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Abstract

Modular self-reconfigurable robots are characterised by a high versatility. While
most robots are designed for a special purpose these robots are designed to be multi-
talented and adaptive.
This thesis uses a modern framework for the automatic model generation of these
modular self-reconfigurable robots. Based on a two-step Newton-Euler approach in
combination with elements of screw-theory, this framework provides an elegant way
to automatically calculate the equations of motion in a closed form.
To simulate the kinematics and dynamics the framework has been implemented in
MATLAB R© .
To verify both the implementation and modelling, the equations of motion of two
robot structures have been calculated using the framework and compared to the
equations obtained by a Lagrangian approach.
Finally it is shown that the linearisation and decoupling of the systems concerned in
this thesis can be done easily using feedback linearisation.
For completion two ways to control these linearised systems are demonstrated.

Abstract - deutsch

Modulare selbstrekonfigurierende Robotersysteme zeichnen sich durch ihre hohe Viel-
seitigkeit aus. Während die meisten Robotersystem für einen bestimmten Zweck
entwickelt werden, sind diese Roboter multitalentiert und anpassungsfähig.
In dieser Arbeit wird ein modernes Framework zur automatische Modellerstellung
von modularen selbstrekonfigurierende Robotersysteme genutzt. Basierend auf einem
Zwei-Schritt Newton-Euler Ansatz in Kombination mit Elementen der Schrauben-
theorie, bietet dieses Framework einen eleganten Weg die Bewegungsgleichungen in
einer geschlossenen Form zu bestimmen.
Um die Kinematik und Dynamik der berechneten System zu bestimmen wurde das
Framework in MATLAB R© implementiert. Diese Implementierung wird in dieser
Arbeit überprüft.
Schlussendlich wird Feedback Linearisierung und lineare Regler zur Regelung des
Systems eingesetzt.
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1. Introduction

The ongoing development of tools, electronics and software in the last decades en-
abled the construction of more and more sophisticated robots.

While robots today are mostly used in the industry, providing assistance and man-
power, we can expect the world of the future to be characterised by robots and
autonomous systems. Researchers all around the globe are currently working on the
development of this robots.

Some of todays robots are constructed especially for an industrial purpose while
others are inspired by the human body, or are shaped like animals such as snake or
spider as shown in Fig.1.1.

(a) (b) (c) (d)

Figure 1.1.: Different robot projects: (a) Kuka KR 16 S [9]; (b) Aldebaran Nao [1];
(c) Lynxmotion BH3-R hexapod[10]; (d) Anna Konda [23]

What all these different robot types have in common is that they are all designed
for a special purpose and environment. In our daily life we often use specialised
tools such as a screwdriver, but if we want to be prepared for different unpredictable
situations we carry a swiss-tool or leatherman respectively. This concept of flexibility
found its way into robotics in form of modular robots.

While most of todays robots a rather constant and maintain their shape and function,
these multi-talented robots are equipped for many situations.

1



1. Introduction

1.1. Motivation

Consisting of multiple modules which can connect to each other, these robots gain
high flexibility and adaptability.
While most robot systems deployed by the industry are designed to perform one task
such as sorting or welding with high efficiency, self-reconfigurable modular robots
are equipped with the ability to adapt their structure to a wide variety of tasks and
environments. The key to this structural flexibility lies in the modularity of these
robots. With every structural change not only the shape itself, but also the motion
pattern changes.
Imagine a self-reconfigurable modular robot on a search and rescue mission in a
highly inhomogeneous environment. Being able to change its structure the robot
would be able to move as fast as possible even in a changing environment. In a
plain field the robot could change it’s configuration to a loop to move fast. In debris
field the robot could reconfigure itself into the shape of a spider to easily crawl over
obstacles. In a snake-like structure the robot could easily enter cavities through small
holes in order to search for buried persons.
Versatility is not the only advantage of self-reconfigurable robots. Since the modules
are mostly homogenous or only exist in slightly differing types, malfunctioning or
damaged modules within the robot structure can be replaced easily. This robustness
is a big advantage in environments where spare parts or maintenance can not be
supplied(e.g. extraterrestrial or deep-sea environments).
Because the structure of the robot is not determined, the kinematics and dynamics
of self-reconfigurable robots are much more complex than the ones of robots with a
fixed structure. The kinematics and dynamics of a robot with a fixed structure only
have to be calculated once, what can be actually done ‘by hand’ in advance.
In the contrary to a modular self-reconfigurable robot the kinematics and dynamics
have to be calculated with every structural change.
Since it is unpredictable what structures the robot system is going to adapt, all
characteristics of the system especially the equations of motion, have to be calculated
online without human interference.
The indeterminacy of the robot structure also is a great challenge for the dynamic
calculation of control algorithms. As with the structure the system itself varies the
control algorithms have to be adapted as well.
The development of this advanced control mechanisms is and will be a great challenge
of the future.

1.2. State of the art

In the ongoing scientific process various projects concerning self-reconfigurable robots
have been established since around the early 90’s.

2



1.2. State of the art

(a) PolyPod 1993 [21] (b) PolyBot 2000 [20] (c) SuperBot 2006 [25]

Figure 1.2.: Different modular robot projects

One of the first modular robot projects was the PolyPod, shown in Fig.1.2a, devel-
oped by Mark Yim in 1993. Despite the lack of self-reconfiguration Yim showed that
the use of multiple connected modules enables the robot to move in multiple stable
locomotion modes.
In 2000 the PolyBot, shown in Fig.1.2b, a descendent of the PolyPod with the first
attempts towards self-reconfiguration was introduced. This project among others
showed that one key problem of modular robots is the actual connecting process.
The establishment of a connection between two modules, wether mechanically or
using magnets, is still one of the main problems in modular robotics and part of the
ongoing research.
In 2006 Shen et al. presented SuperBot, shown in Fig.1.2c, a modular self-reconfigurable
robot designed for NASA space exploration programs. This robot was especially de-
signed to meet the demands of a space mission. The interested reader can find a
more detailed description and history of modular robots in [24].
The robot modules concerned in this thesis are part of both the projects “SYM-
BRION” and “REPLICATOR” funded since 2008 by the European Commission[26].
The main goal of these projects is to develop new methods for the handling of sym-
biotic multi-robot organisms. Key aspects of this projects are self-programming and
self-assembling as well as the transfer of evolutionary paradigms onto robot systems.

3



1. Introduction

1.3. Structure of this thesis

This thesis is structured as follows.

Chapter 1 is a brief introduction into general robotics and describes the character-
istics of modular self-reconfigurable robots. It describes the motivation for this
thesis and gives a brief history on modular robot projects.

Chapter 2 describes the theoretical background, including a short introduction into
rigid body motion and screw theory.

Chapter 3 concerns the framework introduced by Chen et. al in [4] for the dynamic
model creation of modular robots.

Chapter 4 is about the implementation of Chen’s framework in MATLAB R© . It in-
cludes a comparison of numerical and symbolical implementation of the frame-
work regarding calculation time.

Chapter 5 shows a way to verify the correct application and implementation by
simulating two robot examples.

Chapter 6 finally shows an elegant way to control robots created with this frame-
work.

4



2. Theoretical Background

The two essential pillars of the theoretical background of this thesis is linear algebra
and the theory of screws. The combination of these two methods forms a powerful
instrument for the handling of multi-body-systems.

The theory of Louis Poinsot and Michel Chasles developed in the early 1800s was
that a rigid body can be moved from one position to another by rotating about one
line in combination with a translation parallel to the same line. Such movement is
called a screw motion inspired by the thread of a screw.

Based on the theory of Poinsot and Chasles, Robert S. Ball further developed this
theory. 1900 he published A Treatise on the Theory of Screws, see [2], providing the
full theory of screws. Ball introduced the so called twist, the infinitesimal version of
a screw motion describing the velocity, which will be precised in chapter 2.3.5. He
also presented, based on the theorem of Poinsot, the wrench reducing all external
forces and torque to a a single tuple consisting of a force and a torque.

2.1. The robot module

The modules considered in this thesis originate from the projects SYMBRION and
REPLICATOR founded by the European Commission. In Fig.2.1 both modules
and their degree of freedom(DOF) are shown. Both modules are able to ‘bend’
from within their center with a 180◦ limit. The modules are cubical-shaped and the
sides are numbered according to the numbers on a gaming dice as shown in Fig.2.2.
According to the movement no connection on the sides 1 and 6 is possible. In this
thesis often drawings as shown in Fig.2.3 are used to illustrated the robot modules
in certain robot structure.

5



2. Theoretical Background

(a) Backbone module - DOF (b) Scout module - DOF

Figure 2.1.: Degree of freedom of the robot modules

(a) Backbone module - labels (b) Scout module - labels

Figure 2.2.: Sides of the robot modules

2

5

4

31

(a) Topview (b) Sideview

Figure 2.3.: Drawing of a backbone module
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2.2. Link assemblies

2.2. Link assemblies

To describe the robot structure Chen et al. [4] introduced a way to represent most
robot structures. Chen differentiates between so called link modules and joint mod-
ules. Link modules have multiple ports that can connect to a other link module
through a joint module. These joint modules enable rotational or prismatic motion
between the connected link modules. At first glance this way seems not to be directly
adaptable to the robot modules backbone and scout used in this thesis since the mo-
tion actually happen ‘within’ to robot module itself and not between two modules.
Though in this thesis it will be shown that the framework develop by Chen et al. [4]
can be used directly, and that there is no need for adjustments in any manner.

2.2.1. Joint modules

As described before a joint is a connection between two modules allowing both to
move with respect to each other. Mostly joints provide only one degree of freedom
as will the joints used in this thesis. Joints can be divided into 3 groups: revolute,
prismatic and virtual joints.

Revolute joints

A revolute joint connecting two modules allows a rotary movement as shown in Fig.
2.4. In general the axis of rotation is arbitrary.

(a) (b)

Figure 2.4.: Two revolute joints

Prismatic Joints

Modules connected with prismatic joints as shown in Fig.2.5 allow transitional move-
ment. These joints are not part of this thesis and neither do exist in the modules of
SYMBRION or REPLICATOR.

7



2. Theoretical Background

Figure 2.5.: Prismatic joint

Virtual Joints

Virtual joints give the ability to model the kinematics of robots that are not bound
to any fixed module. While these joints are mostly assumed to be massless there are
cases where this does not hold. Such as case is shown in chapter 5.2. Note that these
definition for virtual joints differs from the definition used in [5]. The DOF obtained
by a virtual joint can be rotary or translational.

2.2.2. Link assemblies and dyads

A link assembly as defined in [4] is a link module connected to a joint. In Fig.2.6 the
link assembly j, consisting of the link module vj and the joint ej is shown. There are
two essential frames defined with a link assembly. One is the module frame j located
at the gravity centre of the link module j. The second frame is the mass frame j∗
located at the mass centre of the link assembly.

Link j

Joint jj

j⇤

Figure 2.6.: Link assembly accordingly to [4]

Along with this representation the transformation

Tj∗j =

[
Rj∗j pj∗j

0 1

]
(2.1)

where Rj∗j ∈ SO(3) and pj∗j ∈ R3 are the rotation and translation of the frame j∗
with respect to frame j.

8



2.3. Rigid body motion

2.3. Rigid body motion

A robot motion is always a motion of multiple connected rigid bodies with respect
to each other. Here the theory of rigid body motion as described in [16] is presented.

A motion is called a rigid body motion if:

1. The distance between all points is constant.

2. All vectors between points of the body preserve the cross product.

The first property results directly from the rigidity. Thus at first glance the first
property seems to be sufficient one has to be aware that the first property would
also allow the mirroring of objects. Because this is physically impossible the second
property has to hold.

2.3.1. The skew symmetric matrix representation

In general the cross product between two vectors a, b ∈ R3 is defined as

a× b =



a2b3 − a3b2
a3b1 − a1b3
a1b2 − a2b1


 . (2.2)

By defining the so called skew symmetric representation of a as

â =




0 −a3 a2

a3 0 −a1

−a2 a1 0


 (2.3)

the cross product can be rewritten as

a× b = âb (2.4)

2.3.2. Homogeneous coordinates

A point q =
[
q1 q2 q3

]T is transformed by a rigid body motion g = (p,R) ∈ SE(3)
using the rotation matrix R ∈ SO(3) and a translation vector p ∈ R3 by

q∗ = Rq + p (2.5)

The equation (2.5) can be rewritten using a 4× 4 matrix

q∗ =

[
q∗

1

]
=

[
R p
0 1

] [
q
1

]
= g · q (2.6)

9



2. Theoretical Background

By using the so called homogeneous representation g of the transformation g

g =

[
R p
0 1

]
(2.7)

and the homogeneous coordinates

q =




q1

q2

q3

1


 (2.8)

which can be easily obtained from q ∈ R3 by appending a 1 thus increasing the
dimension to q ∈ R4. The origin in homogeneous coordinates is

O =




0
0
0
1


 (2.9)

Since vectors are the difference between two points the additional 1s are subtracted
and the homogeneous representation of a vector is

v =




v1

v2

v3

0


 (2.10)

While the last row of g seems to be a useless overhead it can be used to perform
scaling and perspective projections. Though this is not used in this thesis, it is just
mentioned for the sake of completeness.

2.3.3. The two Lie groups SO(3) and SE(3)

Both SE(3) and SO(3) are two groups based on Lie-Algebra that are of high impor-
tance for this concept of calculating robot kinematics.

The special orthogonal group SO(3)

Rotational matrices in R3 are constructed from three orthonormal columns which
are arranged in right hand order. Matrices with this properties form the special
orthogonal group SO(3) and are defined by the space of rotation matrices in R3×3

with

SO(3) = {R ∈ R3×3 : RRT = I, detR = +1}
A more detailed explanation can be found in [16, p.23f]

10



2.3. Rigid body motion

The special Euclidean group SE(3)

Elements of the SE(3) group are rigid transformations in R3. The mapping g : R3 →
R3 with g(x) = Rx+ p and R ∈ SO(3), p ∈ R3 defines the group SE(3) as:

SE(3) =
{

(p,R) : p ∈ R3, R ∈ SO(3)
}

(2.11)

2.3.4. Rigid body motion using exponential coordinates

!

p(t)

q

p

(a) Revolute Joint Motion

v

p(t)

p

(b) Prismatic Joint Motion

Figure 2.7.: Joint motions accordingly to [16, Fig.2.5]

In Fig.2.7a one link of a robot is shown. The axis ω ∈ R3 is the axis of rotation and
q ∈ R3 is some arbitrary point on the same axis. The point p may be the point at
the end of the tip.
Both ω and v = −ω × q form the group of se(3) defined as

se(3) =
{

(v, ω̂) : v ∈ R3, ω̂ ∈ so(3)
}

(2.12)

The velocity of the point at the end of the tip can be described as

ṗ(t) = ω × (p(t)− q) (2.13)

with v = −ω × q:
ṗ(t) = ω × p(t) + v (2.14)

By defining ξ̂ ∈ se(3) as

ξ̂ =

[
ω̂ v
0 0

]
(2.15)

11



2. Theoretical Background

the homogenous coordinate form of (2.14) is obtained:
[
ṗ
0

]
=

[
ω̂ v
0 0

] [
p
1

]
= ξ̂

[
p
1

]
(2.16)

With p =
[
p 1

]T the differential equation is given by

ṗ = ξ̂p (2.17)

The solution to this equation is

p(t) = eξ̂tp(0) (2.18)

with p(0) being the initial position.
The exponential ξ̂t is a 4× 4 matrix und thus defined by

eξ̂t = I + ξ̂t+
(ξ̂t)2

2!
+

(ξ̂t)3

3!
+ . . . (2.19)

by assuming that ||ω|| = 1 (2.19) can be rewritten to:

eξ̂qr = I + ξ̂qr +
(ξ̂qr)

2

2!
+

(ξ̂qr)
3

3!
+ . . . (2.20)

where qr is the angle of rotation.
The motion of a prismatic joint, as shown in Fig. 2.7b, is defined analog by

ṗ(t) = v (2.21)

with

ξ̂ =

[
0 v
0 0

]
(2.22)

(2.21) can be rewritten to
[
ṗ
0

]
=

[
0 v
0 0

] [
p
1

]
= ξ̂

[
p
1

]
(2.23)

Using homogenous coordinates it holds that

ṗ = ξ̂p (2.24)

with p =
[
p 1

]T .
The solution to this differential equation is given by

p(t) = eξ̂tp(0) (2.25)

12



2.3. Rigid body motion

where p(0) is the initial position.
Accordingly to the definition of a matrix exponential it holds that

eξ̂t = I + ξ̂t+
(ξ̂t)2

2!
+

(ξ̂t)3

3!
+ . . . (2.26)

Assuming that ||v|| = 1 (2.26) can be rewritten to:

eξ̂qt = I + ξ̂qt +
(ξ̂qt)

2

2!
+

(ξ̂qt)
3

3!
+ . . . (2.27)

where qt is the translated distance.

Rodrigues’ formula

Both (2.20) and (2.27) can be transformed from the series representation into a closed
form by using the Rodrigue’ formula defined by

eξ̂q = I + ξ̂ sin q + ξ̂2(1− cos q) (2.28)

2.3.5. Twist

As mentioned before, elements of the se(3) group are called twists. A twists consists
of linear and angular velocities and is the infinitesimal version of a screw motion.

si =

[
v
ω

]
(2.29)

By using revolute joints which do not allow translational movement the twist coor-
dinates are

si =

[
ωi
0

]
(2.30)

Accordingly a prismatic joint is defined by a twist of the form

si =

[
0
vi

]
(2.31)

Along with the twists two operators are defined.

13



2. Theoretical Background

The ∨ (vee) operator which transforms homogeneous coordinates of a twist (see
eq.(2.15)) into a vector in R6 . Such vectors with ξ := (v, w) are called the twist
coordinates of ξ̂. [

ω̂ v
0 0

]∨
=

[
v
ω

]
(2.32)

The ∧ (wedge) operator As being defined as the inverse operator the ∧ (wedge)
performs the reverse calculation by transforming the twist coordinates into a matrix
of se(3). [

v
ω

]∧
=

[
ω̂ v
0 0

]
(2.33)

2.3.6. Wrench

The theorem of poinsot states that all forces and torques applied on a rigid body
can be reduced to a single force along one line in combination with a single torque.
Such tuples are called wrenches and are represented in vectors of R6 .

F =

[
f
τ

]
(2.34)

These wrenches consists of the linear force f and a rotational torque τ .

2.3.7. The operators AdT and adV

The adjoint representation AdT is the adjoint mappingAdT : SE(3)→ SE(3)with

T =

[
R p
0 1

]
∈ SE(3) (2.35)

with R ∈ SO(3) and p ∈ R3 defined in [Murray1994] as

AdT =

[
R p̂R
0 R

]
∈ SE(3) (2.36)

It holds that the transpose AdTT of AdT is given by

AdTT = (AdT )T =

[
R p̂R
0 R

]T
=

[
RT 0
−RT p̂ RT

]
(2.37)

which can be verified by direct calculation.
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2.3. Rigid body motion

The operator adV is defined as the adjoint mapping adV : se(3) → se(3) on the
twist V := (v, ω) by

adV =

[
ω̂ v̂
0 ω̂

]
. (2.38)

With direct calculation it can be proven that

adTV = (adV )T =

[
ω̂ v̂
0 ω̂

]T
=

[
−ω̂ 0
−v̂ −ω̂

]
. (2.39)

As mentioned in [17] by Park and Bobrow it can be shown that

AdT adV = adAdT V AdT (2.40)

by using the definitions (2.38) and (2.36).
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3. Geometric model generation

In this chapter an approach developed by Park and Bobrow [17] in 1994 and ex-
tended by Chen et al. [4] in 1998 is used. This approach uses lie groups and lie
algebra, presented in Chapter 2.3.3. To calculate the dynamics a so call two-step
approach based on Newton and Euler, is used. Chen et al. extended the framework
by introducing the the so called Assembly Incidence Matrix(AIM) for modelling the
structure of a modular robot. The essential part of this approach is the dyad, de-
fined as two successive robot modules connected with a joint. Details on all these
techniques will be explained in the next chapter. For simplicity no loops are allowed
within the robot structure.

In the first part of this chapter techniques to describe the structure of the robots are
introduced. After that the calculation of the kinematics along with a slight extension
is presented. Finally the framework as introduced by Chen and Yang is presented.

3.1. The Assembly Incidence Matrix(AIM)

In 1998 Chen et al. [4] introduced the Assembly Incidence Matrix(AIM) as a way to
represent a tree-structured robot. The AIM representing a robot with n modules is
a n × n − 1 matrix with 2(n − 1) non-zero entries. A nonzero entry rij in the AIM
corresponds to the joint ej being connected to the module vi on the side rij . Since
every joint connects two modules, every column has exactly two non-zero entries.
In Fig.3.1 a tree-structured robot and its corresponding graph representation are
shown.
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3.2. The Accessibility Matrix
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8

(a) (b)

Figure 3.1.: Tree-Structured Robot (a) and the corresponding graph (b)

Fig.3.2 shows the corresponding AIM, to highlight the correlation to both the robot
structure and the graph representation the paths are marked within the AIM and
within the robot structure. One AIM represents exactly on robot structure and has
to be recalculated with each structural change. The last column provides additional
information on the module type. In this case it is assumed that only backbone(B)
modules are used.

Path1 Path2 Path3

AIM =

2
6666666666664

e1 e2 e3 e4 e5 e6 e7 e8 Type

v0 3 0 5 0 0 2 0 0 B
v1 4 3 0 0 0 0 0 0 B
v2 0 4 0 0 0 0 0 0 B
v3 0 0 2 4 0 0 0 0 B
v4 0 0 0 3 5 0 0 0 B
v5 0 0 0 0 2 0 0 0 B
v6 0 0 0 0 0 5 4 0 B
v7 0 0 0 0 0 0 2 4 B
v8 0 0 0 0 0 0 0 5 B

3
7777777777775

Figure 3.2.: The AIM corresponding to the robot structure shown in Fig.3.1a

3.2. The Accessibility Matrix

Along with the AIM the Accessibility Matrix(AM) is defined.
The AM is a (n + 1) × (n + 1) Matrix containing the information where an entry
rij = 1 if there is a connection from vi to vj , rij = 0 if there is no connection. These
Matrix can be obtained from the AIM with loss of the information about which sides
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3. Geometric model generation

are connected. The AM derived from Fig.3.2 is shown in (3.1).

AM =




v0 v1 v2 v3 v4 v5 v6 v7 v8

v0 0 1 1 1 1 1 1 1 1
v1 0 0 1 0 0 0 0 0 0
v2 0 0 0 0 0 0 0 0 0
v3 0 0 0 0 1 1 0 0 0
v4 0 0 0 0 0 1 0 0 0
v5 0 0 0 0 0 0 0 0 0
v6 0 0 0 0 0 0 0 1 1
v7 0 0 0 0 0 0 0 0 1
v8 0 0 0 0 0 0 0 0 0




(3.1)

3.3. Forward Kinematics

By using the dyads the kinematics can be calculated recursively. Starting at the base
module all other positions are calculated with respect to its preceding module using

Tij(θj) = Tij(0)eŝjθj (3.2)

ŝj ∈ se(3) is the skew-symmetric representation of the twist of the joint ej
Tij(0) ∈ SE(3) is the initial position of the module vj with respect to the frame

i of vi
θj ∈ R is the generalised coordinate of joint ej , in case of revolute joints

this is the angle of rotation

The initial position Tij(0) ∈ SE(3) is defined by

Tij(0) =

[
Rij(0) pij(0)

0 1

]
(3.3)

where Rij(0) ∈ SO(3) is the initial Rotation of the module vj with respect to vi.
The vector pij(0) is the vector from the origin of frame i to the origin of frame j with
respect to frame i. Thus the kinematics of a serial type robot with n + 1 modules
can be calculated using

T0n = T01(θ1)T12(θ2) . . . Tn−1,n(θn) (3.4)

= T01(0)eŝ1θ1T12(0)eŝ2θ2 . . . Tn−1,n(0)eŝnθn (3.5)
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3.3. Forward Kinematics

3.3.1. Recursive forward kinematics

Chen and Yang in [3] introduced the TreeRobotKinematics algorithm. In [4] thex
presented the structure of this algorithm as shown in Fig.3.3. The algorithm derived
from common graph traversing algorithms, in particular the Depth-First-Search(DFS)
algorithm. Starting at the base link the whole robot structure is traversed recursively.
The possible transformations are calculated using (3.2) and (3.4).

AIM A(g)
BaseLink Location Tb

Joint Angle q

INITIALIZATION

Preset Module Initial Location Tij(0)
Store Base as Current Link Module

DYAD FORWARD KINEMATICS

For succeeding Link Module:
Tij(qj) = Tij(0)eŝjqj

UPDATE VISITED LINK

Set Suceeding Link as Current Link

Last link in the Robot?

FORWARD
TRANSFORMATIONS T

RECURSIVE
Depth-First-Search

Figure 3.3.: The TreeRobotKinematics algorithm

3.3.2. Calculating the initial transformations

The initial transformations defined in (3.3) have been a central topic in the work of
Ganzhorn [5].
Since only planar connections are allowed there is an easy and straightforward way
to determine both Rij(0) and pij(0). Given that only connections on side 2,3,4 and
5 are allowed, there are only 42 = 16 different connections that can be divided up
into 4 rotations as shown in Fig. 3.1. The initial translation pij(0) only depends on
the connecting side of the module i as shown in Fig.3.4. The MATLAB R© code for
both the evaluation of Rij(0) and pij(0) which is rather simple can be found in A.2
and A.3.
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3. Geometric model generation

Angle(CounterClockw.) 0
◦ CCW 90

◦ CCW 180 CCW 270
◦ CCW

Rotationmatrix Rij =




1 0 0
0 1 0
0 0 1


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
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Table 3.1.: Initial rotations

Connecting side pij(0)

2 pij(0) =




0
0
−L




3 pij(0) =




0
L
0




4 pij(0) =




0
−L
0




5 pij(0) =




0
0
L




4

5

3

2
x y

z

Figure 3.4.: Initial translation

3.3.3. Recursive forward kinematics using lists

Assuming that the structural changes of the robot are rare compared to the runtime,
the time needed to evaluate the equations of motion can be reduced by calculating
which transformations will be needed. However these speed improvements only take
place when the framework is calculated in numerical mode as explained in 4.2. Using
this information computationally intensive graph traversing algorithms, like the DFS,
have to be used only if the structure of the robot changes.
We can differentiate between to types of transformations:
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3.3. Forward Kinematics

Definition 1 direct transformations
Direct transformations are transformations between two successive modules. These
transformations depend on the connecting module sites.

Definition 2 indirect transformations
Every transformation that is not a direct transformation is a indirect transformation.
These indirect transformations are calculated using transformations of two consecu-
tive modules.

The information about the possible transformations is stored in two lists. One is the
Direct-Transformation-List (DTL), storing the direct transformations as well as the
connecting sides. The second list is the Indirect-Transformation-List (IDTL) storing
the indirect transformations. Tab. 3.5 shows these two list that represent the direct
and indirect calculations of the robot shown in Fig.3.1a.

DTL
Tij Sides
i j from to
0 1 3 2
1 2 5 3
0 3 5 2
3 4 4 3
4 5 5 2
0 6 2 5
6 7 4 2
7 8 4 5

(a) DTL

IDTL
Tij = Tix · Txj
i j i x x j
0 2 0 1 1 2
0 4 0 3 3 4
3 5 3 4 4 5
0 5 0 4 4 5
0 7 0 6 6 7
6 8 6 7 7 8
0 8 0 7 7 8

(b) IDTL

Figure 3.5.: Direct and indirect transformation list referring to the example shown
in Fig.3.1.

AIM traversing algorithm

To calculate these list a recursive algorithm has been developed. Since every AIM
represents a robot in tree structure as shown in Fig.3.2 and Fig.3.1 it can be traversed
using algorithms derived from graph searching algorithms. The algorithm introduced
here is based on the DFS and and TreeRobotKinematics algorithm by Chen and
Yang[3]. In Fig. 3.6 a flowchart of the algorithm is shown.
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3. Geometric model generation
ACreateTcell(,AIM,twists,q,L,module=0)

Module i has connection on 
this joint?

Next Joint

j = connected Module

AIM
i=currentModule

set currentJoint=1

Calculate Direct Transformation
T{i,j}=AGetTijFromPair()

Calculate Indirect Transformations
T{x,j}=T{x,i}*T{i,j}

x durchläuft sämtliche Module

ACreateTcell2(AIM,twists,q,L,j)

RECURSIVE!!!

Delete ModulConnection From AIM

Initial Call: function(AIM,module=base=0)

Next 
Module

j = connected Module

Call traverse(AIM,module)

joint = 1
i=module

Calculate Direct Transformation
-> SaveToList('direct')

Calculate Indirect Transformations
T{i,j}=T{i,x}*T{x,j}

-> SaveToList('indirect')

Recursive Call
traverse(AIM,module=j)

Next 
Joint

Yes

No

module has 
connection on this 

joint?

Figure 3.6.: Traversing algorithm

The MATLAB R© -code of this recursive function is shown in A.5. Due to the travers-
ing order the lists have to be iterated from top to bottom. During runtime every line
is just to calculate one direct transformation using

Tij = Tij(0)eŝjqj (3.6)

where vi and vj are two successive modules. Tij(0) is calculated using the informa-
tion about the connecting sites as described in 3.3.2.

The indirect transformations are calculated by using

Tij = Tix · Txj (3.7)

since every line represents a calculation that could depend on a transformation calcu-
lated in a previous row it is necessary to iterate trough the IDTL from top to bottom.
This algorithm has been successfully implemented and tested in MATLAB and was
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3.3. Forward Kinematics

used in the simulations. The MATLAB R© -Code to obtain the transformations from
a given DTL and IDTL is:

1 %CreateT Calculate Transformations from DTL and IDTL
2

3 %Initialize empty Tcell
4 Tcell={};
5

6 [numDirect h]=size(direct);
7 [numInDirect h]=size(indirect);
8

9 % Calculation the direct transformations
10 for j = 1:numDirect
11 i = direct(j,:);
12

13 %if virtual joint or if last was a virtual joint
14 if(any(i(3:4)’==[7 7]’) || ...
15 (j > 1 && any(direct(j-1,3:4)’ == [7 7]’)))
16

17 Tcell{i(1)+1,i(2)+1} = eye(4)*twistexp(twists{i(2)},q(i(2)));
18

19 else %if real joint
20 % if two before was a virtual joint or it is connected
21 % to the base on side 3 or 4
22 if(j==1 || any(direct(j-1,3:4)’ == [7 7]’))
23

24 Tcell{i(1)+1,i(2)+1} = ...
25 eye(4)*twistexp(twists{i(2)},q(i(2)));
26

27 else
28 Tcell{i(1)+1,i(2)+1} = GetTijFromPair(i(3:4)’,L(i(2)))...
29 *twistexp(twists{i(2)},q(i(2)));
30 end
31 end
32 end
33

34 for i = indirect’
35 Tcell{i(1)+1,i(2)+1}= Tcell{i(3)+1,i(4)+1}*Tcell{i(5)+1,i(6)+1};
36 end
37

38 end
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3. Geometric model generation

3.4. Dynamics

In [4] Chen and Yang propose the usage of a recursive Newton-Euler-approach to
calculate the dynamics of branching types robots as follows:

3.4.1. Newton-Euler equations of a link assembly

Recalling a link assembly as shown in Fig. 2.6 the Newton-Euler equations are given
by

Fj∗ =

[
fj∗
τj∗

]
=

[
mjI 0

0 Jj∗

] [
v̇j∗
ω̇j∗

]
+

[
ωj∗ ×mjvj∗
ωj∗ × Jj∗ωj∗

]
(3.8)

with vj∗ ×mjvj∗ = 0.

Fj∗ =

[
mjI 0

0 Jj∗

] [
v̇j∗
ω̇j∗

]
−
[
−ω̂j∗ 0
−v̂j∗ −ω̂j∗

] [
mjI 0

0 Jj∗

] [
vj∗
ωj∗

]
(3.9)

Here Fj∗ ∈ R6×1 is the wrench, consisting of the force jj∗ and the torque τj∗, applied
on the mass centre as shown in Fig.3.7. Jj∗ is the intertia tensor with respect to the
frame j∗. mj is the mass of the link assembly, defined as the sum of the link vj and
the joint ej . 3.7.

Link j

Joint jj

j⇤
Fj⇤ =


fj⇤
⌧j⇤

�

Figure 3.7.: Link assembly and applied wrench according to [4]

By defining:

The generalised mass matrix

Mj∗ =

[
mj 0
0 Jj∗

]
(3.10)

with Mj∗ ∈ R6×6.
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3.4. Dynamics

The generalised body velocity

Vj∗ =

[
vj∗
ωj∗

]
(3.11)

where Vj∗ ∈ R6×1 and vj∗, ωj∗ ∈ R3×1 are the transitional and rotary velocities with
respect to j∗.

The generalised body acceleration

V̇j∗ =

[
v̇j∗
ω̇j∗

]
(3.12)

with V̇j∗ ∈ R6×1. Using this definitions (3.9) can be transformed into the adjoint
representation

Fj∗ = Mj∗V̇j∗ − adTVj∗(Mj∗Vj∗) (3.13)

where adTVj∗ ∈ R6×6 is the transposed adjoint matrix of adVj∗ . The operator adV is
defined and explained in 2.3.7.
Fj∗ is transformed into Fj with respect to j with

Fj = AdTTj∗jFj∗ (3.14)

The operators AdT and adV are defined in (2.39) and (2.37).
Using the operator AdT the generalised body velocity Vj∗ as well as the generalised
body acceleration V̇j∗ can be transformed into Vj and V̇j with respect to the frame
j using

Vj = AdTTj∗j Vj∗ (3.15a)

V̇j = AdTTj∗j V̇j∗ (3.15b)

The corresponding transformations from frame j to frame j∗ are given by

Vj∗ = AdTj∗j Vj (3.16a)

V̇j∗ = AdTj∗j V̇j (3.16b)

The generalised mass matrix Mj∗ with respect to frame j∗ defined in (3.10) can be
transformed into Mj with respect to the frame j by

Mj = AdTTj∗j Mj∗AdTj∗j (3.17a)

=

[
mjI mjR

T
j∗j p̂j∗jRj∗j

−mjR
T
j∗j p̂j∗jRj∗j RTj∗j(Jj∗ −mj p̂

2
j∗j)Rj∗j

]
(3.17b)
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3. Geometric model generation

If we assume the frame j and frame j∗ to be parallel to each other (Rj∗j = I) this
equation is simplified to

Mj =

[
mjI mj p̂j∗j
−mj p̂j∗j Jj∗ −mj p̂

2
j∗j

]
(3.18)

We obtain the Newton-Euler equation of the link assembly j with respect to the
frame j by substituting the equations (3.14),(3.16a), (3.16b) and 3.17a into (3.13)

Fj = Mj V̇j − adTVj (MjVj) (3.19)

3.4.2. The two-step approach

The Newton-Euler-equation of each module is calculated using a two step approach
as illustrated in Fig.3.8. In the first step the velocity and acceleration are calculated
by starting at the base module and iterating to the end of each branch.

Base

1

2

4 6

3

5 7 8

V, V̇

(a) 1. Step - Forward Iteration

F
Base

1

2

4 6

3

5 7 8

(b) 2. Step - Backward Iteration

Figure 3.8.: Two step approach

1.Step - Forward Iteration

The forward iteration starts at the base with the base velocity and acceleration

V0 =
(
0 0 0 0 0 0

)
(3.20)

V̇0 =
(
0 0 −g 0 0 0

)
(3.21)

The base acceleration takes gravity in z-Direction into account. Free Objects with
respect to the base frame 0 would experience a acceleration of g in z-Direction. This
shows that even against possible first thoughts the definition of the base acceleration

26



3.4. Dynamics

as in (3.21) is correct. All velocities and accelerations can be calculated recursively
using

Vj = AdT−1
ij
Vi + sj θ̇j (3.22)

V̇j = AdT−1
ij
V̇i − adsj θ̇j (AdT−1

ij
Vi) (3.23)

see [16] and [4] for more details.

2.Step - Backward Iteration

In the backward iteration the wrench of each link i calculated. This wrench consists
of both the wrench that is applied by the preceding links and the external wrench.
We define the set V as the set of all links and VPD ⊂ V as the set of all pendant
links. From the Newton-Euler-equation (3.19) follows that for a link assembly di
with vi ∈ VPD it holds that:

Fdi = Mdi V̇di − adTVdi
(MdiVdi) (3.24)

where the total wrench Fdi is defined as

Fdi = F idi + F edi (3.25)

where F idi is the internal wrench on vi applied by its predecessors. F edi is the external
wrench applied on vi. From (3.24) and (3.25) follows that

Fdi = −F edi +Mdi V̇di − adTVdi
(MdiVdi) (3.26)

As shown in Fig.3.8b the calculation is done by traversing from the tips to the base.
The wrench Fi of each module is calculated using

Fi =
∑

j∈VSi

AdT
T−1
ij
Fj − F ei +MiV̇i − adTVi(MiVi) (3.27)

where VSi is the set of link that succeed vi.
If we apply a torque/force directly to the input joint ei the it holds that

τi = sTi Fi (3.28)

Equations of Motion

By rewriting the (3.20),(3.21),(3.22),(3.23),(3.26),(3.27) and (3.28) into matrix form
the generalised velocity, generalised acceleration and generalised force are given by

V = GSθ̇ (3.29)

V̇ = GT0 V̇0 +GSθ̈ +GA1V (3.30)

27



3. Geometric model generation

F = GTFE +GTMV̇ +GTA2MV (3.31)

τ = STF (3.32)

q̇ = column[q̇1, q̇2, . . . , q̇n] ∈ Rn×1

q̈ = column[q̈1, q̈2, . . . , q̈n] ∈ Rn×1

V = column[V1, V2, . . . , Vn] ∈ R6n×1

V̇ = column[V̇1, V̇2, . . . , V̇n] ∈ R6n×1

F = column[F1, F2, . . . , Fn] ∈ R6n×1

F e = column[F e1 , F
e
2 , . . . , F

e
n] ∈ R6n×1

τ = column[τ1, τ2, . . . , τn] ∈ Rn×1

S = diag[S1, S2, . . . , Sn] ∈ R6n×n

M = diag[M1,M2, . . . ,Mn] ∈ R6n×6n

adSθ̇ = diag[−adS1θ̇1
,−adS2θ̇2

, . . . ,−adSnθ̇n
] ∈ R6n×6n

adTV = diag[−adTV1 ,−adTV2 , . . . ,−adTVn ] ∈ R6n×6n

GT0 =




AdT−1
0,1

AdT−1
0,2

...
AdT−1

0,n



∈ R6n×6 (3.34)

G =




I6×6 06×6 06×6 · · · 06×6

AdT−1
1,2

I6×6 06×6 · · · 06×6

AdT−1
1,3

AdT−1
2,3

I6×6 · · · 06×6

...
...

...
...

...
AdT−1

1,n
AdT−1

2,n
AdT−1

3,n
· · · I6×6



∈ R6n×6n (3.35)

G is the so called transmission matrix. Note that for non existing Transformations
Tij the zero-transformation Tij = 04×4 is used.

Closed from equations of motion By substituting eqs. (3.29)-(3.31) into (3.32)
we obtain the closed form of the equation of motion.

M(q)q̈ + C(q, q̇)q̇ +N(q) = τ (3.36)

with the mass matrix M(q) defined by:

M(q) = STT TMTS (3.37)

the matrix C(q, q̇) representing the Coriolis and centrifugal accelerations given by:

C(q, q̇) = STT T (MTadSq̇ + ad∗V )TS (3.38)
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3.4. Dynamics

and the matrix N(q) representing gravitational and external forces defined as:

N(q) = STT TMTH0 V̇ + STT TF e (3.39)

To calculate the dynamics of a given structure under applied wrenches we can rear-
range (4.3) to:

q̈ = M(q)−1(τ − C(q, q̇)q̇ −N(q) (3.40)

This equation in combination with the equations (3.37)-(3.39) will be the main equa-
tion during simulation and verification.
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4. Implementation

In order to simulate the algorithms of the previous chapter the equations have been
implemented using MATLAB R© . The code developed by Ganzhorn during the work
of [5] has been modified and extended.

4.1. Code example

To show how the framework is implemented here the code that is used to simulate a
double pendulum structure as shown in Fig.5.2 is presented.

1 global direct
2 global indirect
3

4 direct=[]
5 indirect=[]
6

7 %Create a Pendulum with "orderpendulum"-elements in a row
8 orderpendulum = 2
9 AIM = CreatePendulumAIM(orderpendulum)

10 [numOfModules,numOfJoints] = size(AIM);
11

12 %% Calculate DTL,IDTL
13 CreateTCalcOrder(AIM);
14

15 %% Tau
16 tau=zeros(orderpendulum,1);
17

18 %% Initial Conditions
19 q0 = pi/4*ones(numOfJoints,1);
20 qdot0=zeros(numOfJoints,1);
21 ic = [q0;qdot0];
22

23 %% Parameters lengths and masses
24 L=10*ones(orderpendulum,1);
25 m=ones(orderpendulum,1);
26

27 %% Solve ODE
28 tspan = [0:0.1:10];
29 [t, y] = ode45(@EvaluateNum,tspan,ic,[],tau,L,m);
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4.1. Code example

EvaluateNum.m

1 function out = EvaluateNum(t,in1,tau,L,m)
2 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
3 %This function simulates the robot
4 %Author: Alexander Gutenkunst
5 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
6 global AIM
7

8 [~,numOfJoints] = size(AIM);
9

10 q=in1(1:numOfJoints);
11 qdot=in1(numOfJoints+1:numOfJoints*2);
12 %Declare non-symbolic variables now, makes caluclations faster
13

14 g=9.81;
15 %% Calculate p (distances to mass-center)
16 %replace above with
17 pcell = cell(numOfJoints,1);
18 for i=1:numOfJoints
19 pcell{i} = [0 -L(i) 0]’; %distances to mass center
20 end
21

22 %% Inertia tensors
23 Izz=0;
24 Jcell = cell(numOfJoints,1);
25 for i=1:numOfJoints
26 Jcell{i} = diag([Izz 0 0]);
27 end
28

29 %% Masses
30 Massescell = cell(numOfJoints,1);
31 for i=1:numOfJoints
32 Massescell{i} = m(i); %all masses are equal
33 end
34

35 %% Generilized Mass Matrices
36 GMcell = cell(numOfJoints,1);
37 for i=1:numOfJoints
38 GMcell{i} = ...
39 [Massescell{i}*eye(3) Massescell{i}*skew(pcell{i});
40 -Massescell{i}*skew(pcell{i}) Jcell{i}-Massescell{i}*skew(pcell{i})^2];
41 end
42

43 GM = [];
44 for i=1:numOfJoints
45 GM = blkdiag(GM,GMcell{i});
46 end
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4. Implementation

47

48 %% Twists
49 twists = cell(numOfJoints,1);
50 for i = 1:numOfJoints
51 twists{i} = [0,0,0,1,0,0]’; % all twists are the same
52 end
53

54 %% S
55 S = zeros(6*numOfJoints,numOfJoints);
56 for i = 1:numOfJoints
57 S((i-1)*6+1:(i-1)*6+6,i)=twists{i};
58 end
59

60 %% Create T01,T02,T12,... using DTL,IDTL
61 Tcell={};
62 Tcell=CreateTFromOrderNumPen(L,twists,q);
63

64 %% Calculate G_T0
65 G_T0 = zeros(numOfJoints*6,6);
66 for i = 1:numOfJoints
67 G_T0(i*6-5:i*6,1:6) = A_AAd_chen(inv(Tcell{1,i+1}));
68 end
69

70 %% Calculate G
71 G=zeros(numOfJoints*6,numOfJoints*6);
72 for i=1:numOfJoints
73 for j=i:numOfJoints
74 rows=(i-1)*6+1:(i-1)*6+6;
75 cols=(j-1)*6+1:(j-1)*6+6;
76 if(i==j)%if diagonal element
77 G(cols,rows) = eye(6);
78 elseif(~cellfun(@isempty,Tcell(i+1,j+1)))
79 G(cols,rows) = A_AAd_chen(inv(Tcell{i+1,j+1}));
80 end
81 end
82 end
83

84 %% External Forces
85 %disp(’Calculation External Forces...’)
86 Fe(1:6*numOfJoints,1)=zeros(6*numOfJoints,1);
87 for a = 1:numOfJoints %Calculate the force of each Module
88 Fe((((6*a)-5):(6*a)),1)=[0, 0, 0, 0, 0, 0]’;
89 end
90 V=G*S*qdot;
91 %% Calculate A1
92 A1=[];
93 for i = 1:numOfJoints
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4.1. Code example

94 A1 = blkdiag(A1,-AkadNonSym(twist(twists{i}*qdot(i))));
95 end
96

97 A2=[];
98 for i = 1:numOfJoints
99 V_temp = V((i-1)*6+1:(i-1)*6+6,1);

100 A2 = blkdiag(A2,-AkadNonSym(twist(V_temp))’);
101 end
102 %% Calculate V0
103 V0 = [0 0 0 0 0 0]’;
104

105 %% Calculate V0dot
106 V0dot = [0 -g 0 0 0 0]’;
107

108 %% Calculate M_of_q
109

110 M_of_q = S’*G’*GM*G*S;
111

112 C = (S’*G’*(GM*G*A1+A2*GM)*G*S); %(37)
113

114 N = S’*G’*GM*G_T0*V0dot+S’*G’*Fe; %(38)
115

116 qddot = M_of_q\(tau-(C*qdot+N));
117

118 out=[qdot;qddot];
119

120 end

It shall be noted that using MATLAB R© only ODEs of the form

ẋ = f(x, t) (4.1)

can be solved. The second order equations of motion can easily transformed into
this form using:

x1 = q1
...

xn = qn
xn+1 = q̇1

...
x2n = q̇n

(4.2)
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4. Implementation

4.2. Comparison of the numerical and the symbolical
calculation

During the work of this thesis the question arose wether the calculations should be
done symbolically or numerically. Here the aspects of both techniques are shown to
provide a remark on this topic for future work.
Since MATLAB R© supports the usage of symbolic variables all equations that are
needed to simulate the framework can be calculated symbolically. As a result the
equation of motion

M(q)q̈ + C(q, q̇)q̇ +N(q) = τ (4.3)

is given completely symbolic. To solve this equation in MATLAB R© using a ODE-
Solver it has to be stored as a function. Functions in MATLAB R© representing ODEs
are structured as shown in Fig.4.1. This equations can be solved by using several

1 function xdot = someODE(x)
2 xdot = ...
3 end

Figure 4.1.: MATLAB-ODE

ODE-Solver provided by MATLAB R© such as Runge-Kutta and Adams-Bashforth.

4.2.1. Symbolic calculation

The first approach was to calculate the central equation of motion, namely eq.(3.40),
using the MATLAB R© SYMBOLIC MATH TOOLBOX. This symbolic equation is then trans-
formed into the affine from using (4.2) and saved as a MATLAB R© -ODE either as
file or as an internal representation. Since all intermediate results are symbolic, this
approach is quite useful during debugging. An analytic verification, presented in
chapter 5.1.3, is only possible with this approach.

4.2.2. Numeric calculation

This approach can be seen as the counterpart to the symbolic calculation, because no
symbolic variables are used. Since most terms such as Tij , G,GT0, A1, A2, ... depend
on θ and/or θ̇ they have to be recalculated on every call of the MATLAB R© -ODE
in order to compute θ̈. Thus all these calculations happen ‘inside’ the MATLAB R©

-ODE. To avoid the time and effort of a graph-searching-algorithm such as DFS the
list DTL and IDTL, introduced in chapter 3.3.3, should be used in the numerical
calculations approach.
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4.2. Comparison of the numerical and the symbolical calculation

4.2.3. Comparison

To provide a basis for the decision wether the symbolic or the numerical approach
should be used in the actual hardware implementation both approaches have to be
compared. The calculation time consists of two parts: The time needed to create
the ODE-MATLAB R© -Function and the time needed to solve it. A multi-pendulum
structure has been used as a benchmark for this comparison. Two quantities are used
to compare both frameworks: The precalculation time, the time that is needed to cre-
ate the MATLAB R© -ODE, and the evaluation time, the time needed to evaluate the
ODE at one time. The results shown in Fig.4.2 indicate that the MATLAB R© -ODE

Sym-Pre Sym-Eval Num-Pre Num-Eval
1
2
3
4
5
6

2,18 0,00014 0,001 0,0021
2,74 0,0013 0,0013 0,0036
5,72 0,0015 0,0018 0,0055

21,33 0,0042 0,0032 0,0072
89,21 0,02 0,0051 0,0091

542 0,11 0,011 0,0159

0

150

300

450

600

1 2 3 4 5 6

542

89,21

21,335,722,742,18

Chart 1

Sym-Pre

0,001

0,01

0,1

1

10

100

1000

1 2 3 4 5 6

Precalculation Time

Ti
m

e 
in

 s
ec

on
ds

Number of Elements
Sym-Pre Num-Pre

0

0,038

0,075

0,113

0,15

1 2 3 4 5 6

Evaluation Time

Ti
m

e 
in

 s
ec

on
ds

Number of Elements
Sym-Eval Num-Eval

(a) Precalculation

Sym-Pre Sym-Eval Num-Pre Num-Eval
1
2
3
4
5
6

2,18 0,00014 0,001 0,0021
2,74 0,0013 0,0013 0,0036
5,72 0,0015 0,0018 0,0055

21,33 0,0042 0,0032 0,0072
89,21 0,02 0,0051 0,0091

542 0,11 0,011 0,0159

0

150

300

450

600

1 2 3 4 5 6

542

89,21

21,335,722,742,18

Chart 1

Sym-Pre

0,001

0,01

0,1

1

10

100

1000

1 2 3 4 5 6

Precalculation Time

Ti
m

e 
in

 s
ec

on
ds

Number of Elements
Sym-Pre Num-Pre

0

0,038

0,075

0,113

0,15

1 2 3 4 5 6

Evaluation Time

Ti
m

e 
in

 s
ec

on
ds

Number of Elements
Sym-Eval Num-Eval

(b) Evaluation

Figure 4.2.: Comparison of the symbolic and numeric approach

can be created much faster using the numerical approach. While the symbolic ODE
creation of the pendulum consisting of 6 modules toke more than 8 minutes it only
toke 0.011 seconds using the numerical approach. A rather surprising result is that
numerical evaluation of the ODE is only slightly slower on fewer that 5 modules and
even faster on larger structures. Although it should be mentioned that the practical
calculation time strongly depend on the operating system and the used software.
While the numerical approach seems to be superior when using MATLAB R© it is not
necessarily faster than every up-to-date symbolic implementation.
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5. Verification

Due to the complexity of the frameworks it is necessary to verify that both imple-
mentation and modelling have been correct. In this thesis the verification is done
by using two robot structures that represent commonly known physical structures.
By calculating the equation of motions both with the framework and the methods
of Lagrangian dynamics. Lagragian dynamics are based on an energetic considera-
tion of a system and form an elegant way to calculated the dynamics of multibody
systems.

5.1. Verification using the double pendulum

The double pendulum, as the name suggests, consists of two pendulums connected
to each other in row as shown in Fig.5.1. Since the double pendulum is often used to
describe chaotic behaviour its equation of motions have be calculated in many ways.
One aspect which differs from the common way the double pendulum is represented
are the angles.

m1

m2

L1

L2

q1

q2

Figure 5.1.: Double pendulum

5.1.1. Modelling

The double pendulum structure can be approximated by a robot structure as shown
in Fig. 5.2 This robot structure can be modelled by the frame work with the following
parameters. The limbs are assumed massless, also friction is neglected, thus J1∗ =
J2∗ = 0 . The masses, located at the joints are m1 and m2. The multiple coordinate
frames used to model the double pendulum using the robot modules are illustrated
in Fig.5.3. To illustrate their position within the robot structure the robot modules
are indicated by dotted lines.
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(b) Topview

Figure 5.2.: Double pendulum structure

y1

z1

z0
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x0, x1

x2

y2

z2

L1

L2

j2

j2⇤

j1⇤

j1

j0(Base)

q1

q2

Figure 5.3.: Coordinate frames used to model the double pendulum

The first frame j0 is the base frame and reference frame for the dynamics. The
link assembly j1 is described with the frame j1 which is located at the origin of j0
and rotates around the x-axis. The mass frame j1∗ of link assembly j1 is located
in a distance L1 in y-direction. Note that j1∗ is fixed with respect to j1. Frame j2
coincidences with j1∗ at the centre of the second robot module. Analogue to j1 and
j1∗ the mass frame j2∗ is located in a distance L2 in y direction from j2. Since all
robot modules share the same geometry it can be implied that L1 = L2. Thus this
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5. Verification

verification is also done with different lengths.

AIM Since there are two joints and three modules, the AIM representing the robot
structure is a 3× 2 matrix.

AIM =




3 0
4 3
0 4


 (5.1)

Masses and inertia tensors Since the motors of each robot module are located at
the centre, the assumption that each module robot can be seen as a point of mass can
be made. Though with regard to Fig.5.3 the mass m1,2 is not located at the centre
of the link assembly j1,2. Using the assumption that the modules can be modelled
as mass points, J1∗ and J2∗, the inertia tensors with respect to the mass frames are

J1∗ = J2∗ = 0 (5.2)

The generalised mass matrices given by (3.17b) are

M1 =

[
m1I m1p̂1∗1

−m1p̂1∗1 −m1p̂
2
1∗1

]
M1 =

[
m2I m1p̂2∗2

−m2p̂2∗2 −m2p̂
2
2∗2

]
(5.3)

where p̂1∗1 and p̂2∗2 are the skew-symmetric representations of the position vectors
of the module frames j1 and j2 with respect to the mass frames j∗1 and j∗2 . These
vectors are given by

p1∗1 =




0
−L1

0


 , p2∗2 =




0
−L2

0


 (5.4)

Transformations The initial pose of the frame j1 with respect to j0 is a 4 × 4
identity matrix since both matrices coincidence if θ1 = 0. Therefore

T01(0) = I4×4 (5.5)

The initial pose of j2 with respect to j1 is given by

T12(0) =




1 0 0 0
0 1 0 L1

0 0 1 0
0 0 0 1


 (5.6)
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5.1. Verification using the double pendulum

5.1.2. Simulation

Using the software MATLAB R© multiple simulations with the model of the double
pendulum calculated using the Lagrangian as well as the model calculated by the
framework developed by Chen and Yang [Chen1998] have been done. The results
showed that the implementation and the modelling has been done correctly since
both models behave exactly the same way. The results of one simulation with the
initial condition ϕ1 = ϕ2 = π

2 , ϕ̇1 = ϕ̇2 = 0 are shown in Fig. 5.4.

Figure 5.4.: Verification(dashed line) and results of the geometric approach

5.1.3. Analytic verification

absolute/relativ angles

As shown in Fig. 5.5 the angles of a double pendulum can be expressed in both ab-
solute and relative angles. Because the framework uses relative angles, the equations
calculated with lagrangian methods also have to be expressed in relative angles to
allow direct comparison.

✓1

✓2

(a) absolute angles

q1

q2

(b) relative angles

Figure 5.5.: The different angle representations
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It holds that:

θ1 = q1

θ2 = q1 + q2

θ̇1 = q̇1

θ̇2 = q̇1 + q̇2

θ̈1 = q̈1

θ̈2 = q̈1 + q̈2

←→

q1 = θ1

q2 = θ2 − θ1

q̇1 = θ̇1

q̇2 = θ̇2 − θ̇1

q̈1 = θ̈1

q̈2 = θ̈2 − θ̈1

(5.7)

The equations of motion given by [27, eq. (13) and (18)] are:

(m1 +m2)l21θ̈1 +m2l1l2θ̈2 cos(θ1 − θ2)

+m2l1l2θ̇
2
2 sin(θ1 − θ2) + l1g(m1 +m2) sin θ1 = 0

(5.8a)

m2l
2
2θ̈2 +m2l1l2θ̈1 cos(θ1 − θ2)−m2l1l2θ̇

2
1 sin(θ1 − θ2) + l2m2g sin θ2 = 0 (5.8b)

The interested reader can find a detailed derivation of these equations using the
lagrangian method in [27].

Results from Lagrangian method

After transformation into relative angles:

Note:
cos(θ1 − θ2 ) = cos(−(θ2 − θ1 )) = cos(−q2 ) = cos(q2 )
sin(θ1 − θ2 ) = sin(−(θ2 − θ1 )) = sin(−q2 ) = − sin(q2 )

m1 +m2l
2
1q̈1 +m2l1l2(q̈1 + q̈2) cos(q2)

−m2l2l1(q̇1 + q̇2)2 sin q2 + l1gm1 +m2 sin q1 = 0 (5.9a)

m2l
2
2(q̈1 + q̈2) +m2l1l2q̈1 cos q2

+m2l1l2q̇
2
1 sin q2 + l2gm2 sin(q1 + q2) = 0 (5.9b)
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5.1. Verification using the double pendulum

Expansion and ordering of the terms:
[
(m1 +m2)l21q̈1 +m2l1l2 cos q2q̈1 +m2l1l2 cos q2q̈2

m2l
2
2q̈1 +m2l

2
2q̈2 +m2l1l2q̈1 cos (q2)

]

︸ ︷︷ ︸
ML(q)q̈

+

[
−l1l2m2q̇1 sin(q2) (q̇1 + q̇2)− l1l2m2q̇2 sin(q2) (q̇1 + q̇2)

m2l1l2q̇
2
1 sin (q2)

]

︸ ︷︷ ︸
CL(q,q̇)q̇

+

[
l1g (m1 +m2) sin q1

l2gm2 sin(q1 + q2)

]

︸ ︷︷ ︸
NL(q)

=

[
0
0

]
(5.10)

This can be rearranged with q =
[
q1 q2

]T to

[
l21(m1 +m2) + l1l2m2 cos (q2) l1l2m2 cos (q2)

l22m2 + l1l2m2 cos (q2) l22m2

]

︸ ︷︷ ︸
ML(q)

[
q̈1

q̈2

]
+

[
−l1l2m2 sin (q2)(q̇1 + q̇2) −l1l2m2 sin (q2)(q̇1 + q̇2)
l1l2m2 sin (q2)(q̇1 − q̇2) l1l2m2q̇1 sin (q2)

]

︸ ︷︷ ︸
CL(q,q̇)

[
q̇1

q̇2

]
+

[
gl1 (m1 +m2) sin(q1)
gl2m2 sin(q1 + q2)

]

︸ ︷︷ ︸
NL(q)

=

[
0
0

]
(5.11)

Geometric Results

The results obtained by calculating the equations of motions using symbolic calcu-
lations in MATLAB R© are:

MGq̈ + CGq̇ +NG = 0 (5.12)

with

MG =

[
l1

2(m1 +m2) + l2
2m2 + 2l1l2m2 cos(q2) l2m2 (l2 + l1 cos(q2))

l2m2 (l2 + l1 cos(q2)) l2
2m2

]
(5.13a)

CG =

[
−2l1l2m2q̇2 sin(q2) −l1l2m2q̇2 sin(q2)

l1l2m2 sin(q2) (q̇1 − q̇2) l1l2m2q̇1 sin(q2)

]
(5.13b)

NG =

[
g (l2m2 sin(q1 + q2) + l1m1 sin(q1) + l1m2 sin(q1))

gl2m2 sin(q1 + q2)

]
(5.13c)
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Proof of Equality

Now we want to show that both the equation by Lagrange and the equation given
by the geometric approach are actually the same. For both equations it holds that

M(q)q̈ + C(q, q̇)q̇ +N(q) = 0

Since the right side of the equation is zero we are allowed to multiply the whole
equation with T ∈ R2x2 such that

T ·M(q)q̈ + T · C(q, q̇)q̇ + T ·N(q) = 0

The existence of a constant matrix T with

ML = T ·MG (5.14a)
CL = T · CG (5.14b)
NL = T ·NG (5.14c)

is a sufficient condition for both equations to be the same.
In our case it can be proven by direct calculation that eq.(5.14a)-(5.14c) holds if

T =

[
1 −1
0 1

]

thus both equations are equal.
�
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5.2. Verification using the crane model

5.2. Verification using the crane model

To illustrate and verify the usage of virtual joints the second model is a crane model
as shown in Fig.5.6a. The model consist of a wagon with mass m1 moving linear
along one axis. Attached to the wagon is a pendulum with the length l and a mass
m2 attached to its end. The rod is assumed to be massless. Also the rotary pivot at
the wagon and the linear movement is assumed to be frictionless. The DOF along
the z-Axis is modelled using a virtual joint.

l

x

y

z

z

(a)

v0

v1

virtual Joint

x

y

z

(b)

Figure 5.6.: (a) Crane model; (b) Corresponding robot structure using a virtual joint

The equations of motion are obtained from [6, eq.(10a) and (10b)] where they are
calculated using Lagrangian methods. The equations of motion, simplified by the
assumption of absent of friction and actuation, are given by

(ms +mL)z̈ +mllϕ̈ cosϕ−mLlϕ̇
2 sinϕ = 0 (5.15a)

lϕ̈+ g sinϕ+ z̈ cosϕ = 0 (5.15b)

These equations will be used to verify the geometric results. The motion of the
wagon is realised using a virtual joint as shown in Fig. 5.6b. Implemented as a
virtual prismatic joint it allows the wagon to move freely along the axis.

5.2.1. Modelling

The multiple coordinate frames of the crane model are illustrated in Fig.5.6a.
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j2⇤

y1

z1

j1

j0(Base)

q1 = z

q2 = '

Figure 5.7.: Coordinate frames of the crane model

AIM

Since there are no connecting sides used by the virtual joints, ‘7’ is used as a place-
holder. The AIM representing the robot shown in Fig.5.6b is given by

AIM =




7 0
7 3
0 4


 (5.16)

Twists

The virtual twist allows a translational motion parallel to the z-Axis. Its twist is
given by:

s1 =




0
0
1
0
0
0




(5.17)
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5.2. Verification using the crane model

The second twist describing the rotation around the x-Axis is defined by:

s2 =




0
0
0
1
0
0




(5.18)

Masses and inertia tensor

While the double pendulum is bounded to the base module, this crane model has
one degree of freedom(DOF). This DOF is modelled using a virtual joint. Since the
second link assembly represents the pendulum and its mass m2. The mass of the
wagon m1 is connected to the first joint, which is the virtual joint.
According to the modelling illustrated in Fig. there are no inertia tensors. From
that follows:

J1∗ = J2∗ = 0 (5.19)

Since the module frame j1 and the mass frame j1∗ coincidence it holds that:

p1∗1 =




0
0
0


 (5.20)

Accordingly to the double pendulum example, for the pendulum connected to the
wagon it holds that:

p2∗2 =




0
−L
0


 (5.21)

Initial transformations

Because the frame j1 and j2 coincidence at t = 0:

T01(0) = T12(0) = I4×4 (5.22)

5.2.2. Simulation

Using the settings described in the previous section the crane model can be simulated
using MATLAB R© . Fig. 5.8 shows the simulation of this crane model. The red
dotted line shows the simulation of the model created using Lagrangian method.
The simulations of the particular simulation are:

m1 = m2 = 1 L = 5 (5.23)
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5. Verification

The initial conditions are:

z(0) = z0 = 0 ϕ(0) = ϕ0 =
π

4
(5.24)

The results indicate that the implementation and the modelling has been done

Figure 5.8.: Simulation of the crane model

correctly since the result of the model calculated by the lagrangian method and
the model calculated using the geometric approach behave exactly the same. Var-
ious simulations with different parameters and initial conditions strengthened this
assumption.
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5.3. Verification of unbounded robot structures using Newton’s first law

5.3. Verification of unbounded robot structures using
Newton’s first law

Using virtual joints we can design robot structures that are not bounded to the
ground. The model generated using the framework introduced in chapter 3 can be
easily verified by using a generalised version of Newton’s first law of motion. This
law, generalised for multibody systems, states that a closed system maintains the
velocity of its centre of mass(COM) if no external forces are applied. Thus for the
velocity of the centre of mass vCOM we obtain:

vCOM = const = vCOM,0 (5.25)

where vCOM,0 is the initial velocity of the mass centre. Since the robot modules are
modelled as mass points, the position of the centre of mass rCOM is given by:

~rCOM =
1

M

∑

i

mi ~ri (5.26)

hereM is the total mass, ri are the positions of the mass points with their respective
masses mi.
In order to verify that the modelling of the free robot has been done correctly a
unbounded robot with 4 modules has been simulated. To prove that (5.25) holds,
the centre of mass (COM) has been calculated using (5.26) and plotted. In order
to move the robot, a random torque has been applied on all real joints. Since no
external forces are allowed for (5.25) to hold no friction is applied. In short, this is a
simulation of a robot moving randomly on a flat frictionless surface. Fig. 5.9 shows
the results of this simulation. As one can see, the centre of mass does not move.
This approach provides an elegant and fast way to verify such models by checking if
a fundamental law of physics holds. Though there is one theoretical catch. This is
only a sufficient condition, so all correct models must pass this verification but not
all models that pass this verification are necessarily correct.
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Figure 5.9.: Simulation of moving unbounded robot structure - TopView
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Nonlinear system are often transformed into linear systems since these transformed
systems can easily controlled using linear techniques. One direct way to linearise
a system is to calculate the Jacobian matrix at one operating point. While this
technique describes the system exact at this point, it can be inaccurate on other
points resulting in insufficient control accuracy. An other technique to obtain a
linear system is the so called feedback linearisation also known as exact linearisation.
In this technique the system is linearised using a feedback that cancels out the non-
linearities. The resulting system is a exact representation of the nonlinear system
within a wide operating range. This is achieved by two-steps: Firstly a coordinate
transformation is applied. In the second step a feedback which linearises the system
is calculated in this transformed coordinates.

6.1. Feedback linearisation

In this section the theory of feedback linearisation based on [8, chapter 5] is presented.
For simplicity only square systems with the same number of inputs and outputs are
considered. Since this is only a brief summary the interested reader may find further
informations on feedback linearisation in [8].

6.1.1. Theory

We assume the systems to be in control-affine form.

ẋ = f(x) + g(x)u (6.1a)
y = h(x) (6.1b)

with
g(x) =

[
g1(x), . . . , gm(x)

]
(6.2)

where f(x), g1(x), . . . , gm(x) are smooth vector fields defined in Rm.

Since only square systems are considered the output y is define by

y =



y1
...
ym


 =



h1(x)

...
hm(x)


 = h(x) (6.3)
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6. Controller design

Lie derative

It this theory Lie derivations are widely used. A Lie derivation essentially is the
derivation of a function λ along a vector field f . According to [8] we define:

Lfλ(x) =
n∑

i=1

∂λ

∂xi
fi(x) (6.4)

The k-th derivation along two vector field f and g is defined as

LgLfλ(x) =
∂(Lfλ)

x
g(x) (6.5)

where λ is first derived along f and then derived along g.

The repeating derivation along the same vector field f is defined as

Lkfλ(x) =
∂(Lk−1

f λ)

∂x
f(x) (6.6)

Relative degree

The vector

r =



r1
...
rm


 (6.7)

is the relative degree if:

(i)
LgjL

k
fhi(x) = 0 ∀ 1 ≤ j ≤ m, ∀1 ≤ i ≤ m (6.8)

for all k < ri − 1

(ii)

A(x) =



Lg1L

r1−1
f h1(x) . . . LgmL

r1−1
f h1(x)

...
...

Lg1L
rm−1
f hm(x) . . . LgmL

rm−1
f hm(x)


 (6.9)

is nonsingular.

Practically the relative degree ri corresponds to the number of times the output yi
has to differentiated until at least one component of the input vector u is non-zero.
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6.1. Feedback linearisation

Closed loop

We assume that the system considered are so called ‘flat’ systems with order n , from
that follows

m∑

i=1

ri = n. (6.10)

In order to linearise the system via feedback a function

u = α(x) + β(x)v (6.11)

with

α(x) =



α1(x)

...
αm(x)


 β(x) =



β11(x) . . . β1m(x)

...
...

βm1(x) . . . βmm(x)


 (6.12)

has to be determined which linearises the close loop given by:

ẋ = f(x) + g(x)α(x) + g(x)β(x)v (6.13a)
y = h(x) (6.13b)

Coordinate transformation

The transformation into the new coordinates ξ is given by

ξ = Φ(x) (6.14)

with
ξ = (ξ1, . . . , ξm) (6.15)

and

ξi =



ξi1
...
ξiri


 =



φi1(x)

...
φiri(x)


 =




hi(x)
...

Lr1−1
f hix


 (6.16)

for 1 ≤ i ≤ m
The resulting transformed system is given by:

ξ̇i1 = ξi2
...

ξ̇iri−1 = ξiri

ξ̇iri = bi(ξ) +

m∑

j=1

aij(ξ)uj

yi = ξi1

(6.17)
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6. Controller design

with 1 ≤ i ≤ m.
aij are the entries of the matrix A defined in (6.9) with x = Φ−1(ξ) and bi are the
entries of

b(x)|x=Φ−1 =




Lr1f h1(x)

Lr2f h2(x)
...

Lrmf hm(x)




x=Φ−1

(6.18)

By defining

v =




v1

v2
...
vm


 = b(ξ) +A(ξ)u (6.19)

because A(ξ) is non-singular the feedback can be obtained by

u = A−1(ξ)[−b(ξ) + v] (6.20)

Applying this feedback on results in a system linear and controllable given by:

ξ̇i1 = ξi2
...

ξ̇ir1−1 = ξiri

ξ̇iri = vi

(6.21)

with 1 ≤ i ≤ m.
The feedback linearisation of systems in the form (6.1a) the calculation of this feed-
back is rather complex and involves a coordinate transformation.
Fortunately the systems occurring by using the framework described in this thesis
are of the form:

q̈ = M(q)−1(τ − C(q, q̇)q̇ −N(q)) (6.22)

where the applied torque on each joint τ is the input vector. In [22] Seifried discusses
the feedback linearisation of systems in this structure. While in [22] especially under-
actuated systems are concerned it is assumed in this thesis that the system is fully
actuated.
It can be seen directly that systems of the form (3.40) can be linearised using

τ = C(q̇, q)q̇ +N(q) +M(q)v (6.23)

where v is the new input vector of the linearised system. The resulting linear system,
as shown in Fig. 6.1 ,is given by:

v = q̈ (6.24)
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6.1. Feedback linearisation

v = q̈

v R R
q̈ = M(q)�1(⌧ � C(q̇, q)q̇ �N(q))⌧ = C(q̇, q)q̇ + N(q) + M(q)v

Figure 6.1.: Feedback-Linearisation

This system is not only linearised but also fully decoupled. Such that with

v1 = q̈1 = ÿ1
...

vn = q̈n = ÿn

(6.25)

each output yi is controlled by the input vi with 1 ≤ i ≤ n.

6.1.2. The zero dynamics

In general one has to consider the zero dynamics that can occur during feedback
linearisation. The zero dynamics describe the internal dynamics and have to be
considered to guarantee internal stability. However since the systems considered in
this thesis are flat systems there are no zero dynamics at all. This corresponds to
the work of [22] where zero dynamics only exist if there are under-actuated joints.
Since in this thesis it is assumed that there are no such under-actuated joints, there
is also no zero-dynamics.
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6. Controller design

6.2. PID-controller

In the previous section it has been shown that the systems concerned in this thesis
can easy be linearised and decoupled. As mentioned in [22] (6.24) is already in
canonical controllable form, thus it is clearly controllable. Such a system has been
simulated to show the advantage how easily a system with these properties can be
controlled. The system used here is the double pendulum introduced in chapter 5.1.
The simulation itself is done in SIMULINK a MATLAB R© extension that uses block
diagrams to model dynamical systems. Fig.6.2 shows the SIMULINK diagram of the
double pendulum which is controlled by two standard PID-controllers. Using the
linearised system each controller is only in charge of one joint.

Figure 6.2.: SIMULINK-Diagram

The subsystems System and Feedback-Linearisation are given by:

The PID-Controller is defined by three gains K,KI and KD. These parameters have
to be choosen with regards to the desired system behaviour, e.g. a fast response time
or low overshoot.

In this example the parameters are

KP 10
KI 1
KD 4

Fig. 6.4 shows the step responses of simulations with

q1(0) = q2(0) = q̇1(0) = q̇2(0) = 0 (6.26)
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6.2. PID-controller

(a)

(b)

Figure 6.3.: The System (a) itself and the feedback linearisation (b)

Figure 6.4.: Step response
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6. Controller design

6.3. Pole placement

Accordingly to [16, p.190ff] and [19, p.100ff] it is shown how a trajectory control
based on the linearised system can be calculated. If the robot joints should follow a
given trajectory defined by q̃t ∈ Rn, ˙̃q ∈ Rn, ¨̃qt ∈ Rn this can be easily achieved using
the linearised system previously calculated as

v = q̈ (6.27)

and the input
v = −Kd(q̇ − ˙̃q)−Kp(q − q̃) + ¨̃q (6.28)

since the system (6.27) is fully decoupled and it holds that

v1 = q̈1 = ÿ1
...

vn = q̈n = ÿn

(6.29)

as mentioned before.
The input (6.28) describe for each joint by:

vi = −Ki,d(q̇i − ˙̃qi)−Ki,p(qi − q̃i) + ¨̃qi i = 1, . . . , n (6.30)

where n is the number of joints.
The error dynamics of each joint is obtained by

ëi +Kd,iė+Kp,iei i = 1, . . . , n (6.31)

Using the Hurwitz stability criterion, see [7] for details, it can be seen that ei(t) is
asymptotically stable if Kd,1 > 0 and Kp,i > 0.
Eq.(6.31) can be transformed into a system of first degree with

ε1,i = ei

ε2,i = ėi = ε̇1,i
(6.32)

From that follows [
ε̇1,i
ε̇1,i

]
=

[
0 1

−Kp,i −Kd,i

]

︸ ︷︷ ︸
=Ai

[
ε1,i
ε2,i

]
(6.33)

The eigenvalues, respectively the poles, of Ai can be calculated by

det(Ai − λiI) = det

[
−λi −1
−Kp,i −Kd,i − λi

]
= λ2

i + λiKp,i +Kd,i (6.34)
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6.3. Pole placement

To obtain a desired behaviour of the error dynamics the eigenvalues now can be
choose arbitrary. The error dynamic of every joint can be set individually. Defining

Kd =



Kd,1 0

. . .
0 Kd,n


 (6.35)

Kp =



Kp,1 0

. . .
0 Kp,n


 (6.36)

for 1 ≤ i ≤ n

6.3.1. Example

The same system that was controller by a PID-Controller in the chapter before will
now be controlled via pole placement of the error-dynamics. The poles of the joints
are set to be

λ1,1 = −1 λ2,1 = −1 first joint (6.37a)

λ1,2 = −10 λ2,2 = −5 second joint (6.37b)

Thus we obtain
p1(λ) = (2 + λ)(3 + λ) = λ2 + 5λ+ 6 (6.38a)

p2(λ) = (5 + λ)(10 + λ) = λ2 + 15λ+ 50 (6.38b)

by equating the coefficients of (6.38) and (6.34) the parameters Kp,1,Kp,2,Kd,1 and
Kd,2 are given by

Kp,1 = 5 (6.39)
Kd,1 = 6 (6.40)
Kp,2 = 15 (6.41)
Kd,2 = 50 (6.42)

from that follows:

Kp =

[
5 0
0 15

]
Kd =

[
6 0
0 50

]
(6.43)

Fig.6.5 shows the SIMULINK-Diagramm with the input (6.28). The subsystems
System and Feedbacklinearisation are still the same as shown in 6.3.
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Figure 6.5.: Control via pole placement

Using the same initial conditions as before this system is simulated. The step re-
sponses are shown in Fig.6.6. One can see that the second joint reacts much faster
since the poles of its error-dynamics are more negative.

Figure 6.6.: Step response
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7. Conclusion

This thesis provides a foundation for further work concerning the robots of the
projects ‘SYMBRION’ and ‘REPLICATOR’. Using a framework developed by Chen
et al. in [4] based on screw theory in combination with a Newton-Euler approach,
the kinematics and dynamics of modular robot structures is calculated. The existing
implementation in MATLAB R© has been further developed.
To verify that the implementation and modelling the modelling has been correct the
created models have been compared to models created by a Lagrangian approach.
Although the implementation has been done using MATLAB R© it provides a basis
for the verification of further implementations, e.g. in C#.
The comparison of the symbolic and numeric calculation showed that the choice of
the calculation type has a huge influence on the calculation time. This will be a huge
topic in the actual hardware implementation.
It has been shown that by using feedback-linearisation the systems that occur in this
thesis can be easily linearised and even fully decoupled.
Using both PID-controllers as well as pole placement it has been illustrated that this
linearised and decoupled systems can easily be controlled by linear control techniques.
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A. Code

A.1. CreatePendulumAIM.m

1 function AIM = CreatePendulumAIM(numRealJoints,numVirtJoints)
2 %CREATEPENDULUMAIM Creates a AIM representation of a pendulum with
3 %real and virtual joints, the virtual joints are at the beginning of the
4 %chain
5

6 %if no value for numVirtJoints is set
7 if(nargin == 1)
8 numVirtJoints = 0;
9 end

10

11 numTotalJoints = numRealJoints+numVirtJoints;
12

13 %Create a Pendulum with "orderpendulum"-elements
14 AIM = zeros(numTotalJoints+1,numTotalJoints);
15

16 for i=1:numVirtJoints
17 AIM(i:i+1,i)=[7 7]’;
18 end
19

20 for i=numVirtJoints+1:numTotalJoints
21 AIM(i:i+1,i)=[3 4]’;
22 end
23 end
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A.2. GetTijFromPair.m

A.2. GetTijFromPair.m

1 function Tij = GetTijFromPair(currentPair,L)
2 %AGETTIJFROMPAIR Get initial Transformation between
3 %module i and j
4 if (currentPair(1) == 2)
5 dij = [0 0 -L]’;
6 elseif (currentPair(1) == 3)
7 dij = [0 L 0]’;
8 elseif (currentPair(1) == 4)
9 dij = [0 -L 0]’;

10 elseif (currentPair(1) == 5)
11 dij = [0 0 L]’;
12 else
13 disp(’Error occured’);
14 end
15

16 Rij = GetRijFromPair(currentPair);
17

18 Tij = zeros(4);
19 Tij = [Rij dij;
20 0 0 0 1];
21

22 end
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A.3. GetRijFromPair.m

1 function Rij = GetRijFromPair(pair)
2 %AGETRIJFROMPAIR Create Rotation using a table
3

4 if(isequal(pair,[3 4]) || isequal(pair,[5 2]) ||...
5 isequal(pair,[4 3]) || isequal(pair,[2 5]))
6 Rij = eye(3)
7

8 elseif(isequal(pair,[3 5]) || isequal(pair,[5 4]) ||...
9 isequal(pair,[4 2]) || isequal(pair,[2 3]))

10

11 Rij = [0 -1 0;
12 1 0 0;
13 0 0 1];
14

15 elseif(isequal(pair,[3 3]) || isequal(pair,[5 5]) ||...
16 isequal(pair,[4 4]) || isequal(pair,[2 2]))
17

18 Rij = [-1 0 0;
19 0 -1 0;
20 0 0 1];
21 else
22

23 Rij = [ 0 1 0;
24 -1 0 0;
25 0 0 1];
26 end
27 end
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A.4. CreateTCalcWrapper.m

A.4. CreateTCalcWrapper.m

1 function [direct indirect] = CreateTCalcWrapper(AIM)
2 %CREATETCALCWRAPPER Wrapper for CreateTCalcOrder.m to avoid global
3 %variables
4 clear global direct
5 clear global indirect
6 clear global AM
7

8 global direct
9 global indirect

10

11 CreateTCalcOrder(AIM);
12

13 end
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A. Code

A.5. CreateTCalcOrder.m

1 function CreateTCalcOrder(AIM,module)
2 %ACREATETCalcOrder
3 %Calculates DTL and IDTL
4 % %%%%% %%%%%
5 % % % % %
6 % % i %----->% j %
7 % % % % %
8 % %%%%% %%%%%
9 % i is connected to j

10

11 %direct transformations
12 global direct
13 %indirect transformations
14 global indirect
15 %save what paths have been taken
16 global AM
17

18 % If no module is specified -> first call and the module is the base(0)
19 [numOfModules,numOfJoints] = size(AIM);
20 if nargin < 2
21 module=0;
22 AM=zeros(numOfModules,numOfModules)
23 end
24

25 i=module
26

27 %iterate through joints
28 for curJoint=1:numOfJoints
29

30 %if this joints connects the i to some other i
31 if(any(AIM(i+1,curJoint)))
32

33 %iterate through modules
34 for j=0:numOfModules-1
35

36 %if other module is found
37 if(any(AIM(j+1,curJoint)) && (j ~= i))
38

39 %create pair(represents the connected sides)
40 pair = [AIM(i+1,curJoint) AIM(j+1,curJoint)];
41

42 %store in direct list
43 direct=[direct;[i j pair]]
44

45 %mark path as taken
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A.5. CreateTCalcOrder.m

46 AM(i+1,j+1)=1
47

48 %Calculate indirect Transformations
49 for k=0:numOfModules-1
50

51 %if there is a possible indirect Transformation
52 if(any(AM(k+1,i+1)))
53

54 %store in indirect list
55 indirect=[indirect;[k j k i i j]]
56

57 %mark path as taken
58 AM(k+1,j+1)=1
59 end
60 end
61

62 %Delete Module From AIM
63 AIM(i+1,curJoint)=0;
64

65 %Recursive call
66 CreateTCalcOrder(AIM,j)
67 end
68 end
69 end
70 end
71 end
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