
Institut für Technische Informatik

Abteilung Rechnerarchitektur

Universität Stuttgart

Pfaffenwaldring 47

D-70569 Stuttgart

Studienarbeit Nr. 2334

Simulation of Realistic Defects for
Validating Test- and

Diagnosis-Algorithms

Hossam El Atali

Studiengang: GUC Austausch

Prüfer: Prof. Dr. rer. nat. habil. Hans-Joachim Wunderlich

Betreuer: Dipl.-Inf. Stefan Holst

begonnen am: 05.04.2011

beendet am: 31.08.2011

CR-Klassifikation: B.7.3

Erklärung

Hiermit versichere ich, diese Arbeit selbstständig verfasst und nur die angegebenen Quellen benutzt zu

haben.

Unterschrift:

Stuttgart, 30/08/2011

Contents

1 Introduction 8
1.1 Motivation . 8
1.2 Goal . 8
1.3 Overview . 10
1.4 Defects . 10

1.4.1 Random Spot Defects 10
1.4.2 Systematic Spot Defects 14

1.5 Faults . 17
1.5.1 The Different Fault Models 18

1.6 The GDS format . 19
1.6.1 Hierarchy . 19
1.6.2 Elements . 19

2 Inductive Fault Analysis 25
2.1 What is IFA? . 25
2.2 The Chosen Algorithm for IFA 26

2.2.1 Interval Trees . 27
2.2.2 Application of Interval Trees 29
2.2.3 Merging CARs . 30

2.3 Previous Work . 31

3 Implementation 32
3.1 Preparation . 32

3.1.1 Obtaining the GDS file 32
3.1.2 Parsing . 33
3.1.3 Replacing Paths with Boundaries 33
3.1.4 Splitting Boundaries 34
3.1.5 Preparing List of Boundaries 43

3

3.2 Extraction of Bridges . 44
3.3 Processing the Internal Fault List 47
3.4 Converting from Internal to ADAMA Format 47

4 Results 52
4.1 Bridge Extraction . 52
4.2 Simulation and diagnosis . 52

5 Conclusion 55

4

List of Figures

1.1 Example of a break in a metal layer 11
1.2 Example of a large break in a metal layer 12
1.3 Example of a short between metal lines 12
1.4 Another example of a short between metal lines 13
1.5 Example of a defect resulting in various shorts and breaks . . 13
1.6 Example of a defect caused by metal corrosion 14
1.7 The proximity effect in EBL 15
1.8 Example of the effect of forbidden pitches showing the in-

tended layout (left) and the actual layout (right) 16
1.9 Example of line shortening showing the intended layout (left)

and the actual layout (right) 16
1.10 Example of corner rounding showing the intended layout (left)

and the actual layout (right) 17
1.11 Example of a GDS library . 20
1.12 Example of a Boundary element 21
1.13 Examples of Pathtypes . 22
1.14 SRef flattening example . 23

2.1 Example of critical area calculation 26
2.2 Example of a static tree . 27
2.3 Example of overlapping rectangles 29
2.4 Static tree for Figure 3.2 . 30
2.5 Example of CAR merging . 31

3.1 Examples of Path to Boundary conversion 34
3.2 Example of a Boundary with holes 35
3.3 Flow chart for Boundary splitting 36
3.4 Flow chart for processing G 37
3.5 Example of a Boundary which has no Points inside the hill . . 38

5

3.6 Example of a Boundary with Points inside the hill 39
3.7 Examples of when isStart=0 for the last Point in G 41
3.8 Examples of when isStart=1 for the last Point in G 42
3.9 Example of a case where there is no last Boundary 43
3.10 Example of a case which results in redundant Points 43
3.11 Example of overlapping rectangles to be processed 45
3.12 Flow chart to process L . 48
3.13 Flow chart to process M . 49
3.14 Example of a case causing a WCA of zero 50

6

List of Tables

3.1 Events table . 45
3.2 Progression of the IntersectionsArray of each Interval 46

4.1 Results of bridge extraction 53
4.2 Results of fault simulation and diagnosis 54

7

Chapter 1

Introduction

1.1 Motivation

Testing is very important in the manufacture of Integrated Circuits (ICs).
This is due to the decrease in technology size which has led to the manu-
factured circuits being more vulnerable to defects, such as bridging defects.
During production, the manufactured circuits are tested by applying test
patterns to them. The output of these tests is compared to the expected
output and if the two differ, then diagnosis is performed. Diagnosis aims
to detect and localize faults and obtain information about them and many
diagnosis algorithms exist for that purpose. The information obtained from
diagnosis can then be used to alter the design in order to reduce the chances
of these faults. The used diagnosis algorithms, however, apply heuristics
and therefore must be evaluated with realistic test cases to determine their
efficiency.

1.2 Goal

In order to evaluate these algorithms, faults are injected into circuits and
the diagnosis algorithm then executed in order to see if the injected faults
are localized. Two type of faults which can be injected are stuck-at faults
and bridging faults. These two result in coverage of the majority of defects
that occur in circuits. For stuck-at faults, exhaustive fault injection of all
the nodes in the circuit is possible. For bridging faults, however, the number
of combinations of bridged nodes for large circuits is too high and cannot

8

be tested exhaustively. Hence, selective fault injection is necessary and the
goal of this thesis is to obtain a realistic set of bridging faults to inject for
evaluation of the diagnosis algorithm presented in [1] and [2].

The diagnosis algorithm under evaluation is implemented in the ADAMA
tool. ADAMA supports several fault models, including several bridging fault
model variants, as well as random fault injection. However, random fault
injection does not provide a realistic set of likely faults for a circuit since
it does not take into account the probability of each fault. Therefore, the
objective of this thesis is further specified as Inductive Fault Analysis (IFA),
which is the process of extracting a list of possible bridging faults from the
physical layout of any arbitrary circuit using defect data such as possible
defect size and defect size probability, and then using the results of IFA to
perform simulation of realistic defects with the final purpose of validating
the algorithm. There are, however, certain limitations on the circuit from
which the fault list is to be extracted and they are presented throughout
this document. It is also important to note that the extracted fault list is
fault model independent, meaning that, even though the faults are bridging
faults, they are not necessarily wired-AND or wired-OR faults, for example.
The fault list simply gives a list of nodes which are likely to be bridged by a
defect; which model to use to inject these faults is for the user to decide.

There are already several tools available for IFA. However, only one of
them, CARAFE [3], supports the extraction of multi-node bridges. Further-
more, CARAFE is only valid for small layouts. The algorithm which was
chosen to be implemented is the one presented in [4]. It supports the extrac-
tion of multi-node bridges and is considerably faster than CARAFE. In this
thesis, only the interlayer bridge extraction part of the algorithm is imple-
mented. The differences between the tools and the algorithms behind them
are explained in more detail in Section 2.3.

It is worth noting that extraction of multi-node bridges is important even
if the final target of the user is two-node bridges. This is because the presence
of multi-node bridges will significantly affect the ranking of faults and will
change the order of the two-node bridging faults. The reason for this is that
the extraction of two-node bridges overestimates the WCA for a pair of nodes
by adding the WCA for any multi-node bridge involving these two nodes to
the two-node WCA of these two nodes [4]. This overestimation of WCA can
result in pessimistic yield estimations and designs which are too conservative.

9

1.3 Overview

The structure of this thesis is as follows. First, background material will be
given in the remainder of this chapter. This includes the difference between
defects and faults and how they relate to each other. An description of the
GDS file format is also included. Several examples of defects and fault models
are also given. In Section 2, an explanation of IFA is provided as well as a
literature study on the various tools of IFA and an explanation of the chosen
algorithm. Section 3 provides the details of the implementation of the chosen
IFA algorithm. The results of the algorithm and the evaluation of ADAMAs
diagnosis algorithm are presented in Section 4. Finally, a conclusion is given
in Section 5.

1.4 Defects

A defect is a deformation in the fabricated layout of the circuit, causing
a discrepancy between the desired layout and the fabricated layout. This
discrepancy can lead to an error, which is a faulty logical output of the
circuit. Defects are generally split into two categories: global defects, which
affect a large area of the chip and are easily observed during the early stages
of fabrication, and spot defects, which affect a small area of the chip and are
harder to observe. Examples of global defects include cracks in the wafer and
photolithographic mask misalignments [5]. The main concern of this thesis,
however, is spot defects since they are not identified during the early stages
of fabrication. They can be further categorized into random spot defects and
systematic spot defects.

1.4.1 Random Spot Defects

Random spot defects have a random location and are caused by disturbances
in local processes occurring during fabrication [6]. Such disturbances include
dust particles or other droplets which are unintentionally deposited on the
surface of the wafer during critical stages of the fabrication, such as pho-
tolithography. These disturbances can then cause shorts or breaks in con-
ducting or insulating layers which ultimately affect the operation of the chip.

10

Some examples of these disturbances are shown in Figures 1.1 - 1.6 1 .

Figure 1.1: Example of a break in a metal layer

In Figure 1.1 and 1.2, contaminating particles cause enlargements of the
photoresist which lead to breaks in the metal layer. In Figure 1.3, a contam-
inating opaque particle falls on the photolithography mask preventing a part
of the photo resist from being exposed hence preventing a part of the metal
layer from being etched. This results in a short between the metal lines. In
Figure 1.4, the contaminating particle is deposited on the metal layer itself
instead of the mask. When the photo resist is then deposited, it becomes
thicker around the contaminating particle than it should be, which, again,
prevents a part of the metal layer from being etched and, again, results in a
short between the lines.

Figure 1.5 shows a defect due to a scratch in the photoresist which cannot
be classified as either a short or a break since it has several effects. Figure
1.6 shows a rare defect which occurs due to corrosion of the metal.

1These figures are taken from [6]. Permission to copy these figures was granted by the
Association for Computing Machinery (ACM) as per their copyright notice in the cited
paper. Further copying is by permission of the ACM.

11

Figure 1.2: Example of a large break in a metal layer

Figure 1.3: Example of a short between metal lines

12

Figure 1.4: Another example of a short between metal lines

Figure 1.5: Example of a defect resulting in various shorts and breaks

13

Figure 1.6: Example of a defect caused by metal corrosion

1.4.2 Systematic Spot Defects

Systematic spot defects occur when certain patterns in the layout cause prob-
lems during fabrication. Many of these problems are lithography-related.
Below, some examples of systematic spot defects are shown. The kind of de-
fect which can occur depends on the lithography process used. For example,
optical photolithography normally uses a light source having a wavelength
of 193nm [7] to produce features with a much shorter length. This makes
diffraction a significant problem which can lead to distortion of the layout
if not dealt with. Line shortening, forbidden pitches and corner rounding
are common problems associated with 193nm lithography which can lead
to opens in metal lines [8]. On the other hand, electron beam lithography
(EBL) is much more resistant to diffraction due to the much shorter wave-
length of the electron beam. However, it suffers from other problems, such
as the proximity effect, which can also lead to distortion of the layout.

Electron Beam Proximity Effect

This form of defect occurs when the electrons aimed at the photoresist pen-
etrate the photoresist and then are scattered by the atoms in the substrate.

14

This causes the electrons to reflect and affect a part of the photoresist which
was not meant to receive a dose of the electrons. The final result of this is
a wider pattern on the chip than is intended. This effect can lead to shorts
between metal lines which are close to each other. An illustration of this
effect is shown in Figure 1.7.

Resist

Substrate

Electron beam

Figure 1.7: The proximity effect in EBL

Forbidden Pitches

This form of defect occurs when certain separation distances between metal
lines result in these metal lines becoming very constricted or even broken
during fabrication. These separation distances are referred to as “forbidden
pitches”. An example of this effect is shown in Figure 1.8.

Line Shortening

This defect is when a certain wire in the layout becomes shorter than intended
after fabrication. An example of this is shown in Figure 1.9.

15

Forbidden pitch Forbidden pitch

Figure 1.8: Example of the effect of forbidden pitches showing the intended
layout (left) and the actual layout (right)

Shortening

Figure 1.9: Example of line shortening showing the intended layout (left)
and the actual layout (right)

16

Corner Rounding

This defect is when the square edges of wires in the layout become rounded.
An example of this is shown in Figure 1.10. Figure 1.9 also shows the effect
of corner rounding.

Figure 1.10: Example of corner rounding showing the intended layout (left)
and the actual layout (right)

1.5 Faults

The detection of defects is important to manufacturers because faulty chips
should, obviously, not be sold to the customers. The localization of defects
is also important because it helps the manufacturer reduce the chance that
these defects will occur by making changes to the layout or the design of the
circuit. However, diagnosis is usually done at the logical level whereas the
actual defects are on the physical level. This is due to the lower complexity
and, hence, higher speed of logical simulations. Therefore, the defects must
be abstracted and their effects represented at the logical level by faults, which
become the targets for diagnosis. Defect coverage is a measure of how well
a fault model represents the possible defects in a circuit, so the more defects
the fault model can represent, the higher its defect coverage. There are
several fault models which provide different ways of representing the effects
of defects and in this section, the difference between these fault models will
be explained.

17

1.5.1 The Different Fault Models

Stuck-At

A stuck-at fault occurs when a signal or one of its branches is stuck at 0 or
1, forming a stuck-at-0 or stuck-at-1 fault, respectively. Since each stuck-at
fault affects only one node, it is classified as a single-net fault. This fault
model has been proven to result in high defect coverage and can be used to
model most of the defects possible during manufacture. However, there are
still some defects which it cannot model [6].

As mentioned earlier, it has been proven that stuck-at fault coverage be-
low one hundred percent means that there is a logic redundancy in the circuit
[9]. Optimization of the circuit to remove the redundancy will therefore allow
complete stuck-at fault coverage. However, in some cases, logic redundancy
might be introduced on purpose.

Bridging

This model has several variants but all of them aim to represent the behaviour
of a defect which connects two or more adjacent signals forming a bridge.
Since each bridging fault affects more than one node, it is classified as a
multi-net fault. This model can represent some defects which cannot be
represented using the stuck-at fault model [6]. Hence, it should be used to
complement the stuck-at fault model. The following is a list of some common
bridging fault models.

Wired-AND

In this variant, if one of the signals is a 0, then the others are also set
to 0.

Wired-OR

In this variant, if one of the signals is a 1, then the others are also set
to 1.

Dominant-AND

In this and the dominant-OR variants, there are aggressors and victims.
The aggressors do not change whereas the victims can be affected by
the aggressors. In this variant, if one of the aggressors is 0, then all of
the victims are also set to 0.

18

Dominant-OR

In this variant, if one of the aggressors is 1, then all of the victims are
also set to 1.

Dominant-Bridge

In this variant, there is only one aggressor. The rest of the signals are
victims. The victims are all set to the value of the aggressor, whether
it is 0 or 1.

1.6 The GDS format

A GDS file is used to describe the geometrical layout of the circuit using
layers of material such as the ones used in CMOS technology. It contains the
final layout which is used to fabricate the circuit.

1.6.1 Hierarchy

• Each GDS file is a Library,

• Each Library consists of several Structures (also known as cells).

• Each Structure has a name and consists of Elements.

• There are several types of Elements. The most common are the follow-
ing:

– Boundary

– Path

– SRef

– Text

1.6.2 Elements

Boundary, Path and Text elements have a Layer number attribute. This
number specifies the material layer to which the element belongs to. The
number itself is arbitrary and must be tracked by the designer to map it to
the appropriate fabrication layer. In addition, all elements have at least one

19

Library
 example.gds

Structure
 Str_Name1

Structure
 Str_Name2

Element
(Path)

Element
(SRef: Str_Name2)

Element
(Boundary)

Element
(SRef: Str_Name3)

Element
(Boundary)

Element
(Text)

Element
(Path)

Element
(Path)

Element
(Boundary)

Element
(Text)

Structure
Str_Name3

Element
(Path)

Element
(Path)

Element
(Path)

Figure 1.11: Example of a GDS library

Point. Points are simply pairs of XY-coordinates which allow positive and
negative numbers. They are relative to other Points in the same Structure
meaning that if every Point in the root Structure is shifted by +100 in the
x-direction, the resulting layout will be equivalent. A difference will only be
seen if the shift is performed to Points in a Structure which is referenced
in another Structure. This is due to the way Structures are instantiated by
SRefs as described below.

20

Boundary

Boundaries are simply polygons which have two attributes, a Layer number
and a list of Points. The list of Points gives the corners of the polygon and
the polygon is formed from those Points by joining every two adjacent Points
in the list with a straight line. Note that in the GDS file, Boundaries must
be closed explicitly, therefore the first Point in the list must have the same
coordinates as the last Point. An example of a Boundary is shown in Figure
1.12.

300,500

0,0 600,0

Figure 1.12: Example of a Boundary element

Path

A Path is a wire defined by its Layer number, its list of connecting Points,
its width and how the shape of the wire looks like at the endpoints. It has a
minimum of two Points, defining a Path made out of one rectangle. It also
has a Net attribute to map it to the appropriate node in the logic circuit.
The Pathtype attribute defines how the shape of the wire looks like at the
endpoints. There are four Pathtypes available, the default being Pathtype 0,
and they are explained below.

Pathtype 0 Paths with this Pathtype are square-ended and their ending-
edges end at endpoints. An example of such a Path is shown in Figure
1.13(a).

Pathtype 1 Paths with this Pathtype are round-ended. An example of
such a Path is shown in Figure 1.13(b).

21

Pathtype 2 Paths with this Pathtype are square-ended and their ending-
edges are extended after the endpoints by half of the defined width. An
example of such a Path is shown in Figure 1.13(c).

Pathtype 4 Paths with this Pathtype have ending-edge extensions with
variable length.

40,50 100,50

(a) Example of Pathtype 0

40,50 100,50

(b) Example of Pathtype 1

40,50 100,50

(c) Example of Pathtype 2

Figure 1.13: Examples of Pathtypes

SRef (Structure Reference)

An SRef is used to instantiate another Structure at a defined Point and it
can have optional attributes to specify mirroring or rotating the instantiated

22

copy of the Structure. The Structure to be instantiated is referred to by
name therefore the SRef must have an SNAME attribute to determine which
Structure to instantiate. When instantiating a Structure, any Points directly
in it (ie. not inside a Structure instantiated in it) are shifted by the SRef
Point. This means that the SRef Point corresponds to the (0,0) point in the
original definition of the instantiated Structure.

SRef (Structure2)

(a) Structure1 including SRef to
Structure2

Point of origin
for Structure2

(b) Structure2

(c) Structure1 after flattening

Figure 1.14: SRef flattening example

SRefs allow a hierarchical format, with Structures containing Structures,
which contain other Structures, etc. Flattening is the process of replacing
references to Structures with the layout of the Structures themselves. An
example of this is shown in Figure 1.14. Figures 1.14(a) and 1.14(b) show
the two Structures before flattening and Figure 1.14(c) shows them after
flattening. Notice that the only indication as to which Structure is the root
Structure is that its the Structure which is not referenced in another one.
However, this might not always be the case since the GDS Library might
contain redundant Structures which have not been referenced. One case
where this might happen is when merging a user-created GDS Library with

23

a Standard Cell Library in GDS format; the user-created Library will use
some of the Structures defined in the Standard Cell Library but not all of
them, causing the remaining to be redundant. Therefore, it is important for
the designer to keep track of the name of the root Structure in order to avoid
problems. Also note that an SRef Element does not have a Layer number.
This is because the Structure to be instantiated is not confined to one layer
and might have Elements in any layer, with each Element specifying its own
Layer number.

Text

A Text element is simply a text label on the layout which has no effect on
the fabrication process. It is defined by a Layer number to indicate the layer
the text is relevant to, a string of characters, and a Point to which this string
is attached on the layout.

24

Chapter 2

Inductive Fault Analysis

2.1 What is IFA?

As mentioned in the introduction, IFA is generally the process of extracting
an ordered list of bridging faults by analyzing layout and defect data [5] [10].
In this thesis, the list is ordered in descending order of weighted critical area
(WCA), which is a model for the probability that this fault will occur. In
order to calculate the WCA, the critical area (CA) must first be obtained.
The CA for a bridge, given a certain defect size, R, is defined as the area in
which the centre of a defect with a radius equal to R can occur in order to
cause the bridge. It is calculated as follows.

Assuming the layout of the circuit is a collection of rectangles belonging to
several nodes, each one of those rectangles is expanded by the defect size, Ri,
and then the overlapping area between them is obtained. This overlapping
area is the CA and is calculated for each set of nodes. To calculate the
WCARi for a set of nodes, its CA is multiplied by the probability that a
defect of size Ri will occur during manufacture [10]. This is repeated for
every given defect size and for each set of nodes, the WCARi values for it
are added up to form WCAtotal. An example of this calculation is shown in
Figure 2.1, assuming that R1 and R2 are the only defect sizes given, having
probability of occurrence p1 and p2 respectively. For the example:

WCAR1 = CA ∗ p1
WCAR2 = CA ∗ p2

WCAtotal = WCAR1 + WCAR2

25

Node a

Node b

Node c

(a) Original layout

Node a

Node b

Node c

CA1a,b

CA1a,c

(b) Layout after expansion by R1

Node a

Node b

Node c

CA2a,b

CA2a,c

(c) Layout after expansion by R2

Figure 2.1: Example of critical area calculation

2.2 The Chosen Algorithm for IFA

Before explaining the algorithm, a few assumptions must be made. First,
the layout must be of Manhattan design, meaning that all the geometric
shapes in the layout are rectilinear. Second, all the shapes are rectangles.
We distinguish between these two assumptions, even though the second is a
subset of the first, because the first is easy to achieve using placement and
routing tools such as Cadence R©Encounter. The second assumption, however,
is dealt with separately and this is explained in Section 3.

The goal of the algorithm is to detect intersections between rectangles in
the same layer, calculate the WCA formed by these intersections, and finally

26

produce an ordered list of multi-node bridging faults. To detect intersections,
interval trees are used [11, 12, 13]. Each interval represents the y-coordinates
of the corners of a rectangle. Interval trees are implemented as follows.

2.2.1 Interval Trees

Creating a static tree

First, a static binary tree is created. To clarify, assume that a set of intervals,
S = (〈1,4〉, 〈2,3〉, 〈2,5〉, 〈4,7〉, 〈5,7〉), exists. The leafs of this tree are the
distinct endpoints of the intervals inside S. Each non-leaf node is tagged with
a value equal to n1+n2

2
, where n1 is the value of the rightmost leaf in the left

child subtree and n2 is that of the leftmost leaf in the right child subtree.
Therefore, the tree is created from the bottom up by first creating the leafs,
then climbing up the tree and creating parents until the root is reached. Note
that for a level of nodes within the tree with an odd number of nodes, the
remaining single node will simply be promoted to the above level instead of
creating a parent for it. This is because such a parent will have only child,
which is that remaining node. Therefore, the extra node created will be
useless and will only serve to adversely affect the performance. The static
tree for set S in our example above is shown in Figure 2.2.

2.5

2 3 4 751

1.5 3.5 6

4.5

Figure 2.2: Example of a static tree

27

Inserting and deleting intervals

After the static tree is created, a dynamic tree is inserted on top of it. Each
dynamic node represents an interval. In order to insert a dynamic node,
the static tree is searched, starting with the root and going down, for a
static node which is tagged with a value within the interval of the dynamic
node. The first such static node which is found will have the dynamic node
attached to it and will be called the fork node of that dynamic node. Also,
any static node which is a fork node of a dynamic node is called an active
node. Therefore, for our example of set S, the interval 〈1, 4〉, for example,
would be attached to the active/static node (2.5). To delete a dynamic node,
the node is simply detached from its fork node.

The detection of interval intersection is done after every insertion. After
the insertion of an interval, A, three paths are defined on the static tree. P1
is the path from the root node to the fork node, P2 is the path from the
fork node to the leftmost leaf below the fork node, and P3 is the path from
the fork node to the rightmost leaf below the fork node. For our example
interval 〈1, 4〉, P1 is [(4.5) → (2.5)], P2 is [(2.5) → (1.5) → (1)], and P3 is
[(2.5)→ (3.5)→ (4)]. The intervals which are flagged as intersecting with A
are as follows.

• All other intervals attached to the fork node intersect with A.

• Each active node in P1 is checked to see if its tagged value is to the
right or left of A.

– If it is to the right, each interval, B, attached to the active node
is checked using the following. If the left end of B is less than the
right end of A, then A and B intersect.

– If it is to the left, the case is analogous. If the left end of A is less
than the right end of B, then A and B intersect.

• Each active node in P2 and P3 is checked to see if its tagged value lies
within A.

– If it does, then all intervals attached to it intersect with A.

– If it does not, then a check equivalent to the one for active nodes
in P1 is performed.

28

2.2.2 Application of Interval Trees

In order to detect rectangle intersections, the above algorithm is used as
follows. The set S contains intervals which are the y-coordinates of the left
and right edges of all the rectangles in the given layer. For example, if the
rectangles are as shown in Figure 2.3, S becomes equal to (〈1,5〉, 〈3,7〉, 〈4,8〉)
and the corresponding static tree becomes as shown in Figure 2.4. This
means that the leafs of the static tree are the distinct y-coordinates of the
rectangles. For the dynamic tree, the order of insertion and deletion of the
intervals depends on the x-coordinate of each interval. The left edge of a
rectangle causes an insertion and the right edge causes a deletion. Between
the insertion and deletion of this interval from the dynamic tree, the rectangle
represented by this interval “exists” in the tree. If another interval is inserted
before the first one is deleted and it intersects with the first interval, as
determined by the checks above, then this means that the two rectangles
represented by these two intervals overlap. The region of overlap, called a
critical area rectangle (CAR), is from the x-coordinate of the second interval
to the x-coordinate of the interval which is deleted first, and from the y-
coordinate of the highest bottom edge to the y-coordinate of the lowest top
edge.

Rectangle R1

Rectangle R2

Rectangle R3

3

7

1

5

8

4

Figure 2.3: Example of overlapping rectangles

29

3.5

3 4 5 871

2 4.5 7.5

6

Figure 2.4: Static tree for Figure 3.2

2.2.3 Merging CARs

After obtaining CARs from rectangle intersections, the CARs must be merged
to obtain CAs. This step of the algorithm is where multi-node bridges are
obtained. Any overlap between CARs forms a CA tagged with all of the
nodes associated with the overlapping CARs. An example of this is shown
in Figure 2.5. The algorithm for this stage has two loops, one nested inside
the other, and works as follows. The outer loop iterates over the distinct
x-coordinates of all the CARs and divides the diagram into columns. The in-
ner loop iterates over the distinct y-coordinates of the edges of all the CARs
lying on the current x line. At each y-coordinate, the corresponding edge
is checked to see if its a top or bottom edge. If it is a top edge then the
nets of the CAR are added to a set S. If it is a bottom edge then the nets
are removed from set S. Therefore, set S keeps track of the nets of the areas
between the y-coordinates. At each y-coordinate, a WCA is also created
unless the above area in the column is empty or both nets introduced at this
y-coordinate already exist in S. The obtained CAs are then weighted and the
WCAs, along with their associated nodes, are added to the fault list.

30

CARR1,R2

CARR1,R3

CARR2,R3

CAR1,R2

CAR1,R3

CAR1,R2,R3

CAR2,R3

Figure 2.5: Example of CAR merging

2.3 Previous Work

There a few algorithmic differences between the chosen algorithm and CARAFE.
The first is that CARAFE uses a line sweeping algorithm to detect rectan-
gle intersections whereas the chosen algorithm uses interval trees. Another
difference is that in CARAFE, rectangle intersections are searched for and
detected for every defect size in the given defect data, whereas in the chosen
algorithm, rectangle intersections are performed only once for the maximum
defect size and then the CARs for the other defect sizes are calculated from
the maximum CARs. This avoids unnecessary computations and hence re-
sults in lower execution times.[4]

The algorithm used by FedEx for fault extraction and circuit extraction
is a scanline algorithm [14]. It creates a scanline which moves from top to
bottom. Processing along the scanline occurs in the x-direction. However,
as mentioned before, this algorithm only extracts two-node bridges. Fur-
thermore, FedEx trades off accuracy for lower execution time since it only
approximates WCAs. Similar to the chosen algorithm, LOBS only scans the
layout once and then computes WCAs for all defect sizes. LOBS also uses a
sliding window in order to reduce memory usage [15]. However, the algorithm
used by LOBS also supports only two-node bridges.

31

Chapter 3

Implementation

The programming language used in the implementation is the Perl [16] pro-
gramming language. It was chosen due to its excellent text manipulation
capabilities, the core of which is the matching of regular expressions, and
also due to the fact that it can be object-oriented.

3.1 Preparation

In order to implement the algorithm described in Section 2.2, the input for it
must first be prepared. The steps for this preparation are explained in this
section.

3.1.1 Obtaining the GDS file

At the very beginning, the circuit to extract bridging faults for is available to
us in VHDL or Verilog form. In order to obtain the GDS file for the circuit,
the circuit must first be placed and routed to obtain a physical layout for it.
This placement and routing is done using the Cadence R©Encounter tool [17].
The tool places instances of standard cells from the standard cell library in
appropriate positions and then interconnects the inputs and outputs of these
cells in order to obtain the circuit’s function. The process of placing the
standard cells is the placement stage, whereas the process of interconnecting
the cells is called the routing stage. As mentioned before, the layout produced
here must be of Manhattan design. The standard cell library used in this
thesis is the NanGate 45nm Open Cell Library [18].

32

After a physical layout is automatically generated by Encounter, it is
exported as a GDS file with the option to add net names to Paths as an
attribute with attribute number 100. The number 100 here is arbitrary but
it is the one which was chosen for this implementation. It is important to
note that the GDS file obtained here is a binary file. In order to make the
parsing stage easier and allow manual inspection of the GDS file, the binary
GDS file is converted to an ASCII text file containing a clearer description
of the layout. This conversion is performed using the OwlVision tool [19].
Therefore, the output at this point is a plain text file containing the GDS
library.

3.1.2 Parsing

After obtaining the text file, the GDS library described in it must be ex-
tracted and parsed into an object-oriented internal data structure. The in-
ternal data structure was designed to mimic the structure of the GDS library.
Therefore, it contains Structure, Boundary, Path, SRef and Point objects
equivalent to their counterparts in the GDS library and has the same hier-
archy shown in Figure 1.11. Note that the net names of the Paths provided
by Encounter must be attached to their corresponding Path objects in order
for them to be used in bridge extraction. Also, Paths of Pathtypes 1 and 4
as shown in Section 1.6.2 are not supported since all of the Paths produced
by Encounter’s placement and routing are either Pathtype 0 or 2.

After this stage, the state of the internal data structure is stored on disk.
This is to avoid having to parse the text file every time a modification to the
defect data is needed. For subsequent runs, the stored state can simply be
used. This allows parsing to be done only once for each circuit.

3.1.3 Replacing Paths with Boundaries

After parsing, Paths are converted to Boundaries. This is done to allow
easier manipulation of the Paths since Paths are defined by their endpoints
whereas Boundaries are defined by their corners. This step supports only
two-Point Paths because Encounter only produces two-Point Paths therefore
there was no need to support Paths with more than two Points. However,
an extension to support multi-Point Paths is not difficult to implement if it
is needed. Another part of this step is attaching to the new Boundary the
net name of the Path provided by Encounter.

33

The way each of the corners of the rectangle is calculated depends on the
Pathtype and the orientation of the Path. Since the layout is of Manhattan
design, the Path can have Pathtypes 0 or 2 and can be either horizontal or
vertical. This means that only four cases, formed by combinations of the
different Pathtypes and orientations, have to be considered. Examples are
given in Figures 3.1(a) and 3.1(b), for Pathtypes 0 and 2, respectively, when
the Path is horizontal. Notice that any difference in x- or y-coordinates
between the Paths’ endpoints and the corners of the Boundaries is half the
width of the Path. A similar calculation occurs for vertical Paths.

20,40 140,40

20,60 140,60
20,50 140,50

Width 20

Path Boundary

(a) Conversion for Pathtype 0

20,40 140,40

20,60 140,60

Width 20

Path Boundary

30,50 130,50

(b) Conversion for Pathtype 2

Figure 3.1: Examples of Path to Boundary conversion

3.1.4 Splitting Boundaries

The next stage in the preparation process is the splitting of Boundaries into
rectangles. This is an optional stage because the Paths which are converted
to Boundaries are all two-Point Paths, and hence already produce rectangles.

34

Furthermore, any original Boundaries which were not previously Paths, and
hence have no nets attached to them, are disregarded as described in Section
3.1.5. However, future extensions of this work might create support for multi-
Point Paths or a way to add net names to the original Boundaries. Depending
on the implementations of these extensions, they might require the splitting
of non-rectangular Boundaries into rectangles and, therefore, this stage was
included.

For this stage, a new algorithm was created to implement the splitting of
Boundaries. This algorithm assumes that there are no holes in the Bound-
aries. For example, a Boundary such as the one shown in Figure 3.2 is invalid.
In the following section, the algorithm will be explained and examples will be
given to clarify. A flow chart showing the steps of the algorithm is provided
in Figure 3.4.

Figure 3.2: Example of a Boundary with holes

Detecting a hill

The first step in the algorithm is detecting a “hill”. This hill is simply a se-
quence of four Points in the Boundary’s Points list which signifies the protru-
sion of a rectangle at the top of the Boundary. The Points array is first made
clockwise, if it is not already, and is then traversed until four Points match-
ing the pattern for the hill are detected. This pattern is [y2>y1, x3>x2 and
y4<y3], where the numbers signify the order of each Point in the sequence.

35

START
Add Boundary to

RemainingBoundaries array

Any more
RemainingBoundaries

left?
END

NO

Consider next
RemainingBoundary,
remove redundant

Points

YES

No. of points<4 ? Discard Boundary

No. of points==4 ?

YES

NO

Add rectangle to
RectanglesArray

YES

Detect hill

Hill contains
Points?

Add hill to RectanglesArray,
Add remainder of Boundary to

RemainingBoundaries array

NO

Obtain leastX-line,
extract rectangle

from hill and add it
to RectanglesArray

YES

Add Points which are in
the hill and on the

leastX-line to array G,
Add Point P to array G

NO

isStart=0
PreviousIndex=[index of Point P]

Process G
(other flow chart)

Figure 3.3: Flow chart for Boundary splitting

36

Traverse array G

Current Point
is the last

Point in G?
isStart==0?

Form new RemainingBoundary
from PreviousIndex to

CurrentIndex and add it to
RemainingBoundaries array

NO

Toggle isStart

YES

NO

isStart==0?

YES
Form new RemainingBoundary

from PreviousIndex to
CurrentIndex and add it to

RemainingBoundaries array

Place Points from
CurrentIndex+1 to
index of Point a in

array H

YES

NO

Place Points from
CurrentIndex to

index of Point a in
array H

Create Point Q and
replace Point a in

array H with it

Form new RemainingBoundary
from Points in H and add it to
RemainingBoundaries array

START

END

Figure 3.4: Flow chart for processing G

37

Notice how there is no need to check for [x1==x2, y2==y3, x3==x4]. This
is because the Boundaries are rectilinear and have no redundant points, so if
two consecutive Points differ in their y-coordinates, they will have the same
x-coordinate, and vice versa.

As an example, assume that the Boundary to be split is the one shown in
Figure 3.5. The hill is the shaded area and the four Points which form the
sequence are indicated in the figure as A, B, C and D. Note that the lower
edge of the hill has the y-coordinate of Points A or D, whichever is higher.
After this, the corners of the hill become labeled as a, b, c and d and if a or d
does not exist in the Boundary’s Points array, it is added to it, temporarily
creating a redundant Point. There are two cases to consider after detecting
a hill: the hill contains Points, or it does not. Therefore, the next step after
detecting a hill is checking to see whether it contains Points.

A/a

B/b C/c

D

d

Figure 3.5: Example of a Boundary which has no Points inside the hill

Hill does not contain Points:

If the hill does not contain Points, such as in the Figure 3.5, then it is
cut off and forms a rectangle which is added to the RectanglesArray. This
array keeps track of the rectangles formed by splitting the Boundary and,
in the end, will contain all the rectangles obtained from the Boundary. The
remainder of the Boundary (the unshaded area in the figure) is added to the
RemainingBoundariesArray. As the name suggests, this array keeps track of

38

the remaining parts of the Boundary which have not yet been processed and
might not be rectangles.

Hill contains Points:

Extracting a rectangle

The second case, which is when the hill does contain Points, is more
complicated. The hill cannot be simply cut off and made into a rectan-
gle as this will give incorrect results. A rectangle must first be extracted
from it and added to the RectanglesArray and after that, the remain-
ing parts of the hill, along with the remaining part of the Boundary
below the hill, must be added to the RemainingBoundariesArray for
further processing as they also might not be rectangles. The rectangle
which is extracted from the hill is the biggest rectangle possible formed
from the left edge of the hill. The right edge of this rectangle is found
by finding the Point inside the hill with the least x-coordinate. This
x-coordinate is the x-coordinate of the right edge of the rectangle. The
top and bottom y-coordinates of the rectangle are the y-coordinates
of the top and bottom edges of the hill, respectively. An example of
this case is shown in Figure 3.6. The extracted rectangle is shaded in
grey and the area of the Boundary inside the hill, which includes the
rectangle, is patterned with diagonal lines.

a

b c

d

Q

P

1

2

3

4

leastX-line

Figure 3.6: Example of a Boundary with Points inside the hill

39

Obtaining Points on leastX-line

The remainder of the hill is obtained as follows. First, the Points
on the leastX-line inside the hill are searched for in the Boundary’s
Points array and copied to another array, G, where they are sorted
in descending order of their y-coordinates. Then, Point P, as shown
in Figure 3.6, is created and added to the Boundary’s Points array at
the appropriate position (i.e. between Point b and Point c). Note that
Point P can never exist in the Boundary’s original Points array because
if it did, the location of the hill would be different. The method which
returns all the Points on the leastX-line also returns their indices in the
Boundary’s Points array to aid in the next step.

Processing G

Before traversing array G, a flag called isStart is set to 0. This flag
indicates whether the next Point in G is the beginning or the end of a
new Boundary to be cut off. Also, a variable called PreviousIndex is set
to the index of Point P in the Boundary’s Points array. Array G is then
traversed and for every Point, its index in the main Boundary’s Points
array is stored in a variable called CurrentIndex. For every Point in
G except the last one, if isStart=1, then isStart is simply toggled and
changed to 0 and the Point’s index in the main Boundary’s Points array
is stored in PreviousIndex. If isStart=0, however, then a new Boundary
is formed from the Points in the main Boundary’s Points array, starting
from PreviousIndex to CurrentIndex. This new Boundary is then added
to the RemainingBoundariesArray, the isStart flag is toggled and the
next iteration of the loop is started. It is important to note that this
part treats the main Boundary’s Points array as circular, meaning that
if the end of the array is reached before CurrentIndex (or, in other
words, [CurrentIndex<PreviousIndex]), the counting continues from
the beginning until CurrentIndex. The remaining Boundaries inside
the hill which are added to the RemainingBoundariesArray for our
example in Figure 3.6 are (P to 1) and (2 to 3).

When the last Point in G is reached, again two cases can occur. The
first case is when isStart=0. This case indicates that the number of
Points in the G array is odd and further subdivides into two subcases:
when the last Point lies above the lower edge of the hill, and when
it lies on it. These two subcases are shown in Figure 3.7 and, for-

40

a

b c

dLast Point in G

(a) Last Point above the lower edge of the hill

a

b c

d

Last Point in G

(b) Last Point on the lower edge of the hill

Figure 3.7: Examples of when isStart=0 for the last Point in G

tunately, the solution for them is identical. The Points in the main
Boundary’s Points array from PreviousIndex to CurrentIndex are first
used to form a new Boundary which is added to the RemainingBound-
ariesArray. Then the Points in the main Boundary’s Points array from
CurrentIndex+1 to the index of Point a are placed in a new array H.

The second case is when isStart=1. This case indicates that the num-
ber of Points in the G array is even and also further subdivides into
two subcases which are the same as for the previous case. These two
subcases are shown in Figure 3.8 and, again, their solutions are identi-
cal. In this case, the Points in the main Boundary’s Points array from
CurrentIndex to the index of Point a are placed in array H.

41

a

b c

d

Last Point in G

(a) Last Point above the lower edge of the hill

a

b c

d

Last Point in G

(b) Last Point on the lower edge of the hill

Figure 3.8: Examples of when isStart=1 for the last Point in G

In both cases, a Point, Q, which is the bottom right corner of the ex-
tracted rectangle, is created and replaces Point a at the end of array
H. The last remaining Boundary to be added to the RemainingBound-
ariesArray is then formed from the Points in H. For our example in
Figure 3.6, that last Boundary is (4 to Q).

Note that there are cases where that last remaining Boundary does not
actually exist, as shown in Figure 3.9, and which will cause H to contain
only two Points with the same coordinates. Therefore, it is necessary
that these 2-Point Boundaries are removed from the RemainingBound-
ariesArray. Another case which must be taken care of is the existence

42

a

b c

d

Last Point in G

Figure 3.9: Example of a case where there is no last Boundary

of redundant Points in the remaining Boundaries’ Points arrays. This
occurs for some last remaining Boundaries as shown in Figure 3.10.

a

b c

d

Last Point in G

Figure 3.10: Example of a case which results in redundant Points

At the end, the entire process is executed again on each Boundary in
the RemainingBoundariesArray, treating each one as a main Boundary. This
can be implemented as a recursive algorithm, the end result of which is a set
of rectangular Boundaries formed from the original Boundary and contained
in the global RectanglesArray. The breaking condition of the recursion is
when the recursive method is given a rectangular Boundary. In this case, the
Boundary is simply added to the RectanglesArray and the method returns.

3.1.5 Preparing List of Boundaries

In this section, the list of rectangles which will be passed to the bridge
extraction algorithm is filtered to remove netless Boundaries. Net names

43

are only added to Boundaries when they are created from Paths and since
there are some Boundaries which were not previously Paths, there will exist
some Boundaries which have no net name attributed to them. Since the
bridge extraction algorithm relies on the rectangles’ having net names, netless
Boundaries must be removed. If they are not, bridges might be extracted
involving unidentified nodes.

The effect of this removal had to be analyzed in order to ensure that the
information obtained from the extraction was not misleading. This was done
by manually comparing the converted GDS file to the visual layout produced
by Encounter. For several circuits, the netless Boundaries were found to be
of no significant effect on the the bridges extracted. This was because they
were found in the outer areas of the chip and not in the areas containing the
standard cells, and because their size was very small compared to the rest of
the layout. Hence, it was decided that they will be ignored.

3.2 Extraction of Bridges

After the preparation stage is completed, the next step is to execute the
algorithm presented in [4]. The inputs of the function which executes the
algorithm are the array of rectangles after filtering, a list containing the
layers to be considered in the algorithm, and a set of defect data. The set of
defect data is a hash with the format

{L1,(defect data for layer 1), . . . , Ln,(defect data for layer n)}

where (defect data for layer i) is

[{“R”, Ri1, “P”, P i1}, . . . , {“R”, Rim, “P”, P im}]

Rij is the radius of the jth defect size for the ith layer.
First, the rectangles are separated into different arrays according to their

layer. Then, for each layer, the following occurs. All the rectangles are first
expanded by the maximum defect size for that layer. Then, rectangle inter-
section is performed as described in Section 2.2. First, a static tree is created
using the distinct y-coordinates of the corners of the rectangles as leafs. This
is done using a recursive function which creates each level of the trees and
then climbs up to the next level until the root node is reached. After the
static tree is created, a table of events (insertions and deletions) is created to

44

signify the left (insertion) and right (deletion) edges of the rectangles, where
each event is associated with a certain interval (the pair of y-coordinates of
the rectangle) and the x-coordinate of the edge it corresponds to. The table
of events is sorted in ascending order of the x-coordinate, with insertions
preceding deletions for cases where there are several events with the same x-
coordinate. To clarify, an example of the rectangles to be processed is shown
in Figure 3.2. Table 3.1 shows the events table produced for these rectan-
gles. Note that each Interval object is given two x-coordinates to mark when
the interval will be added to the dynamic tree and when it will be removed.
These x-coordinates are in addition to the y-coordinates which signify the
actual upper and lower bound of the interval.

Rectangle R1

Rectangle R2

Rectangle R3

3

7

1

5

8

x1 x2 x3 x4 x5 x6

4

Figure 3.11: Example of overlapping rectangles to be processed

Event I I I D D D
Name R1 R2 R3 R1 R2 R3

X x1 x2 x3 x4 x5 x6
Interval 3,7 1,5 4,8 3,7 1,5 4,8

Table 3.1: Events table

45

After obtaining the table of events, the events are performed in order
and the dynamic tree is produced on top of the static tree. Note how the
x-axis is treated as the time axis, with events occurring in order of their
x-coordinate. Intersections between rectangles are kept track of using an In-
tersectionsArray for each Interval object. This array holds the list of other
intervals which are currently intersecting with the array’s interval. For ev-
ery insertion, if an intersection is detected between two intervals using the
process described in Section 2.2, then they are added to each other’s Inter-
sectionsArray. For every deletion, if the deleted interval contains intervals in
its IntersectionsArray (i.e. it is currently intersecting with other intervals),
then the CAR produced with each of these intervals is calculated and added
to the CARs array. Remembering that each Interval object contains vari-
ables to hold its insertion-x and deletion-x, a CAR is calculated by taking
the highest insertion-x, the lowest deletion-x, the highest lower-y and the
lowest upper-y. Table 3.2 shows the progression of the IntersectionsArray of
each interval and the produced CARs for each deletion as the events table is
traversed.

IntersectionsArray after each event
Interval x1 x2 x3 x4 x5 x6

R1 - R2 R2, R3 # # #
R2 - R1 R1, R3 R3 # #
R3 - - R1, R2 R2 - #

CARs created - - - CARR1,R2,
CARR1,R3

CARR2,R3 -

Table 3.2: Progression of the IntersectionsArray of each Interval

At this stage, the CARs produced are the ones for the maximum defect
size. For every defect size including the maximum, the CARs are shrunk by
∆R = Rmax − Rcurrent and then four six-tuples are created per CAR. The
four six-tuples are (x1, y1, I, B, N1, N2), (x1, y2, I, T, N1, N2), (x2, y1, D, B,
N1, N2) and (x2, y2, D, T, N1, N2), where N1 and N2 are the names of the
nodes related to the given CAR, and 〈x1,y1〉 and 〈x2,y2〉 are the coordinates
of the lower left and upper right corners respectively. These six-tuples are
added to the list, L, which in the end will contain all the six-tuples for all
the CARs for all the defect sizes. List L is then sorted in ascending order of
x1 in the six-tuples. Note that the procedure of shrinking CARs allows the
expensive process of interval intersection to be performed only once instead

46

of for each defect size.
After obtaining list L, the algorithm described by the flow chart in Figure

3.12 is performed. It processes L, maintains a list M and produces the fault
list in an internal format. The main function of this algorithm is the merging
of critical areas. The flow chart for the processing of M is shown in Figure
3.13. Note that the internal format of the fault list for each fault is

WCA, (list of bridged nodes)

3.3 Processing the Internal Fault List

At this stage, we have a fault list containing WCAs for multi-node bridges.
However, this list is still not ready for output for a few reasons. The first is
that it can contain multiple entries for the same set of nodes. The WCAs
for these entries have to be added and the entries merged into one entry in
the fault list. The second reason is that it can contain faults which have
a WCA of zero. This results when the rectangles are just touching but not
overlapping after expansion resulting in zero critical area. An example of this
case is shown in Figure 3.14. For a bridge to occur in this case, the centre of
the defect must be exactly in the middle between the two rectangles in the
layout. The third reason is that some faults will have only one net name.
This occurs when overlaps occur between rectangles having the same net
name. The fourth and final reason is simply that the fault list is not yet
ordered. Therefore, the fault list is processed to merge multiple entries, filter
out zero WCA entries, and then sort the list in descending order of WCA.
This gives us the final fault list in the internal format, ready to be converted
to ADAMA format.

3.4 Converting from Internal to ADAMA For-

mat

In this step, the internal fault list is converted to a fault list in ADAMA
format. The ADAMA format which is used is the versatile MultiLineFlip
format shown below.

47

START
i = 0

Mi = [EMPTY]

Any more
six-tuples in

L?

Process M
i = i + 1

STOP

Any more six-tuples in L with
x-coordinate = Xi ?

NO

NO

Take next six-tuple in L =
< X, Y, E, F, N1, N2 >

YES

E = I (ie. insert) ?

Add < Y, F, N1, N2 > to M,
Keep M ordered by

descending y-coordinate
values

Delete < Y, F, N1, N2 >
from M

YES NO

YES

Figure 3.12: Flow chart to process L

48

START
S = [EMPTY]

Count = 0
Top = M[0].Y

j = 0

Any more
four-tuples in

M?
STOP

NO

M[j].F = T ?

YES

R = uniq(S)
Insert N1 into S
Insert N2 into S

P = uniq(S)

R = uniq(S)
Delete N1 from S
Delete N2 from S

P = uniq(S)

YES NO

P = R ?

R = [EMPTY] ?

j = j + 1

Top = M[j].Y
YES

NO

YES

CA = (Top - M[j].Y) * (X[i+1] - X[i]) ;
WCA = CA * p(R) ;

Add WCA to fault list

NO

P = [EMPTY] ?

NO

YES

Figure 3.13: Flow chart to process M

49

Node a

Node b

Figure 3.14: Example of a case causing a WCA of zero

MultiLineFlip { [# of aggressors] [list of aggressors] [# of victims] [list of victims]

[fault model truth table] }

For the three dominant bridging fault model variants, only one aggressor
is chosen for each MultiLineFlip due to limitations within ADAMA; the rest
of the nets involved in the bridging fault are set as victims. For each multi-
node fault in the internal fault list with n nets, n combinations are created,
each time using a different net as the aggressor.

For the wired-AND and wired-OR variants, all the nets are set as victims.
Therefore, only one MultiLineFlip is created for each fault in the internal
fault list.

It is important to note that the nets in the internal fault list are named
differently than they are in ADAMA. The net names in the internal fault list
are identical to the net names produced by Cadence R©Encounter, whereas
ADAMA names nets according to their connections to the cell instances.
Therefore, a necessary operation is mapping between the net names in the
internal fault list and in ADAMA. The way this is done is as follows.

During the place and route stage, Encounter is used to output a VHDL
file, in addition to the GDS file, containing the names of the instances and
nets as they are named within Encounter (and subsequently within the GDS
file and the internal fault list). This VHDL file is the one given to ADAMA as
input, after a few modifications, such as removing ‘inout’ signals, are applied
to it. These modifications are necessary in order to allow ADAMA to read
the file in successfully and do not alter the operation of the circuit.

50

After ADAMA reads in the VHDL file, it names nets according to their
connections to the cell instances and disregards most of the net names used
by Encounter. Therefore, the VHDL file is read in by our implementation and
the disregarded net names are mapped to their names according to ADAMA.

A special case occurs with complex cells. This is because ADAMA splits
up these complex cells into simple gates and names even the outer signals
of the complex cell blocks according to the way each complex cell is split
up. To overcome this problem, a library was created which contains every
complex cell used. This library defines the outer signals of the complex cells
appropriately (i.e. according to ADAMA) and maps them to the correct net
names in the internal fault list. Fortunately, only a few entries were required
in this library and, naturally, they all corresponded to complex cells within
the NanGate 45nm Open Cell Library.

51

Chapter 4

Results

4.1 Bridge Extraction

The implementation was used to analyze and perform IFA on four ITC’99
circuits: B02, B06, B20 and B22 1. Defect data was adjusted for each cir-
cuit to take into account the differences in dimensions. Table 4.1 shows the
information obtained after analysis.

4.2 Simulation and diagnosis

For comparison, ADAMA was used to generate n random faults where n is
the number of faults of that fault model obtained from IFA. After obtaining
the faults lists (IFA and random) for each bridging fault model, ADAMA was
used to inject and simulate the faults and perform diagnosis. The results of
the diagnosis are shown in Table 4.2.

When considering each fault model separately, the fault coverages for
circuits B06, B20 and B22 1 for IFA faults are close to those for random
faults. However, it is worth keeping in mind that the IFA faults are more
significant since they represent realistic faults. Therefore, the similarity in
the fault coverages does not mean that IFA should be disregarded. Rather,
the undetected IFA faults should be focused on more than the undetected
random faults.

For circuit B02, the fault coverage for IFA faults is consistently higher
than for random faults. Also, the average fault coverage for IFA faults is
always greater than or equal to that for random faults. One reason for

52

Circuit
B02 B06 B20 B22 1

Number of nodes in circuit 49 99 12546 16381
Number of multi-node bridging
faults extracted

27 22 96 164

Number of dominant-AND faults 62 53 234 420
Number of dominant-OR faults 62 53 234 420
Number of dominant-bridge faults 62 53 234 420
Number of wired-AND faults 27 22 96 164
Number of wired-OR faults 27 22 96 164

Extraction time:
Parsing

<1min <1min
6mins 14mins

Algorithm <1min <1min
Conversion to ADAMA <1min <1min

Table 4.1: Results of bridge extraction

this might be that the random faults generated by ADAMA include the
inner nodes of complex gates whereas our implementation only considers the
input and output signals of the complex gates as whole blocks. These inner
nodes might be more difficult to diagnose and, therefore, result in a lower
fault coverage. Another possible reason which is rather optimistic, is that
ADAMA is simply better at detecting the more realistic faults.

In the end, the difference in fault coverage between IFA and random faults
depends largely on the layout of the circuit simply because extraction of the
IFA faults themselves depends on the layout.

53

Circuit
B02 B06 B20 B22 1

T
o
ta
l
in
je
ct
ed

U
n
d
et
ec
te
d

F
a
u
lt
co
ve
ra
ge

T
o
ta
l
in
je
ct
ed

U
n
d
et
ec
te
d

F
a
u
lt
co
ve
ra
ge

T
o
ta
l
in
je
ct
ed

U
n
d
et
ec
te
d

F
a
u
lt
co
ve
ra
ge

T
o
ta
l
in
je
ct
ed

U
n
d
et
ec
te
d

F
a
u
lt
co
ve
ra
ge

Dom-AND:

IFA 62 3 95 53 9 83 234 26 89 420 51 88
Random 62 18 71 53 6 89 234 36 85 420 49 88

Dom-OR:

IFA 62 5 92 53 4 92 234 27 88 420 38 91
Random 62 23 63 53 6 89 234 46 80 420 45 89

Dom-bridge:

IFA 62 1 98 53 0 100 234 8 97 420 12 97
Random 62 8 87 53 1 98 234 21 91 420 17 96

Wired-AND:

IFA 27 0 100 22 0 100 96 4 96 164 3 98
Random 27 6 78 22 0 100 96 0 100 164 1 99

Wired-OR:

IFA 27 0 100 22 1 95 96 5 95 164 4 98
Random 27 4 85 22 1 95 96 4 96 164 2 99

Total:

IFA 240 9 96 203 14 93 894 70 92 1588 108 93
Random 240 59 75 203 14 93 894 107 88 1588 114 93

Table 4.2: Results of fault simulation and diagnosis

54

Chapter 5

Conclusion

The problem which was to be addressed in this thesis was obtaining a ranked
list of realistic multi-node bridging faults to inject into the circuit. The
problem was solved by implementing the IFA algorithm presented in [4]. The
algorithm was explained and details regarding how it was implemented were
also shown. The implementation allows the extraction of bridges involving an
unlimited number of nodes. It also orders the faults in the fault list by their
probability of occurrence, which allows the user to either take all the faults
produced or select the most probable ones. Finally, the implementation was
used to analyze some sample circuits and was compared with the random
fault generation feature in ADAMA, after performing fault simulation and
diagnosis. The obtained results were shown and explained in Section 4. It
was shown that the heuristics used in ADAMA are more capable of detecting
realistic faults than randomly generated ones. In addition to implementing
the IFA algorithm, a new algorithm for polygon splitting was presented.
The algorithm uses the corners of the polygons to perform the splitting and
therefore is easily applicable to Boundary elements in GDS files. Combining
this algorithm with the implementation allows circuit layouts with rectilinear
polygons to be processed.

In addition to being used for diagnosis algorithm evaluation, the imple-
mentation can also be used to improve the manufacturability of circuits. This
is done by first finding the problematic nodes in the circuit. After that, the
layout of the circuit can be modified to make the areas related to these nodes
more fault tolerant. This can reduce the effect of random spot defects on the
circuit and can also be used to fix systematic proximity-related defects such
as the electron beam proximity effect. Further accuracy can be achieved us-

55

ing this approach if the coordinates of the critical areas are extracted from
the implementation. This will allow easier pinpointing of the problematic
parts of the wires since nodes can span long lengths of wires and so do not
provide an accurate physical location on the chip. The implementation can
also be used to detect any occurrences of forbidden pitches.

Choosing the fault model

The IFA algorithm in the implementation provides a list of multi-node bridg-
ing faults. This allows the user to choose which fault model to apply, as men-
tioned previously, and in this implementation, a somewhat exhaustive test
for several fault models was used. Further work regarding this area would be
to find a way to choose the most realistic fault model to use for each fault.

56

Bibliography

[1] S. Holst and H.-J. Wunderlich, “Adaptive debug and diagnosis without
fault dictionaries,” in 12th IEEE European Test Symposium, May 2007,
pp. 7–12.

[2] ——, “A diagnosis algorithm for extreme space compaction,” in Proc.
Design, Automation and Test in Europe Conference, Apr. 2009, pp.
1355–1360.

[3] A. Jee and F. Ferguson, “Carafe: An Inductive Fault Analysis Tool for
CMOS VLSI Circuits,” in 11th Annual IEEE VLSI Test Symposium,
Apr. 1993, pp. 92–98.

[4] S. Zachariah and S. Chakravarty, “A Novel Algorithm for Multi-Node
Bridge Analysis of Large VLSI Circuits,” in Proc. 14th International
Conference on VLSI Design, Jan. 2001, pp. 333–338.

[5] J. Shen, W. Maly, and F. Ferguson, “Inductive Fault Analysis of MOS
Integrated Circuits,” IEEE Design Test of Computers, vol. 2, no. 6, pp.
13–26, Dec. 1985.

[6] W. Maly, “Realistic Fault Modeling for VLSI Testing,” in Proc. 24th
Conference on Design Automation, Jun. 1987, pp. 173–180.

[7] A. Sreedhar and S. Kundu, “On design of test structures for lithographic
process corner identification,” in Proc. Design, Automation and Test in
Europe Conference, Mar. 2011, pp. 1–6.

[8] A. Wong, “Microlithography: Trends, challenges, solutions, and their
impact on design,” IEEE Micro, vol. 23, no. 2, pp. 12–21, Apr. 2003.

57

[9] M. Abramovici, M. Breuer, and A. Friedman, Digital Systems Testing
and Testable Design, ser. Electrical Engineering, Communications, and
Signal Processing. IEEE Press, 1994.

[10] S. Zachariah and S. Chakravarty, “Extraction of Two-Node Bridges
From Large Industrial Circuits,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 23, no. 3, pp. 433–439,
Mar. 2004.

[11] M. Berg, O. Cheong, and M. Kreveld, Computational Geometry: Algo-
rithms and Applications. Springer, 2008.

[12] E. McCreight, Efficient Algorithms for Enumerating Intersecting Inter-
vals and Rectangles, ser. CSL-80-9. Xerox, Palo Alto Research Center,
1980.

[13] F. Preparata and M. Shamos, Computational Geometry: An Introduc-
tion, ser. Texts and Monographs in Computer Science. Springer-Verlag,
1985.

[14] Z. Stanojevic and D. Walker, “FedEx - A Fast Bridging Fault Extrac-
tor,” in Proc. International Test Conference, Nov. 2001, pp. 696–703.

[15] F. Goncalves, I. Teixeira, and J. Teixeira, “Integrated Approach for
Circuit and Fault Extraction of VLSI Circuits,” in IEEE International
Symposium on Defect and Fault Tolerance in VLSI Systems, Nov. 1996,
pp. 96–104.

[16] The Perl Programming Language. [Online]. Available:
http://www.perl.org/

[17] Cadence Encounter Digital Implementation System. [Online]. Available:
http://www.cadence.com/products/di/edi system/pages/default.aspx

[18] NanGate 45nm Open Cell Library. [Online]. Available:
http://www.nangate.com/?page id=22

[19] I.-L. Tseng. (2007) OwlVision tool. [Online]. Available:
http://www.owlvision.org/

58

