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Abstract

In this thesis, we present a CUDA-implementation of two sub-steps of the Parallel Multilevel
Partition of Unity Method (PMPUM). The PMPUM is a method for the approximation
of partial differential equations (PDEs) whose main computational effort is caused by the
integration of the weak formulation. Therefore, an efficient CUDA-implementation of the
required steps could speed up a given PMPUM-implementation. The core of this thesis is
the analysis of the applicability of CUDA in the PMPUM. To this end the required steps,
the decomposition of the domain and the integration, were implemented using CUDA. The
analysis showed, that the usage of CUDA can speed up the implementation and identified the
limitations of the implementation. We give recommendations how to improve these limitations
and expect the performance to increase further with these recommendations applied.
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1 Introduction

In today’s society, simulation technology has not only become an integral part of society – it
has become almost indispensable [2]. Simulation can be used in situations where physical,
ethical or financial reasons impede experiments. Thus, simulation technology can be utilized
to gain knowledge about actions or natural phenomenons that we are unable or unwilling to
observe. These situations range from weather forecast, where a prediction of future events
can not be reached through observation, to the design and development of automobiles, where
crash tests are economized to shrink costs.

Simulation is based on domain specific models, consisting of representations of the subjects of
study and the physical or other relations between them. Different methods are then applied to
reproduce the results of actions or phenomenons. These methods, however, require a large
amount of computations to calculate a detailed solution. Therefore, in almost every case,
computers are utilized to implement these methods.

In many cases, the models for simulation employ partial differential equations (PDEs) to
describe the real world [8, p. 1]. A PDE models the alteration of a given quantity in time
and/or space. Examples for that are the stress of materials during crash tests or the diffusion
of one chemical substance into another. When additional information on the initial situation
and/or the behavior of the phenomenon at the boundary of the domain inspected is given, a
so called initial or boundary value problem (BVP) results from the PDE.

For most BVPs arising from practical situations, no definite solution can be calculated with
today’s methods [8, p. 1]. Therefore, manifold methods exist to compute approximate solutions.
Methods for the simulation of physical phenomenons can be classified into mesh-based methods
and particle schemes. Both categories exhibit different strengths and weaknesses. Mesh-free
methods try to merge the best of both categories. The Parallel Multilevel Partition of Unity
Method (PMPUM) [8, p. 13] is a mesh-free method that is especially suitable in situations
where some properties of solutions are known a priori.

The implementation of the Parallel Multilevel Partition of Unity Method (PMPUM) can be
parallelized to decrease the duration for the generation of a solution. Multiple technologies can
be used for that. Graphics processing units (GPUs), initially used for the display of 2D and
3D data in computer graphics, provide great parallel processing power [19]. This capability
can be utilized for more general problems by technologies called general-purpose computing on
graphics processing units (GPGPU). Compute Unified Device Architecture (CUDA) [19] is a
technology of NVIDIA™, that enables the usage of NVIDIA™’s GPUs for GPGPU. However,
not for all methods an increase of the performance can be reached when using CUDA.
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1 Introduction

In this thesis we present an implementation of the steps in PMPUM that account for most
of the computational effort. The goal of this thesis is to analyze the potential of CUDA to
increase the performance of a given CPU-based1 implementation of the PMPUM.

This thesis is organized as follows:

Chapter 2 - The Parallel Multilevel Partition of Unity Method: Provides an introduc-
tion to the PMPUM. Afterwards, it focuses on the algorithm used in the GPU-implementation.
Finally, we give estimates for the costs of these same.

Chapter 3 – Implementation: Introduces CUDA and based on that, gives an outline of
the implementation. The explanation of properties and limitations of the implementation
closes the chapter.

Chapter 4 – Results: Presents experiments performed to analyze the implementation.
Therefore it provides information on the hardware and metrics used. Based on the results of
the experiments, we provide recommendations for further improvements.

Chapter 5 – Conclusion: Summarizes the results of this thesis and provides an outlook to
further development.

1central processing unit (CPU)
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2 The Parallel Multilevel Partition of Unity Method

Partial differential equations (PDEs) can be used to model problems in a wide range of fields.
Since for many PDEs no exact solutions can be found, there exist manifold methods to generate
approximate solutions. See [3] or [1] for an introduction to PDEs and approximation methods.
The PMPUM is one method to approximate solutions. In this chapter we give an overview
about the method, for a detailed introduction see [8]. In the following we present how a
PDE is discretized in the PMPUM. The remarks on the discretization are influenced by the
introduction to the PMPUM in [20, p. 3 ff.]. Then we focus on the computational task for
which an implementation will be presented in the following chapter.

2.1 Model Problem

BVPs, for which the PMPUM can be used for the approximation of the solution, are in general
of the form:

Lu = f in Ω ⊂ Rd

Bu = g in ∂Ω

Here L is a second order symmetric elliptic partial differential operator and B are suitable
boundary conditions. The task is to find the solution u that solves the equation. We choose
the reaction-diffusion equation to illustrate the discretization of a PDE in the PMPUM:

−∇ · (κ∇u) + r · u = f in Ω ⊂ Rd

u = gD in ΓD ⊂ ∂Ω (2.1)
κ∇u · −→n = gN in ΓN = ∂Ω\ΓD

Here κ is the diffusion coefficient, while r is the reaction coefficient. The boundary ∂Ω is split
into ΓD on which Dirichlet boundary conditions are given and ΓN on which Neumann boundary
conditions are given. An approximate solution should have the following two properties [8, p.
13]:

• local approximability

• inter-element continuity
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2 The Parallel Multilevel Partition of Unity Method

Local approximability is the capability to approximate the solution u at a given point as close
as possible. Inter-element continuity means that an approximate solution should be continuous
in some sense.

2.2 Partition of Unity Space

We introduce the partition of unity space V P U that is used to find an approximate solution.
We start with an arbitrarily chosen point set P with points from the domain Ω:

P = {xi ∈ Rd|xi ∈ Ω, i ∈ {1, .., N}}

For each point xi we define a patch ωi by a d-rectangular:

ωi =
d⊗

l=1
{xi

l − hi
l, xi

l + hi
l}

Here xi is the center of the patch and hi is the stretch in each space dimension. On each patch
we define a local approximation space V pi

i = span〈ψn
i 〉. This local approximation space V pi

i

is used for the local approximability. We define W as the set of patches generated from the
initial set of points P . The global function space V P U , required by the Galerkin approach, is
generated by the product of the local approximation space V pi

i with suitable partition of unity
functions ϕi:

V P U =
∑

i

ϕiV
pi

i =
∑

i

ϕi〈{ψn
i }〉 = span〈{ϕiψ

n
i }〉

The local approximation space V pi
i can be chosen independently from all other local approxi-

mation spaces V pj

j . For smooth functions polynomials exhibit good approximation properties,
for more irregular functions enrichment functions can be added to the base ψn

i of the local
approximation space V pi

i . Using a partition of unity ensures that arbitrary functions can be
added to the local approximation space without violating the inter-element continuity property.
The required partition of unity functions ϕi are defined patch-wise. On each patch ωi a weight
function Wi is defined, where:

Wi(x) 6= 0 for x ∈ ωi

Wi(x) = 0 else

Based on these weight functions Wi we construct the partition of unity function ϕi:
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2.3 Galerkin Discretization

1

0

1

0

Figure 2.1: The weight function Wi of adjacent patches ωi (left) and the resulting partition
of unity ϕi (right) in one space dimension

ϕi(x) = Wi(x)∑
k∈Ci

Wk(x)

Here the neighborhood Ci consists of all patches ωj whose weight functionWj have overlapping
support with the weight function Wi of ωi.

Figure 2.1 illustrates the weight function Wi and the resulting partition functions ϕi of some
adjacent patches. The cover generation, presented in [8, p. 98 ff.] creates a cover of the
domain from the initial point set P , so that the union

⋃
ωi of the patches covers the domain

Ω. The choice of the weight functions Wi and thus the overlap of the patches determines the
sparsity pattern of the stiffness matrix A generated by the Galerkin approach presented in the
following.

2.3 Galerkin Discretization

The Galerkin approach can be used to discretize a PDE like the one given in equation 2.1. It
utilizes the weak formulation of the problem to redefine the problem in a function space in
which a solution can be found. See [3, p. 133 ff.] for an introduction to the weak formulation
that is also called the variational formulation. In this section we only give a very short
introduction into the concepts required in following. First, we define an approximate solution
of a PDE:

Aû = f̂

Here A is the stiffness matrix that needs to be generated, f̂ is the discretized right-hand side
and û is the vector of coefficients of the solution. Using a constant diffusion coefficient κ and
reaction coefficient r in equation 2.1 results in:

− κ∆u+ ru = f

Here ∆ is the Laplace operator. We generate the variational formulation by multiplying
the equation with a test function v from the trial and test space H1(Ω) and integrating it.
Afterwards we apply Green’s first identity and obtain:∫

Ω
−v(∆κ · u+ r · u) =

∫
Ω
κ∇u∇v + ruv +

∫
∂Ω
κv(∇u · −→n ) =

∫
Ω
f · v
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2 The Parallel Multilevel Partition of Unity Method

Here −→n is the outer normal on Ω. Let a(·, ·) be a continuous elliptic bilinear form induced by
L = −κ∆ + r on the Sobolev space H1(Ω) and l(·) be a continuous linear form. Applying the
Galerkin approach using the base and test functions from V P U results in:

A = (A(i,n),(j,m)), with A(i,n),(j,m) = a(ϕiψ
n
i , ϕjψ

m
j )

f̂ = (f(i,n)), withf(i,n) = l(ϕiψ
n
i )

Since the partition of unity-functions ϕi only have local support, the integrals on Ω only must
be evaluated for all ωi ∩ ωj ∩ Ω and ωi ∩ ωj ∩ ∂Ω respectively. We only tackle Ω using the
GPU and thus can assume g = 0 without restriction. When applying the Galerkin approach
to the model problem given in equation 2.1 the resulting computational task is given by:∫

Ω
κ∇(ϕiψ

n
i )∇(ϕjψ

m
j ) + r(ϕiψ

n
i )(ϕjψ

m
j ) (2.2)∫

Ω
(ϕiψ

n
i )

We need to compute the integrals on all ωi ∩ ωj ∩ Ω. Therefore, first the domain must be
decomposed into integration domains on which the set of patches, whose weight function Wi

have support, is determined. After that, the integrals must be computed for all integration
domains. In the following we focus on these 2 steps since they account for a major part of the
computational effort of the whole PMPUM [8, p. 153].

2.4 Decomposition of the Domain

In this section we present the decomposition task described in section 2.3 from an implemen-
tation point of view. After that different approaches to solve this task are presented and
discussed in terms of suitability for GPGPU.

2.4.1 Decomposition Task

The Galerkin discretization requires the computation of the integrals given in formula 2.2. We
assume that a cover of patches for the domain has already been generated. The algorithm
used for the cover construction can be found in [8, p. 98 ff.]. The cover generation provides
covers on different levels. The generated cover does not only cover the whole domain Ω ⊂

⋃
ωi,

but assures the overlap of a patch ωi with all its neighbors Ci. This is reached by stretching
the extent of each patch with a factor αi > 1. This is required to reach the inter-element
continuity property given in section 2.1.
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2.4 Decomposition of the Domain

Level 0 Level 1

Level 2 Level 3

Figure 2.2: The inner (green) and boundary (yellow) patches generated by an uniform
refinement strategy from level 0 to 3. The overlap of the patches (caused by
αi) was chosen to be equal on all levels for illustration. Usually it is chosen
proportionately to the stretch hi of a patch.

Figure 2.2 shows the cover generated for a domain on the levels 0−3 for an uniform-h-refinement
strategy.1 2 For uniform refinement the number of patches is (2d)l for d space dimensions on
Level l. Patches with an overlap with the boundary of the domain ∂Ω are called “boundary
patches”. The patches with no overlap are called “inner patches” and the domain they cover is
denoted ΩI in the following. Since the boundary patches intersect the domain boundary an
approximation of the domain needs to be calculated. This results in irregular patterns and
hence is not suitable for computation on GPUs. Thus we focus in the following on the tasks
given for the computation of the integral on the inner patches:

1H-refinement is a refinement strategy which increases the number of points N on each level, in contrast to
that p-refinement is the increase of the polynomial degree p, used in all V pi

i on each level.
2Uniform in this context means that all patches on a given level are subdivided in every space dimension to
form the next level. In contrast to that, adaptive refinement strategies only subdivide a part of the given
patches.
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2 The Parallel Multilevel Partition of Unity Method

Figure 2.3: The decomposition of a patch ωi and its neighborhood Ci for integration. The
basic extent of the patch (bold) and its neighbors is given by the black rectangles.
The green rectangles are the patches stretched by αi. The needed decomposition
is given by all small rectangles in the black bold rectangle. The fill color of the
rectangle shows the number of patches on the cells. Yellow stand for 1, red for 2
and blue for 4 patches with support on the cell.

∫
ΩI

κ∇(ϕiψ
n
i )∇(ϕjψ

m
j ) + r(ϕiψ

n
i )(ϕjψ

m
j ) (2.3)∫

ΩI

f(ϕiψ
n
i )

Calculating these integrals requires the decomposition of the overlapping patches. This task
is illustrated in figure 2.3 for a patch and its neighbors in 2 space dimensions for a cover
generation which uses uniform refinement.

When using linear splines as weight functions additional cells are generated. The integration
domain must be split at the patch center where the derivative of the weight function is
discontinuous when more than one patch has support on a cell. In figure 2.5, which will be
discussed in detail when comparing different approaches for the decomposition, these additional
splits can be seen. Thus, the resulting decomposition generates at least 13 cells in 2 space
dimensions and 57 cells in 3 space dimensions.

Different decomposers approaches can be benchmarked using the following metrics:

1. The number of cells should be minimal. Additional cells do not falsify the results, but
lead to unnecessary computations.

2. The number of patches on the cells should be minimal. Additional patches on a cell don’t
influence the result since their weight function Wi = 0 on the cell, but they introduce
unnecessary computations.
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2.4 Decomposition of the Domain

3. The complexity in time and space should be minimal. For GPGPU the resource data
structures as well should be taken into account.

2.4.2 Decomposers

The requirements given in the previous section need to be met by all considered approaches
for the decomposition. In the following two approaches are presented and their suitability for
an implementation using GPGPU is discussed.

Tree-Based Approach

The first approach uses a tree to generate the required cells for integration. The basic ideas to
generate a tree with the following properties:

1. Each node stores an geometric extent and a list of patches and references to two children.

2. A leaf represents a resulting cell.

3. The patches with support on a cell, represented by the leaf, are those in the lists of
patches of all nodes on the path from the root to the leaf.

4. The extent stored for non-leaf nodes is the union of the extents of their children.

The algorithm 2.1 starts by adding the patch ωi itself to the tree. This is achieved by storing
its nonstretched extent and a reference to it as the root node of the tree. After that all adjacent
patches Ci are added subsequently. We start by comparing the stretched extent to that of the
root node. If it is equal, we add the patch to the patch list of the node. If not, the comparison
is done for all children whose extents have an intersection with the stretched extent of the
patch. This is done until a leaf is reached. When the extent of the leaf is not equal to the
stretched extent of the patch two children are added to the leaf, one with an intersection of the
stretched extent of the patch and the node and one without. The patch is added to the new
node with an intersection with the stretched extent of the patch. Figure 2.4 shows this process
for the first two patches of a neighborhood. To get the cells we traverse the tree and store the
patches on the path from the root to each leaf. This results in a list of cells containing the
patches with support on each cell. The algorithm is adapted to the usage of linear splines as
weight functions Wi. Therefore, the cells, on which more than one patch has support and the
extent has an intersection with the patch center, are split at the patch center. The resulting
patches are illustrated in figure 2.5. Because of the usage of the tree we call this approach
Tree-based Decomposition from here on.

The key benefits of this approach are:

• It produces the minimal number of cells.

• It allows fast and random access of all cells.

The disadvantages of this approach are:
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2 The Parallel Multilevel Partition of Unity Method

Algorithm 2.1 Decomposition using the Tree-Based Approach in pseudo code
Tree // each node contains a box, a list of patches and a list of children
procedure decompose(patch)

Tree.box = patch.box
Tree.patchlist.append(patch)
for all neighbor ∈ neighborhood of patch do

addNeighbor(Tree, neighbor)
end for
return getCells( )

end procedure
procedure addNeighbor(node, patch)

if isEqual(patch.box, node.box) then
node.patchlist.append(patch)

else if isLeaf(node) then
overlap = intersection(patch.box, node.box)
nonOverlap = patch.box - overlap
node.children.append(overlap, patch)
node.children.append(nonOverlap)

else
for all child ∈ node.children do

if intersection(patch.box, child.box) then // only descend to children having
// an overlap with the patch

addNeighbor(child, patch)
end if

end for
end if

end procedure
procedure getCells( )

cells // the resulting list of cells
for all leaf ∈ Tree.getLeafs( )do // For all leafs follow the path to the leaf and

// collect the patches with support on the cell
cellPatches = leaf.getPatchesOnPath( )
cell = (leaf.box, cellPatches)

// the cells with more than one patch and intersecting the patch’s center
// must be split due to the usage of linear splines as weight functions

if intersects(cell.box, patchCenter) && cellPatches.length( ) > 1 then
splittedCells = cell.split(patchCenter)
cells.append(splittedCells)

else
cells.append(cell)

end if
end for
return cells

end procedure
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2.4 Decomposition of the Domain

• Under the assumption that the order of the patches in the input is unknown, the generated
tree is of a priori unknown structure.

• A tree implementation requires dynamic or complex manual memory handling.

On central processing units (CPUs) these restrictions are no drawback since the loss of
performance due to lot of small memory allocations is insignificant. The number of cells
however and the number of patches per cell is optimal leading to a minimum number of
evaluation in the following integration. Since the situation is quite different for a GPU,
dynamic memory allocation is expensive and more evaluations are cheap one should consider
other approaches.

Tensor-Product Approach

An other approach utilizes the concept of tensor products. The basic idea of this approach is
to store the boundary of each intersection of patches in a list per dimension. Afterwards these
points per dimension can be used to generate a grid of cells. The information stored at one
point can be altered. That leads to different complexity of the algorithm and quality of the
results, according to the metrics presented in section 2.4.1.

Algorithm 2.2 shows the approach, called Tensor-Product Approach in the following. In
the shown variation the algorithm stores a list of points per space dimension, we will call
these points “split points” in the following. Each split point consists of the coordinate and
a list of splits. A split stores a reference to a patch and whether the point is the minimum,
center or maximum of that patch in the given dimension. For the patch ωi itself we store
the minimum, center and maximum to the split points in each dimension. When adding a
patch of the neighborhood Ci we add the minimum, center and maximum to the split points
in each dimension. If the point is outside the domain of the patch, whose neighborhood is
currently decomposed, the information on minimum and maximum are stored at the boundary
of that patch. The generated split points for two example patches are shown in figure 2.4 on
the right.

These split points then can be used to retrieve the cells. Therefore, we start at the lowest split
point for each dimension. We add the patches with a minimum at this point to a list of active
patches which is stored per dimension. The generated cell has the extent from the current to
the next split point in all dimensions. The patches with support on the cell are those which are
currently active in all dimensions. Iterating over all split points in all dimensions generates all
cells. At a split point the patches with minimum are added to the list of active patches in the
current dimension. For a maximum the patch is removed, the center has no influence on the
active patches and can thus be omitted for the calculation of active patches. We therefore only
store the patches whose support begins or ends at a split point. Before we discuss variations
of this approach the key benefits and disadvantages are listed.

The key benefit of this approach is:
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2 The Parallel Multilevel Partition of Unity Method

Algorithm 2.2 Decomposition using the Tensor-Product Approach in pseudo code
SplitPoints[dim] // a list of split-points for each dimension, each split-point stores the

// coordinate and the patches which start or end at the point
localDomain // the box of the center patch
selectedPatches[dim] // list of Booleans for each dimension used in getNextCell
index[dim] // multi dimensional index with number of split-points entries in each component
procedure decompose(patch)

localDomain = patch.box
for all d ∈ dim do // Add the split points of the center patch

index[d] = 0
addSplitPoint(d, patch.box.min[d], patch, min)
addSplitPoint(d,patch.box.center[d], patch, mid)
addSplitPoint(d,patch.box.max[d], patch, max)

end for
for all neighbor ∈ neighborhood of patch do// Add the split points of all other patches

for all d ∈ dim do
// if a patch boundary is intersecting the localdomain add it to the split points,

// else add the patch to the list of splits of the min/max of the localdomain
if neighbor.box.min[d] > localDomain.min[d] then

addSplitPoint(d, neighbor.box.min[d], patch, min)
else

SplitPoints[d][0].splits.append(patch, min)
end if
if neighbor.box.center[d] > localDomain.min[d] & neighbor.box.center[d] < local-

Domain.max[d] then
addSplitPoint(d, neighbor.box.center[d], patch, mid)

end if
if neighbor.box.max[d] < localDomain.max[d] then

addSplitPoint(d, neighbor.box.max[d], patch, max)
else

SplitPoints[d][SplitPoints[d].length].splits.append(patch, max)
end if

end for
end for

end procedure
procedure addSplitPoint(dim,coord, patch, type)

for all SplitPoint ∈ SplitPoints[dim] do
if SplitPoint.coord == coord then

SplitPoint.splits.append(patch,type)
else if SplitPoint.coord > coord then

newSplitPoint(coord, (patch,type))
SplitPoints[dim].insert(newSplitPoint, currentPosition)

end if
end for
newSplitPoint(coord, (patch,type))
SplitPoints[dim].append(newSplitPoint)

end procedure
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Continuation of Algorithm 2.2: Decomposition using the Tensor-Product Approach in
pseudo code
procedure getNumberOfCells

result = 1
for all d in dim do

result *= SplitPoints[d].length
end for
return result

end procedure
procedure getNextCell

result // the resulting integration cell
for all d in dim do // initialize the selected flag (non-selected) for all patches

if index[d] == 0 then
for all neighbor in neighborhood do

selectedPatches[d][neighbor] = False
end for

end if
end for
for all d in dim do // set integration cell box

result.box.lower[dim] = splitPoints[d][index[d]].coord
result.box.upper[dim] = splitPoints[d][index[d]+1].coord

// update the selected patches
for all split in SplitPoints[d][index[d]].splits do

if split.type == min then
selectedPatches[d][split.patch] == True

else if split.type == max then
selectedPatches[d][split.patch] == False

end if
end for

end for
for all patch in patches do // add all patches selected in all dimensions

selected = True
for all d in dim do

if not selectedPatches[d][patch] then
selected = False

end if
end for
if selected then

result.patches.append(patch)
end if

end for
index++
return result

end procedure
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• the number of split points and maximum number of splits at a split point are known
for a cover which uses uniform refinement strategy. Therefore, no dynamic allocation is
needed.

The disadvantage of this approach are:

• The cells cannot be requested in arbitrary sequence.

• Only the split points for each dimension are stored and the generation of the cells is
basically a tensor-product of the split points. Thus more cells are generated if a split
point divides the patch completely but the neighbor, which introduced the split point,
only intersects a part of the patch extent. For an example of the additional generated
cells see figure 2.5.

The following modifications might be considered:

1. The information which patch has support on which cell can be omitted without difficulty.
Hence all patches need to be evaluated on all generated cells. This leads to a remarkable
simplification of the algorithm but on the other hand to a considerable amount of
unnecessary evaluations.3

2. Storing not only the difference between 2 cells but the whole list of active patches at a
split point enables random access of cells. On the other hand, the list of patches at a
split point needs to contain all patches with support at a split point.

2.4.3 Comparison of the Approaches

To decide which approach is most appropriate for usage on GPUs we compare their properties.
For the comparison we use the variation described in algorithm 2.2 of the Tensor-Product
Approach.

In terms of the data structures the tensor-product approach doesn’t require dynamic memory
allocations in contrast to the Tree-Based Approach. Therefore, it seem to be the better
approach for the GPU-implementation. The number of patches is larger than for the Tree-
Based Approach.4 Since only the center cell of the Tree-Based Approach is split unnecessarily
in the Tensor-Product Approach, the number of resulting cells in the case of uniform refinement
is not expected to be significantly higher.

See tables 2.1 and 2.2 for a comparison of the number of integration cells generated by the
2 approaches.5. As we see for the uniform case the ratio for the number of cells is constant
at 1.23. Since the center cell is split into 4 cells, for each patch instead of 13 cells, 16 are
generated. For the adaptive case the explanation is little more complex. When a patch is
refined adaptively it is split into four patches on the next level. Thus additional split points

3This variation was tested but resulted in a worse performance.
4Compare the resulting decompositions in figure 2.5.
5Tested with a CPU-implementation of both approaches.
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Figure 2.4: Comparison of the decomposition of one patch ωi and two of its neighbors Ci,
generated by two approaches. On the left are the patch (0) and the neighbors (1)
and (2), in the middle the tree generated by the Tree-Based Approach and on
the right the split points of the Tensor-Product Approach

Figure 2.5: The cells generated by the Tree-Based Approach (left) and Tensor-Product
Approach (right) from an uniformly refined domain as shown in figure 2.3.

Table 2.1: The number of cells generated by both decomposer approaches, for all inner patches
of a cover of a square domain (2D) using uniform refinement

Level (l) Tree-Based Approach Tensor-Product Approach Ratio
2 52 64 1.23
4 2548 3136 1.23
6 49972 61504 1.23
8 838708 1032256 1.23
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Table 2.2: The number of cells generated by both decomposer approaches, for all inner patches
of a cover of a square domain (2D) using h-refinement at the center of the domain

Level (l) Tree-Based Approach Tensor-Product Approach Ratio
2 52 64 1.23
4 465 796 1.71
6 949 1798 1.89
8 1433 2798 1.95

are introduced. The number of additional split points depends on the refinement pattern. See
figure 2.6 for an illustration of this situation.

The figure focuses on the center patch, but, as can be seen in the figure as well, all patches
around a patch that is adaptively refined are affected. For nested adaptive refinements, the
effect spreads for all patches that are adjacent to a refined patch. Figure 2.7 shows the
generated cells from the situation shown in figure 2.6. Table 2.2 shows the case for repeated
adaptive refinement steps at the center of the domain Ω. This generates more cells from a
patch, because at each refinement level 4 patches are adaptively refined. We note however
that this example case the progression seems to be limited by 2. We conclude that the number
of generated cells by the Tensor-Product Approach heavily depends on the refinement strategy
used.

An factor of 1.23 for the number of integration cells, as given in the uniform case, will not prevent
a GPU-implementation from good performance. We chose the Tensor-Product Approach for
the GPU-implementation since heavy pointer usage, in the Tree-Based Approach even when
implementing the tree without dynamic memory, is expected to decrease performance.

2.5 Complexity

According to [9, p. 228] the optimal time and space complexity for the assembly is in O(Np2d).
In the following we focus on the metrics, which are relevant for the GPU-implementation.
For a derivation of the complexity see [9, p. 228ff.]. Since numerical integration is applied,
the optimal bound can hardly realized [9, p. 228]. First estimates for the complexity of the
integration are given and afterwards the complexity of the decomposition is discussed.

2.5.1 Integration

Since the PMPUM is a multilevel method, solutions on different levels are computed. We
recall that for h-refinement6 the number of points N is given by (2d)l.

6H-refinement is a refinement strategy in multi level methods. It increases the number of points or elements
with increasing level. This results in a decrease of hi for each patch ωi.
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Figure 2.6: The decomposition of a patch ωi and its neighborhood Ci for integration, with
adaptive refinement. The basic extent of the patch (bold) and its neighbors is
given by the black rectangles. The green rectangles are the patches stretched by
αi. The needed decomposition is given by all small rectangles in the black bold
rectangle. The fill color of the rectangle shows the number of patches on the cells.
Yellow stand for 1, red for 2, turquoise for 3 and blue for 4 patches with support
on the cell. We note that additional cells are introduced (2 small purple lines) to
form rectangular integration cells. See figure 2.3 for the uniform case.

Figure 2.7: The cells generated from the situation given in figure 2.6 by the Tree-Based
Approach (left) and the Tensor-Product Approach (right)

31



2 The Parallel Multilevel Partition of Unity Method

The total cost CNI for the integration is:

CNI = O(nCI · nNI · CEI) (2.4)

Here nCI is the number of cells used for integration. The number of integration points on one
integration cell nNI depends on the polynomial degree p and the space dimension d. CEI are
the costs for an evaluation of the integrand at an integration point. The number of integration
cells nCI depends on the number of patches N and the decomposition of one patch ωi and its
neighbors Ci.

The number of cells nCI generated by the Tensor-Product Approach presented in section 2.4.2
from one neighborhood Ci depends on the space dimension d and the number of neighbors per
dimension. When using uniform h-refinement, assuming 2 neighbors per space dimension and
linear splines as weight function Wi the number of cells is given by:

nCI = (3 + 2)d

The required number of integration points nNI on one cell depends on the space dimension d
and the polynomial degree p is:

nNI =
(
p+ 1

2

)d

In the framework on which the implementation is based, see [20] and [24], the number of
integration points used is:

nNI = (p+ 1)d

The costs of the evaluation at an integration point CEI are given by:

CEI = CWMc + CBMc + Clf + Cbf

Here CWMc denotes the costs for the evaluation of the weight functions of all patches Mc on the
integration cell. The costs for the evaluation of the base functions of all local function spaces
V pi

i of all patchesMc. And finally Clf and Cbf are the costs for the evaluation of the linear form
and bilinear form respectively. All these costs depend on the number of patches ωi on an inte-
gration cell, denoted nωC . The number of patches per cell depends on the decomposer used. In
general nωC is limited by the number of neighbors card(Ci). Applying the Tensor-Product Ap-
proach given in algorithm 2.2 the upper bound is given by 4 in the 2D case and 8 in the 3D case.

For each patch ωi on an integration cell the weight functions of all neighbor patches Ci need to
be evaluated. Therefore, the costs for the evaluation of the weight functions at an integration
point are given by: CWMc = O(Mc). For the computation of the linear and bilinear form all
base function ψn

i of the patches Mc need to be evaluated, which accounts for most of the effort.
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The costs for evaluation is given by CBMc = O(Mc · bi), where bi the number of base functions
ψn

i in V pi
i is given by:

bi =
p∑

i=0

(
d+ i− 1
d− 1

)

The proof for this formula uses a combinatorial argument. The number of base functions for a
polynomial space with degree p without the base function of the polynomial space with degree
p− 1 is equal to the number of possibilities to draw p elements from a set of d elements with
replacements.7Thus adding the number of possibilities for 0 ≤ i ≤ p leads to the number of
base functions of the polynomial space of degree p.
For the sake of completeness we note the complexity for the evaluation of the linear and bilinear
forms. For the evaluation of the linear form l(·) for the coefficients for all base functions bi of
all patches on the integration cell Mc need to be computed:

Clf = O(nωC · bi)

For the evaluation of the bilinear form for all combinations of patches, with support on the
integration cell Mc, we need to compute the product of the base functions bi. This results in
the following costs:

Cbf = O(nωC
2 · bi

2)

It is especially interesting, for the discussion of the results in chapter 4, to note the factors by
which the costs grow for increased level l and polynomial degree p.

For an increase of the level l by one we can see from formula 2.4 that the effort increases
by the number of patches resulting from the increased level. The factor by which the effort
increases is therefore given by 2d.

For an increase of the polynomial degree p, the number of required integration points nNI

increases. For an increase from p− 1 to p the number of integration points nNI increases by

the factor
(
d p+1

2 e
d p

2 e

)d

.

When using nNI = (p+ 1)d integration points the resulting factor is:
(

p+1
p

)d

For the same increase, some calculus leads to the factor of the number of base function bi, that
need to be evaluated:d+p

p

The factor for the evaluation of the linear form l(·) is the same. Finally, for the evaluation of
the bilinear form a(·, ·) results in the factor : (d+p)2

p2 .

Since the constant for the assembly of the base function ψn
i is the highest, it dominates the

effort of the integration for relevant polynomial degrees.

7The formula for drawing an unordered sample from cover with replacement can be found in [22, p. 18f.].
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We summarize, that for the integration, we expect a factor 2d for an increase of the level l by one

for the complexity. For an increase of the polynomial degree p we expect a factor
(
d p+1

2 e
d p

2 e

)d

· d+p
p .

When using nNI = (p+ 1)d integration points the resulting factor is
(

p+1
p

)d
· d+p

p .

2.5.2 Decomposition

The complexity is influenced by the algorithm used for the decomposition in two ways:

1. the complexity of the algorithm itself

2. the influence of the number of cells nCI and the number of patches on a cell nωC generated
by the decomposer, discussed in the section 2.5.1.

The algorithms described in section 2.4.2 operate on all patches ωi and their neighborhoods
Ci. The number of neighbors of a patch card(Ci) is constant in case of uniform p-refinement.8
Since the complexity of the decomposers is independent from the local approximation spaces
V pi

i , the decomposition is in O(N). For the discussion of the results in chapter 4 we should
note, that it may contain a large prefactor.

The number of generated cells nCI and the number of patches on an integration cell nωC

correlate with the costs for the integration CNI .

Both approaches presented in section 2.4.2 generate the minimal number of patches per cell.
And therefore the costs for the evaluation at an integration point CEI are minimal in both
cases. For the number of integration cells nCI we recall from 2.4.3, that for the Tensor-Product
Approach nCI is only a constant factor9 larger than that of the Tree-Based Approach.

The first modification for the Tensor-Product Approach proposed in section 2.4.2 would lead
to a massive increase of the costs for the evaluations CEI since it requires the evaluation of
the weight and base functions of all neighbors of a patch. The complexity of the decomposer
would not be affected.

We summarize, that the decomposers have a complexity of O(N), but the prefactor may be
large.

8In case of adaptive refinement the number of neighbors of a patch card(Ci) may be larger but in all cases the
number of neighbors is a lot smaller than the number of patches card(Ci)� N .

9Only for uniform h-refinement, for adaptive h-refinement the factor seems to converge to 2, see tables 2.1 and
2.2.
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In this chapter we present the implementation of the decomposition and the integration
described in the previous chapter. Therefore, we give an overview about Compute Unified
Device Architecture (CUDA) which is used for the GPGPU-implementation and the tech-
nologies used in the framework on which the implementation is based. After that we give
insight into some details of the implementation. Therefore, the general workflow is presented
first. Then the memory layout as well as the implementation of the algorithms presented in
the previous chapter are discussed. Finally we depict the properties and limitations of the
implementation.

3.1 CUDA

CUDA was introduced by NVIDIA™ in 2006 as a new parallel computing platform and
programming model [19]. It aims at simplifying the usage of the performance of GPUs for
GPGPU. In the following relevant aspects of CUDA for the implementation are presented. For
concepts not covered in this introduction one may start with CUDA C Programming Guide
[13]. The CUDA API Reference Manual [11] gives a complete overview about the CUDA
application programming interface (API).
To understand how CUDA is used, some basic understanding of the hardware features of
NVIDIA’s GPUs is required. Figure 3.1 gives a schematic overview of the components of such
a GPU which we in the following refer to as device (compared to the CPU, which we refer
to as host). A device consists of multiple Streaming Multiprocessorss (SMs) and multiple
memories. The number of multiprocessors varies from type to type, but the features of a single
SM is defined by its Compute Capability [13, p. 12f.]. A SM can execute multiple threads in
parallel which are organized in warps, that are executed at the same time while other warps on
the same SM are inactive. The registers of a SM are split to the number of threads executed
on it, but are local to the thread and can not be used for inter thread communication. The
shared memory and L1 Cache are used by all threads of a SM where Shared Memory can be
used to share data between threads of a thread block1 and L1 caches access to global memory.
Not shown in the figure is the read-only cache which is located in each SM for devices with
Compute Capability higher than 3.0. L2 caches all these access for all SMs. The global memory
is a dynamic random-access memory (DRAM) which can be accessed by all threads and is
used for the communication with the host as well. For detailed specification and limitations
for all these components see the CUDA C Programming Guide [13, p. 148 ff.].

1The concept of thread blocks and this limitation is explained in subsection 3.1.3.
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Figure 3.1: The hardware components of a CUDA capable GPU from NVIDIA™ with
Compute Capability 2.x, based on [10, p. 26]

In the following paragraphs the usage of these hardware features by the CUDA API is explained.
We start with the presentation of the basic execution model. Based on that, we take a look at
the thread hierarchy and the memory structure. Then we put the knowledge gained into the
context of the infrastructure given by the implementation upon which we built.

3.1.1 Execution Model

In this section we focus on how the GPU can be utilized by the host. The basic process is
shown in figure 3.2. At first the parameters for execution are transferred from host to device.
This is done by a memory copy from the host’s main memory to the device’s global memory
using API functions. Then, the kernel, a special C function which is executed in parallel by a
specified number of CUDA threads [13, p. 7], is launched by the host. The CUDA threads are
organized in thread blocks, which are explained in subsection 3.1.2. Synchronization between
host and device enables waiting for a kernel to finish. Afterwards the results are fetched from
the device’s global memory to host’s main memory.

3.1.2 Thread Hierarchy

As mentioned in the previous sections, threads2 are organized in thread blocks. The grid,
which holds all the threads executed in one kernel, consists of multiple thread blocks. This

2A CUDA thread cannot, in contrast to an ordinary CPU thread, be scheduled independently, but has its own
registers and program pointer.
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Figure 3.2: The CUDA Execution Model [7, p. 14] based on [13, p. 12]

hierarchy is shown in figure 3.3. The number of threads in a thread block can be specified at
kernel launch time and is limited by the Compute Capability. The number of thread blocks,
which is limited as well, is normally calculated from the number of threads used in the kernel
launch and the number of threads per thread block. The concept of warps is fundamental to
understand how the size of a thread block should be chosen.

Multiple thread blocks are assigned to a multiprocessor. These thread blocks are partitioned
into groups called warps. These warps are scheduled by the warp scheduler of a SM. They
start at the same program address and execute exactly the same instructions. If a condition
occurs, in which different branches are chosen, all branches are executed sequentially, which
massively decreases performance.3 Only the threads which do need to execute the instructions
in a given branch actually execute them, the rest idles. This technique is referred to as Single
Instruction Multiple Threads (SIMT) by NVIDIA [13, p. 63ff.]. To allow as many threads as
possible to be scheduled in parallel on one SM the number of divergent branches in a thread
block and the number of registers used by one thread should be minimized.

Threads of one thread block can wait for all other threads of a thread block to reach a specific
point in the kernel.4 This is needed when using shared memory which is introduced in section
3.1.3.5 Synchronization of threads of the same thread block implies additional overhead.
Therefore, to maximize the performance synchronization should be used well-considered.

3This situation is referred to as branch divergence.
4This concept is known form CPUs as “thread fence” or “memory fence”.
5Synchronization of threads of different thread blocks isn’t supported. For cuda kernels it is always assumed,
that thread blocks can be executed independently.
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Figure 3.3: The CUDA Thread Hierarchy [7, p. 14] based on [13, p. 9]

3.1.3 Memory Hierarchy

Besides the thread hierarchy the different memories provided by CUDA determine how a task
should be parallelized. We present the different memories from local to global scope. See
figure 3.4 for an illustration of the memory hierarchy. Each thread has registers which are
only accessible by the thread itself. The registers of a SM are distributed among all threads
of all active warps on a SM. Because the registers are assigned to a thread for the whole
kernel, stopping and restarting a thread6 can be done with minimum overhead. For devices of
Compute Capability between 2.0 and 3.0 the number of registers per thread is limited by 63
and for devices of Compute Capability 3.5 by 255 [13, p. 50]. Thus, the number of registers
used by a thread should be minimized to maximize the number of threads which are executed
in parallel.7 The number of registers used should therefore be minimized, as mentioned in

6The warp scheduler does this when all threads of a thread block wait for memory and another thread block is
executed in the mean while.

7In [23] it is shown, that optimizing performance at instruction level can improve the performance even when
this reduces the number of threads executed in parallel.
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Figure 3.4: The CUDA Memory Hierarchy based on [13, p. 11]

section 3.1.2. If more memory is needed by a thread, than is available in registers, register
spilling occurs. This is explained in the introduction to local memory at the end of this section
[13, p. 73].

Shared memory is an on-chip memory which is accessible by all threads of a thread block [13,
p. 21 ff.]. Since it is on-chip, see figure 3.1, it is very fast if employed optimally, yet it is
significantly slower than registers. It has a maximum size of 48KB for devices of Compute
Capability ≥ 2.0 and the same physical memory (64KB in total) is used as an L1 cache for
global memory access. The division of the memory can be configured at kernel launch time
[13, p. 21 ff.].8

All threads of a grid can access global memory. This is the GPU’s DRAM. It has a high latency
and low bandwidth, compared with registers or shared memory [13, p. 73]. As described in
[13, p. 71ff.], the memory throughput depends massively on access patterns. If threads of a
warp are accessing memory addresses next to each other, the memory requests are merged
into one transaction. To achieve access patterns which allow coalesced memory access, the
memory layout often differs completely from the one used on a CPU. When adjacent threads
access memory addresses which are next to each other the access are coalesced in one memory
transaction. If not, multiple memory transactions are required. Figure 3.5 illustrates these
two different situations. For details about coalesced and non-coalesced access see [12, p. 24 ff.].
All access from all SMs to global memory are cached by a L2 cache.

8There are two possible configuration: 48KB used as cache and 16 as shared memory, or vise versa.
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Figure 3.5: Coalesced vs. non coalesced memory access based on [12, p. 28]
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Figure 3.6: The phases to solve a given BVP by the framework

As described before, if a thread uses more variables than registers are available, register spilling
occurs. This means, that the variables are stored in local memory. Local memory resides in
global memory space which means, that the same latency and throughput deficiency as global
memory. The compiler organizes local memory, in a way, that optimizes it for coalesced access
[13, p. 74].

In addition to these more or less general memory levels, there is constant memory [13, p. 74
f.] and a texture and surface memory [13, p. 75]. The constant memory has an extra cache,
but only can be initialized from host before kernel launch. Therefore, it should be used for
constants, as the name suggests.

We can summarize, that the memory hierarchy has significant influence on design of the
memory layout used by an application. Algorithms need to be designed in a very specific way
to efficiently utilize the given architecture.

3.2 Framework Integration

The implementation presented in the following is based on a PMPUM-implementation, on
which [20] and [24] are based. We describe how the framework splits up the approximation of
a PDE into steps and which of these steps are implemented using GPGPU. We give a short
overview about these steps shown in figure 3.6.

As described in section 2.4.1, a cover needs to be constructed for the given domain. The
algorithm for the cover construction can be found in [8, p. 98 ff.]. Afterwards, the generated
patches need to be subdivided into inner patches and boundary patches, which have an overlap
with the domain boundary. We recall, that we only tackle inner patches using the GPU.
Subsequently, the domain needs to be decomposed into cells for which the patches with support
on them are known. Different approaches to achieve this decomposition were discussed in
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Figure 3.7: The phases to solve a given BVP by the framework, with the CUDA extension

section 2.4. For boundary patches, the intersection with the domain boundary requires the
approximation of the domain, which is done using triangulation. Every cell needs to be
integrated to calculate the weak form. This is achieved by evaluating the base functions ψn

i

of the local approximation space V pi
i and scaling them by the partition of unity ϕi for each

integration point9 on all cells. Afterwards, these base functions are used to evaluate the weak
form, given by the PDE to solve. This generates the stiffness matrix A and the right-hand
side vector f̂ of a system of linear equations. The last step is required to solve this system and
write the output.

A parallelization of the given PMPUM-implementation using Message Passing Interface (MPI)
is presented in [24]. This parallelization enable the usage of computer clusters for the distributed
computation of a solution. Therefore, the patches are distributed among the cluster nodes for
decomposition and integration. The intention of the GPU-implementation is, to utilize one or
more GPUs to acceleration the computation on a cluster node. The steps accelerated using
CUDA are the decomposition of the patches into a integration cells and the integration of the
same.

The decomposition and integration is designed as an add-on-library for the existing PM-
PUM-implementation. The differences of the workflow for the inner patches in the GPU-
implementation and the given PMPUM-implementation are presented in the following. The
cover generation provides the neighborhood for each patch. The neighborhoods of all inner
patches are transferred to the GPU. Then a CUDA-kernel decomposes the domain and applies
the bilinear a(·, ·) and linear l(·) form on the generated integration cells. This requires the
evaluation of the pum ϕi and base ψn

i functions of all patches Mc on the integration cell at all
integration points of the integration cell. After the results have been transferred back to the
host where they are added to the host’s stiffness matrix. This modified workflow for the inner
patches is illustrated in figure 3.7.

Since the memory on a GPU is in general much smaller than that of the host not all patches in
W can be decomposed and integrated in one kernel launch. Therefore, a scheduling algorithm,
see algorithm 3.1, is employed to be able to compute the task for a larger number of patches.
The set of patches decomposed and integrated in the i-th kernel launch is denoted Wi.

9The number of the integration points depends on the base functions used.
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Algorithm 3.1 Scheduling of neighborhoods for computation on the GPU in pseudo code
procedure discretize(PointSet) // discretize the pde

Cover = generateCover(PointSet) // generates the cover of patches for the given
point set

for all neighborhood ∈ Cover do // add the neighborhoods to the schedule
// while it isn’t full or all neighborhoods are read

scheduleAppend(neighborhood)
if scheduleFullOrLastNeighborhood( ) then

transferSchedule( )
runKernel( )
transferResult( )

end if
end for

end procedure

3.3 Memory Layout

As discussed in section 3.1.3 the memory layout has massive influence on the performance.
First, we focus on the layout for the parameters and then on the layout for the results.

For each patch ωi contained in any neighborhood the following information needs to be
transferred:

• the geometric extent of the patch given by its center xi and stretch hi

• type of the function space used on the patch

• the resolution10

There are multiple layouts which should be considered. When using a CPU, data of a patch
should be stored in one piece and redundancies should be kept at a minimum. The layout for
GPUs however should be quite different as mentioned in section 3.1.3. We need to anticipate
from section 3.4, that we use a thread per neighborhood, to understand the choice for the
presented memory layout. To allow access from all threads to be coalesced the layout should
store data items of all patches in one chunk. When two threads access the same information on
different patches at the same time, their memory request can be handled in a single memory
transaction.

The affiliation of patches to a neighborhood could be stored separately from the patches, this
however would require additional effort in the preprocessing. We will clarify this additional
effort. The resulting data structure would store the information for all patches in one location
and the neighborhood information in another. A neighborhood, in this case is a list of indices
referencing patches. To evaluate the bilinear form a(·, ·) on an integration cell the indices of

10The resolution is the number of base functions of the function space used. For the polynomial space which is
used in following the resolution is given by bi =

∑p

i=0

(
d+i−1

d−1

)
.
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Figure 3.8: Two different memory layouts for the patches Wi (2D). The red and green lines
represent the sorting in the memory. The layout with the red line leads to non
coalesced access, while the green access pattern leads to coalesced access

all patches ωj in the neighborhood of patch ωi, from which the integration cell was generated,
need to be known. Therefore, when scheduling is applied, one schedule computes the integral
on the domain of a subset of the patches Wi ⊂ W . However, the neighborhood information of
the patches, which are referenced in the current schedule, are required. This requires to copy
the neighborhood information of theses additional patches. The set of these patches however
can only be determined after the set of patches which are decomposed and integrated is known
and thus also the set of additional patches can be computed. We will recall this version of
the memory layout in section 4.10.1, where an illustration of the information required can be
found.

By storing all patches for a neighborhood separately, we avoid this overhead in the preprocessing.
This however duplicates the information on the patches which are in multiple neighborhoods
of the current schedule. This leads to additional memory requests, but we expect this effect
not be dramatic since we ensured coalesced access as described before. Figure 3.8 compares
the resulting memory layout to a memory layout typically used on CPUs.

For the results a similar approach is required. First, we present a memory layout in CPU-
fashion, used in the framework on which the implementation is build. Based on that, we
present the layout used for the GPU-implementation.

Each row of the matrix A, resulting from the evaluation of the bilinear form a(·, ·), represents
a patch ωi and its neighborhood Ci. For each patch in the neighborhood ωj , there is one
non-zero entry in the row. An entry for a patch is a matrix A(i,n),(j,m) containing the scalar
product of the base function values of the two patches a(ϕi ψ

n
i ,ϕj ψ

m
j ). The number of rows
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and columns of this matrix depend on the number of base functions bi and bj of the function
spaces V pi

i and V pj

j defined on the two patches ωi and ωj .

The vector, resulting from the evaluation of the linear form, is organized as follows. Each
component of the vector belongs to one patch ωi. Every component itself is a vector, with
the size of the number of base function bi of the function space V pi

i , used on the patch ωi.
For multiple linear forms or bilinear forms multiple vectors respectively matrices would be
stored.

Since this memory layout leads to non-coalesced access for a GPU-implementation a different
approach is required. Since every thread operates on one neighborhood, we store the result
per neighborhood and accumulate the results in a postprocessing step. The data should be
organized in a way, that all threads access adjacent memory locations concurrently. Therefore,
the innermost index is the index of the neighborhoods. The other indices are organized in the
order in which the kernel, see section 3.4, operates on them. For details on this memory layout
see chapter A in the appendix. A memory layout which avoids redundancies is discussed in
section 4.10.1.

3.4 Kernel Design

The kernel needs to decompose the domain of the inner patches ΩI and integrate the resulting
integration cells. Each thread operates on a patch ωi and its neighbors Ci. This gives the
opportunity to abandon synchronization completely. The Tensor-Product Approach, presented
in section 2.4.2, is employed to generate the decomposition of the patch.

Algorithm 3.2 Kernel workflow
procedure kernel(neighborhood) // assemble the stiffness matrix on GPU

decomposition = decompose(neighborhood) // decompose the neighborhood employing
algorithm 2.2

for all IntegrationCell ∈ decomposition do // get all integration cells in succession
IntegrationCell.integrate( )

end for
end procedure
procedure IntegrationCell.integrate( )

for all IntegrationPoint ∈ IntegrationCell do
evaluateWeights( )
evaluateBaseFunctions( )
evaluateOperators( )

end for
end procedure

As presented in algorithm 3.2, each resulting integration cell needs to be integrated. The
number of integration points used for the integration depends on the function space V Pi used on
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the patches with support on the cell.11 The reference integration points, of the Gauss–Legendre
quadrature used, are stored in constant memory and transformed to the cell. The first step
of the evaluation at a given integration point is the evaluation of the weight functions ωi for
all patches. Afterwards, the base functions ψn

i for the function spaces V Pi on all patches are
evaluated. Then they are scaled using the partition of unity ϕi(x) = Wi(x)∑

ωk∈Ci
Wk(x) , which is

calculated from the weight functions, evaluated in the previous step. The evaluation of the
linear l(u) and bilinear a(u, v) forms generate the resulting vectors and matrices.

3.5 Implementation Properties and Limitations

Every implementation requires design decisions which have major impact on the results. In the
following the most important properties and limitations of the implementation are presented:

1. The polynomial degree used in V P U is set at compile time. This disqualifies the usage of
p-refinement.12

2. The space dimension is set at compile time, as well. Since the PMPUM-framework
utilizes the same approach, this is no real limitation.

3. Since all threads operate on their own result data, a postprocessing step is required to
accumulate the results. Each CUDA thread writes a matrix composed of a row and
column for each neighbor. Every entry is a matrix again with the dimensions of the
function spaces as number of rows respectively columns. This leads to multiple matrices,
one for each neighbor, which need to be accumulated to form the required result where
only one matrix represents the bilinear form of two overlapping patches. Strategies how
to avoid this are discussed in section 4.10.1.

4. A thread block size of 128 is chosen but changing this to reasonable values has no
significant influence on the performance.

5. For the evaluation of the bilinear form a(·, ·) and the linear form l(·), all base functions
ψn

i of all patches with support on a patch Ci need to be evaluated. The memory required
for these base functions is given by bi · nωC . Here bi is the number of the base functions
and nωC is the number of patches with support on an integration cell. As mentioned in
section 2.4.1, nωC if limited by 4 for uniform h-refinement. The number of base functions
bi, is given in table 3.1, depends on the polynomial degree p of the local approximation
spaces V pi

i . As mentioned in section 3.1.3 at most 32 KB of the Shared Memory can be
used as L1 cache for devices of Compute Capability ≥ 2.0. Together with at most 63
registers the size of fast memory per thread is limited to 48KB/128 + 4B · 63 = 636B.13

11Only the polynomial space is analyzed in the following, note that the PMPUM supports enrichment functions
which require additional integration points.

12p-refinement is refinement by increasing the polynomial degree used.
13This is only the case if no information is shared by the threads of a thread block. If information is shared

each thread has 4B · 63 = 252B of memory and in addition to that, every thread block has 48KB of memory.
For an approach that enables sharing of information between threads see section 4.10.4
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Table 3.1: The memory requirement of the base functions ψn
i for all patches with support on

a cell

p #scalar (2D) size in Bytes (double) size in Bytes (single)
0 4 32 16
1 12 96 48
2 24 192 96
3 40 320 160
4 60 480 240
5 84 672 336

The maximum of the Shared Memory/L1 cache is used as cache and is shared by all
threads of a thread block with size 128. Since additional memory is needed, i.e. the
decomposer requires to store all split points, the size of the available fast memory may
limit the overall performance.

6. The implementation uses up-to-date features such as dynamic memory allocation14 and
separate compilation to decrease build time. Due to the usage of these features CUDA
5.0 and devices with Compute Capability >= 2.0 are required.

14Since dynamic memory allocation should be minimized for high performance CUDA code, it’s only used for
the instantiation of structures which are depending on problem parameters, such as the function space or
operators used, except those listed.
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4 Results

In this chapter experiments are presented which allow the evaluation of the implementation
and discussion of recommendations for further improvements of the implementation. First, we
present the hardware and metric used and afterwards we present the different experiments that
were conducted.1 The chapter closes with a summary of the results and the recommendations
for further improvements.

4.1 Hardware and Metrics

Multiple hardware configurations were used for the experiments. If not noted otherwise the
configuration given in table 4.1 was used. To investigate the performance on other GPUs we
consider the GPUs listed in table 4.2.

4.1.1 Hardware

Table 4.1: Reference system configuration

Operating System Ubuntu Linux (12.04.2 LTS) with kernel 3.2.0-38-generic
CPU Intel i7-2600K @ 3.4GHz
Main memory 16 GiB
GPU NVIDIA GeForce GTX 560 Ti with 2 GiB RAM
MPI compiler (host code) mpicxx (-std=c++0x -O3 -DNDEBUG)
CUDA compiler (device code) 5.0, V0.2.1221 (-Xcompiler ,\"-O3\",\"-DNDEBUG\"

-arch=sm_21 -DNDEBUG)a

a the --arch flag is set according to the Compute Capability given in table 4.2 when using
other GPUs

The table provides the most relevant characteristics for performance measurements. It shows
that the peak DP performance2 of the Geforce GTX 560 Ti is about 3.4 times higher than
that of a single core of the Intel i7 2600k. For SP the peak performance is however about 41.4
times higher. We note, that the NVIDIA™ K20 outruns the Intel i7 2600k (using all 4 cores)
in DP performance. The NVIDIA™ K20 is 10.75 times faster than an Intel i7 2600k utilizing

1A framework for automated installation, execution and evaluation was written in python.
2floating point performance is measured in giga floating point operations per second (gflops).
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Table 4.2: Performance of different architectures

Metric Intel i7 2600k
(single core)

Geforce
GTX 560 Ti

NVIDIA™
K20

Peak SP performance in gflops 30.5a 1263cd 3520f

Peak DP performance in gflops 30.5a 105e 1170f

Memory bandwidth in GB/s 21b 128c 208f

Streaming Multiprocessors – 8g 13g

Compute Capability – 2.1h 3.5h

a only when using a single core with maximum turbo, otherwise 27.2 gflops per core [5]
b according to [6]
c according to [17]
d the single precision performance can be calculated from the shader clock frequency, given as

Processor Clock, and the number of cuda cores both given in [17], since FMA-instructions are
used the results needs to be multiplied by 2

e according to [21] the GTX 560 Ti’s double precision performance is 1/12 of the single precision
performance

f according to [16]
g can be retrieved via the CUDA API
h according to [15]

all 4 cores. For SP however the performance of the Geforce GTX 560 Ti and the NVIDIA™
K20 is higher than that of the Intel i7 2600k.

4.1.2 Metric

For the experiments presented in the following sections the following metric is used for the
performance of an implementation:

t/dof

dof

Here t is the duration in seconds and dof is the number of degrees of freedom. The number of
degrees of freedom for the PMPUM is given by:

N · bi = (2d)l cot
p∑

i=0

(
d+ i− 1
d− 1

)

Here N is the number of patches, which depends on the space dimension d and the level l,
and bi is the number of base functions per patch which depends on the polynomial degree p
used.3

3See section 2.5 for a derivation of N and bi.
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Figure 4.1: The performance of the integration on ΩI of the CPU-implementation PCP U .
See table B.4 in the appendix for the data on which this figure is based.

4.2 Experiment: Overall Performance

The first experiment was conducted to estimate the performance of the implementation. To that
end, the performance of the integration of the domain of the inner patches ΩI for discretization
of the model problem (presented in section 2.1) in 2D is examined.4 In this experiment we use
the Geforce GTX 560 Ti and the Intel i7 2600k as reference. Since DP is used we expect a
maximum performance boost by a factor of 3.4 because we use a single core of the Intel i7
2600k. Figure 4.1 shows the performance PCP U of the CPU-implementation.

We compare it to the performance PGP U achieved on the Geforce GTX 560 Ti, which is
shown in figure 4.2. For an easier comparison figure 4.3 shows the quotient PCP U/PGP U . We
see, that the performance of the GPU-implementation is higher than the performance of the
CPU-implementation. We note, that for the best case (polynomial degree 1) the performance
of the GPU-implementation is about 2.5 times higher than the one of the CPU implementation.
Since we expected a maximum of 3.4, see section 4.1.1, we note, that an improvement of the
performance of 70% compared to the theoretical maximum is reached for polynomial degree 1.
We can however determine more characteristics from the figures.

1. The figures only show data for higher levels l since for lower levels not enough threads
can be spawned to utilize GPU.5 This suboptimal utilization is caused by the fact, that
a GPU is organized in SMs which operate on thread blocks. If not enough thread blocks
are launched to utilize all SMs the performance drops. Since we launch a thread for each
patch and we use thread blocks of size 128 and the Geforce GTX 560 Ti has 8 SMs we

4To verify that nothing was omitted during the experiments the overall duration for the discretization was
measured. The results of these measurements, which do include the integration of the whole domain Ω
instead of only the inner domain ΩI , are given in the tables B.1, B.2 and B.3 in the appendix.

5see the corresponding tables B.4, B.5 and B.6 for data of lower levels.
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Figure 4.2: The performance of the integration on ΩI of the GPU-implementation PCP U .
See table B.5 in the appendix for the data on which this figure is based.
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Figure 4.3: The relative performance of the integration on ΩI of the CPU and GPU-
implementations PCP U/PGP U . See table B.6 in the appendix for the data
on which this table is based.

need at least 128 · 8 patches, to be computed by the GPU. This means, that only for level
l ≥ 5 we reach acceptable utilization of the GPU in the 2D case. Since the duration of
the integration on lower levels is irrelevant for the overall performance, in the following,
we only examine the performance for level l ≥ 5.

2. As stated in section 2.5 the complexity of the integration depends on the level l used. It
should grow by a constant factor and therefore the metric of the value is expected to
be constant. Figure 4.3 confirms this for all polynomial degrees, except for polynomial
degree 0, for high levels.
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4.3 Experiment: Performance depending on Problem Parameters

Table 4.3: The ratio of the duration of the GPU-implementation between consecutive levels.
See table B.5 for data on which this table is based.

P/L 6/5 7/6 8/7 9/8 reference value
0 1.71 3 3.33 4.16 4
1 2 3.61 3.85 4 4
2 2.3 4.39 4.08 4.02 4
3 2.63 4.69 4.11 3.97 4
4 2.92 3.55 4.03 4.04 4
5 3.49 4.18 3.89 4.02 4

3. As stated in section 2.5 the complexity of the integration depends on the polynomial
degree. We expect a growing effort for increasing polynomial degree p. As we see in
figure 4.2 the performance doesn’t seem to correlate in the expected way. For polynomial
degree 1 the performance is better than for polynomial degree 0. Therefore, we need to
examine this further.

Overall, the performance reached when using DP is good for the Geforce GTX 560 Ti (Geforce
GTX 560 Ti). However, the performance doesn’t correlate with the complexity given in section
2.5. In the following experiment, we therefore analyze the performance depending on the
problem parameters.

4.3 Experiment: Performance depending on Problem Parameters

In the previous experiment we found, that the performance depending on the polynomial
degree doesn’t seem to grow according to the values determined in section 2.5. Thus, in this
experiment we examine the performance of the implementation depending on these parameters.
We choose the same setup and data as in the previous experiment.

We recall from section 2.5, that the complexity grows by a factor of 4 for an increase of the
level l by 1 in 2D. Table 4.3 shows these factors for the GPU-implementation.

As we see for high levels, the duration of the GPU-implementation correlates nearly perfectly
with the complexity specified.

For the dependency of the duration of the GPU-implementation on the polynomial degree p we
recall, that for an increase of the polynomial degree from p− 1 to p an increase of the duration

of
(
d p+1

2 e
d p

2 e

)2
· 2+p

p is expected. Table 4.4 shows these factors for the GPU-implementation.

The factors differ from those expected. Especially the factor between polynomial degree 0 and
1 isn’t as high as expected. There are multiple reasons for this behavior:

1. The number of integration points in the actual implementation is chosen to be nNI =
(p+ 1)d instead nNI =

(
p+1

2

)d
which was derived in section 2.5. This was done to utilize
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Table 4.4: The ratio of the duration of the GPU-implementation between consecutive poly-
nomial degrees. See table B.5 for an the data on which this table is based.

P/L 5 6 7 8 9 nNI =
(

p+1
2

)d
nNI = (p+ 1)d

1 1.29 1.5 1.81 2.08 2 3 12
2 2.22 2.56 3.11 3.3 3.31 8 4.5
3 2.55 2.91 3.11 3.13 3.1 1.66 2.96
4 2.59 2.87 2.18 2.13 2.16 3.38 2.34
5 2.36 2.82 3.33 3.21 3.2 1.4 2.01

the same number of integration points as the CPU-implementation to reach comparability.
The resulting reference values for both formulas for nNI are given. We can inspect,
however that there is no obvious correlation with both reference values.

2. The influence of the postprocessing step, described in section 3.5, might decrease with
the required total effort. Thus in the experiment presented in section 4.4 we investigate
which part of implementation is most accountable for the duration.

3. The mapping of the algorithm to CUDA might limit the performance which can be
reached. The amount of fast memory per thread6 is, however, limited for all possible
implementations. Since the base functions need to be available for each pair of patches
on an integration cell, which also applies to all possible implementations, it will be hard
to design an efficient mapping for higher polynomial degree p.

Altogether, the performance of the implementation correlates with the complexity given in
section 2.5 for the level l. For the polynomial degree p, however, we don’t see the expected
correlation and thus we need to investigate this further. Therefore, in the next experiment we
analyze the performance of the different steps of the GPU-implementation.

4.4 Experiment: Performance of different Steps of the
GPU-Implementation

In this experiment, we analyze the different steps of the implementation, as presented in section
3.2. This is especially interesting since it might be the reason for the unexpected trend of the
performance for lower polynomial degrees. The GPU-based discretization is split, as presented
in section 3.2, into the following steps:

• the preparation consisting of the copy of the neighborhoods to the GPU’s global memory

• the kernel which decomposes the inner domain ΩI and performs the integration required
to evaluate the bilinear a(·, ·) and linear l(·) form.

6As described in section 3.5.
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4.4 Experiment: Performance of different Steps of the GPU-Implementation

Table 4.5: The ratio of the duration of the preprocessing and the whole GPU-implementation.
See tables B.5 and B.7 for the data on which this table is based.

P/L 5 6 7 8 9
0 0.14 8.33 · 10−2 2.78 · 10−2 6.67 · 10−2 5.81 · 10−2

1 0 0 3.08 · 10−2 1.6 · 10−2 3.3 · 10−2

2 0 2.17 · 10−2 0 7.28 · 10−3 9.97 · 10−3

3 0 7.46 · 10−3 3.18 · 10−3 3.1 · 10−3 3.02 · 10−3

4 0 0 2.2 · 10−3 1.82 · 10−3 2.03 · 10−3

5 0 0 4.4 · 10−4 8.49 · 10−4 6.34 · 10−4

Table 4.6: The ratio of the duration of the kernel and the whole GPU-implementation. See
tables B.5 and B.8 for the data on which this table is based.

P/L 5 6 7 8 9
0 0.14 0.17 0.39 0.35 0.34
1 0.33 0.44 0.52 0.52 0.52
2 0.65 0.57 0.59 0.61 0.6
3 0.8 0.68 0.72 0.72 0.71
4 0.85 0.77 0.74 0.73 0.73
5 0.89 0.85 0.86 0.85 0.85

• the postprocessing which copies the result back to the host and adds the result to the
global data structures. Since for each neighborhood the results are stored separately,
this step implies the summation of 9 matrices instead of the copy of 1 matrix for each
neighbor in a neighborhood.

Since the preprocessing consists only of copies the duration is expected not to be significant.
The postprocessing however might have influence on the performance because of the required
accumulation of the results.

Table 4.5 shows the proportion of the duration of the preparation step of the overall duration.
Tables 4.6 and 4.7 show the same proportion for the duration of the kernel respectively the
postprocessing.

The first table shows that the preprocessing does not account for a significant proportion of
the overall duration. As expected the situation is different for the postprocessing. Table 4.7
shows that for smaller polynomial degree p the duration of the postprocessing dominates the
duration of the kernel.

Recalling the reason for this experiment from the previous experiment the distorted behavior
for lower polynomial degree is explained by the fact, that the duration of the postprocessing
dominates, that of the kernel. Since, other strategies which avoid the host-based accumulation
of the results affect the performance of the preprocessing and the kernel, it’s hard to tell which
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Table 4.7: The ratio of the duration of the postprocessing and the whole GPU-implementation.
See tables B.5 and B.9 for the data on which this table is based.

P/L 5 6 7 8 9
0 0.71 0.75 0.56 0.57 0.57
1 0.67 0.56 0.45 0.44 0.43
2 0.35 0.41 0.4 0.38 0.39
3 0.2 0.31 0.28 0.28 0.28
4 0.14 0.23 0.26 0.27 0.26
5 0.11 0.15 0.14 0.15 0.15

effect on the behavior would result from applying such a strategy. For details on a strategy
which does not require host-based accumulation see section 4.10.1.

Another reason for the unexpected behavior of the duration should be considered for larger
polynomial degree. In section 3.5 we discussed, that local resources should be minimized to
maximize the performance. For increasing polynomial degree, however, the number of base
functions and thus the requirements for local resources increases. If these are not available the
performance drops due to many uncached and therefore slow global memory access.

In total the multiplication of the result data structure, which was chosen to avoid atomic
memory access on the GPU, shifts a significant amount of computations to the CPU. For
smaller polynomial degree p this even dominates the performance. A strategy to improve this
is presented in section 4.10.1. In the next experiment, we present results with single precision
which decreases the requirements for local resources, which seem to be the performance limiter
for larger polynomial degree. In addition to that, we analyze data from the profiler for CUDA
in the experiment, presented in section 4.6, to check this assumption.

4.5 Experiment: Single precision Performance

In the previous section we guessed, that excessive usage of local memory could be the reason
for the behavior for larger polynomial degree p. The memory requirements depend on the
precision used. Thus we expect, that using SP instead of DP should result in an increased
performance. This effect should be larger since as shown in table 4.2 using SP instead of DP
on the Geforce GTX 560 Ti should result in a much higher performance. In fact it should
increase the performance advantage over the CPU(Intel i7 2600k) from factor 3.4 to factor
41.4. In this experiment we thus utilize SP. Table 4.8 shows the ratio of the duration of the
CUDA-kernel using SP and DP.

The table shows, that the performance using SP and DP is identical, except from differences,
that are caused by measurement errors.7 Thus in the following we discuss possible reasons for
this unexpected result:

7See tables B.11, B.12 and B.13 for details on the duration of the different steps when using SP.
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4.5 Experiment: Single precision Performance

Table 4.8: The ratio of the duration of the kernel for SP and DP. See tables B.8 and B.12 for
the data on which this table is based.

P/L 5 6 7 8 9
0 0 1.5 1 1 1.02
1 1 0.88 1 0.98 1
2 1 1 1.01 0.99 1.01
3 0.98 1.02 1.04 0.95 1.01
4 1.02 0.98 1 1 1
5 1.06 1 0.99 1 1

1. The occupancy8 could be low and limit the performance in the SP case. In the DP case
this would not affect the performance since only 1/12 of the floating point units can be
utilized and thus for a lower occupancy, the limiter of the performance would still be the
number of floating point units of the ALU.

2. The memory bandwidth or more likely the memory access patterns could be the reason
why the performance isn’t higher for SP than for DP. The memory bandwidth is the same
for SP and DP and thus bad access patterns may not affect the DP performance but limit
the SP performance. Thus the SP performance is an indicator, that the implementation
is memory bound. However the access patterns seem to be correct in theory.9 Thus
accesses to local memory could be the problem since it’s physically the same memory.

3. As mention in the previous point, the usage of too many local resources reduces the
performance. When more memory is used by a thread than is available in registers, local
memory is used. Local memory, however, is, as mentioned in section 3.1.3 only coalesced
global memory. Thus using local memory means, that data that we would like to store in
very fast registers is swapped out to the very slow global memory. When this situation
occurs extensively, is has massive impact on the performance. Thus, reducing the amount
of local resources may increase the performance drastically. For a recommendations how
to achieve that, see sections 4.10.3 and 4.10.4.

We summarize, that this experiment showed, that the performance is limited by the occupancy
and that the implementation is likely to be memory bound. In the following experiments we
therefore examine if this statement holds using the profiler for CUDA.

8occupancy is the ratio of the active warps on a SM of the maximum number of warps supported by the SM.
Therefore, it limits the utilization of the SM’s arithmetic and logic unit (ALU) [13, p. 69]. However, the
relation between occupancy and performance is complex, for details see [23].

9For an improved memory layout for the parameters see section 4.10.1.
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Table 4.9: The occupancy of the SMs when executing the kernel for the decomposition and
integration of ΩI .

P/L 5 6 7 8 9
0 7.68 · 10−2 0.32 0.32 0.32 0.33
1 7.81 · 10−2 0.31 0.32 0.32 0.32
2 7.85 · 10−2 0.32 0.29 0.32 0.31
3 7.8 · 10−2 0.31 0.28 0.28 0.29
4 7.77 · 10−2 0.17 0.22 0.22 0.22
5 7.65 · 10−2 0.11 0.12 0.12 0.12

4.6 Experiment: Profiler Data Analysis

The experiment, presented in the previous section, hypothesizes, that the implementation is
memory bound. Therefore, in this experiment we analyze data collected using the profiler
provided by NVIDIA™ [18]. The first guess in the previous experiment was, that occupancy
may limit the performance. This assumption is reasonable since, as discussed in section 3.5,
the implementation requires a serious amount of local resources and therefore only less warps
can be executed in parallel on a SM in parallel.

Table 4.9 shows the occupancy measured by the profiler for the implementation.

We see, that the assumption was correct and the occupancy for the implementation is only
33% for polynomial degree 0 and decreasing for increasing polynomial degree. The correlation
between occupancy and performance is complex, for details see [23, p. 25ff.]. We note however
that for an implementation for that threads are likely to be stalled10 often occupancy has an
significant influence. Therefore, the peak performance, presented in section 4.1.1 is likely to
be reduced, but the exact factor is unknown. As discussed in the previous experiment the
performance isn’t influenced in the same way for DP as for SP, because only 1/12 of the SP
units is available in DP in the ALUs of the SMs of the Geforce GTX 560 Ti. However, if only
this limitation would apply the performance of the implementation could still be good when
using SP.

The profiler can compute additional metrics which can identify bottlenecks in an application.
Since we suspect the memory access to be our main bottleneck, we are especially interested
in the metrics concerning the efficiency of the global memory access. Unfortunately, the
documentation of the profiler isn’t consistent with the profiler. Therefore, some metrics could
not be computed11 and we focus on the analysis of the data available. First, we investigate if

10A thread is stalled on unsatisfied data dependencies, see [23] for details.
11The events described in [18, p. 39ff.] to compute the metrics gld_efficiency and gst_efficiency for devices

of Compute Capability 2.x are not found when executing nvprof --query-events. The Visual Profiler [18,
p. 4ff.] failed to compute the global store efficiency. The global load efficiency, however, could be computed
for the implementation. All metrics could be computed by the Visual Profiler for other tested applications.
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4.6 Experiment: Profiler Data Analysis

Table 4.10: The ratio of the issued instructions of the kernel between consecutive levels. See
table B.14 for the data on which this table is based.

P/L 6/5 7/6 8/7 9/8 reference value
1 4.62 4.66 4.04 4.04 4
2 4.45 4.18 4.14 4.04 4
3 4.42 4.15 4.08 4.04 4
4 4.17 4.18 4.07 4.03 4
5 4.22 4.15 4.06 4.03 4

Table 4.11: The ratio of the issued instructions of the kernel between consecutive polynomial
degrees. See table B.14 for the data on which this table is based.

P/L 5 6 7 8 9 nNI =
(

p+1
2

)d
nNI = (p+ 1)d

1 3.5 3.07 2.21 2.57 2.55 3 12
2 3.54 3.41 3.06 3.13 3.13 8 4.5
3 3.18 3.16 3.14 3.09 3.09 1.66 2.96
4 2.76 2.61 2.62 2.61 2.61 3.38 2.34
5 2.43 2.45 2.44 2.43 2.43 1.4 2.01

the number of instruction issued shows the same dependency on the level l and polynomial
degree p as the duration of the GPU-implementation discussed in section 4.3.

From table 4.10 we conclude, that the total number of instructions correlates with the duration,
required by the GPU-implementation depending on the level l in the expected way. For the
polynomial degree p we see, that the number of instructions, given in table 4.11, correlates with
the expected values derived in section 2.5, except for polynomial degree p = 0, rather than with
the duration of the complete GPU-implementation. This confirms, that the postprocessing
has massive influence on the performance, as mentioned in section 4.4.

In section 4.5 we postulated the assumption that the implementation is memory bound. From
section 3.5 we recall that this may be caused by register spilling. The profiler provides the
ratio of instructions which are executed due to waiting for local memory, which is used in case
of register spilling, of the total instruction count. The used metric local_replay_overhead is
shown in table 4.12.12

The ratio is constant for increasing level l and for increasing polynomial degree p. This result
seems to be unexpected, but the reason for that seems to be the metric. We assume, that the
metric doesn’t measure the case when all thread blocks are waiting for memory. Thus, the
only metrics to measure this would be the gld_efficiency and the gst_efficiency, which are
unavailable.

12Unfortunately local_replay_overhead is not defined in the documentation, but seems to be the number of
instructions, that are issued by all threads of a warp waiting for other threads of the same warp to finish a
memory request.
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Table 4.12: The ratio of instructions issued due to waits for local memory of the total
instructions issued. See tables B.14, B.15 and B.16 for the tables on which this
table is based.

P/L 5 6 7 8 9
0 0.11 0.15 8.61 · 10−2 0.1 0.1
1 7.51 · 10−2 0.14 0.12 0.11 0.11
2 4.68 · 10−2 0.13 0.12 0.12 0.12
3 3.28 · 10−2 0.13 0.11 0.12 0.12
4 3.27 · 10−2 0.11 0.12 0.12 0.12
5 3.81 · 10−2 9.01 · 10−2 0.11 0.11 0.11

Table 4.13: The ratio of non divergent branches and all branches in the kernel for the
decomposition and integration of ΩI . See tables B.17 and B.18 for the data on
which this table is based.

P/L 5 6 7 8 9
0 1 1 1 1 1
1 1 1 1 1 1
2 1 1 1 1 1
3 1 1 1 1 1
4 1 1 1 1 1
5 1 1 1 1 1

Due to the issue, that global_store_efficiency could not be measured at all, we can only
speculate about the suitability of the chosen memory layout of the results.13 Measurements
using the Visual Profiler showed, that the global_load_efficiency is about 2%.14 Thus, we
note that the global_load_efficiency and the high local resource requirements are the main
performance limiters. To determine how improvements of these limitations would affect the
performance, we inspect another common limiter. An issue reducing the performance for many
algorithms when using CUDA is branch divergence, which is explained in section 3.1.2. Table
4.13 shows the ratio of conditions which lead to serialized execution of the branches.

We note, that divergent branches don’t limit the performance of the implementation.

We summarize that this experiment shows, that the implementation is memory bound. However,
we note, that the limitation may not be accesses to global but to local memory. Other metrics
inspected show, that a good performance could be reached by improving the memory layout for
the parameters and reduce the requirements of local resources. Improvements of the memory

13The switch from a memory layout in CPU-fashion to the memory layout presented in section 3.3, resulted in
a boost of the performance of about factor 2.

14For the input data structure the boost resulting from changing a CPU-like memory layout to the used layout,
described in section 3.3, was nearly negligible. Thus, improving this memory layout, may increase the
performance, too. See sections 4.10.1 and 4.10.2 for recommendations.
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4.7 Experiment: 3D Performance
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Figure 4.4: The performance of the integration on ΩI of the CPU-implementation PCP U in
the 3D case. See table B.19 for the data on which the figure is based.
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Figure 4.5: The performance of the integration on ΩI of the GPU-implementation PGP U in
the 3D case. See table B.20 for the data on which the figure is based.

layout are discussed in section 4.10.1. In the sections 4.10.3 and 4.10.4 the reduction of the
local resource requirements is discussed.

4.7 Experiment: 3D Performance

From the previous experiments we learned, that accesses to the local and global memory limit
the performance. Since for 3D more local resources are required, we expect the performance
to be worse. All other effects we observed previously, for example the increase of the cost
depending on the level, are expected to be similar for the 3D case. For 3D the computational
effort and the memory requirements for the results grow by factor 8 with an increase of the
level by 1 and for the polynomial degree the formula given in in section 2.5 applies.

Figure 4.4 and figure 4.5 show the duration of the CPU-implementation and GPU-
implementation respectively. The ratio of these durations is given in figure 4.6.
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Figure 4.6: The relative performance of the integration on ΩI of the CPU and GPU-
implementation PCP U/PGP U in the 3D case. See table B.21 for the data on
which the figure is based.

We see, that the performance is worse in the 3D case compared to the 2D case. The other
effects are similar to the 2D case. For details see tables B.19, B.20 and B.21. This experiment
shows, that in 3D for polynomial degree 1 the GPU-implementation boosts the performance by
a factor of about factor 1.5 compared to the CPU-implementation.15 We conclude, that in 3D
the implementation performs worse than in 2D due to higher local resource requirements.

4.8 Experiment: Different Hardware

As mentioned in section 4.6, the implementation is memory bound. Therefore, we expect the
performance to be similar for GPUs with higher arithmetical performance, but similar memory
configuration. The NVIDIA™ K20 has about 11 times the arithmetical performance of the
Geforce GTX 560 Ti. However, the memory bandwidth is about 1.6 times higher. Therefore,
we expect the performance on the NVIDIA™ K20 to be about 1.6 times higher than that on
the Geforce GTX 560 Ti. The relative performance is given in table 4.14.

We can see from the table that the relative performance depends on the polynomial degree. Since
for higher polynomial degree p more local memory is utilized, the performance benefits should
enhance for increasing polynomial degree p. For polynomial degree p = 4 the performance
advantage is unexpected low. For the other polynomial degrees the performance advantage
seems to increase for increasing level l and polynomial degree p. The expected boost by a factor
of about 1.6, is not reached.16 One explanation for this behavior is, that the memory latency
is the main limiter instead of the memory bandwidth. To examine this further, additional

15For other polynomial degrees we see worse performance. For polynomial degree ≥ 2, we note that we cannot
launch enough thread blocks to utilize all SMs.

16The system, on which this was tested only has 4 GiB of main memory and thus the level l, which could be
utilized, was limited.
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4.9 Summary of the Results

Table 4.14: The relative performance of the implementation on the NVIDIA™ K20 and the
Geforce GTX 560 Ti. See tables B.8 and B.24 for the data on which this table is
based.

P/L 5 6 7 8
0 1 0.67 1.4 1.05
1 0.6 0.8 1.13 0.97
2 0.72 0.65 1.15 1.15
3 0.66 0.67 1.27 1.28
4 0.63 0.8 0.98 0.93
5 0.62 0.97 1.48 1.42

experiments would be required. As expected, for SP the performance was equal to that for DP
on the NVIDIA™ K20.17 Thus, this experiment confirms that the implementation is memory
bound.

4.9 Summary of the Results

In this section we summarize the results from the experiments, presented in the previous
sections.

1. For DP the performance of the integration on ΩI could be increased by factors between
1.5 and 2.5, depending on the polynomial degree p using a Geforce GTX 560 Ti compared
to one core of the Intel i7 2600k, see section 4.2. The highest benefit, of the about 70%
of the performance benefit theoretically possible, was reached for polynomial degree 1 on
a Geforce GTX 560 Ti.

2. The performance when using SP isn’t satisfying on the Geforce GTX 560 Ti, see section
4.5. We concluded that the implementation is memory bound, see section 4.6. This was
confirmed by the results from an experiment utilizing a NVIDIA™ K20, which exhibits
low performance when using DP, see section 4.8.

3. The analysis of the profiler data in section 4.6 showed that other common issues in
CUDA-implementations don’t occur. The implementation is memory bound. Two
possible reasons were identified:

• The access patterns to the global data structures

• The excessive usage of local memory

17See tables 4.6 and B.22 in the appendix.
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4 Results

Since the memory patterns for the results seem to be good18, the main performance
limiters are the excessive usage of local memory and the memory layout of the parameters.
This permits the assumption, that if the local resource requirements are reduced and the
memory layout of the parameters is revised,19 a satisfying performance can be reached.
In the sections 4.10.3 and 4.10.4 we present strategies, how to reduce the local resource
requirements and in the sections 4.10.1 and 4.10.2 we give recommendations for the
improvement of the memory layout of the parameters.

4. For smaller polynomial degree p the duration of the postprocessing dominates the runtime
of the kernel, see section 4.4. Therefore, an improvement of this issue will significantly
improve the performance for smaller polynomial degree. In section 4.10.1 we present
strategies to avoid this.

4.10 Further Improvements

Based on the results summarized in the previous section, in this section we give some hints
how to improve the performance of the implementation. Thus, detailed strategies to address
all issues inspected in the experiments are given.

4.10.1 GPU-based Accumulation

As mentioned in section 4.4 for small polynomial degree p, the primary performance limiter of
the implementation is the postprocessing. We recall, that the goal of the implementation was
to avoid atomic operations, see section 3.3. The experiments showed, that this lead to the
mentioned domination of the postprocessing. To solve this we need to accumulate the results
on the GPU. We have two options:

1. using atomic operations for the adds to the resulting matrices and vectors

2. using an extra kernel to accumulate the results on the GPU

Both options imply we need for a data structure, that stores the neighbors of all patches, that
are in the neighborhood of the patches Wi processed in one schedule.

We give an example to explain this. Figure 4.7 supposes identifier (numbers) which are used in
the example. The patches with the identifiers 0 and 1 are calculated in one schedule. Therefore,
all patches illustrated in the figure need to be stored. This is represented by the blocks on the
left in figure 4.8. Of course, the neighborhoods of the patches 0 and 1 need to be stored. This
information is marked in turquoise. In addition to that, the neighborhoods of all patches that
are in the neighborhood of the patches 0 and 1 are required. Especially, only the positions of

18As mentioned in section 4.6, the switch from a memory layout in CPU-fashion to the memory layout presented
in section 3.3, resulted in a boost of the performance of about factor 2.

19As mentioned in section 4.6, for the input data structure the boost resulting from changing a CPU-like
memory layout to the used layout, described in section 3.3, was nearly negligible.
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Figure 4.7: A possible indexing scheme for 2 adjacent neighborhoods
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Figure 4.8: The information required for GPU-based accumulation. The indices used are
given in figure 4.7. On the left the list of patches is given and on the right
the neighborhood lists are shown. When using GPU based accumulation the
yellow marked information is required in addition to the information marked in
turquoise. Dots in fields of neighborhood lists represent patches, that are not
part of the schedule Wi of the patches 0 and 1

all patches in one of the neighborhoods of 1 or 2 need to be known in the neighborhood list
of all patches. This additional information is marked yellow. At first glance the additional
neighborhoods seem to be many. But since the patches in one schedule are adjacent, the
number of neighborhoods which need to be stored and are not affiliated to a patch, is small
compared to the absolute number of patches. We note that the storage of the patches as well
as the neighborhoods should be aligned, as discussed in section 3.3.

With this information at hand, we can determine the position of ωj in the list of neighbors
of every patch ωi. This information is required, to know into which matrix the results of the
integration need to be written.
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4 Results

Recalling the two options, we can use this information to allocate the results per patch and
write to the appropriate matrix entry in atomic fashion. Since many atomic writes are required
in this case the performance may also be limited but since the host based accumulation is
very time consuming the implementation may benefit from that change. Another positive
effect would be, that it requires only 1/9 of the memory compared to the implementation
presented. Therefore, more patches can be computed in one schedule which might also lead to
a performance improvement.

An other option is, that each patch in Wi writes into its own result data structure and then
an additional kernel is launched to accumulate the results. The task of this second kernel is
known as parallel reduction. See [4] for strategies to optimize this reduction. This would even
require more memory on the GPU but would avoid atomic additions.

4.10.2 Improved Memory Access

The memory accesses have been identified to be main performance limiter in section 4.6. In
this section, therefore, we discuss how the memory accesses can be improved. Two factors
should be considered when optimizing memory accesses:

• the number of accesses should be minimized

• the access patterns should lead to coalesced memory accesses

When applying the strategy, given in section 4.10.1, the number of memory requests should
also be reduced. The load instructions from different threads to the same memory location can
be handled in a single memory transaction. Therefore, the more orderless access to the patches
should not compromise the performance. When applying the same memory layout to the
neighborhood information it should lead to coalesced accesses since all threads access the same
index at a time. Since the metric gst_efficiency could not be computed by the profiler, see
section 4.6, it’s hard to tell if the store instructions are an unexpected performance limiter.20

Therefore, the attention should be focused on acquiring the missing metric from the profiler.

4.10.3 Multi Kernel Version

The compiler optimizes the usage of local resources. However, this optimization performs
better for a kernel with less instructions and less local resources. To support compiler
optimization, especially register usage, a multi kernel should be considered. It’s possible to
split the decomposition from the integration. This can be achieved by storing the result of the
decomposer in global memory. A second kernel uses this decomposition to retrieve the cells for
integration. This would support the compiler, to free the resources that are temporarily used
by the decomposer. Since the implementation uses a single monolithic kernel, a split of the
functionality into two kernels may improve the performance.

20As before, the switch from a memory layout in CPU-fashion to the memory layout presented in section 3.3,
resulted in a boost of the performance of about factor 2.
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4.10.4 Level of Parallelization

Another approach that should be considered, is changing the level of parallelization. The level
of parallelization defines the granularity of splitting the task to a number of threads. Changing
the level of parallelization can have massive impact on the local resource requirements of one
thread.

We recall that the requirements for local resources impact the performance in two ways:

• it reduces the occupancy

• it introduces overhead for local memory accesses

When applying the parallelization on a different level this might lead to decreased resource
requirements and therefore, to an improved performance. Instead of assigning a patch to each
thread for decomposition and integration it should be considered to use a different number
of threads for the decomposition and the integration. One thread in a first phase would
decompose the domain of a patch ωi and in a second phase each thread would integrate one
integration cell. This could be achieved by three ways:

• A first kernel decomposes the patch and a second operates on the decomposed domain.
This is similar to the approach, given in the previous section, but would utilize a thread
for the integration of each resulting integration cell.

• A patch is decomposed by one thread of a thread block and each resulting integration
cell is integrated by one thread of the thread block afterwards. This could utilize the
shared memory in a more efficient way since information on the decomposition and the
neighbor patches of the patch, on which the thread block operates, can be shared.

• A patch is decomposed by one thread which uses dynamic parallelism, see [14] for details,
to start a second kernel. Each thread of the second kernel integrates one integration cell
generated by the calling thread of the first kernel.

All these solutions however involve the problem of writing the results into a global data
structure. As discussed in section 4.10.1, the accumulation of the results requires some effort.
When using a thread per integration cell instead of a thread per patch it multiplies the expected
effect. Therefore, changing the level of parallelization should be reconsidered before applying,
but could improve the performance remarkable.
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5 Conclusion

In this thesis we presented a GPU-implementation of the decomposition of the domain and
the numerical integration which are required in the PMPUM for the discretization of a given
PDE. These steps make up a large share of the computational effort in the method. Therefore,
first the theoretical background was given and the suitability of different algorithms for the
decomposition using CUDA was discussed. An introduction to the major concepts of CUDA laid
the foundation for the outline of the implementation. Finally, we analyzed the implementation
using different experiments and derived recommendations for further improvements.

The experiments conducted to analyze the implementation showed that the performance of
the decomposition and the numerical integration can be increased using CUDA. This increase
of about factor 2.5, was achieved for the Geforce GTX 560 Ti GPU compared to the Intel
i7 2600k CPU using double precision floating point numbers. The Geforce GTX 560 Ti has
a peak performance that is 3.4 times higher than of one core of the Intel i7 2600k CPU.
Assuming, that the CPU is maxed out and utilizes only one core, this is about 70% of the
performance that can be achieved. For single precision floating point numbers, however, a
massive increase was expected, since the processing power for single precision floating point
numbers of Geforce GTX 560 Ti is about 41 times higher than that of the Intel i7 2600k.
However, in the experiments that could not be verified. We analyzed that the implementation
is memory bound, due to an extensive use of local resources, which causes register spilling and
a suboptimal memory layout of the parameters. An accumulation step on the CPU accounts
for a serious amount of the computations, which constraints the performance when using
functions with lower polynomial degree p. Other common performance limiters were eliminated
in the implementation, which was verified in the experiments. Therefore, decreasing the usage
of local resources and revising the memory layout for the parameters is expected to increase
the performance, especially when using single precision floating point numbers. Particularly,
when using smaller polynomial degree a GPU-based accumulation will boost the performance.
A more technical summary of the results can be found in section 4.9.

Strategies how to tackle these limitations where presented in detail in section 4.10. Which
of the suggested strategies will improve the performance most, can only be found out by
experiment. However, with these strategies in mind, we expect that a satisfying single precision
performance can be reached for all polynomial degrees at least for the 2D case. For devices
with a much higher relative double precision floating point number processing performance
(compared to single precision floating point), like the NVIDIA™ K20, the double precision
floating point performance was low. However, with the presented improvement strategies
applied, we expect a good performance for this case, too. In 3D, the task of reducing the local
resource requirements is more challenging.

67



5 Conclusion

Finally, we put the performance reached into the context of a use case. We recall from the
Introduction that the PMPUM can be used to solve PDEs arising from real world problems.
In realistic cases, the required detail of the solution is very high and therefore, requires a huge
amount of computations. As mentioned in section 3.2 the CPU-implementation can utilize
a computer cluster to distribute computations. The GPU-implementation can utilize any
CUDA-capable GPUs on a cluster node. Our findings show that utilizing any available GPUs
for the computation will boost the performance of the PMPUM-implementation. In the case,
however, that the number of CPUs and GPUs can be chosen freely, our findings would propose
a computer cluster with more CPUs instead of additional GPUs. With the recommended
improvement applied, however, we expect that selecting a computer cluster with one GPU on
each node would improve the performance.
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A Memory Layout of the Result Data

In section 3.3 we present the memory layout used for the parameters and the results. For
the results, however, some further explanations might be interesting, especially for further
development.

We recall from section 2.3 that A contains a block row for each patch ωi. In this row there
exists a nonzero block for each neighbor ωj∈Ci. The size of these nonzero blocks if given by
the size bi of the function space V pi

i and the size bj of the function space V pj

j . The situation
for the right-hand side is analog. The right-hand side f̂ consists of a vector of size bi per patch
ωi. Since, as discussed in 3.3, the results data is stored per patch ωi, all rows of the patches
ωj in the neighborhood Ci are store per patch. For uniform h-refinement this means that
the result data requires 9 times more memory than would be needed in the case of atomic
additions on the GPU, presented in 4.10.1.

Therefore we need to consider the following indices:

• one index for the neighborhoods, neighborhoodIndex in the following

• two indices for the patches of a neighborhood to calculate the scalar product, patchIndexI
and patchIndexJ

• two indices for the base functions of the function space on a patch, functionSpaceIndexI
and functionSpaceIndexJ

If multiple linear forms and bilinear forms are used for each an additional index is required.
The hierarchy of these indices is the following:

• patchIndexI
• linearIndex
• functionSpaceIndexI
• neighborhoodIndex

• patchIndexJ
• bilinearIndex
• functionSpaceIndexI
• functionSpaceIndexJ
• neighborhoodIndex

For a illustration of this indexing scheme see figure A.1.
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Figure A.1: The indexing scheme used for the results
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B Raw Result Data

In this chapter we provide the raw data from our experiments, that we used to analyze our
implementation in chapter 4. If not noted otherwise the reference system (see table 4.1) is
used to solve the model problem given in equation 2.1 using DP. We always reference the
experiment in which the data was used.

Durations for the Integration of the complete Domain Ω

Table B.1: The duration required by the CPU-implementation for the integration on Ω. Used
in section 4.2.

P/L 3 4 5 6 7 8 9
0 1 · 10−2 2 · 10−2 5 · 10−2 0.15 0.58 2.36 9.55
1 1 · 10−2 3 · 10−2 9 · 10−2 0.38 1.55 6.28 25.22
2 1 · 10−2 6 · 10−2 0.26 1.08 4.39 17.66 71.02
3 3 · 10−2 0.17 0.71 2.91 11.75 47.3 190.3
4 9 · 10−2 0.44 1.81 7.36 29.82 120.18 482.43
5 0.23 1.02 4.26 17.46 70.68 284.5 1,142.05

Table B.2: The duration required by the CPU-implementation for the integration on Ω. Used
in section 4.2.

P/L 3 4 5 6 7 8 9
0 7 · 10−2 8 · 10−2 7 · 10−2 0.12 0.39 1.3 5.3
1 9 · 10−2 8 · 10−2 0.1 0.21 0.71 2.64 10.4
2 0.14 0.18 0.22 0.51 2.12 8.51 33.84
3 0.39 0.46 0.57 1.46 6.53 26.39 103.99
4 0.96 1.2 1.47 4.15 14.28 56.28 224.77
5 2.33 2.76 3.44 11.56 46.85 179.47 715.63

71



B Raw Result Data

Table B.3: The relative duration required by the CPU-implementation and the CPU-
implementation for the integration on Ω. Used in section 4.2.

P/L 3 4 5 6 7 8 9
0 7 4 1.4 0.8 0.67 0.55 0.55
1 9 2.67 1.11 0.55 0.46 0.42 0.41
2 14 3 0.85 0.47 0.48 0.48 0.48
3 13 2.71 0.8 0.5 0.56 0.56 0.55
4 10.67 2.73 0.81 0.56 0.48 0.47 0.47
5 10.13 2.71 0.81 0.66 0.66 0.63 0.63

Durations for the Integration of inner Domain ΩI

Table B.4: The duration required by the CPU implementation for decomposition and inte-
gration on ΩI . Used in section 4.2

P/L 3 4 5 6 7 8 9
0 0 0 4 · 10−2 0.12 0.55 2.26 9.14
1 0 2 · 10−2 7 · 10−2 0.36 1.5 6.15 24.73
2 0 5 · 10−2 0.24 1.03 4.28 17.42 70.29
3 2 · 10−2 0.15 0.64 2.78 11.49 46.76 188.96
4 6 · 10−2 0.37 1.66 7.06 29.23 118.88 479.76
5 0.16 0.86 3.92 16.78 69.29 281.65 1,136.12

Table B.5: The duration required by the GPU implementation for decomposition and inte-
gration on ΩI . Used in sections 4.2, 4.3

P/L 3 4 5 6 7 8 9
0 6 · 10−2 7 · 10−2 7 · 10−2 0.12 0.36 1.2 4.99
1 8 · 10−2 8 · 10−2 9 · 10−2 0.18 0.65 2.5 10
2 0.13 0.15 0.2 0.46 2.02 8.24 33.11
3 0.37 0.42 0.51 1.34 6.28 25.83 102.66
4 0.93 1.13 1.32 3.85 13.66 55.01 222.04
5 2.25 2.6 3.11 10.86 45.42 176.6 709.72
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Table B.6: The relative duration required by the GPU-implementation and the CPU-
implementation for decomposition and integration on ΩI . Used in sections
4.2

P/L 3 4 5 6 7 8 9
0 7 4 1.4 0.8 0.67 0.55 0.55
1 9 2.67 1.11 0.55 0.46 0.42 0.41
2 14 3 0.85 0.47 0.48 0.48 0.48
3 13 2.71 0.8 0.5 0.56 0.56 0.55
4 10.67 2.73 0.81 0.56 0.48 0.47 0.47
5 10.13 2.71 0.81 0.66 0.66 0.63 0.63

Durations for the different Steps of the GPU-Implementation

Table B.7: The duration required by the preprocessing of the GPU-implementation for the
decomposition and integration on ΩI . Used in section 4.4.

P/L 5 6 7 8 9
0 1 · 10−2 1 · 10−2 1 · 10−2 8 · 10−2 0.29
1 0 0 2 · 10−2 4 · 10−2 0.33
2 0 1 · 10−2 0 6 · 10−2 0.33
3 0 1 · 10−2 2 · 10−2 8 · 10−2 0.31
4 0 0 3 · 10−2 0.1 0.45
5 0 0 2 · 10−2 0.15 0.45

Table B.8: The duration required by the kernel of the GPU-implementation for the decom-
position and integration on ΩI . Used in section 4.4.

P/L 5 6 7 8 9
0 1 · 10−2 2 · 10−2 0.14 0.42 1.71
1 3 · 10−2 8 · 10−2 0.34 1.31 5.23
2 0.13 0.26 1.2 5.04 19.85
3 0.41 0.91 4.51 18.6 73.26
4 1.12 2.97 10.06 40.28 162.62
5 2.78 9.26 38.84 149.87 601.49
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Table B.9: The duration required by the postprocessing of the GPU-implementation for the
decomposition and integration on ΩI . Used in section 4.4.

P/L 5 6 7 8 9
0 5 · 10−2 9 · 10−2 0.2 0.68 2.84
1 6 · 10−2 0.1 0.29 1.09 4.33
2 7 · 10−2 0.19 0.8 3.12 12.81
3 0.1 0.41 1.74 7.13 28.95
4 0.19 0.88 3.56 14.59 58.77
5 0.33 1.6 6.56 26.54 107.55

Durations for the Integration of inner Domain ΩI using Single
Precision

Table B.10: The duration required by the GPU-implementation when using SP for the
integration on ΩI . Used in section 4.5.

P/L 5 6 7 8 9
0 7 · 10−2 0.12 0.34 1.23 4.92
1 9 · 10−2 0.18 0.64 2.44 10.04
2 0.2 0.46 2 8.24 33.29
3 0.51 1.34 6.44 25.05 103.3
4 1.33 3.81 13.69 55.2 222.13
5 3.29 10.79 44.99 176.97 708.8

Table B.11: The duration required by the GPU-implementation for the preprocessing when
using SP for the integration on ΩI . Used in section 4.5.

P/L 5 6 7 8 9
0 1 · 10−2 0 2 · 10−2 0.1 0.27
1 0 0 2 · 10−2 9 · 10−2 0.3
2 0 1 · 10−2 2 · 10−2 6 · 10−2 0.34
3 0 0 1 · 10−2 0.14 0.4
4 0 0 3 · 10−2 0.1 0.51
5 0 1 · 10−2 2 · 10−2 0.17 0.53
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Table B.12: The duration required by the GPU-implementation for the kernel when using
SP for the integration on ΩI . Used in section 4.5.

P/L 5 6 7 8 9
0 0 3 · 10−2 0.14 0.42 1.75
1 3 · 10−2 7 · 10−2 0.34 1.29 5.22
2 0.13 0.26 1.21 4.99 20.08
3 0.4 0.93 4.68 17.71 74.01
4 1.14 2.91 10.1 40.37 162.68
5 2.95 9.22 38.46 150.26 601.01

Table B.13: The duration required by the GPU-implementation for the postprocessing when
using SP for the integration on ΩI . Used in section 4.5.

P/L 5 6 7 8 9
0 6 · 10−2 9 · 10−2 0.18 0.69 2.79
1 6 · 10−2 0.1 0.28 1.05 4.37
2 7 · 10−2 0.19 0.77 3.14 12.78
3 0.11 0.41 1.75 7.18 28.76
4 0.19 0.89 3.56 14.66 58.78
5 0.34 1.56 6.48 26.47 107.05

Profiler data

Table B.14: The number of instructions issued during the kernel execution for the integration
on ΩI . Used in section 4.6.

P/L 5 6 7 8 9
0 1.42 · 107 7.46 · 107 4.84 · 108 1.68 · 109 6.83 · 109

1 4.96 · 107 2.29 · 108 1.07 · 109 4.32 · 109 1.75 · 1010

2 1.76 · 108 7.81 · 108 3.27 · 109 1.35 · 1010 5.46 · 1010

3 5.58 · 108 2.47 · 109 1.02 · 1010 4.18 · 1010 1.69 · 1011

4 1.54 · 109 6.44 · 109 2.69 · 1010 1.09 · 1011 4.41 · 1011

5 3.74 · 109 1.58 · 1010 6.55 · 1010 2.66 · 1011 1.07 · 1012
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Table B.15: The number of L1 load misses for local memory requests in the kernel for the
integration on ΩI . Used in section 4.6.

P/L 5 6 7 8 9
0 5.58 · 105 5.94 · 106 2.09 · 107 8.56 · 107 3.46 · 108

1 1.6 · 106 2.04 · 107 8.06 · 107 3.1 · 108 1.27 · 109

2 4.25 · 106 7.88 · 107 3.07 · 108 1.27 · 109 5.06 · 109

3 1.13 · 107 2.76 · 108 1.02 · 109 4.28 · 109 1.73 · 1010

4 3.9 · 107 6.34 · 108 3.07 · 109 1.24 · 1010 4.92 · 1010

5 1.25 · 108 1.32 · 109 6.77 · 109 2.74 · 1010 1.11 · 1011

Table B.16: The number of L1 store misses for local memory requests in the kernel for the
integration on ΩI . Used in section 4.6.

P/L 5 6 7 8 9
0 1.03 · 106 5.33 · 106 2.07 · 107 8.48 · 107 3.39 · 108

1 2.12 · 106 1.11 · 107 4.31 · 107 1.78 · 108 7.22 · 108

2 3.96 · 106 2.13 · 107 8.28 · 107 3.34 · 108 1.39 · 109

3 7.02 · 106 3.86 · 107 1.5 · 108 6.79 · 108 2.59 · 109

4 1.15 · 107 6.57 · 107 2.79 · 108 1.12 · 109 4.48 · 109

5 1.77 · 107 1.02 · 108 4.83 · 108 1.92 · 109 7.78 · 109

Table B.17: The number of branches in the kernel for the integration on ΩI . Used in section
4.6.

P/L 5 6 7 8 9
0 1.11 · 106 5.49 · 106 3.62 · 107 1.4 · 108 5.78 · 108

1 2.51 · 106 1.15 · 107 5.79 · 107 2.59 · 108 1.07 · 109

2 6.58 · 106 2.86 · 107 1.22 · 108 4.99 · 108 2.01 · 109

3 1.75 · 107 7.47 · 107 3.08 · 108 1.25 · 109 5.05 · 109

4 4.3 · 107 1.81 · 108 7.46 · 108 3.04 · 109 1.22 · 1010

5 9.77 · 107 4.11 · 108 1.71 · 109 6.77 · 109 2.79 · 1010
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Table B.18: The number of divergent branches in the kernel for the integration on ΩI . Used
in section 4.6.

P/L 5 6 7 8 9
0 4,178 17,937 81,506 3.36 · 105 1.36 · 106

1 4,263 17,902 79,695 3.21 · 105 1.3 · 106

2 4,280 17,746 76,881 3.11 · 105 1.25 · 106

3 4,293 18,096 74,537 3.04 · 105 1.23 · 106

4 4,396 18,496 63,069 2.82 · 105 1.24 · 106

5 4,414 18,891 77,694 3.16 · 105 1.27 · 106

Durations for the Integration of the inner Domain ΩI in 3D

Table B.19: The duration required by the CPU-implementation for the integration on ΩI in
3D. Used in section 4.7.

P/L 2 3 4 5 6
0 0 5 · 10−2 0.57 5.69 50.75
1 1 · 10−2 0.3 3.93 38.75 344.15
2 8 · 10−2 2.23 28.34 278.93

Table B.20: The duration required by the GPU-implementation for the integration on ΩI in
3D. Used in section 4.7.

P/L 2 3 4 5 6
0 0.13 0.17 0.52 4.93 45.06
1 0.62 1.16 2.41 25.46 224.08
2 5.52 10.56 45.86 462.29

Table B.21: The ratio of the duration required by the GPU-implementation and the CPU-
implementation for decomposition and integration on ΩI in 3D. Used in section
4.7.

P/L 2 3 4 5 6
0 0 3.4 0.91 0.87 0.89
1 62 3.87 0.61 0.66 0.65
2 69 4.74 1.62 1.66
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Data for the Integration of the inner Domain ΩI on different Hardware

Table B.22: The relative performance of the implementation on the NVIDIA™ K20 and the
Geforce GTX 560 Ti using SP. See tables B.12 and B.25 for the data, on which
this table is based. Referred to in section 4.8.

P/L 5 6 7 8
0 ∞ 1 0.71 0.95
1 1.33 1.43 0.88 1.06
2 1.38 1.5 0.87 0.88
3 1.55 1.43 0.76 0.82
4 1.56 1.35 1.02 1.07
5 1.52 1.03 0.68 0.7

Table B.23: The relative performance of the implementation on the NVIDIA™ K20 using
SP and DP. See tables B.24 and B.25 for the data, on which this table is based.
Referred to in section 4.8

P/L 5 6 7 8
0 1 1 1 1
1 1.25 1 1 0.99
2 1 1.03 0.99 1
3 1 1.02 1 1
4 1 0.94 1 1
5 1 1.01 1 1

Table B.24: The duration required by the kernel for the integration on ΩI on the NVIDIA™
K20. Used in section 4.8.

P/L 5 6 7 8
0 1 · 10−2 3 · 10−2 0.1 0.4
1 5 · 10−2 0.1 0.3 1.35
2 0.18 0.4 1.04 4.39
3 0.62 1.36 3.55 14.57
4 1.78 3.7 10.27 43.24
5 4.49 9.57 26.28 105.76
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Table B.25: The duration required by the kernel for the integration on ΩI on the NVIDIA™
K20 using SP. Used in tables B.22 and B.23.

P/L 5 6 7 8
0 1 · 10−2 3 · 10−2 0.1 0.4
1 4 · 10−2 0.1 0.3 1.37
2 0.18 0.39 1.05 4.37
3 0.62 1.33 3.54 14.57
4 1.78 3.94 10.29 43.16
5 4.49 9.51 26.18 105.74
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Glossary

cluster node A cluster node is a computer which is part of a computer cluster. 41, 68, 81

Compute Capability The Compute Capability defines the hardware features available on
different GPUs using defined Levels. For details see [13, p.12f.]. 7, 35–39, 45–48, 56

computer cluster A computer cluster is a set of computers (called cluster nodes) connected
with an interconnecting network, that is used to distribute computations among all
computers. 41, 68, 81

h-refinement H-refinement is a refinement strategy in multi level methods. It increases the
number of points or elements with increasing level. This results in a decrease of hi for
each patch ωi. 21, 30, 32, 34, 45, 69

kernel A CUDA kernel is special C function which is executed in parallel by a specified
number of CUDA threads [13, p.7]. 8, 9, 36, 37, 39–41, 44, 47, 52–58, 62, 64, 65, 76, 77

memory bound function A function whose computational effort is dominated by the mem-
ory accesses instead of the necessary arithmetical operations. 55, 61

occupancy occupancy is the ratio of the active warps on a SM of the maximum number of
warps supported by the SM. It, therefore, limits the utilization of the SM’s ALU. [13,
p.69] This doesn’t apply in all cases. [23, p. 25ff.]. 8, 55, 56, 65

p-refinement P-refinement is a refinement strategy in multi level methods. It increases the
polynomial degree used in V pi

i with increasing level. 21, 34

spline A spline is a continuous, piecewise defined polynomial function. 22–24, 32

warp A warp is a partition of a thread block that is scheduled by the warp scheduler of
a Streaming Multiprocessors for parallel execution on it. The threads of a warp are
executing all instructions in parallel if a divergent branch occurs, all branches are executed
sequentially. This technique is referred to as Single Instruction Multiple Threads (SIMT)
by NVIDIA [13, p.63ff.]. 35, 37–39, 55, 57, 81
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