
Institut für Visualisierungsinstitut

Universität Stuttgart
Allmandring 19

D-70569 Stuttgart

Master’s thesis Nr. 3340

Implementation of an Interactive
Visualization Tool for Analyzing

Dynamic Hierarchies

Christine Louka

Course of Study: Infotech

Examiner: Prof. Dr. Daniel Weiskopf

Supervisor: Dr. rer. nat. Michael Burch

Commenced: May 15, 2012

Completed: November 14, 2012

CR-Classification: H.5.2

Abstract

Many real world examples can be found that deal with hierarchical data. Software sys-
tems typically consist of packages, directories, subdirectories, files, classes, and functions.
Phylogenetic trees structure biological species into a hierarchical organization. Visualiz-
ing such static hierarchical data has been in focus of Information Visualization for many
years. Visually encoding and understanding of evolving hierarchies still remains a chal-
lenging task. Since hierarchies may grow huge and may evolve over a long time producing
many time steps, we make use of a side-by-side and aligned representation of Indented
Pixel Tree Plots. To achieve a mental map preserving overview-based diagram we show
the dynamics of a hierarchy by a static representation and illustrate the changes between
subsequent hierarchies by special links. Interactive features make the data manipulable
and navigable in all dimensions.

I

Acknowledgement

First and foremost I would like to thank God for his blessings, support and the strength
he gave me.

It gives me great pleasure in acknowledging the support, help and guidance of Dr.
rer. nat. Michael Burch. Thank you for your fast e-mail replies even when you were on
business trips or holidays.

I also want to thank my friends in Stuttgart whom I cannot find words to express my
gratitude to, Mirna Aiman, Michael Guirguis, Mariam Hassib, Ghada dessouky, Youssef
Ghaly, Pierre Ibrahim, Mina Metias, Ahmed Halawa and Amr yassin. It was a two year
journey and they have always been there supporting and helping me all the way, I cannot
thank them enough.

This thesis would not have been possible without my parents’ encouragement and
insistence on travelling and doing my masters abroad, so a big thanks to my mother and
my father as well as to my twin sister Sandra Louka who was there whenever I needed
her the most with her love and patience.

And last but not least, I would like to thank my friends and family in Egypt for their
prayers and support from long distance. They always cared on asking me how I am doing
and always encouraged me.

Each of you can share in this accomplishment, for without your support it would not
have been possible.

III

Contents

List Of Figures VIII

List Of Abbreviations IX

1 Introduction 1
1.1 A Motivating Example . 1
1.2 Aim of the Project . 3
1.3 Remainder Of The Master Thesis . 3

2 State Of The Art 5
2.1 Hierarchy Visualization Systems . 5

2.1.1 Node-link diagrams . 6
2.1.2 Treemaps . 7
2.1.3 Layered icicle . 11
2.1.4 Indented layout . 17
2.1.5 Hybrid Representation . 19

2.2 Technique for changing hierarchical data 20
2.3 Time-Series Visualization . 20

2.3.1 Animation vs. Static . 20
2.3.2 Mental Map . 21

3 Case Studies 23

4 Project Architecture 33
4.1 Process Overview . 33
4.2 Class Diagram . 34
4.3 Features and Functionalities . 37

5 Implementation 39
5.1 Newick File Parser . 39

5.1.1 Node . 42
5.2 Search Engine . 42
5.3 Collapse/Expand Algorithm . 43
5.4 File Hierarchies Comparison . 44

5.4.1 Comparison Algorithm . 44
5.5 Visualization . 49
5.6 IPTPtool . 54

V

6 Conclusion 57

A User Manual 59
A.1 Menu Bar . 59
A.2 Tool Bar . 61
A.3 Configuration Panel . 63
A.4 Detail Panel . 65
A.5 Control Panel . 69
A.6 Hierarchy Panel . 70
A.7 Bar Chart Panel . 71

VI

List of Figures

1.1 Node-link diagram of a hierarchy in a top-down layout 1
1.2 The changes of a hierarchical organization 2

2.1 Visual metaphors for hierarchical data 5
2.2 Node-link diagram . 7
2.3 Di↵erent Treemap layouts . 8
2.4 Nested Treemap . 9
2.5 Cushion Treemap . 10
2.6 Pebble Treemap . 10
2.7 Voronoi Treemap . 11
2.8 Cartesian layout . 12
2.9 Sunburst layout . 13
2.10 Information slices . 14
2.11 Angular detail technique . 15
2.12 Operations implemented for interactivity on hierarchical structures . . . 16
2.13 Windows Explorer . 17
2.14 Indented pixel tree plot . 18
2.15 Elastic hierarchy . 20
2.16 IPTPs compared . 22

3.1 IPTP representing the ’NCBI taxonomy’ highlighting a subregion 24
3.2 IPTP representing the ’NCBI taxonomy’ illustrating the deepest leaf nodes 25
3.3 IPTPs of the ’dblp.newick.100’ file . 26
3.4 Hierarchy Legend . 26
3.5 IPTPs of the ’dblp.newick.100’ file after comparison 27
3.6 IPTPs of the ’dblp.newick.100’ file after applying filters 28
3.7 IPTPs of the ’dblp.newick.100’ file after a node search 29
3.8 IPTPs of the ’dblp.newick.100’ file after applying the time filter 29
3.9 IPTPs of the ’dblp.newick.100’ file after multiple filter application 30
3.10 Information on specific IPTPs . 31

4.1 Process overview diagram . 33
4.2 Class diagram (1) . 35
4.3 Class diagram (2) . 36

5.1 Tree representation of a parsed newick file 39
5.2 Collapse/Expand illustration . 43
5.3 Delta . 46

VII

5.4 The Graphical User Interface of the Tool 54

A.1 The Graphical User Interface of the tool 60
A.2 Tool bar . 62
A.3 Zoom slider . 64
A.4 Filter . 65
A.5 Search engine . 66
A.6 Resolution mode . 66
A.7 Hovered nodes details area . 67
A.8 General file details . 68
A.9 Delta . 68
A.10 Graph legend . 69
A.11 Control modes . 70
A.12 IPTPs display area . 70
A.13 Bar chart . 71

VIII

List of Abbreviations

NLD Node-Link Diagram

IPTP Indented Pixel Tree Plot

RSF Radial space-filling

GUI Graphical User Interface

DBLP DataBase systems and Logic Programming

NCBI National Center for Biotechnology Information

JPEG Joint Photographic Experts Group

IX

Chapter 1

Introduction

Hierarchical data occurs in many application domains. File systems consist of directo-

ries, subdirectories and files. Also in the software development process, a hierarchically

organized project is needed to better maintain the whole system and prevent bugs. In

the field of biology, the NCBI taxonomy expresses which organisms belong to which

sub-hierarchies and build a phylogenetic tree. The visualization of static hierarchies has

been in focus of research for a long time [17] but evolving hierarchical data is still a big

challenge for the visualization community.

1.1 A Motivating Example

In the domain of software development and programming we have to deal with large

amounts of data. Typically, software is composed of entities that are hierarchically orga-

nized into code blocks, methods/functions, classes, files, subdirectories, directories, and

packages. Figure 1.1 shows an example of a hierarchy containing 7 vertices at a depth

of 2. The node labelled with ”F” is the root node, ”E” is the only inner node and ”A”,

”B”, ”C”, ”D”, and ”Q” are the leaf nodes of this hierarchy.

F

A B E

C D

Q

Figure 1.1: Node-link diagram of a hierarchy in a top-down layout

Software systems are not static but they are evolving over time. Consequently, the

hierarchical organization is also not static but is changing over time more or less fre-

quently. For example, there maybe added or removed software entities as well as those

1

that are just moved to another part of the hierarchy which is a typical phenomenon when

restructuring or refactoring the software system. An illustration of such changes is shown

in Figure 1.2.

F

A

M N P

B E

C D

Q

(a) Original hierarchy

F

A

M N P

B E

C

Q

(b) Deletion of D

F

A

M N P

B E

C

Q

O

(c) Addition of O

F

A

P N M

B E

C

Q

O

(d) Exchange position of siblings M and P

F

A

P N

B E

C

Q

O M

(e) Modified position of M

Figure 1.2: The changes of a hierarchical organization

Telea and Auber [31] have already introduced a system that deals with software

systems that illustrate the changes discussed above. Their work focuses on changes of

source code overtime whereas the proposed visualization tool is able to work with any

kind of evolving hierarchical data.

Hierarchical data can become large in many dimensions depending on the application

domain. In software development for example we may have to deal with several million

elements on the source code level and several thousand time steps depending on the

granularity of the analyzed time interval.

An exploration of the raw textual data is hence a very time-consuming process if not

impossible at all. For this reason, visualization is applied to such time-varying hierarchical

datasets with the goal to find as many insights in the data as e�cient as possible by

exploring the perceptual abilities of the human visual system and the strengths for pattern

recognition.

2

1.2 Aim of the Project

Hierarchical datasets can be found in many application domains where a large number

of items (files, products, employees, stocks, etc.) can be handled and managed more

e�ciently when they are grouped into larger entities.

Nowadays, huge amounts of data are stored in databases, archives and even clouds,

so this makes it important for the person in need of a specific information extracted from

a huge pile of data to have an easy user friendly tool that helps visualizing certain data

depending on user specifications and needs. Hospitals for example, have large amounts of

files storing patients’ medical history along with their personal information. Being able

to keep track of all these information and keep track of changes is a tiring and challenging

process. Changes mentioned could be like having data moved, deleted or added which

a↵ects the hierarchy of files and folders. Hence the importance of hierarchy comparison

is required.

Small hierarchical structures are very e↵ective to locate information, but the content

and organization of large structures is much harder to grasp. So in such cases the visual-

ization of large hierarchical datasets is an important topic in the visualization community.

Comparison of hierarchical information is of importance within various areas; for ex-

ample, evolutionary biology, human resources and personnel, software development and

hospitals as mentioned above [35]. Since human vision is sensitive to patterns, variation

of colors and shapes we can have answers to specific questions very quickly. So visualiza-

tion allows us to focus only on information that is important such as trends and outliers.

The aim of this project is to implement a tool that is capable of visualizing and

interacting with large amounts of data in a user friendly manner to have a better and

faster understanding of the data. To this end there are many visualization techniques

for visualizing and analyzing large datasets. In this thesis we apply the approach of

Indented Pixel Tree Plots (IPTPs) as the technique for analyzing dynamic hierarchies

since it provides a scalable variant for visualizing hierarchies and allows good comparisons

between time steps by aligning the plots side-by-side.

1.3 Remainder Of The Master Thesis

This thesis consists of the following chapters. Chapter 2 discusses the State of the

art in visualizing hierarchical datasets, explaining the di↵erent techniques for exploring

3

large amount of information as well as the di↵erent methods of dynamic visualization

and how to preserve the mental map. Followed by Chapter 3 describing the datasets

used for user testing and the insight gained after visualizing them. In Chapter 4,

the project architecture is described embracing the process overview, the class diagram

and the features and functionalities introduced by the tool. Chapter 5 discusses the

implementation of all algorithms and methods and describes the Graphical User Interface

(GUI) of the tool. Finally, Chapter 6 contains the conclusion, the limitations and

provides possible directions for future work.

4

Chapter 2

State Of The Art

(a) Node-link dia-
gram

(b) Treemap (c) Layered icicle
plot

(d) Indented outline

Figure 2.1: Visual metaphors for representing hierarchical data: (a)Node-link diagram.
(b)Treemap. (c) Layered icicle plot. (d) Indented outline.

There is more than one method of hierarchy visualization available nowadays so it would

be more e↵ective to have them organized into categories. The first category contains

node-link diagrams, the second nested enclosure techniques (space-filling technique [6])

like the Treemap, the third category the stacking approaches (Layered icicles), leaving

the indented outline style in the fourth category, see Figure 2.1(a)-(d). Even though each

category has its own advantages and disadvantages the only identification of perfection of

such a category can be investigated by conducting comparative user studies for di↵erent

user tasks that needs to get accomplished using the di↵erent categories mentioned.

2.1 Hierarchy Visualization Systems

Since the hierarchical data structure has been widely used specially in the Information

Visualization area [19], the most common structure would be the tree-like (node-link)

structure and it can be used in the visualization of file system, organizational charts,

5

web sites, decision trees, genealogy and digital libraries. Even though such a structure is

widely used and various layout algorithms have been developed as well the main problem

there is the e�ciency of conveying the topological structure of large trees when visualized.

The main purpose of the visualization techniques proposed is to solve problems asso-

ciated with hierarchy visualization techniques, i.e., such problems could be as follows:

• Using e�ciently the available display space while conveying the complete hierarchi-

cal structure

• Allowing the user to examine details of various regions of the hierarchy simultane-

ously

• Enabling the user to easily interact with the hierarchy and perform tasks such as

modifying the hierarchy and selecting nodes on which to perform operations

Despite the various advantages of those techniques, however, neither one of them can

solve all the problems whereas most recent hierarchy visualization research focused on

the challenge of displaying large hierarchies in an easily comprehended form.

2.1.1 Node-link diagrams

The node-link diagram (NLD) represented in Figure 2.1(a), is probably the most natural

way to display nesting structures [23]. It is the most familiar diagram to users and it is

appropriate for displaying the shape and structure of a tree. However, it fails to scale

for large datasets. Node-link diagrams are suited better for showing the di↵erent levels

and depths of a hierarchical structure. For example, Battista et al. [5], and Reingold

and Tilford [23] use conventional node-link diagrams to depict relationships between

hierarchically ordered elements. The node-link visual metaphor is considered the most

widely used, well-established, de-facto standard for hierarchy visualization [2].

Node-link diagrams convey a clear and unambiguous structure of nodes. The parent-

child relationship is represented using links and elements which are presented as nodes.

However, node-link diagrams distribute nodes unevenly, leaving upper level nodes sepa-

rated by white space, and lower nodes densely packed. While node-link diagrams show

nesting structures very clearly, they consume screen space ine�ciently, and do not scale

well for large datasets. This means they are only beneficial when small trees need to get

displayed, as a result many approaches have been proposed to supplement the node-link

diagrams. The well-known alternatives include Treemaps, cone trees, and the hyperbolic

browser [38].

6

Figure 2.2: Node-link diagram [38]

2.1.2 Treemaps

Treemaps are enclosure diagrams belonging to the space-filling techniques. Instead of

using adjacency or node-link for hierarchy representation they use the concept of con-

tainment as a visual metaphor [12].

Variants of Treemaps

The most common way to visualize hierarchies is by using trees, where edges describe the

parent-child relationship between nodes [16]. However, Treemaps utilize a more space-

constrained technique to visualize hierarchies, which solves the problem of normal trees

having lots of non-utilized display area [3]. This is by displaying nested sequences of

rectangles, whose areas represent the attributes of the dataset, hence allowing an easier

comparison of node sizes. This implies that Treemaps fall under the nested containment

category (Figure 2.1(b)). This category di↵ers from the three other categories where

child nodes are drawn inside parent nodes, however they are represented outside in the

other forms, whereas shades of colors represent the depth of each attribute. Treemaps

are space-e�cient [25] and perform well at giving an overview of very large trees, visu-

alizing thousands of nodes constructing a hierarchical dataset [6]. However, and unlike

node-link methods, it does not allow a clear node structure representation, especially

when visualizing a balanced tree where all parents have the same number of children and

leaves have same node sizes as this results in a treemap having the form of a regular

grid. This unclear structure makes the di↵erent levels of the tree harder to perceive and

distinguish. Only leaf nodes are clearly perceived since they overlap the parents’ areas.

This drawback makes it less familiar to users than the node-link technique since it could

be more di�cult to interpret a hierarchy unambiguously.

7

(a) (b) (c)

Figure 2.3: Di↵erent Treemap layouts: (a)Slice-and-dice. (b)Squarified. (c)Pivot by split size
[28].

There are several algorithms to create treemaps [34, 28, 25, 7, 33, 32]. The original

treemap layout is called slice-and-dice [Shneiderman 1992], illustrated in Figure 2.3(a).

It employs parallel long lines to divide a rectangle representing an item into smaller thin

elongated rectangles representing its children [25]. The orientation of the line is switched

from horizontal to vertical and vice versa, whenever a new level is introduced. Despite the

algorithm’s simplicity, the long skinny rectangle lines with a high aspect ratio between

width and height could be sometimes harder to recognize, select and compare in size and

label.

Treemaps have been widely used in many domains starting from financial analysis to

sports reporting [25] like visualization of a tennis match [27] as well as in mainstream me-

dia, such as in displaying news headlines. However, an unexpected advantage of treemaps

is the ease at which shallow nodes can be seen no matter how deep the subtree under a

node may be, since treemaps tend to allocate more screen space to shallow nodes.

Squarified Treemaps

As an alternative, a ”squarified” treemap algorithm [7], illustrated in Figure 2.3(b) in-

troduced by Jarke van Wijk, and a ”cluster” treemap method in Figure 2.3(c), described

in Wattenberg having simple recursive algorithms, were introduced to reduce the overall

aspect ratios to have the long skinny rectangles refined to square-shaped with aspect ra-

tios close to one for better node detection and comparison [25]. Although these methods

presented a clear refinement from the aspect ratio point of view, they sometimes lack

the clear hierarchy structure preserved in the original slice-and-dice layout. Other known

drawbacks [28] reported are that changes in the dataset can cause dramatic discontinuous

changes in the layouts produced by both cluster and squarified treemaps. The second

drawback of these layouts is that they cannot retain the given order of data, while many

datasets contain ordering information that is helpful for seeing and distinguishing certain

8

patterns or for locating particular objects in the layout.

Ordered Treemaps

Ordered treemaps [28] were then introduced to address the drawbacks of the cluster and

squarified methods presented previously. The ordered treemaps algorithm ensures that

nodes near each other will in fact, be placed close to each other in the layout. Hence, they

preserve the order of nodes displayed while keeping the aspect ratio as low as possible.

Moreover, they provide a smooth change in the treemap layout when data is dynamically

changing over time (data is getting updated), so it is easier for long-term users to recognize

nodes being displayed and to easily allocate them.

Nested Treemaps

A small remedy developed to overcome the challenges of the treemap layout were the

nested treemaps [16]. Instead of having the rectangle subdivided into smaller rectangles,

a new rectangle is drawn inside the parent rectangle, and in turn, is subdivided into

smaller rectangles representing the child nodes. This results in each group of siblings

being enclosed in a margin which facilitates the recognition of parent nodes and layout

structure. However, when the hierarchy is getting deeper, it requires more e↵ort to view

it easily.

Figure 2.4: Nested Treemap [12]

Cushion Treemaps

In order to provide the users with a better representation of the visualized structure of

the treemap, cushion treemaps [33] were brought out. This type of treemaps uses shading

9

to provide an easier interpretation of the hierarchical structure, since human perception

of shades variation is shown to be very fast [15].

Figure 2.5: Cushion Treemap [33]

Pebble Treemaps

Figure 2.6: Pebble Treemap [36]

”Pebble Treemaps” also known as ”Circular Treemaps” or ”Radial space-filling” tech-

nique, is a nested circles representation introduced by Wetzel [36], as a refinement to the

rectangular treemaps. This approach can better reveal the hierarchy structure and achieve

an aspect ratio close to one. However, this approach does not utilize space as e�ciently

as the rectangular-shaped treemaps and a circle size does not reflect the element (file)

but it represents its size.

10

Colorizing of circles can di↵er depending on certain attributes. For instance, Wetzel

represented a directory in which di↵erent files and circles were coloured depending on the

file type (images, documents, etc.) as shown in Figure 2.6.

Voronoi Treemaps

Figure 2.7: Voronoi Treemap [3]

All treemaps described above are restricted to axis-aligned rectangles in their repre-

sentation. Balzer et al. [3] developed a variation of the treemap algorithm which utilizes

arbitrary polygons such as triangles and circles as shown in Figure 2.7 instead of rectan-

gular shapes. Its advantages are that the aspect ratio between width and height is closer

to one where treemaps lack such advantage, another upside of that structure is that there

are no overlappings of nodes and boundaries between hierarchy levels and can be notably

observed leading the structure to be better identified 1.

The nodes in the hierarchy levels are represented by a set of polygons which forms

a treemap layout at the end. Polygons support the usage of Voronoi tessellations 2 for

their subdivisions [4].

2.1.3 Layered icicle

A layered icicle diagram proposed by Kruskal and Landwehr [18], uses a space-filling

visualization like a treemap. There are two styles reported in literature that represent

this diagram: a ’Cartesian style’ and a ’Radial style’. A description for both styles is

provided next.

11

Figure 2.8: Cartesian layout [12]

Cartesian style

Icicle layout is very similar to the node-link diagram in that the root node is always

placed on top, having its child nodes underneath. The main di↵erence is that rather than

presenting the parent-child relationship using links, nodes are drawn using solid shapes,

either arcs or bars and their placement in adjacency to other nodes in the hierarchy

indicates their position [12].

Icicle trees [22] are very space-e�cient, and have a well-organized hierarchical struc-

ture that can be easily understood and seen since its structure is very similar to normal

tree structures which is very familiar to users. Their structure is simple and easy; child

nodes are positioned under their parents in the same manner a normal tree structure

would position its children except that this type of tree has nodes with no links which

makes it more space-e�cient than normal trees. Nodes are represented using rectangles.

The root is displayed as a horizontal rectangle placed on top, and its children are also

rectangles placed underneath the root rectangle. Child nodes are placed under their

parents in the same manner. The length of all rectangles representing the children of a

specific parent rectangle of a node can never exceed the parent node length.

One shortcoming of this display concept is how to step down the tree where the

rectangles keep getting smaller. This makes it a bit challenging to navigate through

these dense areas. Moreover, some nodes take up more space than required, like the root

node which takes up as much space as the sum of all its children.

1http://infosthetics.com/archives/2006/01/voronoi treemap data visualization.html
2An algorithm for partitioning an m-dimensional space without producing holes or overlappings [3].

12

Radial style

This is another type of ”Icicle Layout”, but with a circular representation. This rep-

resentation is also called ”Sunburst Layout”. In this layout, attributes constituting the

hierarchy are arranged in a radial form, where the root element positioned on top of

the hierarchy is placed at the center and deeper levels are placed farther away from the

center. The size of an element is represented by the angle it subtends, hence, the bigger

its size the wider the angle. Color for each element can be given to represent the element

type if we are representing a file directory for instance [29]. An example of this layout is

shown in Figure 2.9.

Figure 2.9: Sunburst layout [12]

Radial space-filling (RSF) diagrams [13, 5] compromise between space-e�ciency uti-

lization while maintaining the topological tree structure visibility. Evaluations held by

Stasko and Zhang [29] using their RSF tool, ”Sunburst”, proved the ability of RSF in

conveying the tree structure over treemaps. However, an RSF technique fails to capture

the details for nodes with high depth level values, and when the hierarchy is large, the

small slices are hard to determine. Focus+context techniques are used to overcome these

drawbacks as will be described shortly.

Three methods were introduced to overcome these limitations and explore small parts

of the hierarchy displayed. Andrew’s and Heidegger’s two semi-circular approaches [1],

Stasko and Zhang’s angular detail, detail outside, and detail inside approaches [30], which

presents an enhancement of Andrew’s approach, aim to overcome the discussed limita-

tions. At last, InterRing that was presented by Yang et al. [37] in 2003 to tackle the

drawbacks of both mechanisms is another method. An explanation of all three methods

will follow next.

13

Information slices

The Information slices approach is a visualization technique introduced by Andrews et al.

[1] to visualize and manipulate large hierarchical data. Information is represented using

semi-circular discs. Di↵erent discs represent multiple levels where higher depth levels

are always placed at the periphery of the semi-circle. Figure 2.10 shows a prototype of

information slices they implemented for visualizing the hierarchical tree structure of a file

system.

Figure 2.10: Information slices [1]

This approach allows the user to expand a certain area on the displayed hierarchy.

Two discs can only be shown at once; further expanding removes the leftmost disc from

the main panel and is only shown as an icon and the new expansion is observed at the

right.

The user is also able to set some configurations such as how many levels to display

on each disc, or to display children in which order, i.e., alphabetical or by size.

Focus+Context

Three methods were proposed to have a smoother and more flexible alternation between

global and detailed hierarchy display than Andrew’s and Heidegger’s semi-circular ap-

proach. The techniques are similar in that by clicking on an item, it is focused and

observed in the same display of the entire hierarchy. Nevertheless, they di↵er in how

they display the focused area. Each has its own advantages and drawbacks. The three

methods are as follows [30]:

14

• Angular detail method: The entire hierarchy shrinks and is moved to the top

right corner of the display screen, and the item selected is focused and placed at the

center of the display. This technique requires more space, although it looks natural

to the user, see Figure 2.11 for clarification.

• Detail outside method: The overview shrinks at the center of the display while

the selected item is enlarged and placed in form of a new circular ring around the

overview.

• Detail inside method: The overview is shrunk and widens to have the focused

area placed inside it, i.e., at the center of the overview.

Figure 2.11: Sequence of frames from the Angular detail technique, allowing a viewer to focus
on small peripheral files [30].

Despite the better observation of details these techniques o↵er, they su↵er from some

drawbacks [37]. They cannnot preserve the user’s mental map (explained in the following

chapter) because of the big visual shift on the original overview observed after an item

is focused. Complex animation is needed in order to follow the changes operated on the

original overview. They also do not use space as e�ciently as the original RSF, and they

cannot handle multiple foci.

InterRing

Previously described RSF techniques do not o↵er as many interactivity as o↵ered by tree

nodes and text-based hierarchy visualization systems. Yang et al. [37] proposed a new

15

(a) Roll-up/Drill-down (b) Rotate (c) Zoom in/out

(d) Distort (e) Modify

Figure 2.12: Operations implemented for interactivity on hierarchical structures [37]

RSF technique ”InterRing” to enable users to visualize, modify, and perform selection on

the hierarchy and to overcome the drawbacks of Stasko’s and Zhang’s three mechanisms

discussed previously using a new distortion approach.

Operations implemented by InterRing for user interactions are as follows:

• Selection: The process of selecting multiple nodes for further processing, allows

the user to isolate a set of nodes in the hierarchy that can then be highlighted,

masked, moved, or deleted.

• Reconfiguration: The ability to adjust the hierarchical structure means that users

can move a subcluster from one cluster and place it in another to improve the quality

of the hierarchy.

• Drill-down/Roll-up: The process of exposing/hiding subhierarchies helps users

to only show objects of interest and prevent other objects from showing.

• Pan, zoom, and rotation: The process of focus, scale, and orientation adjustment

to the hierarchy currently on display allows panning and zooming, meaning that

users can enlarge the context displayed and examine the details of the hierarchy.

Rotating allows users to rotate clusters of interest to specific angles and avoids

cluttering the labels of the selected clusters.

• Distortion: The process of enlarging certain parts of the hierarchy without a↵ect-

ing the context of the total display. It allows users to have multiple foci, provides

16

an easy way to follow changes and does not need extra space for the focus+context

display.

2.1.4 Indented layout

Indented tree layouts are used excessively by operating systems to represent file directo-

ries. They place all items along vertically spaced rows and use indentation to represent

the parent-child relationships. Windows Explorer is a classical example of a tree outline

structure as shown in Figure 2.13.

Figure 2.13: Windows Explorer [22]

An indented outline structure also allows e�cient interactive exploration of the tree to

find specific nodes. Despite the big vertical space needed for visualizing the hierarchy, the

positioning of nodes separately on horizontal lines makes it beneficial to add information

to the right of each corresponding node [12].

Indented Pixel Tree Plots (IPTPs), a new hierarchical tree visualization introduced by

Burch et al. [8, 9] is a technique that is based on the visual metaphor of indented outlines

present in graphical file browsers and everyday software developers’ source code. The fact

that indented outline approaches are popular in file browsers such as Microsoft Explorer

makes it familiar to the user to understand and easily read the hierarchy representing the

data [8].

The IPTPs are in a way similar to reading a text fragment where it must be read

from left to right to understand the hierarchical semantics, hence they are labeled as a

one-and-a-half dimensional visualization approach [8].

17

IPTP representation

IPTPs represent inner vertices using vertical lines and employ horizontal lines to rep-

resent leaf vertices. Each horizontal line represents a di↵erent level. Each node in the

hierarchy can be mapped to a certain horizontal line according to its tree level. Edges

are represented only implicitly by the vertically and horizontally aligned structure of the

plot. Adding edges would be considered superfluous as Tufte mentioned - unneeded in-

formation that by discarding, would not a↵ect the understandability and readability of

the graph. Parent-child relationships are expressed by indentation of the corresponding

geometric shapes with respect to the hierarchical levels of the respective parent and child

vertices.

Figure 2.14: Indented pixel tree plot [9]

A user study was conducted by Burch et al. [8] to investigate the readability of

an IPTP in comparison with a node-link diagram (NLD), - also known as the de-facto

standard for hierarchy visualization - in a static way, without colour gradient and any

interactive features. The experiment was performed in a laboratory that isolates any

distractions, and had been applied on 30 participants. These participants were a mixture

of males and females of computer science and engineering backgrounds. Some of them

had some background on the concept of visualization techniques and some had not heard

of it yet. All participants were tested to ensure they have normal colour vision. Each

participant was assigned three tasks. The tasks assigned are described as follows:

• T1: Finding the least common ancestor of two leaf vertices

• T2: Checking if elsewhere in a plot there exists an identical subhierarchy

• T3: Estimating the larger subhierarchy

Prior to the experiment, a 10 minutes training was done to the participants to assure

their understanding on both techniques, IPTPs and NLDs. Then, an average of 15

minutes was given to each participant in the evaluation and each of them had to perform

all 3 tasks using both techniques (IPTPs and NLDs) with seven trials with di↵erent

datasets (di↵erent tree sizes). After finalizing the tests, participants were given the

opportunity to identify their preferred technique by filling in a questionnaire.

18

The results of the study conducted were analyzed over all dataset sizes applied on all

three tasks. The analysis was performed from di↵erent perspectives. Completion time,

accuracy and the overall preference for each participant, were the perspectives taken.

Concerning the completion times, it was found that in tasks T1 and T2, the average time

taken to complete both techniques was similar, no significant di↵erence. The significance

di↵ered in T3, where it was found that for small and large datasets NLDs were faster

to read while for medium sized datasets, IPTPs had very high significance. The aver-

age calculated indicated that neither of both techniques was significant in that concern.

Concerning the accuracy, statistics shows that no significance was found. Regarding par-

ticipant’s overall preference, it was found that for small datasets, participants preferred

the node-link diagram and for large datasets IPTP was found to be more useful.

Andrews et al. [2] also conducted a user study to compare four hierarchy browsers

which are the Windows Explorer style tree view, the information pyramids, the treemap

and the hyperbolic browser. Task analysis was performed which involved 32 test users

where each user performed eight tasks on each browser. Task completion time, subjec-

tive ratings and overall preference data were collected. Despite having no significant

di↵erences in performance, users significantly preferred the tree view browser.

2.1.5 Hybrid Representation

There are also some visualization techniques that use a combination of node-link and

treemaps methods like ”elastic hierarchies” [38] and ”space-optimized tree visualization”

[21]. These techniques o↵er a trade-o↵ between the space-e�ciency that characterizes

the treemaps and the clear structure display o↵ered by the node-link diagram.

Elastic hierarchy

An elastic hierarchy allows users to examine the content of a treemap in more detail and

select nodes within it more easily. It also allows the user to change the representation of

the hierarchy at any time. Accordingly, this hybrid representation has the potential to

flexibly combine the familiarity and clarity of node-link diagrams with the space savings

of treemaps. Selection within a treemap is usually di�cult because internal nodes are

covered by their descendants. Elastic hierarchies solve that problem by implementing a

selection technique by showing several tabs to select from corresponding to di↵erent levels

in the treemap. Each tab causes its level to highlight and allows the users to examine

the nodes at that level.

19

Figure 2.15: Elastic hierarchy [38]

2.2 Technique for changing hierarchical data

Code Flows [31], a visualization technique for analyzing source code structure evolution,

uses a vertical icicle plot where nodes are ordered by the order of the code lines in the

file to show the layout of the desired source code file. It uses tubes to connect two

matched nodes in two successive versions. To follow the entire evolution of a particular

code fragment for example, a code swap can be easily detected by crossing tubes. The

visualization techniques are implemented using the Tulip visualization framework.

2.3 Time-Series Visualization

Time-series data can be visualized in many ways. The most important visualization

techniques for time-series data are sequence charts, point charts, bar charts, line graphs,

and circle graphs.

2.3.1 Animation vs. Static

Dynamic hierarchies can be visualized in two ways, either by animation or by present-

ing the change using successive diagrams. The drawback using animation to visualize

dynamic hierarchies is that the core diagram gets lost and we can’t keep track of what

exactly has changed, especially when we need to keep track of data in various timesteps.

The mental map can therefore be lost which may lead to misinterpretations, as will be

discussed thoroughly in the next section. Examples of such hierarchies using animation

to represent dynamic hierarchies, are information slices and InterRing as were explained

in details in Section 2.1.

20

Static hierarchies on the other hand can keep track of all changes during di↵erent time

intervals, by displaying the di↵erent hierarchies successively against each other. Colors

or lines can be added to visualize the changes. This remedies the misinterpretation and

preserves the original hierarchy structures in all times.

In our project, static hierarchies are used to visualize the dynamic hierarchies over

time and lines are used with di↵erent colour codes to visualize the changes.

2.3.2 Mental Map

Since humans easily memorize pictures, graphs, maps, etc. basically anything that is

sketched or visualized, so information represented in any of these formats can be easily

retrieved from the brain. People usually describe a location of a given place for example

from a virtual graph they visualize in their heads3, the person’s perception of that image

is known as ”mental map” 4.

In dynamic hierarchies, rearrangements of some nodes can occur, as well as the re-

moval and addition of new nodes [20]. For example an added node can overlap an existing

node which can also e↵ect the reposition of other nodes, this can e↵ect the user’s mental

map on the original diagram structure. The mental map of the user should be preserved

for ease of understanding on how the hierarchy structure has changed over time [11].

Otherwise, if the mental map was lost the viewer would take one object for the other

over time and consequently makes misinterpretations.

In this project we visualize dynamic hierarchies while preserving the mental map [10],

by implementing a static diagram and illustrating the changes applied to hierarchies like

added, removed or moved nodes, using coloured lines, maintaining the basic hierarchy

structure. Lines demonstrate the change by having its start point where the node was

located in the previous hierarchy, and its end point where it is located in the successor

hierarchy. Lines are coloured to express di↵erent meanings; ”red” is to represent removed

nodes, ”green” to represent added nodes and ”blue” to express moved nodes, see an

illustration for clarification in Figure 2.16.

3http://www.fedstats.gov/kids/mapstats/concepts mentalmaps.html
4A mental map is an individual’s own internal map (person’s personal point-of-view perception) of

their known world. http://geography.about.com/cs/culturalgeography/a/mentalmaps.htm

21

Figure 2.16: IPTPs with coloured lines between successive hierarchies representing the changes

22

Chapter 3

Case Studies

To illustrate and test our application and demonstrate the usefulness of IPTPs, we ap-

plied the IPTP technique to several datasets. We investigate very large datasets such

as the National Center for Biotechnology Information (NCBI) taxonomy that contains

several hundred thousand nodes (324,000 nodes) representing the names of all organisms

that are represented in the NCBI genetic databases with at least one nucleotide or protein

sequence [24]. This huge file was understandable from the IPTP representation, which

may be di�cult when the same dataset is visualized in a treemap, a layered icicle plot,

or a node-link diagram due to visual scalability reasons. Furthermore, the plot can be

scaled down immensely and the hierarchical structure still remains visible. Figure 3.1

illustrates the IPTP representing the NCBI taxonomy dataset where subhierarchy selec-

tion is applied - shown by the yellow triangles - until reaching a detailed view. From the

overall view of the dataset represented in Figure 3.2, we can easily detect the deepest

part of the IPTP as highlighted by the blue rectangle for example. This is easily grasped

since we know that green nodes represent the leaf nodes and the higher the depth level

it gets, the more it is indented to the right.

The only problem with the NCBI dataset is the long time it takes for the IPTPs to

get plotted and to adopt to whatever action is taken on them.

Another kind of datasets were used for testing and demonstrating dynamic hierarchies.

They represent the evolving prefix tree structure of words occurring in paper titles. All

papers from the field of computer science are collected for each year. Then these are

preprocessed to generate a prefix tree for each year. The data comes from the DataBase

systems and Logic Programming (DBLP)1 and is given in an XML file.

1DBLP server provides bibliographic information on major computer science journals and proceedings.

23

Figure 3.1: IPTP representing the ’NCBI taxonomy’ highlighting a subregion

Two DBLP datasets were tested, a small DBLP consisting of 100 elements with a

maximum depth of 4 ’dblp.newick.100’, meaning it is not very deep but it consists of

many timesteps. The other dataset is bigger than the first one with up to 1,000 elements

with a maximum depth of 4, ’dblp.newick.1000’. The hierarchies start with small

numbers of elements and get bigger over time. For example, in the year 1949, there are

only 145 elements and in 1974 the size of the file reached 1,000 elements.

All datasets are represented in newick file format2, which will be explained later in

2Newick tree format is a way of representing graph-theoretical trees with edge lengths using paren-
theses and commas.

24

Figure 3.2: IPTP representing the ’NCBI taxonomy’ illustrating the deepest leaf nodes (en-
closed by the blue rectangle)

Chapter 6. The evaluation of the tool with all its features and functionalities were done

on the ’dblp.newick.100’ file as will be discussed.

The dataset in use represents data from 1936 until 2012. Since the display area can

only take 10 IPTPs, analysis and evaluation will be discussed on a 10 IPTP view.

Figure 3.3 represents IPTPs from 1936 until 1945. Depth can easily be depicted by

the di↵erent colors given to each depth level as can be observed by the Hierarchy Legend

as shown in Figure 3.4

After comparing the IPTPs displayed as shown in Figure 3.5 we start analyzing how

hierarchies evolved over time using the coloured lines knowing that red lines represent re-

25

Figure 3.3: IPTPs of the ’dblp.newick.100’ file

Figure 3.4: Hierarchy Legend

moved nodes, green lines represent added nodes and blue lines represent changed position

nodes.

To better understand the changes, we illustrate some of the tool’s features like filtering

and searching and analyze our observation. Figure 3.6 represents the IPTPs after applying

2 filters, the first is to filter only nodes starting with alphabet ’a’ and the second is to

filter nodes starting with alphabet ’p’. From the observation, we can clearly see that from

year 1941 to year 1942 there wasn’t any removed, added or changing position nodes. As

for the nodes starting with the alphabet ’p’, we can see that from 1944 to 1945 the nodes

only changed positions in the hierarchy.

To have a look at a specific node and observe the changes, ’Searching’ is applied.

For example in Figure 3.7 we can observe and keep track of changes on a node called

26

Figure 3.5: IPTPs of the ’dblp.newick.100’ file after comparison

’boolean’. We can see that it was added in 1937 and removed in 1939, then reappeared

in 1945.

Knowing that the system can display a large number of files consecutively, in order

to gain insight on specific hierarchies at certain timestamps, we use the time filter to

choose the hierarchies we are in need to analyze. We give a start date and an end date of

hierarchies to display. Figure 3.8 shows IPTPs starting from 1940 until 1948 according

to the user selection of dates. So instead of searching all along the huge number of files,

time filter as shown makes analysis easier when in need of observing changes at specific

timings.

Keeping track of only added nodes or removed nodes is also an easy task. Predefined

filters are implemented and can be chosen from a drop down list. Figure 3.9 is an

example of IPTPs after applying the time filter and choosing to only show added nodes

(represented using green lines) on only nodes starting with the character ’a’ as well as on

the node named ”arithmetic” (represented in yellow). As can be observed from Figure

3.9, in years 1942 and 1943 neither node starting with alphabet ’a’ nor ’arithmetic’ is

newly added. Observing the IPTPs we can analyze that since 1940 ’arithmetic’ was added

in 1945, changed position in 1946, removed in 1947, and reappeared in 1948.

Distinguishing nodes and displaying their names can be done by hovering over the

27

Figure 3.6: IPTPs of the ’dblp.newick.100’ file after applying filters

nodes which then displays a tooltip with the node name. As seen in Figure 3.9, ”axiom”

is the node hovered.

The analyses above are all made by IPTPs observation and by applying di↵erent

types of filters for better investigation. Other analyses can be made by observing the

statistics displayed - as seen in Figure 3.10 - after IPTPs selection, which demonstrates

the changes in percentage between IPTPs, like how many nodes were added, removed or

changed positions. This is shown by the red rectangle in Figure 3.10, which illustrates

the changes between IPTPs of years 1936 and 1937: 26% of nodes were added, 31% were

removed, and 52% changed positions in 1937. The Figure also highlights another blue

rectangle that demonstrates file details of the year 1936, we can see that it contains 80

nodes and a maximum depth level of 4. This information changes accordingly whenever

an IPTP is selected.

28

Figure 3.7: IPTPs of the ’dblp.newick.100’ file after searching the element ’boolean’

Figure 3.8: IPTPs of the ’dblp.newick.100’ file after applying the time filter

29

Figure 3.9: IPTPs of the ’dblp.newick.100’ file after applying the time filter, and show only
alphabet starting with ’a’ as well as the result of a search on ”arithmetic” (shown in yellow)

30

Figure 3.10: General information about IPTP of 1936 (blue rectangle) and changes between
IPTPs of years 1936 and 1937 (red rectangle)

31

Chapter 4

Project Architecture

4.1 Process Overview

This section gives an insight about the process of visualizing IPTPs and how they evolve

over time. This process can be sub-divided to multiple steps as can be viewed in Figure

4.1.

Figure 4.1: Process overview diagram

First, we use a newick file parser to extract a hierarchical tree structure Ti consisting

of nodes from every newick file version fi of the files contained in the directory of interest.

Second, we display the hierarchies (IPTPs) corresponding to the parsed files. Third, a

comparison takes place and we use the ”Comparison Algorithm” described thoroughly in

Section 6.4 to detect the changes between consecutive hierarchical structures Ti, Ti + 1.

Fourth, we draw links between consecutive hierarchy nodes to represent and illustrate the

33

changes calculated in the previous step. Many interactive features can then be applied

on the hierarchies visualized for a better understanding, discussed in Section 5.3 where

we will describe each step in detail and how they were implemented in Chapter 6.

4.2 Class Diagram

In order to best illustrate the interdependencies and relationships among the di↵erent

system modules, we thought it was best practice to create a class diagram. The here-

under depicted Figures 4.2 and 4.3 define the overall static view of the system, where

a description of how each class (together with it’s associated attributes) relate to every

other class present in the system.

34

!

Li
ne
D
et
ai
ls
!

+l
in
eT
yp
e:
!S
tr
in
g!

+n
od
eI
n
fo
:!N
od
eS
ta
tu
s!

+p
at
hl
in
e:
!P
at
h
2D
!

+l
in
e:
!L
in
e2
D
!

N
ew
ic
kF
ile
Pa
rs
er
!

@p
ar
se
(S
tr
in
g)
:!N
od
e!

@p
ar
se
(S
tr
in
g!
s,
!N
od
e!

pa
re
n
t)
:!N
od
e!

@g
et
D
ep
th
()
:!i
n
t!

+!
s!
:!S
tr
in
g!

+!
in
de
x:
!in
t!
!=
!0
!

+!
co
un
tN
od
es
:!i
n
t!!
=!
1!

+!
d
is
co
ve
re
dN
od
es
!:!

A
rr
ay
Li
st
<
N
od
e>
!

N
od
e!

@s
et
N
am

e(
St
ri
n
g)
:!v
oi
d!

@g
et
N
am

e(
):
!S
tr
in
g!

@n
um

C
hi
ld
re
n
()
:!i
nt
!

@a
d
dC
hi
ld
(N
od
e!
n)
:!v
oi
d
!

@g
et
Ch
ild
(i
n
t!
i)
:!N
od
e!

@a
d
dP
ar
en
t(
N
od
e!
p)
:!v
oi
d
!

@g
et
P
ar
en
t(
):
!N
od
e!

@g
et
E
xp
an
d
C
ur
rV
al
u
e(
):
!

bo
ol
ea
n!

@!g
et
E
xp
an
d
P
re
vV
al
ue
()
:!

bo
ol
ea
n!

@t
og
gl
eE
xp
an
dC
ur
re
n
t!

(N
od
e!
n)
:!v
oi
d
!

!+!
n
am

e:
!S
tr
in
g!

+!
p
ar
en
t:
!N
od
e!

+!
le
ve
lV
al
ue
!:!
in
t!
!=
!0
!

+!
ex
pa
nd
P
re
v:
!!

!!!
bo
ol
ea
n
!=
tr
u
e!

+e
xp
an
d
C
ur
r:
!!

!!b
oo
le
an
!=
!t
ru
e!

+!
ch
ild
V
ec
:!

!V
ec
to
r<
N
od
e>
!

B
ar
ch
ar
tP
an
el
!

@!s
et
V
al
ue
s(
):
!v
oi
d!

@!p
ai
nt
Co
m
po
ne
nt
!!

(G
ra
ph
ic
s)
:!v
oi
d
!

@s
et
Fi
le
N
am

es
()
:!v
oi
d!
!

+!
w
id
th
:!i
nt
!

+!
xP
os
it
io
n
:!i
n
t!

+!
m
ax
:!i
n
t!!

+!
n
um

O
fH
ie
ra
rc
h
ie
s:
!!

!!!
N
od
e!
[]
[]
!

+d
iv
id
eP
an
el
:!i
nt
!!

+!
to
tb
ar
s:
!

A
rr
ay
Li
st
<
B
ar
sO
bj
ec
t>
!

+a
rr
ay
O
fF
ile
s:
!

A
rr
ay
Li
st
<
Fi
le
>!

+!
sw
it
ch
Li
st
:!

A
rr
ay
Li
st
<
In
te
ge
r>
!

+!
re
m
ov
eL
is
t:
!

A
rr
ay
Li
st
<
In
te
ge
r>
!

+!
n
ew
Li
st
:!

A
rr
ay
Li
st
<
In
te
ge
r>
!

B
ar
sO
bj
ec
t!

+!
xP
os
:!i
nt
!

+n
um

O
fN
od
es
1
:!i
nt
!

+!
n
um

O
fN
od
es
2
:!i
nt
!

+n
um

R
:!i
nt
!

+!
n
um

G
:!i
n
t!

+n
um

B
:!i
n
t!

!

D
ra
w
!

@s
et
H
as
ht
ab
le
O
fS
ub
re
gi
on
(i
n
t!

fi
le
N
um

):
!v
oi
d!

@p
ai
nt
Co
m
po
ne
nt
(G
ra
ph
ic
s)
:!v
oi
d
!

+a
rr
ay
O
fF
ile
s:
!A
rr
ay
Li
st
<
Fi
le
>!

+a
rr
ay
O
fG
ra
p
hs
:!N
od
e[
][
]!

+n
fp
:!A
rr
ay
Li
st
<N
ew
ic
kF
il
eP
ar
se
r>
!

+t
lp
:!

A
rr
ay
Li
st
<
T
ra
n
sl
at
eL
is
ts
T
oP
oi
n
ts
>!

+l
is
tO
fG
ra
ph
P
oi
nt
s:
!

A
rr
ay
Li
st
<
P
oi
n
t>
!

+t
ot
al
Li
st
O
fL
in
es
:!

H
as
ht
ab
le
<I
nt
eg
er
,!

A
rr
ay
Li
st
<
D
ra
w
R
ec
t>
>!

+t
ot
al
Li
st
O
fR
ec
ta
ng
le
s:
!

H
as
ht
ab
le
<I
nt
eg
er
,!

A
rr
ay
Li
st
<
D
ra
w
R
ec
t>
>!

+c
ho
se
n
R
ec
ta
ng
le
s:
!

H
as
ht
ab
le
<I
nt
eg
er
,!

A
rr
ay
Li
st
<D
ra
w
R
ec
t>
>!

+d
iv
id
eT
im
eF
ilt
er
P
an
el
:!i
nt
!=
!0
!

+s
ub
re
gi
on
:!b
oo
le
an
!=
!t
ru
e!

+p
ix
el
Si
ze
:!d
ou
b
le
!

+r
ec
t:
!R
ec
ta
ng
le
2D
!

+R
:!i
nt
!

+G
:!i
n
t!

+B
:!i
n
t!

+n
oO
fL
ev
el
s:
!in
t!

+!
le
ve
ln
:!i
nt
!

+l
ev
el
p
:!i
n
t!

+n
od
eW

:in
t!

+n
od
eH
:in
t!

!

IP
T
Pt
oo
l!

@s
et
T
oo
lb
ar
()
:!v
oi
d!

@s
et
M
en
ub
ar
()
:!v
oi
d
!

@o
p
en
D
ir
ec
to
ry
()
:!v
oi
d!

@c
om

pa
re
()
:!v
oi
d
!

@c
le
ar
P
an
el
()
:!v
oi
d
!

@d
is
pl
ay
In
it
ia
lV
ie
w
()
:!v
oi
d
!

@c
re
at
eA
n
dS
ho
w
G
U
I(
):
!v
oi
d
!

!+a
rr
ay
O
fF
ile
s:
!A
rr
ay
Li
st
<
Fi
le
>!

+a
rr
ay
O
fG
ra
p
hs
:!N
od
e[
][
]!

+n
fp
:!

A
rr
ay
Li
st
<
N
ew
ic
kF
il
eP
ar
se
r>
!

+t
lp
:!

A
rr
ay
Li
st
<
T
ra
n
sl
at
eL
is
ts
T
oP
oi
n
ts

>! +l
is
tO
fG
ra
p
hP
oi
n
ts
<P
oi
n
t>
!

+c
om

p
ar
e:
bo
ol
ea
n
!

+c
om

p
ar
eA
ll:
!b
oo
le
an
!

+n
ew
P
ag
e:
bo
ol
ea
n
!

+t
im
eF
ilt
er
!:!
bo
ol
ea
n!

+s
ho
w
O
ri
gi
n
al
:!b
oo
le
an
!

+h
ig
hQ
u
al
it
y:
!b
oo
le
an
!

Figure 4.2: Class diagram (1)

35

!Dr
aw
Re
ct
!

*a
dd
Re
ct
an
gl
e(
Dr
aw
Re
ct
):!

vo
id
!

*g
et
Li
st
Of
Re
ct
an
gl
e(
):!

Ar
ra
yL
is
t<
Dr
aw
Re
ct
>!

*!g
et
Li
st
Of
Re
ct
an
gl
es
()
:!

vo
id
!

*s
et
Li
st
Of
Re
ct
an
gl
es
!

(A
rr
ay
Li
st
<D
ra
w
Re
ct
>)
:!

vo
id
!

*!a
dd
Le
af
(N
od
e!
le
af
):!
vo
id
!

*!g
et
Li
st
Of
Le
af
()
:!

Ar
ra
yL
is
t<
N
od
e>
!

*!g
et
Li
st
Of
Le
av
es
()
:!

Ar
ra
yL
is
t<
N
od
e>
!

*!s
et
Li
st
Of
Le
av
es
!

(A
rr
ay
Li
st
<N
od
e>
):!
vo
id
!

!+!
re
ct
:!R
ec
ta
ng
le
2D
!

+!
na
m
e:
!S
tr
in
g!

+!
no
de
:!N
od
e!

+!
Al
lL
is
tO
fR
ec
ta
ng
le
s:
!

Ar
ra
yL
is
t<
Dr
aw
Re
ct
>!

+!
Li
st
Of
Re
ct
an
gl
es
:!

Ar
ra
yL
is
t<
Dr
aw
Re
ct
>!

+!
le
av
es
:!A
rr
ay
Li
st
<N
od
e>
!

+!
Al
lL
ea
ve
s:
!

Ar
ra
yL
is
t<
N
od
e>
!

!

N
od
eS
ta
tu
s!

+!
no
de
:!N
od
e!

+!
no
de
N
am

e:
!S
tr
in
g!

+!
le
ve
lW
as
:!i
nt
!

+!
le
ve
lN
ow

:!i
nt
!

+!
in
de
xW

as
:!i
nt
!

+i
nd
ex
N
ow

:!i
nt
!

Di
ffe
re
nc
e!

! *c
he
ck
Le
ve
l(i
nt
!in
de
xW

as
,!i
nt
!

in
de
xN
ow

):!
vo
id
!

*!d
iff
er
en
ce
Bt
w
Fi
le
s(
N
od
e[
]!

N
od
es
Of
Fi
le
1,
!N
od
e[
]!N
od
es
Of
Fi
le
2)
:!

vo
id
!

+!
fo
un
d:
!b
oo
le
an
!=
!fa
ls
e!

+!
nu
m
Sw
itc
he
d:
!in
t!

+!
nu
m
Ad
de
d:
!in
t!

+!
nu
m
Re
m
ov
ed
:!i
nt
!

+!
sw
itc
hL
is
t:!
Ar
ra
yL
is
t<
N
od
eS
ta
tu
s>
!

+!
re
m
ov
eL
is
t:!

Ar
ra
yL
is
t<
N
od
eS
ta
tu
s>
!

+!
ne
w
Li
st
:!A
rr
ay
Li
st
<N
od
eS
ta
tu
s>
!

+!
co
un
ts
Co
m
pa
ri
so
n!

Ar
ra
yL
is
t<
Ca
cu
la
te
D
iff
er
en
ce
>!

+!
de
fa
ul
tC
om

pa
ri
so
nP
er
c:
!

Ca
lc
ul
at
eD
iff
er
en
ce
!

+N
od
es
Of
Fi
le
1:
!N
od
e[
]!

+!
N
od
es
Of
Fi
le
2:
!N
od
e[
]!

+n
od
e1
:!N
od
e!

+n
od
e2
:!N
od
e!

+f
ile
1S
iz
e:
!in
t!

+f
ile
2S
iz
e:
!in
t!

!

Ca
lc
ul
at
eD
iff
er
en
ce
!

+c
ou
nt
S:
!in
t!

+c
ou
nt
D
:!i
nt
!

+c
ou
nt
N
:!i
nt
!

+!
ad
dP
er
c:
!d
ou
bl
e!

+!
ch
an
ge
Pe
rc
:!d
ou
bl
e!

+r
em

ov
ed
Pe
rc
:!d
ou
bl
e!

+!
pe
rc
en
ta
ge
S:
!S
tr
in
g!

+!
pe
rc
en
ta
ge
A:
!S
tr
in
g!

+!
pe
rc
en
ta
gR
:!S
tr
in
g!

Do
ub
le
Po
in
t!

+x
:!d
ou
bl
e!

+y
:!d
ou
bl
e!

+x
en
d:
!d
ou
bl
e!

+y
en
d:
!d
ou
bl
e!

Tr
an
sl
at
eL
is
ts
To
Po
in
ts
!

*s
et
Po
in
ts
!

(A
rr
ay
Li
st
<N
od
eS
ta
tu
s>
!

ne
w
Li
st
,!A
rr
ay
Li
st
<N
od
eS
ta
tu
s>
!

de
le
te
Li
st
,!

Ar
ra
yL
is
t<
N
od
eS
ta
tu
s>
!

sw
itc
hL
is
t,!
Ar
ra
yL
is
t<
Po
in
t>
!

lis
tO
fG
ra
ph
sP
oi
nt
s)
!

+!
le
ve
lW
as
:!i
nt
!

+!
le
ve
lN
ow

:!i
nt
!

+!
in
de
xW

as
:!i
nt
!

+!
in
de
xN
ow

:!i
nt
!

+!
fa
ct
or
:!i
nt
!

+!
in
de
x:
!in
t!

+!
al
l:!
bo
ol
ea
n!

+!
nL
is
t:!
Ar
ra
yL
is
t<
N
od
eS
ta
tu
s>
!

+!
dL
is
t:!
Ar
ra
yL
is
t<
N
od
eS
ta
tu
s>
!

+!
sL
is
t:!
Ar
ra
yL
is
t<
N
od
eS
ta
tu
s>
!

+!
pN
ew
:!A
rr
ay
Li
st
<L
in
eP
oi
nt
s>
!

+!
pD
el
et
e:
!

Ar
ra
yL
is
t<
Li
ne
Po
in
ts
>!

+!
pS
w
itc
h:
!

Ar
ra
yL
is
t<
Li
ne
Po
in
ts
>!

+!
!fi
le
1S
iz
e:
!in
t!

+!
fil
e2
Si
ze
:!i
nt
!

+!
no
de
Fr
ac
:!d
ou
bl
e!

! !

Li
ne
Po
in
ts
!

+P
so
ur
ce
1:
!D
ou
bl
eP
oi
nt
!

+P
de
st
1:
!D
ou
bl
eP
oi
nt
!

+P
so
ur
ce
2:
!D
ou
bl
eP
oi
nt
!

+P
de
st
2:
!D
ou
bl
eP
oi
nt
!

Figure 4.3: Class diagram (2)

36

4.3 Features and Functionalities

Navigation and interaction facilities are essential in Information Visualization. Our tool

is based on the visual information-seeking mantra: overview first, zoom and filter, then

details-on-demand [26].

The tool supports a variety of interactive features to explore the hierarchical data such

as collapsing and expanding specific nodes, getting information on a specific element and

selecting a subregion for a hierarchy on a larger scale for better investigation. The tool’s

features and functionalities are as follows:

- Region selection: Part of the indented plot can be selected by mouse pressed and

mouse released functionality, highlighting a desired region. The selected region is

then displayed at the right of the original hierarchy within a larger scale for a better

observation.

Hierarchy expanding/collapsing: Using the mouse click functionality, clicking

on a node representing an attribute can collapse or expand its corresponding chil-

dren alternatively. So when a node is collapsed all its sub-nodes (children) are

hidden, and whenever the node is expanded again the sub-nodes reappear.

-- Text pattern search: Typing in certain text in a searching browser, searches for

the specified text in the indented plots displayed and highlights the corresponding

nodes found.

- Zooming: A zoom in/out horizontal slider bar can be used for a larger/smaller

scale on the indented plots displayed on the display screen for a more detailed

representation or an overall view alternatively.

- Details-on-demand: Using a mouse over functionality, by moving the cursor on

any element on the display screen, information is displayed as a tooltip at the

current mouse cursor position. A tooltip could be placed either on a node element

or a comparison line. A more detailed information for a specific element (node) like

the node name, number of children of the node, the parent name and the depth is

displayed as well on a text area shown on the tool’s right panel.

- High quality/Low quality (Resolution): For a faster rendering specially when

representing huge datasets, the user can choose whether to display the indented

plots with high quality (better resolution) with no aliasing or to have a bad quality

plots rendered with aliasing.

37

- Interactive/Non-interactive (Display mode): The display mode can change

whenever needed to either interactive or non-interactive mode. Meaning, if only a

static view of the indented plots is needed with no interaction then the user can

choose to switch to a non-interactive display mode which makes rendering faster.

The user can change the display mode to interactive whenever needed. A static

view is of importance when displaying huge hierarchies when there is no need of the

interactive features, like only having the ability to scroll horizontally and vertically.

- Filter: A list with some pre-defined filters is available on the tool’s left panel where

the user can choose certain filter function like displaying only nodes that got added,

on further hierarchies, or displaying only nodes starting with certain alphabet like

’a’ for example.

- Color coding: For a better visualisation of the di↵erent hierarchy levels, each level

of nodes is represented in a di↵erent colour to distinguish it from other elements

having other level values. So by user observation of the di↵erent colour gradients,

user can easily identify the deeper levels from other shallow levels.

- Comparison: A comparison button is provided on the tool bar to provide and

illustrate changes between consecutive hierarchies displayed. Colored lines are used

to illustrate changes from one hierarchy to another.

- Delta (Percentage of change): Percentage of change on added, removed and

changed position nodes between two consecutive hierarchies selected can be dis-

played.

38

Chapter 5

Implementation

The following chapter gives a full explanation for the main building blocks of the tool.

In order to help illustrate the ideas, additional descriptive elements including equations,

figures and pseudocodes were also used when needed. The chapter starts by introducing

the Newick File Parser, which is responsible for the transformation and building of the

tree hierarchy from an input given as string. The Collapse/Expand Algorithm section

describes how the node expansion and collapse is performed. Comparison algorithms

are discussed in details next in the following chapter File Hierarchies Comparison. The

visualization module is outlined in the subsequent section. The chapter encloses with the

IPTPtool section where the main method and GUI modules are implemented.

5.1 Newick File Parser

The main goal of this class is to parse the input file, that is given in Newick format.

The ”Newick” format uses parentheses and commas to show the parent-child relationship

to represent a hierarchy of data, e.g. (A,B,(C,D)E)F;. The tree representation of the

newick file is shown in Figure 5.1.

F

A B E

C D

Figure 5.1: Tree representation of the parsed newick file ”(A,B,(C,D)E)F;”

As the edges don’t play a role in our file representation no processing on the edges en-

countered during the traversal of the newick file is performed. The NewickFileParser is

implemented to traverse the parents and their children and record them in an ArrayList

39

’discoveredNodes’ used for further processing throughout the application.

The file is read and stored in a String newickString that is then passed to the

parser. The parser uses a recursive method to explore all the nodes. First, the parser

extracts the root node knowing that it is placed at the end of the newickString be-

fore the semicolon ’;’, and stores the rest of the newickString representing the root’s

children. So in the example stated above, the root node will be F and its children will

be A,B,(C,D)E. The parser then calls the recursive method taking as parameters the

’Parent’ node (the root in this situation) and the ’newickString’ representing its chil-

dren.

Before describing how the input string is processed and passed recursively to the

method, the notion of bracket balancing and its benefits needs to be explained first.

Bracket balancing simply aims at detecting the direct child nodes of the current parent

nodes, and extracting the substring representing their sub-child nodes. In other words,

the first direct child node to the current parent node is the first string after a perfectly

balanced bracketing. The second direct child node to the current parent node is the

first string after the second perfectly balanced bracketing, etc. Every direct child node

detected is then recursively passed as parameter together with the preceding perfectly bal-

anced substring to the same node to discover the nested child nodes. In order to achieve

this, the input string is traversed from left to right character by character inspecting each

one to determine its state. The perfect bracket balancing is being tracked by a variable

called bracketcount. bracketcount is always incremented by 1 if an open bracket is

encountered ’(’. In contrast it is decremented by 1 if a closed bracket is encountered

’)’. Any substring that is traversed while the bracketcount has a greater value than

zero, is simply concatenated to form the string to be passed for the next recursive call.

The first substring encountered while the bracketcount equals zero is treated as a direct

child node for the current parent node, and passed recursively as a parent for the preceed-

ing concatenated substring (i.e. the substring between the preceeding balanced brackets).

Before creating a new node the depth value of the node needs to be set. The root

node is first initialised with a node depth value of 1 accordingly, all other nodes’ levels

are set. If the new node being created is a child to the previous node created, then the

depth level value associated with the previous node (the parent node) is incremented by

one and assigned to the depth level value of the new node.

The algorithm repeats until the whole newickString is read. The depth of the whole

40

tree can then be calculated using the getDepth() method that gets the maximum node

level stored from the discoveredNode list containing all created nodes resulting from the

parsed newickString.

After parsing the newick file, the tree structure is then perceived. Since we are in

need of an indented outline for hierarchy visualization, our implementation is a kind of a

depth first search traversal.

parse(String s, Node root)

//s consists of only one child(one Node)

if is-simple-struct(s) then

return new Node(s);

end

//complex structure

if !is-simple-struct(s) then
String bu↵er=” ”; //to store the String representing a Node’s children

for int i=0;i<s.length;i++ do
//when bracket count reaches zero

if is-balanced(charAt(i)) then

Node p=new Node(charAt(i));

root.addchild(p); //add node ’p’ as child to the parent ’root’

set-node-level(p); //depth level of node ’p’ is set to be equal to the

parent node level+1

if bu↵er is not empty then

remove-outer-brackets(bu↵er);

p.addchild(parse(bu↵er,p));

bu↵er=” ”;

end

end

else
bu↵er=bu↵er+charAt(i); //if unbalanced bu↵er it up

end

end

end
Algorithm 1: Newick file parser

41

5.1.1 Node

A tree structure is the ideal representation for any hierarchical data structure. It is repre-

sented as a collection of nodes to represent the attributes. Each node is a data structure

consisting of a value. In our application ’Node’ is the data structure used, consisting of

a String value which is the attribute name. With each node a record of its parent, list of

children and a boolean representing its collapse/expand state are saved, along with the

attribute depth level. Nodes are distinguished and known using a name of type String

as their unique key.

The parameters of this data structure are as follows:

* String name: the name of the node

Node parent: the parent node of the current node

** levelvalue: the depth value of the node

* Vector<Node> childVec: a vector to store the node children

* Boolean expandcurr: is set to true to initialize all nodes to be expanded. If this

is set to true this node is collapsed, meaning all its children and all its descendants

are hidden.

* Boolean expandprev: Initialised with a true value. This Boolean is to indicate

that the parent of that child is collapsed. It is set to false if expandcurr equals

false. It is set for all the descendants of any collapsed node (having its expandcurr

equals false).

5.2 Search Engine

When the search button is clicked, SearchEngine class is called, taking as parameters

the String written in the text field. Searching is done on a 2D array containing all nodes

consisting the IPTPs on the display panel. Depending on the preferences of the user,

whether search on the text is done on the whole word and/or is case sensitive, the search-

ing checks di↵er. Two booleans are used to check whether the word options are selected

or not, and this is how we di↵erentiate between four checks. The four checks are a com-

bination of both booleans. If ”case sensitive” is unchecked, then the search is done using

an Ignore case comparison. If ”whole word” is checked, then the String entered is only

compared to a substring of the node names in the array we are searching in. A data

42

structure, SearchFound, is used to store nodes in case the search was successful for fur-

ther visualization purposes. SearchFound takes the node name, the file index containing

it and the node index in the hierarchy as parameters.

To visualize the e↵ect of the searching process in case of a successful search, a Boolean

SearchFilter is set to true. This is done so that at the painting process, the list of

SearchFound data type is checked before drawing each node, if node is found in the list

then it is drawn with its colour code (depending on the node’s depth level) otherwise, it is

drawn with a grey colour. In case the node searched for is already highlighted by another

filter, the node is then highlighted in yellow to distinguish it from other visualized nodes.

5.3 Collapse/Expand Algorithm

Figure 5.2: Collapse/Expand illustration

Collapsing and expanding nodes is achieved using two boolean variables, one to in-

dicate that this node is collapsed and another to state that the parent of this node is

collapsed:

• expandcurr this variable if false states that this node is collapsed, meaning all its

children and descendants are hidden.

• expandprev when false, this is to state that the parent of the current node is

collapsed. We need this variable in our implementation so that when any descen-

dant of a collapsed node is getting drawn it checks first if its parent is collapsed

(expandprev is set to false) if it is, then this node is also hidden.

43

A node is collapsed/expanded when a rectangle representing a node is clicked, we check

its position and compare it with the positions of all nodes representing the hierarchies

displayed. If node is detected it is then stored for further processing. This node is then

toggled changing the expandcurr value from true to false or vice versa. This is done

by calling the toggleExpandcurrent method in the Node data structure.

When drawing the nodes in the hierarchy, if the parent node of the node being drawn

has expandcurr equal to false or the node being drawn has expandprev equal to false,

then this node is skipped from drawing.

To visualize the collapsed node, a boolean collapsed is set to true when the node’s

expandcurr value is set to false. When this boolean is checked to have a true value,

this node is drawn with a shaded colour.

initialization;

if node is pressed then

toggle the node’s expandcurr value;

if expandcurr of parent node=false or expandprev of parent node=false

then expandprev of node=false;

continue;

if expandcurr of node=false and node has children then set boolean

collapsed to true;

end
Algorithm 2: Collapse/Expand

5.4 File Hierarchies Comparison

Comparing file hierarchies, displays information on what nodes have been changed, re-

moved or added. In our tool the comparison of hierarchies’ implementation, has two

applications; either we apply the comparison on all displayed hierarchies, or compare

hierarchies depending on the user’s selection.

Di↵erent coloured lines are used to visualize the changes between hierarchies. Stated

below is a brief explanation on the comparison algorithm and how each of the di↵erent

application stated above is implemented.

5.4.1 Comparison Algorithm

Displayed hierarchies on the tool’s screen, are all stored in a list. A ”compare all” or a

”compare specific hierarchies” button shown on the tool bar should be pressed for the

comparison to take place. Pressing a button calls a compare method, which by its turn

44

makes calls to two main classes, Di↵erence and TranslateListsToPoints. Class Di↵erence,

takes two successive hierarchies of nodes; h1 and h2, and stores the nodes that have been

removed, added and changed in three di↵erent lists. To define what nodes were deleted,

changed or added, nodes are first compared one by one by their names, comparing h1

with h2. If a node in h1 is found to be also in h2, then we know it has not been removed

or added. Next step is defining whether it has changed its place or not. This is checked

by comparing the nodes’ levels. If levels are not equal, we know it has changed places, if

not, then we need to do further checks to see if the node changed place between siblings.

If the names to be compared were never matched, then we know this node has been

removed. To define the added nodes, we change the order of hierarchies to be compared;

which means we take h2, compare it with h1. If we find that this node is not matched

with any node in h1, then this is a newly added node.

The second class takes the three lists storing the added, removed and changed position

nodes. These lists not only store the node name, but the level and position of the node

as well. These details are needed in this class where we need to define the start and end

point of each line.

The last class is the one responsible for drawing the comparison lines accordingly.

Red lines represent deleted nodes, while blue lines are for nodes with changed positions,

and finally, green lines which represent the added nodes.

Comparing Specific File Hierarchies

The only di↵erence between the two possibilities: comparing all or specific hierarchies, is

the list containing the hierarchies to be compared. To be able to select specific hierarchies,

a green transparent rectangle is drawn on top of the chosen hierarchy. The rectangle’s

bounds are being specified by the visualized hierarchy, depending on its level of depth.

The chosen hierarchies are then stored in a di↵erent list, which is then passed to the

first class instead of the list containing all displayed hierarchies, in order to perform the

comparison.

Delta

We not only represent the changes by drawing lines with di↵erent colour codes, but also

represent them using numbers and charts.

Delta, is the name used to describe this paragraph as we will be talking about the changes

that took place between di↵erent hierarchies, in di↵erent time intervals. A percentage

of di↵erence is calculated each time a comparison of two hierarchies is being executed

45

(as was mentioned in the above section, we compare hierarchies two by two). A list is

used to carry all the percentage values for each comparison. The percentage of di↵erence

is calculated as follows: A class taking hierarchy 1 (h1), hierarchy 2 (h2), the removed

nodes list, added nodes list and changed position nodes list as parameters is respon-

sible for the calculation. To calculate for example the percentage of the added nodes

in h2 in comparison with h1, we divide the number of added nodes in h2 by the size of

h1. The Result of the calculation is then multiplied by 100 to get the value in percentage.

To have a better understanding on how hierarchy changes in time, it is always easier to

have numbers visualized. Bar charts are used and drawn under each hierarchy displayed,

representing the size of h1 in black, the size of h2 in grey, the removed nodes in red, the

added nodes in green and the changed position nodes in blue. They represent statistics

for two consecutive hierarchies. Figure 5.3 illustrates the bar charts in red rectangle and

the percentages of change enclosed in the blue rectangle between IPTPs of years 1936

and 1937.

Figure 5.3: Delta

NodeStatus

A data structure is created to store information about removed, added and changed

nodes. To be able to track a node’s status, whether it changed places, was added or got

removed. This data structure stores for each changing node:

46

• name the name of the node

• depth the node depth in first hierarchy and the node depth in second hierarchy

• index the node index in first hierarchy and the node index in second hierarchy

The parameters are as follows: Node, depth1, depth2, index1, index2. According

to the node status, - deleted, changed or added - some parameter’s value change. If a

node is added then depth1 and index1 get a value of -1. Same goes when a node is

deleted, depth2 and index2 get a value of -1.

GraphBound

In order to be able to record and observe the selected hierarchies when only specific

hierarchies are needed for comparison, some parameters such as the starting point, x, y

and the width and height of each selectable hierarchy should be stored. This is done

by creating a new Object ’GraphBound’. A Rectangle2D takes these parameters stated

previously and creates the rectangle used to draw the bounds around the hierarchy. This

is to be able to bound the hierarchy with a coloured rectangle to distinguish it from other

unselected hierarchies.

DoublePoint

DoublePoint Object is created to be used instead of the predefined Class Point, since

a double precision is needed in visualizing the hierarchy. The need of presenting large

datasets, urges us to draw the nodes in a way that makes a hierarchy composed of

thousands of nodes to fit on the display screen. In order for that to work, we need to

compress and overlap the nodes. A normal node will take up a size of a pixel; a rectangle

having a width and height of size 1. So nodes can be drawn with less than a pixel size - a

value between 0 and 1 - depending on the hierarchy size. Although, we are not in need of

the double precision in all cases but it is used with all Points for ease of manipulation.

DrawRect

The hierarchy is represented using a list of rectangles having a default width and height

of size 1 (a pixel size). In order to store all nodes’ positions for further processing, such

as node selection, collapsing and expanding, a new data structure ”DrawRect” is created

taking as parameters:

• Rectangle2D to represent the node position

• Node

Nodes are represented and drawn using rectangles, for each node consisting the hierarchy.

47

LinePoints

Each line displayed during the comparison process has specific points, a starting point

and ending point to describe each line. To store and keep track of all lines that need to be

displayed LinePoints is a data structure that is used to store the source and destination

points of each line. This data structure is composed of DoublePoint Psource the starting

point where the line begins and DoublePoint Pdest the end point of the line.

LineDetails

A record for each comparison line representing removed, added and changed position

nodes are stored using a LineDetails data structure. To be able to represent information

on any line comparison between two hierarchies the Line or Path drawn should be stored

along with the NodeStatus and the line type. For that to happen, this data structure

consists of:

• String to represent the line type, which is either delete, new or switch

• NodeStatus to store all information associated with a node that changed status,

explained in more details in the previous paragraph

• Line or Path depending on the line drawn since a line representing a changed

position node is drawn using a Path2D data type and those representing an added

or removed node is drawn using a Line2D data type

BarchartPanel

For a better representation and understanding on how data is changing, a bar chart is

displayed whenever a comparison of hierarchies is processed. The bar chart illustrates the

number of removed, added and changed position nodes between each hierarchy with its

previous hierarchy. The total number of nodes composing the hierarchies being compared

(number of nodes in hierarchy 1 and number of nodes in hierarchy 2) are also being dis-

played. Bar charts are placed each under the hierarchy being compared to; e.g. hierarchy

2. Colours are used to distinguish between bars representing each attribute.

• Black represent the number of nodes of first hierarchy

• Gray represent the number of nodes of second hierarchy

• Red represent the number of nodes that got removed

• Green represent the number of nodes that were added

• Blue represent the number of nodes that changed places

48

BarsObject

A data structure is used to store all attributes used to represent the bar chart representing

the di↵erences between successive hierarchies. For a bar chart to get displayed we need

to keep track of several parameters such as the position of the bar chart (where on the

Panel will it be displayed), the number of nodes in first hierarchy, the number of nodes

in second hierarchy and the number of nodes in each of the following: removed, added

and changed places lists. The following are the parameters of BarsObject:

• x the x position of the bar chart

• numOfNodes1 the number of nodes representing the first hierarchy

• numOfNodes2 the number of nodes representing the second hierarchy

• numR the number of nodes that got removed

• numG the number of nodes that were added

• numB the number of nodes that changed places

5.5 Visualization

Hierarchies describing the dataset of a given file in di↵erent timestamps, are represented

and drawn using the Graphics library. For the hierarchies visualization, ”Draw” class

is implemented to handle any drawing processing needed in the whole application. As

described in Chapter 1, hierarchies are visualized in an indented pixel tree plot style.

We use a set of rectangular shapes to represent nodes contributing in the hierarchy

construction. We plot the rectangles successively in an indented outline structure to

form the desired hierarchy form.

Any changes in the hierarchies observed due to actions performed on the hierarchies

displayed is also implemented in the ”Draw” class. For example executing any filtering

function on the hierarchies displayed, calls the paint method responsible for any drawing

observed, which is found in ”Draw”. In order to distinguish each repaint() call when

called from several parts of the code depending on the user requirement, control vari-

ables are used to drive the flow of execution of the di↵erent part of the paintComponent

method blocks. For example when displaying new hierarchies to the display panel, a

boolean variable showOriginal is set to true. Also when a filter function is applied,

like a filter to highlight all attributes that got removed from one hierarchy to another,

the boolean variable, showRemoved is set to true and all other control variables are set

49

to false.

What di↵ers in each drawing is mainly the colors of each node (rectangle) and this

depends on the control variables. Filtering is usually observed by highlighting specific

nodes depending on the filter function, letting all desired nodes highlighted by their colour

code, depending on their depth level and the rest of the nodes greyed out. So the main

di↵erence found between each drawing implementation in every condition is mainly the

colouring of nodes. Nodes are coloured when needed, according to the filter function and

greyed out otherwise.

Hierarchy Visualization

The position of each hierarchy is decided depending on the number of hierarchies to be dis-

played on the display panel. These hierarchy positions are stored in a list listOfGraphPoints.

This list is then used to draw each hierarchy in its specified position.

This is how hierarchy positions are calculated:

space taken by each hierarchy =
display panel width

number of files to be displayed
(5.1)

Then x is calculated as follows:

x position of each hierarchy = (file index⇥ space taken by each hierarchy) + 20 (5.2)

At the start of each drawing we need to initialise some attributes:

• The node size; width and height of a node, the default is one but if zoom slider

value is changed then the node size takes the value of the new slider value position

accordingly.

• The total depth level of the hierarchy which is calculated for each hierarchy using

the getDepth() method.

• The x and y positions where the hierarchy should get plotted; where x and y are

stored in the listOfGraphPoints list and y is always initialized with a constant

value.

• The display panel height; height of the white panel where hierarchies are getting

displayed.

50

• The hierarchy size, were nodes of each hierarchy can be found in the arrayOfGraphs

list.

• The pixel size variable which is explained in the following paragraph

In order to fit thousands of nodes constructing the hierarchy onto the display screen,

we need to overlap nodes. Accordingly, we need to know how many nodes are getting

displayed proportional to the display screen to calculate the amount of overlapping space

each node will occupy. The pixel size variable, pixelSize is then initialized depending

on the number of nodes to be displayed representing a hierarchy and on the panel height

where the hierarchy is observed, as represented in equation 5.3.

pixel size =
panel height

number of nodes to be displayed
(5.3)

This value is then used to calculate the new y position of current node, y=y+pixelSize.

This equation is used only when the number of nodes to be displayed exceed the display

panel height. Otherwise, if the number of nodes are less than or equal to the display

panel height, the nodes are displayed with a pixel size, meaning a width and height equal

to 1 with no overlapping.

For a better visualization of the hierarchies placed against each other, the background

colour of each hierarchy is alternated from white to gray and vice versa. When the hier-

archy displayed is at an even position it has a greyed background. Same concept when

displaying the bar charts visualizing the changes made between successive hierarchies,

but instead of changing backgrounds we find it su�cient to only separate the charts with

gray vertical lines.

All stated above explanation are pre-processing to the actual drawing on the display

panel. A detailed explanation on how the indented plots are drawn on the display panel

and how the variables are calculated and changed is presented below.

Hierarchy Plotting

Parent-child relationships are expressed using indentation - omitting the edges - of the

rectangular shapes representing the nodes. Each node is indented with respect to its

depth level. To start with, we get the node’s depth level. Accordingly we calculate the

node’s position on screen; nodes with higher depth value, we expect to find on the right.

A node is positioned with respect to the hierarchy’s xorigin position (the x position

where the first node gets displayed) adding to it the node level decremented by 1 and

multiplied by the node width, provided in equation (5.4). The y coordinate position

51

for each node displayed changes depending on the pixelSize value explained previously.

The indented plot has a red to green colour coded gradient, which means, the root node is

represented in red colour and colour degrades until reaching a green colour representing

the leaf nodes and all intermediate nodes are represented in variant colour between both.

The colour accompanied with each node is then dependent on the node depth, so the red

component value degrades and the green component increments proportional with the

node level. Each node is given its colour gradient as shown in equations (5.5) and (5.6).

x position = xorigin+ (node level)� 1⇥ nodewidth (5.4)

red colour component = 255� (node level � 1)⇥ (255÷ (noOflevels� 1))) (5.5)

green colour component = (node level � 1)⇥ (255÷ (noOflevels� 1))) (5.6)

After drawing all nodes constructing the indented plot modelling a hierarchy, we store

some points corresponding to the bound of each hierarchy for further processing. This

is achieved by using the data structure GraphBounds (needed when user wants to select

specific hierarchies). Each hierarchy has its nodes stored in a list. Lists for each hierarchy

drawn is then stored in a container having all hierarchy lists.

At the top of each indented plot, the name of the file is placed.

52

H:Hierarchy representing a file and consisted of nodes (List <Node>)

n: node

xorig: x position where plotting starts (integer)

y: current vertical position

x: current horizontal position

leveln: current level(depth) of hierarchy (integer)

pixelSize: the width of the node(integer)

r: red component value(integer)

gc: green component value(integer)

while Node n: H do

x=xorig+(leveln-1)*pixelSize;

r=255-(leveln-1)*(255/(noOflevels-1));

gc=(leveln-1)*(255/(noOflevels-1));

rect=new Rectangle2D.Double(x, y, width, height);

DrawRect(rect,n);

//to store the position of each rectangle drawn with the corresponding

node draw rectangle(x, y, width,height);

y:=y+pixelSize;

end
Algorithm 3: Hierarchy plotting algorithm

Line Plotting

A description on how comparison lines are plotted to visualize the changes between

hierarchies. In order to display lines visualizing the comparison applied on all hierarchies

or specific hierarchies we use Line2D and Path2D Objects. To indicate if a comparison

took place or not, to see if the lines will get drawn, boolean variables like compareAll

and compare are used and are set to true whenever comparison is needed.

5.6 IPTPtool

This is the class implementing the Graphical User Interface. The tool is composed of a

horizontal tool bar situated at the top of the mainframe and four main panel. A left and

a right vertical panels, a central panel where hierarchy visualization will be observed and

a bottom panel for display mode configuration and an additional panel is displayed under

the central panel after a hierarchy comparison.

The right and left panels each is subdivided into smaller panels, where each sub-panel

53

Figure 5.4: The Graphical User Interface of the Tool

acts as a container for components such as Combo Box, Slider, Radio buttons, Text fields,

Labels and Text area, where each component can be used as follows:

• ComboBox: to select a filter to apply on the hierarchies displayed

• Slider: for zooming in/out on hierarchies

• Radio Buttons: to select between modes like high quality, low quality, interactive

or non-interactive

• Text fields: used for searching on specific nodes by entering part or whole desired

node name, and can also be used in filtering

• Labels: to display titles for the sub-panels and represent results of the hierarchies

compared

• Text area: To display details of a hovered node, like its name, parent’s name, depth,

index and number of children

54

Chapter 6

Conclusion

In this thesis, we have introduced an interactive visualization tool that supports the

analysis of large dynamic hierarchies using IPTPs. We used the IPTPs technique to

e�ciently explore and compare large hierarchies because these plots have a high degree

of visual scalability. The tool is configured to work with hierarchies in a newick file for-

mat. It provides a number of interactive features that help analyzing and distinguishing

the changes between di↵erent IPTPs in di↵erent timesteps. These features are zoom-

ing in/out displayed IPTPs, collapse/expand nodes, subhierarchy selection for a larger

display, searching a specific node, details on demand by hovering over nodes and lines

and displaying detailed information, applying filters such as displaying only leaf nodes

or show only removed nodes. Users can also choose between displaying a high quality

mode or a low quality mode for a faster navigation since rendering high quality takes

more time. The user can as well choose to disable the interaction of hierarchies and only

display a screenshot.

Hierarchies are displayed aligned using a side-by-side representation of IPTPs. To

achieve a mental map preserving overview-based diagram we have shown the dynamics

of a hierarchy by a static representation and illustrated the changes between subsequent

hierarchies by special links - straight ones and also curved ones serving as comparison

lines.

We demonstrated how the interactive features can be applied to explore, compare,

filter and highlight hierarchies on a number of di↵erent datasets. We applied it to a very

large dataset and also to smaller ones in our illustrative case studies. The NCBI taxonomy,

a hierarchical dataset containing 324,276 nodes classifying species and organisms, is an

example of a huge dataset for which we proved the ability to examine it using subregion

selection to have a closer view to a subhierarchy. Then smaller datasets containing

55

from 100 to 10,000 nodes on average were also tested, representing the evolving prefix

tree structure of words occuring in paper titles from all papers in the field of computer

science.

Limitations

An improvement could be done to the newick file parser to accelerate the parsing of huge

files. Also the subregion selection feature needs to be improved since the enlargement

of the selected region can overlap the IPTP next to it. In addition to that, when the

subhierarchy selection feature is used all other features and functionalities have no e↵ect

on the IPTPs displayed. A time filter uses the name of files for the filtering process, that

means that this type of filter will not work if the file names were otherwise stated which

means if they do not have the year stated at the end of the file name.

Future Work

Interactivity on visualized hierarchies is a non-ending cycle, there are always filters that

could be applied and di↵erent types of interactions to implement. For example, in our

tool zooming in/out features can only be applied to all hierarchies represented on screen.

Zooming in could be done on a subhierarchy not only on the whole hierarchies displayed.

Also extended filters need to be implemented, like the ability to display a subhierarchy

selected by the user and to apply it to all hierarchies displayed, putting into considera-

tion that this subhierarchy chosen by the user could be changed in subsequent hierarchies.

The tool can also provide a better view on the bar charts representing the changes

between two successive IPTPs, that could be done by clicking on the bar chart, a larger

bar chart could be displayed on a pop-up panel with detailed information with the per-

centage of changes (Delta, explained in Section 6.4).

To visualize the changes of the dynamic hierarchies we use coloured lines as mentioned

in this work. When a big number of lines overlap or these are really close to each other this

can cause visual clutter. In order to reduce the visual clutter we can use edge bundling

as mentioned in the work of Danny Holten [14].

56

Appendix A

User Manual

Our tool is a basic one consisting of a menu bar and a tool bar positioned at the top of

the mainframe, and four main panels that are shown on the start up of the tool as shown

in Figure ??. An additional panel is observed when a comparison between hierarchies

takes place. The panels are described as follows:

• Configuration panel: used for configuration purposes

• Detail panel: used to display detailed information about the hierarchies

• Control panel: composed of radio buttons for display mode purposes

• Hierarchy panel: where the hierarchies (IPTPs) will be visualized

• Bar chart panel: an additional panel that will be displayed at the bottom of the

central panel to display some comparison statistics in a bar chart form, only when

comparison between hierarchies takes place.

A description of all panel components and functionalities are provided next.

A.1 Menu Bar

The menu bar is located at the top of the tool’s mainframe. It includes menu items and

options specific to the tool. Items located within the menu bar are also found in the tool

bar. File menu is the menu item provided in our menu bar which consists of options such

as New File, Open File, Save and Close.

Please refer to the next section for a detailed explanation.

57

F
ig
u
re

A
.1
:
T
h
e
grap

h
ical

u
ser

interface
of

th
e
In
d
ented

P
ixel

T
ree

B
row

ser
p
rovid

es
a
variety

of
interactive

featu
res

to
m
an

ip
u
late

th
e

h
ierarch

ical
d
ata,

to
an

n
otate

an
d
h
igh

light
su
b
region

s,
to

com
p
are

trees,
an

d
to

n
avigate

in
it.

58

A.2 Tool Bar

The tool bar is located at the top of the mainframe as shown in Figure A.2, directly under

the Menu bar. It serves as an always-available, easy-to-use interface for performing

common functions. It consists of a set of button elements; ’open folder’ button , ’save’

button , ’compare’ and ’compare all’ buttons, ’clear comparison’ button ,

’delta’ button and ’default cursor’ button described as follows:

• new file: to create a new file

• open folder: to open a directory

• save: to save IPTPs displayed on the Hierarchy panel (display panel)

• compare: to compare between selected hierarchies

• compare all: to compare all displayed hierarchies

• clear comparison: clears all comparison lines drawn between the IPTPs

• delta: displays the changes in percentage between two consecutive IPTPs on the

Detail panel

• default cursor: restore the cursor to its default

New File

After the new file button situated at the top left corner of the toolbar is pressed, a new

blank display panel is created for a new file to get displayed.

Open Folder

By pressing the open folder button, a file chooser window pops out and a directory having

files to be displayed can be chosen and displayed on screen.

Save

Pressing the save button saves the IPTPs viewed on the Hierarchy panel in a JPEG

image format in the directory chosen by the user.

59

Figure A.2: Tool bar

Compare/Compare All

Comparison between hierarchies can be done in two di↵erent ways, either by selecting

the hierarchies to compare or by comparing all hierarchies displayed.

By pressing the compare button, only selected hierarchies will be compared, and

by pressing the compare all button, all displayed hierarchies will be compared. After

pressing any of the two buttons, coloured lines are observed which describe changes

between hierarchies. Red coloured lines demonstrate removed nodes, green coloured lines

demonstrate added nodes and blue coloured lines demonstrate switched position nodes.

A description of the line, like the type (added, removed or switched) and the name of

the node are observed when hovering on any of the lines displayed between hierarchies.

For example when a blue line is hovered, the type displayed is ”switched” and the name

corresponding to the node is displayed next to the type.

Clear

After pressing the clear button, comparison lines - if any - will be removed.

Delta

A comparison needs to take place before pressing the delta button. When the ’delta’

button is pressed, the cursor icon changes to and the user can put the cursor between

any consecutive IPTPs to display the changes in percentage of: the added nodes, removed

60

nodes and switched position nodes between the first hierarchy (the one on the left of the

cursor) and the second hierarchy (the one on the right of the cursor). The calculated

percentages can be observed on the ”Delta” section of the Detail panel, positioned at the

right of the tool’s mainframe.

Default cursor

To restore the default cursor when the cursor is not in its default state, the user needs

to press the default cursor button . This is mainly applied when the delta button is

used.

A.3 Configuration Panel

This panel appears where any configuration or alternation on hierarchies displayed takes

place. The panel consists of four parts: Zoom, Filter, Search and Resolution, where each

part can consist of more than one component:

• Zoom: consists of a slider bar for zooming purposes

• Filter: to apply certain filters on the IPTPs displayed

• Search: to search for a certain node on the display panel or filter nodes starting

with certain character

• Resolution: to select between high quality or low quality display

Zoom

A zoom in/out of the hierarchies displayed can be observed on hierarchies when the mouse

is pressed and moved on the slider bar. The hierarchies get larger or smaller according

to the value on the bar the mouse stopped at.

Filter

There are three ways to apply filters on the IPTPs displayed, either by selecting a filter

from a drop down list having some defined filters, or using a time filter or an alphabet

filter as seen in Figure A.4.

- Drop down list: has 4 defined filters, ”show only removed nodes”, ”show only added

nodes”, ”show only changed position nodes” and ”show only leaf nodes”. First three

filters are only used when comparison takes place.

61

Figure A.3: Zoom slider

- Time filter: to display only desired IPTPs depending on a year range. The ’start

date’ (in years) can be displayed in the first text field and the ’end date’ in the

second text field

- Alphabet filter: to display only nodes that start with a desired alphabet (A1). An

additional alphabet filter (A2) can be applied by pressing the ’Apply a second filter’

button to give the user the ability to filter out attributes starting with two di↵erent

characters at the same time.

These filters are applied on the hierarchies displayed after the ’Filter’ button is pressed

except when choosing from the drop down list. And accordingly, the nodes to be filtered

are shown and displayed in their colour code according to their depth level, and all other

nodes are filtered out and displayed in grey colour.

All three types of filters can be applied at the same time. In order to clear the filters

and display the original IPTPs, a ’Clear Filter’ button needs to be pressed.

Searching

Searching a specific node only requires a String to be entered in the text field shown in

Figure A.5 followed by a click on the ”Search” button. Nodes searched for are displayed

in their colour code according to their depth level and all other nodes are filtered out

by displaying them in grey colour. If a filter is applied and the nodes resulting from the

62

Figure A.4: Filter

search button are already shown by another filter, then the node is coloured in yellow

to distinguish the search result from the filter result as shown by the blue rectangle in

FigureA.5. Options like ’whole word’ and ’case sensitive’ can be applied to the searching

process by clicking on either, or both check boxes associated with each option.

A ’Show original’ button can be used to clear the search text field and remove the

coloured nodes displayed resulting from the search previously done.

Resolution

Alternation between high quality and low quality is done using radio buttons. When

faster processing is needed then choosing low quality is preferable.

A.4 Detail Panel

All the details on IPTPs displayed can be found on the right side of the tool’s mainframe.

This panel is composed of four parts displaying details about something selectable:

• Hovered nodes: displays information of a certain node

• General information: for general file information

• Delta: displays numbers explaining how much a hierarchy has changed from its

predecessor

63

Figure A.5: Search engine

Figure A.6: Resolution mode

• Graph legend: describes the meaning of the colors used for the visualization

64

Hovered Nodes

When the mouse cursor is located over a node displayed, all information about that

specific node like the node name, its parent name, its depth level, its index (its position

in the hierarchy) and its number of children are displayed in the top right corner of the

mainframe in the text area provided as shown in Figure A.7.

Figure A.7: Hovered nodes details area

General

After hierarchies are displayed, the information of the first hierarchy displayed, like the

file name and the maximum depth of the hierarchy can be shown. When the mouse is

pressed on other IPTPs representing di↵erent files, data displayed changes accordingly.

Delta

After a comparison takes place, changes are calculated and the percentage of change

(added, removed, changed position nodes) between the first IPTP and the last IPTP

displayed can be observed on the panel as area shown in Figure A.9. This is also where

the changes can be observed when choosing to calculate the delta using the ”delta” button

explained previously in the ”Tool bar” section. The values displayed are as follows:

• Added nodes: represents the percentage of added nodes

• Removed nodes: represents the percentage of deleted nodes

65

Figure A.8: General file details

• Changed position nodes: represents the percentage of changed position nodes

Figure A.9: Delta

66

Graph Legend

A graph legend is used to describe the meaning of colors used to visualize the IPTPs and

their changes. A horizontal colour stripe is used to represent the colour codes (according

to the node’s depth level) of the IPTP. When a comparison takes place a ’comparison

line’ legend and a ’bar chart’ legend are displayed as shown in Figure A.10.

Figure A.10: Graph legend

A.5 Control Panel

In order to make the display panel (positioned at the center of the mainframe) interactive

or non-interactive, two radio buttons are displayed at the bottom for alternation between

modes. The non-interactive mode only allows the user to hover over nodes and scroll

horizontally or vertically. It is a saved image of what was displayed right before changing

from interactive to non-interactive mode. This can be used when interaction with the

displayed hierarchies is not needed, to make processing faster when moving around all

hierarchies when an observation is needed.

67

Figure A.11: Control modes

Figure A.12: IPTPs display area

A.6 Hierarchy Panel

The Indented Pixel Tree Plot (IPTP) is visually depicted at the center of the mainframe

surrounded by a red rectangle in Figure A.12. The green rectangle represents the display

68

area after the user selection on a specific directory, as for the orange rectangle, it illustrates

the display area after the compare all button is pressed. Any alternation on the IPTPs

displayed like filtering a↵ects the main display.

A.7 Bar Chart Panel

After a comparison takes place (any of the two buttons, compare/compare all are pressed),

the changes between all hierarchies displayed is visualized using bar charts, one for each

two consecutive hierarchies. The bar chart consists of five bars, 2 for representing the

number of nodes in each file and the other 3 representing the changes between hierarchies

(added, removed and switched nodes). The size of the first hierarchy is represented in

black colour, the size of the second hierarchy is represented in grey colour, the number

of added, removed and changed place nodes are each represented in green, red and blue

colors respectively. The red rectangle in Figure A.13 represents the bar chart panel after

comparison.

Figure A.13: Bar chart

69

Bibliography

[1] K. Andrews and H. Heidegger. Information slices: Visualising and exploring large

hierarchies using cascading, semi-circular discs. In Proc of IEEE Infovis 98 late

breaking Hot Topics, pages 9–11, 1998.

[2] K. Andrews and J. Kasanicka. A comparative study of four hierarchy browsers using

the hierarchical visualisation testing environment (hvte). In Information Visualiza-

tion, 2007. IV’07. 11th International Conference, pages 81–86. IEEE, 2007.

[3] M. Balzer and O. Deussen. Voronoi treemaps. In Information Visualization, 2005.

INFOVIS 2005. IEEE Symposium on, pages 49–56. Ieee, 2005.

[4] M. Balzer, O. Deussen, and C. Lewerentz. Voronoi treemaps for the visualization of

software metrics. In Proceedings of the 2005 ACM symposium on Software visual-

ization, pages 165–172. ACM, 2005.

[5] G.D. Battista, P. Eades, R. Tamassia, and I.G. Tollis. Graph drawing: algorithms

for the visualization of graphs. Prentice Hall PTR, 1998.

[6] B.B. Bederson, B. Shneiderman, and M. Wattenberg. Ordered and quantum

treemaps: Making e↵ective use of 2d space to display hierarchies. AcM Transac-

tions on Graphics (TOG), 21(4):833–854, 2002.

[7] M. Bruls, K. Huizing, and J.J. Van Wijk. Squarified treemaps. In Proceedings of

the joint Eurographics and IEEE TCVG Symposium on Visualization, pages 33–42.

Citeseer, 2000.

[8] M. Burch, M. Raschke, and D. Weiskopf. Indented pixel tree plots. Advances in

Visual Computing, pages 338–349, 2010.

[9] M. Burch, H. Schmauder, and D. Weiskopf. Indented pixel tree browser for exploring

huge hierarchies. Advances in Visual Computing, pages 301–312, 2011.

71

[10] S. Diehl, C. Görg, and A. Kerren. Preserving the mental map using foresighted lay-

out. In Proceedings of Joint Eurographics–IEEE TCVG Symposium on Visualization

(VisSym01), pages 175–184, 2001.

[11] P. Eades and Fujitsu Laboratories. International Institute for Advanced Study of

Social Information Science. Preserving the mental map of a diagram. International

Institute for Advanced Study of Social Information Science, Fujitsu Limited, 1991.

[12] J. Heer, M. Bostock, and V. Ogievetsky. A tour through the visualization zoo.

Communications of the ACM, 53(6):59–67, 2010.

[13] I. Herman, G. Melançon, and M.S. Marshall. Graph visualization and navigation in

information visualization: A survey. Visualization and Computer Graphics, IEEE

Transactions on, 6(1):24–43, 2000.

[14] D. Holten. Hierarchical edge bundles: Visualization of adjacency relations in hi-

erarchical data. Visualization and Computer Graphics, IEEE Transactions on,

12(5):741–748, 2006.

[15] P. Irani, D. Slonowsky, and P. Shajahan. Human perception of structure in shaded

space-filling visualizations. Information Visualization, 5(1):47, 2006.

[16] B. Johnson and B. Shneiderman. Tree-maps: A space-filling approach to the visu-

alization of hierarchical information structures. In Visualization, 1991. Visualiza-

tion’91, Proceedings., IEEE Conference on, pages 284–291. IEEE, 1991.

[17] D.E. Knuth. The art of computer programming, volume i: Fundamental algorithms,

chapter 2, 1973.

[18] J.B. Kruskal and J.M. Landwehr. Icicle plots: Better displays for hierarchical clus-

tering. The American Statistician, 37(2):162–168, 1983.

[19] M.J. McGu�n and J.M. Robert. Quantifying the space-e�ciency of 2d graphical

representations of trees. Information Visualization, 9(2):115–140, 2010.

[20] K. Misue, P. Eades, W. Lai, and K. Sugiyama. Layout adjustment and the mental

map. Journal of visual languages and computing, 6(2):183–210, 1995.

[21] Q.V. Nguyen and M.L. Huang. A space-optimized tree visualization. In Information

Visualization, 2002. INFOVIS 2002. IEEE Symposium on, pages 85–92. IEEE, 2002.

[22] B. Nouanesengsy and Y. Li. Hierarchy visualizations. In IN M. SHAH CHAR-

ACTERS. PROCEEDINGS OF THE 27 & R. JAIN (EDS.), MOTION-BASED

RECOGNITION. Citeseer, 1997.

72

[23] E.M. Reingold and J.S. Tilford. Tidier drawings of trees. Software Engineering,

IEEE Transactions on, (2):223–228, 1981.

[24] E.W. Sayers, T. Barrett, D.A. Benson, E. Bolton, S.H. Bryant, K. Canese,

V. Chetvernin, D.M. Church, M. DiCuccio, S. Federhen, et al. Database resources of

the national center for biotechnology information. Nucleic acids research, 39(suppl

1):D38–D51, 2011.

[25] B. Shneiderman. Tree visualization with tree-maps: 2-d space-filling approach. ACM

Transactions on graphics (TOG), 11(1):92–99, 1992.

[26] B. Shneiderman. The eyes have it: A task by data type taxonomy for information

visualizations. In Visual Languages, 1996. Proceedings., IEEE Symposium on, pages

336–343. IEEE, 1996.

[27] B. Shneiderman. Treemaps for space-constrained visualization of hierarchies. ACM

Transactions on Graphics (TOG) Volume, 11:92–99, 1998.

[28] B. Shneiderman and M. Wattenberg. Ordered treemap layouts. In Information

Visualization, 2001. INFOVIS 2001. IEEE Symposium on, pages 73–78. Ieee, 2001.

[29] J. Stasko, R. Catrambone, M. Guzdial, and K. McDonald. An evaluation of space-

filling information visualizations for depicting hierarchical structures. International

Journal of Human-Computer Studies, 53(5):663–694, 2000.

[30] J. Stasko and E. Zhang. Focus+ context display and navigation techniques for

enhancing radial, space-filling hierarchy visualizations. In Information Visualization,

2000. InfoVis 2000. IEEE Symposium on, pages 57–65. IEEE, 2000.

[31] A. Telea and D. Auber. Code flows: Visualizing structural evolution of source code.

In Computer Graphics Forum, volume 27, pages 831–838. Wiley Online Library,

2008.

[32] F. Van Ham and J.J. van Wijk. Beamtrees: Compact visualization of large hierar-

chies. Information Visualization, 2(1):31–39, 2003.

[33] J.J. Van Wijk and H. Van De Wetering. Cushion treemaps: Visualization of hier-

archical information. In Information Visualization, 1999.(Info Vis’ 99) Proceedings.

1999 IEEE Symposium on, pages 73–78. IEEE, 1999.

[34] F. Vernier and L. Nigay. Modifiable treemaps containing variable-shaped units. In

IEEE information Visualization, 2000.

73

[35] A. Vilanova, A. Telea, G. Scheuermann, and T. Möller. Visual comparison of hier-

archically organized data.

[36] Kai Wetzel. Pebbles - using circular treemaps to visualize disk usage. http://lip.

sourceforge.net/ctreemap.html, 2003. Online; accessed 15-September-2012.

[37] J. Yang, M.O. Ward, E.A. Rundensteiner, and A. Patro. Interring: a visual interface

for navigating and manipulating hierarchies. Information Visualization, 2(1):16–30,

2003.

[38] S. Zhao, M.J. McGu�n, and M.H. Chignell. Elastic hierarchies: Combining treemaps

and node-link diagrams. In Information Visualization, 2005. INFOVIS 2005. IEEE

Symposium on, pages 57–64. IEEE, 2005.

74

Erklärung

Ich versichere, diese Arbeit selbstsändig verfasst zu haben.

Ich habe keine anderen als die angegebenen Quellen benutzt und alle wörtlich oder

sinngemäßaus anderen Werken übernommene Aussagen als solche gekennzeichnet.

Weder diese Arbeit noch wesentliche Teile daraus waren bisher Gegenstand eines

anderen Prünfungsverfahrens.

Ich habe diese Arbeit bisher weder teilweise noch vollständig verö↵entlicht.

Das elektronische Exemplar stimmt mit allen eingereichten Exemplaren überein.

(Christine Louka)

