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1 Introduction

Motivation

Digital pictures are present in every modern application. They do not only have a cosmetic
function but often have practical uses like visualizing important information or clarifying
facts.

Uncompressed images, especially in large dimensions, use up a lot of disc space and it
is not convenient to transfer those images, especially in situations where only a limited
bandwidth is available. Also, loading big files is too memory demanding and time consuming,
depending on the device and transfer speed. This is unacceptable whenever time is a critical
factor. Over the last decades, many different methods were developed to reduce the file size
as much as possible while the original picture is still recognizable.

So-called lossy or near-lossless compression algorithms are used which remove and/or
quantize regions of the image to get a smaller file size. This is sufficient for most applications
where pictures and images are present to serve as a design choice. But there are also more
demanding fields like medicine in which a reduction of picture information is not acceptable
as they may contain vital information. Here, lossless compression is of particular interest
as it allows to reduce the file size while a perfect reconstruction of the original image is
possible.

Because of the higher demand in picture recontructability, lossless compressed images have
worse compression ratios than near-lossless compressed images. Thus many attempts and a
lot of research was and is being conducted to get the best possible quality while minimizing
the file size. This study thesis implements an extension for the JPEG-LS compression codec
so a Just-Noticeable-Distortion (JND) measurement can be used to dynamically adjust the
quantization step size to the human perception.
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1 Introduction

Structure

Chapter 2 - Perceptional Coding: Introduces perceptional coding, its principles and explains
the JND idea.

Chapter 3 - JPEG-LS: Describes the baseline JPEG-LS algorithm whereas only the regular
mode will be treated in more detail.

Chapter 4 - Just-Noticeable-Distortion Calculation: Explains how the Just-Noticeable-
Distortion is being calculated and what problems occurred.

Chapter 5 - Integration of the JND-Calculation with near-lossless JPEG-LS: Describes how
the JND-Measurement is integrated into near-lossless JPEG-LS and how the codec has to be
adapted.

Chapter 6 - Evaluation and Results: Defines visual quality measurement methods and
presents the results

Chapter 7 - Summary: Shows an overview of this work and gives an outlook for further
approaches.

Scope of work

In this study thesis a JND (Just-Noticeable-Distortion)-Measurement will be implemented
on top of JPEG-LS while only considering a grayscale bit depth of 8 Bit. This is sufficient
to show a proof of concept of combining the JND approach with JPEG-LS. JPEG-LS is a
widely used and relatively simple coding mechanism for lossless and near-lossless image
compression.

The JND measurement will be defined, implemented and integrated into JPEG-LS. Therefore
a modified approach of [CL95] will be used. The quantization step size (QSS) will be
adapted dynamically according to the JND value so that the compression ratio compared
to a standard JPEG-LS implementation can be improved. By that, a near-lossless variable
bit-rate (VBR) is introduced into the coding flow.

The encoder and decoder are implemented in MATLAB and after defining the visual
quality criteria the results are evaluated and analysed in matter of compression quality and
performance. Two test picture sets will be used and the perceptual quality of the codec
will be evaluated by an Mean-Opinion-Score (MOS) and Multi-Scale Structural Similarity
(MS-SSIM) test.
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2 Perceptional Coding

Perceptional coding aims to reduce the compressed file size by analyzing certain parts of
the image and taking advantage of the human perception. This chapter will introduce some
terms and definitions and also explain the general principle of perceptional coding. Finally,
the JND idea is briefly explained.

2.1 Disambiguation

The word codec is often used in conjunction with multimedia compression. A codec is a
portmanteau of the words coder and decoder. The term coder itself is an abbreviation to
"compressor" and the term decoder respectively to "decompressor".

In this work only grayscale pictures with a bit depth of 8 Bit will be used. This means that
only gray shades in the source image will be accepted and processed while there can be
exactly 28 = 256 different gray nuances.

The compression ratio roughly describes by a number how well a method compresses the
source image. For that, the size of the compressed file and the size of the uncompressed file
are compared. It serves as a quick reference in how well a codec performs.

In general, one can roughly categorize compression algorithms into lossless and lossy
algorithms. Lossless algorithms compress a source image in a way so it can be perfectly
reconstructed. Only redundant, unneeded information is removed and thus the best possible
picture quality is assured and all picture information can be reobtained. Lossy or near-lossless
algorithms on the other hand accept and allow a certain loss in image quality and image
information to be able to compress further than lossless methods. Because of these different
quality expectations and requirements, lossy algorithms can achieve a better compression
ratio [Pla96]. Actually in lossless image coding the signal to noise ratio relative to the source
input should not change in any case. But as long as an average viewer cannot perceive under
normal viewing conditions any difference between the source picture and the compressed
one, the compression system is said to be visually lossless [Gle93].

The human visual system (HVS) is an expression to describe not only the receptors, the eyes,
but also the psychological processing of images in the human brain. The HVS is very
special as it is highly non-linear which is why it is difficult to find good measurements to
evaluate the quality of a compressed image by objective algorithms or mathematical formulas
[Pla96].
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2 Perceptional Coding

Perceptional coding tries to minimize the perceivable errors. It actually is not limited to still
images as its principles, which will be explained in the next section 2.2, may be used in
audio and video processing too. Two of the most prominent perceptional coding examples
at the moment are the Moving Picture Experts Group MP3 codec [ISO98] and also the H.264

codec [IT11] in video compression which is used in BluRay Discs [Blu10] among others.
Perceptional coding can also be used in 3D modelling [CSBY06] or 3D stereoscopic images
[LWZ+

11].

2.2 Principle

The addition of perceptional coding by considering the human perception in regular coding
mechanisms is also called second generation image coding. First generation image coding algo-
rithms are for example Huffman encoding [RMB94] or the Pulse-Code Modulation (PCM)
[KIK85].

In still image processing one way to reduce the file size while maintaining a lossless image is
to remove all redundant information. Redundant data is a characteristic which is related to
numerous factors such as predictability, randomness and smoothness of image data [Pla96].
Another factor for perceptual redundancies in a picture is the inconsistency in the sensitivity
of the human visual system to varying levels of contrast and luminance changes in the
spatial domain. Finding the perceptual threshold where an average viewer in normal light
circumstances cannot perceive the difference between the original and the compressed image
is one of the challenges which have to be overcome.

Because the visually lossless perception is difficult to measure objectively, different ap-
proaches exist on how to determine the thresholds. This in turn results in many different
ideas because the Just-Noticeable-Distortion can be calculated in many ways depending
which factors are considered. Understanding the human visual system is important and
thus is often the focus of studies. For example, when looking at a picture, it is divided into
different regions by the brain, coarsely and most simply by categorizing a background and
foreground. There exist attempts to take advantage of that by having a larger quantization
step size (QSS) for the background and a smaller one for the foreground and other details.
The challenge therein is to find the right measurements and methods to differentiate and
categorize the corresponding sections of an image so that the objective is met to finally
encode the image visually lossless.

The whole idea of perceptional coding is to effectively adapt the coding scheme to the human
perception in a way that allows further removal of perceptually redundant information. This
should result in a high quality picture while minimizing the bit-rate. To reduce the bit-rate
even more, minimally perceptible image elements can be removed. This usually results
in slightly visible visual distortions and is called Minimally-Noticeable-Distortion (MND)
[JJS93].

Depending on the source material different approaches are more promising to deliver a
better compression ratio. There are region-, edge-, mesh- and 3D model-oriented source
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2.2 Principle

models which have their own elements they use as a foundation to compress the data [Pla96].
As this is not the focus here, this work will not go into more detail.
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Figure 2.1: Retina response for different wavelengths (source: own sketch after [Wik])

To understand more clearly why the human visual system is so complex and why it is
practical to take advantage of its features, it has to be investigated in more detail. The human
eyes are ultimately the receivers of almost every processing system. They represent the
sensor of visual signals and transfer the information to the human brain and can be roughly
compared to a video camera. The lens of the eye though is not perfect even for people who
are not near-sighted or far-sighted whatsoever.

The retina is the receptor which transforms the incoming light into electrical signals that are
sent to the brain. Two types of photocells are distributed over the retina: rods and cones.
Roughly 130 million rods and 6.5 million cones exist on a retina. The rods cannot perceive
colors but are sensitive to shapes and do not need a lot of light. In contrast to that, cones
need more light to be able to perceive colors and be able to distinguish details. There are
three different kinds of cones, each one is capable to perceive one spectral distribution of a
color. Figure 2.1 is a sketch which illustrates the relative sensitivity to different wavelengths
of rods and cones whereas rods are illustrated as black [Enc7 ]. This is one of the reasons
why the HVS is more sensitive to luminance changes and shapes than changes in color and
exact details. This behaviour can be used to remove more redundant information from the
picture and maintain a visually lossless quality [KIK85].

Actually not all information the eye catches is transferred to the brain. As the bandwidth of
the optical nerve is limited, the eye compresses the signal before it is finally sent to the brain
[New06] [KIK85]. There also exist further psycho-visual properties which were investigated
through extensive experiments [Pla96]. Weber’s law for example indicates that the HVS is
more sensitive to luminance contrast than absolute luminance [KIK85] [JJS93] [Pla96].

As mentioned before perceptional coding is also used in other areas of multimedia. For
example the JND/MND approach are already successful in compressing audio signals. For
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2 Perceptional Coding

audio, frequencies which an average listener cannot hear are cut. By using a threshold, most
simply explained the bit-rate, more or less frequencies are cut [Pla96]. Using a bit-rate that
is too low results in perceptible bad quality. For example, compressing a recording of falling
rain crackling against a window or a clapping audience in a theatre can not be distinguished
from static noise if the parameters are set too low.

2.3 Just-Noticeable-Distortion

As mentioned before, perceptional coding is considered a second generation coding method.
Those methods can be categorized into two general categories where the first one is local
operators based and the second contour-texture model based. The proposed JND measurement
used in this work is part of the first category as it uses the local environment of a sample to
determine the JND value. Chapter 4 goes into more detail, this section focuses on introducing
the idea of the Just-Noticeable-Distortion approach used in this work.

It is not sufficient to only remove the redundant information in a picture to achieve a
good compression ratio. Just-Noticeable-Distortion also tries to eliminate the perceptually
insignificant components of the image. Ideally the picture is subjectively visually lossless
while having the lowest possible bit-rate. Because of that, the actual coding is always
near-lossless, even though the use of the JPEG-LS codec might suggest otherwise by name.

Noise in an image is perceived as distortion. If the distortion level is below the JND value, a
visually lossless image can be achieved but at the expense of a higher bit-rate. Vice versa
a distortion level above the JND yields a better compression ratio but the distortion is
perceptible. The idea is that the distortion is distributed in a way so that it is masked by
the original image signal. This is also called distortion masking. This masking effect results
from the inability of the human visual system to distinguish properly between the noise
and the input signal even though it is possible to objectively measure it with mathematical
formulas. That is why the noise can be not perceptible and the concept of JND is realizable.
The right calculation of JND marks the boundary value which is the limit the coder should
try to match as good as possible [JJS93].

It is often not possible to maintain the JND threshold, in those situations a Minimally-
Noticeable-Distortion (MND) is accepted. The noise may be slightly visible but should appear
to be uniformly distributed over the whole picture [JJS93]. In many applications a MND
is sufficient, especially when the picture has small dimensions. The perception of noise
depends on various factors like luminance changes and viewing distance to the picture.

JND models themselves can further be categorized into two branches. The first one is the
pixel-wise JND model which model comes from the image domain. The second is called
sub-band JND model which model comes from the transformation domain like wavelet and
Discrete Cosine Transformation. This work uses an approach from the pixel-wise JND
model category as JPEG-LS is also processing an image in that way. The used methods and
performed calculations are explained in chapter 4 in more detail.

12



2.3 Just-Noticeable-Distortion

JPEG-LS can perform both lossless and near-lossless (lossy) coding. The maximum allowed
deviation between the original image value and compressed image value is set by the
parameter NEAR. For more information about variables and processes please consult
chapter 3 or the ISO/IEC 14495-1 : 1998(E) CCIT Recommendation T.87 [IT98].

Native JPEG-LS only supports a fixed non-adaptive quantization step size where the in-
tegration of JND allows to adapt the NEAR value and thus the quantization step size
where

QSS = 2 · NEAR + 1

is true for all JPEG-LS coding steps. Without the JND adaption the compression efficiency is
limited.

Summarized, the goal is to find a way to adapt the QSS to the contents of the source
image and maximize the quantization step size while the resulting picture is still visually
lossless.

13





3 JPEG-LS

JPEG-LS is a codec which allows to compress a source image lossless or near-lossless (lossy).
In comparison to other coding techniques, it uses a relative to other coding techniques
simple approach to effectively reduce the file size of the output file. JPEG-LS is based on the
work of HP in "The LOCO-I lossless image compression algorithm" [WSS00]. The following
section introduces the general application flow which is important to understand the baseline
JPEG-LS [IT98] coding and decoding mechanisms.

3.1 General application flow

. . . . . . . . .  . . . . . . . . .  . . . . . . . . .  . . . . . . . . .  . . . . . . . . .  . . . . .  
Samples 

 Row 1 
 2 
 3 
 .
 .
 . 

Figure 3.1: Raster scan method (source:
own figure after [IT98])

A source image is used as the input for the en-
coder. Images containing colors usually have a
number of components. Components themselves
are two dimensional arrays which each represent
a certain spectrum of a color palette. Through
combining all components the color information
is mixed together so that the original color distri-
bution is restored. As this thesis only considers
grayscale images, solely one component is being
considered.

Through a predefined scan order each pixel or
sample from the source is processed and written
into an output file by the encoder. The scan
order is from top row to bottom row whereas
each row’s column is scanned from the left-most
column to the right-most column. This method
is called raster scan. Figure 3.1 visualizes this
principle in which the green arrows symbolize
the scan sequence. It is important that encoder and decoder process the information in the
same way so that the values are read in the right order. Having this convention makes it
needless to convey that information in the bitstream of the compressed image. A picture has
a total of X columns and a total of Y rows which determine the dimensions of the source
image. Figure 3.2 (a) shows the layout of a component with its orientations.
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3 JPEG-LS
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Figure 3.2: Component layout and the causal template (source: own figure after [IT98])

NEAR is a variable which determines by how much the reconstructed pixel may differ from
the source image. The quantization step size (QSS) is determined by QSS = 2 ∗ NEAR + 1
whereas NEAR is a positive integer with the smallest value of zero. Through setting the
NEAR value the encoding mode between lossless (NEAR = 0) or near-lossless (NEAR > 0)
can be set. The value for a sample Ix from the source image is also an integer with a range
2P − 1 whereas P = 8 for 8 Bit bit-depth. In this case this results in possible integer values
between 0 and 255. If NEAR is set to zero, no difference between Ix and the reconstructed
value Rx may occur. This is why lossless reconstruction is possible. A value of NEAR = 3 for
example means that the sample Ix is 127, Rx may be between 124 and 130 and consequently
near-lossless encoding/decoding is performed. The NEAR variable is essential for the codec
as many other variables adapt to its value.

To convey the image properties to the decoder, the encoder inserts several markers. These
markers or header segments are already partly defined in [IT93] but are extended or modified.
A compressed image file basically consists of two parts: The header which contains various
parameters required to decode the bitstream and the bitstream itself. Figure 3.3 shows the
structure of a compressed image. The overall header which is comprised of all basic marker
segments needed for the decoder, starts with an start of image (SOI) marker, followed by
the start of frame (SOF) marker. The SOF header contains information concerning image
dimensions like width and height and also the bit precision of the samples and how many
components are contained. This marker is followed by a start of scan marker (SOS) which
most importantly contains the NEAR value used by the encoder [IT98].

To determine the probability distribution of the prediction errors in JPEG-LS, the so called
context modeling is used. Each sample x is encoded by processing four neighboring samples
a,b,c and d which layout is shown in Figure 3.2 (b). This template is called causal template
and by calculating the gradients on the template it determines whether the encoder enters
the run or regular mode. Run mode is selected when all gradients are within the tolerance
set by NEAR, otherwise the regular mode is performed. The gradient computation is shown
in the next section 3.2.
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3.2 Compression steps in baseline JPEG-LS regular mode

header 
 

width, height, bit-depth.. 

Bitstream 
 

00000100000101… 

compressed  

file 

entropy-coded  

data 

Figure 3.3: General structure of a compressed image (source: own figure after [Wan11a])

For simplicity reasons only the regular mode is implemented in this work as it is sufficient
to show a proof of concept of combining JND with JPEG-LS.

The regular mode will perform a prediction and error encoding procedure. Firstly a median
edge prediction is calculated from three neighbors of sample Ix. The causal template 3.2
(b) is used here while only the neighbors a, b and c are relevant. The prediction error is
then determined by computing the difference between sample x and the predicted value.
To negate the difference as good as possible the prediction error is therefor corrected by a
context dependent term. Finally a golomb coding algorithm writes the data into the output
file.

3.2 Compression steps in baseline JPEG-LS regular mode

The encoder writes all relevant marker segments into the output file and initializes needed
variables. After that the actual encoding process begins by processing the source image via
the raster scan. Up to the sample which is to be processed all preceding pixels are known.
More exactly, all pixels on the left side and above the current sample. Special care must be
given to the behaviour in corner cases where not all neighbors are available as they would
exceed the image bounds. This problem is considered in [IT98] where it is assumed that
there is statistically a strong correlation between the current sample and its neighbors.

For each pixel the causal template is used to calculate three local gradients D1,D2 and D3

indicated by the following equations:

D1 = d− b
D2 = b− c
D3 = c− a

17



3 JPEG-LS

If D1, D2 and D3 are all equal to zero (lossless) or D1, D2 and D3 < NEAR (near-lossless) the
run mode is selected, otherwise the encoder will enter the regular coding procedure.

The more important function of the local gradients is their role in context modeling. D1-D3

show how much the value of the neighbors a,b,c and d around the current sample Ix change
and determine the context. As P = 8 and only one component is present the possible values
for the gradients are between -255 and 255. As there are three gradients, 5113 = 133.432.831
different contexts may occure. As that are far too many contexts, their values are quantized
to a range of [-4,4]. This reduces the number of possible contexts to 93 = 729.

When comparing any two contexts whose local gradient’s absolute values are in pairs the
same but reversed, it is observable that their absolute error values are also the same but
reversed. It is possible to take advantage from that fact by removing the sign, save it
separately in a variable SIGN and only process the absolute values of D1-D3. Performing that
action reduces the number of possible contexts to only 365. To identify the specific contexts
they are mapped to an index value Q and are thus being quantized. This is called local
gradient quantization. There are three thresholds T1, T2 and T3 defined which map the values
of D1-D3 to a single index value Q. The default values are T1 = 3, T2 = 7, T3 = 21. These
thresholds have to be overwritten when near-lossless coding is performed. The following
algorithm 3.1 shows the procedure on how to quantize the gradients.

Algorithm 3.1: Quantization of Di

1: if (Di ≤ −T3) then
2: => set Qi = −4;
3: else if (Di ≤ −T2) then
4: => set Qi = −3;
5: else if (Di ≤ −T1) then
6: => set Qi = −2;
7: else if (Di < NEAR) then
8: => set Qi = −1;
9: else if (Di ≤ −NEAR) then

10: => set Qi = 0;
11: else if (Di ≤ −T1) then
12: => set Qi = 1;
13: else if (Di ≤ −T2) then
14: => set Qi = 2;
15: else if (Di ≤ −T3) then
16: => set Qi = 3;
17: else
18: => set Qi = 4;
19: end if

The index i is between 1 and 3. After quantization the value Q is calculated by reversing
all signs of the vector (Q1, Q2, Q3) and saving the sign in the variable SIGN when the first
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3.2 Compression steps in baseline JPEG-LS regular mode

non-zero element of the vector is negative. The calculation of Q and SIGN is called context
determination.

The next step is to get an as precise as possible prediction for the sample x (Ix) out of the
neighboring pixels a, b and c where the causal template from figure 3.2 (b) is used again.
The predictor being used is a Median Edge Detector (MED) with the following formula:

Px =


min(a, b) f or c ≥ max(a, b)
max(a, b) f or c ≤ min(a, b)
a + b− c else

where Px is the resulting predicted value. Px is usually not predicted correctly so that
four arrays A, B, C and N are defined to correct Px. A stores the accumulated prediction error
magnitudes, B stores the bias values, C stores prediction correction values and N counts the
frequency of occurrence of each context. Their initial values are defined in [IT98] and will
not be discussed in more detail here. As there is no information in how much Px has
to be corrected when the context occurs the first time, initially nothing will be added or
subtracted. But as the algorithm continues and the context occurs more often this behaviour
will change. To correct the predicted value Px, C(Q) with index Q is added or subtracted
from Px depending on SIGN and clamped with the function clamp(a, b) to the range of 0

and MAXVAL = 2P − 1 = 255. The whole procedure is called adaptive correction.

Px = clamp((Px + SIGN ∗ C(Q)), MAXVAL)

Now the computation of the prediction error can be done and is shown in the following
equation.

Errval = SIGN · (Ix− Px)

Errval should be a value as small as possible. Ideally, it is zero which would mean that the
prediction was very good. The predictor only considers a very limited number of neighboring
pixels and thus has a limited local view. As images also may have big homogeneous
areas or textures the prediction is often not perfectly accurate. Thus through the context
modeling (computation of Di, Q, A, B, C and N) which is shown above, the prediction of Px is
improved.

For near-lossless coding the Errval is further quantized. After the quantization the recon-
structed value Rx is computed and is used to encode further samples. To have consistency
with the decoder, the encoder computes Rx it in the same way. The algorithm 3.2 shows the
procedure. For lossless coding this is not needed.
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3 JPEG-LS

Algorithm 3.2: Error quantization for near-lossless coding and Rx computation
1: if Errval > 0 then
2: Errval = Errval+NEAR

(2·NEAR+1)
3: else
4: Errval = −(NEAR−Errval)

(2·NEAR+1)
5: end if
6: Rx = Px + SIGN ∗ Errval ∗ (2 ∗ NEAR + 1)
7: Rx = clamp(Rx, MAXVAL);

The resulting range of values for Errval is [−255, 255]. That is actually not desirable as this
results in a code extension from 8 Bit to 9 Bit because of the extra Bit needed for the negative
sign. Thus Errval is set to another range by modulo reduction to a range of [−128, 127].

Errval =

{
Errval + 256 f or Errval < −128
Errval − 256 f or Errval > 127

The error probability for real photographic pictures after figure 3.4 (a) follows a two-sided
geometric distribution. This is a good prerequisite for entropy coding to reduce the amount
of data. JPEG-LS uses a golomb-coder which is optimal for this case as proven in [MSW00].
As the golomb-coder only processes positive values, an error mapping is performed to map
Errval to a non-negative value with a range of [0, 255]. Figure 3.4 (b) shows the distribution
after the mapping procedure.

(a) Two-sided geometric error distribution (b) one-sided geometric error distribution 

Figure 3.4: Geometric error distribution (source: [Ger11])
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3.2 Compression steps in baseline JPEG-LS regular mode

For the mapping algorithm a golomb coding variable k is needed. The computation of k is
context-dependend and the variables A and N are used and computed by the encoder and
decoder in the same way. The following formula finds k.

k < dlog2(
A(Q)
N(Q)

)e

A special mapping is performed when lossless coding (NEAR = 0), k = 0 and (2 · B(Q) ≤
−N(Q)) are true.

MErrval =

{
2 · Errval + 1 , for Errval ≥ 0
−2 · (Errval + 1) , else

If the first criteria is not met a regular mapping is performed. For near-lossless coding, the
mapping is independent of the value of k.

MErrval =

{
2 · Errval , for Errval ≥ 0
−2 · Errval − 1 , else

After the mapping MErrval can finally be golomb coded and thus inserted as bytes into a
bitstream. Two variables are set: q = MErrval

2k and qmax = 23 for lossless or qmax = 25 for
near-lossless grayscale 8 bit bit-depth images. The following algorithm then appends the
code to the bitstream whereas the function AppendToBitstream(n, m) appends m n times.

Algorithm 3.3: Golomb coding

1: if (q < qmax) then
2: AppendToBitStream(0, q);
3: AppendToBitStream(1, 1);
4: AppendToBitStream((MErrval − (q · 2k), k);
5: else
6: AppendToBitStream(0, qmax);
7: AppendToBitStream(1, 1);
8: AppendToBitStream((MErrval − 1), qbpp);
9: end if

Each byte is filled with the golomb-coded bit-stream starting from its most significant bit.
If the last bit does not fill up a complete byte, the remaining bits of that byte are set to 0.
To avoid the accidental detection of a marker in the entropy-coded segment, bit stuffing is
performed. If eight binary ones are written consecutively, they are followed by a binary zero.
This additional zero is ignored by the decoder.

Finally as the last step in the regular mode is the update of the variables A, B, C and N. A and
B accumulate the prediction error magnitudes and values for context Q where N counts the
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3 JPEG-LS

Algorithm 3.4: Context variable update

1: B(Q) = B(Q) + Errval · (2 · NEAR + 1);
2: A(Q) = A(Q) + abs(Errval);
3: if (N(Q) = RESET) then
4: A(Q) = A(Q)

2 ;
5: if (B(Q) ≥ 0) then
6: B(Q) = B(Q)

2 ;
7: else
8: B(Q) = −( 1−B(Q)

2 );
9: end if

10: N(Q) = N(Q)
2 ;

11: end if
12: N(Q) = N(Q) + 1;

Algorithm 3.5: Bias computation and update of the prediction correction

1: if (B(Q) ≤ −N(Q)) then
2: B(Q) = B(Q) + N(Q);
3: if (C(Q) > −127) then
4: C(Q) = C(Q)− 1;
5: end if
6: if (B(Q) ≤ −N(Q)) then
7: B(Q) = −N(Q) + 1;
8: end if(B(Q) > 0)
9: B(Q) = B(Q)− N(Q);

10: if (C(Q) < 128) then
11: C(Q) = C(Q) + 1;
12: end if
13: if (B(Q) > 0) then
14: B(Q) = 0;
15: end if
16: end if

number of occurrences of the context Q. The variable RESET halves A, B and N if its default
value 64 is reached. The correction value C is also updated in every iteration and then
clamped to their possible values. Algorithm 3.4 and respectively 3.5 show these procedures
as proposed in [IT98].

The decoder follows the same procedures of the encoder but with the difference that the
golomb encoding and error mapping steps are inverted resulting in golomb decoding and
reverse error mapping [IT98].
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4 Just-Noticeable-Distortion Calculation

Just-Noticeable-Distortion is a principle used in perceptional coding to reduce the bit-rate
and thus reduce the file size of the output image. This chapter will show the advantages of
this approach and explains the idea behind the implementation described in Chapter 5.

The error visibility threshold of a certain area around a pixel depends on many factors. One is
the average background luminance behind the pixel and another is the spatial nonuniformity
of the background luminance.

Weber’s law indicates that the HVS is more sensitive to lumance contrast than absolute
luminance values [CL95] [Pla96] [SS83]. If the luminance of a eye stimulus is just notice-
able from the surrounding luminance, the ratio of just noticeable luminance difference is
approximately constant. This is called Weber fraction. The noise in very dark areas tends
to be less visible than noise in an environment with higher luminance due to the presence
of ambient illumination. Through a modification the Weber fraction increases while the
background luminance decreases when the background luminance is low. This can be used
and incorporated in a coder to take advantage of by assuming high visibility thresholds in
very dark or very bright areas and low thresholds in regions around the middle of the gray
scale (value of 127).

The reduction of the noise visibility caused by the increase in the spatial heterogeneity of the
background luminance is also known as spacial masking. This means that when adding noise
to an image, the visibility of the noise is much higher in an uniform background region than
in a region with high contrast. That feature has already been taken advantage of in many
other approaches to improve the coding efficiency [NP77] [Pir81]. Nonetheless the masking
effect is a highly complicated process and there exist various forms of masking. Justifying
those in theoretical formulation is very difficult. Many subjective experiments were done by
different research groups.

The masking function of spacial activity around a pixel is calculated by weighting each pixel
as the sum of the horizontal and vertical luminance slopes at the neighboring pixels after
[NP77]. The weight decreases as the distance between the neighbors and the current sample
increases. A defined noise visibility function then measures the subjective magnitude as the
masking function exceeds a predefined threshold. High values of the masking function lead
to low values of the visibility function while high values of the visibility function in turn
lead to low values of the masking function.

The goal is to calculate a JND value which substitutes the NEAR value dynamically at
runtime. Theoretically it is possible to save the different calculated JND values from the
encoder in a separate table and transmit those together with the compressed output to the
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4 Just-Noticeable-Distortion Calculation

decoder, resulting in a two-pass processing of an image. That would have to be repeated for
every picture as the calculated JND values are only usable for a specific image. Doing that
would most likely not reduce the overall file size enough to achieve a better compression
ratio because of the additional JND data transmitted. Thus a better approach has to be
used.

In this work a runtime JND calculation will be performed at both the encoder and decoder
side which increases the runtime but in turn makes the transmission of a JND table obsolete
and achieves better compression ratios. As mentioned, the NEAR value is substituted
which results in QSS = 2 · JND + 1. An attempt to do that was already made in [LL10]
while using a neural network to correct an estimated JNDE value with a refined JNDR
one. Though neural networks are very powerful for pattern recognition they need special
treatment. Essentially the neural network has to be trained, the more extensive the better.
After sufficient data has been processed, the neural network codec then would be able to
output a JND value which resembles the actual true JND value JNDT as much as possible
by adding JNDR to JNDE. The drawback of that approach is the time needed to train the
neural network and the amount of data that has to be processed in advance for the training
stage. Also the processed training information has to be saved and is likely to be large.

In [CL95] the JND value is calculated from a 5x5 window which center is the current
sample.

In the encoder all pixels are available so that the encoder can use all necessary information
for the calculations. In the decoder though the situation is different. As JPEG-LS uses a
raster scan method only the pixels up to the sample Ix that is supposed to be decoded are
present. Figure 4.1 illustrates this problem, where (a) represents the status at the encoder
side and (b) represents the status at the decoder side for the same sample Ix. Black dots
represent available pixels, white dots are pixels which are not currently present and the
green dot is the current sample Ix.

● ● ● ● ● 

● ● ● ● ● 

● ● ● ● ● 

● ● ● ● ● 

● ● ● ● ● 

● ● ● ● ● 

● ● ● ● ● 

● ● ● ○ ○ 

○ ○ ○ ○ ○ 

○ ○ ○ ○ ○ 

(a) Encoder view (b) Decoder view 

Figure 4.1: Available pixels at encoder and decoder side (source: own picture after [LL10])

As the calculation conditions are not as good at the decoder side, the method must be
adapted to the respected situation. As mentioned above in [LL10], a neural network may be
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used to get a refined JND value JNDR to balance out the estimation error. In this work a
more conventional approach without a neural network is taken by modifying the calculation
directly in the JPEG-LS coder and finally comparing the results without calculating a JNDR
value.

The JND model proposed by [CL95] uses the average gray level of the surrounding back-
ground to calculate the critical perceptual error thresholds. For simplicity and runtime
reasons the correlation between the average background luminance behind the pixel and
the spatial nonuniformity of the background luminance is being ignored and it is assumed
that the higher value of both functions is dominating and then used as the true JND value
JNDT.

The algorithm starts ba calculating the average gray level bg(x,y) through a 5x5 window
and operator B around the current sample with the coordinates (x,y). Then the maximum
weighted gradient mg(x,y) is found in the same 5x5 window by using different operators
G1− G4. After that the functions f1 and f2 are processed whereas f1 calculates the spatial
masking effect and f2 returns a value to represent the visibility threshold due to background
luminance. The mathematical formulas and operators are shown below.

(1) bg(x, y) = 1
32

5
∑

i=1

5
∑

j=1
p(x− 3 + i, y− 3 + j) · B(i, j)

(2) gradk(x, y) = 1
16

5
∑

i=1

5
∑

j=1
p(x− 3 + i, y− 3 + j) · Gk(i, j) , k = 1, 2, 3, 4

(3) mg(x, y) = max{|gradk(x, y)|} , k = 1, 2, 3, 4

(4) f1(bg(x, y), (mg(x, y)) = mg(x, y)α(bg(x, y)) + β(bg(x, y))

(5) f2(bg(x, y)) =

{
T0 · (1− (bg(x, y)/127)1/2)) + 3 f or bg(x, y) ≤ 127
γ · (bg(x, y)− 127) + 3 f or bg(x, y) > 127

α(bg(x, y)) = bg(x, y) · 0.0001 + 0.115

β(bg(x, y)) = λ− bg(x, y) · 0.01

T0 in f2 marks the visibility threshold when the background gray level is 0 and γ the
slope of the line that models the function at higher background luminance. α and β are the
background-luminance dependent functions, where λ in β(x, y) affects the average amplitude
of visibility threshold due to the spatial masking effects.

The operators for (2) are shown in figure 4.2 where the weighting coefficient decreases as the
distance to the central pixel increases. The operator for (1) is illustrated in figure 4.3 where a
weighted low-pass operator is used.
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4 Just-Noticeable-Distortion Calculation
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Figure 4.2: Operators for calculating the weighted average of luminance changes in four
directions (source: [CL95])

1 1 1 1 1 

1 2 2 2 1 

1 2 0 2 1 

1 2 2 2 1 

1 1 1 1 1 

B 

Figure 4.3: Operator for calculating the average background luminance (source: [CL95])

Through experiments by Chou and Lie in [CL95] it was shown that the values for T0, γ and
λ increase accordingly to the viewing distance to the image. The used default values of the
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three variables were T0 = 17, γ = 3
128 and λ = 1

2 for a viewing distance of 6 times the image
height [CL95].

The formulas presented above are easily calculated by the encoder and JNDT is obtained.
If no changes are done at the decoder side and assuming that the non-present pixels are
zero, the operators will be unbalanced. The sum of each Gi (i = [1,4]) operator equals to
zero. So if half the pixels in the 5x5 input window are set to zero a false sudden drop
in luminance might be introduced or assumed and returns a different JNDE value from
the goal value of JNDT. The same effect will occur when instead of the 5x5 window, the
operators are set to zero for the second half. This returns the same results because of the
used element-by-element multiplication of the formulas between the 5x5 window and the
five operators. Figure 4.4 shows an example of a modified operator G1 where the red area
marks the half which is set to zero. It is clearly visible that the operator is now unbalanced.

0 0 0 0 0 

1 3 8 3 1 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

1 3 8 3 1 

0 0 0 0 0 

-1 -3 -8 -3 -1 

0 0 0 0 0 

Figure 4.4: Modified G1 operator with the bottom part set to zero

Another problem are the corner cases and sidelines where the operators and 5x5 window
are out of bounds of the source image. Not dealing with this problem results in access errors
as the codec would try to access non-existent samples.

Figure 4.5 (a) shows the upper left initial corner case. All undefined pixels are set to zero
where the letters "a" to "i" represent the image values from the source image. It would be
possible to ignore the image properties and use a homogeneous template which just assumes
that all unknown pixels have a middle gray value as shown in figure 4.5 (b). That reduces
the detection of false luminance changes but is neither adaptive nor does it allow to get a
better JNDE value in a reliable way. It would also still introduce sharp luminance changes if
the borders of the original picture are very dark or very bright.
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un-

def 

un-

def 

un-

def 

un-

def 

un-

def 

un-

def 

un-

def 

un-

def 

un-

def 

un-

def 

un-

def 

un-

def 
a b c 

un-

def 

un-

def 
d e f 

un-

def 

un-

def 
g h i 

127 127 127 127 127 

127 127 127 127 127 

127 127 a b c 

127 127 d e f 

127 127 g h i 

(a) initial state 

a a a b c 

a a a b c 

a a a b c 

d d d e f 

g g g h i 

(b) homogeneous outer area (c) used extended matrix 

Figure 4.5: States of the corner and side cases under various conditions

Instead a copy approach is used. The original picture is extended by two rows on the top and
bottom of the image and also by two columns on the left and right side of the picture. That
effectively extends the image matrix by 4 rows and 4 columns in total. In figure 4.5 (c) only
the upper left corner case is shown as all other side and corner cases are handled analog.
The corner pixel "a" is copied two rows up and two columns to the left to fill up the empty
space (gray color). Also a pixel copy is performed for the four pixels in the top left edge.
Then for each pixel at the beginning of the row "d" and "g" the respective value is copied to
the two empty spaces to their left (yellow and orange). The same principle is used for the
columns with the values of "b" and "c" (teal and red) where the values are copied two rows
upwards instead. This returns an extended image which considers the image properties a
little more.

Though doing that is easy on the encoder side, it is not that simple to create the full extended
matrix on the decoder side. While decoding, there is no information available about the
neighborhood in the beginning and at the later stages below and to the right of a current
sample and the processing of the first row and first column have to be modified.

A possible way is to encode the first and last rows as well as the first and last columns with
a predetermined fixed NEAR value and add all reconstructed values to the beginning of the
output bitstream. From that information the decoder would read that information and is
able to create a frame-like matrix where the surrounding values are present and all other
values are set to zero. Then the decoder can normally calculate the JND value and decode
the rest of the bitstream during runtime as indicated in the original idea. But doing so would
increase the file size which contradicts the goal to minimize the number of bytes added to
the bitstream.

In this work a combination of both ideas is used to create the extended matrix. So that the
encoder and decoder return consistent results. The encoder processes and calculates the JND
values just as the decoder would. That means that only the causal pixels are regarded and
JNDE instead of JNDT is used to compress the image. To create the extended matrix the
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values of the sample neighborhood are inserted on the fly during runtime while the first row
and column is coded with a fixed NEAR value.

It is assumed that the minimum JND value is 5 which ensures a certain minimum quality of
the picture in the corner and side cases. In non-adaptive JPEG-LS coding usually a NEAR
value between 1 to 5 is used [LWZ+

11] to guarantee image quality. A possible degradation
in the image quality in the first row and first column is only visible when zooming in and
examining the affected pixels closely. With that, the encoder starts with a NEAR = 5 and
also uses this value to encode all corner and side cases for the first row and all first columns
of each row. After compressing the current sample it copies the reconstructed value Rx to
the respective sides and corners as described in the original idea in figure 4.5 (c).

Unfortunately as the neighborhood of a JNDE calculation is different from a JNDT calcu-
lation, the values will most of the time not be the same. In [LL10] the calculated JNDE
value added to a refined JNDR value. This refinement value returns a correcting value
JNDR where ideally JNDT = JNDE + JNDR. If JNDT < JNDR + JNDE, the compressed
image will have a worse quality since the quantization step size is bigger than it should be.
Analogous, when JNDT > JNDR + JNDE a smaller QSS is used and the resulting image
quality is better at the expense of a possibly higher compression ratio. Here no neural
network is used, instead the calculation of JNDE is influenced directly.

In an unadapted window the initial state of figure 4.6 (a) is used where the empty cells are
filled up with zeroes. That results in an effective usage of half of the picture’s information
and falsifies the calculated JNDE value a lot compared to later introduced methods. The
operators G1 to G4 and B are not balanced anymore and will assume a sudden drop in
luminance.

The first idea to get a JNDE without refinement is to mirror the current neighborhood so
that no undefined values are left. This means the first two rows are copied and mirrored
to the respective bottom rows and the two values left of the current sample are also copied
and mirrored to the right of it. Figure 4.6 (a) shows the initial state while 4.6 (b) illustrates
the window after the copy operations. Empty spaces represent undefined image values,
the green cell represents the current sample and the brown, red and blue areas are the
corresponding mirrored values which were copied.
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4 Just-Noticeable-Distortion Calculation
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(b) copy directions (c) final state 

Figure 4.6: Mirroring the 5x5 window

Using the method of figure 4.6 returns better values for JNDE but as the pixels are perfectly
mirrored, the operators G1 to G4 will always return a zero after being applied. Figure 4.7
shows a fictional 5x5 mirrored window where G3 is applied to. Empty cells represent a
value of zero to focus on the relevant numbers. After performing the calculation operations
the values are summed up as described in the formula by Chou and Lie [CL95]. This results
in an overall value of zero as they eliminate each other.

122 134 155 144 152 

152 255 102 152 119 

198 197 X 197 198 

119 152 102 255 152 

152 144 155 134 122 

1 

3 8 

-1 -3 3 1 

-8 -3 

-1 

(a) mirrored input values 

155 

306 1216 

-198 -591 591 198 

-1216 -306 

-155 

(b) G3 operator (c) results 

Figure 4.7: Calculation example in a mirrored neighborhood with operator G3
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(a) mirrored input values 

122 134 155 144 152 

152 510 104 304 119 

198 394 394 198 

119 304 204 510 304 

152 144 155 134 122 

(b) B operator (c) results 

Figure 4.8: Calculation example in a mirrored neighborhood with operator B

Figure 4.8 shows the result when the B operator is applied to the fictional mirrored neigh-
borhood. After summing up the values of figure 4.8 (b) the final result is divided by 32 (the
sum of all numbers in operator B). Actually, applying the B operator to an unchanged 5x5

window without a mirrored neighborhood and dividing the result by 16 instead of 32 would
return the same results, making the neighborhood mirroring completely obsolete.

As the JND calculation algorithm only uses the maximum values of G1, G2, G3, G4 and B,
solely the value of B is effectively used in the end. Even though a 5x5 window with filled up
values is used and a better result compared to an unadapted neighborhood is obtained, it
neglects more than half of the original JND computation idea.

The implementation used in this work is halving and modifying Chou’s operators and
window to only use half of the neighborhood, effectively strictly considering the causal
pixels only. For that, the original operators G1 and G2 are omitted as they would produce
falsified values by using an unbalanced mask. The operators G3, G4 and B are changed so
that they only perform a calculation on the causal part while staying balanced. Figure 4.10

shows all three adapted operators while figure 4.9 shows the used neighborhood where the
green areas are the actually used input values. The cell with the X marks the current sample.
All white empty cells in figures 4.9 and 4.10 represent values of zero.

X 

Figure 4.9: Used input neighborhood
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Figure 4.10: Adapted operators

The first three equations of the original calculation have to be adapted to the changed
environment. Below are the respective updated versions shown.

(1) bg(x, y) = 1
16

3
∑

i=1

5
∑

j=1
p(x− 3 + i, y− 3 + j) · B(i, j)

(2) mg(x, y) = max{|gradk(x, y)|} , k = 3, 4

(3) gradk(x, y) = 1
4

3
∑

i=1

5
∑

j=1
p(x− 3 + i, y− 3 + j) · Gk(i, j) , k = 3, 4

The remaining original formulas are not changed. That way the algorithm does not need to
be changed much to realize all approaches during testing.

The next chapter 5 shows the implementation of the described steps within this chapter. Also
the adaption on the encoder and decoder side is explained.
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5 Integration of the JND-Calculation with
near-lossless JPEG-LS

This chapter describes the implementation of the JND calculation introduced in chapter 4

and also explains the used approach to integrate JND into a baseline regular mode JPEG-LS
codec. Finally the necessary encoder and decoder adaptions are shown.

5.1 JND calculation implementation

Four different modes for the calculation of the different JND values are defined. Mode 1

refers to the JNDT calculation while the modes 2 to 4 represent the JNDE processes according
to the different ideas discussed in chapter 4. Mode 2 outputs a value based on the bottom
half of the input window set to zero and uses the standard operators. Mode 3 represents
the calculation with a mirrored input window and also uses the standard operators. Finally
mode 4 is processing a halved input window with modified operators.

Firstly the general framework of the JND calculation has to be realized. The different modes
are selectable by a parameter. The function "JND_apx.m" performs all necessary calculations
and is used by the encoder and decoder in the same way.

As the input image’s dimensions are too small for the JND calculation by four rows and
four columns, it has to be extended. The original idea to expand all rows and column in all
four directions and inserting the respective values before performing any JND calculations
can only be done on the encoder side. The pseudo code 5.1 shows the idea for the JNDT
processing. Images will be called matrices in the following as MATLAB processes them as
such.

Algorithm 5.1: Create an extended matrix for JNDT processing

1: function create_extended_matrix_JND_T(input_matrix)
2: output_matrix = enlarged input_matrix by 4 rows and 4 columns
3: //copy corners and sides
4: output_matrix(corners) = input_matrix(corners);
5: output_matrix(sides) = input_matrix(sides);
6: return output_matrix;
7: end function
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5 Integration of the JND-Calculation with near-lossless JPEG-LS

As known, the decoder has no information about the pixels which follow the current sample.
So the codec can still create an extended matrix, the above algorithm 5.1 has to be adapted to
that situation. In all JNDE calculations and all modes the extended matrix is created during
runtime on the fly. Both encoder and decoder use the same method so that the output is
consistent and the results are reproduceable. The pseudo code algorithm 5.2 shows the taken
approach and is called whenever Rx is calculated. The input is a matrix with the dimensions
of the original to be coded image while already extended by four rows and four columns.
All not yet processed cells are set to zero.

Algorithm 5.2: Create an extended matrix for JNDE processing

1: function create_extended_matrix_JND_E(x, y, input_matrix)
2: //check which case is true and perform the appropiate action
3: if input_matrix(x,y) == cornercase then
4: output_matrix(corners) = input_matrix(corners);
5: else if input_matrix(x,y) == sidecase then
6: output_matrix(sides) = input_matrix(sides);
7: end if
8: return output_matrix;
9: end function

All equations of the original idea of [CL95] are used and implemented where the variables
are set to their default values. The different operators G1-G4 and B in their respective settings
for the various modes are created as 5x5 matrices while the adapted operators are extended
to fit into a 5x5 window as seen in figure 4.10. This is done so that the code does not need to
be changed for different window dimensions. Applying the respective operators is sufficient
to simulate the desired situations.

A function JND_apx contains all calculations for all modes. The parameters are coordi-
nates (x,y) in the matrix of the current sample, the extended image and the JND mode
selector. The coordinates mark the center of the 5x5 windows. At the beginning of the
function this window is copied into a temporary 5x5 matrix for further calculations. By
doing this it is possible to take advantage of MATLAB’s matrix processing and performing
an element-by-element multiplication and finally summing them up. The sub-function
per f orm_calculation(input_type) returns a JND value according to the parameter input_type
which selects what kind of JND is to be calculated. The calculations of the sub-functions fol-
low the formula by [CL95]. To execute the element-by-element multiplication with the values
of the 5x5 window with the various operators the ".*" MATLAB command is used, followed
by two "sum" commands to add up all values. For example to calculate the background
luminance the complete command would be:

bg = sum(sum(5x5_neighborhood .* B_operator))

The following pseudo code algorithm 5.3 shows the approach.

34



5.1 JND calculation implementation

Algorithm 5.3: Perform the JND calculation

1: function JND_apx(x, y, input_matrix, JND_mode)
2: //check which mode is selected and assign the result to JND_value
3: if JND_mode == 1 then
4: JND_value = perform_calculation(JND_T);
5: else if JND_mode == 2 then
6: JND_value = perform_calculation(JND_E with unmodified operators);
7: else if JND_mode == 3 then
8: JND_value = perform_calculation(JND_E with mirrored neighborhood);
9: else if JND_mode == 4 then

10: JND_value = perform_calculation(JND_E with adapted operators);
11: else
12: throw_error(’invalid mode selected’);
13: end if
14: return JND_value;
15: end function

A special adjustment has to be done for the JNDE calculation with the adapted operators.
For the operator B the division after summing up all values has to be changed from 32 to 16

as only half of the neighborhood is used (only the causal pixels). Also the divisor of 16 for
the luminance change gradients has to be reduced to 4. The following MATLAB algorithm
5.4 only shows that part of the sub-function per f orm_calculation(input_type).

Algorithm 5.4: Perform the JND calculation

1: if JND_mode == 4 then
2: grad = abs(grad) / 4;
3: mg_res = max(grad);
4: bg_res = bg_res/16;
5: else
6: grad = abs(grad) / 16;
7: mg_res = max(grad);
8: bg_res = bg_res/32;
9: end if
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5 Integration of the JND-Calculation with near-lossless JPEG-LS

5.2 Encoder Adaption

Integrating the JND calculation into baseline JPEG-LS regular mode is relatively easy done.
Special care has to be taken for all variables that are dependent on the NEAR value. This
means that the thresholds T1, T2 and T3, the range variable RANGE and the qbpp all have
to be adapted dynamically during runtime.

As the neighborhood for the first row and first column is unknown in the beginning of the
compression, a fixed JND value is used. In non adaptive JPEG-LS a NEAR value between 1

and 5 is usually used since this ensures a certain quality of the compressed image [LWZ+
11].

For every encoded sample the encoder writes back the reconstructed pixel to the input matrix
as intended and also writes that value into the extended matrix and performs the "on the
fly" matrix extension described in section 5.1.

86 92 
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86 92 X 

86 92 
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(a) fixed NEAR value 

86 92 101 101 101 

86 92 101 101 101 

86 92 101 101 101 

(b) fixed NEAR value (c) fixed NEAR value 

86 92 101 101 101 

86 92 101 101 101 
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71 55 X 
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(d) NEAR = JND 

86 92 101 101 101 

86 92 101 101 101 

86 92 101 101 101 

71 55 200 200 200 

(e) NEAR = JND (f) NEAR = JND 

Figure 5.1: Updating the extended matrix

As only the causal pixels are relevant for the JND calculation and are all present from the
first row and first column on, no further special adjustment is needed for the other side cases.
Sub-figures 5.1 (a) and (d) show the status before "X" is encoded, while sub-figures 5.1 (b) and
(e) show the status of the matrix after the reconstructed value is written. Finally sub-figures
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5.2 Encoder Adaption

5.1 (c) and (f) show the matrix after the "on the fly" matrix extension was performed. The
blue lines mark the original image dimension bounds.

If the JND calculation algorithm would be applied without copying the Rx values into
the extended matrix, the output would be wrong JND values. The operators would be
multiplied to with zero because the extended matrix contains only zero values in every cell
after initialization. This always results in a returned JND value of 20 for the first row:

(1) bg(x, y) = 1
32

5
∑

i=1

5
∑

j=1
0 · B(i, j) = 0

(2) gradk(x, y) = 1
16

5
∑

i=1

5
∑

j=1
0 · Gk(i, j) = 0 , k = 1, 2, 3, 4

(3) mg(x, y) = max{|gradk(x, y)|} = 0 , k = 1, 2, 3, 4

(4) f1(0, 0) = 0 · α(bg(x, y)) + β(bg(x, y)) = λ = 0.5

(5) f2(0) = T0 · (1− (0/127)1/2)) + 3 = 17 + 3 = 20 f or bg(x, y) ≤ 127

with α(0) = 0 · 0.0001 + 0.115

β(0) = λ− 0 · 0.01

f1 always returns a 0.5 because λ is set to 0.5 and f2 always returns an 20 as T0 is 17. Finally
only the bigger value of f1 and f2 is used which is why the algorithm will always return a
20.

The special handling of the first row or column does not need to be repeated for the last
row or column as all necessary pixels are already present. Figure 5.1 (a) to (c) shows the
updating mechanism for the first row with the fixed NEAR value. The sub-figures 5.1 (d) to
(f) show the status of the second row and last column.

Actually the last two rows of the extended matrix are not really necessary as those values
will never be used anyways. They are still included so that the simple 5x5 window copy
mechanism of the JND_apx function will not throw an out-of-bounds access error.

Finally, the JND calculation is called inside the raster scan loop. It can be inserted anywhere
before the regular mode and the run mode selection via the local gradients Di is called. As
there exist a special case for the first row and first column, a short check has to be performed
in matter of the processed sample. The pseudo algorithm 5.5 shows the JND case selection.

Algorithm 5.5: Automatic JND case selection

1: if row == 1 or column == 1 then
2: set NEAR to a predefined fixed value;
3: else
4: set NEAR to calculated JND type;
5: end if
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5 Integration of the JND-Calculation with near-lossless JPEG-LS

In either way the variables dependant of NEAR have to be adapted every time NEAR is
changed. Those are the thresholds T1 to T3 to calculate the index Q, RANGE and qbpp. The
following MATLAB code 5.6 needs to be executed after the NEAR value is set and before the
coder calls the regular or run encoding processes.

Algorithm 5.6: Updating NEAR-dependant variables

1: Ti = Ti_update;
2: RANGE = ((floor((MAXVAL + 2 * NEAR) / (2 * NEAR + 1)))+1);
3: qbpp = ceil(log2(RANGE));

Ti is an array which stores all three thresholds values T1, T2 and T3. The updating mechanism
Ti_update is derived from the JPEG-LS standard [IT98] which is actually a part of a procedure,
initiated by a special marker called "LSE". This marker usually redefines some preset
parameters when needed and it is possible to tell the coder to use new values for T1, T2, T3

and others. As all other variables are never needed to be changed and the threshold values
have to be updated for every new NEAR value, only the update part for the thresholds
are implemented. In fact the LSE marker has various possible information stored while an
identifier tells the coder what kind of information the integrated numbers represent. This
data is also not used by this work which in turn makes the addition of an LSE marker
obsolete. This reduces the final file size of the compressed image.

Ti_update uses the NEAR value and maximum pixel value MAXVAL to calculate the new
states. The exact algorithm to update Ti in general can be looked up in section C.2.4.1.1.1 of
the baseline JPEG-LS standard [IT98]. The specific method to update the three variables for
grayscale images with a maximum value MAXVAL of 255 is as follows:

(1) T1 = 3 + NEAR · 3
(2) T2 = 7 + NEAR · 5
(3) T3 = 21 + NEAR · 7

5.3 Decoder Adaption

JPEG-LS is a highly symmetric codec which means in a nutshell that the decoder follows the
encoder steps in a reversed order. All JND algorithms discussed in the previous section 5.2
for the encoder are used at the decoder side in the same way. Thus the JND calculation is
also done at the beginning of every raster scan iteration where a fixed value for the first row
and first column is used. The update of Ti and all other variables are done in the same way
as well as the runtime creation of the extended matrix.

Verifying that the decoded image equals the saved image that is encoded into the bitstream a
simple method can be used. In lossy encoding the reconstructed pixel of the current sample
is being written into the original input matrix and that value is used in all further iterations.
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5.3 Decoder Adaption

If the encoder reaches the end of a picture, the values in the input matrix will all have been
changed to the value of their reconstructed counterparts. The decoder, if reconstructed
correctly from the bitstream, will return an output matrix with the very same values. Thus
the encoded image matrix just needs to be written into a bitmap file with a function. In
MATLAB that is done by the following statement:

imwrite(in_mat, output_name.bmp), ’bmp’);

in_mat is the input matrix which is to be saved while output_name.bmp is the name of the
output file. ’bmp’ determines what kind of file type is chosen. Both encoder and decoder can
use this command after processing all samples to save their results.

To compare both encoder and decoder bitmap outputs a simple comparison can be performed.
The following MATLAB code 5.7 shows the used method.

Algorithm 5.7: Comparing two matrices

1: if matrix_1 == matrix_2 then
2: disp(’1’)
3: else
4: disp(’0’)
5: end if

All calculated JND values can be saved in a separate matrix and allow to compare the
different values created by the different JND calculation modes. To check for sudden
JND changes, it is possible in MATLAB to visualize the JND matrix with the following
command:

imshow(uint8(JND_values*10))

where JND_values contains all calculated JND results and the constant 10 is needed so that
the shown picture contains any visible information at all. As the JND values are usually
between 3 and 25, showing those values unchanged would return a nearly completely black
image where details are hard to spot.
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6 Evaluation and Results

The results returned by the JND JPEG-LS codec tests have to be evaluated. First the visual
quality measurement methods that were used are described. In the following section an
evaluation of the test results is given.

6.1 Visual Quality Measurements

Two visual quality measurement methods were used. The first one is the Mean Opinion Score
(MOS) and the second one is the Multi-scale Structural SIMilarity (MS-SSIM) test.

6.1.1 Mean Opinion Score Test

The Mean Opinion Score method is widely used in any compression related codec when the
human perception system is the final receiver. The ITU recommendation P.800 and P.800.1
standardize the MOS method for acoustic cases [P.896] [P.806]. The described techniques are
also usable for evaluating the quality of images.

The tests are done in a dark room with a viewing distance of six times of the image height
on a 24 inch monitor. The distance and light environment are crucial factors as the coding
parameters are set to that situation as proposed in [CL95]. None of the test subject are
affiliated in any way with coding schemes, trained or have knowledge in how compression
codecs work in detail. They are normal computer users from various fields where the range
of age is between 24 and 36. Near-sighted, far-sighted and people without any viewing
inhibitions took part in the tests, whereas the number of near-sighted testers dominated.
Two picture test sets were used with a total of 15 participants which meets the minimum
requirement of six to twelve test subjects proposed in [P.896]. The duration of each test
session was a maximum of 20 minutes to ensure the necessary concentration, avoids fatigue
and reduces the probability that a test subject is overwrought. Furthermore all responses are
obtained independently and a short interview was held after the picture reviewing session.

The listening-only procedure from [P.896] is used while adapting it to image viewing
conditions.

Two test sets are processed by the JND JPEG-LS codec whereas the test series presented to
the test subjects is a selection of the standard test picture set provided by the ITU and a
selection from the JPEG-LS reference images. It has to be noted that not all images can be
used for the MOS test. As the dimensions of the pictures in the JPEG-LS set are sometimes
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6 Evaluation and Results

far greater than the native resolution of 1920 x 1080 of the 24 inch monitor, those images
were only processed for compression ratio, runtime and MS-SSIM comparisons but are not
used for the MOS test. To view such big images on a smaller screen, they would have to
be scaled down. During that interpolation process the compression errors are clad. That
results in an overall better perception of the image quality compared to viewing them in
their native resolutions. This would falsify the overall test and thus is not included in the
reviewing sessions.

Actually all images from the ITU test set are usable as their dimensions are sufficient small
to be natively displayed on the test environment described above. From the JPEG-LS test set
only the images BAND1, FAXBALLS, HOTEL, GOLD, CMPND1, CT, TARGET, FINGER and
US can be used for the MOS test. It is not possible to perform all necessary tests with all
image combinations in one session while not exceeding the time limit of 20 minutes. For
that reason a further smaller selection of a total of 115 picture pairs is chosen.

The MOS test itself consists of a series of pictures which are shown in pairs. Let A be the
reference image and B the test image. An equal number of A-B and B-A pairs are presented
in a random order. The goal is to desensitize the tester to a fixed pattern which would
unintentionally falsify the results too.

A Degradation Category Rating (DCR) procedure can be done where the test subject is sup-
posed to judge weather image B has a worse quality than image A. Some null pairs (A-A)
are included in the test to check the quality of anchoring. A five-point degradation category
scale is used as follows:

5 Degradation is not visible
4 Degradation is visible but not annoying
3 Degradation is slightly annoying
2 Degradation is annoying
1 Degradation is very annoying

A second possible test method is the Comparison Category Rating (CCR) method. As the DCR
only tests in how much the second sample’s quality is degraded compared to the first sample
a possible improvement cannot be tested. With the CCR such a comparison is easily possible.
Basically the same testing method including the addition of null pairs is used but with
another rating system. The category scale used is:

3 Much Better
2 Better
1 Slightly Better
0 About the Same
-1 Slightly Worse
-2 Worse
-3 Much Worse

In the test sequence not only the unprocessed reference pictures are compared to the
compressed files but also compressed files with each other in different JND modes.
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6.1 Visual Quality Measurements

The used test method was the Comparison Category Rating system. Special care has to be
taken where pairs are presented in the opposite order B-A. Those test values must have
their signs switched during evaluation, otherwise a simple averaging of the numerical scores
approximately returns zero.

6.1.2 Multi-scale Structural Similarity Test

The MOS method is a widely used technique to judge in how well a compression method
preserves the original image quality. Though it is quite reliable it also has significant
drawbacks. To obtain valid test data a lot of testers are needed who preferably have no
affiliation with compression methods. This is often expensive, time consuming and in rapid
developing sometimes not doable.

Different objective grading systems exist where the mean squared error (MSE) and the
signal-to-noise ratio (PSNR) are widely used. While they are easy to calculate, have a clear
physical meaning and are convenient for optimization purposes, they also have drawbacks.
For example, MSE assumes that the loss of perceptual quality is directly related to the
visibility of the error signal. Unfortunately as this might be plausible, two images with two
different error types can have the same MSE where the error in one image is not perceivable
when looked at [WBSS04].

The HVS is a complex and highly nonlinear system. Most objective grading models are based
on linear or quasilinear operators which use restricted and simplistic stimuli. By examining
natural images, it was observed that they are highly structured [WBSS04]. Some pixels are
dependent on each other, especially when very close to each other and thus carry important
information about the structure of the objects in the visual scene.

The Multi-scale Structural Similarity method compares the structures of the reference and
the distorted signals, measures and uses them to approximate the perceived image quality. It
is an improvement of the single-scale structural similarity method (SSIM) while the MS-SSIM
can adapt to different viewing conditions [WSB03].

The basic SSIM index essentially consists of three functions where each approximates a
certain aspect of the pixels. Let x and y be two discrete non-negative signals that have been
aligned with each other where they represent the same spatial location from two images
being compared and µx, σ2

x and σxy be the mean of x, the variance of x and the covariance
of x and y respectively. With that the luminance l, contrast c and structure s comparison
components for measuring are defined in [WBSS04] as follows:

(1) l(x, y) = 2µxµy+C1
µ2

x+µ2
y+C1

(2) c(x, y) = 2σxσy+C2

σ2
x+σ2

y+C2

(3) s(x, y) = σxy+C3
σxσy+C3

where C1, C2 and C3 are small constants given by

(4) C1 = (K1L)2, C2 = (K2L)2 and C3 = C2/2
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L is the dynamic range of the pixel values (L = 255 for 8 bits / pixel in grayscale images)
and K1 � 1 and K2 � 1 are two scalar constants. With all the SSIM index between signal x
and y is then:

(5) SSIM(x, y) = [l(x, y)]α · [c(x, y)]β · [s(x, y)]γ

α, β and γ are parameters to adjust the relative importance of the respective three compo-
nents.

The SSIM indexing algorithm for image quality assessment moves pixel-wise through the
whole image space where the SSIM index is calculated at each step within a local window.
With a reference picture defined, the SSIM index map can be viewed as the quality map of
the other distorted image. Finally, a mean SSIM index of the quality map is used to evaluate
the image quality.

This single-scale method is restricted as the perceptibility of image details are dependent on
the fixed distance of the image to the observer and additionally by the individual who is
reviewing the image quality. That is why the subjective evaluation varies if the conditions
change. In [WSB03] a method is proposed which allows to simulate different viewing
conditions by iteratively applying a low-pass filter and downsampling the filtered image
by a factor of 2. The iteration goes from 1 to the highest scale M and in every j-th iteration
the contrast c and structure s comparisons are calculated while the luminance l comparison
is only computed at scale M. Combining the measurement at different scales results in the
overall MS-SSIM evaluation. The following formula shows the resulting equation:

SSIM(x, y) = [lM(x, y)]αM ·
M
∏
j=1

[cj(x, y)]β j [sj(x, y)]γj

The MATLAB implementation of MS-SSIM at [Wan11b] was used to rate all compressed
images in all coding modes while the original source file always served as the reference
image.
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6.2 Results

6.2 Results

In this section the results from both the Mean-Opinion-Score test sessions and Multiscale-
Structural Similarity grading methods are presented.

6.2.1 Mean Opinion Score Test Results

For the MOS test each of the 15 test subjects evaluated 115 pictures with the CCR grading
system. The test conditions in the reviewing room was set up as described in section 6.1.1.

The overall best results and scores were given to mode 1 JND coded images which is the
compression done with JNDT. Mode 3 and 4 (JNDE with mirrored window and JNDE
with modified operators) got about the same scores and the differences were minimal. As
expected the worst ratings were given to mode 2 where no modification to the 5x5 window
or operators were done. The following consolidated tables 6.1 and 6.2 show the average
scores given for each coding mode. 6.1 compares the average quality scores of the modes to
the original image whereas 6.2 shows the average scores when comparing the JND coded
pictures with each other for all modes. B-A pairs are added to the equivalent A-B pair
average scores with a switched sign.

Mode Avg. score

1 -1,1875

2 -2,4792

3 -0,4010

4 -0,9396

Table 6.1: Avg. MOS scores: Comparing JND images to the original images

Mode Avg. score

1 -0,4556

2 -1,8268

3 -0,7033

4 -0,6137

Table 6.2: Avg. MOS scores: Comparing JND 1-4 coded images with each other

In the short interview held for every test subject after the reviewing session revealed that
even for mode 2 the errors were not perceptible in image sections with more details. That is
why the test subjects concentrated on the homogeneous areas to judge the quality differences.
No differences could be seen in any mode for areas where a text section was encoded (e.g.
pictures CMPND1 or CMPND2 of the JPEG set). Most apparent errors could be seen in
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originally very dark or very bright sections. Those were nerved with gray lines of different
shades and in other situations blockiness occurred. Unfortunately in all encoding modes,
even with the encoding by using JNDT, a noticeable degradation of the image quality is
perceptible in homogeneous parts of the pictures.

The unexpected slightly higher score given to mode 3 instead as expected to mode 4 lies
in a unfortunate selection of test images for the MOS test. In the mode 4 test pictures
more digitally generated pictures were used for the evaluation and those had many large
homogeneous areas. Naturally the quality will seem to be inferior whereas for mode 3

more natural images were graded. Nevertheless the overall score difference between the two
modes are not very large and confirm to a degree a very similar quality performance.

Figures 6.1 and 6.2 show the blockiness error in all JND coding modes by using the ITU
image "camera" as an example. The blockiness is best seen on the man’s coat. It is noticeable,
that the fine details are hardly distinguishable from the original picture (a) and are thus
visually lossless. Subfigure 6.2 (b) was encoded in mode 1, 6.2 (c) in mode 2, 6.2 (d) in
mode 3 and 6.2 (e) in mode 4. Mode 1 produces the best result though the blockiness is still
visible. Mode 3 and mode 4 coded images resemble mode 1 but the error on the coat is more
apparent.

Figure 6.1: Original picture "camera"
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(b) Mode 1 (c) Mode 2 

(d) Mode 3 (e) Mode 4 

Figure 6.2: Error example after JND coding
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6.2.2 Multi-scale Structural Similarity Test Results

Originally a level depth of six was intended to be used to simulate a viewing distance of
six times the image height. For that the counted weights of each level have to be defined,
with the sum of all weights equals to 1. In MATLAB it is possible to solve an equation
automatically with the following command:

solve(’xA + xB + xC + xD + xE + xF = 1’)

Here, xi with i = {A, B, C, D, E, F} represent the to be calculated weights. Tampering with
the exponents A to F allows to choose the importance of a level relative to the other levels.
In fact, any of the xi can be assigned in any order to any level depth as long as each of the xi

are only assigned once.

Unfortunately the maximum usable level depth is the default depth of 5. Increasing it to 6

will downsample the smallest images "couple" and "camera" of the ITU test set too much so
that they are smaller than the minimum required size of 11x11. Both those images have a
width and height of 256 pixels in the original. Downsampling them five times results in a
picture size of 16x16 as the downsampling factor is 2 for each level [WBSS04]. In the sixth
level they will be only 8x8 pixels large which will then return the default error value of
-inf.

To get consistent and comparable scores, all pictures have to be checked with the same
parameters. The weights for each level were calculated by solving the equation

x5 + x4 + x3 + x2 + x = 1

with MATLAB with the previously shown command where the descending weight values
were assigned to the levels 1 to 5 in an ascending order resulting in giving level 1 the highest
weight and level 5 the lowest.

The MS-SSIM results are generally consistent with the results from the MOS test. No further
parameters were changed and only the reference image with the JND coded counterparts
were additionally passed as unsigned integer 8 bit matrices to the MATLAB MS-SSIM
program, obtainable from [Wan11b].

Table 6.3 shows the overall average scores assigned to each JND mode when comparing
those with the original image and also the minimum and maximum scores in each mode
with the respected image name.
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6.3 Compression Ratio

JND mode avg. scores min. value image max. value image

mode 1 0,952784 0,86685 couple 0,99597 PC
mode 2 0,834730 0,66660 noisesquare 0,95684 PC
mode 3 0,954458 0,84263 couple 0,99477 PC
mode 4 0,954016 0,87331 couple 0,99450 PC

Table 6.3: MS-SSIM results

Further examination of the various MS-SSIM results shows that the implemented JND
performs bad in dark images where the blockiness is clearly visible. On the other hand the
best scores were given to the "PC" image of the JPEG test set. There are no large homogeneous
areas present as the picture mainly consists of lines. The errors are very slightly visible and
just by zooming in close enough.

6.3 Compression Ratio

A total of 40 individual pictures were processed in six different modes resulting in a database
of 240 images. The last two modes were a regular mode JPEG-LS encoding without the
JND adaptation with a fixed NEAR value of (5) three and (6) five. The other modes
were coded with (1) JNDT, (2) JNDE without any adaptation, (3) JNDE with a mirrored
neighborhood and finally (4) JNDE with adapted operators. Table 6.4 shows the respective
average compression ratios over both ITU and JPEG test sets in all modes.

Mode ITU test set JPEG test set

1: JNDT 1:4.74673 1:4.70329

2: JNDE no adaption 1:6.14189 1:5.96143

3: JNDE mirrored window 1:4.59090 1:4.44951

4: JNDE adapted operators 1:4.73437 1:4.66310

5: NEAR 3 1:3.99560 1:3.77116

6: NEAR 5 1:4.70375 1:4.43850

Table 6.4: Compression ratios of various encoding modes with JPEG-LS

Naturally the compression ration in regular JPEG-LS coding without JND improves with a
higher NEAR value. Coding a picture with JNDT values is used as a goal reference value.
Mode 2 may return the best compression ratio but also has the worst image quality. Mode 4

resembles mode 1 a lot in the compression ratio while mode 3 is close to the target ratio of
mode 1.
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6.4 Runtimes

In this test the six compression methods were used and compared to each other again. The
reference runtime is (5) with the fixed NEAR value of three. Table 6.5 lists the average in
how fast or slow the other modes perform compared to mode (5). For example, a value of 1

represents a runtime the same as in mode 5. A value of 0.5 would mean that the compression
is done twice as fast whereas a value of 2 would describe a performance twice as slow as the
reference. The average times are obtained by dividing the sample runtime by the runtime
with a NEAR = 3 compression.

Mode ITU test set runtimes JPEG test set runtimes

1: JNDT 2.6342 2.8080

2: JNDE no adaption 2.4229 2.6429

3: JNDE mirrored window 2.5755 2.9213

4: JNDE adapted operators 2.5894 2.8290

5: NEAR 3 1.0000 1.0000

6: NEAR 5 0.9632 0.9409

Table 6.5: Average runtimes relative to a normal compression with NEAR = 3

As expected the runtimes without the JND calculations no matter in which fixed NEAR
value are much faster. As every sample needs its neighborhood analyzed during encoding
and decoding, the total process duration increases with the image dimensions. Another
observation is that with an fixed NEAR value greater than the reference NEAR value of 3,
the runtimes decrease as the quantization step size is larger.

The in overall high runtimes results from the fact that no optimization was done or used
within the MATLAB code. Other programming languages, taking advantage of parallel
computing and reading and processing a whole scan line instead going through the image
pixel by pixel can improve the runtimes significantly. The runtimes by themselves are not
relevant for a proof of concept but can give a quick reference in what kind of slowdown a
JND integration with JPEG-LS might cause.
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7 Summary

The idea of reducing the file size of an JPEG-LS encoded image was successfully done by
integrating a JND measurement.

Though the integration itself was easily done while not changing a lot in the original JPEG-
LS codec, the resulting pictures had visible errors. Compressing more detailed images or
pictures with few homogeneous areas was more successful as errors are just slightly visible.
In those pictures a visually lossless compression or at least a minimally noticeable distortion
(MND) can be achieved.

On the other hand, in pictures where the shades do not change in a larger spatial domain
and especially where dark areas occur, the JND addition creates a visible degradation of the
image quality. This is even true when using the JNDT values as originally introduced in
[CL95]. This might result from omitting the run encoding mode of JPEG-LS which is called
instead of the strictly used regular coding mode when the local gradients are smaller than
the current JND/NEAR value. As such, the goal to maintain a visually lossless picture by
using the proposed JND measurement was failed.

The performance in both quality and runtime may be improved by changing the JND
calculation and implementing the runmode. Also optimizing the codec by changing how the
input pixels are read or using parallel processing may improve the coding performance.

While only sticking to a regular coding, a simple limitation of the possible JND range
improves the picture quality. Tests with a limitation to a range of five to ten reduces visible
errors but may also increase the file size of the compressed image.

JND is a very promising approach to include perceptional coding in compression. The
concept of the idea definitely works whereas an improvement and optimization of the quality
and performance is certainly possible.
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