
Institute of Parallel and Distributed Systems
Department of Parallel Systems

Universitätsstraße 38
D–70569 Stuttgart

Master Thesis Nr. 3256

Implementation of Watershed
Based Image Segmentation

Algorithm in FPGA

Sameer Ruparelia

Course of Study: M.Sc. Information Technology
Specialization : Embedded Systems

Examiner: Prof.Dr.-Ing. Sven Simon

Supervisor: Dr.-Ing. Marek Wroblewski
Dipl.-Ing(FH). Arne Zender

Commenced: September 16, 2011

Completed: March 15, 2012

CR-Classification: B.5.1, B.7.1, I.4.6

Acknowlegement

I would like to express sincere gratitude to Prof.Dr.-Ing. Sven Simon, Head of the
Parallel Systems Department at the Institute for Parallel and Distributed Systems,
University of Stuttgart for his guidance and providing me a opportunity to work on
this topic.

I would like to thank Dr.-Ing. Marek Wroblewski, who has been very helpful and has
assisted me in numerous ways during my thesis.

Special thanks and appreciation to Dipl.-Ing.(FH) Arne Zender. His valuable inputs
and support were vital for successful completion of my master thesis. I am very
grateful to the members of “Corporate Research Centre of Robert Bosch GmbH”
for their kind co-operation and support which also helped me in completion of my
thesis.

I would also like to thank my family and friends for all their advice and encouragement
during the thesis.

Sameer Ruparelia

Abstract

The watershed algorithm is a commonly used method of solving the image segmen-
tation problem. However, of the many variants of the watershed algorithm not all
are equally well suited for hardware implementation. Different algorithms are studied
and the watershed algorithm based on connected components is selected for the imple-
mentation, as it exhibits least computational complexity, good segmentation quality
and can be implemented in the FPGA. It has simplified memory access compared
to all other watershed based image segmentation algorithms. This thesis proposes a
new hardware implementation of the selected watershed algorithm. The main aim of
the thesis is to implement image segmentation algorithm in a FPGA which requires
minimum hardware resources, low execution time and is suitable for use in real time
applications.

A pipelined architecture of algorithm is designed, implemented in VHDL and synthe-
sized for Xilinx Virtex-4 FPGA. In the implementation, image is loaded to external
memory and algorithm is repeatedly applied to the image. To overcome the problem
of over-segmentation, pre-processing step is used before the segmentation and im-
plemented in the pipelined architecture. The pipelined architecture of pre-processing
stage can be operated at up to 228 MHz. The computation time for a 512 x 512 image
is about 35 to 45 ms using one pipelined segmentation unit. A proposal of parallel
architecture is discussed which uses multiple segmentation units and is fast enough for
the real time applications. The implemented and proposed architectures are excellent
candidates to use for different applications where high speed performance is needed.

Contents

1. Introduction 1

2. Image Segmentation and Watershed Based Approach 3
2.1. Image Segmentation . 3

2.1.1. Threshold Based Segmentation 5
2.1.2. Watershed Based Image Segmentation 6

2.2. Watershed Algorithm Based on Connected Components 12
2.2.1. Details of the Algorithm . 13

2.3. Pre-Processing Stage . 19
2.3.1. Median Filter . 19
2.3.2. Morphological Gradient . 21
2.3.3. Thresholding . 26

2.4. Post-Processing Stage . 27

3. Hardware Implementation 28
3.1. Stream Cache Module . 28
3.2. Pre-processing Module . 30

3.2.1. Serializer . 33
3.2.2. 3x3 Moving Window Architecture 34
3.2.3. Median Filter Module . 36
3.2.4. Morphological Gradient and Thresholding Module 37
3.2.5. Serial-In-Parallel-Out (SIPO) Shift Register 39
3.2.6. State Machine for Pre-processing Module 39

3.3. Image Segmentation Algorithm Implementation 41
3.3.1. State Machine for Segmentation Module 47

3.4. Verification Methodology . 51
3.4.1. Simulation . 52

4. Performance Measurements and Synthesis Results 53
4.1. Performance Measurements . 53
4.2. Synthesis Results . 59

5. Parallel Architecture Proposal 63

i

Contents

6. Conclusion 66

A. Appendix 68

ii

List of Figures

2.1. Image segmentation . 4
2.2. Adaptive threshold based image segmentation 6
2.3. Block diagram of watershed based image segmentation 7
2.4. Watershed line and catchment basin 8
2.5. Basic concept of watershed based image segmentation 9
2.5. Basic concept of watershed based image segmentation 10
2.6. Rainfalling watershed approach . 12
2.7. Basic concept of connected components approach 13
2.8. Step 1 . 16
2.9. Step 1 . 17
2.10. Step 3 . 18
2.11. Block diagram of pre-processing stage 19
2.12. Concept of median filter . 20
2.13. Median and mean filtering . 22
2.14. Concept of morphological gradient . 23
2.15. Median filtered image and its morphological gradient 23
2.16. Bitonic sequence example . 24
2.17. Bitonic sort - Eight elements input . 25
2.18. Bitonic sort - Nine elements input . 26

3.1. Block Diagram of Hardware implementation 28
3.2. Stream cache - initialization, read, write and flush operations 31
3.3. Pre-processing module - data and control signal flow 32
3.4. Pre-processing module schematic . 32
3.5. Serializer module schematic . 33
3.6. Moving Window . 34
3.7. Implementation of 3 x 3 Window . 35
3.8. 3 x 3 window module schematic . 35
3.9. Median filter schematic . 36
3.10. Comparator and register module schematic 37
3.11. Morphological gradient and thresholding calculation 38
3.12. Morphological gradient and thresholding module schematic 38

iii

List of Figures

3.13. SIPO module schematic . 39
3.14. State diagram of memory read operation for Pre-processing 40
3.15. State diagram of pre-processing module and memory write operation . 41
3.16. Block diagram of segmentation hardware architecture 42
3.17. Watershed controller module schematic 43
3.18. Segmentation module schematic . 44
3.19. First approach of pipeline implementation 45
3.20. Window split diagram . 46
3.21. Window generator architecture . 47
3.22. State diagram of memory read operation (only for first scan using se-

rializer) for segmentation module . 48
3.23. State diagram of memory read operation (after first scan) for segmen-

tation module . 49
3.24. State diagram of memory write operation for segmentation module . . 50
3.25. Second approach of pipeline implementation 51
3.26. Verification methodology . 52

4.1. Image segmentation results for pepper image 55
4.2. Image segmentation results for Lena image 56
4.3. Image segmentation for different images 57
4.3. Image segmentation for different images 58

5.1. Block diagram of parallel architecture) 64

iv

List of Tables

3.1. Ports description of stream cache module 29

4.1. Different threshold values for pre processing stage and total number of
scans for sequential implementation . 54

4.2. Total number of image scans with pipeline implementation 59
4.3. Pre-processing module synthesis result 60
4.4. Image processing time for segmentation module in pipeline implemen-

tation . 60
4.5. Segmentation module synthesis result (First approach of pipeline im-

plementation) . 61
4.6. Segmentation module synthesis result (second approach of pipeline im-

plementation) . 61

5.1. Segmentation units vs. Total segmentation time 64

v

1. Introduction

Image segmentation is process of partitioning the image into multiple segments. It is
first important step in many image processing applications like image analysis, image
description and recognition, image visualization and object based image compression.
Image segmentation means assigning a label to each pixel in the image such that pixels
with same labels share common visual characteristics. It makes an image easier to
analyse in the image processing tasks. There are many different techniques available
to perform image segmentation. The algorithm used in this thesis is watershed based
image segmentation. It is a hybrid technique because it is the result of threshold based,
edge and region based techniques using morphological watershed transform. The
watershed transformation [1] is popular image segmentation technique for gray scale
images. An efficient watershed algorithm based on connected components [2] shows
very good results compare to other watershed based image segmentation algorithms.

In connected components based watershed image segmentation algorithm, image is
scanned from top left to bottom right and from bottom right to top left. During each
scan, unique labels are given to each detected regional minima. If the labels have
already been given to their neighbour pixels during previous scan then those labels
are copied to the pixels. Finally each component (pixel) is connected to its local
minima and all components connected to same local minima make a segment.

Watershed based image segmentation produces over-segmentation based on different
properties of the image. In this thesis, pre-processing of the image before image
segmentation is considered to reduce the over-segmentation problem of watershed
based image segmentation.

The aim of this thesis is to implement watershed based image segmentation algorithm
with pre-processing in hardware for real time image processing applications. All al-
gorithms are initially implemented in MATLAB to realize the segmentation results
of connected components based watershed image segmentation with pre-processing.
The pipelined architecture of connected components based watershed image segmenta-
tion is implemented in a Field Programmable Gate Array (FPGA) with pre-processing
stage. Image pixels are processed by the pipeline architecture which makes possible to

1

1. Introduction

give best performance on the FPGA. The key computational performance parameters
are significant speed-up compared to a sequential implementation, minimum process-
ing latency and minimum logic resources utilization. The proposed architecture is
coded in VHDL and synthesized for implementation on Xilinx Virtex-4 FPGA.

The structure of the thesis is as follows: Chapter two provides basic of the image seg-
mentation, description of the flooding based and rainfalling based watershed image
segmentation approaches, and connected components based watershed image segmen-
tation algorithm. Chapter three describes hardware implementation of pre-processing
stage and connected components based watershed image segmentation algorithm.
Chapter four represents performance measurement of the algorithm and synthesis
results for the pre-processing and segmentation module. Proposal of parallel archi-
tecture is given in chapter five. Conclusion of the thesis is presented in the last
chapter.

2

2. Image Segmentation and Watershed
Based Approach

2.1. Image Segmentation

Image segmentation means division of an image into meaningful structures. It is
process of extracting and representing information from the image to group pixels
together with region of similarity [11]. Sonka et al. define the goal of segmentation
as “to divide an image into parts that have a strong correlation with objects or areas
of the real world contained in the image” [7]. Figure 2.1 shows a basic example of the
image segmentation where Figure 2.1a is an original gray scale image and Figure 2.1b
is a segmented image [19]. All the objects of the original image can be identified in
segmented image with their boundaries. There are many techniques available for the
image segmentation. Examples are, threshold based segmentation, edge based seg-
mentation, region based segmentation, clustering based image segmentation, markov
random field based segmentation and hybrid techniques. These segmentation methods
differ from their computation complexity and segmentation quality. The main aim of
the thesis is to find a segmentation algorithm which is feasible to implement in hard-
ware with the minima use of hardware resources (slices/gates), gives best segmentation
quality and has possibility to be used for real time image processing applications.

Computation complexity is one of the important criteria for image segmentation which
should be considered carefully when real time image segmentation is required. Com-
putational complexity is defined as number of arithmetical operations required for
processing single image frame. If the segmentation algorithm is computationally more
complex then it needs more computational hardware resources. The best approach
should be less computational complexity, less input parameter dependency, minimum
segmentation time and provide efficient segmentation output for real time applica-
tions.

Mean-shift, a clustering based segmentation gives very good segmentation results
compared to all other available methods. It considers the probability density of feature

3

2. Image Segmentation and Watershed Based Approach

(a) Original image (b) Segmented image

Figure 2.1.: Image segmentation

vectors obtained from a given image. In mean shift segmentation approach, first mean
shift filtering of the original image data and then subsequent clustering of filtered
image data are performed. It is computationally very expensive method because it
requires to apply mean shift to each single pixel [8].

Normalized cut is a graph partitioning approach for image segmentation. The image
is considered as a weighted undirected graph. This method uses similarity among data
elements of a group and dissimilarity among different groups for image segmentation.
The eigenvalue method used to compute normalized cut is also computational complex
[13] and inefficient in hardware implementation.

Threshold based image segmentation algorithms are mathematically less complex and
one of the algorithmic approach is discussed in the section 2.1.1 with advantages and
disadvantages.

Watershed based image segmentation algorithms are less computational complex and
provide very good segmentation results. It is possible to implement in the hardware
using pipelined and/or parallel architecture for real time applications because of the
independent mathematical computations flow of the algorithms. This method is ex-
plained in detail in section 2.1.2.

4

2. Image Segmentation and Watershed Based Approach

2.1.1. Threshold Based Segmentation

Thresholding method for the image segmentation is based on partitioning the image
into different regions according to the intensity value of the image pixels and their
local properties. It is the simplest procedure to perform image segmentation. The
basic principle of thresholding technique is to choose optimal threshold value to divide
pixels in different classes and differentiate the object from background. When there
is only a single threshold value for segmentation then any point on image for which
pixel value greater than this threshold value is called as object point, otherwise called
as background point.

There are mainly three types of thresholding techniques known as global, local and
dynamic thresholding. Threshold value depends only on gray level value of the pixel
in global thresholding where as in local thresholding, threshold value depends on gray
level value of the pixel as well as local properties of the pixel like average gray value of
the neighbourhood. Threshold value is calculated by local properties, pixel intensity
and spatial coordinates in dynamic or adaptive thresholding. Thresholding based
image segmentation is influenced by the image illumination and noise. Dynamic or
adaptive thresholding gives very good segmentation results compared to two other
methods.

Adaptive threshold changes threshold value dynamically over the image. The thresh-
old value is calculated for each pixel and if this calculated value is lower than threshold
value then given pixel is part of the background object otherwise it is part of the fore-
ground object. The best method to compute adaptive threshold value is to consider
neighbourhood pixels for a given pixel. Threshold value is calculated for each pixel
based on relationship with its neighbourhood pixels. Mean of the intensity values of
the neighbourhood pixel is used to find the threshold value for each pixel which is
used to decide, whether to consider a given pixel as a background or a foreground
point [12].

This method is very easy to implement in the software as well as in the hardware be-
cause it has very less computational complexity, but drawback of this method is bad
segmentation quality. It is implemented in MATLAB to check image segmentation
quality. One image segmentation example is shown in Figure 2.2 based on adaptive
thresholding method. Images with even illumination give good segmentation results
with this technique, but this segmentation approach does not give good segmentation
results for images with uneven illumination. It also depends on the window size and
threshold value for each image. It uses very less spatial information for image segmen-
tation and does not give guarantee of object coherency [12]. Another disadvantage is

5

2. Image Segmentation and Watershed Based Approach

(a) Orignal pepper image (256 x 256) (b) Segmented image

Figure 2.2.: Adaptive threshold based image segmentation

threshold parameter which is not easy to adjust automatically for different types of
the image.

2.1.2. Watershed Based Image Segmentation

Watershed transformation also called, as watershed method is a powerful mathemat-
ical morphological tool for the image segmentation. It is more popular in the fields
like biomedical and medical image processing, and computer vision [4]. In geography,
watershed means the ridge that divides areas drained by different river systems. If
image is viewed as geological landscape, the watershed lines determines boundaries
which separates image regions. The watershed transform computes catchment basins
and ridgelines (also known as watershed lines), where catchment basins correspond-
ing to image regions and ridgelines relating to region boundaries [5]. Segmentation by
watershed embodies many of the concepts of the three techniques such as threshold
based, edge based and region based segmentation.

Watershed algorithms based on watershed transformation have mainly two classes.
The first class contains the flooding based watershed algorithms and it is a traditional
approach where as the second class contains rainfalling based watershed algorithms.
Many algorithms have been proposed in both classes but connected components based

6

2. Image Segmentation and Watershed Based Approach

watershed algorithm [2] shows very good performance compared to all others. It comes
under the rainfalling based watershed algorithm approach. It gives very good segmen-
tation results, and meets the criteria of less computational complexity for hardware
implementation.

Block Diagram of Watershed Based Segmentation

There are mainly three stages as indicated by Figure 2.3 for watershed based image
segmentation approach. First stage is defined as pre-processing, second stage as wa-
tershed based image segmentation and last stage as post-processing. Input image is
first processed by the pre-processing stage, and then given to watershed based seg-
mentation stage. The resulting image is post processed by the final stage to get a
segmented image. Pre-processing and post-processing are necessary to overcome the
problem of over-segmentation in watershed based image segmentation. Pre-processing
stage is discussed in detail in this chapter. Overview of the post processing stage is
given in last section but it is not used for software and hardware implementation in
this thesis.

Input Image Pre-processing Image
Watershed based Image

Segmentation

Post-processing Image

Segmented Image

Figure 2.3.: Block diagram of watershed based image segmentation

7

2. Image Segmentation and Watershed Based Approach

Figure 2.4.: Watershed lines and catchment basin [20]

Flooding Based Watershed Algorithms

In traditional flooding based approach of watershed based image segmentation, image
is considered as a topographic surface which contains three different types of points:
(i) points which indicate regional minimum, (ii) points where the water falling has
highest probability to fall into a single minimum region and (iii) points where the
water falling has probability to fall into more than one such a minimum region. For
regional minimum, the groups of points satisfy second condition called watershed or
catchment basin of that minimum and the groups of point satisfy third condition
makes a crest line on topographic surface termed as a watershed line. Fig. 2.4 shows
an example of the watershed line and catchment basin.

Basic Concept The basic concept of watershed algorithm used for the image seg-
mentation is to find the watershed lines. Imagine, holes at each regional minimum,
and water is flooded from bottom into these holes with constant rate. Water level will
rise in the topographic surface uniformly. When the rising water in different catch-
ment basins is going to merge with nearby catchment basins then a dam is built to
prevent all merging of the water. Flooding of water will reach at the point when only
top of the dams are visible above water line. These continuous dam boundaries are
the watershed lines.

To understand this traditional concept more clearly, a simple gray scale image and its
topographic surface representation are shown in Figure 2.5a and 2.5b. The height of
the topographic surface is proportional to gray level values of the given image. The
maximum height of the topographic mountain is similar to the maximum gray level
value of the image. The perimeter of entire mountain is covered by dams which have a

8

2. Image Segmentation and Watershed Based Approach

Digital Image Processing, 2nd ed.Digital Image Processing, 2nd ed.
www.imageprocessingbook.com

© 2002 R. C. Gonzalez & R. E. Woods

Chapter 10
Image Segmentation

Chapter 10
Image Segmentation

(a) Original image

Digital Image Processing, 2nd ed.Digital Image Processing, 2nd ed.
www.imageprocessingbook.com

© 2002 R. C. Gonzalez & R. E. Woods

Chapter 10
Image Segmentation

Chapter 10
Image Segmentation

(b) Topographic view

Digital Image Processing, 2nd ed.Digital Image Processing, 2nd ed.
www.imageprocessingbook.com

© 2002 R. C. Gonzalez & R. E. Woods

Chapter 10
Image Segmentation

Chapter 10
Image Segmentation

(c) First stage of flooding

Digital Image Processing, 2nd ed.Digital Image Processing, 2nd ed.
www.imageprocessingbook.com

© 2002 R. C. Gonzalez & R. E. Woods

Chapter 10
Image Segmentation

Chapter 10
Image Segmentation

(d) Second stage of flooding

Figure 2.5.: Basic concept of watershed based image segmentation [18]

9

2. Image Segmentation and Watershed Based Approach

Digital Image Processing, 2nd ed.Digital Image Processing, 2nd ed.
www.imageprocessingbook.com

© 2002 R. C. Gonzalez & R. E. Woods

Chapter 10
Image Segmentation

Chapter 10
Image Segmentation

(e) Result of further flooding

Digital Image Processing, 2nd ed.Digital Image Processing, 2nd ed.
www.imageprocessingbook.com

© 2002 R. C. Gonzalez & R. E. Woods

Chapter 10
Image Segmentation

Chapter 10
Image Segmentation

(f) Beginning of merging of water from two catch-
ment basins (a short dam was built between
them)

Digital Image Processing, 2nd ed.Digital Image Processing, 2nd ed.
www.imageprocessingbook.com

© 2002 R. C. Gonzalez & R. E. Woods

Chapter 10
Image Segmentation

Chapter 10
Image Segmentation

(g) Longer dams

Digital Image Processing, 2nd ed.Digital Image Processing, 2nd ed.
www.imageprocessingbook.com

© 2002 R. C. Gonzalez & R. E. Woods

Chapter 10
Image Segmentation

Chapter 10
Image Segmentation

(h) Final watershed (segmentation lines)

Figure 2.5.: (Continued) Basic concept of watershed based image segmentation [18]

10

2. Image Segmentation and Watershed Based Approach

height greater than the maximum height of the mountain. Assume that each regional
minimum have some holes and the water is flooded into each regional minimum from
bottom holes and rise with constant rate towards top of the mountain.

Figure 2.5c shows that water has covered dark background of the image, and it has
also reached to the surface of first catchment basin in Figure 2.5d, and the second
catchment basin in Figure 2.5e, because of continuous rise of the water. The water
will overflow from left catchment basin to the right because of the constant water
flooding which is indicated in the Figure 2.5f. The dam is built to prevent the water
flowing from one catchment basin to another. Figure 2.5g shows longer dams between
the left and right catchment basin as well as another with the top right catchment
basin because of uniform flooding. Flooding of water needs to stop when water level
rises up to the maximum mountain height (maximum gray level value in image). Final
dams indicate watershed lines and provide the image segmentation. The segmentation
result is shown in Figure 2.5h with superimposed of the original image to the final
dams image.

Rainfalling Watershed Algorithms

The rainfalling algorithm exploits slightly different concept to extract mountain bound-
aries than traditional flooding based algorithm. Rainy water drops fall on the moun-
tain (topographic surface) and move to descending direction because of the gravity
until they reach to the local minimum surface. The algorithm tracks the path of wa-
ter drop for each point on the surface towards the local minimum, if rain drops pass
through that point or fall on that point. All points make a segment when water drops
related to them flow downwards to the same deepest location. When a point has more
than one path towards the different steepest surfaces then it can be allocated to any
one of the local minimum.

The drowning threshold is used to suppress the lowest mountain (the weakest edges
in image). Mountains are not considered if their heights come under the drowning
threshold value. The drowning threshold line can be seen on right side of the Figure
2.6 and the topographic surface of the middle mountain is not considered as a peak
but as a part of the local minimum.

11

2. Image Segmentation and Watershed Based Approach
Line Segment Based Watershed Segmentation 581

Fig. 2. Rainfalling concept Fig. 3. Drowning threshold

Fig. 4. Steepest descent directions and local minima

group of pixels that is connected must now make up one segment. We used
4-neighborhood for the steepest descent calculations and 8-neighborhood for
determining the minima. Experimental results showed that this combination
produces the least oversegmented image out of all 4 possible combinations. All
the results presented in this paper are produced with this combination.

3 Description of the Line Segment Based Rainfalling
Watershed Algorithm

The traditional rainfalling and flooding watershed algorithms use the region
label image as the main data structure during the algorithm and also as the
output of the algorithm. A region label image is an image with for each pixel

Figure 2.6.: Rainfalling watershed approach [17]

2.2. Watershed Algorithm Based on Connected Components

The traditional watershed based algorithm [1] uses hierarchical queue for flooding
process. This queue requires non uniform memory access sequences and complexity
of the traditional algorithm becomes very high because of the need to manage a hi-
erarchical queue. An efficient watershed algorithm based on connected components
was developed by A. Bieniek and A.Moga [2]. It does not require a hierarchical queue
as a traditional algorithm implementation. This algorithm gives the same segmen-
tation results as a traditional watershed algorithm and it has an advantage of lower
complexity, simple data structure and short execution time. It connects each pixel
to its lowest neighbour pixel and all pixels connect to same lowest neighbour pixel,
make a segment. It uses FIFO queue and stack to perform the same functionality as
a hierarchical queue of the traditional algorithm. The disadvantages of this algorithm
for hardware implementations are the requirement of extra accesses of FIFO queue
and stack, which are very difficult and inefficient to implement in the FPGA. This
algorithm is slightly modified to simplify the memory access by T.Maruyama and
D.Trieu [3] and it is used in this thesis too.

The basic concept of connected components based algorithm is explained by Figure
2.7. The original 6 x 6 image has three local minimum values indicated by gray boxes.
If the component (pixel) is not a local minimum then it is connected to its lowest
neighbours as shown by arrows in Figure 2.7b, where m indicates a local minimum.
All components directed towards the same local minimum make a segment and are
given a same label value in Figure 2.7c

12

2. Image Segmentation and Watershed Based Approach

7 4 8 12 11 3

7 7 8 12 11 7

13 13 15 16 16 13

19 19 18 17 15 7

20 18 17 16 15 5

(a) The original image

→ m ← ← → m

↗ ↑ ↖ ← ↗ ↑
↑ ↑ ↖ ↖ ↗ ↑
↑ ↑ ↑ → ↘ ↓
→ → → → → m

(b) Each pixel connect to lowest
minimum

0 0 0 0 1 1

0 0 0 0 1 1

0 0 0 0 1 1

0 0 0 2 2 2

2 2 2 2 2 2

(c) The Image with labels

Figure 2.7.: Basic concept of connected components approach

2.2.1. Details of the Algorithm

The pseudo-code of connected components based watershed algorithm [3] is shown
in the algorithm 1. In algorithm 1, p represents a pixel, f is the input pre-processed
(processed by filter and morphological gradient) image, l is the segmented label image,
f(p) means the gray level value of p, n is the neighbour pixel of p, f(n) represents gray
level value of the respective neighbour pixel. The array l[p] is used to store the labels
and v[p] is used to store a distance from lowest plateau or pixels. LMAX and VMAX
denote maximum value for label and maximum distance in the system respectively.
VMAX defines distance between first pixel of the first row to last pixel of the last row.
Scan Step2 and Scan Step3 are used to decide whether to continue or to stop image
scan for step 2 and step 3 respectively. To discuss more clearly, the same sample input
image mentioned by Bieniek and Moga [2] is used for explanation of the algorithm.

Step 1

The lowest neighbourhood of each pixel is found in step 1. Initially, array v[p] has
zero value for all array elements. As shown in Figure 2.8, Input image scan from top
left to bottom right, and v[p] is set to ‘0’ if it is lower than or equal to neighbourhood
values otherwise set it to ‘1’. As indicated by gray box in Figure 2.8, gray level value
‘2’ is the lowest in all neighbourhood and v[p] set to ‘0’ for it. The gray value ‘5’ has
an equal neighbourhood so v[p] is set to ‘0’ for it. The small plateau with three values
of ‘8’ is coloured with light gray in Figure 2.8a.

13

2. Image Segmentation and Watershed Based Approach

Algorithm 1 The pseudo-code of the algorithm

1: Input : f , Output : l
2: v[p] ← 0, l[p] ← 0, New label ← 0, Scan Step2 ← 1, Scan Step3 ← 1 // Initial-

ization
3: Scan from top left to bottom right : step1(p)
4: while Scan Step2 = 1 do
5: Scan image from top left to bottom right : step2(p)
6: if v[p] is not changed then
7: Scan Step2 ← 0
8: else
9: Scan image from bottom right to top left : step2(p)

10: if v[p] is not changed then
11: Scan Step2 ← 0
12: end if
13: end if
14: end while
15: while Scan Step3 = 1 do
16: Scan image from top left to bottom right : step3(p)
17: if l[p] is not changed then
18: Scan Step3 ← 0
19: else
20: Scan image from bottom right to top left : step3(p)
21: if l[p] is not changed then
22: Scan Step3 ← 0
23: end if
24: end if
25: end while
26: function step1(p)
27: if v[p] 6= 1 then
28: for each n of p // n is neighbour pixel of p
29: if f[n] < f(p) then v[p] ← 1
30: end if
31: end if
32: end function

14

2. Image Segmentation and Watershed Based Approach

33: function step2(p)
34: if v[p]6= 1 then
35: min ← VMAX, for each n of p // n is neighbour pixel of p
36: if f(n) = f(p) and v[n] > 0 and v[n] < min then min ← v[n]
37: end if
38: if min 6= VMAX and v[p] 6= (min+1) then v[p] ← min+1
39: end if
40: end if
41: end function
42: function step3(p)
43: lmin ← LMAX, fmin ← f(p)
44: if v[p] = 0 then
45: for each n of p
46: if f(n) = f(p) and l[n] > 0 and l[n] < lmin then lmin ← l[n]
47: end if
48: if lmin = LMAX and l[p] = 0 then lmin ← New label + 1
49: end if
50: else if v[p] = 1 then
51: for each n of p
52: if f(n) < fmin then fmin ← f[n]
53: end if
54: for each n of p
55: if f(n) = fmin and l[n] > 0 and l[n] < lmin then lmin ← l[n]
56: end if
57: else
58: for each n of p
59: if f(n) = f(p) and v[n] = v[p] − 1 and l[n] > 0 and l[n] < lmin then
60: lmin ← l[n]
61: end if
62: end if
63: if lmin 6= LMAX and l(n) 6= lmin then l[p] ← lmin
64: end if
65: end function

15

2. Image Segmentation and Watershed Based Approach

3 5 5 2 8 8 8 11 10 10

5 5 11 11 8 11 11 8 10 10

11 5 11 11 9 9 9 9 8 10

11 11 11 7 7 7 7 9 9 8

11 11 11 11 11 9 7 10 8 10

11 10 11 9 7 7 9 9 10 8

11 10 11 9 11 9 10 10 8 10

11 11 11 8 8 8 8 8 10 10

11 11 11 11 10 10 10 10 10 10

10 10 10 10 10 10 10 10 10 10

11 11 11 11 10 10 10 10 10 10

(a) Input image

0 1 1 0 1 0 0 1 1 0

1 1 1 1 1 1 1 0 1 1

1 0 1 1 1 1 1 1 0 1

1 1 1 0 0 0 0 1 1 0

1 1 1 1 1 1 0 1 0 1

1 0 1 1 0 0 1 1 1 0

1 0 1 1 1 1 1 1 0 1

1 1 1 0 0 0 0 0 1 1

1 1 1 1 1 1 1 1 1 0

0 0 0 0 0 0 0 0 0 0

1 1 1 1 0 0 0 0 0 0

(b) v[p]: Downward scan 1

Figure 2.8.: Step 1

Step 2

The fundamental of step 2 is that if pixel is on a plateau and its neighbouring point
to one of the local minimum then the pixel points to its neighbour. To realize this
fundamental, all pixels with v[p] not equal to 1 and have neighbour pixels on same
plateau with v[p] set to 1 in the step 1 are considered, then shortest distance for
each pixel on plateau respect to non zero v[p] of neighbour plateau is calculated. In
Figure 2.9a, all gray boxes are on same plateau. Here, value ‘2’ is directed to its left
neighbour ‘1’, ‘3’ is directed to its left neighbour ‘2’, ‘4’ is directed to its neighbour
‘3’ and vice versa. During the upward scan in Figure 2.9b, value ‘11’ directed to ‘10’,
‘12’ is directed to ‘11’and vice versa. The downward and upward scans continue until
all the shortest plateau distances are calculated. There are only two scans required
for this example to finish step 2. The assigned value of the distance d during the
downward scan may be overwritten in the upward scan when the value of distance d
of a previous scan is higher than lowest plateau located in the downward region.

Step 3

The labels are assigned to the array l[p] in this step. All elements of l[p] are initialized
with zero. Labels are first given to the pixels on local minima plateau whose v[p] is
zero, if their neighbourhood pixels with the same gray value have not been assigned

16

2. Image Segmentation and Watershed Based Approach

0 1 1 0 1 2 3 1 1 2

1 1 1 1 1 1 1 4 1 1

1 2 1 1 1 1 1 1 5 1

1 1 1 0 0 0 0 1 1 6

1 1 1 1 1 1 0 1 7 1

1 0 1 1 0 0 1 1 1 8

1 0 1 1 1 1 1 1 9 1

1 1 1 0 0 0 0 10 1 1

1 1 1 1 1 1 1 1 1 2

0 0 0 2 2 2 2 2 2 2

1 1 1 1 3 3 3 3 3 3

(a) v[p]: Downward scan 1

0 1 1 0 1 2 3 1 1 2

1 1 1 1 1 1 1 4 1 1

1 2 1 1 1 1 1 1 5 1

1 1 1 0 0 0 0 1 1 6

1 1 1 1 1 1 0 1 7 1

1 0 1 1 0 0 1 1 1 8

1 0 1 1 1 1 1 1 9 1

1 1 1 14 13 12 11 10 1 1

1 1 1 1 1 1 1 1 1 2

5 4 3 2 2 2 2 2 2 2

1 1 1 1 3 3 3 3 3 3

(b) v[p]: Upward scan 1

Figure 2.9.: Step 2

any labels yet. These labels are propagated to their neighbourhood pixels according
to values of v[p] to create a region until this region has centre of the local minima.
Similar regions are created for all other local minima with the same procedure. There
may be possibility for assignment of different labels on same local minimum plateau
but they are overwritten in subsequent scans.

For example, Figure 2.10a refers to the first downward scan and gray boxes indicate
new labels assignment. New labels propagate to the neighbourhood elements accord-
ing to the values of v[p]. As shown by gray boxes in Figure 2.10b, labels are delivered
to the upward direction. Label ‘3’ (in bold letter) denotes that label ‘5’ was assigned
that location in previous scan but it is overwritten by the correct value in this scan.
All next subsequent figures show label propagation by gray boxes. In Figure 2.10f,
no labels are modified compared to the previous scan and hence no more scans are
needed. Total six scans are required in the step 3 for the given sample input image.

17

2. Image Segmentation and Watershed Based Approach

1 1 0 2 2 2 2 2 0 0

1 1 2 2 2 2 2 2 2 0

1 1 1 0 0 0 0 0 2 2

1 1 1 3 3 3 3 3 2 2

0 0 3 3 3 3 3 3 2 2

0 4 0 0 5 3 3 3 2 2

4 4 0 5 3 3 3 0 2 2

4 4 0 0 0 0 0 2 2 2

0 0 0 0 0 0 2 2 2 2

0 0 0 0 0 2 2 2 2 2

0 0 0 0 2 2 2 2 2 2

(a) Scan 1 of l[p]: Downward scan 1

1 1 2 2 1 2 2 2 2 2

1 1 2 2 2 2 2 2 2 2

1 1 1 3 3 3 3 3 2 2

1 1 1 3 3 3 3 3 2 2

4 4 3 3 3 3 3 3 2 2

4 4 3 3 3 3 3 3 2 2

4 4 2 5 3 3 3 2 2 2

4 4 2 2 2 2 2 2 2 2

0 0 0 0 0 0 2 2 2 2

0 0 0 0 0 2 2 2 2 2

0 0 0 2 2 2 2 2 2 2

(b) l[p]: Upward scan 1

1 1 2 2 1 2 2 2 2 2

1 1 2 2 2 2 2 2 2 2

1 1 1 3 3 3 3 3 2 2

1 1 1 3 3 3 3 3 2 2

4 4 3 3 3 3 3 3 2 2

4 4 3 3 3 3 3 3 2 2

4 4 2 3 3 3 3 2 2 2

4 4 2 2 2 2 2 2 2 2

0 0 2 2 2 2 2 2 2 2

0 0 0 2 2 2 2 2 2 2

0 0 2 2 2 2 2 2 2 2

(c) l[p]: Downward scan 2

1 1 2 2 1 2 2 2 2 2

1 1 2 2 2 2 2 2 2 2

1 1 1 3 3 3 3 3 2 2

1 1 1 3 3 3 3 3 2 2

4 4 3 3 3 3 3 3 2 2

4 4 3 3 3 3 3 3 2 2

4 4 2 3 3 3 3 2 2 2

4 4 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2

0 0 2 2 2 2 2 2 2 2

(d) l[p]: Upward scan 2

1 1 2 2 1 2 2 2 2 2

1 1 2 2 2 2 2 2 2 2

1 1 1 3 3 3 3 3 2 2

1 1 1 3 3 3 3 3 2 2

4 4 3 3 3 3 3 3 2 2

4 4 3 3 3 3 3 3 2 2

4 4 2 3 3 3 3 2 2 2

4 4 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2

(e) l[p]: Downward scan 3

1 1 2 2 2 2 2 2 2 2

1 1 2 2 2 2 2 2 2 2

1 1 1 3 3 3 3 3 2 2

1 1 1 3 3 3 3 3 2 2

4 4 3 3 3 3 3 3 2 2

4 4 3 3 3 3 3 3 2 2

4 4 2 3 3 3 3 2 2 2

4 4 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2

(f) l[p]: Upward scan 3

Figure 2.10.: Step 3
18

2. Image Segmentation and Watershed Based Approach

2.3. Pre-Processing Stage

The watershed based image segmentation produces mostly an over-segmentation of
the image. Pre-processing and post-processing of an image is performed to overcome
this problem. Pre-processing is mainly applied to the image before the watershed
segmentation. As shown in Figure 2.11, pre-processing includes first stage of noise
removal using median filter, second stage of morphological gradient calculation and
last stage of thresholding a gradient image.

Input Image Median Filter
Morphological

Gradient
Thresholding

Output

Image

Figure 2.11.: Block diagram of pre-processing stage

In principle, Image noise is defined as distinct pixels which are not similar in ap-
pearance with the neighbourhood pixels. Over-segmentation occurs mainly due to
presence of the noise and unimportant fluctuation which produces non real minima.
Main objective of the pre-processing stage is to smooth the original image by removing
the noise effect.

2.3.1. Median Filter

Impulse noise is most common noise in image processing. It generally occurs due to
malfunctioning pixels in camera sensors, faulty memory location in hardware or error
in data transmission [9]. There are mainly two types of impulse noise, one is the salt
and pepper noise (also known as speckle noise) and second is the random value shot
noise. Noisy pixel only takes maximum or minimum values in case of salt and pepper
noise where as it takes arbitrary value in case of random value shot noise.

Median filter, also known as an edge preserving non linear filter is a simple and
effective method to remove impulse noise. Median filter considers each pixel in the
image and checks its nearby neighbour pixel to decide either it is representative of its
neighbourhood pixels. It replaces pixel value with the median of the neighbourhood
pixels. It is calculated by numerical shorting of all neighbourhood values and replace
considered pixel with the middle value of nine sorted values. Figure 2.12 shows the
value 200 is unrepresentative of neighbourhood and replaced with final median value

19

2. Image Segmentation and Watershed Based Approach

101 79 0

55 200 83

122 92 147

0 55 79 83 92 101 122 147 200

Median value

Figure 2.12.: Concept of median filter

of 92 which is middle value of the sorted neighbourhood.

Median filter is more effective and robust than mean or average filter because a single
unrepresentative pixel value in neighbourhood affects very less to the median value.
Median filter gives one of a neighbour value as an output pixel and hence it does
not create new unrealistic values near the edges and preserves sharp edges. It is
mathematically expensive to calculate the median value because it requires sorting of
nine values for each pixel.

The medfilt2 function implements median filtering in MATLAB. The filtered images

1 I = imread('p256.png'); % Read in the image

J = imnoise(I,'salt & pepper ' ,0.02); % Add noise to the image

K = filter2(fspecial('average ' ,3),J)/255; % Filter the noisy

image with Mean filter

L = medfilt2(J,[3 3]); % Filter the noisy image with Median

filter

Listing 2.1: Mean and Median Filter in MATLAB

20

2. Image Segmentation and Watershed Based Approach

1 I = imread(`pepper.png '); % Read in the image

L = medfilt2(J,[3 3]); % Median filtering the image

f = @(x) ((max(x(:))-min(x(:)))); % function to calculate (max -

min) of 3x3 window

gradmag_temp = nlfilter(L,[3 3],f); % Gadient caluclation: apply

function f on each 3x3 window

gradmag = floor(gradmag_temp); % Round to nearest integer

towards minus infinity

Listing 2.2: Morphological gradient calculation in MATLAB

with median and mean filter are shown in Figure 2.13 for comparison. Both filter use
3 x 3 size of neighbourhood for filtering and their MATLAB code is given below for
the reference. The salt and pepper noise is added to the noiseless pepper image. It
can be easily noticed from the resulted images that median filter performs better than
the mean filter, and it blurs the image edges very less.

2.3.2. Morphological Gradient

The morphological gradient is a powerful tool for an edge detection. At the second
stage of the pre-processing, the morphological gradient of the filtered image is com-
puted to overcome over-segmentation problem. When the morphological transition
is applied to the gray scale image, it returns to high values when sudden transitions
in gray level values (along the object edges) are detected, and returns to low values
if neighbourhood pixels are similar. The Watershed transform is then applied to the
gradient image so that boundaries of the catchment basin could be located on high
gradient points. This operator can perform well only when noise level is effectively
reduced before it is applied.

The morphological gradient is calculated by taking 3 x 3 neighbourhood window of
the given pixel, then the difference between the maximum (dilation) and minimum
(erosion) gray level value of the neighbourhood is calculated [6]. Calculated gradient
value is rounded to the nearest integer. Figure 2.15 shows, original pepper image
filtered with the median filter and its morphological gradient image. MATLAB code
is given for morphological gradient calculation in Listing 2.2.

21

2. Image Segmentation and Watershed Based Approach

(a) Noiseless pepper image (256x256 pixels) (b) Noisy image

(c) Mean filtered image (d) Median filtered image

Figure 2.13.: Median and mean filtering

22

2. Image Segmentation and Watershed Based Approach

55

200

147

122

101

92

83

79

55

42

Gradient = Maximum - Minimum

42 147

200

83

101

79

92

122

Figure 2.14.: Concept of morphological gradient

(a) Median filtered pepper image (256x256 pixels) (b) Morphological gradient image

Figure 2.15.: Median filtered image and its morphological gradient

23

2. Image Segmentation and Watershed Based Approach

3 5 8 9 7 4 2 1

Bitonic sequence

4 2 1 7 5 8

Bitonic

sequence

3 9

Bitonic

sequence

Compare and Swap

Figure 2.16.: Bitonic sequence example

Sorting Networks

Sorting networks (SN) are used to sort the numbers. For median filter and morpho-
logical gradient calculation, nine values sorting network is necessary. Sorting network
is defined as a network of elementary operations denoted as compare&swap(CS) or
comparators that sort all the elements [9]. As an example, two elements p and q
are compared and exchanged if necessary for sorting sequence. Number of elements
decide requirement of total number of comparators in SN.

The selection of sorting network is mainly considered for FPGA implementation.
There are mainly two important criteria that needs to be considered, one is require-
ments of hardware resources and another one is latency. Latency of SN means the
numbers sequential execution of number of CS operations, and requirement of hard-
ware resources means number of comparators and registers required for sorting given
number of elements.

Bitonic SN and odd-even merge sort are tow best sorting networks fulfil required
criteria for the hardware implementation. For sorting nine elements, both of them use
nearly same hardware resources and have a same computation latency [9]. Bitonic
sorter is described in this section and it is used for hardware implementation in chapter
three.

Bitonic sequence consists of two sub-sequences, one is monotonically increasing and
another one is monotonically decreasing. The basic concept is to divide input bitonic
sequence into two equal halves and compare and swap each item on the first half with
respective item in the second half as shown the Figure 2.16. Smaller numbers of both
pairs are moved to left and larger numbers are moved to right side. For given bitonic

24

2. Image Segmentation and Watershed Based Approach

3

7

4

8

6

2

1

5

3

7

8

4

2

6

5

1

3

4

8

7

5

6

2

1

3

4

7

8

6

5

2

1

3

4

2

1

6

5

7

8

2

1

3

4

6

5

7

8

1

2

3

4

5

6

7

8

Stage 1 Stage 2

Figure 2.17.: Bitonic sort - Eight elements input

sequence, sorted sequence is obtained by recursively applying binary split as shown
in stage 2 of Figure 2.17.

If the input sequence is an unordered sequence then first bitonic sequence is created
by applying compare and swap operation to pairs of adjacent numbers which creates
increasing and decreasing sequence. Bitonic sequence of twice size is created by merg-
ing sorted pairs as shown in the sorting example. In Figure 2.17, stage 1 is used to
create bitonic sequence from unordered sequence and stage 3 describes bitonic sorting
approach for sequence of eight elements.

There are total of nine elements which need to be sorted for the median and gradient
calculation. Structure of nine elements bitonic sorting network [9] is shown in Figure
2.18. Stages 6 to 8 remain same as the stage 2 of eight input elements, but stages 1
to 5 are modified because of the odd numbers (nine inputs) of input elements.

25

2. Image Segmentation and Watershed Based Approach

1 2 3 4 5 6 7 8
1

2

3

4

5

6

7

8

9

Figure 2.18.: Bitonic sort - Nine elements input and arrow indicates the position of
the maximum of the two inputs

2.3.3. Thresholding

The classical approach to get an edge image is to threshold the gradient image. The
main objective of third stage in the pre-processing is to reduce the over-segmentation
as much as possible. The threshold value is set for the local minimum to prevent
creation of large number of catchment basins. In this stage, all the gradient values
lower than this threshold value are set as a local minimum and watershed starts
from this local minimum. Thresholding also removes small variations within the
homogeneous region

This thresholding fundamental is also explained by the drawling threshold in Figure
2.6. It is not easy to find an appropriate threshold value for each respective image.
If the threshold value is very low then edges become very wide and if the threshold
value is too high then edges may not be detected. The optimal threshold value can
be selected by iterative method for connected components based watershed image
segmentation. First some initial low threshold value is selected, and check the number
of labels used by algorithm, and visualize the image segmentation results and then

26

2. Image Segmentation and Watershed Based Approach

threshold value is iterated for the optimal result. The number of labels are used by
the algorithm depends on number of segments in the image. Number of segments can
be controlled by varying the threshold value and optimum segmentation result can be
obtained. For thresholding a given image, all the gradient values of the image pixels
are divided by the threshold value, so all the values lower than the threshold value
become zero and other values are scaled down relative to the threshold value.

2.4. Post-Processing Stage

The segmented image still has some over-segmentation after the pre-processing and
segmentation. Small segments can be merged using different rules to increase the
segmentation quality. The region merging method [6] is used for post processing
which is developed by Haris et al. Post processing stage is not used in this thesis for
hardware implementation and only short description is given in this section.

The basic concept of the region merging method is to merge most similar pair of
adjacent regions. Nearest neighbour graph (NNG) is used to store the similarities
between the adjacent pairs. Similarity function is given by,

δ(Ri, Rj) =
ARi × ARj

ARi + ARj

× |µRi − µRj |; If Ri and Rj are adjacent

=∞ ; otherwise

ARi , ARi are the areas of region Ri and Rj , µRi and µRj are the mean values of region
Ri and Rj . Most similar pairs have smaller value of δ. Threshold value of similarity
degree is used to decide the number of regions to be merged. All adjacent regions with
the similarity function value lower than the threshold value are merged together.

27

3. Hardware Implementation

In this chapter, hardware architectures for the pre-processing stage and segmentation
stage are discussed for a FPGA implementation. Initially, image is processed by the
pre-processing module and then the pre-processed image is given to the segmentation
module. Block digram of hardware implementation is show in Figure 3.1. The origi-
nal image is loaded in the external memory for processing. Image pixels (top left to
bottom right) are stored in the external memory at subsequent addresses (starting
address to end address). Stream cache module is used for read and write operations
with the external memory and image processing module (pre-processing or segmenta-
tion). Stream cache, pre-processing and segmentation module are discussed in detail
in following sections. VHDL component descriptions of all modules are given in the
appendix. Image size (height and width) is generic parameter for all modules.

External Memory
Stream Cache

Module

Pre-processing Module

Or

Segmentation Module

Figure 3.1.: Block Diagram of Hardware implementation

3.1. Stream Cache Module

Stream cache module is used to make image data communications with the external
memory which is designed by Robert Bosch GmbH. The basic concept of the stream
cache module is explained in this section.

Top level controller module (Pre processing Ctrl) makes interface with the stream
cache module and slave controller. Pre-processing module is connected to this top

28

3. Hardware Implementation

Port name Direction Data type

WR Start Addr In std logic vector(G SYSBUS AWIDTH-1 downto
0)

WR Init In std logic

WR Busy Out std logic

WR Flush In std logic

WR Data In std logic vector(G APPL DWIDTH-1 downto 0)

WR We In std logic

RD Start Addr In std logic vector(G SYSBUS AWIDTH-1 downto
0)

RD Init In std logic

RD Busy Out std logic

RD Data Out std logic vector(G APPL DWIDTH-1 downto 0)

RD re In std logic

Table 3.1.: Ports description of stream cache module

level controller module. Application ports of the stream cache module describe
in the Table 3.1 which are required to connect with the pre-processing module.
G SYSBUS AWIDTH and G APPL DWIDTH are generics for the system address
bus and application data bus, both are set to constant value of 32. Pre-processing
module gets P ctrl start sl signal from the slave controller which notifies to start read-
ing of the data from external memory using the stream cache.

In read data operations, stream cache takes 64 bytes burst from the external memory
during initialization. This packet is stored in the internal memory (block RAMs)
of FPGA. When RD re signal is given then data is read from this internal memory.
When the number of bytes in the internal memory are lower than constant value (e.g.
32), then the stream cache reads new packet from the external memory. In write
data operations, data is written to internal memory when WR we signal is activated.
When number of bytes are 64, and if data bus is available then all 64 bytes are written
to the external memory. If data bus is busy then output data can be written to the
internal memory buffer until buffer is not full. If internal memory buffer gets full and
data bus is still busy then it is necessary to deactivate the WR we signal.

All signals of the stream cache module are initialized with the zero. First, starting
address of memory read is set in RD Start Addr signal. After getting P ctrl start sl
signal high for one clock cycle, RD Init signal is set to high for one clock cycle.
RD Busy signal defines busy status of the memory data bus or not enough space in

29

3. Hardware Implementation

the internal memory buffer and it is high in busy mode. RD Busy signal goes high
after the initialization. When RD Busy signal goes low again which indicate that
initialization is finished. When data is required to read, RD re signal is set to high
for given number of clock cycles. If RD re signal is set to high only for one clock cycle
then it reads only one data and load it into RD Data signal. It is needed to check
RD Busy signal every time before RD re signal is given and RD Busy should be low
when RD re signal is asserted high.

Write data back to the external memory using stream cache is similar process as
the read data operations. First, starting address of the write memory location is set
in WR Start Addr signal. WR Init signal is set to high for one clock cycle which
initialize write address. WR Busy defines busy status of memory data bus and it is
high in busy mode. Write data are loaded in the WR Data signal during memory
write operation. When data is required to write, WR we signal is set to high for given
number of clock cycles. If WR we signal is set to high only for one clock cycle then
it writes only one data from WR Data signal. It is needed to check WR busy signal
every time before WR we signal is given and WR busy signal should be low when
WR we signal is asserted high. WR Flush signal is used to empty cache. When it is
asserted for one clock cycle, all bytes of cache are written to external memory until
cache becomes empty. WR Busy signal goes high after WR Flush signal is given.
Write data flush is completed when WR Busy signal goes to low again. Figure 3.2
explains write initialization, write data, read data and flush write data operations.
Read initialization is same as write initialization in Figure 3.2.

3.2. Pre-processing Module

The input gray scale image is given to pre-processing module from the external mem-
ory. The pre-processing module gets one new pixel on every clock cycle from the
external memory, processes it and writes back a processed pixel to the external mem-
ory. Pre-processing module is designed using a pipeline concept in such a way that it
processes a new pixel on each clock cycle. This module has components like serializer,
3 x 3 moving window module, median filter, morphological gradient, thresholding
and Serial-In-Parallel-Out (SIPO) shift register module. Flow of the input data and
controller signals from one module to another is shown in below figure.

The pixel size is 8 bit in the gray scale image but only 32 bit data read or write
operations are performed with the external memory on every clock cycle. There are
total four pixels available on each clock cycle. The reason behind 32 bit data reading

30

3. Hardware Implementation

Address

D2 D3 D4 D5D1

D2 D3 D4 D5D1

Clock

WR_Start_Addr

WR_Init

WR_Busy

Clock

WR_we

WR_Data

WR_Busy

Clock

RD_re

RD_Data

RD_Busy

Clock

WR_Flush

WR_Busy

Init_Done

Flush_Done

Initialization

Write Data

Read Data

Flush Write Data

Figure 3.2.: Stream cache - initialization, read, write and flush operations

31

3. Hardware Implementation

Serializer

3 x 3 Window

Generator - 1
Median Filter

3 x 3 Window

Generator - 2

Gradient +

Thresholding

Data Signal

Control Signal

Input Data

Control Signal

Output

Data

Serial-In

Parallel-Out

Figure 3.3.: Pre-processing module - data and control signal flow

Pre-

Processing

Module

Sys_clk

Reset

P_ctrl_start_sl

P_WR_Busy_sl

P_RD_Busy_sl

P_WR_Start_Addr_slv

P_WR_Init_sl

P_WR_Flush_sl

P_WR_Data_slv

P_RD_Data_slv
P_WR_we_sl

P_RD_Start_Addr_slv

P_RD_Init_sl

P_RD_re_sl

Figure 3.4.: Pre-processing module schematic

32

3. Hardware Implementation

Serializer

Sys_clk

Reset

Data_in

Load

Enable

Data_out

Ctrl

Valid

Finish

Figure 3.5.: Serializer module schematic

or writing on each clock cycle is to make read and write operations compatible with
the segmentation module because segmentation module is designed to process 32 bit
data on each clock cycle. Stream cache module can not switch to different data width
format for read and write operations during the run time, so either it needs to set for
8 bits, 16 bits or 32 bits data width.

The schematic diagram of the pre-processing module is shown in Figure 3.4. It has
control and data signals for memory read and write operations, which are connected
to the stream cache module. Each signal of the pre-processing module has a same as
functionality a stream cache module.

3.2.1. Serializer

As the pre-processing module is designed to process only single gray image pixel (8
bit) per clock cycle, serializer is needed to serialize the data. It loads 32 bit data in
one clock cycle and provides same data as a stream of four 8 bit data in four clock
cycles (one clock cycle for one 8 bit data). In 32 bit data, eight most significant bits
(MSB) are part of the first pixel. Eight bits are shifted left on each clock cycle, and
a new pixel is shifted to the MSB position and taken as an output data.

The schematic diagram is shown in Figure 3.5. Control and data inputs are captured
and new output data is formed on rising-edge of the clock signal. Reset signal is active
low synchronous reset which reset the serializer. When enable is deasserted (Low),

33

3. Hardware Implementation

Window

Scan

Figure 3.6.: Moving Window

all the synchronous inputs are ignored and internal data of serializer are not changed.
Input data (32 bit width) is given to data in signal and 8 bit output data is provided
by data out signal. Valid signal is asserted high when first 8 bit output data of the
given 32 bit input data is ready. Finish signal goes high when total number of output
data from the serializer are equal to the image size.

3.2.2. 3x3 Moving Window Architecture

Each output of the median filter or morphological gradient is a function of nine pixel
values within the 3 x 3 window neighbourhood. Nine pixels are necessary to read for
each window position if caching is not used, and each pixel is needed to read nine
times during the image scanning. First-In-First-Out (FIFO) buffer method is well
known window generation approach for the hardware implementation and very easy
to implement in the VHDL. The FIFO buffer caches pixel values of previous rows, so
pixel values do not need to be read again.

For 3 x 3 window operation, two FIFO buffers are necessary to cache the pixel values
of two previous rows. It also requires nine registers to store the window values before
they are given to the processing module. Two block RAMs are used to create two
FIFO buffers. Read and write operations are performed on same clock cycle for them.
The depth of the FIFO buffer should be three less than the image width. FIFO buffer
module is generated by Xilinx core generator tool. Window architecture reads pixels
row by row in a raster scan which are given by the serializer module. As shown in
Figure 3.7, pixel is given to w33 register and it is shifted to the left in every clock
cycle. Pixels are shifted to left registers continuously, initially FIFO buffer one gets

34

3. Hardware Implementation

w11 w12

w21 w22

w31 w32

w13

w23

w33

Length = Image width - 3

Length = Image width - 3

Pixel Out

Pixel In

FIFO Neighborhood registers

Figure 3.7.: Implementation of 3 x 3 Window

3x3_Window

Sys_clk

Reset

Data_in

w11

w12

w13

w21

w22

w23

w31

w32

w33
Enable

Valid

Finish

Figure 3.8.: 3 x 3 window module schematic

35

3. Hardware Implementation

Med_Filter

Sys_clk

Reset

Data_in

Enable

Data_out

Valid

Figure 3.9.: Median filter schematic

full, then FIFO buffer two gets full and when first image pixel reaches at w11 register,
first 3 x 3 window is available to process.

Figure 3.8 shows schematic diagram of this module. Functionality of clock, enable
and reset signals are same as the serializer component. Input pixel of 8 bit is given
to the data in signal and then it is shifted to the internal registers. The w11, w12,
w13, w21, w22, w23, w31, w32 and w33 are shift registers of window structure. Valid
signal is asserted high when the first 3 x 3 window is available, and finish signal is
activated when the total numbers of generated windows are same as total number
of image pixels. Pixel bit width and image row size are generic parameters for this
module.

3.2.3. Median Filter Module

Median filter module gets nine data inputs from the moving window module. As
discussed in the chapter 2, bitonic sorter is used to find out the median value of given
window. Bitonic sorter is easy to implement in the pipeline and parallel architecture
using VHDL. It requires less hardware resources and provides minimum latency for
sorting nine elements.

The schematic diagram is shown in Figure 3.9. System clock, enable and reset signal
have same definition as given in the serializer module. Total number of input data,
window width and height are constant generic parameters. Nine input data are given

36

3. Hardware Implementation

Comparator

Sys_clk

Num1

Num2

Enable

High_Out

Low_Out
Register

Sys_clk

Input

Reset

Reset

Output

Figure 3.10.: Comparator and register module schematic

to data in signal and data out signal provides the median value of them.

Compare&Swap (comparator) and register modules are required to implement bitonic
sorter. In Figure 3.10, schematic diagram of comparator and register modules are
shown. Both modules require system clock and enable signal. Two input data are
given to num1 and num2 signal of the comparator. It compares and swaps both data
to High out and Low Out signal. 8 bit registers are used to save intermediate data in
bitonic sorter to make pipeline operation possible.

Each arrow of Figure 2.18 replaces with one comparator. There are four comparators
in the stage eight but only one comparator between line five and six is required
in this stage to calculate the median value. Total 23 comparators and 12 registers
are required to calculate median value using bitonic sorting network in the pipeline
implementation. This implementation is pipelined in eight stages and each stage has
some parallel compare&swap operations. Pipeline latency is eight clock cycles and
pipeline throughput is one clock cycle. Pipeline implementation is eight times faster
than sequential bitonic sorter for nine input elements.

3.2.4. Morphological Gradient and Thresholding Module

Morphological gradient and thresholding are designed in single module for easier hard-
ware implementation. Output data of the median filter module is given to input of
this module. Nine inputs bitonic sorter gives maximum and minimum value of the
input elements, and one 8-bit subtracter is needed to calculate the difference between

37

3. Hardware Implementation

Bitonic Sorter Subtractor Divider

MAX

MIN
Output pixel

Window
Morphological Gradient Thresholding

Figure 3.11.: Morphological gradient and thresholding calculation

Gradient

and

Thresholding

Sys_clk

Reset

Data_in

Enable

Data_out

Valid

Figure 3.12.: Morphological gradient and thresholding module schematic

them as shown in Figure 3.11. Compare&swap and register modules are used for
bitonic sorter, and they are already described in the median filter section.

Each arrow of Figure 2.18 replaces with one comparator. Bitonic sorter gives maxi-
mum value at line 9 and minimum value at line 1. Only comparator between line 1
and 2 is required for minimum value and all other comparators of stage eight are not
required.

8-bit by 5-bit pipeline divider is used to perform thresholding operation on the cal-
culated gradient value. It is generated using Xilinx core generator tool, which has a
pipeline latency of ten clock cycles and a throughput of one clock cycle.

Schematic symbol is shown in Figure 3.12. Nine input data are given to data in signal
of module and then bitonic sorter find out maximum and minimum values which are
given to the subtracter module, the difference calculated by the subtracter module is

38

3. Hardware Implementation

SIPO

Sys_clk

Reset

Data_in

Enable

Data_out

Valid

Finish

Figure 3.13.: SIPO module schematic

given as a dividend to divider module. The divisor value of the divider is constant
threshold value which is generic parameter. Quotient value of the divider module is
given to the output of gradient and thresholding module.

3.2.5. Serial-In-Parallel-Out (SIPO) Shift Register

This module is used to combine four serial data of 8 bit to 32 bit parallel data for
memory write operations. It is necessary because stream cache module is set for 32
bit read and write operations and threshold module generates an eight bit output.
The reading data width is 32 bit and writing data width should be 32 bit, because
it is not possible to set different read and write data width in stream cache module.
As shown in schematic diagram, it gets 8 bit input data from threshold module in
Data in signal and generates 32 bit parallel data at Data out signal which is written
to the external memory.

3.2.6. State Machine for Pre-processing Module

There are two state controllers which are used for control and data signals flow in the
pre-processing module implementation. State diagram for memory read operation is
shown in figure 3.14. It consists of four states, Idle, RD Init, Serializer and RD Stop.
Initially, it is in Idle state and starting address for memory read operation is set

39

3. Hardware Implementation

Idle RD_Init Serializer

P_RD_

busy_sl = '0'

Serializer_

finish='1'
P_ctrl_

start_sl = '1'

P_ctrl_start_sl = '0' P_RD_busy_sl = '1' Serializer_finish='0'

RD_Stop

Figure 3.14.: State diagram of memory read operation for Pre-processing

in this state. When P ctrl start signal is asserted, state is changed to RD Init state.
RD Busy signal is high when state enters in RD Init state. When RD Busy signal goes
low, first read request is given by asserting (high) RD re signal and state is changed
serializer state. Serializer state reads data from external memory continuously and
serializes them. When serializer reads all necessary input data, Serializer finish signal
is activated and state moves to RD stop state. RD stop state deactivates RD re signal,
and also indicates that reading process is completed.

State diagram for pre-processing operation is shown in figure 3.15. It consists of eight
states, Idle, WinOne, MedianFilter, WinTwo, Gradient+Thresholding, WR Init, Con-
tinue and Finish. WinOne and WinTwo indicate two 3 x 3 moving window modules.
Starting state is Idle state and write start address is set in this state. When Seri-
alizer valid signal is activated, Enable signal of 3 x 3 window is asserted and state
moves to WinOne state. When first 3 x 3 window is ready by window module, it
asserts WinOne valid signal. When WinOn valid signal is activated, state is changed
to Median filter state. Median filter module activates Med valid signal when first
output data is ready from it. State moves to WinTwo state when Med valid signal is
asserted, and changes to Grad+Thresh state when WinTwo valid signal is activated.
Thresholding module gives output data to SIPO module to convert data from serial
to parallel. When first output data is ready by SIPO module, it asserts Write valid
signal. WR Init is necessary only first time to initialize write address and to activate
WR we signal for first write data. When there is no write request in Grad+Thresh
state, it waits for Write valid signal and after Write valid is asserted, state is changed
to WR Init state. WR busy is high when state enters in WR Init state. It waits
until WR Busy goes low and then state is changed to Continue state. Continue state
monitors mainly WinOne Finish, WinTwo Finish and Write Finish signal. State is
changed to one of the previous state based on high or low value of these three sig-
nals. Write finish signal is asserted high when numbers of output data from SIPO are

40

3. Hardware Implementation

Idle
WinOne

3x3

Median

Filter

WinOne_

valid = '1'

Med_

valid = '1'

Serializer_

valid = '1'

Serializer_valid = '0' WinOne_valid = '0' Med_valid = '0'

WinTwo

3x3

Grad +

Thresh.
WR_InitContinueFinish

WinTwo_valid = '1'

WinTwo_valid = '0'

Write_

valid = '0'

S_WR_

we_sl = '0'

Write_finish= '0'

P_WR_

Busy_sl ='0'
Write_

finish= '1'

S_WR_we_sl = '1' &

 Write_valid ='1'

P_WR_Busy

_sl ='1'

WinOne_

finish = '0'

WinTwo_finish = '1'

& Write_

valid = '1'

WinTwo_finish = '1'

W
inOne_

fin
ish

 =
 '1

'

Figure 3.15.: State diagram of pre-processing module and memory write operation

counted to same as image size, and then state moves to Finish state. WR We signal
is deactivated in Finish state and state is moved back to initial Idle state.

3.3. Image Segmentation Algorithm Implementation

Implementation of connected components based watershed image segmentation is dis-
cussed in this section. The segmentation module uses pre-processed image calculated
by the pre-processing module. Stream cache module is used for pixel data read and
write operations with the external memory. As discussed in chapter 2, this segmen-
tation algorithm needs image scans from top left to bottom right (forward) and from
bottom right to top left (backward). Stream cache module has two more control sig-
nals (RD Backwards and WR Backwards) to perform forward or backward, read and
write operations with the external memory. When they are set to high, read and write
operations occur in the backward direction, otherwise in the forward direction.

The pre-processed image has a 8 bit pixel bit width. As discussed in the chapter 2,
two arrays v[p] and l[p] are used for the segmentation, and VMAX and LMAX are
maximum possible element value for them respectively. Maximum value of VMAX

41

3. Hardware Implementation

Watershed

Controller

Segmentation

Module

Serializer

Stream

Cache

Slave

Controller

External

Memory

Figure 3.16.: Block diagram of segmentation hardware architecture

is image width plus image height, and addition of them always fits in 8 bit width.
Maximum value of LMAX depends on number of segments in the image. Array l[p]
is used mainly to store label values of the segments. If 8 bit width is selected for each
element of array l[p] then label value has a range between 0 to 255. Some images may
have more segments than 256 and hence label value range should be selected higher.
If 16 bit width is selected for the label value then label value has a range between 0 to
65535 which is more than sufficient for the image which does not have the segments
more than 65536. Original input image (or pre-processed image), array v[p] and l[p]
have element data width of 8, 8 and 16 bit respectively.

The Xilinx virtex 4 FPGA (device XC4VFX60) has 232 blocks of RAM. One block
has size of 18 Kb (Kilo bits). A 512 x 512 image is considered then total amount of
bits are 32× 512× 512 (32 bit is addition of one pixel of the input image, one element
of array v[p] and l[p]). It requires 456 blocks of RAM to store image pixels, array
v[p] and l[p] which are almost double than available in the device. It is only possible
with the external memory (e.g. DDR RAM) to store this big amount of data. So,
all required processing data are stored and processed using the external memory. For
32× 512× 512 bits, 8.5 Mb (Mega bits) size is required in the external memory. The
minimum requirement of the external memory size depends on the image size and size
of array l[p] and v[p].

Each pixel has respective element in array v[p] and l[p]. Calculations of the algorithm
require each pixel and its neighbourhood pixels, respective element of the array v[p]
and its neighbourhood, and respective element of the array l[p] and its neighbourhood

42

3. Hardware Implementation

Watershed_

Ctrl

Sys_clk

Reset_n

P_Ctrl_Start_sl

P_WR_Busy_sl

P_RD_Busy_sl

P_WR_Start_Addr_slv

P_WR_Init_sl

P_WR_Flush_sl

P_WR_Data_slv

P_RD_Data_slv

P_WR_we_sl

P_RD_Start_Addr_slv

P_RD_Init_sl

P_RD_re_sl

P_WR_Backwards

P_RD_Backwards

Figure 3.17.: Watershed controller module schematic

pixels. The basic idea is to read 32 bit data which has an image pixel value of 8 bit,
corresponding 8 bit element of v[p] and corresponding 16 bit element of l[p]. As all
nine neighbourhood pixels are used for calculations for the segmentation, 3 x 3 moving
window approach is also used in this implementation.

All elements initialize with zero in both array l[p] and v[p]. As stream cache module
is only possible to set for one of possible data width (8, 16 or 32 bit), and 32 bit data
width read and write operations are necessary for this implementation, data width of
stream cache is set to 32 bit. Original image is saved as 8 bit per pixel and if read
operations for 32 bit data are performed in the first scan, serializer is necessary to
break down it in four 8 bit data. The serializer module is discussed in the previous
section but it is slightly modified for the segmentation module. The modification is to
append high 24 bit (towards the MSB) with zero to each serial 8 bit data (lower eight
bits), so the serializer gives output of 32 bit. It gets 32 bit input data, breaks down
in four serial values, appends 24 most significant bit as a zero to each of them and
provides 32 bit output on each clock cycle. This 32 bit output value contains pixel
value (0 to 7 bit), element of v[p] value (8 to 15 bit) and element of l[p] value (16 to
31 bit) as shown in Figure 3.20. Initial values are required to set as zero in array v[p]
and l[p], so 24 MSB are appended to each pixel in serializer module with zero. The

43

3. Hardware Implementation

Watershed_

Algo_

Processing_

Step

Sys_clk

Reset_n

Data_In

Load

Enable_Module

Data_Out

Next_Scan

Output_Valid

Finish

Enable_data_in
Read_Data_Finish

Figure 3.18.: Segmentation module schematic

same format of data is written back to the external memory. So, 32 bit data can be
used directly for the subsequent image scans without use of the serializer.

As shown in the block diagram (Figure 3.16), the top module of implementation is
watershed controller module (Watershed Ctrl) which is connected to the stream cache
module and slave controller. The serializer gets data only during the first image scan.
Segmentation module (Watershed Algo Processing Step) performs segmentation of
the image. It gets image data from serializer module in the first scan, and direct
from the external memory during all subsequent scans. The Schematic diagram of
watershed controller (or segmentation controller) module is shown in the figure 3.17.
It has same ports functionality as described in the stream cache module.

Segmentation Module

Segmentation module performs computation for the image segmentation. RD Busy
signal and WR Busy signal indicate whether memory data bus is free or busy for data
processing with external memory. When segmentation module can not get the input
data or can not write the output data because of the memory data bus is busy with
data processing of other modules, then this module needs to be halt. When data bus
is available again for the segmentation module, then it can resume computation from
the last halted state.

44

3. Hardware Implementation

S1 S2 S3

S1 S2 S3

S1 S2 S3

S1 S2 S3

Clock

cycle

Clock

cycle

Clock

cycle

Figure 3.19.: First approach of pipeline implementation

Figure 3.18 represents schematic diagram of the segmentation module. It has pixel
width, image row width, image height, VMAX and LMAX as generic parameters.
Enable module signal is used to enable all ports and internal digital logics. Input
data is given to Data In signal and output data is provided by Data Out signal.
Enable data in signal indicates that when it is asserted, input data is given to internal
register from the Data In signal. Output Valid signal is activated when first valid data
is available on the Data Out signal. When one scan of the image read, segmentation
computation and write back to the external memory are completed, then finish signal
is asserted for one clock cycle. Next Scan represents that subsequent image scans are
required or not for the image segmentation. When Next Scan is active high after the
finish signal, then subsequent image scans are necessary for the segmentation. When
it is low, then the subsequent image scans are not required for the segmentation and
segmentation of the given image is completed.

If step 1, 2 and 3 process sequentially as discussed in chapter 2, total 10 scans are
needed. One for Step 1 (S1), three for step 2 (S2) and six for step 3 (S3). If this
algorithm is implemented in the hardware, then S1, S2 and S3 execute at a same time
in pipeline architecture as shown in Figure 3.19. The number of scans are reduced
by pipeline implementation and their reasons are discussed in the next chapter. The
wrong value may assign to elements of v[p] and l[p], because elements of v[p] and
l[p] may be calculated by neighbourhood, whose values have not been calculated yet.
But, these wrong values are overwritten by correct values in the subsequent scans [3].
S1, S2 and S3 take one clock cycle each. S3 provides one output data on each clock
cycle which is main objective of this pipeline implementation. So, pipeline throughput
becomes one clock cycle.

3 x 3 moving window architecture is used to perform the image scan. This architecture

45

3. Hardware Implementation

P11 P12 P13

P21 P22 P23

P31 P32 P33

L11 L12 L13

L21 L22 L23

L31 L32 L33

V11 V12 V13

V21 V22 V23

V31 V32 V33

F11 F12 F13

F21 F22 F23

F31 F32 F33

L11 V11 F11

F

V

L

16 bit 8 bit 8 bit

S1 S2 S3

Segmentation Module

MSB LSB

Figure 3.20.: Window split diagram

is slightly modified compared to the one which is used in the pre-processing module.
The shift registers and FIFO are size of 32 bit data width instead of 8 bit. One window
(32 bit of each element) has three sub window as shown in Figure 3.20. Window F
represents nine pixels of the input image, window V indicates nine elements of array
v and window L indicates nine elements of array l. These three windows are given to
pipeline input stage S1. Stage S2 and S3 modify element V22 and L22 of window V
and L respectively.

Three more shift registers w24, w25 and w26 are used as shown in Figure 3.20. Data
from w22 register is shifted to three of them before it is written to the FIFO buffer.
Intermediate registers are used between each stages to design pipeline behaviour.
Stage S1 and S2 write data to the intermediate registers which provide input data
for S2 and S3 respectively. So, new data is given to S1 on each clock cycle. One
window processes in three clock cycles (S1, S2 and S3). When one window is finished

46

3. Hardware Implementation

w11 w12

w21 w22

w31 w32

w13

w23

w33

Image width - 3

Image width - 3

Pixel Out

Pixel In

FIFO Neighborhood registers

w26 w25 w24

Figure 3.21.: Window generator architecture

in the last stage S3, data of w22 register in the window at stage S1 is shifted to
register w25. Element V22 and L22 are calculated for each window in the stage S2
and S3 respectively. Element L22 and V22 are needed to update in respective shift
register for each calculated window, because next subsequent rows use only updated
neighbourhood values. It means that new window is generated by nine elements on
each clock cycle and its result is updated in the register w25 because of continuous
shifting of data.

FIFO buffer is used to synchronize data write to the external memory. Segmentation
module gives output data to the FIFO buffer and it writes data to the external memory
whenever memory data bus is free. The width of the FIFO buffer is same as the image
row width.

3.3.1. State Machine for Segmentation Module

Three state machines are used for data and control signals flow. First state machine
is needed for the memory read operations only during the first image scan, second
one is needed for the memory read operations for all subsequent image scans except
the first image scan, and third one is needed for the memory write operations for all
image scans. S First read signal (type std logic) is used to notify whether it is a first
image scan or not. It initializes with high and after the first image scan is finished,

47

3. Hardware Implementation

Idle1 RD_Init1
Read_

Data1

P_RD_

busy_sl = '0'

P_ctrl_

start_sl = '1'

P_ctrl_start_sl = '0' P_RD_busy_sl = '1'

Serializer_

S1

P_RD_

busy_sl = '0'

&

Serializer_

S3

Serializer_

S4
Finish1

P_RD_

busy_sl

= '0'

P_RD_

busy_sl = '0'
Serializer_

read_

finish = '1'

Serializer_

S2

P_RD_

busy_sl = '0'

Serializer_

data_out_

ctrl = '0'

Ser
ia

liz
er

_re
ad

_

fin
ish

 =
'0'

Figure 3.22.: State diagram of memory read operation (only for first scan using seri-
alizer) for segmentation module

it is set to low. Segmentation module gets valid input data in read data state and
writes back valid output data in write data state.

Figure 3.22 shows state machine diagram for the memory read operations during the
first image scan. Serializer module is used in the first image scan. Initially, state is in
Idle1 state. Starting address location of the memory for read operations and memory
read in forward direction signal are set in the Idle1 state. When slave controller
asserts P ctrl start sl signal, state is changed to RD Init1 state. RD Init1 state waits
until P RD busy signal goes low, and after that state moves to the Read Data state.
Read request is given to the external memory in the Read Data state. Serializer
module asserts Serializer data out ctrl signal which indicates that new input data
(32 bit) is possible to read from the external memory and load into the serializer
module. Serializer module gives one output data (8 bit) on each subsequent states,
Serializer S1, Serializer S2, Serializer S3 and Serializer S4. Serializer data out ctrl
signal is asserted high after each last 8 bit output data for the given 32 bit input data.
Serializer module activates the valid data signal with each output data which notifies
the segmentation module to load new 32 bit input data. Serializer module counts
number of output data and when this number is equal to the image size, it asserts
Serializer read finish signal. After the Serializer read finish signal is activated for a
one clock cycle, data read from the memory is stopped and state moves to Finish1

48

3. Hardware Implementation

Idle2 RD_Init2
Read_Data

2

Next_

Read = '1'

&

WR_

Finish ='1'

Finish2

Read_

Finish= '1'

Seg_Finish= '1'

P_RD_

busy_sl = '0'

Figure 3.23.: State diagram of memory read operation (after first scan) for segmenta-
tion module

state. S First read signal is set to low in Finish1 state, so data is given directly to the
segmentation module in next subsequent scans without using the serializer module.

Figure 3.23 shows state machine diagram for the memory read operations for all
subsequent scans after the first scan. Initially, state is in Idle2 state. Starting address
location of the memory read operations and memory read in backward direction signals
are set in the Idle2 state. Next Read signal is activated or deactivated based on
the Next Scan signal of the segmentation module. If Next Read signal is activated
and write operations of previous image scan is completed, then read operations of
subsequent scan can be started. So, when Next read and WR Finish signals are
activated, state is changed to RD Init2 state. After read initialization is completed,
state is moved to Read Data2 state. Read data request is given to the external memory
on each clock cycle in the Read Data2 state if data bus of the external memory is free.
Segmentation module gets each read input data from the RD Data signal, processes
the data and asserts valid signal on each valid output data. Read input data are
counted in the Read Data2 state and when this counted number is same as the image
size, then state is changed to Finish2 state. When Seg finish signal is activated by
the segmentation module in the Finish2 state, state is moved to the Idle2 state again.
Same procedure performs again from the Idle2 state, if the subsequent scans are
required.

Figure 3.24 shows state diagram of the memory write operations for the segmentation
module. Initially, state is Idle3 state. Starting address location of the memory write
operations is set in the Idle3 state. When segmentation module asserts S Output valid
signal then state is changed to WR Init3 state. When write initialization is completed

49

3. Hardware Implementation

Idle3 WR_Init3 WR_Data

Seg_Output

_valid= '1'

Finish3

Write_

Finish= '1'

Next_Scan= '1'

P_WR_

busy_sl = '0'

Figure 3.24.: State diagram of memory write operation for segmentation module

then state is changed to Write Data state. When segmentation module loads output
data in WR Data signal and asserts valid signal with each output data, then output
data is written to the external memory. Write data is counted in the Write Data state,
and when count value equals to the image size, then Write finish signal is asserted
high. State is changed to Finish3 state after Write finish signal is activated. Next read
signal is activated in the Finish3 state if the Next Scan signal is activated. State is
changed to the Idle3 state, so write operations can be performed for the subsequent
scans. If Next Read signal is not asserted in the Finish3 state then subsequent scans
will not be performed for the segmentation.

As shown in Figure 3.19, step 1, 2 and 3 are implemented in such a way that each of
them is finished in a single clock cycle. The above implementation provides maximum
clock frequency of 65.27 MHz for Virtex-4 FPGA device because of more mathematical
computations in a single clock cycle. If higher system clock frequency is required then
step 1, 2 and 3 are needed to split up in more stages. So, each stage performs less
mathematical computations in a single clock cycle.

The algorithm is also implemented using second pipeline approach as shown in Figure
3.25. Step 1 has very less computational complexity compared to the step 2 and step
3, so it does not need to split up in the more stages. Step 2 and step 3 split up in two
stages each. As per description of the algorithm, step 2 or step 3 can not process the
next input data until they finish their current data respectively. So, Step 2 needs two
clock cycles and then next input data is given to the step 2. Step 3 also needs two
clock cycles. It means that throughput of the pipeline architecture is two clock cycles
where as it is one clock cycle in the first approach of the pipeline implementation.
The state machine implementation is slightly modified for this second approach of

50

3. Hardware Implementation

S1 S2 S2

S1 S2

S1 S2

Clock

cycle

Clock

cycle

Clock

cycle

S3

S2

S3

S2

S3 S3

S3 S3

Clock

cycle

Clock

cycle

Two clock cycles

for step 2

Two clock cycles

for step 3

S1 S2 S2 S3 S3

Figure 3.25.: Second approach of pipeline implementation

the pipeline implementation, but it is implemented in similar way as described in the
first approach. The data read and write operations are performed every two clock
cycles with the external memory. The results are discussed for the both pipeline
implementation in chapter four.

3.4. Verification Methodology

Verification of the design is necessary to find out whether design meets required speci-
fications. Functional verification and timing verification are necessary to check before
synthesis the design for hardware implementation.

The pre-processing and segmentation modules are sequentially implemented in MAT-
LAB, and they are implemented using pipeline approach using VHDL. MATLAB
implementation is considered as a reference model. The ideal way to verify final seg-
mented image is to compare it with the reference segmented image as shown in Figure
3.26. The output image of both implementations are compared using MATLAB func-
tion isequal which is represented as a checker in the diagram. Function isequal gets
two matrices as inputs and provides comparison result as a output.

51

3. Hardware Implementation

Hardware Module Checker

Reference Module

Test Result

Output

Output

Figure 3.26.: Verification methodology

The results of pre-processing stage for median filter and morphological gradient are
discussed in chapter 2 for MATLAB implementation. The final output image data
are equal in sequential and pipeline implementation for pre-processing stage and seg-
mentation stage.

3.4.1. Simulation

The simulation of designed hardware is performed using Modelsim simulator tool
(version 10.0a) from the mentor graphics. The system clock frequency of 100 MHz
(mega hertz) is considered for the simulation purpose.

Pre-processing module has many sub-modules as discussed in section 3.2. Each sub
module is tested for the functional and timing verification using testbench. Input
image is converted to text file using MATLAB code. This input data is given to the
testbench from the input text file. Final results data are also written to the text file
which are again converted into the image of same size as of the input image using
MATLAB code. Top level pre-processing module is simulated and verified after the
verification of each sub-modules. Same procedure is also performed to verify top level
module followed by the sub modules for the segmentation implementation.

12 x 12 sample image is used to verify results of different scans in the segmentation
implementation. It is easier to verify data during the simulation for small image size.
The 12 x 12 input image is given in Figure 2.8a of chapter two.

52

4. Performance Measurements and
Synthesis Results

This section describes comparison between MATLAB and hardware implementation,
synthesis results of hardware implementation for Xilinx virtex 4 FPGA.

4.1. Performance Measurements

Connected components based watershed image segmentation algorithm gives over-
segmentation without using the pre-processing stage. Watershed based image seg-
mentation is only applied to the gradient image. Original pepper image is converted
to the gradient image which is segmented without applying median filter and thresh-
olding, and output image is over-segmented as shown in Figure 4.1b.

Image segmentation results and amount of over-segmentation depend on the threshold
value of the pre-processing stage. It is necessary to find out optimal threshold value
for different types of images. Threshold value also decides number of segments in the
given image. A set of different images are tested for segmentation qualities by changing
the threshold value. Images are taken from the berkeley segmentation dataset [19].
Some standard images are also used for performance measurement (e.g. Lena and
pepper image).

Table 4.1 shows change in number of labels and scans by varying the threshold value.
Number of scans and labels are based on sequential implementation as shown in the
pseudo code in chapter two. It means that step 1 is finished first, followed by the step
2, and then the step 3 is finished for all necessary image scans. It is found by testing
different images that starting threshold value of 7 is a good choice for the threshold
iterations. The optimal visual segmentation results can be obtained by increasing the
threshold value. The threshold value iteration is shown only for some images in Table
4.1. Different images (elephants, pepper, bird and aeroplane) give good segmentation

53

4. Performance Measurements and Synthesis Results

Threshold value Total labels Scans
S1 S2 S3 Total

Pepper (256 x 256)
12 660 1 4 8 13
14 534 1 4 7 12
15 505 1 5 8 14

House (256 x 256) 9 440 1 5 11 17

Bird (481 x 321)
14 722 1 5 10 16
18 609 1 5 9 15
24 494 1 3 11 15

Elephants (481 x 321) 14 1307 1 4 11 16

Aeroplane (481 x 321) 14 202 1 4 10 15

Boat (512 x 512) 14 1300 1 4 9 14

Lena (512 x 512)

8 2997 1 7 12 20
12 1951 1 6 16 23
14 1671 1 6 12 19
18 1344 1 5 10 16

Table 4.1.: Different threshold values for pre processing stage and total number of
scans for sequential implementation (S1: Step 1, S2: Step 2, S3: Step 3)

results with threshold value of 14. The selection of optimal threshold value depends
on image pixels intensity and number of segments in the image.

Total number of labels decrease as the threshold value is increased. If threshold value
is selected very high, then some boundaries of segments are not preserved. Figure
4.1 shows segmented images with different threshold value for the pepper image (256
x 256). Total numbers of labels in over-segmented image of Figure 4.1b are 2987
whereas after using median filter and the threshold value of 12, number of labels are
reduced to 660. The Lena image (512 x 512) gives good segmentation result with the
threshold value of 12 as shown in Figure 4.2. The segmented Lena image with the
threshold value of 8, preserved all the boundaries of original image compared to the
segmented image with the threshold value of 18 as shown in Figure 4.2.

Total number of image scans are reduced in pipeline implementation because step
1, step 2 and step 3 are processing on a same time as shown in Figure 3.19. Total
number of scans required by pipeline implementation is influenced by number of scans
needed by step 3 of the algorithm, because step 3 dominates major scans for the
segmentation. Total number of scans require in the pipeline implementation are same
as number of scans needed by step 3 of sequential implementation (step 3 in Table 4.1).

54

4. Performance Measurements and Synthesis Results

(a) Original image (256 x 256) (b) Segmentation of gradient image without me-
dian filter and thresholding

(c) Segmented image (Threshold=12) (d) Segmented image (Threshold=14)

Figure 4.1.: Segmentation results with different threshold values for pepper image (256
x 256)

55

4. Performance Measurements and Synthesis Results

(a) Original Lena image (512 x 512) (b) Segmented image (Threshold=8)

(c) Segmented image (Threshold=12) (d) Segmented image (Threshold=18)

Figure 4.2.: Segmentation results with different threshold values for Lena image (512
x 512)

56

4. Performance Measurements and Synthesis Results

(a) Bird image (481 x 321) (b) Segmented image (Threshold=14)

(c) Aeroplane image (481 x 321) (d) Segmented image (Threshold=14)

(e) Elephants Image (481 x 321) (f) Segmented image (Threshold=14)

Figure 4.3.: Image segmentation for different images

57

4. Performance Measurements and Synthesis Results

(g) Boat image (512 x 512) (h) Segmented image (Threshold=14)

(i) House Image (256 x 256) (j) Segmented image (Threshold=9)

Figure 4.3.: (Continued) Image segmentation for different images

58

4. Performance Measurements and Synthesis Results

Threshold value Total labels Total scans

Pepper (256 x 256) 14 534 7

House (256 x 256) 9 440 11

Bird (481 x 321) 14 772 10

Elephants (481 x 321) 14 1307 11

Aeroplane (481 x 321) 14 202 10

Boat (512 x 512) 14 1300 9

Lena (512 x 512) 8 2997 12

Table 4.2.: Total number of image scans with pipeline implementation

Threshold values used in Table 4.2 are optimal for respective images and give optimal
segmentation results as shown in Figure 4.3. Total number of scans are decreased
in pipeline implementation as shown in the Table 4.2 compared to the sequential
implementation in Table 4.1.

4.2. Synthesis Results

Synthesis results of the pre-processing and segmentation modules are discussed under
this section. The target FPGA device for synthesis is Xilinx “Virtex-4” FPGA family
with device id “xc4vfx60”, package id “12ff672 ” and speed grade “-12”. The size of
input image is 512 x 512 pixels. The frequency unit is MHz (Mega Hertz) and time
unit is ms (mili seconds) or ns (nano seconds).

Table 4.3 describes synthesis results for the pre-processing stage. Maximum operating
frequency of the pre-processing design is 228.59 MHz. In pre-processing module, one
pixel is processed in single clock cycle. An image (512 x 512) takes 1.15 msec, if the
system runs on the maximum operational frequency.

Total image processing time = Number of pixels×Minimum period

= 512× 512× 4.375 ns

= 1.15 ms

Table 4.5 presents synthesis results for the segmentation module. The first approach
of the pipeline implementation (refer Figure 3.19) takes one clock cycle to process the
single pixel. Maximum operating frequency of segmentation module for first approach

59

4. Performance Measurements and Synthesis Results

Device Utilization Summary (estimated values)

Logic Utilization Used Available Utilization

Number of Slices 1530 25280 6 %

Number of Slice Flip Flops 2229 50560 4 %

Number of 4 input LUTs 2580 50560 5 %

Number of FIFO16/RAMB16s 5 232 2 %

Number of GCLKs 1 32 3 %

Minimum period: 4.375ns (Maximum Frequency: 228.595MHz)
Minimum input arrival time before clock: 2.633ns
Maximum output required time after clock: 4.130ns
Maximum combinational path delay: 2.038ns

Table 4.3.: Pre-processing module synthesis result

of the pipeline architecture is 65.27 MHz. Total segmentation time is given in the
column “First approach” of Table 4.4 for respective images. Number of scans are
given in Table 4.2 for respective images. It is considered that system operates with
maximum frequency for total segmentation time computation. For the boat image
(512 x 512),

Total Segmentation time = Number of pixels×Number of scans×Minimum period

×Number of clocks for processing one pixel

= 512× 512× 9× 15.321 ns× 1

= 36.15 ms

Total segmentation time (ms)
First approach Second approach

Pepper (256 x 256) 7.03 9.69

House (256 x 256) 11.05 15.23

Bird (481 x 321) 23.66 32.62

Elephants (481 x 321) 26.02 35.88

Aeroplane (481 x 321) 23.66 32.62

Boat (512 x 512) 36.15 49.84

Lena (512 x 512) 48.19 66.69

Table 4.4.: Image processing time for segmentation module in pipeline implementation

60

4. Performance Measurements and Synthesis Results

Device Utilization Summary (estimated values)

Logic Utilization Used Available Utilization

Number of Slices 1938 25280 7 %

Number of Slice Flip Flops 1176 50560 2 %

Number of 4 input LUTs 3413 50560 6 %

Number of FIFO16/RAMB16s 3 232 1 %

Number of GCLKs 1 32 3 %

Minimum period: 15.321ns (Maximum Frequency: 65.269MHz)
Minimum input arrival time before clock: 7.565ns
Maximum output required time after clock: 7.283ns
Maximum combinational path delay: 7.718ns

Table 4.5.: Segmentation module synthesis result (First approach of pipeline imple-
mentation)

Device Utilization Summary (estimated values)

Logic Utilization Used Available Utilization

Number of Slices 2038 25280 8 %

Number of Slice Flip Flops 1644 50560 3 %

Number of 4 input LUTs 3155 50560 6 %

Number of FIFO16/RAMB16s 3 232 1 %

Number of GCLKs 1 32 3 %

Minimum period: 10.564ns (Maximum Frequency: 94.658MHz)
Minimum input arrival time before clock: 7.237ns
Maximum output required time after clock: 7.353ns
Maximum combinational path delay: 7.473ns

Table 4.6.: Segmentation module synthesis result (second approach of pipeline imple-
mentation)

61

4. Performance Measurements and Synthesis Results

The synthesis results for the pipeline implementation of second approach (refer Figure
3.25) is given in Table 4.6. The frequency is increased because pipeline stages are
split up into two clock cycles. Ideally, frequency should be double than the first
approach. Because of the complex routing between different pipeline stages, maximum
operation frequency is 94.658 MHz. This implementation approach needs two clock
cycles to process a single pixel. Total segmentation time is given in the column “Second
approach”of Table 4.4 for respective images. For the boat image (512 x 512),

Total Segmentation time = Number of pixels×Number of scans×Minimum period

×Number of clocks for processing one pixel

= 512× 512× 9× 10.564 ns× 2

= 49.84 ms

First approach of pipeline implementation takes less total segmentation time compared
to the second approach. It is possible to design more faster parallel architecture using
multiple segmentation units and wider memory data bus interface with the external
memory. Proposal of parallel architecture is given in next chapter for the real time
image segmentation.

62

5. Parallel Architecture Proposal

Parallel architecture proposal is given in this section. It uses wider data bus interface
with the external memory and higher hardware resources compared to the pipeline
implementation. But, it reduces total time required to perform segmentation.

Table 4.2 shows that total segmentation time is between 35 to 50 ms for 512 x 512
image using the first approach of pipeline implementation. External memory interfaces
of 144 or 288 bits (data bus) are very common now a days. So, if higher memory data
width and multiple segmentation units are used in parallel then high performance can
be achieved. In block diagram of parallel architecture, SU represents segmentation
unit, n denotes number of segmentation units or P blocks, and each P block represents
image segmentation data in the external memory for a single image. It is possible to
select number of segmentation units based on availability of the hardware resources
and maximum data bus width in FPGA.

Functional explanation of the parallel architecture is given for 10 parallel segmentation
units (n =10). So, there are total 10 memory blocks for different images data. If 512
x 512 image needs 10 scan to perform segmentation then it is possible to process 10
different images of the same size at a same time by different segmentation units. Ten
different images data are loaded to the external memory in block P1 to P10. One
segmentation unit takes 4.01 ms to perform memory read operations, segmentation
computations and memory write operations for a single scan. First image data from
block P1 is given to the unit SU1 which performs first scan. After the first scan is
finished, data of block P1 is given to the unit SU2. When unit SU2 performs second
scan on data of block P1, SU1 gets new image data from block P2. When unit SU2
is finished data of block P1 then third scan performs by unit SU3 for data of block
P1. Data of each P block is given to SU1 to SU10 sequentially. After unit SU10
finishes computation for data of block P1 for tenth scan then segmentation is finished
for image in block P1. Next segmented image available after a one scan processing
time of the segmentation unit which is 4.01 ms. After an each scan, one image
segmentation is finished for respective P block. It means that each segmentation unit
performs one scan for each image and new image data is continuously loaded after
each scan to respective P block. Images are processed in pipeline by proposed parallel

63

5. Parallel Architecture Proposal

P1 P2 P3 P(n-1) P(n)

Controller

SU1 SU2 SU3 SU(n-1) SU(n)

External Memory

Figure 5.1.: Block diagram of parallel architecture)

architecture.

Controller module is needed to design which control all data communications between
external memory and segmentation units. It is also possible to use less number of seg-
mentation units and split number of scans to each units. As an example, if number of
scans are ten and total number of segmentation units are five, then each segmentation
units performs two scans for each image. In this case, controller module also needs to
control the scans by each segmentation unit.

Segmentation Units Total Segmentation
Time (ms)

Device Utilization
(approx.)

1 40.10 7%

5 8.02 35%

10 4.01 70%

Table 5.1.: Total segmentation time for 512 x 512 image with 10 scans and device
utilization for Virtex-4 FPGA device

Table shows total segmentation time for 512 x 512 image with single, five or ten

64

5. Parallel Architecture Proposal

segmentation units. It is considered that each image needs 10 scans to compute the
segmentation. Device utilization is given for Virtex-4 FPGA device. The device
utilization is approximated based on the first approach of pipeline implementation
(Tabel 4.5). As shown by total segmentation time in Table 5.1, it is possible to
perform real time image segmentation using the proposed parallel architecture.

65

6. Conclusion

The starting point of the thesis is to build image segmentation architecture for an
FPGA implementation that provides good segmentation quality, requires few hard-
ware resources and short execution time, and is suitable for use in real time applica-
tions. A watershed algorithm based on connected components is selected for the imple-
mentation, because it has simplified memory access, least computational complexity
and good segmentation results compared to the other image segmentation algorithms.
A pre-processing step is required to overcome the problem of over-segmentation by
watershed based image segmentation. Pipelined architectures of both the segmen-
tation algorithm and pre-processing step are designed, implemented in VHDL and
synthesized for Xilinx Virtex-4 FPGA.

An external memory is needed to store an input image and segmentation data be-
cause of the limited internal memory in the targeted device. Two different pipelined
architectures are designed for the segmentation algorithm and both architectures use
very few hardware resources. The first architecture provides throughput of one pixel
per clock cycle with the limitation of maximum operation frequency of 65.27 MHz
whereas second architecture provides throughput of one pixel per two clock cycles
with the maximum operation frequency of 94.66 MHz. The bitonic sorting network is
selected to sort the nine elements in the pre-processing step as it requires less com-
pare and swap operations compared to the other sorting networks and is possible to
implement using pipeline approach. The pipelined architecture of the pre-processing
step has throughput of one pixel per clock cycle and it can operate up to 228 MHz
system frequency.

Different images are tested for segmentation quality and execution time. Segmentation
results are visually acceptable and almost identical segmentation results can always be
obtained using the given implementation. The computation time for a 512 x 512 image
is about 35 to 45 milliseconds with the implemented segmentation architecture.

The use of external memory can also be avoided by using the FPGA device with the
larger internal memory. Single pipelined segmentation unit uses very few hardware
resources, so it is possible to use multiple segmentation units to achieve higher perfor-

66

6. Conclusion

mance. The proposal of parallel architecture given in the chapter five uses multiple
pipelined segmentation units and is fast enough to use for real time applications.
There is still some over-segmentation left after the pre-processing and segmentation
steps and hence a post processing step is necessary to implement which will remove
the over-segmentation. The implemented and proposed architectures of watershed al-
gorithm based on connected components are excellent candidates to use for different
image processing applications where high speed performance is needed.

67

A. Appendix

component Pre_Processing_Module is

generic(G_APPL_AWIDTH : natural :=16;

G_APPL_DWIDTH : natural :=32;

G_SYSBUS_AWIDTH : natural :=32);

5 port(

sys_clk : in std_logic;

reset_n : in std_logic;

P_ctrl_start_sl : in std_logic;

P_WR_Start_Addr_slv : out std_logic_vector(

G_SYSBUS_AWIDTH -1 downto 0);

10 P_WR_Init_sl : out std_logic;

P_WR_Busy_sl : in std_logic;

P_WR_Flush_sl : out std_logic;

P_WR_Data_slv : out std_logic_vector(

G_APPL_DWIDTH -1 downto 0);

P_WR_we_sl : out std_logic;

15 P_RD_Start_Addr_slv : out std_logic_vector(

G_SYSBUS_AWIDTH -1 downto 0);

P_RD_Init_sl : out std_logic;

P_RD_Busy_sl : in std_logic;

P_RD_Data_slv : in std_logic_vector(

G_APPL_DWIDTH -1 downto 0);

P_RD_re_sl : out std_logic);

20 end component Pre_Processing_Module;

Listing A.1: Pre-processing component module in VHDL

component serializer is

generic (image_row_width: integer);

port(

4 sys_clk : in std_logic;

reset : in std_logic;

data_in : in std_logic_vector (31 downto 0);

load : in std_logic;

enable : in std_logic;

68

A. Appendix

9 data_out : out std_logic_vector (7 downto 0);

valid : out std_logic;

ctrl : out std_logic;

finish : out std_logic

);

14 end component serializer;

Listing A.2: Serializer component module in VHDL

1 component window_3x3 is

generic (pixel_width : integer :=8;

image_row_width : integer;

valid_adj : integer :=0);

port(

6 sys_clk : in std_logic;

reset : in std_logic;

valid : out std_logic;

finish : out std_logic;

enable : in std_logic;

11 data_in : in std_logic_vector(pixel_width -1 downto 0);

w11 : out std_logic_vector(pixel_width -1 downto 0);

w12 : out std_logic_vector(pixel_width -1 downto 0);

w13 : out std_logic_vector(pixel_width -1 downto 0);

w21 : out std_logic_vector(pixel_width -1 downto 0);

16 w22 : out std_logic_vector(pixel_width -1 downto 0);

w23 : out std_logic_vector(pixel_width -1 downto 0);

w31 : out std_logic_vector(pixel_width -1 downto 0);

w32 : out std_logic_vector(pixel_width -1 downto 0);

w33 : out std_logic_vector(pixel_width -1 downto 0));

21 end component window_3x3;

Listing A.3: 3 x 3 Moving window component module in VHDL

type Med_data_in is array (8 downto 0) of std_logic_vector (7

downto 0);

component Med_Filter is

4 generic(win_elements : natural := 9;

win_width : natural := 3;

win_height : natural := 3);

port(

sys_clk : in std_logic;

9 reset_n : in std_logic;

enable : in std_logic;

69

A. Appendix

valid : out std_logic;

data_in : in Med_data_in;

data_out : out std_logic_vector (7 downto 0));

14 end component Med_Filter;

Listing A.4: Median filter component module in VHDL

type Grad_data_in is array (8 downto 0) of std_logic_vector (7

downto 0);

component Gradient_and_thresholding is

generic(win_elements : natural := 9;

5 win_width : natural := 3;

win_height : natural := 3;

divider_threshold : natural :=14;

image_row_width : natural);

port(

10 sys_clk : in std_logic;

reset : in std_logic;

enable : in std_logic;

valid : out std_logic;

Finish : out std_logic;

15 data_in : in Grad_data_in;

data_out : out std_logic_vector (7 downto 0));

end component Gradient_and_thresholding;

Listing A.5: Morphological gradient and thresholding component module in VHDL

component SIPO is

generic(image_row_width : integer);

3 port(

sys_clk : in std_logic;

reset : in std_logic;

valid : out std_logic;

finish : out std_logic;

8 enable : in std_logic;

data_in : in std_logic_vector (7 downto 0);

data_out : out std_logic_vector (31 downto 0));

end component SIPO ;

Listing A.6: Serial-In-Parallel-Out (SIPO) component module in VHDL

70

A. Appendix

component Comparator

port(

sys_clk : std_logic;

4 enable : std_logic;

num1 : in std_logic_vector (7 downto 0); --input 1

num2 : in std_logic_vector (7 downto 0); --input 2

High_Out : out std_logic_vector (7 downto 0);

Low_Out : out std_logic_vector (7 downto 0));

9 end component Comparator;

component Register_8bit

port (

sys_clk : in std_logic;

14 reset_n : in std_logic ;

Reg_IN : in std_logic_vector (7 downto 0) ;

Reg_OUT : out std_logic_vector (7 downto 0));

end component Register_8bit;

Listing A.7: Comparator and Register module in VHDL

Component Watershed_Ctrl is

generic(G_APPL_AWIDTH : natural :=16;

3 G_APPL_DWIDTH : natural :=32;

G_SYSBUS_AWIDTH : natural :=32);

port(

sys_clk : in std_logic;

reset_n : in std_logic;

8 P_ctrl_start_sl : in std_logic;

P_WR_Start_Addr_slv : out std_logic_vector(G_SYSBUS_AWIDTH

-1 downto 0);

P_WR_Init_sl : out std_logic;

P_WR_Busy_sl : in std_logic;

P_WR_Data_slv : out std_logic_vector(G_APPL_DWIDTH -1

downto 0);

13 P_WR_we_sl : out std_logic;

P_WR_Backwards : out std_logic;

P_WR_Flush : out std_logic;

P_RD_Start_Addr_slv : out std_logic_vector(G_SYSBUS_AWIDTH

-1 downto 0);

P_RD_Init_sl : out std_logic;

18 P_RD_Busy_sl : in std_logic;

P_RD_Data_slv : in std_logic_vector(G_APPL_DWIDTH -1

downto 0);

P_RD_re_sl : out std_logic;

71

A. Appendix

P_RD_Backwards : out std_logic);

end component Watershed_Ctrl;

Listing A.8: Watershed Ctrl module (top level) in VHDL

entity Watershed_Algo_Processing_Step is

generic(pixel_width : natural :=32;

3 image_row_width : natural :=512;

image_height : natural :=512;

VMAX : natural :=255;

LMAX : natural :=8000);

port(

8 sys_clk : in std_logic;

reset_n : in std_logic;

Enable_Module : in std_logic;

Enable_Data_In : in std_logic;

Read_Data_Finish : out std_logic;

13 Output_Valid : out std_logic;

Finish : out std_logic;

Next_Scan : out std_logic;

Data_In : in std_logic_vector(pixel_width downto

0);

Data_Out : out std_logic_vector(pixel_width downto

0));

18 end Watershed_Algo_Processing_Step;

Listing A.9: Watershed Algo Processing Step module in VHDL

72

Bibliography

[1] S. Beucher, F. Meyer, The morphological approach to segmentation: The wa-
tershed transformation, Mathematical Morphology in Image processing, Marcel
Dekker Inc, New York, pp.433-481, 1993.

[2] A. Bieniek, A. Moga, An efficient watershed algorithm based on connected com-
ponents, Pattern Recognition 33, pp.907-916, 2000.

[3] Dang Ba Khac Trieu and Tsutomu Maruyama, An implementation of parallel
and pipelined watershed algorithm in FPGA, International Conference on Field-
Programmable Logic and Applications, pp.561-566, 2006.

[4] Md. Shakowat Zaman Sarker, Tan Wooi Haw and Rajasvaran Logeswaran, Mor-
phological based technique for image segmentation, International Journal of In-
formation Technology, Vol. 14, No. 1.

[5] Manisha Bhagwat, R. K. Krishna and Vivek Pise, Simplified Watershed Trans-
formation, International Journal of Computer Science and Communication, Vol.
1, No. 1., pp. 175-177, 2010

[6] K. Haris and S. Efstratiadis, Hybrid Image Segmentation using Watersheds and
Fast Region Merging, IEEE Transaction on Image Processing, 1998.

[7] M. Sonka, V. Hlavac, and R. Boyle, Image Processing, Analysis, and Machine
Vision, PWS Publishing, 1999.

[8] D. Comaniciu, Mean Shift: A robust Approach Toward Feature Space Analysis,
IEEE Transaction on PMAI, Vol. 24, No. 5, pp. 609-619, 2002

[9] Z. Vasicek and L. Sekanina, Novel Hardware Implementation of Adaptive Median
Filters, Design and Diagnostics of Electronic Circuits and Systems, 11th IEEE
Workshop, 2008.

73

Bibliography

[10] Prof. R. Szeliski, Lecture notes, Universiteit Utrecht, Department of Infor-
mation and Computing Sciences, http://www.cs.uu.nl/docs/vakken/ibv/

reader/chapter10.pdf

[11] Dr. Sukhendu Das, Lecture notes, IIT Madras, India, http://vplab.iitm.ac.
in/courses/CV_DIP/PDF/lect-Segmen.pdf

[12] Robert Fisher, Simon Perkins, Ashley Walker and Erik Wolfart, Hypermedia
Image Processing Reference (HIPR2), http://homepages.inf.ed.ac.uk/rbf/
HIPR2/hipr_top.htm

[13] Jianbo Shi and Jitendra Malik, Normalized Cuts and Image Segmentation, Proc.
IEEE Conf. Computer Vision and Pattern Recognition

[14] Gonzalez and Woods, Digital Image Processing, 2nd ed., Prentice hall publica-
tion, ISBN number 0201180758.

[15] Donald G. Bailey, Design for Embedded Image Processing on FPGAs, John Wiley
& Sons (Asia) Pte Ltd, ISBN number 9780470828496.

[16] Wen-Xiong Kang, Qing-Qiang Yang, Run-Peng Liang, The Comparative Re-
search on Image Segmentation Algorithms, First International Workshop on Ed-
ucation Technology and Computer Science, pp.703-707, 2009.

[17] Johan De Bock and Wilfried Philips, Line Segment Based Watershed Segmen-
tation, MIRAGE 2007, LNCS 4418, pp. 579586, 2007.

[18] Edward R. Dougherty and Roberto A. Lotufo, Hands-on morphological image
processing, SPIE Press, 2003.

[19] The Berkeley Segmentation Dataset and Benchmark, http://www.eecs.

berkeley.edu/Research/Projects/CS/vision/bsds/

[20] MATLAB Notes, http://www.mathworks.de/company/newsletters/news_

notes/win02/watershed.html

[21] User Guide, Xilinx LogiCORE IP FIFO Generator v4.2 and Divider Generator
v3.0.

[22] User Guide, Virtex-4 FPGA by Xilinx.

74

http://www.cs.uu.nl/docs/vakken/ibv/reader/chapter10.pdf
http://www.cs.uu.nl/docs/vakken/ibv/reader/chapter10.pdf
http://vplab.iitm.ac.in/courses/CV_DIP/PDF/lect-Segmen.pdf
http://vplab.iitm.ac.in/courses/CV_DIP/PDF/lect-Segmen.pdf
http://homepages.inf.ed.ac.uk/rbf/HIPR2/hipr_top.htm
http://homepages.inf.ed.ac.uk/rbf/HIPR2/hipr_top.htm
http://www.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/
http://www.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/
http://www.mathworks.de/company/newsletters/news_notes/win02/watershed.html
http://www.mathworks.de/company/newsletters/news_notes/win02/watershed.html

Declaration

All the work contained within this thesis,
except where otherwise acknowledged, was
solely the effort of the author. At no
stage was any collaboration entered into
with any other party.

(Sameer Ruparelia)

	Introduction
	Image Segmentation and Watershed Based Approach
	Image Segmentation
	Threshold Based Segmentation
	Watershed Based Image Segmentation

	Watershed Algorithm Based on Connected Components
	Details of the Algorithm

	Pre-Processing Stage
	Median Filter
	Morphological Gradient
	Thresholding

	Post-Processing Stage

	Hardware Implementation
	Stream Cache Module
	Pre-processing Module
	Serializer
	3x3 Moving Window Architecture
	Median Filter Module
	Morphological Gradient and Thresholding Module
	Serial-In-Parallel-Out (SIPO) Shift Register
	State Machine for Pre-processing Module

	Image Segmentation Algorithm Implementation
	State Machine for Segmentation Module

	Verification Methodology
	Simulation

	Performance Measurements and Synthesis Results
	Performance Measurements
	Synthesis Results

	Parallel Architecture Proposal
	Conclusion
	Appendix

