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Abstract

Embedded block coding with optimized truncation (EBCOT) is a coding algorithm used in
JPEG2000. EBCOT operates on the wavelet transformed data to generate highly scalable com-
pressed bit stream. Sub-band samples obtained from wavelet transform are partitioned into
smaller blocks called code-blocks. EBCOT encoding is done on blocks to avoid error propa-
gation through the bands and to increase robustness. Block wise encoding provides flexibility
for parallel hardware implementation of EBCOT. The encoding process in JPEG2000 is divided
into two phases: Tier 1 coding (Entropy encoding) and Tier 2 coding (Tag tree coding).
This thesis deals with design space exploration and implementation of parallel hardware archi-
tecture of Tier 1 encoder used in JPEG2000. Parallel capabilities of Tier-1 encoder is the motiva-
tion for exploration of high performance real time image compression architecture in hardware.
The design space covers the following investigations:

• The effect of block-size in terms of resources, speed, and compression performance,

• Computational performance.

The key computational performance parameters targeted by the architecture are

• significant speedup compared to a sequential implementation,

• minimum processing latency and,

• minimum logic resource utilization.

The proposed architecture is developed for an embedded application system, coded in VHDL
and synthesized for implementation on Xilinx FPGA system.
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1. INTRODUCTION

Joint Photographic Experts Group (JPEG) is a still image compression standard developed
in collaboration by the International Organization for Standardization (ISO), and the Interna-
tional Electrotechnical Commission (IEC) and recommended by International Telecommunica-
tion Union (ITU). JPEG supports compression of still images with most image sizes in any color
space. It aims at achieving compression performance with user-adjustable compression ratio,
lossless compression mode and excellent reconstruction quality. Although JPEG compression
standard is very successful for more than a decade, there has been significant innovation towards
development of technology related to multimedia, internet and communication. JPEG in spite of
its excellent performance lacks some of the desired features related to multimedia, internet and
communication platforms.

JPEG2000 [1, 4] was developed to overcome the limitation of JPEG, it offers high perfor-
mance in the application domain such as Internet, medical imaging, mobile multimedia com-
munication, satellite imagery, digital photography, digital library, image archival, 3g cellular
telephony, client-server networking, graphics etc. Some of the important features of JPEG2000
are:

• Lossless and lossy compression: Unified compression architecture which supports lossless
or lossy modes of compression and decompression.

• Low bit rate compression performance: It can achieve better image quality for a par-
ticular compression ratio as compared to JPEG. It offers high Peak signal-to-noise ratio
(PSNR)and image quality as compared to JPEG.

• Large image size and components: It can support image size up to (232− 1)× (232− 1)
and image components up to 214. This feature supports efficient processing of satellite
and astronomical images.

• Progressive transmission by resolution and image quality: It offers flexibility in organiz-
ing bit-stream in progressive mode of image quality. This feature allows efficiency and
flexibility in real time browsing of images on the internet.

• Random access and compressed domain processing: It offers flexibility in compressed-
domain processing such as cropping, rotation, scaling, feature extraction, etc. This can
be achieved by randomly accessing and modifying code-block from the compressed bit-
stream.

• Region of interest (ROI) coding: It offers flexibility in selectively encoding specific region
of image with higher quality as compared to rest of the image.

• Robustness to bit-errors: JPEG2000 offers error detection and correction features within
the code-block. Robustness is achieved by coding independent small-size code-blocks
and using markers for resynchronization in the bitstream

Some of the limitations and drawbacks of JPEG2000 are:

• JPEG2000 requires huge computational resource.
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• JPEG2000 requires very high computational time.

• JPEG2000 is very complex standard, hence requires huge development time.

• JPEG2000 introduces artifacts such as blocking and blurring in the compressed images
for higher compression ratio as compared to other compression standards such as H.264/
Advanced Video Coding (AVC) and Portable Network Graphics (PNG)[5, 6]

• JPEG2000 has memory bandwidth constraints[6] for high quality and high bandwidth ap-
plications, since wavelet transforms is global transform phenomenon the memory band-
width requirement is high as compared to AVC.

• For applications with communication bandwidth constrains, JPEG2000 with lossy com-
pression (20:1) is used, the quality of the image degrades as compared to H.264 at the
same compression ratio [7].

H.264/AVC compression standard is known for excellent image quality at low bit rates. It is
based on a block-based integer Discrete Cosine Transform (DCT) analogous to DWT transform
used in JPEG2000. Improvement in coding performance is mainly achieved by the prediction
block in the image processing chain of H.264/AVC. Inter and intra block prediction phenomena
are the key for achieving high quality compressed image with low bit-rate.

JPEG-LS [8] is simple lossless compression algorithm as compared to JPEG2000. JPEG-LS
offers lossless compression at less computation time as compared to JPEG2000, however JPEG-
LS does not support rich set of features such as scalability, error resilience, progressiveness,
etc supported by JPEG2000. The significant enhancement in compression time is achieved by
low-complexity processing blocks based on adaptive prediction, context modeling and Golomb
coding.

This thesis aims at optimizing the computational resource and enhancing compression time of
JPEG2000 by proposing parallel hardware architecture for EBCOT encoder used in entropy en-
coding phase. Profiling of software implementation of JPEG2000 in subsection 3.3.3 shows that
Tier-1 coding phase in JPEG2000 is responsible for considerable portion of overall compression
time. Synthesis results discussed under subsection 4.3 shows that EBCOT encoder in Tier-1
coding phase is computational expensive. Section 5 discusses several parallel architectures to
improve image compression performance of JPEG2000 encoder.
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2. EBCOT ALGORITHM

2.1. Introduction

JPEG2000 aims at compression algorithm that compresses images once and offers flexibility
in decompression for different application with multiple image quality and size. It also offers
lossless and lossy image compression modes. However JPEG2000 is computationally exhaustive
compared JPEG algorithm, this is one of the major drawback of JPEG2000.

The block diagram of JPEG2000 encoder algorithm is as shown in Figure 1. It shows different
phases of JPEG2000 compression algorithm, the compression phases can be mainly divided into
three phases

• Discrete wavelet transform (DWT)

• Quantization and

• Entropy encoding.

Forward multicomponent transformation is done as a preprocessing transformation before the
actual compression algorithm starts, in MultiComponent transformation the correlation between
multiple components of the image is reduced. This increases the compression performance by
reducing the redundant components in the image.

Figure 1: JPEG2000 encoder block diagram[2]

The DWT is done on the image components after preprocessing stage; DWT decomposes
each component into number of sub-bands of different resolution levels. Figure 2 is an example
of decomposition of image by DWT. DWT decomposes images into low frequency and high
frequency sub-bands. Row-wise decomposition of the image results in low frequency (L) and
high frequency (H) sub-bands as shown in the Figure 2. Further decomposition of the image
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in column-wise results in 4 sub-bands LL1, LH1, HL1 and HH1. Decomposition of the im-
age column-wise first and then row-wise results in same 4 sub-bands. LL1 sub-band represents
coarser approximate of the original image and LH1, HL1, HH1 represents detailed high fre-
quency approximate of the original image. LL1 sub-band can be further decomposed into 4
sub-bands recursively as shown in the Figure 3 a) and b).

Sub-bands from DWT are quantized independently and divided into number of code-blocks
of fixed size as shown in Figure 4. Entropy encoding is applied on each of these sub-bands
independently to generate compressed bit stream. Entropy encoding phase consists of Tier-1
and Tier-2 coding steps. Tier-1 coding decomposes the code-block into bit-planes as shown
in Figure 4 and coding is done per bit-plane starting from most significant bit-plane to least
significant bit-plane. Tier-1 coding consists of two steps, Fractional Bit-Plane Coding (BPC)
and Binary Arithmetic Coding (BAC).

Embedded block coding with optimized truncation (EBCOT) algorithm is used for BPC cod-
ing and MQ-coder is used for BAC coding. Tier-2 coding engine is responsible for efficeint
representation of encoding information associated with code-blocks such as block summary
information, bitstream layers, truncation points between bitstream layers and most significant
bit-plane. Tag Tree data structure is used by Tier-2 coding phase for efficient representation of
information.

Figure 2: Image decompositon by DWT[2]

Figure 3: Multi level image decompositon by DWT[2]
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Figure 4: Sub-band decompositon into code-blocks and bit-planes

This chapter discusses EBCOT coding and MQ-coder algorithm in detail. The chapter intro-
duces various terminologies used in the algorithm, basic encoding algorithms and coding stages.
Coding stages uses these encoding algorithms to produce Context(CX) and Decision bit(D) out-
puts of EBCOT coding phase. CX and D bit information are encoded by MQ-coder to generate
compressed bit-stream.

Entropy encoding in Tier-1 is done on wavelet sub-bands generated by DWT. The sub-bands
are further divided into code-blocks of fixed size as shown in Figure 4. Pixel components of the
sub-bands are represented in sign-magnitude representation of integers. Code-block dimensions
are restricted by the standard, dimensions has to be power of 2 with minimum height and width
being restricted to 2 and 4 and maximum height and width being restricted to 1024. Maximum
elements of the code block is further restricted to 4096. 32× 32 or 64× 64 code-block size is
recommended by standard for good compression performance.

Tier-1 coding in JPEG2000 consists of two processing stages, Bit Plane Coding (BPC) and
Binary Arithmetic Coding (BAC). BPC coding is applied on each bit-planes of the code blocks,
so the code-blocks are further decomposed into bit-planes as shown in Figure 4. If the resolution
of each component is N bits then the code-blocks of each sub-bands are decomposed into N bit-
planes and BPC is applied on each of these bit-planes of the code-block. BPC generates context
and binary decision value as intermediate output. This intermediate data is input to BAC coding
stage.

Embedded Block Coding with Optimized Truncation (EBCOT) algorithm [4] is adapted for
implementation of BPC in JPEG2000.This algorithm aims at minimizing bitstream generated
and minimizes the statistics to be maintained by exploiting the redundancies within and across
bit planes of the code-block. EBCOT encoding is also called as fractional bit-plane coding
because encoding is done in three different phases with no overlapping between the phases.
Encoding phases of BPC in sequences of their processing are

• Significant Propagation Pass (SPP),

• Magnitude Refinement Pass (MRP) and
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• Cleanup Pass (CUP).

These encoding phases will be discussed in detail in subsection 2.4.

2.2. Terminology

This subsection introduces some of the terms used for describing the algorithm.

Code-Block(y): Code-block is a two dimensional array of predetermined dimension. The
array elements are the components of the image after DWT and quantization. The samples are
represented in sign-magnitude form. Every sample of the code block are associated with σ ,σ

′

and η(discussed in detail later) to indicate their status of encoding.

Sign Array (χ): Sign array is two dimensional array representing the signs of the sample
of code-block. The dimension of sign array is same as that of code-block. Sample χ[m,n]
represents the sign information of sample y[m,n] of the code-block. Value of χ[m,n] is given as
below

χ[m,n]
{

1 if y[m, n] <0
0 otherwise

χ[m,n] is assigned zero for the cases for which m and n are out of range of code-block size.

Magnitude Array (υ): υ is a two dimensional array of unsigned integer, the dimension of υ

array is same as that of the code-block. The array element υ [m,n] represents the magnitude of
the element at [m,n] location of the code-block. The notation υ p[m,n] is used to denote the Pth

bit of υ [m,n].

Bit-Plane: The magnitude of the elements of the code-blocks are decomposed bitwise to form
a plane called bit-plane. If the magnitude array (υ) is represented using P bits then the elements
are decomposed into P different bit-planes.

Scan Pattern: Scan pattern defines the sequence in which the elements of the bit-plane are
encoded or decoded. Bit-plane of a code-block is conceptually divided into sections: Each
section consists of four rows and number of column is same as that of columns of the code-
block. If the row dimension of code-block is not a multiple of 4 then all sections has 4 rows
except the last section.

Encoding of elements of a code-block starts from first section downto last section. Within
each section scan starts from first row first column downto first column fourth row and starts
again from first row second column and so on until all the columns are scanned. There are two
modes of scan pattern, Regular mode and Vertical causal mode. In regular mode after scan of
last element of a section, it start with the first row first column element of the next section, here
it uses the information from the previous section. In vertical causal mode each section will be
scanned as a independent module, the information will not be shared across sections. Figure 5
shows an example of scan pattern for a bit-plane of a code-block.
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Figure 5: Bit-plane scan pattern

State Variables σ ,σ
′
and η : These state variables are two-dimensional arrays with dimension

same as that of the code-block. These state variables indicate the coding status of each element
in the code-block during entropy encoding. Initially the values of these elements are cleared
to zero and after completion of coding each code-block these variables are cleared again. The
values of σ [m,n] and σ

′
[m,n] are set to 1 based on certain conditions but are not cleared to zero

before the completion of coding of entire code-block. The values of variables η [m,n] are cleared
to zero after completion of coding of each bit-plane in a code-block. The interpretation of state
variables σ ,σ

′
and η are as below:

σ [m,n]

1: Indicates that first nonzero bit of υ [m,n] at row m and column n has been coded.

0: It either indicates that the first nonzero bit of υ [m,n] is not coded or m and n are out of range
or invalid.

σ
′
[m,n]

1: Indicates that Magnitude Refinement Coding (MRC) has been applied to element υ [m,n].

0: Indicates that Magnitude Refinement Coding (MRC) has been not applied to element υ [m,n].

η [m,n]

1: Indicates that zero coding operation has been applied to υ p[m,n] in Significant propagation
pass.

0: Indicates that zero coding operation has been not applied to υ p[m,n].

Preferred Neighborhood: An element y[m,n] in the code-block is said to be in a preferred
neighborhood if at least one of its eight adjacent neighbors has σ [m,n] value equal to 1.
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Zero Coding Tables: Zero coding tables are used for Zero coding operation. Context informa-
tion is generated from zero coding operation. There are different zero coding table for different
sub-bands, and the context information is generated from the significance states (σ ) of the eight
neighbors of an element being encoded. Table 1 shows an example of eight neighbors of an
element X , if for example X is an element in LL or LH sub-band, and if the two horizontal
neighbors have significance state value of 1. The context value 8 will be used as shown in Table
2. Similarly Table 3 and Table 4 are used for HL and HH sub-bands respectively.

Table 1: Neighborhood for zero coding context generation
D0 V0 D1
H0 X H1
D3 V1 D2

Table 2: Zero Coding Context Table for Code-Blocks from LL and LH Subbands
LL and LH Subbands Context Label
Σ H Σ V Σ D CX

2 x x 8
1 ≥1 x 7
1 0 ≥1 6
1 0 0 5
0 2 x 4
0 1 x 3
0 0 ≥2 2
0 0 1 1
0 0 0 0

2.3. Coding operations

This subsections gives detailed explanation about the basic coding operations used by the
EBCOT algorithm. There are four basic coding operations used by EBCOT depending on the
coding phases, status of the state variables and current element’s location. EBCOT algorithm
produces context(CX) and decision bit(D) value as output. Context(CX) can take any value
among 0 to 18 and decision bit(D) takes binary value 0 or 1. The basic coding operations are as
below:
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Table 3: Zero Coding Context Table for Code-Blocks from HL Subbands
HL Subbands Context Label

Σ H Σ V Σ D CX
x 2 x 8
≥1 1 x 7
0 1 ≥1 6
0 1 0 5
2 0 x 4
1 0 x 3
0 0 ≥2 2
0 0 1 1
0 0 0 0

Table 4: Zero Coding Context Table for Code-Blocks from HH Subbands
HH Subbands Context Label

Σ(H + V) Σ D CX
x ≥3 8
≥1 2 7
0 2 6
≥2 1 5
1 1 4
0 1 3
≥2 0 2
1 0 1
0 0 0

Zero coding (ZC): In zero coding operation Decision bit is same as the υ p[m,n]. Context
(CX) values is determined from one of the three Zero coding tables, depending on the type of
sub-band (LL, LH, HL, HH) encoded. The context output from Zero coding can take a value
from 0 to 8. The context value is decided by the significance states of eight neighbors of the
current element encoded.

Sign coding (SC): SC computes CX and D value based on Horizontal reference value (H) and
Vertical reference value (V). The value of H and V are calculated as shown in equation 1 and 2,
with (m,n) being the current location of the element encoded.

H = min[1,max(−1,σ [m,n−1]× (1−2χ[m,n−1])+σ [m,n+1]× (1−2χ[m,n+1]))] (1)

V = min[1,max(−1,σ [m−1,n]× (1−2χ[m−1,n])+σ [m+1,n]× (1−2χ[m+1,n]))] (2)
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The reference value calculated indicates three possible status of the neighbor elements. The
neighbors for H reference calculation are horizontal adjacent elements and the neighbors for V
reference calculation are vertical adjacent elements. A neighbor is said to be significant if state
variable σ is equal to 1 and insignificant if σ is equal to 0. The H and V reference values are
interpreter as below:

0: Indicates both neighbors are insignificant, or both neighbors are significant but have oppo-
site signs.

1: indicates that one or both neighbors are significant with positive sign.

-1: indicates that’s one or both neighbors are significant with negative sign.

Context (CX) and a binary value χ̂ is calculated from H and V values from the sign coding
reference Table 5. Decision bit (D) is calculated by equation 3.

D = χ̂⊕χ[m,n] (3)

Table 5: Sign coding Context Table
H V χ̂ CX
1 1 0 13
1 0 0 12
1 -1 0 11
0 1 0 10
0 0 0 9
0 -1 1 10
-1 1 1 11
-1 0 1 12
-1 -1 1 13

Magnitude Refinement Coding (MRC): Decision bit value (D) of an element at (m,n) is equal
to value of υ p[m,n], where p is the bit plane processed by MRC. The value of CX of an element
at (m,n) is determined by σ

′
[m,n] and sum of values of state variable σ of its eight neighbors.

The value of CX is determined from σ
′
and σ from the Table 6

Table 6: Magnitude Refinement Coding reference table
σ
′
[m,n] σ [m−1,n]+σ [m+1,n]+σ [m−1,n−

1]+σ [m−1,n+1]+σ [m+1,n−1]+
σ [m+1,n+1]

CX

1 x 16
0 ≥1 15
0 0 14
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Run Length Coding(RLC): Run length coding algorithm is capable of coding from one to four
consecutive bit elements in the current scan pattern stripe. The number of bits coded depends
on the position of first ”1” bit in the four consecutive bits. If all the four bits are ”0” then all of
them are coded. If any of the bits are ”1” then all preceding ”0” until the bit ”1” is coded. In run
length coding the number of D bits can be one or four depending on the number of ”1” in the
scan pattern stripe.

The first D is equal to 0 if all four bits are 0, otherwise it is equal to 1. CX value in both of
these cases is equal to 17. Additionally two more D bits are used to indicate the position of first
1 bit among four consecutive scan pattern bits. These two D bits are used with uniform context
value 18. Table 7 summarizing the Context value for all four coding operations. Initial index
portion of the Table 7 will be discussed in deatil under subsection 2.5.

Table 7: Coding Operations Context summary table
Operation Context (CX) Initial Index I(CX)

Zero Coding

0 4
1 0
2 0
3 0
4 0
5 0
6 0
7 0
8 0

Sign Coding

9 0
10 0
11 0
12 0
13 0

Magnitude Refinement Coding
14 0
15 0
16 0

Run-Length Coding UNIFORM
17 3
18 46

2.4. EBCOT Coding Passes

EBCOT coding is done in three different coding passes, coding passes in their order of coding
are Significance propagation pass (SPP), Magnitude refinement pass (MRP) and Cleanup pass
(CUP). Each of these passes are applied to every bit-plane of the code-block except the most
significant bit-plane. For most significant bit-plane only CUP coding pass is applied. In each
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of the coding pass the bits are scanned as per scan pattern and encoded, after completion of
one coding pass, the next coding pass restarts the scan from the beginning of the bit-plane of
the code-block. Coding passes in order of coding in EBCOT algorithm are explained in detail
below:

Significance Propagation pass (SPP): SPP is applied to every bit-plane except the most sig-
nificant bit-plane. SPP checks for possibility of application of Zero coding(ZC) and Sign Cod-
ing(SC) to the current scan bit. ZC is applied if the current scan bit (m,n) is in preferred neigh-
borhood and σ [m,n] = 0 and η [m,n] is set to 1. SC is applied if υ p[m,n] = 1 and σ [m,n] is set
to 1. SPP scan is continued until all the bits in bit-plane are coded. Figure 6 shows the flow chart
of SPP.

Magnitude Refinement Pass (MRP): MRP coding is applied to every bit-plane except the most
significant bit-plane. MRP is applied to the current scan bit at position (m,n) if the state variables
σ [m,n] = 1 and η [m,n] = 0, and σ

′
[m,n] is set to 1. MRP coding is continued until all the bits

is the bit-plane are encoded. Figure 7 shows the flow chart of MRP.
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Figure 6: Significant Propagation Pass Flowchart
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Figure 7: Magnitude Refinement Pass Flowchart
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Figure 8: Cleanup Pass Flowchart
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Cleanup Pass (CUP): CUP coding is applied to every bit-plane of the code-block. CUP can
apply Sign Coding (SC) and one among Run-Length Coding (RLC) or Zero Coding (ZC) to the
current scan element (m,n) based on the value of the state variables. If σ [m,n] and η [m,n] are
equal to 0 then CUP applies the coding algorithms to the bit, otherwise it skips to next scan bit
in the bit-plane. If σ [m,n] == 0 and η [m,n] == 0 then CUP checks to apply RLC or ZC, below
three conditions should be satisfied to apply RLC, if any one of them is not satisfied then ZC is
applied to current scan bit.

• m is multiple of four, including m = 0.

• σ = 0 for the four consecutive locations on the same column, starting from current scan
position.

• σ = 0 for all the adjacent neighbors of the four consecutive bits in the column.

The number of coded bits vary depending on the type of coding applied to the scan bit. CUP
after RLC or ZC coding, checks for application of SC. If υ p[m,n] equals to 1 then SC is applied
to the scan bit and σ [m,n] is set to 1. CUP iterates this for all the bits in the bit-plane of the
code-block, after completion of all the bits in the bit-plane, η [m,n] is cleared to 0 for all n and
m in the bit-plane before starting coding of the next bit-plane. Figure 8 shows the flow chart of
CUP coding.

2.5. Binary Arithmetic Coding (BAC)

EBCOT algorithm uses Binary Arithmetic Coding (BAC) to encode/decode symbols gener-
ated from BPC. Context (CX) and decision (D) information generated from BPC is encoded
by BAC to generate compressed code bytes. BAC used in Tier-1 coding is a special variant of
QM-coder used in JPEG, it’s a context adaptive BAC know as MQ-coder.

Arithmetic coding is a variable length encoding technique, it encodes a sequence of input
symbols to generate specific code. In arithmetic coding the input symbols are encoded into an
interval of real number, the encoded interval is confined to a fixed standard range associated
with the algorithm. Length of the encoded interval is inversely proportional to the probability of
occurrence of the symbol. More probable symbol produces smaller encoded interval than less
probable symbol and hence reaching higher encoding efficiency.

Arithmetic coding is highly efficient for coding bi-level symbols as compared to other entropy
encoding techniques. However arithmetic coding is computational exhaustive and is more prone
to errors. Several coding techniques have been derived from arithmetic coding to overcome com-
putation complexity, QM-coder is one such coding technique. QM-coder is an adaptive binary
arithmetic coding algorithm used in JBIG2 (Joint Bi-level Image Processing Group) standard [9]
for bi-level image compression. It is an incremental coding technique, where the encoder need
not wait until all the symbols are received to generate encoded data and decoder need not wait
until all the encoded data are received to start decoding.
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The principle idea of QM-coder is to map input symbols to more probable symbol (MPS) and
less probable symbol (LPS). For instance if the inputs to QM-coder are binary signals 1 and 0,
bit 1 is mapped to MPS if most of the neighbors of the current bit coded are 1 and bit 0 will
be mapped to LPS, similarly bit 0 is mapped to MPS if most of the neighbors of the current bit
coded are 0 and bit 1 will be mapped to LPS. QM encoder decides if the next input bit belongs
to MPS or LPS and compresses this information, similarly decoder determines if the decoded
bit is MPS or LPS and generates the decoded symbols based on this information.

QM-coder assigns a portion of predetermined fixed interval to MPS and LPS symbols based
on the probability estimates of the symbols, it uses probability estimation table for each of the
symbols generated in coding process. MQ coder used in JPEG2000 is a variant of QM coder
in terms of the encoding interval, probability estimation table and computation complexity of
coder. In this thesis we concentrate on MQ-encoder algorithm and its implementation specifics,
MQ-decoders algorithm is beyond the scope of this thesis.

2.5.1. MQ-encoder

Top level block diagram of MQ-encoder is as shown in Figure 9. Inputs to MQ-encoder are Con-
text (CX) and Decision (D) bit generated from BPC block. MQ-encoder generates compressed
data as output. MQ encoder uses several look-up-tables (LUT) for the computation of com-
pressed data, LUTs used by MQ-encoder are probability estimate table (Qe-table), this holds the
probability estimates for all possible states reached by the encoder, Index-context table (I(CX))
and More Probable Symbol context table (MPS(CX)) are used along with the Qe-table to keep
track of state and the index of Qe-table for different input context value.

I(CX) is used to track the index of Qe-table, initial value of I(CX) is provided by the standard
[1], it is as shown in the Table 7. MPS(CX) LUT is initialized to all zeros, it provides the sense
of more probable symbol (1 or 0) of CX. NMPS(I(CX)) and NLPS(I(CX)) LUTs are used to
identify next MPS/LPS index values respectively. SWITCH(I(CX)) indicates if the sense of
MPS(CX) has to be inverted, next section discusses in detail about the condition under which
the sense of MPS has to be inverted. LUTs of Qe, NMPS, NLPS and SWITCH with respect to
index reference are as shown in Table 8.

Figure 9: MQ Encoder top level block diagram[1]

MQ-encoder requires two 32-bit register for computation. Register A and register C, the
structure of these are as shown in Table 9. Register A is the interval register and is initialized to
0x00008000. Register C is code word register and is initialized to 0x00000000. “a” of register
A represents fractional bits. In register C “x” represents fractional bits, “s” represents space bits,
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Table 8: BAC lookup table for Qe value and probabiliy estimation[1]
Index Qe NMPS NLPS SWITCH

0 0x5601 1 1 1
1 0x3401 2 6 0
2 0x1801 3 9 0
3 0x0AC1 4 12 0
4 0x0521 5 29 0
5 0x0221 38 33 0
6 0x5601 7 6 1
7 0x5401 8 14 0
8 0x4801 9 14 0
9 0x3801 10 14 0
10 0x3001 11 17 0
11 0x2401 12 18 0
12 0x1C01 13 20 0
13 0x1601 29 21 0
14 0x5601 15 14 1
15 0x5401 16 14 0
16 0x5101 17 15 0
17 0x4801 18 16 0
18 0x3801 19 17 0
19 0x3401 20 18 0
20 0x3001 21 19 0
21 0x2801 22 19 0
22 0x2401 23 20 0
23 0x2201 24 21 0
24 0x1C01 25 22 0
25 0x1801 26 23 0
26 0x1601 27 24 0
27 0x1401 28 25 0
28 0x1201 29 26 0
29 0x1101 30 27 0
30 0x0AC1 31 28 0
31 0x09C1 32 29 0
32 0x08A1 33 30 0
33 0x0521 34 31 0
34 0x0441 35 32 0
35 0x02A1 36 33 0
36 0x0221 37 34 0
37 0x0141 38 35 0
38 0x0111 39 36 0
39 0x0085 40 37 0
40 0x0049 41 38 0
41 0x0025 42 39 0
42 0x0015 43 40 0
43 0x0009 44 41 0
44 0x0005 45 42 0
45 0x0001 45 43 0
46 0x5601 46 46 0
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it provides constraints on carryover, “b” represents bits of ByteOut and “c” represents the carry
bit.

MQ-encoder subdivides the interval into two sub-interval for each context (CX) and decision
(D) pair input. The interval register content is modified accordingly to point to the lower bound
of the probability sub-interval of the symbol currently encoded. Partitioning of the sub-interval
is done in such a way that the sub-interval of MPS is positioned above the sub-interval of LPS.
Hence its necessary for the encoding algorithm to recognize the input symbols as MPS or LPS
and keep track of the sense of MPS/LPS along with the interval associated with that. Since the
encoding process works on the basis of accumulating several symbol information before finally
generating compressed data byte, more probable symbols are encoded with much less than one
bit per symbol.

MQ-decoder algorithm performs the inverse operation on the compressed data to generate the
encoded symbols. MQ-decoder primarily determines the sub-interval pointed to by the com-
pressed data, it also operates recursively for determination of context and decision information.

The interval considered for MQ-coder is 0.75, MQ-coder uses fixed precision integer arith-
metic. Integer representation of the fractional value 0.75 is equivalent to 0x8000 in hexadecimal.
Hence the A register is initialized to 0x8000 and C register is initialized to 0x0000. The algo-
rithm is designed to keep the interval in the range of 0.75≤ a≤ 1.5, whenever the interval value
falls below 0.75, interval correction is made by doubling it. The content of C register is also
doubled whenever the A register content is doubled. Compressed data byte is generated from
the higher order bits of C register, bit position of C register are as shown in Table 9. Carry over
to already generated compressed byte is avoided by the algorithm.

Calculations of the sub-intervals are as shown in equations 4 to 7, a simple arithmetic approx-
imation is used for interval sub-division. For the purpose of illustration if the interval is A and
probability estimation of LPS/MPS is Qe then the sub-interval for MPS is given by equation 4
and sub-interval for LPS is given by 5. Since the value of A is close to unity equations 4 and
5 are approximated to equation 6 and 7 respectively. At each sub-interval calculation step, the
value of A is checked to determine if renormalization of interval is necessary, in such a case the
value of A register and C registers are renormalization.

MPS sub− interval = A− (Qe∗A) (4)

LPS sub− interval = (Qe∗A) (5)

MPS sub− interval = A−Qe (6)

LPS sub− interval = Qe (7)
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The interval subdivision process can run into a scenario where the value of MPS is less than
the value of LPS, in such a case the intervals of MPS and LPS are exchanged, such a condition
can occur when renormalization is necessary. During renormalization process the value of next
probability estimate is determined for the current context value being encoded. The value of
next probability estimation is determined from Table 8

The flow chart of MQ-encoder is as shown in Figure 10. In the ”initialization” step the compu-
tational register A and C are set to their initial values, the counter and pointer variables used by
the algorithm are set to default value and the LUTs are reset to default value. In the ”Read CX,
D” step the Context (CX) and Decision (D) input symbols are read from BPC stage. The read
symbols are used in the decision ”D==MPS(CX)” step to compare the D value with the sense
of MPS associated with the current context values. If the D value is same as the sense of MPS
associated with current CX then MPS coding is performed otherwise LPS coding is performed.
After MPS or LPS coding operation, the next CX and D symbol pair is read for encoding, this
cycle is repeated until all the symbols are encoded.

In MPS coding step ”CodeMPS” Qe value associated with current CX is read from the LUT
Table 8. The content of C register is added with Qe value and the interval register A is modified
correspondingly. Depending on the value of interval register A, the sense of MPS/LPS may be
exchanged and the content of A and C registers may be renormalized. The values of next index
for the current CX is determined by NMPS(I(CX)) value from the LUT Table 8.

In LPS coding step ”CodeLPS” Qe value associated with current CX is read from the LUT
Table 8. The content of A and C registers are modified correspondingly. If the value of SWITCH
for the index of current CX is “1” then the sense of MPS is changed. The renormalization
procedure is always called in LPS coding and is called in MPS coding procedure if the value
of A register is less than 0x8000. The next index for the current CX is given by NLPS(I(CX))
value in the LUT Table 8.

In renormalization procedure the content of A register is shifted left until its value is equal
to or greater than 0x8000, during this shifting process the context of C register is also shifted
same number of time as it is done with A register. The renormalization procedure may invoke
the function to output the compressed byte from the C register, it also avoids propagation of
carry into already outputted compressed byte. ”FLUSH register” step is reached after all the
symbols are encoded, in this step the register C is stuffed with as many ”1” bits as possible
before outputting the final byte of the compressed stream. Pseudo code[2] for ”Initialization”,
”CodeMPS”, ”CodeLPS” and ”Renormilization” is as shown under Appendix C.
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Table 9: BAC Encoder Register Structures
32-Bit Register MSB LSB

C 0000 cbbb bbbb bsss xxxx xxxx xxxx xxxx
(Code Register)

A 0000 0000 0000 0000 aaaa aaaa aaaa aaaa
(Current Interval Value)

Figure 10: MQ-Encoder flow chart[2]

25



3. EBCOT ENCODER IN SOFTWARE

The EBCOT hardware architecture design in this thesis is verified against a reference model
from OpenJPEG [10]. OpenJPEG is an open-source library for JPEG2000 encoder and decoder.
OpenJPEG is implemented in C language. OpenJPEG apart from JPEG2000 codec features, it
also supports Motion JPEG2000 (MJ2) features. Some of the features supported by OpenJPEG
software are:

• Lossless and lossy compression with different compression ratios.

• Different input image formats like ”pgx”, ”pnm”, ”pgm”, ”ppm”, ”bmp”, ”tif”, ”raw”,
”tga”, ”png”

• Ouput image formats like J2k and JP2.

• Supports image size up to (232−1)× (232−1) and image components up to 214

• Code-block size in powers of 2 upto maximum image size.

• Supports tile sizes in powers of 2 upto maximum image size.

• ROI processing support.

• Use of irreversible DWT 9-7

• Cinema 2k and 4k resoultion modes, supports only 24 or 48 frames per second video
formats.

• Markers in main header and tile header (SOC SIZ COD QCD COM).

• Progression order (LRCP, RLCP, RPCL, PCRL, CPRL).

• SOP and EPH markers in the code streams.

• Coding of multiple images at a time(10 images at one go, sequentially)

3.1. Architecture

Top level software architecture of OpenJPEG is as shown in Figure 11. In Initialization step,
event call-back functions are defined, encoding parameters are set to default values and the
indexes used during encoding/decoding are initialized. Command line parser parses the user
commands for input image with coding type and coding parameters. Read input image block
reads the image to be processed from the specified directory. OpenJPEG can process upto ten
images with one command, these images are encoded/decoded sequentially one after the other.
Coding type parameter is used to select encoder or decoder function for processing the input
image in next step. The generated output stream is written into specified output file in write to
outfile block.
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Figure 11: Software Architecture block diagram

We focus our discussion on Encoder block in this thesis. Figure 12 shows the block diagram
of Encoder. Write markers block writes several markers such as Start of Code stream (SOC
marker), Image size and tile size (Size marker), Coding style (COD marker) and quantization
default (QCD marker) to code stream. Create tile encoder creates the data structure for tile en-
coder and returns the handler for further use. Memory required for processing of tile is allocated
by allocate memory block, memory required for one tile is allocated and is reused for rest of the
tiles.

Start of tile and start of data markers are written in write SOT and SOD markers blocks.
Encoding of the data is done in Tile encode block (TCD), TCD encode block encodes the data
from input image into JPEG2000 code stream and writes the encoded code stream into buffer.
TCD encoding is repeated for all the tiles and the code stream is written into the outfile. Memory
allocated for TCD block is freed after completion of encoding operation and is done in Free
memory block. EOC marker block writes End of Code stream marker into the code stream.

Figure 12: Encoder block diagram

TCD encoder is the block resposible for implementation of coding phases of EBCOT. Block
diagram of TCD encoder is as shown in Figure 13. Input image is extracted and processed in
terms of tiles, this is done by extract tile data block. Reversible multi-component transform is
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applied to the extracted data in MCT encoder. Discrete wavelet transform is applied to MCT
encoded data in DWT encode.

Tier 1 encoding is done on the DWT encoded data to produce Context (CX) and Decision
value bit (D). Rate allocation block is responsible for construciton of bit-stream from encoded
code-blocks for a give bit-rate with least distortion. Tier-2 encoding is primarily responsible
for efficiently representing layer and block summary information for each code-block. Tag Tree
data structure is used in Tier-2 encoding for efficient code stream representation. In clean up step
the memory allocated for coding is cleared and the parameters are initialized to default values.

Figure 13: TCD Encoder block diagram

3.2. Profiling

This subsection deals with profiling of JPEG2000 encoder implemented in software. The aim
of profiling is to analyze different processing blocks in JPEG2000 encoder in terms of the relative
processing time, processing dependencies with respect to different code-block sizes, image sizes,
color components, image properties etc. Several images with different characteristics were used
for profiling. Characteristics of images used for profiling are shown in Table 10. Images used
for profiling are shown under Appendix B.

Table 10: Image characteristics table
Image Dimension (pixles) Size (bytes) Bits per component No of components

Bretagne1.ppm 640x480 921638 8 3
Bretagne2.ppm 2592 x 1944 15116584 8 3
Cevennes1.ppm 2592 x 1944 15116584 8 3

bike.pgm 2048x2560 20263700 8 3
target.pgm 512x512 950471 8 1
lena.ppm 512x512 2883036 8 3
lena.pgm 512x512 983503 8 1

cwheel.ppm 800x600 4599557 8 3
cwheel.pgm 800x600 1686904 8 1
frymire.ppm 1118x1105 11781663 8 3
frymire.pgm 1118x1105 4103510 8 1
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Each of the images in Table 10 were encoded and profiling statistics were collected. Encoding
of these images were done with three different code-block size of 64×64, 32×32 and 16×16.
The tile size for all the images was configured to 1. J2K Output image format was configured for
all image encoding. Three different compression ratio of 100, 20 and 2 were used for encoding
and reversible DWT 5-3 was used for encoding of all images.

3.3. Profiling results

Profiling of JPEG2000 software implementation is done with images of different compression
parameters, each of the profiling experiments and their results are discussed in detail in the below
subsections.

3.3.1. Compressed image size

This subsection discusses the dependencies of compressed image size on different compres-
sion parameters. Compression algorithm is ran on the images in Table 10 for three different
iterations with code-block size of 64× 64, 32× 32 and 16× 16 respectively. The size of the
compressed images is collected, alone with the size of original uncompressed image.

Compressed image size along with original image size in bytes is plotted against the images.
The plot is as shown in Figure 14. The plot shows that increase in code-block size decreases the
size of the compressed image since the number of code-blocks formed for the images decrease
and hence the size of encoded bit stream. The size of the compressed image also depends on the
characteristics of the image; in general synthetic images are compressed better as compared to
nature images.
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Figure 14: Compressed image Size

3.3.2. Compression time

Dependency of compression time on the size of the code-blocks is analyzed in this subsection.
The images in Table 10 are compressed with code-block sizes 64× 64, 32× 32 and 16× 16
and the time required to compress in each iteration are noted. Figure 15 shows the plot of
compression time against images.

Plot shows that the compression time increases with decrease in code-block size. When the
code-block size is decreased the number of code-blocks formed per image increases and pro-
cessing blocks like Tier-1 and rate allocation consumes significant amount of compression time
(discussed in detail in subsection 3.3.3). For the set of images in Table 10, on an average it is
observed that compression time with code-block size 32× 32 decreases by 60% as compared
to compression time with code-block size 16× 16 and compression time with code-block size
64×64 decreases by 75% as compared to compression time with code-block size 16×16.
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Figure 15: Compression time

3.3.3. Block processing time

This subsection deals with analysis of processing time consumed by individual blocks of
JPEG2000 encoder and the effect of code-block size on processing time of these block. Figure
16 shows the plot of processing time against images, the processing time consumed by each
block for a particular image is plotted.

Plot shows that for code-block size 64× 64 processing time consumed by Tier-1 encoder is
higher than the rest of the processing blocks irrespective on the image characteritics. For the
set of images in Table 10, on a average it is observed that for code-block size 64× 64 Tier-1
consumes 65% of total compression time required for each image. Figure 17 and 18 shows
block prcessing time plot for clode-block size 32× 32 and 16× 16 respectively. It is observed
that rate allocation block’s processing time increases significantly however Tier-1 processing
time marginally increases with increase in code-block size.
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Figure 16: Block processing time (code-block 64×64)

Figure 17: Block processing time (code-block 32×32)
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Figure 18: Block processing time (code-block 16×16)

3.3.4. Conclusion

Profilng results have shown that Tier-1 encoding block consumes significant amount of compres-
sion time. Section 2 gives detailed explanation about the resources requirements for implemen-
tation of EBCOT in hardware. EBCOT encoder consumes significant amount of computational
resource in JPEG2000. The aim of this thesis is to propose parallel architectural design to opti-
mize resource requirement and processing time of EBCOT encoder.
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4. EBCOT ENCODER HARDWARE IMPLEMENTATION

This Section discusses the hardware implementation of EBCOT Tier-1 encoder. it discusses
the top level architecture of major processing components of Tier-1 encoder in detail. Sub-
section 4.1.1 to 4.1.6 discusses in detail the architecture and hardware structure of individual
components of BPC and BAC. Subsection 4.2 discusses the verification methodology adapted
for verification of individual components of BPC and BAC. Simulation and synthesis results of
BPC and BAC design are discussed under subsection 4.3.

4.1. Architecture

This subsection discusses the hardware architecture and implementation of BPC and BAC in
detail. Architecture is designed keeping in mind the feasibility of implementation on a FPGA
(Field Programmable Gate Array), it also takes advantage of the flexibility offered by Xilinx
FPGA in terms of block RAM and LUTs available on FPGA. A VHDL package of subtypes
with meaningful names is created and these subtypes are used in the design files for better
readability, ease of use and to reduce coding complexity. The VHDL package used in the design
is given in appendix A.

4.1.1. BPC TOP

Hardware is designed and implemented in a hierarchical fashion. Basic encoding algorithms
like sign coding (SC), zero coding (ZC), run length coding (RLC) and magnitude refinement
coding (MRC) are at the leaf level of the hierarchy. Instances of these leaf level blocks are used
in SPP, MRP and CUP coding passes which forms the next hierarchy. Instances of coding passes
and block RAMs along with control, input and output logic are used in top level and it forms
the highest level of hierarchy. Hierarchy structure of BPC is as shown in Figure 19. The top
level architecture of BPC is as shown in Figure 20. Processing blocks depicted in Figure 20 are
explained in detail in the subsections below.
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Figure 19: Hierarchy of BPC design

Input Block

Input block reads the quantized wavelet coefficients for entropy encoding. Input block reads
the coefficients associated with the entire code-block in single iteration. The read coefficients
are decomposed into bit-planes and stored in the block RAM associated with the bit-plane. BPC
algorithm does processing on each of the bit-planes associated with one code-block. Input block
is described along with a flow chart under subsection 4.1.2

State Variable (σ ,σ
′
, η, υ, χ) Block RAM

Block RAMs(Random Access Memory) in FGPA are used to store the values associated with
the state variables used in BPC entropy encoding. Each of these block RAMs are accessed
by several processing block in BPC. The blocks accessing state variable’s block RAMs are
Input block, SPP, MRP and CUP. BPC architecture is designed with the assumption that the
maximum code-block size processed by the system is 32×32 pixels. However the code-block‘s
size variables are parameterized in the design file, hence the system can be easily enhanced
to higher code-block size by replacing the block RAMs with relevant dimension and assigning
corresponding values to code-block’s size parameters.

Memory Arbiter

Block RAMs used by state variable are accessed by several processing blocks. Memory Ar-
biter arbitrates among the port requesting access to block RAMs. Each input port requesting
access is associated with a control signal, on assertion of this control signal the request to access
port is granted to the requesting port. Detailed discussion about memory arbiter is done under
subsection 4.1.4.
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SPP, MRP and CUP

SPP, MRP and CUP are the coding passes of BPC algorithm. Each of these coding passes
performs encoding operation on bit-planes of the code-block to generate encoded symbols. Sec-
tion 2.4 covers the detailed description of these coding passes. Coding passes are controlled by
the control block; control block controls the sequence of encoding of each of the bit-planes and
also the coding passes to be enabled for each of the bit-plane. The encoded symbols generated
by these coding passes are passed on to the output block.

Output Block

The encoded symbols generated by the coding passes are collected by the output block and
are written into the output memory. These encoded symbols are later accessed by the BAC block
for arithmetic encoding.

Control Block

Control block generates all the control signals necessary for encoding process of BPC. It gen-
erates initialization signals for different blocks at different stages of encoding process. Control
block initiates reading of quantized wavelet coefficients through input block. It controls the
sequences of coding passes during encoding, it also initiates writing out of generated output
symbols through output block. Details of control block along with the flow chart is explained
under subsection 4.1.3.

Figure 20: Top Level Architecture of BPC
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4.1.2. Input Block

Flow chart of input block is as shown in Figure 23. Input block is enabled by a start signal from
control block. Input block waits in the initial state until the start signal is asserted. After the start
signal is asserted input block initializes the pointers and counters used in the state machine. It
then reads the quantized wavelet coefficients from the memory.

Memory is read through a memory bus protocol, protocol is described in detail under sub-
section 4.1.4. The read coefficients are processed and temporary registers of sign array (χ) and
bit-plane (υ p) are updated. The cycle is repeated until all the coefficients of a code-block are
read. After the code-block is read completely the content of χ and υ p block RAMs are updated
with the temporary χ and υ p register contents.

4.1.3. Control Block

Flow chart of control block of BPC is as shown in Figure 24. Control block enables the input
block to read the input coefficients and update χ and υ p RAMs. It then initiate reading of state
variables and bit-plane necessary for BPC encoding from the block RAMs. If the bit-plane
is MSB bit-plane then only CUP encoding is done otherwise SPP, MRP and CUP encoding
is done in sequence respectively. This cycle is repeated until all the bit-planes are encoded.
Once encoding of all the bit-planes is completed, control blcok initiates writing of encoded
symbols into the symbol memory. This encoded symbol memory is accessed by BAC to generate
compressed bit-stream.

4.1.4. Memory Arbiter

Memory arbiter in BPC arbitrates the requests for the state variable’s block RAMs. State variable
block RAM is accessed by severable blocks of BPC at different processing instance. Memory
arbiter has special memory bus interface [3] to block RAMs, read/write to the block RAM is
through memory bus. Memory arbiter functions like a multiplexer; it establishes the connection
between the block RAM memory interface and processing block’s memory interface when the
control signal associated with the processing block is asserted. These control signals are asserted
by the control block, it decides which processing block has to be enabled at what processing
instance. Memory arbiter is designed with the assumption that no two processing block will
request for access to block RAM at the same time.
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Figure 21: Single-port RAM

Block diagram of block RAM used in BPC is as shown in Figure 21. It is a single-port RAM
with 32 memory locations of 32 bits each and is configured in read first mode. An example
waveforms of memory bus protocol configured in read first mode is as shown in Figure 22. This
waveform is an example used for explanation of the protocol, width of the signal bus in the
Figure 22 does not correspond to the actual bus width used in BPC.

When the enable (ENA) signal is de-asserted, read/write to RAM is disabled. When ENA
is asserted and write enable (WEA) is low, RAM is in read mode, it reads from the location
addressed by address bus (ADDRA) and the read data is available on output data bus (DOUTA).
When ENA is high and WEA is also high, RAM is in write mode and the data on data input
bus (DINA) is written into the RAM at the location addressed by the ADDRA bus. Read first
configuration mode of block RAM means that the old value of RAM at address X is read out on
to DOUTA bus in case of write access to address X of block RAM. The read/write latency of the
block RAM is one clock cycle.

Figure 22: Read first mode single-port RAM [3]
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Figure 23: Input block of BPC
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Figure 24: Control block of BPC
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4.1.5. SPP, MRP and CUP

The hardware structure of SPP, MRP and CUP is as shown in the Figure 25, 26, and 27 respec-
tively. Coding passes along with the flow chart are described in detail under subsection 2.4.
These hardware structures are not the result of synthesizing VHDL code of coding passes, these
structure are conceptual and are used for better understanding of the coding pass hardware.

SPP and MRP coding passes are not applied to MSB bit-plane; this can be observed from
the Figure 25 and 26 respectively. The first multiplexer (MUX) bypasses the whole processing
components if the bit-plane is MSB bit-plane. CUP coding pass is applied to all the bit-planes
of the code-block. SPP coding pass applies zero coding (ZC) and sign coding (SC) encoding
algorithms on the bit-planes, CUP applies run length coding (RLC), sign coding (SC) and zero
coding (ZC) on bit-planes and MRP applies magnitude refinement coding (MRC) on bit-planes.
The conditions for application of these encoding algorithms in each coding passes are explained
in detail in subsection 2.4.

Figure 25: SPP Hardware structure
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Figure 26: MRP Hardware structure

Figure 27: CUP Hardware structure
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4.1.6. BAC TOP

The architectural block diagram of BAC is as shown in Figure 28. BAC is also designed and
implemented in hierarchical fashion. BAC has only two level of hierarchy. The leaf level blocks
are the LUTs used in the design. Input, computation and output blocks uses instances of LUTs,
these form the highest level of hierarchy in BAC. BAC algorithm along with the flow chart is
described in detail under section 2.5.

All LUTs used in the design has read interface. Index and MPS LUTs have both read and write
interface since the value of these LUT table can be updated by MPS and LPS computational
blocks. Input block initializes the counters, register, LUTs and pointers used in the algorithm.
MPS and LPS are the main computation block in BAC. The StrucBtyte block is responsible
for generation of compressed byte depending on the computational results of MPS and LPS
blocks. Flush block is responsible for generation of the last byte when all the input symbols are
encoded. Control block generates control signal to sequence the operation of input, computation
and output blocks.

Figure 28: Top Level Architecture of BAC

4.2. Verification Methodology

Verification methodology followed in this thesis is shown as a block diagram in Figure 29.
Verification is done stand alone for individual components at each hierarchy levels of BPC and
BAC, also for top level BPC and BAC. Test bench used for verification is designed to be self
checking test bench. Device under test (DUT) can be any of the components of BPC or BAC.
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Test input represents all possible valid combinations of input vectors. Test inputs are created
either manually or through a reference C-model. Test bench needs a reference output to check
the correctness of the response generated by DUT for a particular test input vector. Test bench
reads the test inputs from a file for verification of top level BPC and BAC components. Test
bench reads the reference output from a file; reference output is created either manually or
through reference C-model. Reference C-model used in this thesis is discussed in detail under
section 3.

Test bench forces the test input into DUT, response generated by DUT is collected by checker
and checker also reads the reference output for the particular input. Checker compares the
response from DUT with reference output and updates the test result. Test result can be pass or
fail; it also logs the information about input vector, generated response and reference output at
the point of test failure. Xilinx ISE 13.2 [11] simulation tool is used for verification.

Figure 29: Test bench block diagram

4.3. Simulation and Synthesis Results

Simulation and synthesis results of BPC and BAC design are discussed under this subsection.
This section also discusses important control signal associated with BPC and BAC with wave-
forms. Device utilization and timing details of synthesized BPC and BAC design are discussed in
detail. The Target FGPA device for which BPC top and BAC top is synthesized is ”Virtex−5”
Xilinx FPGA family with device id ”XC5V LX110T ”, package id ”FF1136” and speed grade
”−1” [12].
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4.3.1. BPC

Entity of top level BPC VHDL design is as shown in Table 11. clk and reset input signals are
driven by the testbench. These signals are used to drive clk and reset inputs of all the instances in
BPC design. BPC top has a memory interface to read pixel data associated with the code-block.
Input and output ports associated with memory interface are defined as sub-types mem port out
and pixel mem port in respectively. Description of these subtypes can be found under appendix
A. pixel data valid control signal is an input to BPC top, it is used to indicate that the pixel data
of code-block is valid to be read and encoded.

Bit-planes of the code-block are encoded in three coding passes as discussed under subsec-
tion 2.4. Simulation waveform of BPC coding passes is as shown in Figure 30. Control signals
start spp/start mrp/start cup and done spp/done mrp/done cup are used to indicate begin-
ning and end of coding pass SPP/MRP/CUP respectively. All bit-planes apart from the MSB
bit-plane are encoded by SPP, MRP and CUP coding pass in sequence as shown in Figure 30.

Simulation waveforms of SPP, MRP and CUP encoding are as shown in Figure 31, 32 and 33
respectively. At the start of each of these encoding pass, the memories corresponding to state
variables and bit-planes necessary for encoding are read and the state associated with this is
read mem. At the end of each of these encoding pass, the memories corresponding to state vari-
ables are updated and the state associated with this is write mem. States in between read mem
and write mem are encoding states of coding pass. Encoding states of SPP, MRP and CUP
coding pass are discussed in detail under subsection 2.4.

Maximum and minimum number of clock cycles required to encode a bit in a bit-plane of
a code-block for SPP, MRP and CUP coding pass is as shown in Table 12. The numbers of
clock cycles mentioned in the Table 12 are number of clock cycles required for pure encoding
computation. It does not include the number of clock cycles required to read state variables and
bit-plane from RAMs or writing back state variables into RAMs after encoding.

Minimum number of clocks required for all three coding pass is 1 clock cycle. Input bit is
checked with certain condition at the beginning of encoding algorithm in each coding pass. If the
condition is satisfied then the input bit is encoded otherwise encoding is skipped and algorithm
checks with next input bit. This condition check on input bit requires one clock cycle, which
is the minimum number of clock cycles required. Maximum number of clock cycles required
to encode a bit depends on the number of states associated with each coding pass. The states
associated with SPP, MRP and CUP coding pass can be found in Figure 6, 7, and 8 respectively.

Summary of BPC synthesis report is as shown in Table 13, 14, 16 and 15. Device resource
utilization is as shown in Table 13. BPC utilizes 21% of FPGA LUT resource, however consid-
erable amount of these resources are used by distributed RAMs associated with state variables
and bit-planes. There are 14 RAMs in the design intended for state variables and bit-planes, out
of which one is synthesized as block RAM and the rest are synthesized as distributed RAMs.

Macro statistics of BPC synthesis is as shown in Table 14. Synthesis tool has recognized 5
FSMs in BPC design, 1 FSM from each of the coding pass and 2 FSMs from BPC top. Look
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up tables used for SC, ZC and MRC are synthesized as ROMs, 4 such ROMs are recognized
in BPC design. Count of computational elements such as adder/subtractor, counter, comparator,
multiplexer, register and xor synthesized in BPC design are as shown in Table 14.

BPC synthesis timing details are as shown in Table 15 and 16. Maximum operating frequency
of BPC design is 128.758 MHz. BPC design requires setup time of 2.784 nanoseconds and
hold time of 3.270 nanoseconds. Critical path details in the design are as shown in Table 16. It
has delay of 7.766 nanoseconds and 9 levels of logic. CUP coding pass in BPC has the critical
path, the combinational logic responsible for checking condition for applying RLC coding is the
critical path in the design. Condition check for applying RLC coding is shown in flowchart 8.
Rowpositioncount register of the current sample is the source flip flop and nextstate register is
the destination flip flop.

Table 11: Entity of BPC top
Generic

Generic name Generic type Default value
CB SIZE integer 31

Port
Port name Port mode Port type

reset in std logic
clk in std logic

pixel ram out in mem port out
pixel data valid in std logic

pixel ram in out pixel mem port in

Figure 30: BPC simulation waveform with coding pass sequence
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Figure 31: BPC SPP simulation waveform

Figure 32: BPC MRP simulation waveform

Figure 33: BPC CUP simulation waveform

47



Table 12: BPC encoding profile
Coding pass Minimum clock cycles Maximum clock cycles

SPP 1 6
MRP 1 4
CUP 1 6

Table 13: BPC synthesis device utilization summary
Device utilization summary

Slice Logic Utilization
Number of Slice Registers 12949 out of 69120 (18%)

Number of Slice LUTs 15096 out of 69120 (21%)
Number used as Logic 14976 out of 69120 (21%)

IO Utilization
Number of IOs 100

Number of bonded IOBs 78 out of 640 (12%)

Specific Feature Utilization
Number of BUFG/BUFGCTRLs 2 out of 32 (6%)

Number of Block RAM/FIFO 1 out of 148 (0%)
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Table 14: BPC synthesis macro statistics
Macro Statistics

FSMs — 5

RAMs
32x32-bit dual-port block RAM 1

32x32-bit dual-port distributed RAM 13
ROMs 4x32-bit ROM 4

Adders/Subtractors

1-bit adder carry out 7
2-bit adder 3

2-bit adder carry out 5
3-bit adder 6

32-bit subtractor 1
5-bit adder 11
6-bit adder 7
8-bit adder 9

8-bit subtractor 7
Counters 32-bit up counter 2
Registers Flip-Flops 15176

Comparators

2-bit comparator greatequal 4
3-bit comparator greatequal 11

3-bit comparator greater 4
32-bit comparator greatequal 3

32-bit comparator greater 10
32-bit comparator less 7

32-bit comparator lessequal 10
8-bit comparator less 8

Multiplexers

1-bit 32-to-1 multiplexer 83
1-bit 34-to-1 multiplexer 42
32-bit 32-to-1 multiplexer 10
34-bit 34-to-1 multiplexer 14

Xors 1-bit xor2 2

Table 15: BPC synthesis timing summary
Timing summary

Minimum period 7.766 ns
Maximum Frequency 128.758 MHz

Minimum input arrival time before clock 2.784 ns
Maximum output required time after clock 3.270 ns

Maximum combinational path delay 0.550 ns
*ns :- nanoseconds, *MHz :- Mega Hertz
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Table 16: BPC critical path details
Critical path

Delay 7.766ns
Levels of Logic 9

Source cup inst top/reg row count reg 0 (FF)
Destination cup inst top/next state FSM FFd5 (FF)

*FF :- Flip Flop

4.3.2. BAC

Entity of BAC top VHDL code is as shown in Table 17. Input port cxd in receives CX and
D value to be encoded from the testbench. cxd in signal input value is validated by input con-
trol signal cxd valid. cxd done input signal indicates the end of the encoded symbols (cxd in)
associated with the code block. reset and clk input signals are generate by the testbench, these
signals are also connected to entities of the instances in BAC top. cxd read output control signal
is asserted by BAC top to indicate that the current value of cxd in is read and the testbench can
drive the next cxd in input value. Compressed byte generated by BAC is driven on byteout out
output signal. byteout valid ouput control signal is used to validate byteout out signal. BAC
top asserts done output control signal after encoding of the entire code block. Description of
derived data types used in BAC top can be found under appendix A.

Simulation waveform of BAC testbench is as shown in Figure 34. BAC may encode multiple
symbols before generation of one compressed byte, one such example is shown in the Figure
34. BAC top reads valid cxd in input, encodes the input symbol, if the compressed byte is
not generated in the current iteration then reads the next cxd in to be encoded. If the com-
pressed byte is generated then BAC top drives compressed byte on byteout out and asserts the
byteout valid signal. BAC testbench reads valid byteout out and compares it with the reference
signal datareadout and updates the test results in case of comparison mismatch.

Maximum number of clocks required to encode a symbol are 17 clocks. States associated
with BAC top state machine are as shown in Figure 10. State ReadCX ,D and D == MPS(CX)
consumes one clock and state codeMPS/codeLPS can consume up to 15 clocks. Renormaliza-
tion stage in state codeMPS/codeLPS is responsible for large number of clocks required in this
state. Renormalization stage iterates in a loop for computation of compressed byte.

Minimum number of clocks required to encode a symbol are 3 clocks. State associate with
such encoding scenario are (ReadCX ,D), (D == MPS(CX)) and codeMPS, where codeMPS
state does not invoke renormalization computational stage.

Number of clocks requires to generate a compressed byte can vary depending on the input
symbols being encoded. A compressed byte may be generated after encoding one symbol; how-
ever it may also be generated after encoding several symbols. Number of symbols required to
generate a compressed byte purely depends on the values of input symbols.
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Summary of synthesis report is as shown in Table 18, 19, 21 and 20. NMPS, NLPS, SWITCH
and Qe LUTs are inferred as ROMs during synthesis. Index and MPS LUTs are inferred as
latches since these LUTs are accessed both in write and read mode and are designed as combi-
national logic. Synthesis results associated with LUTs are as shown in Table 19.

Timing details of the synthesis report are as shown in Table 20. Maximum operating frequency
of the design is 112.927 MHz. The critical path in the design is depicted by blue line in Figure
35. The path starts from input block where the CX value is read, Index associated with CX is
read from index LUT, read index value is used for accessing Qe associated with CX, read Qe
value is used by subtractor and comparator in MPS computation block to calculate A and C
register values. Critical path details with source and destination flip flop is as shown in Table 21.

Table 17: Entity of BAC top
Port name Port mode Port type

cxd in in cxd pair
cxd valid in std logic
cxd done in std logic

reset in std logic
clk in std logic

cxd read out std logic
byteout out out std logic vector(7downto0)

byteout valid out std logic
done out std logic

Figure 34: BAC simulation waveform

Table 18: BAC synthesis device utilization summary
Device utilization summary

Slice Logic Utilization
Number of Slice Registers 257 out of 69120 (0%)

Number of Slice LUTs 635 out of 69120 (0%)
Number used as Logic 635 out of 69120 (0%)

IO Utilization
Number of IOs 21

Number of bonded IOBs 21 out of 640 (3%)
Specific Feature Utilization Number of BUFG/BUFGCTRLs 2 out of 32 (6%)
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Table 19: BAC synthesis macro statistics
Macro Statistics

FSMs — 1

ROMs
47x1-bit ROM 1
47x16-bit ROM 1
47x6-bit ROM 2

Adders/Subtractors

32-bit adder 1
32-bit subtractor 1
4-bit subtractor 1

8-bit adder 1
Registers Flip-Flops 113

Latches
1-bit latch 19
6-bit latch 19

Comparators
32-bit comparator greatequal 3

32-bit comparator less 4

Multiplexers
1-bit 19-to-1 multiplexer 1
6-bit 19-to-1 multiplexer 1

Logic shifters
32-bit shifter logical left 1

32-bit shifter logical right 1

Table 20: BAC synthesis timing summary
Timing summary

Minimum period 8.855 ns
Maximum Frequency 112.927 MHz

Minimum input arrival time before clock 9.103 ns
Maximum output required time after clock 3.264 ns

*ns :- nanoseconds, *MHz :- Mega Hertz

Table 21: BAC critical path details
Critical path

Delay 8.855ns
Levels of Logic 33

Source cxd.cx 3 (FF)
Destination c reg 0 (FF)

*FF :- Flip Flop
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Figure 35: BAC critical path
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5. EBCOT ENCODER PARALLEL ARCHITECTURE

Tier-1 encoder consumes considerable amount of overall JPEG2000 compression time as shown
in subsection 3.3.3, in order to reduce compression time it is necessary to have parallel hardware
architecture for EBCOT encoder. This section discusses several parallel architectural proposal,
their advantages and drawbacks in detail.

5.1. Serial hardware architecture overview

This subsection gives an overview of the JPEG2000 compression system architecture in serial
mode. Figure 1 shows the block diagram of major components of JPEG2000 encoder, the block
diagram remains same for serial hardware architecture with only difference being Tier-1 encoder
block implemented in software is replaced now by Tier-1 encoder implemented in hardware.
Rest of the components of Figure 1 still remains software implemented.

Hardware implemented Tier-1 gives considerable increase in performance with respect to
compression time as compared to software implementation of Tier-1. However JPEG2000 ar-
chitecture exhibits great potential for parallel hardware architecture. Block diagram 36 shows
JPEG2000 serial hardware encoder architecture with decomposition of image into sub-bands
and code blocks. Decomposition of image by DWT is described in detail under subsection 2.1.
For simplicity the sub-bands are shown as array in Figure 36.

Sub-bands generated by DWT are further divided into code-blocks of fixed sizes. Code-
blocks are further decomposed into bit-planes by Tier-1 encoder. Tier-1 encoder does BPC
encoding on each of these bit-planes to generate encoded symbols. In serial architecture only
one hardware instance of Tier-1 encoder is used as shown in Figure 36. Hence encoding of all
the code-blocks has to be done sequentially. It can be observed from the Figure 36 that serial
architecture has potential for parallelization. Several parallel architectures are discussed in detail
in the subsequent subsections.

Table 22: State variable access table

Processing Blocks
State Variables

η σ σ
′

υ χ

Write Read Write Read Write Read Write Read Write Read
ZC X
SC X∗ X

MRC X∗ X
RLC X
SPP X X X∗

CUP X X X∗∗

MRP X X X

∗ Accesses 8 surrounding neighbors of the current element(shown in 37 a)).
∗∗ Accesses 4 consecutive elements on the same column and also all adjacent neighbors of the four
consecutive elements (shown in 37 b)).
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Figure 36: JPEG2000 encoder compression system architecture in serial mode
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5.2. Parallel coding pass architecture

BPC decomposes each code-block into bit-planes. SPP, MRP and CUP coding passes encode
each bit-plane in sequence respectively, with the exception of MSB bit-plane. Only CUP coding
pass encodes MSB bit-plane. In serial hardware architecture coding pass encode bit-plane se-
quentially, that is MRP coding pass has to wait until SPP coding pass has encoded the bit-plane
completely and CUP coding pass has to wait until MRP coding pass has encoded the bit-plane
completely.

The primary reason for sequential coding pass is that the state variable used during encoding
are shared between coding passes and bit-planes of the code-block. State variables hold vital in-
formation about the bit-planes, these informations are used by coding passes for taking encoding
decisions. Hence to parallelize coding passes it is important to understand the interdependences
of coding passes because of state variables.

Table 22 summarizes the accesses done to each state variable by different encoding blocks of
Tier-1. A check mark against write/read column of a state variable means that the state variable’s
location corresponding to the location of element being encode was accessed in write/read mode.
Some encoding blocks may have to access more than one location of state variable for encoding
one element of the bit-plane; these exceptions are mentioned in the foot note of the Table 22.

It is observed from the Table 22 that σ ,σ ‘ and η state variables are accessed in both write
and read mode by the encoding blocks and state variables υ p and χ are accessed in read mode
only. State variables accessed in write mode are of primary importance for parallelization. In
case of σ ‘ and η state variable arrays, only the state variable element’s location corresponding
to location of the element being encoded in bit-plane has to be updated, before being encoded
by the next coding pass.

Neighbor elements accessed in σ array is as shown in Figure 37. Blocks with red color
corresponds to the location of element being encoded in bit-plane and blocks with blue color
corresponds to neighbor locations being accessed by encoding blocks. Figure 37 a) represents
the access pattern of σ array elements by SPP, MRC and SC blocks in read mode. Figure 37 b)
represents the access pattern of σ array elements by CUP block in read mode.

It is evident from the Figure 37 that to parallelize coding passes at least the elements depicted
in Figure 37 b) has to be updated by previous encoding pass before the next coding pass starts
encoding the bit-plane in parallel. To reduce the complexity of architecture the condition for
parallelization can be simplified to “At least four rows of σ array has to be updated by previous
coding pass before next coding pass starts encoding the bit-plane in parallel”.
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Figure 37: Neighbor elements accessed in σ array

Figure 38 shows the conceptual timing diagram of coding pass. “t” in the Figure 38 represents
time consumed by the coding pass to encode a line of a bit-plane. “T” represents the time
consumed by the coding pass to encode an entire bit-plane of a code-block. To reduce the
complexity of analysis we assume all coding pass consumes same amount of time to encode a
line of bit-plane and also same amount of time to encode entire bit-plane. Architecture does not
parallelize encoding of MSB bit-plane since it is encoded only by CUP coding pass. Encoding
of all bit-planes of a code-block is parallelized except the MSB bit-plane.

Figure 38 a) shows the time consumed by coding passes to encode a bit-plane in case of serial
architecture. Total time consumed for encoding a bit-plane is given by equation 8, since the
coding passes encode bit-plane sequentially. Figure 38 b) shows the time consumed by coding
passes to encode a bit-plane in case of parallel coding pass architecture. Total time consumed
for encoding a bit-plane is given by equation 9

3T (8)

T +4t +4t (9)

For simplicity of calculation, assume encoding of each sample in a bit-plane consumes one
clock cycle for all coding passes. Let the code-block size be 32× 32. Number of clock cycles
required to encode a bit-plane in case of serial architecture is given by equation 12. Number of
clock cycles required to encode a bit-plane in case of parallel coding pass architecture is given
by equation 13. Speedup factor achieved by parallel coding pass architecture with respect to
serial architecture in encoding a bit-plane is given by equation 16. Assuming number of bit-
plane in the code-block to be 7. Number of clock cycles required to encode entire code-block in
case of serial architecture is given by equation 14. Number of clock cycles required to encode a
code-block in case of parallel coding pass architecture is given by equation 15. Speedup factor
achieved in encoding a complete code-block is given by equation 17.

T = 32×32 = 1024 (10)

t = 32 (11)
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substituting 10 in equation 8
3×1024 = 3072 (12)

substituting 10 and 11 in equation 9

1024+4×32+4×32 = 1280 (13)

1024+3×1024×6 = 19456. (14)

1042+1024+4×32+4×32+5×12×32 = 4224. (15)

Speedup w.r.t bit− plane =
Serial architecture clocks

Parallel architecture clocks
=

3072
1280

= 2.4 (16)

Speedup w.r.t code−block =
Serial architecture clocks

Parallel architecture clocks
=

19456
4224

= 4.6 (17)

Parallel coding pass architecture has a speedup factor of 2.4 and 4.6 as compared to serial
architecture in encoding a bit-plane and code-block respectively. Speedup achieved by paral-
lel coding pass in case of encoding a code-block is higher than encoding a bit-plane because
encoding of a subsequent bit-plane by all three coding pass put together consumes only 12× t
clocks.

Parallel coding pass architecture needs additional control signals to synchronize the coding
passes for encoding; however the hardware logic overhead added by this architecture is negli-
gible as compared to speedup achieved. Parallel coding pass architecture only parallelizes the
coding algorithms it does not change the encoding flow in itself, hence the decoder will be trans-
parent to this architectural changes in encoder. Downside of parallel coding pass architecture
is that coding passes were assumed to consume same number of clocks to encode a bit and to
encode a complete line, however in practice this may not be true and architecture may need
additional logic to synchronize the coding passes.
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Figure 38: Conceptual timing diagram of coding passes

5.3. Parallel Sub-band architecture

Discrete wavelet transform (DWT) block in JPEG2000 decomposes image into low frequency
and high frequency sub-bands. Subsection 2.1 discusses images decomposition in detail. At
higher level of decomposition of image, sub-band LL is recursively decomposed into next level
LL, LH, HL and HH sub-bands. Sub-bands LH, HL and HH are encoded by the algorithm and
sub-band LL is used by DWT to generate higher level sub-bands.
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Parallel sub-band architecture block diagram is as shown in Figure 39. Sub-bands LH, HL
and HH are encoded in parallel, hence this architecture needs 3 instances of quantization block
and Tier-1 encoding blocks [13, 14]. Since the sub-bands are encoded in parallel, this architec-
ture has the potential to achieve maximum speedup factor of 3 as compared to serial hardware
architecture.

In practice effective speedup of parallel sub-band architecture may be slightly less than 3
because of single instance of Tier-2 encoder. Tier-2 encoder in parallel sub-band architecture
has to sequentially process output generated from three instance of Tier-1 encoder. However
processing time consumed by Tier-2 encoder is not significant as compared to rest of the pro-
cessing blocks; hence the negative effect on speedup factor of parallel sub-band architecture is
not significant.

Parallel sub-band architecture exhibits great prospects in reducing JPEG2000 algorithm com-
pression time. However the downside of this architecture is that it requires significant amount of
hardware resource for parallel processing of sub-bands. This architecture may also need slight
modification in DWT block however it does not affect the encoding algorithm in itself, hence
this architecture is transparent to JPEG2000 decoder.

5.4. Parallel BPC architecture

Parallel BPC architecture block diagram is as shown in Figure 40. Parallel BPC architecture is
an extension of parallel sub-band architecture. Parallel BPC architecture has instance of BPC for
every code-block branch from a sub-band. Hence Tier-1 block has “N” instance of BPC block
and one instance of BAC block.

Tier-1 consumes considerable compression time as discussed in subsection 3.3.3. In Tier-1
BPC is more computational expensive as compared to BAC. Parallelizing Tier-1 block with one
instance of BPC for every code-block has positive effect on decreasing computational time of
Tier-1 block. However the encoded symbols generated by BPC are still sequentially processed
by BAC to generated compressed bytes.

BAC block in Tier-1 cannot be instantiated for very code block of the sub-band because of
the inherent nature of BAC algorithm. BAC algorithm is a kind of cumulative algorithm, BAC
accumulates the information of several input symbols during processing before generation of
single compressed byte and hence having parallel instance of BPC alters the JPEG2000 encoding
algorithm.

Parallel BPC architecture greatly reduces the computation time consumed by BPC phase of
Tier-1; however the downside is that the parallel BPC architecture requires huge hardware re-
sources. Advantage over computational time achieved by parallel BPC can be brought down
because of single instance of BPC. Since the encoding algorithm’s integrity is still maintained,
parallel BPC architecture is transparent to JPEG2000 decoder.
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5.5. Parallel BAC architecture

Parallel BAC architecture is an extension of parallel BPC architecture. Parallel BAC architecture
is as shown in Figure 41. It has one instance of BPC and BAC for every code-block of sub-bands.
It is as good as having Tier-1 encoder block for every code-block of sub-band. Theoretically
parallel BAC architecture consumes same amount of time to encode an entire image and to
encode a single code-block, since all the code blocks are encoded in parallel.

Biggest downside of parallel BAC architecture is that, it changes JPEG2000 encoder algo-
rithm by parallelizing BAC block. Parallel BAC architecture has one instance of BAC for every
code block, because of this compression computational information carried over from a code-
block to the subsequent code-block is lost. This divergence in the algorithm causes divergence
in compliance with standard JPEG2000 encoder. Hence parallel BAC architecture is not trans-
parent to JPEG2000 decoder. Compressed image size of parallel BAC architecture can be higher
than the standard JPEG2000 compressed image size.

Parallel BAC architecture also has huge hardware resource requirements. However it exhibits
very high compression speed and can be used in customized hardware applications for real time
image compression. Parallel BAC architecture needs corresponding architectural changes in
decoder for recovering the original image.
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Figure 39: Parallel sub-band architecture block diagram
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Figure 40: Parallel BPC architecture block diagram
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Figure 41: Parallel BAC architecture block diagram
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6. CONCLUSION

Thesis introduces JPEG2000 compression algorithm. JPEG2000 salient features were dis-
cussed and compared with other famous compression algorithms. EBCOT and MQ-encoder
algorithms were presented in detail under section 2. JPEG2000 software implementation was
presented under section 3. Profiling of JPEG2000 software was conducted and profiling results
were discussed in detail under subsection 3.2. Profiling results of JPEG2000 software imple-
mentation has shown that Tier-1 coding phase of JPEG2000 consumes considerable portion of
overall compression time.

Hardware design of BPC and BAC were presented in detail under section 4. Simulation
and synthesis results were also presented under subsection 4.3. It was found that BPC is com-
putationally exhaustive as compared to BAC from the FPGA resource utilization. Synthesis
results has shown that BPC and BAC hardware design can work at maximum clock frequency
of 128.758 MHz and 112.927 MHz. Hence hardware implementation of BPC and BAC exhibits
great prospects in reducing compression time as compared to software implementation of BPC
and BAC.

JPEG2000 compression algorithm architectures were presented for real time image compres-
sion in section 5. Architectures proposed in this section have great potential in reducing the
compression time considerably in order to do image compression in real time. Conclusion from
profiling results of software implementation was the basis for parallel architectural proposals.

Parallel coding pass architecture presented in subsection 5.2 offers a speedup factor of upto 4.6
as compared to serial hardware architecture. Parallel sub-band architecture offers great potential
in reducing compression time by compressing sub-bands in parallel. Parallel BPC architecture
takes advantage of JPEG2000 algorithm flow by processing the code-blocks in parallel. Parallel
BAC architectures exhibits highest level of parallel processing of image however this architec-
ture is not compliant to JPEG2000 standard, while rest of the parallel architectures proposed in
this thesis are compliant to JPEG2000 standard and are transparent to JPEG2000 decoder.

Architectures derived from the combination of two parallel architectures proposed in this
thesis, can offer higher compression performance. Parallel coding pass architecture combined
with parallel sub-band or parallel BPC or even both can offer much higher performance, how-
ever these parallel architectures comes at the expense of hardware resources. Hence based on
the application requirements, architecture with optimal combination of hardware resources and
compression performance can to be chosen.
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A. VHDL Subtype Package

package t y p e s i s
s u b t y p e c o n t e x t i s s t d l o g i c v e c t o r (4 downto 0 ) ;
s u b t y p e s i g m a d a s h i s s t d l o g i c ; −− used i n MRC c od i ng
s u b t y p e vp i s s t d l o g i c ; −− Vp [m, n ]

−− Two d i m e n s i o n a l a r r a y r e g i s t e r used f o r Sigma s t a t e v a r i a b l e
s u b t y p e word34 i s s t d l o g i c v e c t o r (33 downto 0 ) ;
t y p e s i g m a a r r a y i s a r r a y (33 downto 0 ) o f word34 ;

−− Two d i m e n s i o n a l a r r a y r e g i s t e r used f o r s igma dash , e t a ,
−− vp s t a t e v a r i a b l e
−− s i g n a l ( s t a t e r e g a r r a y n u m b e r ) ( word32 number ) <= ’ b i t ’
s u b t y p e word32 i s s t d l o g i c v e c t o r (31 downto 0 ) ;
t y p e s t a t e r e g a r r a y i s a r r a y (31 downto 0 ) o f word32 ;

s u b t y p e subband i s s t d l o g i c v e c t o r (1 downto 0 ) ;

−− CX and D o u t p u t f o r each b i t o f b i t−p l a n e i n SPP
t y p e s p p c x d i s r e c o r d
v a l i d s c : s t d l o g i c ; −− CX and D v a l u e f o r SC co d i ng v a l i d s t a t u s
c x s c : c o n t e x t ;
d s c : s t d l o g i c ;
v a l i d z c : s t d l o g i c ; −− CX and D v a l u e f o r ZC c od in g v a l i d s t a t u s
c x z c : c o n t e x t ;
d z c : s t d l o g i c ;
end r e c o r d s p p c x d ;

−− one row of Code b l o c k
t y p e s p p o u t r o w i s a r r a y (31 downto 0 ) o f sp p c x d ;
−− 32 x32 Code b l o c k oupu t a r r a y
t y p e s p p o u t i s a r r a y (31 downto 0 ) o f s p p o u t r o w ;

−− CX and D o u t p u t f o r each b i t o f b i t−p l a n e i n MRP
t y p e mrp cxd i s r e c o r d
v a l i d m r c : s t d l o g i c ; −− CX and D v a l u e f o r MRC c od ing v a l i d s t a t u s
cx mrc : c o n t e x t ;
d mrc : s t d l o g i c ;
end r e c o r d mrp cxd ;

−− one row of Code b l o c k
t y p e mrp ou t row i s a r r a y (31 downto 0 ) o f mrp cxd ;
−− 32 x32 Code b l o c k oupu t a r r a y
t y p e mrp ou t i s a r r a y (31 downto 0 ) o f mrp ou t row ;
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t y p e n e i g h b o r i s r e c o r d −− n e i g h b o r i n g 8 p i x e l s
d0 : s t d l o g i c v e c t o r (0 downto 0 ) ; −− D0 V0 D1
d1 : s t d l o g i c v e c t o r (0 downto 0 ) ; −− H0 X H1
d2 : s t d l o g i c v e c t o r (0 downto 0 ) ; −− D3 V1 D2
d3 : s t d l o g i c v e c t o r (0 downto 0 ) ;
h0 : s t d l o g i c v e c t o r (0 downto 0 ) ;
h1 : s t d l o g i c v e c t o r (0 downto 0 ) ;
v0 : s t d l o g i c v e c t o r (0 downto 0 ) ;
v1 : s t d l o g i c v e c t o r (0 downto 0 ) ;

end r e c o r d n e i g h b o r ;

t y p e n e i g h b o r c o n v i s r e c o r d −− n e i g h b o r i n g 8 p i x e l s
d0 : s t d l o g i c v e c t o r (1 downto 0 ) ; −− D0 V0 D1
d1 : s t d l o g i c v e c t o r (1 downto 0 ) ; −− H0 X H1
d2 : s t d l o g i c v e c t o r (1 downto 0 ) ; −− D3 V1 D2
d3 : s t d l o g i c v e c t o r (1 downto 0 ) ;
h0 : s t d l o g i c v e c t o r (1 downto 0 ) ;
h1 : s t d l o g i c v e c t o r (1 downto 0 ) ;
v0 : s t d l o g i c v e c t o r (1 downto 0 ) ;
v1 : s t d l o g i c v e c t o r (1 downto 0 ) ;

end r e c o r d n e i g h b o r c o n v ;

−− c h i n e i g h b o r v a l u e s used i n s i g n c od i ng
t y p e c h i i s r e c o r d

n p l u s : s t d l o g i c ; −− c h i [m, n−1]
nminus : s t d l o g i c ; −− c h i [m, n +1]
mplus : s t d l o g i c ; −− c h i [m−1, n ]
mminus : s t d l o g i c ; −− c h i [m+1 , n ]
mn : s t d l o g i c ; −− c h i [m, n ]

end r e c o r d c h i ;

−− s igma n e i g h b o r v a l u e s used i n s i g n co d i ng
t y p e sigma i s r e c o r d

n p l u s : s t d l o g i c ; −− s igma [m, n−1]
nminus : s t d l o g i c ; −− s igma [m, n +1]
mplus : s t d l o g i c ; −− s igma [m−1, n ]
mminus : s t d l o g i c ; −− s igma [m+1 , n ]

end r e c o r d sigma ;

−− c h i n e i g h b o r v a l u e s used i n s i g n c od i ng
t y p e c h i l o c a l i s r e c o r d

n p l u s : s t d l o g i c v e c t o r (1 downto 0 ) ; −− c h i [m, n−1]
nminus : s t d l o g i c v e c t o r (1 downto 0 ) ; −− c h i [m, n +1]
mplus : s t d l o g i c v e c t o r (1 downto 0 ) ; −− c h i [m−1, n ]
mminus : s t d l o g i c v e c t o r (1 downto 0 ) ; −− c h i [m+1 , n ]

end r e c o r d c h i l o c a l ;

67



−− s igma n e i g h b o r v a l u e s used i n s i g n co d i ng
t y p e s i g m a l o c a l i s r e c o r d

n p l u s : s t d l o g i c v e c t o r (1 downto 0 ) ; −− s igma [m, n−1]
nminus : s t d l o g i c v e c t o r (1 downto 0 ) ; −− s igma [m, n +1]
mplus : s t d l o g i c v e c t o r (1 downto 0 ) ; −− s igma [m−1, n ]
mminus : s t d l o g i c v e c t o r (1 downto 0 ) ; −− s igma [m+1 , n ]

end r e c o r d s i g m a l o c a l ;

−− s igma n e i g h b o r v a l u e s used i n MRC co d i ng
t y p e s igma mrc i s r e c o r d

mminus n : s t d l o g i c v e c t o r (0 downto 0 ) ; −− s igma [m−1, n ]
mplus n : s t d l o g i c v e c t o r (0 downto 0 ) ; −− s igma [m+1 , n ]
mminus nminus : s t d l o g i c v e c t o r (0 downto 0 ) ; −− s igma [m−1, n−1]
mminus nplus : s t d l o g i c v e c t o r (0 downto 0 ) ; −− s igma [m−1, n +1]
mplus nminus : s t d l o g i c v e c t o r (0 downto 0 ) ; −− s igma [m+1 , n−1]
m p l u s n p l u s : s t d l o g i c v e c t o r (0 downto 0 ) ; −− s igma [m+1 , n +1]

end r e c o r d s igma mrc ;

−− I n p u t 4 c o n s e c u t i v e b i t s f o r RLC co d in g
t y p e r l c d a t a i s r e c o r d

one : s t d l o g i c v e c t o r (0 downto 0 ) ; −− f i r s t b i t
two : s t d l o g i c v e c t o r (0 downto 0 ) ; −− second b i t
t h r e e : s t d l o g i c v e c t o r (0 downto 0 ) ; −− t h i r d b i t
f o u r : s t d l o g i c v e c t o r (0 downto 0 ) ; −− f o u r t h b i t

end r e c o r d r l c d a t a ;

t y p e c x d p a i r i s r e c o r d −− used i n RLC co d i ng
cx : s t d l o g i c v e c t o r (4 downto 0 ) ;
d : s t d l o g i c ;

end r e c o r d c x d p a i r ;

−− (CX, D) d a t a s e t o u t p u t from RLC c od i ng
t y p e c x d r l c i s r e c o r d

f i r s t : c x d p a i r ; −− ( 1 7 , 0 / 1 ) , ( 1 8 , 0 / 1 ) and ( 1 8 , 0 / 1 ) .
second : c x d p a i r ;
t h i r d : c x d p a i r ;

end r e c o r d c x d r l c ;

−− 8 i n p u t n e i g h b o r s o f t h e b i t b e i n g encoded
t y p e s i g m a p r e f i s r e c o r d

one : s t d l o g i c ; −− f i r s t n e i g h b o r
two : s t d l o g i c ; −− second n e i g h b o r
t h r e e : s t d l o g i c ; −− t h i r d n e i g h b o r
f o u r : s t d l o g i c ; −− f o u r t h n e i g h b o r
f i v e : s t d l o g i c ; −− f i f t h n e i g h b o r
s i x : s t d l o g i c ; −− s i x t h n e i g h b o r
seven : s t d l o g i c ; −− s e v e n t h n e i g h b o r
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e i g h t : s t d l o g i c ; −− e i g h t n e i g h b o r
end r e c o r d s i g m a p r e f ;

−− CX and D v a l u e f o r SC c od i ng v a l i d s t a t u s
t y p e cup cxd i s r e c o r d

v a l i d s c : s t d l o g i c ;
c x s c : c o n t e x t ;
d s c : s t d l o g i c ;
v a l i d z c : s t d l o g i c ; −− ZC c od in g v a l i d s t a t u s
c x z c : c o n t e x t ;
d z c : s t d l o g i c ;
v a l i d r l c : s t d l o g i c ;
f i r s t r l c : c x d p a i r ; −− ( 1 7 , 0 / 1 ) , ( 1 8 , 0 / 1 ) and ( 1 8 , 0 / 1 ) .
s e c o n d r l c : c x d p a i r ;
t h i r d r l c : c x d p a i r ;

end r e c o r d cup cxd ;

−− one row of Code b l o c k
t y p e c u p o u t r o w i s a r r a y (31 downto 0 ) o f cup cxd ;
−− 32 x32 Code b l o c k oupu t a r r a y
t y p e c u p o u t i s a r r a y (31 downto 0 ) o f c u p o u t r o w ;

t y p e mem por t i n i s r e c o r d
−−c l k a : s t d l o g i c ;

wea : s t d l o g i c v e c t o r (0 downto 0 ) ;
a d d r a : s t d l o g i c v e c t o r (4 downto 0 ) ;
d i n a : s t d l o g i c v e c t o r (31 downto 0 ) ;

end r e c o r d mem por t i n ;

t y p e mem por t ou t i s r e c o r d
d o u t a : s t d l o g i c v e c t o r (31 downto 0 ) ;

end r e c o r d mem por t ou t ;

t y p e p i x e l m e m p o r t i n i s r e c o r d
−−c l k a : s t d l o g i c ;

wea : s t d l o g i c v e c t o r (0 downto 0 ) ;
a d d r a : s t d l o g i c v e c t o r (31 downto 0 ) ;
d i n a : s t d l o g i c v e c t o r (31 downto 0 ) ;

end r e c o r d p i x e l m e m p o r t i n ;

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− BAC
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− i n d e x v a l u e used i n BAC
s u b t y p e i n d e x i s i n t e g e r r a n g e 0 t o 4 6 ;
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−− a r r a y o f index−c o n t e x t f o r l u t
s u b t y p e l u t i n d e x i s i n t e g e r r a n g e 0 t o 4 6 ;
t y p e l u t c x i i s a r r a y (0 t o 18) o f l u t i n d e x ;

−− a r r a y o f MPS−c o n t e x t f o r LUT
t y p e l u t m p s c x i s a r r a y (0 t o 18) o f s t d l o g i c ;

−− a r r a y f o r NMPS/CX LUT
t y p e l u t s w i t c h i s a r r a y (0 t o 46) o f s t d l o g i c ;

s u b t y p e nmps index i s i n t e g e r r a n g e 0 t o 4 6 ;
t y p e l u t n m p s c x i s a r r a y (0 t o 46) o f nmps index ;

s u b t y p e n l p s i n d e x i s i n t e g e r r a n g e 0 t o 4 6 ;
t y p e l u t n l p s c x i s a r r a y (0 t o 46) o f n l p s i n d e x ;

s u b t y p e qe i s s t d l o g i c v e c t o r (15 downto 0 ) ;
t y p e l u t q e i c x i s a r r a y (0 t o 46) o f qe ;

end package t y p e s ;

package body t y p e s i s
end package body t y p e s ;

B. Profiling Images

Figure 42: Bretagne1.ppm
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Figure 43: Bretagne2.ppm

Figure 44: Cevennes1.ppm
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Figure 45: bike.pgm

Figure 46: target.pgm
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Figure 47: lena.ppm

Figure 48: lena.pgm

Figure 49: cwheel.ppm
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Figure 50: cwheel.pgm

Figure 51: frymire.ppm
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Figure 52: frymire.pgm

C. Pseudo Code of BAC

I n i t i a l i z a t i o n ( )
{

A = 0 x00008000 ;
C = 0 x00000000 ;
BP = BPST − 1 ;
CT = 1 2 ;
i f ( B == 0xFF CT = 1 3 ;
r e s e t I (CX) and MPS(CX) wi th t h e i r i n i t i a l v a l u e s .

}

CodeMPS ( )
{

qe = Qe ( I (CX ) ) ;
A = A − qe ; / * new s u b i n t e r v a l f o r MPS * /
i f ( A < 0 x8000 ) {

i f ( A < qe ) / * c o n d i t i o n exchange * /
A = qe ;

e l s e
C = C + qe ;

/ * choose n e x t i n d e x f o r MPS * /
I (CX) = NMPS( I (CX ) ) ;

c a l l Renormal iza t ionENC ( ) ;
}
e l s e

C = C + qe ;
}
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CodeLPS ( )
{

qe = Qe ( I (CX ) ) ;
A = A − qe ; / * new s u b i n t e r v a l f o r MPS * /

i f ( A >= qe )
A = qe ; / * C i s l e f t unchanged * /

e l s e / * c o n d i t i o n a l exchange * /
C = C + qe ;

i f ( sw i t ch ( I (CX) ) == 1)
/ * change t h e s e n s e o f MPS(CX) * /
MPS(CX) = 1 − MPS(CX ) ;

/ * choose n e x t i n d e x f o r LPS * /
I (CX) = NLPS ( I (CX) ) ;

c a l l Renormal iza t ionENC ( ) ;
}

Renormal iza t ionENC ( )
{

do
{

A = A << 1 ; / * l e f t s h i f t 1 b i t * /
C = C << 1 ; / * l e f t s h i f t 1 b i t * /
CT = CT −1;
i f ( CT == 0 ) c a l l ByteOut ( ) ;

} whi le ( A < 0 x8000
}

ByteOut ( )
{

i f ( B == 0xFF ) c a l l b i t S t u f f i n g ( ) ;
e l s e {

i f ( C < 0 x08000000 ) / * no c a r r y b i t * /
c a l l n o b i t S t u f f i n g ( ) ;

e l s e {
B = B + 1 ; / * add c a r r y b i t t o B * /
i f ( B == 0xFF ){

C = C & 0x07FFFFFF ;
c a l l b i t S t u f f i n g ( ) ;

}
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e l s e
c a l l n o b i t S t u f f i n g ( ) ;

}
}

}

b i t S t u f f i n g ( )
{

BP = BP + 1 ; / * o u t p u t B * /
B = C >> 2 0 ; / * ”cbbb bbbb” b i t s o f C * /
C = C & 0x000FFFFF ;
CT = 7 ;

}

n o b i t S t u f f i n g ( )
{

BP = BP + 1 ; / * o u t p u t B * /
B = C >> 1 9 ; / * ”bbb bbbb b” b i t s o f C * /
C = C & 0x0007FFFF ;
CT = 8 ;

}

FLUSHreg i s t e r ( )
{

TempC = C + A ;
C = C | 0x0000FFFF ;
i f ( C >= TempC ) C = C − 0 x00008000 ;

C = C << CT ;
c a l l ByteOut ( ) ;
C = C << CT ;
c a l l ByteOut ( ) ;

i f ( B == 0xFF )
d i s c a r d B ;

e l s e
BP = BP + 1 ; / * o u t p u t B * /

}
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