
Institut für Formale Methoden der Informatik

Abteilung Formale Konzepte

Universität Stuttgart
Universitätsstrasse 38
D-70569 Stuttgart

Institut für Maschinelle Sprachverarbeitung

Abteilung Theoretische Computerlinguistik

Universität Stuttgart
Pfa↵enwaldring 5b
D-70569 Stuttgart

Master’s thesis Nr. 3413

Information Extraction from

Social Media for Route Planning

Mirna Megally

Course of Study: Infotech

Examiner: Prof. Dr. Stefan Funke

Supervisor: Prof. Dr. Hinrich Schütze
Dipl.-Inf. Wiltrud Kessler

Commenced: May 16, 2012

Completed: November 15, 2012

CR-Classification: I.2.7

Acknowledgment

I would like to express my gratitude to all those who gave me the possibility to complete

this thesis.

Thank you God for always giving me strength, guiding my steps and blessing me with

your grace.

I am really thankful to my supervisor Prof. Dr. Hinrich Schütze, at IMS, for his

continuous guidance and help. Additionally, I am deeply thankful to my supervisor Prof.

Dr. Stefan Funke, at FMI, for his invaluable suggestions and encouragement.

I would like to gratefully acknowledge the supervision of Dipl. Inf. Wiltrud Kessler,

who has been abundantly helpful and has assisted me in numerous ways. The discussions

I had with her were invaluable. I would like to thank Dipl. Eng. Andre Blessing for

putting me on the right track at the beginning of my thesis. I would like also to thank

Olga Podushko for helping me with some annotation tasks.

I would like to especially thank my friends, most importantly dearest Christine, Michael,

Mina, Youssef, Hallawa, Amr and all residents of WG 69 for being always by my side during

the two years I stayed in Stuttgart and for their continued love and support.

I am deeply grateful for my mother, father and my sister Mirette whose patient love

enabled me to complete this work.

My special thanks to my fiance Kareem for his endless love and encouragement in all

the time of research and writing this thesis.

On a di↵erent note, many people have been a part of my undergraduate education and

made me reach this point, I am highly grateful to all of them.

i

Abstract

Micro-blogging is an emerging form of communication and became very popular in recent

years. Micro-blogging services allow users to publish updates as short text messages that

are broadcast to the followers of users in real-time. Twitter is currently the most popular

micro-blogging service. It is a rich and real-time information source and a good way to

discover interesting content or to follow recent developments. Additionally, the updates

published on Twitter public timeline can be retrieved through their API. A significant

amount of tra�c information exists on Twitter platform. Twitter users tweet when they

are in tra�c about accidents, road closures or road construction. With this in mind, this

paper presents a system that extracts tra�c information from Twitter to be used in route

planning. Route planning is of increasing importance as societies try to reduce their energy

consumption. Furthermore, route planning is concerned with two types of constraints: sta-

ble, such as distance between two points and temporary such as weather conditions, tra�c

jams or road construction. Our system attempt to extract these temporary constraints

from Twitter. We train Naive bayes, Maxent and SVM classifiers to filter non relevant

tra�c. We then apply NER on tra�c tweets to extract locations, highways and directions.

These extracted locations are then geocoded and used in route planning to avoid routes

with tra�c jams.

iii

Contents

List of Figures viii

List of Tables viii

1 Introduction 1

1.1 Motivation . 1

1.2 Objective of this thesis . 2

1.3 Structure of this thesis . 3

2 State of the Art 4

2.1 The Use of Twitter . 4

2.2 Twitter User Classification . 6

2.3 Text Classification in Twitter . 8

2.4 Named Entity Recognition in Twitter . 12

3 System Architecture 17

4 Twitter 22

4.1 Twitter API . 23

5 Text Classification and Filtering 30

5.1 Naive Bayes Text Classification . 31

5.2 Maximum Entropy . 32

5.2.1 Building a Maxent Model . 33

5.3 Vector Space Model . 34

5.4 Support Vector Machines (SVMs) . 36

5.5 Voting System . 37

v

vi CONTENTS

5.6 Our Implementation . 38

5.6.1 Social-Based Filtering . 38

5.6.2 Feature Selection . 39

5.6.3 Relevance Classification: Tra�c or Junk 40

5.6.4 Incident Classification: Positive or negative 40

6 Named-Entity Recognition (NER) 41

6.1 Conditional Random Fields . 41

6.2 Stanford NER . 42

6.3 Our Customized NER system . 43

6.3.1 First Step: Stanford NER . 44

6.3.2 Second Step: Dictionary-based NER 44

6.4 Information Extraction (IE) . 46

7 Routing 49

7.1 Data structure for graphs . 50

7.2 Dijkstra - Shortest Path Algorithm . 51

7.3 Geocoding . 53

7.4 Setting Edge Weights . 54

8 Experiments and Results 57

8.1 Evaluation Metrics . 57

8.2 Relevance Classification Evaluation . 59

8.2.1 Data Preparation . 59

8.2.2 Naive Bayes Classifier . 60

8.2.3 Maximum Entropy Classifier . 60

8.2.4 SVMs . 60

8.2.5 Voting System . 61

8.2.6 Results . 61

8.3 Incident Classification Evaluation . 61

8.3.1 Data preparation . 62

8.3.2 Classifiers . 62

8.3.3 Results . 62

8.4 Named Entity Recognition Evaluation . 62

CONTENTS vii

8.4.1 Data Preparation . 63

8.4.2 Baseline . 64

8.4.3 First Phase: Stanford NER . 64

8.4.4 Second Phase: Dictionary-based NER 64

8.4.5 Results . 65

8.4.6 Information Extraction (IE) . 66

8.5 Routing . 68

8.5.1 Geocoding . 68

8.5.2 Visualizing the extracted locations 68

8.5.3 Results . 69

8.6 System Performance On Selected Tweets 71

8.6.1 True Positives . 71

8.6.2 False Negatives . 76

8.6.3 True Negatives . 76

8.6.4 False Positives . 76

9 Conclusion 79

A Appendix 81

A.1 List of Stopwords . 81

A.2 Dictionary . 82

A.2.1 Prepositions . 82

A.2.2 Vocabulary related to tra�c . 82

A.3 Pruned Punctuation marks . 82

A.4 Twitter Request parameters . 82

List of Figures

2.1 Screenshot of Statler: Video of Obama and McCain debate with annotated

information extracted from Twitter . 11

3.1 System Architecture . 17

4.1 REST API1 . 24

4.2 Streaming API2 . 25

4.3 Example Twitter Response . 29

5.1 Separating hyperplane in SVM. 37

5.2 Text classification in our implementation 39

7.1 Example of a graph . 52

8.1 Markers at locations returned by the Geocoding API 69

8.2 The red map markers are placed at center of the locations extracted from the

tweet where tra�c problems exist. The blue dot denotes the start point of

a route and the red dot denotes the destination point. The black line refers

to the shortest path between the start and the destinations points if there

is no tra�c problems. The red line denotes the alternative route suggested

after considering the tra�c jams happening at the red map markers. 70

8.3 Visualization of selected tweets. Red marker denotes negative tweet, blue

marker denotes positive tweet . 75

ix

List of Tables

6.1 Sequence label Encoding . 44

7.1 Data Structure for the Graph in Figure 7.1 56

8.1 2-by-2 contingency table . 57

8.2 Text classification results for tra�c and junk classes 61

8.3 Text classification results for Positive and Negative classes 63

8.4 Stanford NER Evaluation Metrics results trained using MUC and CoNLL

data sets . 64

8.5 Results of Stanford NER system when tested with the original test set con-

sisting of 1188 tra�c tweets . 65

8.6 Results of Stanford NER system when tested on 1174 (out of 1188) tweets

that were correctly classified as tra�c by the relevance classification module 65

8.7 Stanford NER Results for the tweet example 65

8.8 Second phase of NER Results for the tweet example 66

8.9 Postprocessing of the second phase NER Results for the tweet example . . 66

8.10 Evaluation results of template slots . 67

8.11 2-by-2 contingency table for the Request slot 67

8.12 IE module results . 68

8.13 Requests and responses of a tweet . 68

8.14 Results of tweet#1 after passing through all system modules 72

8.15 Results of tweet#2 after passing through all system modules 73

8.16 Results of tweet#3 after passing through all system modules 74

8.17 Results of tweet#9 after passing through all system modules 77

8.18 Results of tweet#10 after passing through all system modules 78

xi

xii LIST OF TABLES

A.1 Stopwords List . 81

A.2 Prepositions List . 82

A.3 Vocabulary List . 82

A.4 List of pruned punctuation marks . 82

Chapter 1

Introduction

1.1 Motivation

Social media, such as Twitter1 and Facebook2, are the latest trend in Web 2.0 world.

Twitter is a microblogging service. It celebrated its sixth birthday in March 2012 and

announced the number of active users to be 140 million users with a daily rate of 340

million tweets3. Twitter is a popular network for broadcasting news, staying in touch with

friends, and exchanging opinions through 140-characters update status messages called

Tweets. In recent events such as the Egyptian Revolution, the death of Michael Jackson

and terrorist attacks in Mumbai, Twitter was faster in providing news than mainstream

media. Therefore, for any possible topic, Twitter became a medium for informal discussion,

exchange of ideas or following recent developments. Many interfaces can be used to tweet

such as web interface, mobile interface or IM clients.

Furthermore, it is a great medium for development and data mining tasks that can be

achieved through the Twitter API4. Tweets that are published on Twitter public timeline

can be retrieved using the API.

Since researchers are attracted to Twitter, various researches take place in this area.

For example, Sitaram and Huberman [1] used Twitter to predict the box-o�ce revenues for

movies and implemented a system with an accuracy of 98%. Diakopoulos and Shamma [6]

analyzed tweets that were broadcast during the US presidential debate in 2008. Twitter

1http://www.twitter.com
2http://www.facebook.com
3http://mashable.com/2012/03/21/twitter-has-140-million-users/
4http://dev.twitter.com

1

2 CHAPTER 1. INTRODUCTION

users tended to favor Obama over McCain and Obama was the winner. Twitter can then

be used to capture the opinions of the audience and forecast the presidential results.

According to our findings and as discussed in Wanichayapong et al.[42], a significant

amount of tra�c information exists on Twitter platform. Users on the road are interested

in tra�c events eg. road closures, accidents and tra�c congestion. With this in mind, we

address in this thesis the idea of building a system that extracts information from Twitter

to be used in route planning. Route planning is of increasing importance as societies try

to reduce their energy consumption. At the same time, businesses need fast and reliable

transport as economic activity is becoming ever more integrated and interdependent. Many

constraints in route planning are stable over time: the distance in kilometers between two

cities, the steepest gradient on a railway line or the maximum load for a bridge. However,

there are also many types of constraints that are temporary: weather conditions, tra�c

jams or road construction. We discuss the possibility to extract information about these

temporary constraints from user tweets and integrate them into a route planning system.

1.2 Objective of this thesis

In this thesis, we develop a system that extracts temporary tra�c information from Tweets

to be integrated with route planning. The system works in an online manner and processes

each tweet once it arrives. We create and evaluate a supervised machine learning classifier

to classify tweets into either tweets related to tra�c or tweets not related to tra�c. From

tra�c related tweets, the location and the nature of the incident (road closed or open)

are extracted. For this purpose, any tweet not related to tra�c is discarded from any

further processing. We train the Stanford NER system based on Conditional Random

Fields with unstructured tra�c tweets. All the locations of interest need to be recognized

and plotted on a map. This can be achieved through the use of a Geocoding API that

receives requests containing the address to geocode and returns responses containing the

geographical coordinates of each location. The coordinates are used to locate the places

where tra�c incident occurs and avoid them when providing a route.

The research of Java et al. [15] shows that Twitter is most popular in US, Europe and

Asia. San Francisco, New York and Tokyo are the major cities where Twitter is highly

used. For this reason, we choose the area of San Francisco to analyze its tra�c related

tweets. We train and test our system on a dataset created from tra�c tweets in San

1.3. STRUCTURE OF THIS THESIS 3

Francisco bay area to achieve high accuracy and precision and recall better or equal to the

precision and recall achieved by the classifiers of the state of the art.

1.3 Structure of this thesis

The thesis is structured as follows. Chapter 2 highlights previous research about Twitter

and the state of the art in text filtering, text classification and Named Entity Recognition

for Twitter and User Generated content. Chapter 3 presents the system architecture with

its di↵erent modules including: tweets retrieval module, tweet classification module, NER

module, geocoding module and visualization and routing module. Chapter 4 explains

Twitter and the di↵erent APIs o↵ered by Twitter to access tweets such as REST API,

Search API and Streaming API. For text classification, we used three di↵erent approaches

that are highlighted in Chapter 5: Naive Bayes, Maximum Entropy and Support Vector

Machines. Text classification is used in two ways: Each incoming tweet is classified into

either tra�c or junk, furthermore, each tra�c tweet is categorized into either positive, i.e.

mentioning positive tra�c information such as clear lanes or end of road construction; or

negative tweet mentioning an incident occurring at a particular place. Chapter 6 deals

with Named-entity recognition and Information extraction. Chapter 7 explains our data

structure used to represent the maps. It also deals with the use of Dijkstra algorithm in

route planning as well as our weight function. It concludes by describing the Geocoding

API, which is used to extract the geographical coordinates of the locations of interest to

plot it on a map. Chapter 8 is a detailed evaluation chapter showing the experiments and

evaluation results of every module. Finally, Chapter 9 summarizes the project and gives

an outlook for future work.

Chapter 2

State of the Art

In this chapter, we give an overview of Twitter related work in the field of information

extraction and filtering. In the past years, Social Media and Micro-blogging services became

very popular research topics. Twitter became especially appealing for researchers because

unlike most social networks, twitter messages are publicly available and can be retrieved

in real-time using the Twitter API.

2.1 The Use of Twitter

Java et al. [15] present a study about the topological and geographical structure of Twit-

ter’s social network and analyze the intentions of the users and why they tweet. Their

analysis proved that the tweets are mostly about daily chatter, sharing opinions, broad-

casting news and events. It was found that people are more active on micro-blogging

services for two reasons. First, it’s a faster mode of communication. Second, the frequency

of posting updates is higher. A user is considered active if he posts at least once during a

week. Furthermore, people can interact with Twitter through web interface, mobile inter-

face or IM clients. Their study shows that Twitter is most popular in US, Europe and Asia.

San Francisco, New York and Tokyo are the major cities where Twitter is highly used. A

manual approach was adopted to determine the user intention from every tweet and their

analysis shows that the largest percentage of Twitter users use it as daily chatter, 21% of

the users use it for conversations and 13% of the users use it for sharing information and

reporting news.

5

6 CHAPTER 2. STATE OF THE ART

Morris et al. [25] ran a user study to investigate the use of social networks and status

messages to ask questions and the reasons behind this phenomenon. Their research pro-

poses novel ideas for a new type of search engine integrated with social networks. 624

people participated in the survey. The survey included questions about what types of

questions they post as status messages and they are asked to provide examples, whether

they answer questions posted by other people and the reasons behind the use of status

messages to ask questions. The findings reflect that the type of questions asked are rec-

ommendation and opinion questions. The popular topics are shopping, technology and

entertainment. The survey proved that people usually answer questions because they have

experience about the topic in question, they are in close relationship to people asking the

questions, they have free time or they might earn social capital. People sometimes prefer

to ask on social networks rather than search engine depending on the type of information

they need as well as the level of trust and personalization.

Jansen et al. [14] address three research question: whether Microblogging can be used

as a form of electronic word-of-mouth for sharing customer opinions concerning brands,

the characteristics of brand microblogging and the patterns of microblogging communica-

tions between companies and customers. Their study shows that microblogging service can

impact customer relationship management and promote brand image and brand awareness.

It is apparent that microblogging services such as Twitter could become key applications

in the attention economy. Their data sets consisted of more than 150,000 tweets contain-

ing comments about brands, sentiments and opinions. Clustering techniques were used to

classify the microblogs into positive and negative as well as by brand name. Furthermore,

there was a comparison between automated and manual techniques in classifying senti-

ments. The research findings show that 19% of microblogs contain mention of a brand. Of

the branding microblogs, nearly 20% contained some expression of brand sentiments. Of

these, more than 50% were positive and 33% were critical of the company or product.

Zhao et al.[44] is a similar study, an exploratory research was held on how and why people

use Twitter and its impact in informal communication at work. They suggested that micro-

blogging may play an important role for collaborative work and organizational innovation.

They have organized the benefits of informal communication into relational benefits and

personal benefits. The relational consequences consist of the two persons’ relationship and

2.2. TWITTER USER CLASSIFICATION 7

their future common activities eg. Personal perception, Common ground and Connected-

ness. The personal consequences is shown in the e↵ect that informal communication may

have for one’s personal interests and goals. They proved that Twitter among employees

in organizations play an important role in organization’s success and provide a variety of

benefits supporting for collaborative work.

2.2 Twitter User Classification

Java et al. [15] classified the Twitter users into three categories: Information Source,

Friends, Information seeker.

Naaman et al.[27] assigned the expression ”Social Awareness Streams” (SAS) to the new

types of social media and microblogging service. They study the properties and the be-

havior of the users in such networks. For their case study, they choose Twitter platform to

answer the research questions. According to their research, SAS are characterized by three

main factors that di↵erentiate them over other communication platforms: the publicity of

the posted messages by di↵erent users, the limited length of the messages and the con-

nected network where the messages spread. The aim of this research is to categorize tweets

based on the content and to study how the content of the message di↵ers depending on

the user information and the tools or devices used to post messages. Tweets are streamed

from the public timeline and stored in a database with all the metadata including user ID,

user profile, timestamp of the tweet and the tweet content. Some criteria such as number

of followers and number of friends have been imposed to select a number of users for the

analysis. 911 users have been selected out of 125,593 unique users. A set of 3379 mes-

sages tweeted by the selected users have been manually annotated by the paper authors to

fall under one or more of nine categories: IS (Information Sharing), SP (Self Promotion),

OC (Opinions/Complaints), RT (Statements and Random Thoughts), ME (It’s all about

me), QF (Questions to followers), PM (Presence maintenance), AM (Anecdote - me), AO

(Anecdote - other). The results show that more than 40% of the Tweets are categorized

as ME followed by RT, OC and IS with approximately 20% each. In other words, this

means that 20% of the Tweets have a news character, while 80% can be characterized as

user-to-user communication.

8 CHAPTER 2. STATE OF THE ART

Krishnamurthy et al. [16] presents a deep analysis of Twitter. They study the charac-

terization of Twitter users, the characterization of status updates and some other Twitter

properties. Data are collected using two techniques provided by the Twitter API. The first

data set was obtained by selecting a sample of users based on some criteria and collect

information about the users they were following. The size of the first set was 67527 users.

The second data set is collected from Twitter public timeline which shows the status of

the most recent active users and resulted in 35978 users. With the help of the collected

data, they analyze and categorize the users into three categories: broadcasters, acquain-

tances and miscreants. Broadcasters are users having number of followers more than the

number of people they follow. It was proved that a high percentage of this category are

media stations. Acquaintances are people having almost equal number of followers and

following. The third category, miscreants are people having a higher number of follow-

ing compared to followers. The users falling into this category might be spammers, or

users who are interested in stalking the people on their following list. These three cate-

gories can also be used to give an impression about the number of tweets posted by each

user with broadcasters having the highest rate and miscreants the lowest. Further, an

analysis of the status updates proved that about 60% are posted from the web, 5% come

from di↵erent third-party applications using Twitter API and the rest from mobile devices.

Huberman et al. [12] studies the interaction between users in social networks particu-

larly in Twitter. In order to run this research, a list of 309,740 users who posted around

255 posts, have on average 85 followers and follows about 80 users were selected as a data

set. They define active users as the users who post at least twice. They were 211,204

users. They also found that 25.4% of the tweets are directed to particular users who are

friends with the twitterer. The number of friends is proportional to the level of user ac-

tivity rather than the number of followers. However, only 0.2% of the users have greater

number of friends than followees (people followed by a user). They conclude that the so-

cial network resulting from the follower-following relationship is very dense and in reality,

the interaction level on Twitter is due to the more sparse network relying on the friends

relationships.

2.3. TEXT CLASSIFICATION IN TWITTER 9

2.3 Text Classification in Twitter

Wanichayapong et al. [42] found that there exists a significant number of tra�c informa-

tion such as tra�c congestion and incidents in Twitter. Tra�c information was extracted

from Twitter using syntactic analysis and then classified in two categories: point and link.

Point is related only to one point on a road while link information associates with a road

start and end point. This method can classify point with an accuracy of 76.85% and link

with an accuracy 93.23%. The study was held in Thailand. 1,191,760 tweets were collected

for training and testing. People tweet in real-time to share information about tra�c events

e.g. road closures, tra�c congestion, and accidents. The aim of the research was to extract

events related to tra�c and retweet them to make a large audience capture this informa-

tion. The purpose of syntactic analysis is to determine the structure of the input text.

This structure consists of a hierarchy of phrases. A tweet is considered informative only if

it can provides the ”what” and ”where”. The twitter streaming API was used to extract

tweets related to certain queries such as : tra�c congestion, accident. The tweets are then

tokenized using Lexto (dictionary based tokenizer with lexical analysis for Thai language).

Their study lead to filtering results of 91.75% accuracy, 91.39% Precision and 87.53% recall.

Sankaranarayana et al. [33] propose a system called TwitterStand that leverages Twit-

ter to capture any tweet mentioning breaking news. This news processing system is a

distributed system, that uses filtering techniques to get rid of noise, classifies the tweets

into clusters depending on the content in real time. Tweets capture the moment and not

being able to process the information in an online manner can make the system deviate

from the main purpose. Geographic location criteria is used in clustering the tweets since

this information can be obtained from the tweets. Geotagging information in tweets is

extracted from either the meatdata attached to the tweet when crawled from Twitter API

or by extracting information from Tweet content. A large number of users use their mobile

devices to tweet and have location sensors enabled. A score is assigned to each news topic

depending on the number of users who interact with it. This information can be crawled

from Twitter using the API. The first step in building the system is to decide whenever

tweet comes in whether it is news or not. The system adopts a naive bayes classifier. A

preprocessing step is to required to improve the quality of the input to be able to apply the

di↵erent NLP tasks. A manual identification of 2000 users or Seeders frequently posting

10 CHAPTER 2. STATE OF THE ART

about news has been performed because previous research has proved that 10% of the users

account for more than 90% of the tweets. Their research proves the feasibility of building

a news system based solely on Twitter data.

Phelan et al. [31] leverage Twitter and RSS feeds to build a news recommendation system

called Buzzer in a user-personalized manner. Existing recommendation systems require

a background containing information about the user to correctly function. Information

retrieval from tweets can be used in ranking RSS feeds according to user preferences. The

system constructs a term vector of both the RSS list and the user’s Tweets, and uses the

TF-IDF weighting scheme to locate the RSS feeds which correspond the most with the

Tweets. Two ranking strategies are implemented and evaluated: Public rank and Friends

rank. Public rank relies on tweets pulled from the public timeline while Friends Rank relies

on tweets mined from user’s Twitter friends. 67% of the users preferred the recommenda-

tion based on Public Rank scheme , 22% preferred Friends rank and 11% did not prefer

any strategy.

Another recommendation system called zerozero88 is proposed by Chen et al. [3]. Three

designed algorithms are implemented: ’Candidate URL’, ’topic relevance’ and ’social vot-

ing process’. They decided to use social information streams such as Twitter for their

recommendation systems. This is due to the fact that any content on Twitter is recent,

there exist a communication and interaction between the users and the users are active

members who are involved in generating this content. Candidate URL algorithm finds the

most promising set of URLs than can be used in the recommendation system. Since tweets

come at a furious rate, a certain criteria is needed to filter out tweets and hence URLs

non relevant. First, a social neighborhood criteria is adopted which only considers URLs

posted by a user’s followees and followees of followees. Second, most popular URLs can

be retrieved from Tweetmeme1 through their API. Topic relevance algorithm relies on the

content a user has posted or interacted with before. A bag of words collected from user

tweets is indexed and put into a vector following tf-idf approach. High term frequency

implies that the user mentioned this word frequently in his tweets. These terms are then

matched against URLs and ranked accordingly. ’Social voting process’ is based on the

’one person, one vote’ approach implemented by Hill and Terveen [11]. If a certain URL is

1http://www.tweetmeme.com

2.3. TEXT CLASSIFICATION IN TWITTER 11

mentioned in the user’s Twitter followees, or followees-of-followees, the URL gains a vote.

Later, the URLs with the most votes are recommended. Furthermore, a weight is assigned

to the votes based on the Tweet author. If that person posts a link every hour, the weight

is decreased. On the other hand, if the person posts a link twice a months, the weight is

increased.

The recommendation system can be configured in 12 di↵erent ways. The results show

that the ’Social voting process’ improves the performance resulting in approximately 70%

useful recommendations. A configuration which only recommends random links from the

popular Twitter URLs results in only 30% useful recommendations.

Shamma et al. [36] focuses on the use of Twitter in the annotation of uncollected sources.

Their primary analysis was for the use of Twitter during the 2008 Presidential debates.

They found that Twitter coupled with live broadcast media can lead to very significant

annotation results. Users can freely annotate the event with just a hash tag in their tweet.

Questions asked in the paper were: What can Twitter activity say about a media event?

Can these data be used to find important moments in the source media? Can topics or

higher semantics be discovered? Their study shows that the tweets grow in volume espe-

cially at the end and after the event. Furthermore, they discovered that the structure of

Twitter tra�c can provide insights into segmentation and entity detection. The annota-

tions collected from the tweet can turn the event into real media object.

Shamma et al. [35] studies the capability of using Twitter timeline to disclose information

about broadcast events and discover its structure. The research also proposes methods

to publish the discovered information to people using an application called Statler2. Two

videos are used to achieve the purposes: the 2008 USA Presidential debate as shown in

Figure 2.1 and the Inauguration of Barack Obama. Around 56000 tweets were pulled from

Twitter interface for the analysis. As can be seen in Figure2.1, the table of contents shows

at each time interval keywords extracted from the tweets during the event broadcast. These

annotations reveal the topic of each segment. Furthermore, Statler also calculates two met-

rics: importance and chattiness. Importance declares whether a hot topic is mentioned

and it is a function of the @ mentions symbol while the chattiness metric measures whether

people are paying less attention to the event and chatting with each others. Tf-idf model

2http://bit.ly/statler

12 CHAPTER 2. STATE OF THE ART

Figure 2.1: Screenshot of Statler: Video of Obama and McCain debate with annotated
information extracted from Twitter

is adopted to measure the importance of the individual terms based on their frequency

normalized by the total number of documents in which the term appears. These results

can be used to provide real-time feedback during the event broadcast as well as to tag the

video segments for post-event consumption.

Weng et al. [43] proposes a system called TwitterRank (inspired from Google’s PageR-

ank algorithm) to find the influential users on Twitter. Several benefits can result from

identifying these users: search results can be ranked based on their authors, they can be

used in marketing campaigns widely available in Twitter. Two phenemona are studied in

this paper: reciprocity and homophily. Reciprocity refers to the idea of following and being

followed by the same person. Their findings proved that out of the 1000 users picked for

the data set that 72.4% follow more than 80% of their followers and 80.5% have 80% of

their friends follow them back. This might be due to the curiosity of the people to follow

back who follows in a casual manner. Homophily is the act of following friends because of

the interest in the topics they usually post about. Topics are extracted from the tweets

data set using Latent Dirichlet Allocation (LDA) model, an unsupervised machine learn-

ing algorithm following bag of words approach to recognize topics from large collection of

documents.

Cheong and Lee [4] adopt artificial intelligence data mining methods to categorize the

2.4. NAMED ENTITY RECOGNITION IN TWITTER 13

tweets. They also study the relation between the user characteristics based on his profile,

the topics mentioned in his tweets and the device used to tweet. In May 2009, they ran-

domly selected four top trending topics from Twitter which were Grey’s Anatomy, H1N1,

Nizar and TwitHit. They also categorized the Twitter users into following groups: ‘Per-

sonal’, ‘Group’ (e.g. a fanclub), ‘Aggregator’ (e.g. news agencies), ‘Satire’ (e.g. sarcasm

and humour) and ‘Marketing’.

Sriram et al. [40] studies short text classification in Twitter to improve information

filtering. They suggested 8 features which consist of one nominal and other seven binary

features which are presence of shortening of words and slangs, time-event phrases, opinioned

words, emphasis on words, currency and percentage signs, “@username” at the beginning

of the tweet, and “@username” within the tweet. The authorship feature falls under social-

based filtering. Their study shows that their approach combined with bag-of-words model

performs better than bag-of-words model solely.

2.4 Named Entity Recognition in Twitter

Doehrmann [7] studies Named Entity Recognition in colloquial settings such as Twitter.

NLP becomes a sophisticated task when it comes to text written in non-standard English.

For this reason, the paper suggests an approach for text normalization as a preprocessor to

increase the precision of NER systems. Text normalization will correct any spelling mis-

takes, replace acronyms for phrases and fix grammatical sentence structures to a certain

extent. The study shows that this improves the task of NER on Tweets as they depend on

sentence structure and context to be able to extract entities. Another suggested approach

is to improve the e↵ectiveness of NER tool through the use of cross-referencing classifiers.

Di↵erently trained classifiers will be able to find entities missed by other and then a voting

algorithm is implemented to be able to improve combined precision and recall and conse-

quently F-measure of the system.

Wagner et al. [41] proposes an approach that leverages social awareness streams such

as Twitter to collect information about particular topic. This is achieved by developing

a network-theoretic tri-partite model called ’Tweetonomies’. The model consists of users,

messages and resources referring to the content of the messages. This system helps re-

14 CHAPTER 2. STATE OF THE ART

searchers to analyze and compare di↵erent streams. The topic of extracting unstructured

data from structured data has been studied and all the research depends always on the

content of the web pages and the links existing between them. For example, consider the

topic ’support vector machines’. In order to aggregate a stream which deals with this topic,

all messages which contain the hashtag ’# svm’ could be added. The stream can as well be

aggregated by searching for the key words ’support vector machines’ in the messages. Also,

it’s possible to browse through a user directory which deals with support vector machines.

As one can see, for the same topic, there are di↵erent ways to aggregate streams. To study

the di↵erent properties of the streams, several measures have been defined, these measures

are used later with the tri-partite built model to extract semantics from Twitter:

• Social diversity measures the number of distinct users in a stream

• Conversational Diversity measures the number of active users in a stream that are

mentioned with ’@’ or by slashtags

• Conversational Coverage counts the number of messages incorporated into conversa-

tions.

• Lexical Diversity counts the number of unique keywords

• Topical Diversity represents the average number of topics per message

• Informational Diversity measures how many messages have an informational charac-

ter

• Spatial Diversity counts the number of di↵erent locations attached to tweets.

• Temporal Diversity measures the period of time elapsed to cover a particular conver-

sation and the number of messages participating in it.

The results show that hashtag streams reveal information that can be extracted as knowl-

edge about external events. The results indicate that di↵erent aggregations lead to di↵erent

semantic models.

Locke et al. [21] describe an approach to create a Named Entity Recognizer for use

on Tweets. The approach relies on transferring knowledge and learning techniques from

2.4. NAMED ENTITY RECOGNITION IN TWITTER 15

Named Entity Recognition in formal sources like newswire to unstructured data of mi-

croblogging. They are classifying their Named Entities as People, Locations and Orga-

nizations. Locke [21] mentioned that in transfer learning, a classifier is trained on data

coming from one distribution, called the source domain, with the intent of using that clas-

sifier on another domain, called the target domain. It is a tricky task especially when

source and target domains are di↵erent. Their source domain was the CoNLL-2003 named

entity dataset which is a multilingual corpus for Named Entity Recognition compiled for

the Conference on Natural Language Learning shared task in 2003. Their experiments

were only held on the English part. The target domain consisted of 600 tweets collected

from Twitter Public Timeline with some filtering constraints imposed. They were mainly

concerned with three events in tweets: the first event is the economic recession, the second

is the Australian Bushfires and the last is the gas explosion in Bozeman. As a comparison

to the transfer learning approach, a corpus of 1684 annotated tweets was used as a training

dataset. Support Vector Machines algorithm is used to classify entities. When training the

SVM with the CoNLL training corpus and tested on Twitter test set, the performance was

extremely poor. It scored an F1 measure of 31.05 % in contrast to 88.19 % when tested

on CoNLL dataset. The system proved to perform better when the SVM was trained on

Twitter corpus instead. The F1 measure increased to 59.50 % . This paper proved that it

is di�cult to develop a classifier that can transfer learning from one domain to another.

Ritter et al. [32] runs an experimental study for recognizing named entities in Tweets.

They evaluated the performance of existing NLP tools trained on news articles on Twitter.

The POS tagging accuracy dropped from 0.97 to 0.80 on tweets. According to this result,

they suggested a novel approach where LabeledLDA is applied. LabeledLDA uses Free-

base (open-domain database) as a baseline to evaluate performance. They were mainly

concerned by POS tagging, noun-phrase chunking and capitalization. The performance

degraded due to the large number of out of vocabulary words present in tweets due to the

informal slang and spelling mistakes. For this reason, manual annotation of tweets was

necessary to be used as training dataset. The training dataset consisted of 2400 manually

annotated tweets with named entities. Their approach increased the F1 measure by 25%

in NER.

Finin et al.[8] and Murnane et al. [26] describe the approach of annotating large volumes

16 CHAPTER 2. STATE OF THE ART

of twitter data using MTurk and CrowdFlower. These annotations can be further used

for information extraction from less structured text like Twitter and Facebook. MTurk as

described by Amazon.com is a service that gives businesses access to a diverse, on-demand,

scalable workforce and gives workers a selection of thousands of tasks to complete when-

ever convenient. Amazon Mechanical Turk is based on the idea that there are still many

things that human beings can do much more e↵ectively than computers. It is a service at

low cost. It uses standard HTML and javascript to create the interface, in contrast with

CrowdFlower which is a similar service but uses CrowdFlower Markup Language (CML).

The workers are presented with an interface where each tweet is presented as a sequence of

tokens and a type has to be assigned to each token according to their enforced annotation

guidelines. The token can be tagged to be Person, Location, Organization or none of these.

Each task consisted of five tweets in reward of five cents. They were able to annotate 4400

tweets with $ 100. CrowdFlower task involved 30 tweets, where each task had three tweets

and was paid five cents. Since they are paid services, there was an incentive for workers to

produce results of good quality. These labeled tweets are then considered to be gold data

for training existing Named Entity Recognizers.

Liu et al. [20] propose an approach to improve Named Entity Normalization for Tweets.

Named Entity Normalization (NEN) is the process of converting each encountered word to

its original unambiguous form. They found that the results of NEN system are a↵ected by

NER as well as the lack of information in tweets which are only 140 characters in length.

Therefore, they present a new method of creating a graphical model between multiple

tweets. Considering multiple tweets at a time allows the model to recognize entities re-

lated to the same mention and thus normalizing them.

Liu et al. [19] propose a novel NER system that combines K nearest neighbor (KNN)

to capture word level classification leveraging their similarity to a set of labeled tweets

followed by Conditional Random Fields (CRF) model to find the fine-grained entities in

tweets. This two-level combination is further augmented by thirty gazetteers which contain

knowledge about county names, locations and temporal expressions to boost the perfor-

mance. It is a semi-supervised learning approach that exploits both labeled and unlabeled

data. The gold standard data consisted of 12,245 manually annotated tweets. The focus

was to distinguish four types of entities: persons, organizations, products and locations.

2.4. NAMED ENTITY RECOGNITION IN TWITTER 17

Their method shows that they outperform the baselines on all entity types with an increase

of F1 score from 75.4 % to 80.2%.

Chapter 3

System Architecture

Figure 3.1: System Architecture

This chapter gives an overview about the system architecture as shown in Figure 3.1.

Each system module is described briefly, a more detailed description for some modules is

given in the following chapters.

Modularity in design is the approach used in the system architecture. This approach

divides the system into several components or modules in an isolated separate manner

with limited dependencies between them. This concept has several characteristics:

19

20 CHAPTER 3. SYSTEM ARCHITECTURE

• Each functional module has its own interface

• Scalability of components

• Reusability of separate modules

• Unit testing facility

• Ease of change of particular modules to allow technology transparency

An overview about each module is given below in the order shown in Figure 3.1:

• Twitter API

Twitter allows access to a huge corpus of data through di↵erent APIs (REST API,

Search API and Streaming API). Each of these APIs is explained thoroughly in

Chapter 4. In this module, the Twitter Streaming API is used to retrieve tweets from

public timeline which are the tweets publicly available in real-time. Several request

parameters have to be set when sending the HTTP request such as track, follow

and locations. These parameters are used to customize the request and filter out

some non relevant tweets. track is a list consisting of keywords; tweets containing

any of these keywords are returned in the response, follow contains twitter user ids

where their tweets are returned by the HTTP response and locations is a filtering

criteria imposed to return tweets within certain geographical bounding box. More

details about these parameter values can be found in appendix A.4.

• Tokenization

An essential preprocessing step for classification and Named Entity Recognition is

Tokenization. This refers to breaking each incoming tweet into tokens. Sentence

boundaries are identified first then sentence segmentation. A white space tokenizer,

which segments words in a sentence based on whitespace between them, is used.

Additionally, some punctuation marks (More details in appendix A.3) are removed

from the token list during this phase. Each incoming tweet is wrapped into an object

carrying the following information:

– Original tweet

– Timestamp of the tweet obtained through Twitter API

– List of tokens

21

• Preprocessing

Once tweets are retrieved from Twitter with the help of the API, a preprocessing

phase is applied for each tweet to prepare the data for the various consequent natural

language processing tasks such as text classification, Named Entity Recognition and

information extraction. Stop-words such as ’the’, ’a’, ’as’, ’such’, . . . , are detected

and removed in this phase. We do not use a standard list of stop-words, but a

designed one according to the needs of application. For example, in our system,

words like ’in’, ’at’, ’way’, that would usually be removed as stopwords, are not

removed because they play an important role in recognizing locations. The original

list of stopwords was retrieved from the web1. Furthermore, since tweets are limited

in message length, shortened URLs are often used in tweets. The URLs are filtered

out since they do not contribute any information for the NLP tasks. The complete

list of stopwords can be found in appendix A.1.

• Relevance Classification

A decision should be taken concerning each incoming tweet. Each tweet has to be

classified into one of two classes tra�c and junk. A Tra�c tweet is one mentioning

any information related to tra�c in San Francisco while Junk refers to any tweet not

relevant to our research. Supervised Machine learning techniques are used in the text

classification module. Three di↵erent text classification techniques are used: Naive

Bayes, Maximum Entropy and Support Vector Machines (SVMs). Each of these

techniques is presented in details in Chapter 5 as well as a basic majority voting

system with the combination of these three algorithms. More details can be found

in Section 5.6.3.

• Incident Classification

A further classification is performed for tra�c tweets. Tweets related to tra�c do

not always mention that there is a tra�c jam or incident blocking a road (Negative

tweets). Rather, it sometimes mention that the tra�c at a particular place has been

cleared or that road construction has been finished (Positive tweets). There is a need

to di↵erentiate between these two classes. The classifiers presented in Chapter 5 are

used to achieve this type of classification. This is a crucial step since the classification

1http://code.google.com/p/iestwitter/ source/browse/trunk/src/ontology/tech/StopWords.java
retrieved in June, 2012

22 CHAPTER 3. SYSTEM ARCHITECTURE

result is the main parameter used to assign weights to edges of the graph for routing.

A higher weight is assigned to an edge having tra�c problem and a weight equal

to the distance is assigned to edges where tra�c is eliminated. More details can be

found in Section 5.6.4.

• Named Entity Recognition (NER)

NER is a subtask of information retrieval (IR). Entities are discrete objects in the

world and the task of NER is to find and classify these entities to enable Information

Extraction. NER has been well studied on structured data. However, well trained

model on structured data proved to have low performance on Twitter and other

forms of unstructured data. In our research, we use a two-phase NER system. The

first phase consists of training Stanford NER Conditional Random Fields classifier

to recognize locations in tweets. The second phase is supported by an especially

built dictionary containing frequently occurring words in tweets related to tra�c.

Our classes of named entities are LOCATION, HIGHWAY, DIRECTION, PREPO-

SITION, VOCABULARY and WORD. More details can be found in section 6.3 and

the dictionary can be found in appendix A.2.

• Information Extraction (IE)

During this step, structured information is extracted from the unstructured Twitter

data and a template is filled for each tweet. The template contains the following

fields:

– Start point and end point: Of tra�c or blocked road

– Ref-point(s): A junction of roads or a particular landmark mentioned in a tweet.

– City: City or district mentioned in a tweet where an incident has occurred

– Highway(s) and direction(s): The highways a↵ected by the incident as well as

the direction whether Northbound, Southbound,. . .

– Tra�c Condition: Positive or negative as classified during the text classification

step

• Geocoding

The mapping of the extracted information into geographical locations is achieved

through Geocoding. Geocoding is the process of converting textual addresses into

23

coordinates in the form of longitude and latitude. Google o↵ers a Geocoding service2

that can return geographical coordinates via HTTP. All addresses extracted during

the IE step are sent to the Geocoding API to obtain their coordinates. Details about

request parameters and response format is presented in section 7.3.

• Visualization

All locations where incidents have been recorded are plotted on a map by placing

markers at the specified coordinates returned by the geocoding API. For this task,

we use JXMapViewer3 , a java Swing Component, similar to JPanel that visualizes a

map. JMapKit loads tiles from OpenStreetMap server and presents it. More details

can be found in Chapter 7.

• Routing

Real time constraints such as tra�c information are then used for route planning.

Dijkstra, Shortest Path Algorithm for weighted graphs, is used to obtain the path

between start and destination points. The link between two points is an edge in the

graph representation. Each edge is assigned a weight based on distance. However,

another weight function is added based on the tra�c level as extracted from tweets.

This weight combination is the basis to provide the shortest path between two points.

However, in our application, the term shortest does not necessarily mean shortest

distance but more precisely means shortest time depending on the tra�c level. More

detailed explanation of the graph presentation and routing algorithm is given in

Chapter 7.

2https://developers.google.com/maps/documentation/geocoding/
3http://wiki.openstreetmap.org/wiki/JXMapViewer

Chapter 4

Twitter

Microblogging is a form of communication where users can share short messages with others

through IM, mobile phones or the web. Twitter is the most widely known microblogging

service. It emerged in March 2007. It allows each user to share his status updates with the

world in messages of 140 characters called Tweets. Tweets can be used for many purposes

including reporting local news, sharing an answer to the question What are you doing with

the world, rebroadcasting information and asking questions (Mackice et al. [22]) Twitter

does not restrict the user, in contrast, it gives the user freedom to tailor it to his own

needs resulting in diverse experiences. TweetRush, a third party application, estimated

peaks of about 1.9 million tweets per day in January 2009. Twitter is still growing and as

mentioned by Twitter for developers, that Twitter produces more than 340 million tweets

a day and has about 140 million active users by Twitter sixth birthday in March 20121.

A user can follow others without being their friends. A Friend in Twitter is when two

users are following each other. Twitter can be viewed as a graph where users are nodes and

their relations are edges of the graph. In contrast with other social media like Facebook,

Twitter relations do not have to be bidirectional. Java et al. [15] categorizes Twitter users

into three main categories:

• Information Source These usually have a large number of Followers. They do not

need to be frequent posters, however, their information is valuable and they serve as

a hub of information.

• Friends There are many sub-categories of friendships on Twitter. For example a

1http://mashable.com/2012/03/21/twitter-has-140-million-users/

25

26 CHAPTER 4. TWITTER

user may have friends, family and co-workers on their friend or follower lists.

• Information Seeker is a user who posts status casually but follows other users

regularly.

Some other keywords of Twitter language include retweet where a user reposts a previous

tweet by another user.

4.1 Twitter API

Twitter allows access to this huge corpus of data through di↵erent APIs that facilitate

developers building new and creative applications. Each API is described briefly, more

information can be found at Twitter Developer Website2.

Search API

The Search API allows querying Twitter content. This can be achieved by specifying a set

of keywords and the API returns back tweets containing these keywords. It can also be

used to track tweets of a particular user. However, it is advised by Twitter developers to

use the Streaming API instead if the application is hitting the limit rates.

REST API

REpresentational State Transfer (REST) is a style of software architecture that was in-

troduced in 2000 and since then replaced its predecessors SOAP and WSDL due to its

simplicity in building distributed systems such as the World Wide Web. REST is charac-

terized by the generality of interfaces as well as scalability of its components. The Twitter

REST API conforms to the REST standards where the change of the request format results

in an automatic change in the response format such as XML, JSON, RSS and ATOM. The

REST API enables developers to access some of the core primitives of Twitter including

timelines, status updates, and user information. It also allows the user to create, post

tweets, retweet and reply back to Twitter through RESTful calls. The REST API follows

a polling technology, an internet based style, where the request for the transmission of

information is initiated by the receiver as can be seen in Figure 4.1.

2https://dev.twitter.com/docs/

4.1. TWITTER API 27

Figure 4.1: REST API3

Streaming API

The Streaming API is the real-time sample of the Twitter Firehose - Twitter speak of all

incoming public statuses. This API is for those developers with data intensive needs. It is

most suitable for data mining products and analytics research. The Streaming API allows

for large quantities of keywords to be specified and tracked, retrieving geo-tagged tweets

from a certain region, or have the public statuses of a user set returned. This requires

the establishment of a long-lived HTTP connection and to maintain that connection. This

API follows a push technology concept where only the request for initial communication is

initiated by the subscriber. Once a connection is established between the subscriber (the

application) and the publisher (Twitter), Twitter keeps pushing incoming tweets depend-

ing on the request initiated by the application. In contrast to the REST API, maintaining

the streaming connections and handling HTTP requests are run with di↵erent processes.

The streaming process gets Tweets as a response, performs any filtering depending on the

request customization and stores the result to a certain data store. Then, the HTTP han-

dling process queries and retrieves the responses from the data store as indicated in Figure

4.2.

In our research, we decided to use the Streaming API since it is most suited for our

application as it has a limit rate of 20000 requests per hour. Furthermore, the streaming

3https://dev.twitter.com/docs/ retrieved on 9 Aug, 2012

28 CHAPTER 4. TWITTER

Figure 4.2: Streaming API4

API o↵ers several streaming endpoints, each for a specific use:

• Public streams a streaming channel of incoming information. It can be customized

to follow certain users or topics.

• User streams a single user stream which returns all the data corresponding to a

particular user.

• Site streams a multi version of user streams. It is most suited for applications

having multiple servers which need to connect to Twitter.

From the brief description about each stream mentioned above, we select public stream

endpoint for our research since it is most suited for data mining because we need to retrieve

data from several users and we have only one server.

Connecting to Streaming Endpoint

Connecting to the streaming endpoint requires authentication. All requests sent to Twitter

API over HTTP must be authorized. For this purpose, OAuth - an open standard for

4https://dev.twitter.com/docs/ retrieved on 10 Aug, 2012

4.1. TWITTER API 29

authorization is used. Several parameters must be passed with the HTTP request to the

Twitter API to allow the authentication of the application. Each application is granted

access to the following parameters by Twitter API once the application that will make use

of Twitter API is created. These parameters need to be passed with every HTTP request

that requires authorization:

• oauth consumer key: the key identifies the application to Twitter

• oauth consumer secret: the secret value identifies the application to Twitter

• oauth access token: the access token identifies the account to which the application

is connected

• oauth access token secret: this secret identifies the account the application is acting

on behalf

Once the connection is established, it will be held open indefinitely by Twitter API and

the HTTP Client will return the response data incrementally.

Streaming API request parameters

These are the most important parameters/values for our application:

delimited This parameter is set to a particular length which denotes the number

of bytes to read o↵ the stream from the response. By setting this parameter, the HTTP

client knows how many bytes to read before the end of the response message.

stall warnings Setting this parameter to true allows the delivery of warning mes-

sages whenever there is a risk to lose the connection with the client.

follow A list of user ids can be specified which indicates the users whose Tweets

should be pushed to the client. This parameter allows the customization of the request

sent to Twitter depending on our needs. A research has been conducted to search for users

who frequently tweet about tra�c in San Francisco and their IDs have been added to the

list that can be found in appendix A.4.

30 CHAPTER 4. TWITTER

track A set of keywords or phrases to be sent with the search query. The returned

tweets should contain one or more of the keywords that have been listed. This parameter

can be used to filter the incoming stream by including keywords that frequently occur

in tra�c tweets like ”accident”, ”lane”, ”incident”, ”highway” etc. The complete list is

provided in appendix A.4.

locations A comma-separated list of longitude and latitude to filter geo-tagged tweets

depending on the specified bounding box. Each bounding box should be specified by

longitude and latitude of its Northeast and Southwest corners. Our request is customized

to the geo-positions of San Francisco area which are -122.75,36.8 and -121.75,37.8

Processing Streaming data

The streaming API responses are JSON encoded. JSON, JavaScript Object Notation, is

a lightweight data interchange format where every object is represented as a key-value

pair. It is derived from the JavaScript language. It is characterized by its simplicity and is

usually used to transmit data over networks as an alternative to XML. Two data structures

are the basis of JSON format :

• Object: an unordered collection of key-value pairs. The name is a string and the

value can be one of di↵erent data types: string, number, boolean, array or another

object.

• Array: an ordered list of values.

Twitter uses a service called Snowflake to assign unique IDs for every tweet returned. This

ID is a 64bit unsigned integer which contains a timestamp of the tweet and a sequence

number. Since not all programming languages can process large integers. Twitter decided

to return the ID in a string format as well as encoded in the response. Using the JSON

format, the field id_str should be used instead of id because JSON cannot process integers

greater than 53 bits.

Example Twitter Request

http://api.twitter.com/1/statuses/public timeline.json

4.1. TWITTER API 31

Example Twitter Response

An example of Twitter response can be viewed in figure 4.3.

This chapter presented the di↵erent APIs o↵ered by Twitter to retrieve the publicly avail-

able tweets in real-time. A description of the parameters that need to be set for each

request sent to Twitter can be seen in section 4.1. The Twitter Streaming API has been

adopted in our research because it is mos suitable for data mining tasks and the limit rate

is high.

32 CHAPTER 4. TWITTER

{

"place":null,

"geo":null,

"retweeted":false,

"text":"Very unlucky played well. Scholes going off made a big diff .

"in_reply_to_status_id_str":null,

"in_reply_to_status_id":null,

"in_reply_to_user_id_str":null,

"truncated":false,

"in_reply_to_user_id":null,

"contributors":null,

"retweet_count":0,

"favorited":false,

"created_at":"Sat Jan 28 14:46:21 +0000 2012",

"coordinates":null,

"id_str":"163271701172465665",

"user":{

"show_all_inline_media":false,

"profile_text_color":"333333",

"statuses_count":2224,

"screen_name":"patfoxyboy",

"listed_count":18,

"geo_enabled":true,

"friends_count":843,

"description":"Deise lad .Married Father of two . Manchester United fanatic",

"default_profile":true,

"notifications":null,

"profile_background_tile":false,

"created_at":"Sun Jul 03 13:10:37 +0000 2011",

"protected":false,

"default_profile_image":false,

"contributors_enabled":false,

"followers_count":577,

"name":"Patrick Fox",

"id_str":"328480065",

"favourites_count":21,

"id":328480065,

"lang":"en"

}

}

Figure 4.3: Example Twitter Response

Chapter 5

Text Classification and Filtering

The task of text classification is to determine for an object to which class it belongs out

of a given set of classes. This process can be done manually or using a machine learning

approach. For a supervised machine learning approach, we need a set of good example

documents referred to as training documents. The training dataset consists of a collection

of labeled documents where labeling refers to the process of annotating each document with

its class. Using a learning method, we then wish to learn a classifier to map documents to

classes. This is called supervised learning because the process is supervised by a human

who assigns the labels (Manning et al. [24]).

This chapter describes the two text classification modules as mentioned in chapter

3. We adopt three well known algorithms in text classification which are: Naive Bayes,

Maximum Entropy and Support Vector Machines. An introduction about each of these

algorithms is presented in a separate section (section 5.1, section 5.2 and section 5.3 re-

spectively). Section 5.4 deals with the application of these techniques in our research as

well as our feature selection process for the two tasks, relevance classification and incident

classification.

Each of these algorithms follow under the content-based filtering paradigm. We focus

on using the content for classification. As a result, document representations in content-

based filtering systems can exploit only information that can be derived from document

contents and do not depend on the author or other meta-information such as timestamps.

33

34 CHAPTER 5. TEXT CLASSIFICATION AND FILTERING

5.1 Naive Bayes Text Classification

Naive Bayes is a supervised probabilistic learning method. It is based on the bag-of-words

model. The bag-of-words representation neglects every information about the position of

a word in a document and instead focuses only on the word frequency in the document.

Each document will be represented as a set of words and their frequency count.

The conditional probability P (c|d) for a document d and a class c according to Bayes

rule is:

P (c|d) = P (c) · P (d|c)
P (d)

(5.1)

where P (c) is the probability of the class c, P (d|c) is the probability of document d given

the class c and P (d) is the probability of document d.

For each document d and class c, the probability is computed using equation 5.1. Each

document d is presented as a set of words w1, w2, w3, . . . , wk

. We estimate the probability

P (d|c) of a document d given a class c as the multiplication of the probabilities of each

individual word w
i

given the class c. This is due to two assumptions:

• Bag of Words assumption.

• Conditional independence: the word probabilities in the document P (w
i

|c) are inde-
pendent given the class c.

P (d|c) can then be written as follows:

P (d|c) =P (w1, w2, w3, . . . , wk

|c)

=P (w1|c) · P (w2|c) · P (w3|c) · . . . · P (w
k

|c)

=
Y

wi=1,2,...,k

P (w
i

|c)
(5.2)

However, the probability P (w
i

|c) might be equal to zero. To eliminate zeros, we use add-one

or Laplace smoothing, which simply adds one to each word w
i

count. Add-one smoothing

can be interpreted as a uniform prior (each term occurs once for each class) that is then

updated as evidence from the training data coming in.

Then the probability of a class c needs to be computed. This is equal to the relative

5.2. MAXIMUM ENTROPY 35

frequency of the class c in the corpus of training documents. It denotes how often does

this class occur.

P (c) =
N

c

N
(5.3)

where N
c

is the number of documents in class c and N is the total number of documents.

During the test phase, we calculate the maximum a posteriori (MAP) class c
map

for each

document d we need to classify. c
map

is the class whose probability given the document is

the maximum.

c
MAP

=argmax
c

P (c|d)

=P (c) · P (d|c)
P (d)

=P (c) ·
Q

w1,...,k
P (w|c)

P (d)

(5.4)

The class that maximizes the conditional probability c
map

is chosen.

More details about the algorithm can be found in Manning et al. [24].

5.2 Maximum Entropy

Classifiers can fall under one of two categories: Generative and Discriminative. Generative

models generate the observed data from hidden states like Naive Bayes. In a generative

model, the focus is on joint probability and we want to maximize this joint likelihood. In

contrast, discriminative models target the classification decision that we want to make.

Discriminative models take the data as given and put a probability over hidden structure.

Currently there is much use of discriminative models because they tend to have high accu-

racy performance and they are linguistically interesting because of the ease of adding lots

of linguistic features. The discriminative model focuses on the conditional probability and

seeks to maximize it.

The Maximum Entropy (Maxent) classifier is a discriminative classifier. Each document

d is represented as a set of features f1, f2, . . . , fk. The model calculates a linear function

of these features. This linear function represents a score for each class and can be written

36 CHAPTER 5. TEXT CLASSIFICATION AND FILTERING

as:

vote(c) =
X

i

�
i

f
i

(c, d) (5.5)

where �
i

is a weight assigned to each feature f
i

. vote(c) is calculated for each class c and

the class that maximizes it is then chosen.

5.2.1 Building a Maxent Model

In this section we describe the steps required to build a Maxent model

Converting the linear combination to a probabilistic model

The problem with linear combination in Equation 5.5 is it comes out with either positive or

negative value and that does not work for probability. Taking the exponential of the value

assures that we always get positive weights despite the sign of this value. Normalization

over all possible classes is then used to convert the value to probability estimate.

P (c|d,�) = exp
P

i

�
i

f
i

(c, d)P
c

0 exp
P

i

�
i

f
i

(c0, d)
(5.6)

Training feature weights

Given this model form, we will choose parameters �
i

that maximize the conditional likeli-

hood. The selection of features is basic requirement for the use of discriminative models.

Features f are elementary pieces of evidence that link aspects of what we observe in a

document d with a category c that we want to predict. A feature is a function with a

bounded real value. The model assigns to each feature f
i

a weight �
i

.

The conditional (log) likelihood of a maxent model is a function of the data (C,D)

where C is the set of classes and D is the collection of the documents and the parameters

� which are the weights of the features, it can be written as:

logP (C|D,�) = log
Y

(c,d)2(C,D)

P (c|d,�)

=
X

(c,d)2(C,D)

logP (c|d,�)
(5.7)

In practice, this log likelihood can be calculated if the number of classes is small because

5.3. VECTOR SPACE MODEL 37

we are dividing over the likelihood of all classes. The log likelihood can be separated into

two components :

logP (C|D,�) =
X

(c,d)2(C,D)

log exp
X

i

�
i

f
i

(c, d)�
X

(c,d)2(C,D)

log
X

c

0

exp
X

i

�
i

f
i

(c0, d) (5.8)

These two components are N(�) and M(�).

logP (C|D,�) = N(�)�M(�) (5.9)

To maximize the log likelihood, we need to assign for each feature an optimum weight.

To determine these optimum weights, we need to calculate the derivative of the log likeli-

hood function with respect to each feature weight �
i

.

The derivative of N(�) is the empirical count (f
i

, c) :

�N(�)

��
i

=
X

(c,d)2(C,D)

f
i

(c, d) (5.10)

And the derivative of M(�) is the predicted count (f
i

,�) :

�M(�)

��
i

=
X

(c,d)2(C,D)

X

c

0

P (c0 | d,�)f
i

(c0, d) (5.11)

Then, the optimum values are the values for which each feature’s predicted count in Equa-

tion 5.10 equals its empirical count in Equation 5.11. This optimum value is when their

di↵erences is equal to zero as shown in 5.12:

actualcount(f
i

, c)� predictedcount(f
i

,�) = 0 (5.12)

A more detailed explanation can be found in Manning et al. [23].

5.3 Vector Space Model

The vector space model is the representation of a collection of documents as vectors. This

model is essential for several document classification techniques and document clustering.

38 CHAPTER 5. TEXT CLASSIFICATION AND FILTERING

Each vector corresponds to a single document and each entry in the vector corresponds

to a term in the document. Each term in the document is assigned a weight based on

its frequency of occurrence in the document and hence its importance. If a term does

not occur within a document, it is assigned the value zero. For example if the words in

the dictionary are ’Hello’, ’World’, ’first’, ’example’. For a document A containing ”Hello

World”, the vector representation is (1,1,0,0).

However, several approaches can be used to assign weights to terms one of them is

TF-IDF (Term Frequency- Inverse Document Frequency). Term Frequency in its simplest

form is equal to the number of occurrences of a term t in a document d. The term fre-

quency is referred to by tf
t,d

for term and document respectively. This model is also known

as bag of words model because it does not take into consideration the order of the terms.

Two documents having exactly the same terms but in di↵erent order are treated equally

according to this model. The only property that matters is the frequency of the terms.

However, not all of the terms should be treated equally. For example, the high number of

occurrences of stopwords such as ’the’ and ’and’, does not reveal any importance.

To solve the problem of equal treatment of all terms, another weight scheme can be

used. This weight is referred to as Inverse Document Frequency. This approach reduces

the e↵ect of terms occurring frequently in the collection. The factor by which the weight

of a term is reduced is document frequency df
t

. The document frequency is defined to be

the number of documents in the collection that contain a term t. The inverse document

frequency idf
t

of a term t is defined as follows:

idf
t

= log
N

df
t

(5.13)

where N refers to the total number of documents in the document set and df
t

is the docu-

ment frequency of a term t. The idf
t

is inversely proportional to the number of occurrences

of a term. The idf
t

of a rare term is high and the idf
t

of a frequently occurring term is low.

tf
t,d

and idf
t

are combined in a weighting scheme tf-idf to assign a weight to each term in

5.4. SUPPORT VECTOR MACHINES (SVMS) 39

the document. The tf � idf
t,d

assigns to term t in a document d the following weight:

tf-idf
t,d

= tf
t,d

· idf
t

(5.14)

tf � idf
t,d

has the following properties:

• It is highest when a term t occurs frequently in a small fraction of documents

• It is lower when the term occurs few times in a single document or many times in

several documents.

• It is lowest when the term occurs in all the documents.

More details can be found in Manning et al. [24].

5.4 Support Vector Machines (SVMs)

A Support Vector Machine is another example of a discriminative model. SVMs have been

applied successfully in text classification. SVM is a large-margin classifier: it is a vector

space based machine learning method where the goal is to find a decision boundary between

two classes that is maximally far from any point in the training data (possibly discounting

some points as outliers or noise).

There might exist several possible linear separators between the two classes in the

training data set. However, it is always better to choose a decision boundary which is as

far as possible from all data points of the two classes. SVM adopts this approach in choosing

a decision boundary in binary classification. It defines a criterion to pick a decision surface

that is maximally far away of any data point. This distance is referred to as the margin of

the classifier. The construction of the margin mainly relies on the selection of data points

known as support vectors that specifically determine the position of the separator. The

maximized margin can be shown in Figure 5.1. The large margin ensures the decrease of

low certainty classification decisions. This is referred to as the classification safety margin.

During the SVM construction, an SVM classifier insists on the choice of a large margin

around the decision boundary. A decision hyperplane can be defined by an intercept term

b and a decision hyperplane normal vector ~w which is perpendicular to the hyperplane.

40 CHAPTER 5. TEXT CLASSIFICATION AND FILTERING

Figure 5.1: Separating hyperplane in SVM.

This vector is called the weight vector. All points ~x on the hyperplane satisfy ~wT~x = �b.

The linear classifier is then:

f(~x) = sign(~wT~x+ b) (5.15)

The algorithm starts with a training data set D = {(~x
i

, y
i

)} where each point ~x
i

has a class

label y
i

. For a binary SVM the class labels are always +1 and -1. The data defines the

best separating hyperplane and the data is fed into a quadratic optimization procedure to

find this plane.

During the test phase, whenever a new point ~x needs to be classified, the classification

function f(~x) computes the projection of the point into the hyperplane normal. The sign

of the function determines the class to assign the point to. More details can be found in

Manning et al. [24]

5.5 Voting System

A voting system combines the output of the three classifiers (Naive Bayes, Maxent and

SVMs) to improve the classification performance. With combination techniques the ob-

jective is to emphasize the strengths of individual classifiers while diluting their weaknesses.

In the simple voting scheme used in this work, each classifier has a single vote. Once

5.6. OUR IMPLEMENTATION 41

a tweet comes in, it passes through phases of feature selection then text classification

performed by each classifier. After all classifiers have voted, the votes are collected and the

class label having the maximum number of votes is selected. This model could be further

extended by including a probability based voting scheme or a weight based weighting

scheme. This was not done in this work as the results obtained by the simple voting

scheme were satisfactory.

5.6 Our Implementation

Twitter data comes at a very high throughput rate and the attractiveness about them is

that they capture the moment. Therefore, there is a need to implement an online system

that can filter tweets one at a time and not to halt to process them in batches. However,

this is a challenging task.

This section describes our application of the text classification algorithms explained in

previous sections. Two classifications are performed in our research as visualized in Figure

5.2:

• Tra�c or junk: distinguish tra�c tweets that are important for the task and will be

used in further processing, from other tweets referred to as junk in this work.

• Positive or negative: each tra�c tweet is classified into positive if it mentions that

lanes are clear or road is open; else it is negative if it mentions that a lane or road is

blocked.

First, we describe feature selection then details about each of these two classifications

is given in the following sections.

5.6.1 Social-Based Filtering

According to Oard [29], the relevancy of a document can be determined by its author.

Applying this argument to our research, the authorship feature can play an important role

in filtering a considerable number of tweets related to tra�c. We have manually identified

a number of twitter accounts concerned with publishing tweets about San Francisco tra�c,

the accounts are listed in appendix A.4. If the tweet is posted by any of these accounts, the

42 CHAPTER 5. TEXT CLASSIFICATION AND FILTERING

Tweet

Second Classification

Positive Tweet Negative Tweet

tra
�c

No Further Processing

Junk

Figure 5.2: Text classification in our implementation

tweet should be selected as potentially relevant. However, Social-based filtering cannot be

used solely for the sake of filtering and must be accompanied with content-based filtering

which is a more mature concept. For this reason, we use the previously described text

classification techniques as described in the following sections.

5.6.2 Feature Selection

The purpose of feature selection is to determine which features are the most relevant to

the current classification task. In text classification, features are typically words from a

document. Choosing an appropriate feature selection method can be vital because of the

large number of features usually present in text documents.

Sebastiani et al. [34] mention that a typical text document will contain hundreds of

possible features, and it can be extremely di�cult to produce an accurate classification

without some sort of feature selection. However, since tweets are only 140 characters long,

features chosen carefully can greatly help filtering out noise tweets.

Following Nicolosi et al. [28], we apply pruning prior to feature selection to reduce the

number of possible features. This is particularly important because the number of possible

features is typically very large in a text document, and it is likely that most of these features

are irrelevant. Generally, very rare and very frequent words are commonly eliminated. For

example, stop words in English language like ”a”, ”an”, ”the” . . . are very common and

their frequency does not contribute to the importance of a document. Features selected in

5.6. OUR IMPLEMENTATION 43

each of the two classification tasks are described in the two following sections.

5.6.3 Relevance Classification: Tra�c or Junk

Inspired from Sankaranarayanan et al. [33], we classify incoming tweets as either tra�c

or junk, where tra�c tweets have a chance of being related to tra�c and hence kept for

further processing, while the junk tweets have a chance being non-related to tra�c and

hence discarded. Our goal is not to completely get rid of junk tweets which might not even

be possible but at least to discard tweets that clearly cannot be tra�c. First, stopwords

and URLs are removed from tweets and then features are selected.

In this type of classification, our features are the words extracted from tra�c tweets that

were further refined to include distinctive features like places, roads, streets, avenues and

boulevards in San Francisco. All these words have been manually collected throughout

6 months and stored in our built dictionary described in details in section 6.3.2. The

dictionary vocabulary is listed in appendix A.2.

Of course these features are not complete but they give a good indicator of whether a

tweet is related to tra�c in San Francisco or not.

5.6.4 Incident Classification: Positive or negative

Text classification is used for a second task in our research. A distinction should be made

between tra�c-related tweets mentioning that an incident or a tra�c problem is happening

and tra�c-related tweets mentioning that tra�c has been cleared and the roads are back

to their normal states. This classification helps in the routing process since there is no need

to penalize edges in locations where tra�c is clear and lanes are open. The features for this

classification task are all the words in the tweets after the tokenization except stopwords

and URLs.

Chapter 6

Named-Entity Recognition (NER)

Named Entity Recognition (NER) is a subtask of information retrieval. It is concerned

with finding and classifying named entities in text. Entities are meant to describe discrete

things in the world. Standard categories of named entities include ”person”, ”location”,

”geo-political organization”, ”facility”, ”organization” and ”time”. NER has been well

studied and can be divided into three categories: Rule-based (e.g. [17]), machine-learning

based (e.g. [9], [37]) and hybrid methods (e.g. [13]). Our research adopts a hybrid method

which is presented in details in section 6.3. We make use of Stanford NER system1 which

is based on Conditional Random Fields. An introduction about conditional random fields

is presented in section 6.1 followed by details about stanford NER in section 6.2, our

customized NER system is described in section 6.3 and Information Extraction (IE) is

described in section 6.4.

6.1 Conditional Random Fields

Assigning labels to a sequence of words is one of the tasks of Natural Language Processing

(NLP). It is a preprocessing task of NLP for higher tasks. Each element in the sequence of

data is annotated during this task with a label carrying descriptive information depending

on the application. NER is an example of this task where each word is labeled with a class

indicating its named entity type.

A model used for labeling sequence of data is the conditional model. It is a discrimina-

tive model that satisfies two criteria: support of inference and representing data without

1http://nlp.stanford.edu/ner/index.shtml

45

46 CHAPTER 6. NAMED-ENTITY RECOGNITION (NER)

making any non-guaranteed assumptions. The probabilities of a possible label sequence

according to the observation are specified and no further e↵ort is spent on modeling the

observations that remain unchanged during the training phase. A conditional model as-

signs the label y⇤ which maximizes the probability P(y⇤|x⇤) to the observation sequence

x⇤.

In contrast to generative model like Hidden Markov Models (HMMs), the transition

between states takes into account the current, past and future observations; the label

sequence can depend on non-independent features of the observation. Maximum Entropy

Markov Models (MEMMs) and Conditional Random Fields (CRFs) are an example of such

conditional discriminative model.

Conditional Random Fields [18] is a framework for labeling and segmenting sequential

data based on the conditional model. The CRF classifier takes into consideration the

context when assigning label to a particular sequence. Furthermore, a CRF classifier has

all the advantages of other preceding conditional classifiers like Maximum Entropy Markov

models (MEMMs) and additionally eliminates the label bias problem. Details about the

label bias problem can be found in [18]. Conditionally trained CRFs can easily include large

number of arbitrary non independent features [39]. When applying CRFs to the Named

Entity Recognition problem, an observation sequence is the token sequence of a sentence

or document of text and state sequence is its corresponding label sequence. CRFs use a

single exponential model combining the probabilities of the whole sequence of labels based

on the observation sequence trained by maximum likelihood. It moves from a current state

to the next state having the highest vote based on the observation sequence. More details

about CRFs can be found in La↵erty et al. [18].

6.2 Stanford NER

In this research, we used Stanford NER which is an implementation of a Named En-

tity Recognition system based on the CRF model. Stanford NER can assign labels to a

sequence of words falling under one of three categories: PERSON, LOCATION and OR-

GANIZATION in English language. The provided models are trained using data sets such

as CoNLL, MUC-6, MUC-7 and ACE which are in formal English language. The Stan-

ford NER performs a feature selection step before NER and uses IO encoding. Feature

selection, IO and IOB encoding are explained next.

6.3. OUR CUSTOMIZED NER SYSTEM 47

Feature Selection

Feature extraction is a preliminary step in sequence labeling. The obvious starting point for

feature extraction used in sequence labeling is assigning features to the words. Substrings

in words can be used as features such as if a word contains ’san’ as a substring at the

beginning of the string, it is most likely categorized as place. Features can also be assigned

for the previous and next words labels, for example by assuming that any word after ’at’

or ’to’ is most likely a location. The word features are only looking for observed data.

Sequence labeling is only achieved when also looking to the label context. Therefore, we

also use context features.

The features used in Stanford NER model are: context features taking into consideration

the current, previous and next labels, word shapes based on capitalization and punctuation

marks, prefixes and su�xes of words, label sequences and a combination of these.

IO and IOB Encoding

There are two commonly known encoding types for sequence labeling: IO encoding (in-

side/outside) and IOB (inside, outside and beginning of an entity). The Stanford NER

system follows an IO encoding style because it has a faster performance over the IOB

encoding style which is crucial for real-time applications. In practice, the systems trained

according to IOB encoding usually lead to the same results achieved by IO Encoding NER

systems2. Table 6.1 shows the di↵erences between these encodings where PER refers to

class PERSON, O refers to class OTHER. Additionally, B-PER for ”Fred”, for example,

in IOB encoding denotes that ”Fred” is the beginning of a token categorized as PERSON.

Similarly, I-PER for ”Huang” denotes that ”Huang” lies inside a token categorized as

PERSON. As can be seen from Table 6.1 IO encoding can not distinguish between ”Sue”

and ”Mengqui Huang” as being di↵erent persons.

6.3 Our Customized NER system

We follow the approach of Liu et al. [19] in applying two steps of NER. In the first step,

we use Stanford NER system, and in the second step, we use a dictionary. Our NER

system recognizes the following entities from tweets: DIRECTION, HIGHWAY, LOCA-

2Stanford NLP online course https://class.coursera.org/nlp/lecture/preview/61

48 CHAPTER 6. NAMED-ENTITY RECOGNITION (NER)

IO Encoding IOB Encoding
Fred PER B-PER
showed O O
Sue PER B-PER
Mengqui PER B-PER
Huang PER I-PER
’s O O
new O O
painting O O

Table 6.1: Sequence label Encoding

TION, PREPOSITION, VOCABULARY. Definitions of these categories can be found in

section 6.3.2. Stanford NER is concerned with recognizing the LOCATION class and

the dictionary-based step is concerned with recognizing the DIRECTION, HIGHWAY,

PREPOSITION, VOCABULARY classes. Details of the two steps are described next.

6.3.1 First Step: Stanford NER

As explained in section 6.2, Stanford NER is able to recognize named entities such as:

LOCATION, PERSON, ORGANIZATION. However, based on our research, we are only

interested in recognizing the LOCATION class which can be an alley, zone, avenue, boule-

vard or a landmark. Furthermore, the provided models are trained using formal English

language data and do not perform well on unstructured data extracted from Twitter be-

cause of the informal language used in tweets. For this reason, we train the model using

tweets. A training data source is needed to train the NER model. The training data must

contain each word on a separate line and the correct annotation tab separated from it.

Another requirement for training the model is a properties file mentioning the features,

the location of the training data and a description of the training data. The model is

trained once and saved for further use. Each time a tweet arrives, the model is loaded and

used to recognize locations in the newly arrived tweet. More details about the training

data and system evaluation is in section 8.4.3.

6.3.2 Second Step: Dictionary-based NER

The dictionary is responsible for recognizing the DIRECTION, HIGHWAY, PREPOSI-

TION, VOCABULARY classes. The specially built tra�c dictionary contains 855 pairs

6.3. OUR CUSTOMIZED NER SYSTEM 49

where each pair contains a token type and a value. All the words are manually extracted

from tweets related to tra�c in San Francisco bay area. The definitions of token types and

the way of extracting them are described as follow:

• Direction: Direction can be one of the following: eastbound, westbound, northbound,

southbound, east, west, north, south or combination of these.These directions are

extracted from tweets.

• Highway: highways in or passing by San Francisco extracted from California Gazetteer3

and included in the dictionary.

• Preposition: is a set of words preceding a location and thus marking this location as

start or end point depending on the preposition.

• Vocabulary: is a set of words describing Tra�c Event extracted from a data set of

2000 tweets,e.g. tra�c problem, accidents, road works, incidents. All the words are

extracted from tweets.

Due to the ambiguous nature of unstructured data, Tweets may contain entities of equal

meaning but in di↵erent formats. For example, highway ”US-101” can be mentioned

as ”U.S. 101”, ”Hwy 101” or ”US 101”. Furthermore, directions and highways might

be written as one word,e.g. S101, N101. Patterns of strings are defined with regular

expressions and then are used to match against the input strings to recognize the di↵erent

forms of writing highways. There are di↵erent rules on how to write regular expressions

than can be mastered in details in [10]. Examples of regular expressions to recognize

highways in our research are:

• [NESW] d d* : this regular expression matches any string that starts with a direction

N, E, S or W standing for north, east, south and west respectively followed by one

or more digits where ’*’ signifies the occurrence of 0 or more digits

• [H][W][Y] d d*: is used to match strings starting with the word ”hwy” and then

followed by a number composed of one or more digits

• [I][-] d d*: is used to match highways starting with the letter ”I” and then followed

by a number composed of one or more digits, e.g. I-680

3California gazetteer http://california.hometownlocator.com/ca/san-francisco/

50 CHAPTER 6. NAMED-ENTITY RECOGNITION (NER)

• [C][A][-] d d*: is used to match strings starting with the word ”CA” and then followed

by a number composed of one or more digits, e.g. CA-12

The results obtained from Stanford NER system trained with our own data set as well

as the results of the second phase of NER and presented in Chapter 8.

6.4 Information Extraction (IE)

Information extraction is the task of extracting structured data from unstructured text.

We adopt a template-based information extraction (IE) approach. This approach requires

predefined template schemas and labeled data, to learn to extract their slot fillers [2].

Each template has several slots and the information we extract are used to fill these slots.

The template extraction algorithm requires full knowledge of the templates and labeled

corpora, such as in rule-based systems [5]. Furthermore, template design for information

extraction depends on the nature of the task and therefore it a↵ects the success of cap-

turing information from text. The template has to be clear, deterministic, descriptive and

monotonic [30].

After annotating tra�c tweets and recognizing named entities in them, an IE module

is responsible for filling the fields of a template for every tweet. By the analysis of tra�c

tweets, it was found that when a tra�c jam or an accident is reported at a particular place,

people usually mention the location by specifying a start and end point of the tra�c jam.

Twitter users can also mention a specific landmark or roads intersection which are blocked,

this is referred to as ”ref-point” in the template. Furthermore, if the tra�c information

is published by a tra�c channel, the tweet usually include the city or county where the

incident happens. Additionally, when a highway is mentioned in a tweet, it is accompanied

by a direction that is also extracted to fill a slot in the template. The fields of the template

are as follows:

• Start point: of the tra�c incident.

• End point: of the tra�c incident.

• Ref-point(s): One or more specific reference points or crossroads where the incident

has occurred. It can also be a landmark.

• City: The city or county that the tweet talks about.

6.4. INFORMATION EXTRACTION (IE) 51

• Highway(s): One or more highways mentioned in the tweet where the incident occurs.

• Direction(s): Direction of blocked or cleared lanes of a highway.

• Request(s): Formulated geocoding request out of the fields mentioned above.

These slots are filled using rules described shortly along with the annotations or token

types attached to each token. The slots are optional i.e., not all of the information have to

be extracted from a single tweet. There might be zero or more geocoding requests sent to

the Geocoding API for a single tweet. No geocoding requests are sent if the information in

the template is not su�cient to detect the incident location. On the other hand, if there

are several a↵ected location by the tra�c information, a separate request is sent to each

location to determine its coordinates. We have implemented the following rules based on

an analysis of 1000 tweets to fill the previously described template slots:

• Start point: Any token labeled as LOCATION or HIGHWAY and occurs after a

”from” or ”between” preposition is considered a starting point.

• End point: Any token labeled as LOCATION or HIGHWAY and occurs after ”to”

or ”onto” or the ”between . . . and” preposition is considered a starting point.

• Ref-point: Any token labeled as LOCATION or HIGHWAY and occurs after these

prepositions: after, past, near, at, before, beyond, across

• City: A token labeled as LOCATION that occurs as the first token in the tweet or

after ”in” preposition.

• Highway and Direction: Any token labeled as HIGHWAY that occurs after ”on”

preposition or is not preceded by any prepositions is used to fill this slot along with

the direction if it’s mentioned.

• Request: All the slots contribute to constructing the requests sent to the Geocoding

API as follows:

– If a Ref-point slot and Highway slots are not empty then their values are com-

bined in a string with an ”&” in between denoting that we need to find the

intersection point between them.

– The values of From and To slots are sent as separate requests.

52 CHAPTER 6. NAMED-ENTITY RECOGNITION (NER)

– If the City slot is not empty, its value is appended to each request.

An example of a tweet and the template slots extracted according to the described rules

is:

SUNOL: Accident NB 680 past Koopman Rd has all lanes blocked as a

medivac helicopter is landing on the freeway. Expect delays.

The template filled out of this tweet is as follows:

• Ref-point : KOOPMAN ROAD

• City: SUNOL

• Highway: 680

• Direction: NB

• Request: KOOPMAN ROAD, SUNOL & Interstate 680

The evaluation of the information extraction task is described in details in section 8.4.6.

Chapter 7

Routing

This chapter provides a thorough explanation of the use of graphs for representing roads

and points in our research as described in section 8.1, the Dijkstra shortest path algorithm

used for routing in section 8.2 and geocoding tools in section 8.3. Our map interface allows

the user to click any source and destination points for route planning. Two routes are

provided: shortest path if no tra�c jam occurs and shortest path avoiding the congestion

area. Setting the edge weights for routing is described in section 8.4.

Graphs in computer science are abstract representation that can be used to model any

relationship. A Graph G = (V, E) consists of a set of vertices V and a set of edges E

connecting the vertices. Graphs are fundamental structures since they can describe any

network. Social networks are graphs where nodes represent people and edges represent

relationships between them. Road networks are graphs where nodes represent cities and

edges represent roads between them.

In our research, a graph G is used to model cities as nodes and routes between them as

edges. Graph G has the following characteristics:

• Directed - a graph is said to be undirected if an edge (x, y) 2 E implies that also

an edge (y, x) 2 E exists. If that condition does not hold, we say that the graph

is directed. Since streets within cities have directions, they must be modeled with a

directed graph.

• Weighted - Edges and/or vertices might be assigned weights in the graph. In road

networks, edges might be assigned values which represent distance, speed limit or

53

54 CHAPTER 7. ROUTING

other constraints according to the application. In our graph model, weights on edges

are function of two values: distance between the two nodes and a weight assigned

depending on the tra�c level as extracted from Twitter.

• Simple - A graph is considered simple if it fulfills two conditions:

– no self-edge: if a node has a an edge to itself i.e (x, x) 2 E

– no multi-edge: if an edge (x, y) occurs multiple times in the graph.

Since graph model of road networks avoids these structures, we consider our graph

to be simple.

• Sparse - Graphs are considered sparse when there exists a small portion of any com-

bination of two vertices having edges between them. A sparse graph is a graph with

fewer edges than |V |2. However, there is no strict definition to di↵erentiate sparse

and dense graphs. Our graph has 1613303 nodes and 3946702 edges, therefore it is

considered a sparse graph.

• Cyclic - A graph that contains cycles. A cycle might exist in a map because a path

can begin at a node x and goes through several edges and returns back to the same

point.

• Explicit - Some graphs are constructed while we traverse them like backtrack search.

These graphs are considered implicit. Otherwise, the graph is called explicit as it is

constructed once before the start of any traversal and saved in a data structure. Our

graph data structure is explicit

• Labeled - In a labeled graph, each node is assigned a unique identifier to distinguish

it from other nodes. The ID can be a name or a numerical value. These identifiers

do not exist in unlabeled graphs. Street names can be used as identifier but in our

graph model, each node has a unique integer ID.

7.1 Data structure for graphs

Performance is greatly a↵ected by the type of data structure chosen to represent graphs.

Data structures of constant time access O(1) should be used whenever possible especially

7.2. DIJKSTRA - SHORTEST PATH ALGORITHM 55

in large graphs. In this section, we describe the data structure used for our graph rep-

resentation. Assume the graph G = (V,E) contains |V | nodes and |E| edges. Since the

number of nodes and edges is previously known and will remain fixed within the run time

of the application, arrays are the fundamental data structure used in the graph model for

the following reasons:

• Constant time access - Any element in the array can be directly accessed in a constant

time given its index. Each array index maps to a memory location. This reduces

access time especially in real time applications

• Space e�ciency - Arrays do not waste any extra space other than the space allocated

to save the data since they do not have any links between the cells which are of fixed

size.

• Memory locality - Array records are contiguously allocated in memory which is very

suitable for sequential iteration.

Nodes are represented in an array of size V where each node has a unique identifier,

longitude and latitude as shown in Table 7.1. The node identifier is used to index the node

in the nodes array.

Each edge is represented in the edges array with the IDs of start and end nodes as can be

seen in Table 7.1. A weight is assigned to the edge which is the distance between the two

nodes. The array of edges is sorted by the start node ID. Furthermore, an o↵set array is

created which carries for each node the start and end indices of its outgoing edges in the

edges array. If a node does not have any outgoing edges, then it is assigned the same o↵set

assigned to its previous node. The complete data structure of the graph in Figure 7.1 is

presented in Table 7.1.

7.2 Dijkstra - Shortest Path Algorithm

We use Dijkstra - one of the shortest paths algorithm - to find routes between departure

and destination points. A path is defined as a sequence of edges connecting two vertices.

A shortest path is a path between two vertices which satisfies minimum weight constraint.

The cost of a path is equal to the sum of weights of the edges that constitute this path.

The edge weight in our graph model is a function of the distance between two nodes and

56 CHAPTER 7. ROUTING

Figure 7.1: Example of a graph

an additional cost set according to the tra�c intensity extracted from Twitter.

Dijkstra algorithm finds the path with lowest cost (i.e. the shortest path) between the

source vertex s and every other vertex including the destination vertex t. Dijkstra consists

of a series of iterations where each iteration finds the shortest path from start node s to

a node x where x might be an intermediate node on the path from s to the destination

point t. Each found shortest path from s to x must satisfy the minimum weight constraint

dist(s, v
i

)+w(v
i

, x) for all unfinished nodes 1  i  n where dist(s, v
i

) is the length of the

shortest path between s and v
i

, and w(v
i

, x) is the distance (edge length) between v
i

and

x. The distance from each node to itself is 0. In each round, the algorithm discovers a new

vertex for which we know the shortest path from s. Dijkstra pseudo-code [38] is provided

below where G denotes the graph, s denotes the start node and t denotes the target node.

ShortestPath-Dijkstra(G,s,t)

known = {s}
for i = 1 to n, dist[i] = 1
for each edge (s, v), dist[v] = w(s, v)

last = s

while (last 6= t)

select v
next

, the unknown vertex minimizing dist[v]

for each edge (v
next

, x), dist[x] = min [dist[x], dist[v
next

] + w(v
next

,x)]

last = v
next

known = known [{v
next

}

7.3. GEOCODING 57

The data structure described in section 8.1 allows the retrieval of the edges of a par-

ticular node in constant time access O(1). The node ID is used to index the o↵set array

to find the start and end o↵sets of its edges from the edges array. We use a parent array

in the implementation of Dijkstra to record the parent/previous of each node during the

process of finding the path from s to t. This array is then traversed in a backward manner

to find the whole path with all the intermediate edges. The cost of the path can be found

as well in weight array to record the costs. In each iteration, we use a heap data structure

to get the next node with minimum distance to the start node s.

The running time complexity of Dijkstra algorithm is a function of the set of vertices

V and the set of edges E. The simplest implementation of the algorithm has the time

complexity of O(|E|+ |V |2) since the vertices are stored in a linked list and extracting the

minimum will require a linear search over the list to pick the closest node not inserted in

the list of known vertices yet. However, this run time complexity can be easily improved in

the case of a sparse graph. As mentioned earlier, a sparse graph is a graph with fewer edges

than |V |2. With our graph representation, the set of known edges are stored in a heap

and therefore extracting the node with minimum distance to the source node s is e�cient.

The run time in this case is O(|E|+ |V | log |V |). More details about the algorithm can be

found in Skiena [38].

7.3 Geocoding

Geocoding is the process used to convert textual addresses into geographical coordinates

consisting of longitude and latitude. The Geocoding process is the link between the infor-

mation extracted from Tweets and markers on a map.

Google o↵ers a Geocoding service via HTTP. Any HTTP request issued to the Geocoding

API must be in the following form

http : //maps.googleapis.com/maps/api/geocode/output?parameters

Geocoding Request Parameters

• address (Required), the address in text form that needs to be geocoded. The ad-

58 CHAPTER 7. ROUTING

dresses to be geocoded are formulated from the fields in the template after the in-

formation extraction phase and used to fill the request field as described in section

6.4.

• sensor (Required), a boolean value to indicate whether the request comes from a

device with GPS enabled. This parameter is always set to false in all the requests

our application is issuing.

• bounds (Optional) A filtering criteria used to limit the results to be within a par-

ticular bounding box specified by two geographical coordinates pairs; North East

longitude and latitude and South West longitude and latitude. The bounding box

coordinates of San Francisco are (-122.75, 36.8) and (-121.75, 37.8) respectively.

• language (Optional) the language of the returned HTTP responses. In our cus-

tomized requests, it is set to ”en” for english.

• region (Optional) the region code represented in top level domain form which in our

case is set to ”US”. It limits the response as the bounds parameter.

Geocoding Response The output can be provided either in JSON or XML format

which has to be specified in the HTTP request form. The JSON output has two root

elements:

• status contains all metadata associated with the request

• results contains the full address including street name, zip code, city and country,

and the geographical coordinates of the requested address. More than one result can

be retured by the service if the requested address is ambiguous.

7.4 Setting Edge Weights

After getting the geographical coordinates of a tra�c incident from the Geocoding API, we

need to add a penalty over all the edges passing by the node where a tra�c incident occurs.

To accomplish this task, a mapping is needed between the longitude-latitude pair and the

ID of the a↵ected node. For this reason, we overlay the map with a grid of 5137x4735 cells,

where each grid cell covers an area of 200m to 300m and contains all the IDs of the nodes

7.4. SETTING EDGE WEIGHTS 59

within this range. This grid is indexed with the longitude-latitude pair. An additional cost

is added on all the edges starting from the node IDs in this cell as well as all the nodes in

the surrounding cells.

60 CHAPTER 7. ROUTING

Index = node ID Longitude Latitude
0 36.1 -122.1
1 36.2 -122.2
2 36.3 -122.3
3 36.4 -122.4
4 36.5 -122.5
5 36.6 -122.6
6 36.7 -122.7
7 36.8 -122.8
8 36.9 -122.9
9 36.11 -122.11

(a) Nodes Array

index = node ID start o↵set
0 0
1 2
2 5
3 8
4 10
5 11
6 12
7 14
8 16
9 18

(b) O↵set Array

Index Start node ID End Node ID Weight (distance)
0 0 1 1
1 0 9 3
2 1 0 2
3 1 2 2
4 1 8 2
5 2 3 2
6 2 4 4
7 2 6 1
8 3 2 2
9 3 4 3
10 4 3 3
11 5 4 1
12 6 4 3
13 6 7 2
14 7 2 2
15 7 6 1
16 8 1 3
17 8 6 1
18 9 8 3

(c) Edges Array

Table 7.1: Data Structure for the Graph in Figure 7.1

Chapter 8

Experiments and Results

8.1 Evaluation Metrics

The evaluation metrics used in our experiments are Precision, Recall, Accuracy, F-Measure

which are the widely common metrics used in natural language processing tasks. To

compute these measures, it is essential to create a 2-by-2 contingency table. The table

contains two axes, truth axis and the system to be evaluated axis. The table contains the

four states to be found in any data sets subject to analysis. The four states are :

• True positive: means that the piece of data under analysis is true and the system

said it is true.

• False positive: means that the system mistakenly treated it as positive although it

is not.

• False negative: means that the system said it is not true although it is, it is treated

as negative falsely.

• True negative: means that the system correctly said it is negative and it is negative.

Correct Not correct
selected true positive(tp) false positive(fp)
not selected false negative(fn) true negative(tn)

Table 8.1: 2-by-2 contingency table

61

62 CHAPTER 8. EXPERIMENTS AND RESULTS

According to the table, accuracy is defined as the percentage of correct information the

system recognizes.

Accuracy =
tp+ tn

tp+ fp+ tn+ fn

However, accuracy is not enough to evaluate any systems especially if what we are looking

for is uncommon. For example, in the case of classifying incoming tweets to tweets related

to tra�c or not, a very high accuracy can be achieved simply by classifying each tweet as

non-tra�c. Consequently, two other measures, precision and recall, are used to evaluate

these infrequent cases that need to be detected.

• Precision is defined as the fraction of the results returned by the system relevant to

the information need

Precision =
tp

tp+ fp

In contrast,

• Recall is the fraction of relevant or correct items in the collection that are returned

by the system. A system with 0% is not interesting as it finds none of the information

we are looking for.

Recall =
tp

tp+ fn

There is always a trade-o↵ between precision and recall as an improvement in one of these

metrics will result in the decay of the other and vice versa. Therefore, it should be decided

and discussed beforehand which value is most important depending on the application. In

various applications such as legal applications where there is a need to find all evidences, a

system with high recall is the required system. However, in other applications, it might be

more useful to show the correct information which can be achieved with a high precision

system. That explicit trade-o↵ is a useful concept in building NLP systems.

However, a problem arises when having multiple systems and there is a need to decide

which one is better. It is hard to assess the best system by having to compare precision

and recall. Therefore, F-measure is a combined measure that assesses the P/R tradeo↵

in a weighted harmonic mean. Weights are assigned to the values involved in the mean

according to the need to boost or decrease them depending on the application.

F =
1

↵ 1
P

+ (1� ↵) 1
R

=
(�2 + 1)PR

�2P +R

8.2. RELEVANCE CLASSIFICATION EVALUATION 63

where P is precision, R is recall and ↵ is a weight and � is a control parameter which is

the emphasis imposed on precision versus recall.

A balanced F-measure is used by setting alpha to
1

2
or beta to 1 resulting in the following

equation:

F1 =
2PR

P +R

However, F1 is a measure for the performance of the classifier in one class. But we also want

a single number that measures the aggregate performance over all classes in the collection.

For this reason we use Macroaveraging to give equal weights to the classes by computing

F1 for each of the C classes and average these C numbers.

8.2 Relevance Classification Evaluation

In this type of classification, we classify each incoming tweet as tra�c or junk as described

in section 5.6.3.

Example of tra�c tweet:

San Lorenzo: S880 after Hesperian, a load of lumber blocks the right lane.

Tra�c backs into San Leandro. 238 backs to Castro Valley.

Example of Junk tweet:

RT @YouTube: Astronaut Neil Armstrong, the first man to walk on the

moon, leaves behind a legacy at age 82

8.2.1 Data Preparation

Tweets are retrieved from Twitter through the streaming API. The training data and

the testing data is common for all classifiers used to allow a fair evaluation. A set of 3188

tra�c tweets are collected during May 2012 from di↵erent Twitter users and tra�c channel

accounts. The full list of accounts can be found in Appendix A.4. A second set of 3333

Junk tweets are obtained consecutively from Twitter public timeline and manually checked

to belong to junk class. These two sets are divided randomly into training and test data.

The training data consists of 2000 tweets manually classified as tra�c and 2000 as junk.

The test data consists of 2521 manually annotated tweets. 1188 tweets belong to tra�c

64 CHAPTER 8. EXPERIMENTS AND RESULTS

class, 1333 tweets belong to junk class. The annotations are performed by the author and

a computational linguistics student. The metrics used are accuracy, precision, recall and

F1-measure.

8.2.2 Naive Bayes Classifier

MALLET1 (MAchine Learning for LanguagE Toolkit) is a Java based package providing

implementation of various algorithms used in NLP. It contains several tools for document

classification such as Naive Bayes and Maximum Entropy as well as tools for classifier

evaluation using the above mentioned metrics. The library is open source and published

under Common Public License. In our task of text classification, a tweet represents a

document. A model is trained with the training data set once and saved. It is then loaded

for each classification to allow the functionality of the system in real-time. Precision, recall

and F1-measure for the relevance classification are shown in Table 8.2.

8.2.3 Maximum Entropy Classifier

Maximum Entropy Classifier included in MALLET1 package is used in our implementation

of relevance classification module. The classifier is trained with the train instances once

and used repeatedly. Evaluation results are shown in Table 8.2.

8.2.4 SVMs

SVMlight2 is an implementation of Support Vector Machines (SVMs) in C. As described

from the library website

The main features of this library are:

• fast optimization algorithm

• use of folding in the linear case

• handles many thousands of support vectors

• uses sparse vector representation

1http://mallet.cs.umass.edu/
2http://svmlight.joachims.org/

8.3. INCIDENT CLASSIFICATION EVALUATION 65

However, since Java is the programming language used in our application, we used JNISVM-

light-6.013. It is a Java Native Interface that includes a pre-compiled shared libraries for

windows and Linux and supports text classification as well as other functionalities. The

evaluation results are shown in Table 8.2.

8.2.5 Voting System

A voting system that combines the three classifiers is then used as described in section 5.5.

The system results are shown in Table 8.2.

8.2.6 Results

As can be seen in Table 8.2, the highest precision, recall and F1-measure for each of the

classes of tra�c and junk are marked in bold. The voting system led to the best results,

hence we use this combined system in our relevance classification task.

Classifier Class Precision Recall F1 Macro-Averaged F1 Accuracy
Naive Bayes Tra�c 0.825 1.0 0.9041 0.8998 0.900

Junk 1.0 0.81095 0.8956

Maxent Tra�c 0.9948 0.6540 0.7892 0.8270 0.8353
Junk 0.7637 0.9969 0.8649

SVM Tra�c 0.9957 0.9898 0.9926 0.9930 0.9932
Junk 0.9910 0.9962 0.9935

Voting System Tra�c 0.9974 0.9915 0.9944 0.9947 0.9948
Junk 0.9925 0.9977 0.9950

Table 8.2: Text classification results for tra�c and junk classes

8.3 Incident Classification Evaluation

We further make a distinction between positive tra�c tweets and negative tra�c tweets:

• Positive: A tweet containing information about open lanes and clear tra�c e.g.

Update: All lanes are now clear on South US-101 in San Francisco.

3http://www.mpi-inf.mpg.de/mtb/

66 CHAPTER 8. EXPERIMENTS AND RESULTS

• Negative: A tweet announcing information about incidents, blocked lanes or road

construction e.g.

Accident blocks lanes of westbound CA-12 after Kelly Rd in Napa.

8.3.1 Data preparation

The training data and the testing data is common for all classifiers used to allow a fair

evaluation. The tweets in these data set are the same tra�c tweets collected for the

relevance classification explained in section 8.2.1. The training data consists of 2500 tweets

manually annotated. 2456 are manually classified as Negative and 544 as Positive as

explained in section 5.6.4. The percentage of positive tweets is much lower than negative

tweets because people usually tweet or complain when they are stuck in tra�c. The test

data consists of 500 manually annotated tweets. 198 tweets belong to Positive class, 302

tweets belong to Negative class. The annotations are performed by the author and a

computational linguistics student.

8.3.2 Classifiers

We use the Naive Bayes, Maximum Entropy and SMV classifiers provided by the same

libraries used in relevance classification module as described in section 8.2.

Each of the results of the three used classifiers are presented in Table 8.3.

8.3.3 Results

The results of Naive Bayes and Maxent classifiers were not very promising. This may be

due to the unbalanced data sets of the two classes. SVM outperforms the other classifiers

and for this reason we decided to use SVMs for this type of classification. The highest

precision, recall, F1-measure of each class positive and negative are marked in bold as can

be seen in Table 8.3.

8.4 Named Entity Recognition Evaluation

Our NER system consists of two phases:

8.4. NAMED ENTITY RECOGNITION EVALUATION 67

Classifier Class Precision Recall F1 Macro-Averaged F1 Accuracy
Naive Bayes Positive 0.5217 0.1655 0.2513 0.5034 0.6314

Negative 0.6461 0.9094 0.7555

Maxent Positive 0.3 0.6206 0.1028 0.4207 0.5953
Negative 0.6201 0.9135 0.7387

SVM Positive 0.9619 0.8939 0.9266 0.9406 0.9440
Negative 0.9335 0.9768 0.9546

Table 8.3: Text classification results for Positive and Negative classes

• First phase: we use Stanford NER system to recognize LOCATION class

• Second phase: we created our own dictionary that can be found in appendix A.2 to

recognize HIGHWAY, DIRECTION, PREPOSITION and VOCABULARY classes

The named entities are described in section 6.3.

8.4.1 Data Preparation

The data set consists of the 3188 tweets used in the relevance classification module and

manually annotated to be tweets related to tra�c in San Francisco area as explained

in section 8.2.1. The same 2000 tweets used to train the text classifiers (Naive Bayes,

Maxent and SVMs) are used to train the NER model. A tokenizer is used to break

the tweets into tokens with each token on a separate line. The training data contains

27780 tokens manually annotated with named entity classes. All the annotations for the

training and test data sets are performed manually by the author and a computational

linguistics student. Each token is annotated with one of the following named-entity labels:

LOCATION, HIGHWAY, DIRECTION, PREPOSITION, VOCABULARY or OTHER.

The definitions of these categories can be found in section 6.3.1.

We test the system with two data sets:

• The initial test set consisting of 1188 tra�c tweets used in relevance classification

module. This data set consists of 16725 manually annotated tokens.

• 1174 tweets out of the initial test set of 1188 tra�c tweets. The 1174 are the tweets

correctly classified as tra�c by the voting system as described in section 8.2.5. This

data set consists of 16555 manually annotated tokens.

68 CHAPTER 8. EXPERIMENTS AND RESULTS

We test our system with these two test sets because the output of each module is the input

of its successor and there is a need to get a cumulative final result.

8.4.2 Baseline

The originally trained Stanford CRF model for CoNLL and MUC datasets on English

language performs very poorly on tweets due to the unstructured nature of tweets data.

Therefore we train the system with tweets. The results of the provided models by Stanford

system when tested on tweets are shown in Table 8.4.

Entity Precision Recall F1

LOCATION 0.5840 0.2126 0.3118

Table 8.4: Stanford NER Evaluation Metrics results trained using MUC and CoNLL data
sets

8.4.3 First Phase: Stanford NER

Stanford NER is based on CRFs as described in section 6.1. To train the Stanford CRF

classifier, the data is tokenized, each line has one token tab separated from its annotation.

The classifier requires a properties file that mentions the location of the train file, the

train data description e.g it contains two columns, the first column is the word and the

second is its class. We use the embedded feature extraction methods used by default in

the classifier, such as words feature, words shapes and label sequences. The Stanford NER

classifier tags the tokens with a rate of 6827.24 tokens per second. We use the Stanford

NER to only recognize the LOCATION class. Therefore, the tokens in the training data

are manually annotated with either LOCATION or OTHER. The first and second test

data sets evaluation results are presented in Table 8.5 and Table 8.6 respectively.

8.4.4 Second Phase: Dictionary-based NER

The second phase of NER module is responsible for recognizing other named entities related

to the application such as DIRECTION, HIGHWAY, PREPOSITION, VOCABULARY as

described in details in section 6.3.2. The list of words available in our dictionary is shown

in appendix A.2. Example of a tweet after being processed by the NER module can be

found in Table 8.8.

8.4. NAMED ENTITY RECOGNITION EVALUATION 69

8.4.5 Results

Table 8.5 shows the evaluation results of Stanford NER system trained with tweets and

tested of the first data set (1188 tweets). The performance highly improved compared to

the results of the baseline shown in Table 8.4. The second test data set evaluation results

Entity Precision Recall F1

LOCATION 0.9701 0.9325 0.9510

Table 8.5: Results of Stanford NER system when tested with the original test set consisting
of 1188 tra�c tweets

are shown in Table 8.6. Precision slightly reduced.

Entity Precision Recall F1

LOCATION 0.9600 0.9325 0.9508

Table 8.6: Results of Stanford NER system when tested on 1174 (out of 1188) tweets that
were correctly classified as tra�c by the relevance classification module

Example of NER for a Tweet San Mateo Bridge: W92 before the high rise, accident

blocks the left lane.

Table 8.7 shows the annotated tweet tokens after the first phase of NER. All the tokens

Token Value Token Type
SAN LOCATION
MATEO LOCATION
BRIDGE LOCATION
W92 OTHER
BEFORE OTHER
HIGH LOCATION
RISE LOCATION
ACCIDENT OTHER
BLOCKS OTHER
LEFT OTHER
LANE OTHER

Table 8.7: Stanford NER Results for the tweet example

are annotated with their named entity classes after the two phases of NER as shown in

Table 8.8. A postprocessing step is needed to capture entities composed of more than one

70 CHAPTER 8. EXPERIMENTS AND RESULTS

Token Value Token Type
SAN LOCATION
MATEO LOCATION
BRIDGE LOCATION
W DIRECTION
92 HIGHWAY
BEFORE PREPOSITION
HIGH LOCATION
RISE LOCATION
ACCIDENT VOC
BLOCKS VOC
LEFT VOC
LANE VOC

Table 8.8: Second phase of NER Results for the tweet example

word, for example ”San Francisco”. IO encoding is applied so any two or more consecutive

words of the same named entity type or token type are combined into one token having

the respective word and assigned the same token type. The results for the example tweet

are shown in Table 8.9.

Token Value Token Type
SAN MATEO BRIDGE LOCATION
W DIRECTION
92 HIGHWAY
BEFORE OTHER
HIGH RISE LOCATION
ACCIDENT VOC
BLOCKS VOC
LEFT VOC
LANE VOC

Table 8.9: Postprocessing of the second phase NER Results for the tweet example

8.4.6 Information Extraction (IE)

In this section we describe our procedure to evaluate the IE module and show the results.

8.4. NAMED ENTITY RECOGNITION EVALUATION 71

Data Preparation

A test set consisting of 1000 tra�c tweets is used to evaluate the information extraction.

The template explained in Section 6.4 has the following slots: start point, end point, ref-

point(s), city, highway(s), direction(s) and request(s). Each tweet is used to fill the slots of

a template manually and then by our hybrid approach of rule-based IE and NER module.

The manual filling of the template are performed by the author and a computer science

student.

Results

We built a two by two contingency table for every slot in the template and then we calcu-

lated the precision, recall and F1 measure shown in Table 8.10.

A tweet might result in several requests if it contains multiple locations. Based on

Template slot Precision Recall F1

Start Point 0.975 0.975 0.975
End Point 0.956 0.965 0.960
Ref-point 0.974 0.916 0.944
Highway 0.985 0.983 0.983
Direction 0.995 0.990 0.992
County 0.984 0.988 0.985

Table 8.10: Evaluation results of template slots

our data set of 1000 tweets, 1778 requests should be extracted. Table 8.11 shows our re-

sults for false positives, false negatives, true positives and true negatives. False positive

refers to falsely formulated requests, true positive refers to correctly formulated requests,

false negative refers to missing requests and true negative denotes that no requests were

extracted because the tweet does not contain enough information.

Correct Request Incorrect Request
selected 1533(tp) 135(fp)
not selected 59(fn) 51 (tn)

Table 8.11: 2-by-2 contingency table for the Request slot

We consider the precision and recall of Request slot as the output of the IE module. Table

72 CHAPTER 8. EXPERIMENTS AND RESULTS

8.12 shows the precision, recall and F1 of the Request slot based on the the contingency

table in 8.11. These values are considered the evaluation results for the IE module as

shown in Table 8.12.

Module Precision Recall F1

IE 0.9190 0.9629 0.9404

Table 8.12: IE module results

8.5 Routing

In this section, we analyze a tweet processed by our system and show the results of routing

before and during a tra�c jam.

8.5.1 Geocoding

We use the following tweet as an example for showing the extracted locations and the

requests sent to the Geocoding API as shown in Table 8.13.

Tweet #Oakland occupy protestors have broadway completely blocked on BRDWY

BOTH NB/SB at 14TH ST #tra�c http://t.co/iCaIKcDy

The returned responses are plotted on the map by placing markers as shown in figure 8.1.

Request Response
14TH Street, Oakland, CA, USA (37.809835,-122.287618)
Broadway, Oakland, CA, USA (37.827637,-122.256554)

Table 8.13: Requests and responses of a tweet

8.5.2 Visualizing the extracted locations

JXMapViewer is used to place markers on the map depending on the geographical locations

consisting of longitude and latitude returned from the Geocoding API. A tweet may result

in several markers plotted on the map depending on the amount of information extracted.

8.5. ROUTING 73

Figure 8.1: Markers at locations returned by the Geocoding API

8.5.3 Results

Figure 8.2 (a) shows the route between two points passing by ”14th Street, Oakland”

before any incident has been taken into consideration and after the tra�c jam occurred.

Our implementation of Dijkstra, shortest path algorithm, resulted in a path length of

28826m and 166 nodes shown by the black line. After penalizing the edges around ”14th

Street”, the route length between the source and the destination is 29664m and the path

includes 151 nodes. Figure 8.2 (b) shows the routes when considering the incident at

”Broadway”.

74 CHAPTER 8. EXPERIMENTS AND RESULTS

(a) Incident at 14th Street

(b) Incident at Broadway

Figure 8.2: The red map markers are placed at center of the locations extracted from the
tweet where tra�c problems exist. The blue dot denotes the start point of a route and the
red dot denotes the destination point. The black line refers to the shortest path between
the start and the destinations points if there is no tra�c problems. The red line denotes
the alternative route suggested after considering the tra�c jams happening at the red map
markers.

8.6. SYSTEM PERFORMANCE ON SELECTED TWEETS 75

8.6 System Performance On Selected Tweets

In this section, we select 10 tweets and show the results of processing them through all

modules of our system. Section 8.6.1 shows results of 3 tweets that were correctly clas-

sified as tra�c by our system (true positives). Section 8.6.2 shows examples of 2 tweets

that were falsely classified as junk by our system although they are tra�c tweets (false

negatives). Section 8.6.3 shows examples of 3 tweets correctly classified as junk (true nega-

tives). Finally, section 8.6.4 shows examples of 2 tweets that were falsely classified as tra�c

although they were junk tweets (false positives). We create a table for each tweet that

carries the results of all system modules and then provide a screenshot from our application

for visualizing the tweets. Each table has the following entries:

• Relevance classification result: tra�c or junk.

• Incident classification result: positive or negative.

• NER module results with each token annotated with its entity class.

• IE results with each slot in the template filled or none if no information is extracted

for the slot.

• Geocoding requests and results.

8.6.1 True Positives

Table 8.14 shows the results of a tra�c positive tweet where all the information has been

correctly extracted. A screenshot of the locations can be found in Figure 8.3.

76 CHAPTER 8. EXPERIMENTS AND RESULTS

Tweet#1 All Lanes are Open on CA-12 in Sonoma County.

Text Classification Relevance Classification Incident Classification
Tra�c Positive

NER Token Value Token Type
LANES VOC
OPEN VOC
ON PREP
CA-12 HIGHWAY
IN PREP
SONOMA COUNTY LOCATION

Template Slot Value
Start point None
End point None
Ref-point None
Highway CALIFORNIA 12
Direction None
City SONOMA COUNTY

Geocoding Requests Responses
California 12, Sonoma County, CA, US 38.39860560, -122.53740210

Table 8.14: Results of tweet#1 after passing through all system modules

Table 8.15 shows the results of a tra�c negative tweet where all the information has

been correctly extracted. A screenshot of the locations can be found in Figure 8.3.

8.6. SYSTEM PERFORMANCE ON SELECTED TWEETS 77

Tweet#2 Cupertino accident SB 280 at Hwy 85 blocking 3-right lanes, only left lane
open. Tra�c slow from Foothill Expwy.

Text Classification Relevance Classification Incident Classification
Tra�c Negative

NER Token Value Token Type
CUPERTINO LOCATION
ACCIDENT VOC
SB DIRECTION
280 HIGHWAY
AT PREP
HWY 85 HIGHWAY
3-RIGHT OTHER
LANES VOC
LEFT VOC
LANE VOC
OPEN VOC
TRAFFIC VOC
SLOW VOC
FROM PREP
FOOTHILL EXPWY LOCATION

Template Slot Value
Start point FOOTHILL EXPWY
End point None
Ref-point CALIFORNIA 85
Highway INTERSTATE 280
Direction SB
City CUPERTINO

Geocoding Requests Responses
California 85, Cupertino & Interstate 280 37.33119090, -122.05587250
Foothill Expwy, Cupertino, CA ,USA 37.33559680, -122.06820270

Table 8.15: Results of tweet#2 after passing through all system modules

Table 8.16 shows the results of a tra�c tweet but does not mention useful information

about tra�c status. NER module falsely classified one token as LOCATION although it

is OTHER (marked in bold in Table 8.16). Consequently, the ”city” slot in the template

was incorrectly filled. However, no requests have been sent to the Geocoding API because

most of the template slots are empty.

78 CHAPTER 8. EXPERIMENTS AND RESULTS

Tweet#3 Hella tra�c but I’m in the carpool lane tho!!! #winning #Hipstamatic
#LuciferVI #BlankoFreedom13

Text Classification Relevance Classification Incident Classification
Tra�c Negative

NER Token Value Token Type
HELLA LOCATION
TRAFFIC VOC
I OTHER
M OTHER
IN PREP
CARPOOL OTHER
LANE VOC
THO OTHER
WINNING OTHER
HIPSTAMATIC OTHER
LUCIFERVI OTHER
BLANKTOFREEDOM13 OTHER

Template Slot Value
Start point None
End point None
Ref-point None
Highway None
Direction None
City HELLA

Geocoding Requests Responses
None None

Table 8.16: Results of tweet#3 after passing through all system modules

8.6. SYSTEM PERFORMANCE ON SELECTED TWEETS 79

(a) Tweet#1 and Tweet#2 (b) Tweet#1

(c) Tweet#2

Figure 8.3: Visualization of selected tweets. Red marker denotes negative tweet, blue
marker denotes positive tweet

80 CHAPTER 8. EXPERIMENTS AND RESULTS

8.6.2 False Negatives

The following tweets are falsely classified as junk although they are tra�c:

• The bag of words classifier fails in Tweet#4 because the words are not strong cues

for tra�c.

Tweet#4 San Mateo Bridge: still a decent alternative. WB slows Hayward side but

not stop and go, yet. Easy ride rest of the way to Peninsula.

• The reason behind Tweet#5 being treated as junk falsely might be due to words like

”roadway” and ”guardrail” that do not occur in the training data set and hence not

considered tra�c signals.

Tweet#5 Hercules: EB 4 at Franklin Cnyn Golf Course; overturned pickup truck

with injuries thru the guardrail and o↵ the roadway

However, the percentage of false negatives tweets in our system is very small according to

our test data set described in section 8.2.1. Our test data set for tra�c class consists of

1188 tra�c tweets and our system classified correctly 1174 tweets out of them. According

to this data set, 14 out of 1188 tweets are false negatives.

8.6.3 True Negatives

The following tweets are example tweets that are correctly classified as junk :

Tweet#6 I recently saved a ton of money on my car insurance by fleeing the scene of the

accident.

Tweet#7 I’m at City of Livermore (Livermore, CA)

Tweet#8 #Oakland The current time in Oakland is 7:45 AM on Tuesday, 25 September

2012

8.6.4 False Positives

In this section, we present two tweets that are falsely classified by our system as tra�c

although they are junk. In Table 8.17, NER module correctly recognized the named entities.

Consequently, the ”ref-point” slot in the template has been filled. However, since the

template had only the ”ref-point” slot filled, no requests have been sent to the geocoding

API and no false information were provided to the user of the system.

8.6. SYSTEM PERFORMANCE ON SELECTED TWEETS 81

Tweet#9 Never on time, always late. On the bay bridge or the golden gate.

Text Classification Relevance Classification Incident Classification
Tra�c Negative

NER Token Value Token Type
NEVER OTHER
ON PREP
TIME OTHER
ALWAYS OTHER
LATE OTHER
ON PREP
BAY BRIDGE GOLDEN GATE LOCATION

Template Slot Value
Start point None
End point None
Ref-point BAY BRIDGE GOLDEN GATE
Highway None
Direction None
City None

Geocoding Requests Responses
None None

Table 8.17: Results of tweet#9 after passing through all system modules

Table 8.18 shows the results of a tweet falsely classified as tra�c. The tweet did not

contain any locations, highways or directions so all the template slots were empty and

consequently no false information was provided to the system user.

Finally, we can assume that even when tweets are falsely classified as tra�c, if the majority

of the template slots are empty then we do not visualize them and hence do not provide

false tra�c information.

82 CHAPTER 8. EXPERIMENTS AND RESULTS

Tweet#10 On a day when you delay me and have broken elevators, you check that I’ve
paid for this service...

Text Classification Relevance Classification Incident Classification
Tra�c Negative

NER Token Value Token Type
ON PREP
DAY OTHER
DELAY OTHER
AND OTHER
BROKEN OTHER
ELEVATORS OTHER
CHECK OTHER
I OTHER
’VE OTHER
PAID OTHER
FOR OTHER
SERVICE OTHER

Template Slot Value
Start point None
End point None
Ref-point None
Highway None
Direction None
City None

Geocoding Requests Responses
None None

Table 8.18: Results of tweet#10 after passing through all system modules

Chapter 9

Conclusion

In this thesis, we proposed a system that leverages Twitter to extract temporary tra�c

information and use it for route planning. The system is configured to work for the San

Francisco Bay Area. It consists of several modules where the output of each module is the

input of its successor module.

The first module is the interface with Twitter, responsible for retrieving tweets pub-

lished on the public timeline. Tweets are tokenized and then a preprocessor module re-

moves stopwords and URLs. The next module is concerned with text classification. First,

we classify each incoming tweet into either tra�c or junk. We adopted three widely known

algorithms in text classification: Naive Bayes, Maximum Entropy and SVMs. One of the

main challenges was to construct a gold dataset necessary for training and testing the text

classifiers. The best result was obtained when combining the three classifiers in a voting

system achieving an F1-measure of 99.4% on our test set. Additionally, we classify each

tra�c tweet into positive or negative. SVMs outperformed Naive Bayes and Maxent in this

classification type achieving an F1-measure of 94.06%

Next is the NER module. The NER module consists of two steps, the Stanford NER

system trained on annotated tra�c tweets responsible for recognizing locations in tra�c

tweets and a dictionary-based step by the means of words extracted from tweets related to

tra�c in the San Francisco Bay Area for recognizing highways, directions, prepositions and

vocabulary related to tra�c. We tested the NER system with the tweets resulting from

the text classification module and achieved an F1-measure of 95.08%. A template is then

filled for each tweet using the extracted information achieving an F1-measure of 94.04%.

Combining NER and IE resulted in an F1-measure of 94.54%.

83

84 CHAPTER 9. CONCLUSION

Mapping the extracted locations into geographical coordinates is the role of the Geocod-

ing module. Our system prototype uses the Google Geocoding API.

The last module is the routing. We created our own data structure to represent Cali-

fornia. It is a graph consisting of vertices V and edges E connecting them. Each edge has

a weight equal to the distance between the two points it is connecting. We implemented

Dijkstra to obtain the shortest path between two points. We created a new weight function

which takes as parameters the distance between two points and a weight assigned to the

edge based on the status of the tra�c extracted from Twitter. All locations where incidents

have been recorded are plotted on a map by placing markers at the specified coordinates

using JXMapViewer.

Future Work

Probing deeper, the results in this thesis provide a good foundation for future work. A

challenging task would be to build the dictionary in an automated manner instead of our

manual approach. This will allow the IE module to be ported to other areas and other

languages.

Also, it would be interesting to obtain larger data sets to train and test the classifiers

that might lead to better precision and recall values and more generalized tasks.

In text classification module, our voting scheme that combines three classifiers (Naive

Bayes, Maximum Entropy and SVMs) is very simple and can be extended into a weighted

voting system.

Our system is developed to work on one machine. The system can be extended to work

on a cluster for a better real-time performance.

The system can also be integrated with TourenPlaner1 developed by FMI department

at University of Stuttgart.

1http://tourenplaner.informatik.uni-stuttgart.de/

Appendix A

Appendix

A.1 List of Stopwords

a about add ago all also an
another any are as be because been
being big both but by came can
come could did do does due each
else end far few get got had
has have he her here him himself
his how if is it its just
let lie like low make many me

might more most much must my never
no nor not o↵ old only or

other our out over per put said
same see she should since so some
still such take than that the their
them then there these they this those

through too under up use very want
was we well were what when where
which while who why will with would
yes yet you your

Table A.1: Stopwords List

85

86 APPENDIX A. APPENDIX

A.2 Dictionary

A.2.1 Prepositions

across after at before between beyond from
in near of on onto past to

Table A.2: Prepositions List

A.2.2 Vocabulary related to tra�c

accident avoid block car cement
clear close collision crash debris
delay direction disable expect injury

incident lane left light metering
middle now object open right
road shoulder slow tractor tra�c
truck vehicle

Table A.3: Vocabulary List

A.3 Pruned Punctuation marks

? . : ; (
) []

Table A.4: List of pruned punctuation marks

A.4 Twitter Request parameters

• track: A list of the words available in the dictionary presented in Appendix 1.2

• follow: A list of user ids to follow.

– KCBS Tra�c @kcbstra�c

A.4. TWITTER REQUEST PARAMETERS 87

– 511 Bay Area @511SFBay

– 511 Rideshare @511Rideshare

– Golden Gate Bridge @GGBridge

– Bay Bridge @BayBridgeInfo

– Eric C. @transbay

– ActionNewsSF2 @ActionNewsSF2

– KGO Radio @kgoradio

– SF Bay Area Tra�c @BayAreaCommuter

– The Highway Monitor @CAI80thm

– Sal Castaneda @sal castaneda

• locations: longitude and latitude of San Francisco bounding box, North East -

122.75 , 36.8 and South West -121.75 , 37.8

Bibliography

[1] S. Asur and B.A. Huberman. Predicting the future with social media. Arxiv preprint

arXiv:1003.5699, 2010.

[2] N. Chambers and D. Jurafsky. Templatebased information extraction without the

templates. In Proceedings of ACL, 2011.

[3] J. Chen, R. Nairn, L. Nelson, M. Bernstein, and E. Chi. Short and tweet: experi-

ments on recommending content from information streams. In Proceedings of the 28th

international conference on Human factors in computing systems, pages 1185–1194.

ACM, 2010.

[4] M. Cheong and V. Lee. Integrating web-based intelligence retrieval and decision-

making from the twitter trends knowledge base. In Proceeding of the 2nd ACM work-

shop on Social web search and mining, pages 1–8. ACM, 2009.

[5] N. Chinchor, D.D. Lewis, and L. Hirschman. Evaluating message understanding sys-

tems: an analysis of the third message understanding conference (muc-3). Computa-

tional linguistics, 19(3):409–449, 1993.

[6] N.A. Diakopoulos and D.A. Shamma. Characterizing debate performance via aggre-

gated twitter sentiment. In Proceedings of the 28th international conference on Human

factors in computing systems, pages 1195–1198. ACM, 2010.

[7] Cassaundra Doerhmann. Named entity extraction from the colloquial setting of twit-

ter.

[8] T. Finin, W. Murnane, A. Karandikar, N. Keller, J. Martineau, and M. Dredze.

Annotating named entities in twitter data with crowdsourcing. In Proceedings of the

89

90 BIBLIOGRAPHY

NAACL HLT 2010 Workshop on Creating Speech and Language Data with Amazon’s

Mechanical Turk, pages 80–88. Association for Computational Linguistics, 2010.

[9] J.R. Finkel and C.D. Manning. Nested named entity recognition. In Proceedings of

the 2009 Conference on Empirical Methods in Natural Language Processing: Volume

1-Volume 1, pages 141–150. Association for Computational Linguistics, 2009.

[10] J. Friedl. Mastering regular expressions. O’Reilly Media, Inc., 2006.

[11] W. Hill and L. Terveen. Using frequency-of-mention in public conversations for so-

cial filtering. In Proceedings of the 1996 ACM conference on Computer supported

cooperative work, pages 106–112. ACM, 1996.

[12] B. Huberman, D. Romero, and F. Wu. Social networks that matter: Twitter under

the microscope. 2008.

[13] M. Jansche and S.P. Abney. Information extraction from voicemail transcripts. In

Proceedings of the ACL-02 conference on Empirical methods in natural language

processing-Volume 10, pages 320–327. Association for Computational Linguistics,

2002.

[14] B.J. Jansen, M. Zhang, K. Sobel, and A. Chowdury. Twitter power: Tweets as

electronic word of mouth. Journal of the American society for information science

and technology, 60(11):2169–2188, 2009.

[15] A. Java, X. Song, T. Finin, and B. Tseng. Why we twitter: understanding microblog-

ging usage and communities. In Proceedings of the 9th WebKDD and 1st SNA-KDD

2007 workshop on Web mining and social network analysis.

[16] B. Krishnamurthy, P. Gill, and M. Arlitt. A few chirps about twitter. In Proceedings

of the first workshop on Online social networks, pages 19–24. ACM, 2008.

[17] G.R. Krupka and K. Hausman. Isoquest inc.: Description of the netowl (tm) extractor

system as used for muc-7. In Proceedings of MUC, volume 7, 1998.

[18] J. La↵erty, A. McCallum, and F.C.N. Pereira. Conditional random fields: Probabilistic

models for segmenting and labeling sequence data. 2001.

BIBLIOGRAPHY 91

[19] X. Liu, S. Zhang, F. Wei, and M. Zhou. Recognizing named entities in tweets. In Pro-

ceedings of the 49th Annual Meeting of the Association for Computational Linguistics:

Human Language Technologies (ACL-HLT 2011), Portland, Oregon, 2011.

[20] X. Liu, M. Zhou, F. Wei, Z. Fu, and X. Zhou. Joint inference of named entity

recognition and normalization for tweets.

[21] B. Locke and J. Martin. Named entity recognition: Adapting to microblogging. Senior

Thesis, University of Colorado, 2009.

[22] K. Makice. Twitter API: Up and running. O’Reilly Media, 2009.

[23] C. Manning and D. Klein. Optimization, maxent models, and conditional estimation

without magic. In Proceedings of the 2003 Conference of the North American Chapter

of the Association for Computational Linguistics on Human Language Technology:

Tutorials-Volume 5, pages 8–8. Association for Computational Linguistics, 2003.

[24] C.D. Manning, P. Raghavan, and H. Schutze. Introduction to information retrieval,

volume 1. Cambridge University Press Cambridge, 2008.

[25] M.R. Morris, J. Teevan, and K. Panovich. What do people ask their social networks,

and why?: a survey study of status message q&a behavior. In Proceedings of the 28th

international conference on Human factors in computing systems, pages 1739–1748.

ACM, 2010.

[26] W. Murnane. Improving accuracy of named entity recognition on social media data.

PhD thesis, University of Maryland, 2010.

[27] M. Naaman, J. Boase, and C.H. Lai. Is it really about me?: message content in

social awareness streams. In Proceedings of the 2010 ACM conference on Computer

supported cooperative work, pages 189–192. ACM, 2010.

[28] N. Nicolosi. Feature selection methods for text classification. 2008.

[29] D.W. Oard. The state of the art in text filtering. User Modeling and User-Adapted

Interaction, 7(3):141–178, 1997.

92 BIBLIOGRAPHY

[30] B. Onyshkevych. Template design for information extraction. In Proceedings of the

5th conference on Message understanding, pages 19–23. Association for Computational

Linguistics, 1993.

[31] O. Phelan, K. McCarthy, and B. Smyth. Using twitter to recommend real-time topical

news. In Proceedings of the third ACM conference on Recommender systems, pages

385–388, 2009.

[32] A. Ritter, S. Clark, and O. Etzioni. Named entity recognition in tweets: An experi-

mental study. 2011.

[33] Jagan Sankaranarayanan, Hanan Samet, Benjamin E. Teitler, Michael D. Lieberman,

and Jon Sperling. Twitterstand: news in tweets. In Proceedings of the 17th ACM

SIGSPATIAL International Conference on Advances in Geographic Information Sys-

tems, GIS ’09, pages 42–51, New York, NY, USA, 2009. ACM.

[34] F. Sebastiani. Machine learning in automated text categorization. ACM computing

surveys (CSUR), 34(1):1–47, 2002.

[35] D. Shamma, L. Kennedy, and E. Churchill. Tweetgeist: Can the twitter timeline

reveal the structure of broadcast events. CSCW Horizons, 2010.

[36] D.A. Shamma, L. Kennedy, and E.F. Churchill. Tweet the debates: understanding

community annotation of uncollected sources. In Proceedings of the first SIGMM

workshop on Social media, pages 3–10. ACM, 2009.

[37] S. Singh, D. Hillard, and C. Leggetter. Minimally-supervised extraction of entities

from text advertisements. In Human Language Technologies: The 2010 Annual Con-

ference of the North American Chapter of the Association for Computational Linguis-

tics, pages 73–81. Association for Computational Linguistics, 2010.

[38] S.S. Skiena. The algorithm design manual, volume 1. Springer, 1998.

[39] NV Sobhana, P. Mitra, and SK Ghosh. Conditional random field based named entity

recognition in geological text. International Journal of Computer Applications IJCA,

1(3):143–147, 2010.

BIBLIOGRAPHY 93

[40] B. Sriram, D. Fuhry, E. Demir, H. Ferhatosmanoglu, and M. Demirbas. Short text

classification in twitter to improve information filtering. In Proceeding of the 33rd

international ACM SIGIR conference on research and development in information

retrieval, pages 841–842. ACM, 2010.

[41] C. Wagner and M. Strohmaier. The wisdom in tweetonomies: Acquiring latent concep-

tual structures from social awareness streams. In Proceedings of the 3rd International

Semantic Search Workshop, page 6. ACM, 2010.

[42] N. Wanichayapong, W. Pruthipunyaskul, W. Pattara-Atikom, and P. Chaovalit.

Social-based tra�c information extraction and classification. In ITS Telecommuni-

cations (ITST), 2011 11th International Conference on, pages 107–112. IEEE, 2011.

[43] J. Weng, E.P. Lim, J. Jiang, and Q. He. Twitterrank: finding topic-sensitive influential

twitterers. In Proceedings of the third ACM international conference on Web search

and data mining, pages 261–270. ACM, 2010.

[44] Dejin Zhao and Mary Beth Rosson. How and why people twitter: the role that micro-

blogging plays in informal communication at work. In Proceedings of the ACM 2009

international conference on Supporting group work, GROUP ’09, pages 243–252, New

York, NY, USA, 2009. ACM.

Erklärung

Ich versichere, diese Arbeit selbstsändig verfasst zu haben.

Ich habe keine anderen als die angegebenen Quellen benutzt und alle wörtlich oder

sinngemäßaus anderen Werken übernommene Aussagen als solche gekennzeichnet.

Weder diese Arbeit noch wesentliche Teile daraus waren bisher Gegenstand eines

anderen Prünfungsverfahrens.

Ich habe diese Arbeit bisher weder teilweise noch vollständig verö↵entlicht.

Das elektronische Exemplar stimmt mit allen eingereichten Exemplaren überein.

(Mirna Megally)

