, a smaller system has less potential sources of trouble due to
the smaller complexity. Especially, since people have not many years experience with the
different Cloud solutions, a proof of concept phase helps to validate the technology. This leads
to a mitigation of risk. In such a case we propose to add a proof of concept phase to Bachmann’s
methodology. However, the proof of concept phase needs to be clearly separated from the testing
phase, where e.g. the different modules are integrated.
A point of criticism is the missing iteration of the phases in practical use [39]. In a project, for
which many iterations between the phases of the methodology are presumed, a proof of concept
phase can minimize those iterations by detecting errors in an early stage of the migration
project. In this case a proof of concept phase is helpful, too.
Since there exist convincing arguments in favour of both sides, we propose to add a optional
proof of concept phase to the migration methodology of Bachmann. In complex situations the
proof of concept phase can be applied.

In Figure 6.6 the absolute time we spent in all phases of both approaches is shown. It took us
0,6 days to finish the data migration phase. The data migration phase in our evaluation consists
of the phases migration and test of Bachmann (see Figure 6.3). In the first step of the iteration
it took us 1,6 days to finish both phases. This means, that we spent 1 day less for executing
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Figure 6.6: Migration Projects Time Line

the same phases during the second step of the iteration. In addition, no errors occurred in the
second step compared to four errors in the first step. We trace this back to the fact, that we
profited from learning effects of the first iteration.

The application migration phase was applied straightforward. No errors occurred. We had
spent a lot of time in the proof of concept phase and therefore, we gained enough experience to
migrate the application without a challenge.

6.4 Migration Assessment

With respect to the focus presented in Section 4.2 one key aspect for the evaluation is the
quality of the technical migration of the DBL. In the domain of the case study the migration
quality is perfect. All data was successfully migrated and we did not recognize abnormalities
in the migrated data. After all the SimTech prototype is running with services from AWS as
shown in Figure 5.1.

Another important lesson learned is, that insides and previous knowledge of an application
and components are important factors for a migration project. In our case the application
was coupled loosely and therefore, we had good preconditions for a distribution along
services from AWS. In addition the architecture of the SimTech prototype was relative
easy. Nevertheless, we had to face challenges while migrating the SimTech prototype. The
pure data migration in the case study was the easier task. The adaptation of the application
to make it run in the Cloud in a provider specific environment was more tricky. Against
the backdrop of a more complex system, there might be different specialists for different
layers or components of the application. In such case the migration can become a much
more complex task. Depending on the changes required and the challenges coming up, the
different specialists have to work in a team to accomplish the migration project. Furthermore,
they also have to take account of financial, security and compliance aspects. In our case
those additional requirements played a minor part. Depending on the migration scenario, the
Cloud data migration tool also proposes patterns concerning those aspects. E.g. Cloud data
patterns for ensuring security and confidentiality.
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6.5 Adaptations SimTech Prototype

In order to migrate the SimTech prototype to the Cloud several adaptations have to be realized.
In the following we give an overview of the most important adjustments. Another result
of this student thesis is a step-by-step guide, that explains all adaptations on the SimTech
prototype in detail [34]. This step-by-step guide can be found on the CD belonging to this
student thesis.

In order to realize the architecture presented in Figure 5.1 those modifications have to be
carried out:

1. The configuration files of the resource manager and the opal manager have to be
changed:

• database URL

• database name

• user and password

2. All service endpoints of the Opal services have to be changed to the new endpoint of
the ODE-PGF on the EC2 instance

3. The SimTech properties in SimTech BPEL designer have to be changed:

• endpoint of the ODE-PGF

• endpoint of the ActiveMQ

• Fragmento service Uniform Resource Identifier (URI)

4. The preferences in the SimTech auditing application need to be changed:

• database URL

• database name

• user and password
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This student thesis has originated the evaluation of Bachmann’s methodology for migration of
the DBL to the Cloud. In addition, the Cloud data migration tool of Bachmann was evaluated.
Improvement suggestions for both the tool and the methodology resting on the evaluation
results were presented.

In Chapter 2 we gave an overview of Cloud computing fundamentals and described the
SimTech prototype. Furthermore, Bachmann’s methodology, the Cloud data migration tool
and AWS were introduced. The main topic of this student thesis is the evaluation of the
methodology and the tool. The Chapter 3 provided an overview of existing approaches
and state of the art in the domain of the thesis. Our research was positioned towards
the work of other authors in several fields of application. It laid the groundwork for the
evaluation design presented in Chapter 4. One core contribution of Chapter 3 was the ITIL CSI
seven-step improvement process, that we used as framework for our evaluation. Additionally,
aspects concerning software quality were discussed. On the basis of this understandings,
we could focus on the important software quality aspects for the Cloud data migration tool.
Furthermore, different kinds of data in evaluation were presented. Based on this results, we
could select the convenient data collecting approach in Chapter 4. In addition, Chapter 4
consolidated the findings of the previous Chapter 3. As a result, a structured overview of
our research design was given. Most important, the focus of our evaluation was marked
out. Finally, in Chapter 5 we migrated the SimTech prototype with the help of Bachmann’s
methodology, the Cloud data migration tool of Bachmann and the AWS approach to the
Cloud. We collected the data for our evaluation based on the evaluation design presented in
Chapter 4. All shortcomings concerning the methodology and the tool of Bachmann were
documented. In the attaching Chapter 6 we illustrated challenges, that occurred during the
evaluation and that influenced the results. We also analysed the evaluation data. Based on the
results of the analysis, the lessons learned for the methodology and the Cloud data migration
tool were worked out. These lead to precise improvement suggestions. Our results and the
special circumstances of our case study were compared to a more complex migration project.
At the end, an overview of the required adaptations for migrating the SimTech prototype to
AWS was presented. This student thesis contributes two more artefacts regarding the SimTech
prototype. Firstly, a step-by-step guide, that explains all necessary details for migrating the
SimTech prototype as shown in Figure 5.1. Secondly, an AMI that contains the complete
installation of all SimTech components. With those two artefacts the migration of the SimTech
prototype to AWS is accelerated.

Currently, the improvement suggestions evolving from this student thesis have not been
implemented. In addition, Bachmann also described improvement suggestions, that have not
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been realized yet [15]. Future work should at least focus on those suggestions, that are classi-
fied with a high priority. After the implementation of the improvements, the methodology
and the tool should be further evaluated. The results evolving should be compared to our
results in order to measure the improvement success.
The methodology and the Cloud data migration tool were used in a relatively simple mi-
gration scenario. It has been shown, that they support the user successfully in a migration
project in the context of a student thesis. Nevertheless, only further evaluation in a more
complex environment can ensure, that the methodology and tool support effectively in bigger
migration projects.
With respect to the SimTech prototype, the migration to AWS as shown in Figure 5.1 is a
first achievement. We assumed, that the migration of the MySQL database of the auditing
application is equivalent to the migration of the MySQL database of the Opal services. This
has to be proofed by migration.
We migrated a prototype to the Cloud. The migration of a productive system differs. E.g. the
performance needs to be evaluated. Massive parallel hits of users and the influence of network
errors require further examination. It has also to be evaluated, whether the presented solution
is also applicable to the productive system. For the backdrop of many parallel simulations,
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Figure 7.1: Simplified Version of the SimTech Prototype With Clustered Tomcat Servers

a clustering of components of the SimTech prototype as shown in Figure 7.1 is conceivable.
Therefore, we propose to let the ActiveMQ run on a separate EC2 instance. All simulations
should use the same auditing application, which also runs on a own EC2 instance. If the
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load increases, automatic scaling out of EC2 instances containing Tomcat can be automated. If
the load decreases, different simulations can share an EC2 instance. In general the SimTech
prototype is well prepared for a distribution along different services. However, the clustering
will bring new challenges. Especially with respect to the migration of running simulations
from one EC2 to another EC2. Further research in this domain has to be done.
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