
Institute of Architecture of Application Systems
University of Stuttgart
Universitätsstraße 38

D-70569 Stuttgart

Diplomarbeit Nr. 3226

Extending an Open Source Enterprise
Service Bus for Multi-Tenancy Support

Focusing on Administration and
Management

Dominik Muhler

Course of Study: Software Engineering

Examiner: Prof. Dr. Frank Leymann
Supervisor: Dipl.-Inf. Steve Strauch

Dipl.-Inf. Tobias Binz
Commenced: July 28, 2011
Completed: January 27, 2012

CR-Classification: C.2.4, D.2.11, H.2.1, H.3.4

Abstract

As part of cloud computing, the service model Platform-as-a-Service (PaaS) has emerged,
where customers can develop and host internet-scale applications on cloud infrastructure.
The Enterprise Service Bus (ESB) is one possible building block of a PaaS offering, providing
integration capabilities for service-oriented architectures. Bringing the ESB to the cloud
requires scalability and multi-tenancy support. When applied, these characteristics lead to
economies of scale, reducing the costs per customer.

In this diploma thesis we specify, design, and implement a multi-tenant management ap-
plication for an existing open source ESB. The management application grants tenant users
limited configuration access to the ESB’s connectivity and integration services. A tenant
registry and a service registry serve as platform-wide databases. We ensure data isolation
between tenants for the management application and ESB message flows. Furthermore, the
management application can control clusters of ESB instances, retaining elasticity. These goals
also involve extensions to the ESB itself, which implements the Java Business Integration (JBI)
specification. As a result, an integration scenario emerged from the EU-funded project 4CaaSt
was applied to the system.

Contents

1. Introduction 1
1.1. Motivating Scenario . 1
1.2. Scope of Work . 3
1.3. Outline . 3
1.4. Definitions and Conventions . 4

2. Fundamentals 9
2.1. Cloud Computing . 9
2.2. Service-oriented Architecture . 10

2.2.1. Web Services Platform . 11
2.3. Enterprise Service Bus . 12
2.4. Multi-tenancy . 14
2.5. Technologies . 15

2.5.1. Java Business Integration . 15
2.5.2. OSGi Framework . 17
2.5.3. Apache ServiceMix . 18

3. Related Works 19
3.1. WSO2 Platform-as-a-Service . 19

3.1.1. Multi-tenant SOA platform . 19
3.1.2. Multi-tenant BPEL engine . 20

3.2. Force.com Platform-as-a-Service . 21

4. Concept and Specification 23
4.1. System Overview . 23

4.1.1. Components . 23
4.1.2. Scenarios . 25

4.2. Service Registry . 26
4.3. Multi-tenancy . 27

4.3.1. Role-based Access Control . 27
4.3.2. Tenant Registry . 28
4.3.3. Configuration Registry . 29
4.3.4. Service Assembly Processing . 30

4.4. Use Cases . 31
4.5. Application Interfaces . 34

4.5.1. Web-based Graphical User Interface . 34
4.5.2. Web Service API . 36

4.6. Non-functional Requirements . 36

iii

Contents

5. Design 39
5.1. Architectural Overview . 39

5.1.1. Components . 39
5.1.2. Integration . 42
5.1.3. Processing of JBI Artifacts . 43

5.2. Web Application . 43
5.2.1. Business Logic Access Layer . 43
5.2.2. Web Service . 45
5.2.3. Packaging and Deployment . 46

5.3. Database Schemes . 48
5.4. Extensions to ServiceMix . 50

5.4.1. Management Interface Over Messaging 51
5.4.2. Multi-tenant JBI Components . 52

6. Implementation and Evaluation 55
6.1. Implementation . 55

6.1.1. Java Annotations for Role-based Access Control 55
6.1.2. OSGi-based Management Service for Apache ServiceMix 57
6.1.3. Multi-tenant Binding Component and Service Engine 58

6.2. Evaluation . 59
6.2.1. Deployment and Initialization . 59
6.2.2. Tenant Context-based Routing . 63

7. Outcome and Future Work 67

A. Interface Definitions 69
A.1. Web Service Interface . 69
A.2. JBI Management Interface . 75

Bibliography 77

iv

List of Figures

1.1. Taxi Scenario - Communication Diagram . 2

2.1. Web Services Architecture . 11
2.2. Taxi Scenario - Refactoring to ESB . 13
2.3. JBI Architecture . 16

4.1. Overview of the System JBIMulti2 . 24
4.2. Clustering Scenarios to Evaluate . 25
4.3. Overview of Component Configuration Base Classes 30
4.4. Use Case Diagram . 33
4.5. Web UI: Service Unit Quotas Content Panel . 35
4.6. Web UI: Service Unit Contingents Content Panel 36

5.1. Overview of the JBIMulti2 Architecture . 40
5.2. Business Logic Layer: AccessLayer . 44
5.3. Enterprise Application Archive Packaging . 47
5.4. Entity-relationship Diagram of Tenant Registry 48
5.5. Entity-relationship Diagram of Service Registry 49
5.6. Entity-relationship Diagram of Roles in Configuration Registry 49
5.7. Entity-relationship Diagram of JBI Components in Configuration Registry . . 50

6.1. Add Tenant Request with soapUI . 61
6.2. Deploy Service Assembly Request with soapUI 62
6.3. Taxi Scenario - Tenant Context-based Routing 63

v

List of Figures

vi

List of Tables

1.1. XML Namespaces . 5

4.1. Permissions for Tenant Administrator Role and Tenant Operator Role 28
4.2. Properties in Tenant Registry Used by the System 28
4.3. Data Stored by Configuration Manager . 29
4.4. XML Attributes Considered by Multi-tenant JBI Components 31
4.5. Description of Use Case: Delete Service Unit Contingent 32

vii

List of Tables

viii

List of Listings

5.1. Service Endpoint Replacing Patterns for HTTP BC 53

6.1. Permission Type Annotations in TenantAdminFacadeBean.java 56
6.2. OSGi Blueprint Descriptor of JMSManagementService 58
6.3. SOAP Binding Endpoint URLs Containing Tenant URI 64
6.4. Service Unit Configuration of Tenant Context Appender 65
6.5. Service Unit Configuration of Tenant Context-based Router 66

A.1. Tenant Context XSD of JBIMulti2 . 69
A.2. Policies XSD of JBIMulti2 . 70
A.3. Policies in WSDL Document of JBIMulti2 . 71
A.4. Example SOAP Message to JBIMulti2 . 73
A.5. Messages XSD of JBI Management Interface. 75

ix

1. Introduction

Cloud computing is a recent paradigm for offering computing resources to customers on-
demand via Web interfaces and standardized protocols. Offered computing resources are
diverse, as they comprise business applications, services, storage, or virtual servers. Various
cloud services were started in the past years. Platform-as-a-Service (PaaS) offerings, such as
Force.com [WB09], provide application developers with facilities to build entire Web-based
business applications. Apart from that, more flexible Infrastructure-as-a-Service (IaaS) of-
ferings, such as Amazon EC2 [AMA], allow customers to provision virtual machines to run
arbitrary software on them. As cloud service providers serve many customers, they can lever-
age economies of scale, reducing costs for the individual customer. Multi-tenancy describes
how applications should be designed to maximize resource sharing among customers. This
includes multi-tenant data architectures that isolate data between tenants and scalability to
serve any number of tenants.

The EU-funded project 4CaaSt [4Ca] aims to create a PaaS cloud platform that provides
application developers with base components for multi-tier Web-based applications. This
includes an Enterprise Service Bus (ESB) middleware that service aggregators can use to
integrate applications, benefiting from the principles of Service-oriented Architecture (SOA).
To fulfill the characteristics of cloud computing, the ESB must be multi-tenant aware and
scalable. This work examines for an open source ESB, how data isolation between tenants
can be achieved, focusing on management and administration. Moreover, the concepts of this
work aim to retain ESB clustering capabilities.

A multi-tenant ESB should provide a management interface for tenant users, allowing them to
deploy configuration artifacts to the ESB. At the same time, configuration artifacts deployed
by one tenant must result in messages being delivered to either services of the tenant or
platform-wide services. This means, tenants must not get access to services of other tenants.
Particularly, tenant users should not notice that there are other tenants using the same
instances of the multi-tenant ESB. This work introduces a multi-tenant business application
for managing and administrating the multi-tenant ESB. Furthermore, for a particular open
source ESB, we introduce multi-tenant service components that host configuration data of
tenant users and ensure data isolation for message exchanges.

1.1. Motivating Scenario

In this section we describe a concrete scenario that is used for evaluating the outcomes of this
work. The scenario is composed of an application system that implements a taxi booking
service. Taxi customers can request taxi companies to send a taxi driver for transportation.

1

1. Introduction

For this purpose, the customer communicates the pick up location and the desired destination
to the taxi company. Then, the taxi company consults an external taxi service provider about
an available and nearby taxi cab. In the process, the taxi service provider requests taxi drivers
that are near the pick up location to commit the transportation of the customer. Thus, each
taxi driver has to carry a Taxi Transmitter that displays orders on a map and allows the taxi
driver to confirm an individual order. Once a taxi driver has confirmed the commission, the
taxi service provider sends a transportation information back to the taxi company that in turn
informs the customer.

Orchestra: Taxi Service Provider Process

Taxi TransmitterTaxi Company Google
Web Services

Binding

C-CAST CMF
Binding

Get Google
Directions

Get Active
Entities

Get Broker
Context

Java EE Servlet Container

Get Available
Nearby Taxis

Get Taxi Request

Get Taxi Driver
Contact

Information

Send Transport
Request

Wait for
Transport Reply

Send Transport
Information

Forward
Taxi Request Get Transport

Request

Send Transport
Reply

Synchronous Invocation/Request/Reply Asynchronous Request/Reply

Web Application

Activity

1

28

2

3 4
5

6
7

8 9

10
11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

Figure 1.1.: Communication between Web applications that collaboratively accomplish
prototype of Taxi Scenario. Condenses insights of Figure 1.1 and Figure 5.1 by
Hagin [Hag11].

Hagin has developed a prototype of the Taxi Scenario by implementing a BPEL process
that orchestrates the activities of the taxi service provider. The BPEL process leverages the
Project Context Casting (C-CAST) Context-Management Framework (C-CAST CMF) [CCA],
a context provisioning system that provides context information about taxi cab locations and
taxi driver contact details. Moreover, Google Maps Web Services [GMA] provide distance
calculations between the location of a taxi cab and the pick up location. All participants
of the taxi booking service are Web applications deployed to a Java EE Servlet Container
(see Fig. 1.1). The Taxi Company Web application acts as graphical user interface to the
customer, while the Taxi Transmitter provides an interface for the taxi driver. Additionally,
the BPEL engine Orchestra [OWO] is deployed as Web application, executing the taxi service
provider process. As the service endpoints of the C-CAST CMF and the Google Maps Web

2

1.2. Scope of Work

Services are incompatible to the BPEL process, two binding applications mediate between
the BPEL process and this external services. All applications communicate via point to point
messaging connections [Hag11].

In this work we develop concepts and implementation artifacts for a multi-tenant aware
ESB. The Taxi Scenario prototype involves many point to point integrations between Web
applications. Furthermore, each taxi company can publish an own Web application for
communication with its customers and has own taxi drivers carrying Taxi Transmitters.
Therefore, each taxi company and the taxi service provider are individual tenants and the
outcomes of this work should simplify the integration of the various Web applications. For
evaluation purposes, we integrate the Taxi Scenario using the multi-tenant aware ESB by
utilizing tenant context-based routing (see Sect. 6.2).

1.2. Scope of Work

This diploma thesis has the goal to specify, design and implement a multi-tenant management
and administration system for Apache ServiceMix 4.3.0 [ASM], an open source ESB. As
Apache ServiceMix implements the Java Business Integration (JBI) specification [JBI05], tenant
users must be provided with interfaces to deploy and undeploy service assemblies, which are
ESB configuration artifacts. The system must simultaneously support multiple instances of
Apache ServiceMix, retaining clustering support to ensure elasticity. This work emphasizes
data isolation between tenants, regarding the management system as well as message flows
inside the ESB that result from deployed service assemblies. While message flows are isolated
between tenants, service assemblies must further be isolated on the level of tenant users.

As the management system will be embedded in a PaaS platform with other applications
demanding similar information, this work must lay foundations for a shared registry of
tenants and a shared registry of services. Both ensuring data isolation between tenants.

Out of scope is the design and implementation of different load balancing strategies. However,
adapting the system for desired load balancing strategies must be facilitated. Possible
scenarios include clusters of equal Apache ServiceMix instances or clusters of different
interconnected Apache ServiceMix instances. Moreover, message flows resulting from policy-
based routing [MvLW+09] are not considered in this work. It suffices if tenants can configure
point to point messaging connections inside Apache ServiceMix. Furthermore, this work does
not present concepts for ensuring performance isolation between service artifacts running on
behave of different tenants.

1.3. Outline

The following six chapters cover different phases of work that have been pursued to accom-
plish the given goals and to conceive future tasks on the topic.

3

1. Introduction

• Fundamentals, Chapter 2—In the beginning, relevant literature that covers the funda-
mentals of this diploma thesis was surveyed. The chapter gives an explanation of cloud
computing, SOA, ESB, and multi-tenancy. Moreover, technologies widely used in this
work are explained, such as JBI, OSGi, and Apache ServiceMix.

• Related Works, Chapter 3—As a second preliminary step, two existing PaaS platforms
were examined for multi-tenancy concepts. Both the WSO2 organization and Sales-
force.com offer multi-tenant PaaS platforms that provide developers with tools to create
business applications.

• Concept and Specification, Chapter 4—Lessons learned in the first chapters were con-
sidered when formalizing the functional requirements and non-functional requirements
of the multi-tenant ESB management system. This includes a conceptual overview, a Ser-
vice Registry, a Tenant Registry, role-based access control, data isolation requirements,
user interfaces, and a use-case analysis.

• Design, Chapter 5—An architectural overview devises components and their relations
that together fulfill the described system requirements. A multi-tenant Java EE enter-
prise application is described that can control a cluster of Apache ServiceMix instances.
Moreover, necessary extensions to Apache ServiceMix are illustrated that ensure data
isolation in message flows.

• Implementation and Evaluation, Chapter 6—Chosen challenges that have occurred
during the implementation of the system are explained. Finally, the implementation
was evaluated by applying the Taxi Scenario to it.

• Outcome and Future Work, Chapter 7—Since a complete multi-tenant ESB can not be
developed in the scope of a single diploma thesis, the last chapter summarizes the
outcomes of this work and suggests future extensions to the system.

1.4. Definitions and Conventions

The following definitions and abbreviations should be inspected for understanding the
descriptions in this work. They are used throughout the document.

Definitions

In this document the general term BPEL refers to the Web Services Business Process Execution
Language (WS-BPEL) 2.0 specification [OAS07].

4

1.4. Definitions and Conventions

The following eXtensible Markup Language (XML) namespaces are used in this document
and referenced by the listed prefix:

Prefix Namespace Specification

ctxjmu2 http://jbimulti2.iaas.uni-stuttgart.de/tenant-context This document

wpjmu2 http://jbimulti2.iaas.uni-stuttgart.de/wsdl/policy This document

camel http://camel.apache.org/schema/spring [APA11a]

cm http://aries.apache.org/blueprint/xmlns/blueprint-cm/v1.0.0 [ARS]

ds http://www.w3.org/2000/09/xmldsig# [XML02b]

ext http://aries.apache.org/blueprint/xmlns/blueprint-ext/v1.0.0 [ARS]

osgi http://www.springframework.org/schema/osgi [CHLP09]

soap http://www.w3.org/2003/05/soap-envelope [SOA07]

soap12 http://schemas.xmlsoap.org/wsdl/soap12 [WSD06]

sp http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702 [OAS09]

wsdl http://schemas.xmlsoap.org/wsdl [WSD01]

wsp http://www.w3.org/ns/ws-policy [WSP07]

wsu http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-
wssecurity-utility-1.0.xsd

[OAS06a]

xenc http://www.w3.org/2001/04/xmlenc# [XML02a]

xsd http://www.w3.org/2001/XMLSchema [XSD04]

xsi http://www.w3.org/2001/XMLSchema-instance [XSD04]

Table 1.1.: XML namespaces referenced in this document via listed prefix.

List of Abbreviations

The following list contains abbreviations used in this document. Full names by convention
not valid or not used anymore are marked as deprecated.

ACID Atomicity, Consistency, Isolation, Durability

Apache ODE Apache Orchestration Director Engine

ASP Application Service Provider

Axis2 Apache eXtensible Interaction System v. 2

BC Binding Component

C-CAST CMF Project Context Casting (C-CAST) Context-Management Framework

5

1. Introduction

BLOB Binary Large Object

BPEL Web Services Business Process Execution Language 2.0

CLOB Character Large Object

EAI Enterprise Application Integration

EAR Enterprise Archive

EJB Enteprise JavaBeans

ESB Enterprise Service Bus

IaaS Infrastructure-as-a-Service

IDE Integrated Development Environment

Java EE 5 Java Platform, Enterprise Edition v. 5

JAX-WS Java API for XML-Based Web Services

JAXB Java Architecture for XML Binding

JBI Java Business Integration

JBIMulti2 JBI Multi-tenancy Multi-container Support

JDBC Java Database Connectivity

JDK Java Development Kit

JMS Java Message Service

JMX Java Management Extensions

JOnAS Java Open Application Server

JPA Java Persistence API

JSF JavaServer Faces

JVM Java Virtual Machine

MBean Managed Bean

NIST National Institute of Standards and Technology

NMR Normalized Message Router

OSGi Open Services Gateway initiative (deprecated)

PaaS Platform-as-a-Service

POJO Plain Old Java Object

QoS Quality of Service

SaaS Software-as-a-Service

6

1.4. Definitions and Conventions

SE Service Engine

SOA Service-oriented Architecture

SOAP Simple Object Access Protocol (deprecated)

UDD Universal Data Dictionary

UDDI Universal Description, Discovery and Integration

UUID Universally Unique Identifier

W3C World Wide Web Consortium

WS* Web Services (Specifications)

WSDL Web Services Description Language

WSO2 Web Services Oxygen (deprecated)

WSO2 BPS WSO2 Business Process Server

WSS4J Apache Web Services Security for Java

XML eXtensible Markup Language

XSD XML Schema Definition

XSLT Extensible Stylesheet Language Transformation

7

1. Introduction

8

2. Fundamentals

This diploma thesis relies on distinct conceptual and technological fundamentals that are
clarified in this chapter. Together they form the context for the outcomes of this work. As
the goal is to develop a system that will be part of a PaaS platform, the term cloud computing
is defined. Moreover, explanations are given how the ESB facilitates implementing SOA.
Different authors have addressed the various aspects of multi-tenancy. This chapter describes
the aims of multi-tenant systems and how developers can realize them. Finally, technologies
widely used in this work are explained.

2.1. Cloud Computing

Widely spread and recognized, the World Wide Web has opened a new distribution channel
for application software. Over the last decade more and more software vendors have begun
to rent their software online, thus acting as Application Service Provider (ASP). An ASP
expects omission of distribution costs, a consistent user base, and a constant revenue stream.
On the other side, customers benefit from omission of installation and maintenance efforts
[Tao01].

A new paradigm is cloud computing, which goes further by not only providing application
software via the Web, but all kinds of computing resources. This can be storage, servers, or
services. These computing resources are offered on-demand by the service provider and
provisioned or released by the customer. According to the National Institute of Standards
and Technology (NIST), there are five essential characteristics for the cloud model [NIS11].
Firstly, the customer can provision computing resources without further intervention of the
service provider. Moreover, the computing resources are accessible by various types of client
platforms via standard protocols. Regarding the underlying technology, resources are pooled,
automatically serving multiple tenants and scaling elastic on increasing demand. Finally, the
service provider can measure resource usage to charge customers and to monitor computing
capabilities. Three service models provide the customer with increasing control, while lowering
the abstraction level of the computing resources.

• Software-as-a-Service (SaaS) is a service model where service providers offer appli-
cations running on a cloud infrastructure to their customers. The underlying cloud
infrastructure enables cloud characteristics like elasticity and accessibility. In this model
the customer can only control individual configurations that are applied while the
customer uses the application.

9

2. Fundamentals

• Platform-as-a-Service (PaaS) allows the customer to deploy and configure his own
artifacts to the cloud infrastructure, such as applications, services, or libraries. These
artifacts are defined using programming languages, description languages, or modeling
languages predetermined by the service provider.

• Infrastructure-as-a-Service (IaaS) is the most flexible service model providing the
customer with control on the level of operating systems and virtual machines. As a
consequence, the customer can deploy any software that runs on the available operating
systems.

Regarding the user base of a cloud service, four deployment models can be distinguished. A
private cloud is used exclusively by one organization, possibly comprising multiple sub units.
Whereas a community cloud is shared by multiple organizations. Both deployment models do
not pretend the cloud infrastructure to be off premise. On the contrary, a public cloud is not
restricted to a group of organizations, and therefore, must be provided by a separate service
provider. A hybrid cloud combines at least two different of the previous deployment models.
For instance, this allows an organization to fall back on a public cloud, if the own computing
capabilities can not cope with the current load [NIS11].

Cloud services encourage using SOA as paradigm for implementation (see Sect. 2.2). Accord-
ing to IBM, all characteristics of SOA services can also be found in cloud services, such as
flexible deployment models ranging from on premise deployment to solutions that spread
over multiple enterprises [OPG11]. Therefore, cloud services can be realized with an extended
SOA that additionally ensures all cloud characteristics.

2.2. Service-oriented Architecture

With the intensification of IT-based business process reengineering and optimization, new
approaches towards system architectures and technologies have emerged. A widely used
architectural paradigm is Service-oriented Architecture (SOA), where implementations of
business activities are encapsulated as services. SOA provides the essential flexibility, by
relying on loose coupling between services and interoperability [WCL+05]. The Open Group
describes a service as a reusable implementation of a business activity that is self-contained,
possibly aggregating other services, while hiding implementation details. SOA incorpo-
rates services as building blocks into enterprise business processes. Service orchestration
requires services to provide business descriptions and access through open standard protocols
[OPG06].

Centerpiece of SOA is the Publish, Find, Bind pattern that describes the operations of partic-
ipants. First, the service provider has to register a description of his service to a discovery
facility. This allows a requestor to find a suitable service by consulting the discovery facility
that replies by giving a concrete service endpoint. With this information, the requestor can
than bind to the concrete service and finally execute a business activity [WCL+05]. An ESB
simplifies this procedure for the requestor by finding a suitable service, binding to it, and
executing the initial request in a single step (see Sect. 2.3).

10

2.2. Service-oriented Architecture

2.2.1. Web Services Platform

The Web services technology introduces a set of specifications that cover a complete SOA
stack (see Fig. 2.1). On top of common transport protocols, communication between services
is realized by messaging. This reduces coupling between services and increases flexibility.
The standard messaging protocol of the Web services stack is SOAP [SOA07]. Services are
described using XML documents that comply to the Web Services Description Language
(WSDL) specification [WSD01]. On the one hand, WSDL abstracts from the underlying service
implementing technology. On the other hand, WSDL abstracts from the service provider,
because it supports standardized Quality of Service (QoS) descriptions. Extensions for WSDL
and SOAP that provide different QoS are defined in a set of separate specifications. For
instance, WS-Security [OAS06a] specifies mechanisms to ensure integrity, confidentiality, and
authentication of messages.

U
D

D
I, M

eta data E
xch ange...

Transport

Messaging

Description

Quality of
Service

Components

HTTP SMTP, TCP/IP,...

SOAP, WS-Addressing, JMS ...

WSDL WS-Policy*

WS-Reliable
Messaging WS-Security*

WS-AtomicTransaction,

WS-BusinessActivity

Composite Atomic

BPEL WS-Coordination,...

Figure 2.1.: Web services architecture according to Weerawarana et al. [WCL+05]. Specifi-
cations that are fundamental for this work are highlighted in white color.

The structure of SOAP (version 1.2) messages is defined as an XML Information Set, sup-
porting arbitrary transport protocols. Each SOAP message contains a SOAP envelope that
comprises a SOAP header and a SOAP body. A SOAP header can contain any meta-data
about the message payload, such as routing information or authentication data. This supports
processing of the message in a chain of receivers, with each chain node manipulating the
message based on the information in the SOAP header.

A WSDL (version 1.1) document comprises an abstract definition and a concrete definition.
The abstract definition contains one or more port types that are the abstract interface of the
service. In contrast, the concrete definition of a WSDL document maps port types to concrete
bindings and service endpoints. Different elements of a WSDL document can be annotated

11

2. Fundamentals

with policies complying to the WS-Policy framework [WSP07]. Policies define claims about
QoSs or information contained in SOAP messages. Therefore, policies define how the service
operates, rather than what operations the service provides.

Completing the SOA stack, there are Web service specifications realizing discovery and
composition of services. The former covered by Universal Description, Discovery and Inte-
gration (UDDI). The latter covered by WS-BPEL and other specifications [WCL+05].

2.3. Enterprise Service Bus

According to Ortiz Jr., enterprises have advanced their approach to application integration in
multiple steps. At first, they have integrated enterprise applications manually by point-to-
point connections. Since point-to-point connections lack flexibility and become increasingly
unmanageable with a rising number of applications, Enterprise Application Integration (EAI)
systems have emerged. Instead of directly communicating with each other, applications send
messages via adapters to the EAI that is now responsible for correctly routing the messages.
To omit the single point of failure of a centralized approach and to leverage SOA, software
vendors have finally introduced the Enterprise Service Bus (ESB) [OJ07].

An ESB approaches integration problems by relying on standardized technologies, loose
coupling, and distributed deployment. The core principle of an ESB is reliable messaging,
which ensures loose coupling between applications. Using reliable messaging, application
developers do not have to bother about resending data on failure. Additionally, if the target
application is temporary unavailable, the messaging system can send the message as soon
as the receiver is available again. An other foundation of loose coupling is a homogeneous
representation format of data. As messages are represented as XML documents, mediation
services can transform formats that are incompatible between applications. Implementing
the principles of SOA, application logic is encapsulated behind a service interface. Thus,
service endpoints are abstract and service implementations can simply be exchanged. An
ESB encourages separating business process logic from the orchestrated underlying services.
Therefore, applications do not need to know which other applications are dependent on the
individual service interface. Adding new applications or changing their interactions can
happen without changes to the individual applications.

Applications can be integrated beyond the borders of a single business location and even to
other businesses. Each instance of the ESB middleware connects to other instances, building
a distributed integration middleware. This allows a business unit to independently use the
on-site ESB instance, while still being able to integrate services of other business units, on
other locations. Nevertheless, administrators can configure and manage all ESB instances re-
motely, because management communication leverages the underlying distributed messaging
middleware.

An integration architect configures connectivity services and integration services for each
individual instance of the ESB. For this purpose, an ESB comprises service containers, which

12

2.3. Enterprise Service Bus

Taxi Company Taxi Service Provider

ESB ESB

HTTP

WS

Servlet Container

Taxi C
om

pa ny
W

A
R

Taxi Transm
itter

W
A

R

HTTP

WS

HTTP

WS

Servlet Container

G
oogle S

er vices
W

A
R

C
-C

A
S

T C
M

F
W

A
R

HTTP

WS

HTTP

WS

Taxi S
ervic e

P
rovider B

P
E

L

Content based
routing service

Endpoint interface

ESB endpoint

Invocation and
management framework

Service container

SOAPSOAPSOAPSOAPSOAP

Figure 2.2.: Refactoring Taxi Scenario to ESB. Uses glyphs that have been introduced by
Chappel [Cha04]. Double arrows indicate connectivity services that simultane-
ously publish a Web service interface for incoming messages and connect to an
external Web service endpoint for outgoing messages.

host these services. The ESB service container provides an invocation and management frame-
work that connects a deployed service to the ESB. Rather than programming connectivity
services or integration services, the integration architect configures predefined services. The
ESB must provide connectivity services for common protocols, such as SOAP or JMS, and
integration services that transform messages or realize business process logic [Cha04].

The original implementation of the Taxi Scenario (see Sect. 1.1) integrates all participating
applications via point-to-point SOAP/HTTP connections [Hag11]. Refactoring these connec-
tions to an ESB means that each application would instead communicate with an individual
connectivity service running in an ESB service container. For instance, the taxi company
Web application would send all customer requests to a connectivity service that publishes
a Web service interface equivalent to the Web service interface of the taxi service provider
process (see Fig. 2.2). Furthermore, the ESB could be distributed between the taxi company
and the taxi service provider. In the original integration approach, the taxi service provider
process manages direct endpoints of the orchestrated applications, tightening coupling. In
an ESB approach the process could send all messages to a general ESB endpoint with a
separate content based router [HW03] taking over responsibility for routing each message to
the appropriate application.

13

2. Fundamentals

2.4. Multi-tenancy

Using SaaS offerings instead of licensed, locally hosted applications, enterprises expect
lower operational costs. Obviously, the software vendor benefits from synergies regarding
administration and maintenance of similar applications running for many customers. But
far more cost savings per customer can be achieved by scaling applications to serve many
customers concurrently, making them multi-tenant aware. The reason for this is that the
software vendor can better utilize computing capabilities by reducing no-load running and
sharing common code base and data. Moreover, an automated sales and provisioning process
can further reduce costs. With lower costs per customer the SaaS model can catch the long
tail [CC06]. This describes the market segment of customers that previously could not afford
licensing and hosting the individual software on their own. Depending on the market, the
long tail can comprise many times more customers than have been reachable before.

Chong and Carraro introduce four maturity levels for SaaS architectures, assessing their
capability to leverage economies of scale [CC06]. With increasing maturity, tenants share
more code base and are less isolated. On the first level, each tenant is provided with a tailored
application for exclusive use. The next level unifies the application code by giving tenants
configuration tools. Nevertheless, each tenant still uses an own instance of the application.
The third level adds multi-tenancy-efficiency by letting all tenants use the same instance of
the application. However, the number of tenants one application instance can cope with is
limited. Therefore, the fourth level of maturity requires scalability with tenants sharing a set
of application instances.

Tenants need configuration flexibility regarding user interfaces, business logic, custom data
models, and access control. Mature SaaS offerings should store tenant configurations in a
metadata store, separate from the actual application data. For instance, administrators of
a tenant could define roles and permissions in the metadata store that authorize access to
application data and functions for other users of the tenant [CC06].

SOA integration architects meet additional challenges, when they deploy SaaS offerings that
are compositions of multiple services. Taking up the previously described SaaS maturity
levels, individual SOA services may as well differ in configurability and instance sharing.
Accordingly, Mietzner et al. introduce service tenancy patterns including single instance, single
instance configurable, and multiple instance [MUTL09]. The single instance pattern describes
service instances that behave uniformly for all tenants. In contrast, the other two patterns
describe services that expect a tenant context on each request. A configurable service instance
uses the received tenant context to adjust its behavior, while a service exclusively provided to
one tenant uses the tenant context for authentication. To choreograph these types of services,
special enterprise integration patterns have been introduced. For instance, a tenant context
based router can route a message by analyzing the tenant context contained in the message
header. Furthermore, a SaaS vendor can apply tenant context based routing to distribute
requests between heterogeneous computing resources. This allows the software vendor to
offer its service with different quality levels and to optimize resource utilization [FLM10].

14

2.5. Technologies

Regarding multi-tenant data architectures, there exist three approaches to isolate data between
tenants in a database. When each tenant has an own database, recovery of tenant data on
failure can be achieved with common tools and individual extensions to the data scheme are
simple. Moreover, the database middleware ensures security. Certainly, this approach is not
multi-tenant-efficient, because the number of databases per database server is limited. In a
more shared architecture all data resides on the same database, but tenants have their data in
separate tables. Still, custom columns can be used to adjust the data scheme for each tenant.
Finally, the shared database, shared schema approach merges data of different tenants into the
same tables. This third architecture allows more tenants per database server. However, if
tenants have a high volume of data, there are many concurrent users, or tenants require
flexible data schemes, the other architectures are worth considering. Application developers
can apply security patterns to ensure data isolation between tenants, such as data encryption
or SQL view filters [CCW06].

The previously described challenges may be unfamiliar to traditional application developers.
A multi-tenancy enablement layer can encapsulate functions, such as data isolation, performance
isolation, or configurability. Thus, allowing traditional application developers to concentrate
on application logic and user interfaces. They invoke the underlying layer that then authenti-
cates tenant users, controls access to resources, provides multi-tenant aware administration
services and applies tenant configurations [GSH+07].

2.5. Technologies

The following sections describe technologies that realize concepts of SOA and the ESB. This
work builds up on these technologies, thus an introduction in more detail is necessary.

2.5.1. Java Business Integration

As described previously, an ESB can act as integration middleware for SOA. But the common
characteristics of an ESB are abstract. This means, a particular implementation of an ESB can
indeed integrate various applications using different standardized protocols, but the building
blocks of the ESB itself are still vendor-specific. Particularly, each software vendor may
design an own service container and define interfaces to connectivity and integration services.
The JBI specification, created by the Java Community Process, defines a Java framework
that standardizes the interoperating between service containers, connectivity services, and
integration services [JBI05]. Moreover, it specifies a management framework that integration
architects can use for configuring those services to cope with individual integration tasks.

A JBI container provides facilities to plug in JBI-compliant components that interoperate
through a central Normalized Message Router (NMR). A JBI component installed to a JBI con-
tainer either acts as Binding Component (BC) or as Service Engine (SE). The former providing
connectivity to external services, the latter implementing composition and transformation
services (see Fig. 2.3). The NMR is a message-oriented mediator that ensures loose coupling

15

2. Fundamentals

between JBI components. For this purpose, a JBI component consumes or provides services
and describes them according to the WSDL 2.0 specification. Each JBI component can send
normalized messages through the NMR by initiating a message exchange. A message exchange
can target other services via abstract endpoints as well as concrete endpoints. Abstract end-
points are given as WSDL interface names or operation names and are routed by the NMR to
a matching service endpoint. On the contrary, concrete endpoints are given as WSDL service
names and service endpoint names. A normalized message comprises meta-data and a XML
payload that corresponds to the XML Schema Definitions (XSDs) of the target service WSDL
message elements. As a consequence, normalized messages are protocol neutral and BCs
mediate between external protocols and the NMR.

JVM

JBI Environment

Normalized Message Router

M
anagem

e nt Fram
ew

ork

C
om

ponen t Fram
ew

o rk

SE1 SE2

BC1 BC2

SU

SU
SU

SU

SUSU

Management Client

External
Service Provider

External
Service Consumer

Legend
SE Service Engine
BC Binding Component
SU Service Unit

Internal Invocation
External Invocation
Container

Figure 2.3.: Overview of JBI Architecture, based on Figure 4 in JBI specification docu-
ment [JBI05]. JBI environment is illustrated as a container accommodating JBI
components, which in turn accommodate service units.

The JBI specification defines four asynchronous message exchange patterns for communica-
tion between JBI components. They differ in being unidirectional or bidirectional and in being
more or less reliable. Developers of JBI components use an API provided by the component
framework to create and send message exchanges or to query service endpoints. Furthermore,
the component framework demands of JBI components to implement several interfaces that
allow the JBI container to manage their life-cycle and to deploy service artifacts to them.

A management framework allows administrators to install JBI components, to deploy service
artifacts to them, and to control their state and the overall state of the JBI container. For this
purpose, the JBI specification relies on the Java Management Extensions (JMX) specification.
Consequently, each JBI component must implement predefined Managed Bean (MBean)
interfaces. Via JMX, administrators can install new JBI components that are given as ZIP files

16

2.5. Technologies

containing a JBI-compliant XML descriptor document. An integration architect can deploy
service artifacts, called service units to JBI components. Often an integration problem can not
be solved by only involving a single JBI component. Therefore, service units are packaged as
service assemblies that likewise contain a XML descriptor document.

Contradicting an essential characteristic of an ESB, the JBI specification does explicitly not
define how a distributed deployment of JBI containers must be accomplished [JBI05].

2.5.2. OSGi Framework

Designed for executability on devices with small memory, the OSGi Framework runs modular
applications and encourages resource sharing between components within a single Java Vir-
tual Machine (JVM). In OSGi, applications consist of executable and non-executable modules
that are called bundles. A bundle is packaged as JAR file and contains, in addition to Java class
files, meta-data describing capabilities it provides and requirements it demands. Capabilities
include Java packages the bundle provides Java classes for, whereas requirements include
Java packages the bundle relies on and does not deliver itself. After an administrator has
installed a new bundle, the OSGi Framework tries to resolve its requirements by matching it
with the capabilities of other installed bundles. A resolved bundle can provide classes and
services for other bundles or execute functions by itself. For this purpose, the OSGi frame-
work initializes a network of Java class loaders, allowing bundles to use system packages,
framework packages, and packages exported by other bundles.

The OSGi Framework specifies a life cycle for bundles. Having been resolved, a bundle can be
started by the framework. Therefore, executable bundles implement OSGi specific interfaces
that allow the framework to start and stop the individual bundle. Furthermore, bundles can
provide services to other bundles by dynamically registering service objects to the framework.
Other bundles can then use an API to query the internal service registry for available service
objects and finally bind to them. Additionally, bundles can listen to events that are published
by registered services [OSG11].

To facilitate developing of modular applications in OSGi, the Blueprint Container specification
[OSG09] has been introduced. A blueprint bundle contains a XML blueprint descriptor that
defines the instantiation and wiring of objects. This provides inversion of control, meaning a
blueprint bundle does not for itself create and connect objects, or bind to services. Instead
these object dependencies are injected by a Blueprint Container according to the provided
blueprint descriptor. As a result, the code base of blueprint bundles can be simpler and more
reusable. Technically, a Blueprint Extender bundle listens for events that indicate the resolution
of a new blueprint bundle. Then the Blueprint Extender creates a Blueprint Container that
manages the instantiation and wiring of corresponding objects [Gaw09]. Another specification
that covers inversion of control in OSGi environments introduces the concept of Spring
Dynamic Modules [CHLP09]. As part of this work, we developed a blueprint bundle that
creates multi-tenant aware JBI service assemblies (see Sect. 5.4.1).

17

2. Fundamentals

2.5.3. Apache ServiceMix

The open source ESB we intend to extend for multi-tenancy support is Apache ServiceMix
4.3.0 [ASM] from the Apache Software Foundation, hereafter referred to as ServiceMix. It is
based on the OSGi Framework implementation Apache Karaf [APA11b] that builds its kernel
layer. ServiceMix also includes an OSGi Blueprint Container implementation that is provided
by the Apache Aries project [ARS].

On top of the kernel layer, OSGi bundles realize the technology layer of ServiceMix. The tech-
nology layer brings in the ESB functionality complying to the JBI specification. Additionally,
ServiceMix ships with various JBI components. BCs support diverse protocols, such as SOAP
over HTTP, JMS, FTP, or SMTP. Whereas a SE that wraps Apache Camel [APA11a] provides
enterprise integration patterns [HW03]. This comprises XML transformations, content-based
routing, message splitting, or message aggregation. ServiceMix integrates the messaging
broker Apache ActiveMQ [AMQ] as foundation of the NMR.

Administrators can manage an instance of ServiceMix via a command line console that is
provided by Apache Karaf. However, the console not only allows managing OSGi bundles
and services. Console extensions introduce commands for managing installed JBI components
and deployed service assemblies. Artifacts, such as OSGi bundles, JBI components, or service
assemblies, can be installed by putting them into a hot deployment directory. Although,
the JBI specification does not define a distributed deployment of JBI containers, ServiceMix
implements a clustering engine. As a result, within a cluster, each instance is aware of service
endpoints created on other instances. Furthermore, developers are provided with plugins for
the software build tool Apache Maven [AMV] that simplifies the process of developing JBI
components and service assemblies [FUS11].

18

3. Related Works

This chapter presents the work of other authors who have designed multi-tenant systems for
PaaS offerings. The WSO2 organization has developed a multi-tenant SOA platform and a
multi-tenant BPEL engine, both based on existing open source middleware. Salesforce.com
offers a PaaS platform that allows developers to create and run business applications. This
analysis of existing approaches towards multi-tenant platforms shows, how existing open
source middleware can be reused and how data isolation between tenants can be realized.

3.1. WSO2 Platform-as-a-Service

The organization WSO2 is a vendor of open source enterprise middleware. All products are
component aggregations for WSO2 Carbon, an OSGi based platform. In order to implement
a PaaS offering with their products, a multi-tenant SOA middleware was developed on top
of WSO2 Carbon.

3.1.1. Multi-tenant SOA platform

A multi-tenant SOA platform based on the WSO2 Carbon platform allows tenant users to
deploy components and services isolated from each other. Requests sent to the middleware
may only be consumed by services of the corresponding tenant. The authors identify three
architectural elements for a multi-tenant SOA middleware: Execution, Security and Data
Isolation. Execution allows tenant users to deploy and run SOA components, such as services
and processes, while preventing components of one tenant to interfere with components of
other tenants. Security prevents deployed code of tenants to access resources of other tenants
or resources of the platform. The proposed system also provides a framework that allows
tenants to restrict their users to a limited set of system resources. Data isolation separates
stored configurations of different tenants.

The underlying execution engine of WSO2 Carbon is Apache eXtensible Interaction System
v. 2 (Axis2), a SOAP engine supporting different WS*-specifications. Users can deploy addi-
tional modules to Axis2, adding support for WS-Adressing [WSA04], WS-ReliableMessaging
[BIMT05], or WS-Security [OAS06a]. Modules contain handlers for different phases of a
message flow in both directions, into the engine or out of the engine [PHE+06]. Furthermore,
users can deploy services as Axis2 archive files that contain a deployment descriptor, the
service implementing classes, and additional libraries [Chi06].

19

3. Related Works

The developed system takes advantage of the fact that Axis2 holds its static state under a
single structure called AxisConfiguration and runtime state under a related structure called
ConfigurationContext. Each tenant has its own AxisConfiguration, while there is still a master
AxisConfiguration for other configurations. Resources assigned to one AxisConfiguration
can not access resources of an other AxisConfiguration, which provides execution isolation
and data isolation among tenants. When the engine receives a SOAP message, handlers in
the master AxisConfiguration dispatch the message to the corresponding tenant AxisConfig-
uration. The system provides a unique URL for incoming messages that target services of
different tenants. Such a URL comprises the identifier of the SOA platform, the tenant, and
the target service. Thus allowing different tenants to have equal names for their services.

As tenants can run Java code on the multi-tenant platform, care is taken that the code can
not access arbitrary resources. On the first level, the OSGi framework provides isolation by
class loading mechanisms and configurable security mechanisms. On the second level, the
JVM can be configured to run tenant code in a sandbox mode, preventing access to system
resources.

The system uses shared database tables for tenants to secure isolation for relational data.
Whereas file repositories are separated between tenants. But components and services do
not access databases or file repositories directly, instead a multi-tenant aware API layer
is positioned in between. It adds the tenant context to data access operations. Therefore,
multi-tenancy is hidden from component and service developers [APG+10].

3.1.2. Multi-tenant BPEL engine

Part of the WSO2 PaaS is a multi-tenant BPEL engine called WSO2 Business Process Server
(WSO2 BPS). Multiple tenants share the same instance of the BPEL engine, while business
processes running inside are isolated from each other. As the system claims a tenant context
on requests, the tenant context can be relayed to involved services. Therefore, multi-tenant
shared business processes are deployable by orchestrating multi-tenant aware services.

The system is built on top of the BPEL engine Apache Orchestration Director Engine
(Apache ODE) [AOD] and only modifies its integration layer, a component encapsulating the
communication with other systems. Thus, the core components, such as the BPEL runtime are
not changed. There exist two integration layers in the original version of Apache ODE, one
using Axis2 and one using JBI. Incorporating a modified version of the Axis2 integration layer,
WSO2 BPS adds multi-tenancy support to Apache ODE. The modified Axis2 integration layer
leverages the functionality of the multi-tenant WSO2 Carbon platform (see Sect. 3.1.1).

When a new business process is deployed to WSO2 BPS, it is first stored in a multi-tenant
aware repository provided by WSO2 Carbon. Then it is deployed to a multi-tenant aware
ProcessStore in Apache ODE. The ProcessStore stores compiled business processes, which
can directly be used by the BPEL runtime. Additionally, a service endpoint for the business
process is added to the AxisConfiguration of the tenant. Once a request is sent to the
Axis2 execution engine, it is relayed by the corresponding tenant service to WSO2 BPS.

20

3.2. Force.com Platform-as-a-Service

The Apache ODE runtime inherently provides data and execution isolation, because the
specifications of BPEL allow no access to resources belonging to an other BPEL process.

Clustering the WSO2 BPS is achieved by mapping a set of tenants to each instance. An
upstream load balancer knows, which tenants and which business processes each instance
serves and sends the request to a matching instance. This provides scalability regarding the
number of tenants and the number of deployed business processes [MPW11].

3.2. Force.com Platform-as-a-Service

The application development platform Force.com is a PaaS offering operated by Sales-
force.com. Tenant users can develop business applications by configuring a data model,
an user interface, business logic, workflows, or other artifacts. The platform provides an
interactive graphical user interface and a Web services API.

All artifacts that tenant users create are stored as metadata to a Universal Data Dictionary
(UDD), founding the concept of a metadata-driven architecture. This architecture defines
four components: The underlying runtime, application data, metadata for base functionality,
and metadata for single tenants. As these components are decoupled from each other, it is
possible for a tenant user to change the behavior of the tenant’s application, without affecting
other tenants or the whole platform.

Developers describe the data model of the application by specifying object types and associate
fields with them. Each field has a standard data type assigned to it. This metadata is stored
internally to database tables called Objects Metadata Table and Fields Meta Data Table.
Concrete data derived from the metadata is stored in a large table that acts as a heap storage.
This scheme allows tenant developers to create their own data model, while the application
data is still stored in a central location. All schemes contain a column that identifies the tenant
to which a record belongs.

When a user requests a tenant business application all components of the application are
created dynamically from metadata. A query optimizer uses the tenant metadata, the ap-
plication data, and pivot tables to efficiently retrieve information that the runtime uses to
generate application components. Furthermore, metadata, application data and generated
components are cached to reduce read operations to the central shared databases.

The platform provides the Apex programming language to application developers. Ensuring
performance isolation among tenants the Force.com runtime limits CPU time, memory usage,
and database queries of executed Apex code [WB09].

21

3. Related Works

22

4. Concept and Specification

This chapter composes requirements for a multi-tenant ESB based on Apache ServiceMix
[ASM] that can be part of a PaaS platform, like 4CaaSt [4Ca]. The described system ensures
data isolation by introducing multi-tenant aware management of ESB configuration artifacts.
At first, an overview of the key functional requirements and components is given in Section
4.1. The following sections illustrate functional requirements in more detail and include a use
case analysis. Moreover, non-functional requirements are listed in Section 4.6 giving guidance
values for several software qualities.

4.1. System Overview

A system built on top of Apache ServiceMix [ASM] has to be developed that allows system
administrators to configure connections to ServiceMix clusters and to a tenant database.
System administrators can grant cluster access to tenants and monitor resource usage. In turn,
tenant users can have different roles, allowing them to either manage access rights of other
tenant users or to deploy services (see Sect. 4.3.1). In its final version, the system will provide
a graphical Web-based user interface and a Web service interface, both running in parallel.
Furthermore, the system must be independent of a specific version of the ServiceMix core
implementation.

Configurations or services deployed by tenants to a ServiceMix cluster must not interfere
with configurations of other tenants or system resources. A multi-tenant system must ensure
data isolation and performance isolation. This specification focuses on requirements that
provide data isolation for both static data and runtime data.

4.1.1. Components

As described in Section 2.5.3, ServiceMix complies with the JBI specification [JBI05]. Therefore,
ServiceMix is designed as a JBI container that allows the installation of two types of JBI
components. BCs connect the JBI container to external endpoints via different protocols,
whereas SEs orchestrate the message flow inside the JBI container. Each JBI component uses
service assemblies as configuration data that defines additional behavior, such as message
flows, message transformations, or bindings to external endpoints. A multi-tenant ESB based
on ServiceMix must manage service assemblies separately for each tenant.

Based on ServiceMix, the system conceived in this diploma thesis supports elasticity and
additionally enables multi-tenant aware management of service assemblies and services. The

23

4. Concept and Specification

Service Registry
PostgreSQL Cluster

ESB
ServiceMix Cluster

Resources

WSDL / SA

Web Service APIWeb UI

Service Registry Manager

Service Assembly Manager

User
Interface

Business
Logic

SA

Tenant Registry Manager Configuration Manager

Configuration Registry
PostgreSQL

Tenant Registry
PostgreSQL

JBI Container Manager

Figure 4.1.: Overview of the system JBIMulti2. Arrows illustrate data flow between core
components and resources.

system is called JBI Multi-tenancy Multi-container Support (JBIMulti2), because it supports
many tenants and a cluster of ServiceMix instances.

JBIMulti2 relies on three data resources: the Tenant Registry, the Service Registry, and the
Configuration Registry. Tenant contexts are obtained from the Tenant Registry. It delivers tenant
users and their role inside the corresponding tenant (see Sect. 4.3.2). The Service Registry
stores service assemblies and service descriptions for each tenant, while isolating the data of
different tenants (see Sect. 4.2). All other non-tenant related and tenant related data is stored
by the Configuration Registry. This includes configurations created by system administrators
or tenant administrators. As service assemblies and services are stored to a separate Service
Registry, they must not be stored to the Configuration Registry (see Sect. 4.3.3).

We propose a graphical Web-based user interface named Web UI that exposes the functionality
of JBIMulti2. It can be used by system administrators and tenant users and supports all
use cases listed in Section 4.4. Likewise, all functionality supported by the Web UI must be
supported by a Web Service API as well (see Sect. 4.5.2). Currently, the prototype developed
within the scope of this diploma thesis only implements the Web Service API. However, a
concept for the layout of the Web UI can be found in Section 4.5.1.

The preceding components are built on top of an Integration Layer that encapsulates the access
to databases and the ServiceMix clusters. Moreover, it can initiate atomic transactions among
the resources. An extension component for ServiceMix provides integration with JBIMulti2.
It installs JBI components, processes service assemblies by adding a tenant context, and
deploys service assemblies. Once deployed, a service assembly must not interfere with the
service assemblies of other tenants. To ensure data isolation, the tenant context inside the
service units of a service assembly is processed by a set of new BCs and SEs. JBI components

24

4.1. System Overview

are installed by a system administrator via the Web UI or Web Service API. Thus, they are
predetermined for tenants using the system.

When designing the interfaces between the core components and the resources, maintainabil-
ity and interchangeability have to be focused. Changing middleware vendors or endpoint
configurations must not result in extensive changes to the core components.

4.1.2. Scenarios

Legend
SMX Apache ServiceMix Instance SE Service Engine
BC Binding Component SA Service Assembly

User Interface

Business Logic

SMX1

BC1 BC2

SE1 SE2

Load Balancer

SA1 SA2 SA3

SMX2

BC1 BC2

SE1 SE2

SA1 SA2 SA3

requestmanagement

Cluster: tenant0, ... , tenant9

User Interface

Business Logic

SMX1

BC1

SE1 SE2

Load Balancer

SA1 SA3

SMX2

BC1 BC2

SE2

SA1 SA2

request
management

Cluster: tenant0, ... , tenant9

(b) Scenario A.

User Interface

Business Logic

SMX1

BC1 BC2

SE1 SE2

Load Balancer

SA1 SA2 SA3

SMX2

BC1 BC2

SE1 SE2

SA1 SA2 SA3

requestmanagement

Cluster: tenant0, ... , tenant9

User Interface

Business Logic

SMX1

BC1

SE1 SE2

Load Balancer

SA1 SA3

SMX2

BC1 BC2

SE2

SA1 SA2

request
management

Cluster: tenant0, ... , tenant9

(c) Scenario B.

Figure 4.2.: Clustering scenarios to evaluate. In scenario A all ServiceMix instances of a
cluster have the same JBI components installed and the same service assemblies
deployed. Whereas in scenario B all ServiceMix instances of a cluster are
connected, allowing each one to have another set of JBI components and
service assemblies.

Two scenarios regarding the topology of the ServiceMix clusters have to be evaluated
(see Fig. 4.2). They arise from two different options for installing JBI components and
deploying service assemblies to ServiceMix instances.

In the first scenario, the ServiceMix instances are not connected and therefore all instances are
equal. JBI components have to be installed on all instances and service assemblies have to
be deployed on all instances. Load balancing is easy as it does not matter, which ServiceMix

25

4. Concept and Specification

instance handles a request. The number of JBI components and service assemblies on one
instance is limited. It has to be evaluated how many service assemblies a JBI component can
handle and how the system performs with an increasing number of requests.

In the second scenario, the ServiceMix instances are connected and differ in the installed
JBI components and deployed service assemblies. An intelligent deploying mechanism can
distribute the service assemblies of tenants over the cluster to better utilize machine resources.
An upstream load balancer then has to know, which ServiceMix instances can handle an
ongoing request of a tenant. It has to be evaluated for two ServiceMix instances, how service
units on one instance can communicate with service units on the other instance. Also it has to
be evaluated how ServiceMix behaves, if the same service assembly is deployed to different
instances.

The development of a load balancing mechanism or an intelligent deployment mechanism is
not in the scope of the work. The current implementation of this specification only supports
the first scenario.

4.2. Service Registry

The Service Registry is a platform-wide PostgreSQL [PSQ] database to store service assemblies
and services. It is planned to reuse it as a shared database for other applications than the
multi-tenant ESB.

JBIMulti2 writes service assemblies and services to the Service Registry in a tenant-isolated
manner. Two kinds of resources are stored: service assemblies and WSDL descriptions,
the former bundled as binary ZIP files and the latter represented as XML documents. The
stored data is used to inform tenant users of their deployed resources. Apart from that, the
WSDL data could be used by ServiceMix instances to dynamically establish JBI endpoints
to external Web services. However, service assemblies are not dynamically loaded by the
ServiceMix instances, instead, a subordinate load balancer will deploy service assemblies to
the individual ServiceMix instances.

Neither dynamic loading of WSDL data nor load balancing is in the scope of the current
implementation. But it must be taken care that it will be possible in a future extension of the
system.

26

4.3. Multi-tenancy

4.3. Multi-tenancy

Comparing isolated applications with multi-tenant applications, the latter demand an ex-
tended functionality. A multi-tenant system must ensure isolation for stored data not only
between users, but also between different tenants. Moreover, authentication and access con-
trol to resources is executed on the two hierarchical levels of tenants and tenant users. Finally,
there has to be a Tenant Registry and a corresponding management system that allows adding
and removing tenants [ZSTC10]. The following sections describe how JBIMulti2 incorporates
these functions.

4.3.1. Role-based Access Control

There are two distinct layers of roles participating in the system.

• The system role differentiates between system administrators and tenant users, with each
tenant user belonging to one tenant. Both system roles are mutually exclusive and users
of one system role have a completely separate user interface from users of the other
system role.

• The tenant role classifies tenant users into tenant administrators and tenant operators.

A system administrator does not belong to a tenant. He configures the system and assigns
quotas of resource usage to the tenants. The system administrator has unlimited permissions
and consequently is allowed to interfere in the actions of the tenant users. On the other side,
the tenant users consume the quotas of resource usage given by the system administrator
to deploy service assemblies or to register services. Furthermore, they are classified into
different tenant roles. Tenant administrators define roles and assign permissions to them. In
turn, the roles are assigned to tenant operators who then access the resources using a resource
contingent given by the tenant administrators. This scheme implements the Role-Based Access
Control (RBAC) model [SCFY96]. Table 4.1 shows all permissions that are assignable to tenant
administrator roles and tenant operator roles.

Each tenant user can have multiple tenant administrator roles and tenant operator roles.
The union of the permissions of all tenant roles determines, which actions a tenant user can
perform and which Web UI elements are visible to him.

A tenant administrator can manage contingents of service units and contingents of service
registrations. The contingent defines a group of resources and the maximum number of
resources the group can contain. All resources of a contingent are of the same type, such as
BC for SOAP or WSDL service description. Therefore, a tenant administrator can partition
the quota of resource usage he has obtained from the system administrator. For a tenant to be
able to perform actions, the super administrator has to assign a default tenant administrator
role to at least one tenant user. The initial tenant administrator can then appoint other tenant
administrators or assign tenant operator roles to tenant users.

27

4. Concept and Specification

Tenant Administrator Role Tenant Operator Role

Manage tenant administrator roles and their assign-
ment to tenant administrators.

Manage tenant operator roles and their assignment
to tenant operators.

Manage service unit contingents. Deploy/undeploy service assembly using con-
tingent x and view contingent x.

Manage service registration contingents. Register/unregister service description using
contingent x and view contingent x.

View all service unit contingents.

View all service registration contingents.

Table 4.1.: Permissions assignable to tenant administrator role and tenant operator role.

4.3.2. Tenant Registry

There is no existing Tenant Registry implementation given to use as data source for applica-
tions of the PaaS platform. Thus, a rudimentary tenant database has to be set up and tied to
JBIMulti2 via the Tenant Registry Manager (see Fig. 4.1). The default middleware to use is a
PostegreSQL 9.1.1 database. Though, the Tenant Registry Manager must facilitate changing
the middleware that is delivering tenant information.

For each tenant the Tenant Registry stores a set of tenant users. Every tenant and every
tenant user is identified by a Universally Unique Identifier (UUID) and can have associated
properties represented as key-value pairs. The properties in Table 4.2 are used by JBIMulti2.

Subject Property Name Description

tenant TName Name of the tenant.

tenant uri URI that identifies the tenant domain. Used to
name Web contexts in ServiceMix BCs for securing
tenant isolation.

tenant user UName Name of the tenant user.

tenant user tenant administrator role Comma separated strings referencing tenant ad-
ministrator roles in the Configuration Registry.

tenant user tenant operator role Comma separated strings referencing tenant opera-
tor roles in the Configuration Registry.

tenant user password Queried, when user tries to login. Represented as
hash value generated with MD5.

Table 4.2.: Properties in Tenant Registry used by JBIMulti2.

28

4.3. Multi-tenancy

4.3.3. Configuration Registry

All data created by system administrators or tenants, except for service assemblies and
service registrations, is stored by JBIMulti2 via the Configuration Manager (see Fig. 4.1). As
middleware PostgreSQL 9.1.1 is used and all tenants are assigned to the same database
scheme, ensuring maximum resource sharing (see Sect. 2.4).

Table 4.3 lists the data stored by the Configuration Manager. Each data type is mapped to
user roles that can have read or write access. A tenant user is additionally restricted to the
actions defined in his roles. That means, for example, even if a tenant user has a tenant
administrator role, he might not have the permission to change role assignments to other
tenant administrators.

Data Read Access Write Access

Installed JBI components system administrator system administrator

Configuration of ServiceMix instances system administrator system administrator

Mapping of ServiceMix instances to tenants system administrator system administrator

Assignment of service unit quota for each installed
JBI component

system administrator system administrator

Assignment of service registration quota system administrator system administrator

Mapping of permissions to tenant administrator
role

system administrator,
tenant administrator

system administrator,
tenant administrator

Assignment of tenant administrator role to tenant
user

system administrator,
tenant administrator

system administrator,
tenant administrator

Mapping of permissions to tenant operator role system administrator,
tenant administrator

system administrator,
tenant administrator,
tenant operator

Assignment of tenant operator role to tenant user system administrator,
tenant administrator

system administrator,
tenant administrator,
tenant operator

Partitioning of service unit quota to service unit
contingents

system administrator,
tenant administrator

system administrator,
tenant administrator

Partitioning of service registration quota to service
registration contingents

system administrator,
tenant administrator

system administrator,
tenant administrator

Service unit contingent usage system administrator,
tenant operator

system administrator,
tenant administrator,
tenant operator

Service registration contingent usage system administrator,
tenant operator

system administrator,
tenant administrator,
tenant operator

Table 4.3.: Data stored by Configuration Manager.

29

4. Concept and Specification

4.3.4. Service Assembly Processing

Each JBI component defines what kind of configuration it relies on. The configuration has
to be deployed as a service unit to ServiceMix. Multiple service units targeting different JBI
components can be deployed together as a service assembly. JBIMulti2 provides an extension
component that has to be installed on each ServiceMix instance. It adds the tenant context to
each service unit contained in a service assembly, so that once deployed in ServiceMix, they
do not interfere with service units of other tenants.

Figure 4.3.: Overview of component configuration base classes. XML elements are mapped
to subtypes of this classes.

Each JBI component requires an other type of configuration data. Standard ServiceMix BCs,
such as servicemix-http, sevicemix-jms, or servicemix-mail use XML configuration files. They
each define an individual namespace with XML attributes mapped to internal Java class
members of generated endpoints (see Fig. 4.3). Furthermore, the components servicemix-http
and sevicemix-jms can also be configured by deploying a WSDL file. The SE servicemix-camel
[APA11a] additionally supports custom Java class files as configuration data. Apache ODE
[AOD] has a JBI integration layer that allows it to be installed as SE to ServiceMix. Service
units for Apache ODE rely on BPEL definitions and a deployment descriptor that defines
concrete endpoint definitions.

For each JBI component Table 4.4 shows, which XML elements and XML attributes are
relevant for supporting multi-tenancy. Those have to be considered by the target multi-tenant
JBI component in order to secure data isolation between tenants. A service assembly may
not access endpoints that are configured by other tenants. Therefore, qualified names that

30

4.4. Use Cases

reference JBI service endpoints must be renamed during the internal transformation process
(see Sect. 5.4.2).

JBI Component XML elements XML Attributes

servicemix-http consumer, provider,
soap-consumer,
soap-provider

endpoint, interfaceName, service, targetEndpoint,
targetService, targetInterface, targetOperation,
targetUri, locationUri

servicemix-jms consumer, provider,
soap-consumer,
soap-provider

endpoint, interfaceName, service, targetEndpoint,
targetService, targetInterface, targetOperation,
targetUri

servicemix-mail poller, sender endpoint, interfaceName, service, targetEndpoint,
targetService, targetInterface, targetOperation,
targetUri

servicemix-xmpp receiver, sender endpoint, interfaceName, service, targetEndpoint,
targetService, targetInterface, targetOperation,
targetUri

servicemix-camel endpoint, from, to,
wireTap, . . .

uri, ref

Apache ODE service name, port

Table 4.4.: XML attributes considered by multi-tenant aware JBI components to secure data
isolation between tenants.

4.4. Use Cases

Three actors take part in the use case analysis. They are defined in section 4.3.1: system
administrator, tenant administrator, and tenant operator.

A system administrator has access to all resources of tenant administrators and tenant opera-
tors. Therefore, the system administrator inherits all use cases from the tenant administrator
and the tenant operator (see Fig. 4.4). The system acts by modifying resources (see Table 4.4).
As multiple resources can be changed during execution of one use case, resource changes
must be included in a distributed transaction (see Sect. 5.1.2). All use case descriptions can be
found in a separate requirements specification document [JBI12] belonging to this work.

31

4. Concept and Specification

Name Delete Service Unit Contingent

Goal The tenant administrator wants to delete a service unit contingent.

Actor Tenant Administrator

Pre-Condition The service unit contingent exists and the tenant administrator has the permission
to manage service unit contingents.

Post-Condition The service unit contingent is deleted.

Post-Condition in
Special Case

The service unit contingent still exists and the service unit quota remains un-
changed.

Normal Case 1. The tenant administrator commands the system to delete the service unit
contingent.

2. The system asks the tenant administrator to confirm that all service assem-
blies using the service unit contingent will be undeployed.

3. The tenant administrator confirms.

4. The system starts a distributed atomic transaction.

5. The system initiates the undeployment of service assemblies at the JBI
containers, deletes the records from the Service Registry and updates the
Configuration Registry.

6. The system deletes the service unit contingent record from the Configura-
tion Registry.

7. The system finishes the distributed atomic transaction.

Special Cases 3a. The tenant administrator aborts.

a) The system does not delete the service unit contingent.

4a. Concurrently the tenant administrator has lost the permission to manage
service unit contingents.

a) The system shows an error message and aborts.

5a. The system can not finish the transaction with the JBI containers, the Service
Registry and the Configuration Registry.

a) The system rolls back the distributed atomic transaction and shows
an error message.

6a. The system can not finish the transaction with the Configuration Registry.

a) The system rolls back the distributed atomic transaction and shows
an error message.

Table 4.5.: Description of Use Case Delete Service Unit Contingent.

32

4.4. Use Cases

Figure 4.4.: Use case diagram.

33

4. Concept and Specification

4.5. Application Interfaces

This section describes a graphical user interface that makes the previously described functions
available to humans. Moreover, a Web service API serves as interface to other applications
and can be used to integrate JBIMulti2 into the PaaS platform.

4.5.1. Web-based Graphical User Interface

There are two separate Web-based user interfaces for system administrators and tenant users.
This means on logging in, a system administrator is routed to an other interface than a tenant
user.

Consisting of three parts, the user interface comprises a header, a menu and a content panel.
The header shows the identity of the user. For tenant users additionally the name and URI of
his tenant is shown. Via the header a user can log out. System administrators additionally can
change to the perspective of a tenant and perform tenant action. Via the menu on the left side
users can change the current content panel. The current content panel is shown on the right
side. Every content panel subdivides its functionality into separate segments (see Fig. 4.5).
For tenant users the roles they act as determine the available content panels. Whereas to
system administrators all content panels are available.

Sketches of all content panels can be found in the separate requirements specification docu-
ment [JBI12].

System Administrator Content Panels

For system administrators there exist five content panels, providing different functions.

The Tenant Registry Content Panel shows an overview of all tenants in the Tenant Registry.
Furthermore, the system administrator can add and remove tenants and single tenant users.
Using the JBI Containers Content Panel, on the one hand, the system administrator can assign
a new JBI container to a cluster and install JBI components to known clusters. On the other
hand, he can download the binaries of an installed JBI component or uninstall it again. To
confirm his input the system administrator can view an overview of all JBI containers and
installed JBI components.

With the JBI Container Assignment Content Panel the system administrator can assign an
existing cluster name to a tenant. Then all JBI containers with this cluster name are available
to the tenant. The Service Unit Quotas Content Panel allows system administrators to assign
a quota of service units to a tenant for each JBI component (see Fig. 4.5). Only those JBI
components are allowed that belong to a JBI container available to the tenant. To confirm
his input, the system administrator can for each tenant inspect an overview of all allowed
JBI components, the service unit quotas, and the number of currently deployed service units.
Finally, the Service Registration Quotas Content Panel provides the system administrator with
functions to assign a quota of service registrations to a tenant.

34

4.5. Application Interfaces

Figure 4.5.: Web UI: Sketch of Service Unit Quotas Content Panel.

Tenant Administrator Content Panels

Tenant administrators use the Tenant Administrators Content Panel to assign permissions to
tenant administrator roles and tenant administrator roles to tenant users. Likewise, they use
the Tenant Operators Content Panel to manage tenant operator roles. Each resource contingent
has its own entry in the list of tenant operator permissions, which allows tenant administrators
to separately grant permissions for using individual contingents.

With the Service Unit Contingents Content Panel the tenant administrator can partition the ser-
vice unit quotas given by the system administrator into service unit contingents (see Fig. 4.6).
Supporting the tenant administrator, an overview shows the quotas for different JBI com-
ponents. Analogically, the Service Registration Contingents Content Panel allows a tenant
administrator to partition the service registration quotas given by the system administrator
into service registration contingents.

Tenant Operator Content Panels

Tenant operators are provided with two content panels. The Service Assemblies Content Panel
allows tenant operators to deploy a service assembly by uploading it to the system as a ZIP
file. He also chooses which service unit contingents may be charged for the service units
contained in the service assembly. Apart from that, the tenant operator can download the
ZIP file of an deployed service assembly or undeploy it again. Likewise, the tenant operator
uses the Service Registrations Content Panel to upload a service registration as a WSDL file,
download a WSDL file, or delete a service registration. WSDL files can also be registered by
referencing them via URL.

35

4. Concept and Specification

Figure 4.6.: Web UI: Sketch of Service Unit Contingents Content Panel.

4.5.2. Web Service API

The Web Service API provides the same functionality as described in the use case analysis
(see Sect. 4.4). It is stateless and integrates WS-Security by claiming a valid tenant context on
each request.

When a ServiceMix instance wants to access information of the Service Registry or the Tenant
Registry, it must call the Web service interface with system operator role. In usual cases a
ServiceMix instance does not need to request information from JBIMulti2, because service
assemblies are deployed via a push mechanism. A technical function that is not available in
the Web UI, but needed by ServiceMix instances, is retrieving a tenant context by a tenant key.
This function should additionally be supported by the Web Service API.

4.6. Non-functional Requirements

This section describes non-functional requirements that a productive version of JBIMulti2
should satisfy. The quantity structure describes, with how many computing resources of
different types the system must cope. Moreover, considering the fact that JBIMulti2 acts as
building block of a PaaS platform, we focused on different software qualities.

36

4.6. Non-functional Requirements

Quantity Structure

One JBIMulti2 instance connected to a cluster of two ServiceMix instances should handle the
following quantities without impact on other non-functional requirements:

• The system can store 1000 registered service assemblies or services, 10 tenants with each
having 1000 tenant users and corresponding records in the Configuration Registry.

• The system can run 100 service assemblies and 10 JBI components in total on one
ServiceMix node.

• The system allows 50 tenant users or system administrators to execute use cases
(see Sect. 4.4) concurrently over the Web UI and 100 management requests per sec-
ond over the Web service interface.

• A management request to the Web UI or the Web service interface is responded to in 4
seconds on normal networking conditions.

Above values are based on experienced data. In the evaluation of this work, test criteria are
limited to three service assemblies, two tenants with each having two tenant users, and not
having concurrent requests (see Sect. 6.2).

Software Qualities

• Data Consistency—Transactions implementing Atomicity, Consistency, Isolation, Dura-
bility (ACID) have to secure data integrity between the Service Registry, the Tenant
Registry and the Configuration Registry. State of JBI containers does not need to be
consistent with the Service Registry, the Tenant Registry and the Configuration Registry
at any time. But care has to be taken that once a change request to a JBI container
has been initiated, it is successfully executed within 5 minutes. If a JBI container is
unavailable, it has to execute missed requests once it has restarted. The execution order
of requests must be adhered to.

• Security—Requests of tenant users and system administrators to the Web UI and
the Web service interface have to be authorized, checked for integrity and treated as
confidential. That means that requests to the Web UI have to use HTTPS and requests
to the Web service interface have to use WS-Security. Internal communications between
JBIMulti2, the databases, and ServiceMix instances are assumed to be exchanged in a
demilitarized zone.

• Maintainability—Source code has to be well documented and the decoupling of system
components has to facilitate changes in functionality. Interfaces to databases, other
middleware and file systems have to be encapsulated. The system must be expandable
with dynamic policy-based service discovery and load balancing in later stages of
expansion.

• Installation Ease—The installation procedure has to be well documented. Executing
all steps should lead to a running system.

37

4. Concept and Specification

38

5. Design

This chapter describes an architectural and technological solution for the concepts and
specified system requirements of Chapter 4. First, an overview of the system decomposition
and used technologies is given in Section 5.1. Then, the design of main components is
illustrated in separate sections.

5.1. Architectural Overview

As described in Section 4.1, a configuration of JBIMulti2 consists of a management application
that accesses a set of databases and clusters of JBI containers. The databases store service data,
tenant data, or configuration data, which reference resources of the connected JBI containers
(see Fig. 5.1).

5.1.1. Components

The management application, further called Web application, has a three-tier-architecture,
with a presentation layer, a business logic layer, and underlying resources (see Sect. 5.2).
The presentation layer is separated into a WebGUI component and a WebService component.
Whereas the business logic is accessed via a superordinate AccessLayer that orchestrates
use cases by calling the subjacent business logic components: ServiceRegistry, TenantReg-
istry, ConfigurationRegistry, and JBIContainerManager.

The Java Platform, Enterprise Edition v. 5 (Java EE 5) specification describes how different
roles are involved in developing enterprise applications and acts as technological foundation.
The Web application can be deployed on any application server that is compliant to Java EE 5
or a later version of the specification. Providing common services, the application server
has various responsibilities, such as security, thread-pooling, transaction management, or
resource management [JAV06].

As a consequence, the JBIMulti2 Web application only defines abstract endpoints to databases
or the JBI containers. Concrete endpoints are not defined until an application deployer
maps the abstract endpoints to concrete endpoints. Additionally, the Web application uses
services of the application server that provide access to underlying resources. Therefore, the
Web application does not need a specific integration layer to facilitate replacing the used
database or messaging middleware. The Web application is tested with PostgreSQL 9.1.1
[PSQ] as database middleware and Apache ActiveMQ 5.3.1 [AMQ] as messaging middleware.

39

5. Design

Legend

Unidirectional Data Flow Bidirectional Data Flow

Use Relation

Node

Existing Component
(grey color)

Figure 5.1.: Overview of the JBIMulti2 architecture.

40

5.1. Architectural Overview

Corresponding resource adapters are bundled together with the Web application in an
Enterprise Archive (EAR) file (see Sect. 5.2.3).

On top of Java EE 5, a stack of technologies is built that provides APIs to implement business
logic, Web services, Web frontends, and more. The Web application takes advantage of the
following technologies provided by the application server:

• Java API for XML-Based Web Services (JAX-WS) 2.0 to develop the Web service inter-
face of the Web application. On the one hand, JAX-WS describes how Java interfaces
are mapped to WSDL 1.1 and vice versa. On the other hand, JAX-WS sepecifies a Java
API for developing Web service clients and Web service providers [JAX06b].

• Java Message Service (JMS) 1.1 to interact with the JBI containers using messaging.
The JMS specification defines a common messaging API for Java, intending to integrate
messaging products that deliver a JMS provider interface [JMS02].

• Enteprise JavaBeans (EJB) 3.0 to implement the business logic of the Web application.
The EJB specification defines a component architecture that distinguishes between
stateless session beans, stateful session beans, entity beans, and message-driven beans. A EJB
developer defines enterprise beans by annotating his business logic classes, whereas the
EJB container then takes care of instancing the enterprise beans and persisting related
data. Enterprise beans can be annotated as JAX-WS clients or providers. Furthermore,
enterprise beans can use container-managed connections to JMS queues and topics
[EJB06].

• JavaServer Faces (JSF) 1.2 to develop the graphical user interface of the Web applica-
tion. The JSF specification defines a framework for creating Web-based graphical user
interfaces. User interface components on the client side interact with managed beans
running on the server side. Each request to the server runs through a processing lifecycle
that involves validating, updating the server side model state, triggering events, and
rendering a response. Its possible to instantiate managed beans in request scope, session
scope or application scope. References to EJB components can be injected to managed
beans [JSF06].

• Java Architecture for XML Binding (JAXB) 2.0 to handle XML files. It allows a de-
veloper to generate Java classes from XSDs and an application to unmarshal XML
documents to instances of these Java classes and vice versa [JAX06a].

The Java EE 5 certified Java Open Application Server (JOnAS) 5.2.2 [OWJ] is used for running
the Web application. In addition to standard Java EE 5 deployment descriptors, the EAR file
contains JOnAS specific deployment descriptors (see Sect. 5.2.3). Vendor specific deployment
descriptors have to be added, if the Web application has to run on other application servers.

On the side of the JBI containers, the OSGi service JMSManagementService is developed that
receives JMS messages, analyzes their content, and installs contained JBI components or
deploys contained service assemblies. Both the Web application and the JMSManagementSer-
vice use the same separate libraries to marshal and unmarshal common XML documents

41

5. Design

and JBI artifacts. Modified JBI components provide multi-tenant awareness by considering
the tenant context contained in service units (see Sect. 5.4).

5.1.2. Integration

Accessing separate databases and JBI containers, the Web application must ensure consistency,
when performing data operations. Thus, all operations to underlying resource managers are
controlled by distributed transactions. The two-phase commit protocol defines the interaction
between a transaction coordinator and resources that are modified during the distributed
transaction.

A Java EE 5 application server can manage distributed transactions. The developer of EJB
components can choose between bean-managed transaction demarcation and container-managed
transaction demarcation. The former provides the developer with an API to start and commit
distributed transactions. Whereas the latter allows the developer to define transaction at-
tributes for whole business methods, which includes all resource changes inside the method
to the distributed transaction. In both cases, the EJB developer does not need to take care
about the internal two-phase commit protocol between the EJB container and the resource
managers. Within the transaction context, all resource changes that the EJB developer initiates
are controlled by the EJB container [EJB06].

The JBIMulti2 Web application uses container-managed transaction demarcation for dis-
tributed transactions between the Tenant Registry database, Service Registry database, Config-
uration Registry database, and JBI containers. As the system can contain many JBI containers,
including every JBI container as resource manager to the distributed transaction may produce
a performance bottleneck. Thus, the Web application subdivides the transaction to the JBI
containers using messaging with guaranteed delivery [HW03]. In a first step, management op-
erations to the JBI containers are sent to a messaging topic under the control of a distributed
transaction. The distributed transaction commits successfully, as soon as the message is
safely stored in the message topic. In the second step, a JBI container then acts as a selective,
transactional, and durable subscriber. Therefore, the JBI container receives all messages in the
topic, even if the topic or the JBI container is temporary unavailable. Moreover, a transaction
between the topic and the JBI container ensures that the message is successfully processed
before it gets deleted from the topic.

As API for messaging JMS is used. There is no Web service interface between the Web
application and the JBI containers. By the time of this work, a specification for SOAP over
JMS exists only as World Wide Web Consortium (W3C) working draft [SOA10]. Relying on
other WS* specifications [WCL+05] would mean to integrate an additional component that
stores and forwards messages to the JBI containers. Instead, we decided to use messaging
over JMS and thus can leverage the message-oriented middleware of the ESB.

The stateless session bean JBIContainerManager sends JMS messages on the side of the Web
application. Whereas the OSGi service JMSManagementService acts as message receiver on
the side of the JBI container. Both components rely on the common, JAXB 2.0 based library

42

5.2. Web Application

JBIManagementXMLBinding (see Fig. 5.1) to marshal the message content into XML before
sending and unmarshal the message content again after receiving.

5.1.3. Processing of JBI Artifacts

Users upload service assemblies and JBI components to JBIMulti2 as single ZIP files. As a
consequence, JBIMulti2 must process the contents of those artifacts and, in doing so, encapsu-
lates convenient functionality into the separate library JBIPackagingBinding. This library
is used by the Web application as well as the JMSManagementService installed on the JBI
containers (see Fig. 5.1).

The Web application extracts data from uploaded service assemblies and JBI components,
allowing it to implement access control mechanisms on the level of JBI service units. Further-
more, the JMSManagementService must process JBI artifacts it has received. This includes
adding a tenant context XML document to all service units contained in a service assembly
(see Sect. 5.4).

The JBI specification states that all JBI artifacts are packaged as ZIP archive and contain
a jbi.xml deployment descriptor. Additionally, a service assembly contains a ZIP archive
for each included service unit, which are themselves described by a jbi.xml deployment
descriptor [JBI05]. Apache SerivceMix delivers a XSD file that provides all deployment
descriptor definitions from the JBI specification [ASM]. The JBIPackagingBinding uses this
XSD for a JAXB binding to Java classes. Moreover, it encapsulates the processing functionality
that is necessary to read and modify ZIP files.

5.2. Web Application

As described in the preceding architectural overview, the management application controls
clusters of ServiceMix instances via messaging. It is a three-tier enterprise application lever-
aging Java EE 5 technology. This section goes into more detail, regarding the decomposition
of the business logic layer, the realization of the Web Service API, and the packaging of the
enterprise application as an EAR.

5.2.1. Business Logic Access Layer

Marinescu [Mar02] describes design patterns for EJB projects, including common architectural
approaches. The EJB design pattern Session Façades explains how an EJB developer can encap-
sulate the execution of use cases to minimize the number of calls to the EJB container. Rather
then accessing business logic objects directly, clients initiate use cases on a superordinate
layer, the Session Façade. The EJB developer can choose to provide multiple session beans,
wrapping groups of use cases.

43

5. Design

Figure 5.2.: Business logic layer AccessLayer, acting as Session Façade, multi-tenancy
enablement layer and transaction demarcation.

44

5.2. Web Application

The business logic layer of the JBIMulti2 Web application applies the Session Façade pat-
tern with a superordinate AccessLayer (see Fig. 5.2). The three stateful session beans Sys-
temAdminFacadeBean, TenantAdminFacadeBean, and TenantOperatorFacadeBean provide
a method for each use case described in Section 4.4. A method call to one of these façades
also demarcates a distributed transaction, including all resource changes in the underlying
call tree.

Furthermore, AccessLayer acts as a multi-tenancy enablement layer [GSH+07]. Use case meth-
ods do not need a tenant context as parameter. When a user logs in to the graphical user
interface, the WebGUI initializes the façade enterprise beans by authenticating the user with
his tenant name, user name, and password. From this moment, all method calls to the façade
enterprise bean are internally mapped to the proper tenant context. The superclass Authen-
ticatedFacadeImpl implements the authentication process and holds the tenant context as
instance of TenantAuthentication, comprising the primary keys tenantUUID and userUUID.
It is the responsibility of the JSF session scoped bean BusinessLogicAccess to correctly inject
and destroy the façade enterprise beans of the user.

A third function that the AccessLayer provides is access control. Session bean methods that
are annotated with the EJB annotation AroundInvoke are interceptors called by the application
server before executing a business method. Such an interceptor is implemented to check, if
the caller is authenticated and has a permission to execute the current business method. For
this purpose, each business method is annotated with the required permission type. With this
information the interceptor can check the authentication via a combined lookup in the Tenant
Registry and Configuration Registry (see Sect. 5.3).

To minimize the number of JMS messages sent to the JBI containers, management commands
emerging from a business method call are merged into a single JMS message. The class JBI-
ManagementFacade contains an interceptor method that collects all management commands
during method execution. The interceptor method hands over the result to the JBIContain-
erManager that finally sends a corresponding JMS message to the JBI containers.

5.2.2. Web Service

The JBIMulti2 Web service interface has to ensure integrity, confidentiality, and authentication
of incoming messages. This means, third parties may not modify a message, inspect the
contents of a message, or pretend to be the original initiator of the message. Mechanisms
have to be implemented that abort the processing of a message, if one of the three security
criteria can not be guaranteed.

Complying to the WS-Security specification, SOAP messages sent to the Web service can be
signed and encrypted to ensure security criteria. Security tokens contain keys or other data
that allow the receiver to validate signatures of message parts or decrypt message parts. Such
information is included as SOAP header elements [OAS06a]. The Web service relies on the
WS-Security X.509 certificate token profile, providing asymmetric encryption using key pairs.
A X.509 certificate contains the public key and uniquely associates it with the owner of the
public key, thus allowing validation from a certificate authority. When a sender wants to sign

45

5. Design

a message, he generates a hash value of the message and encrypts it using his private key.
The receiver can then use the public key of the sender to decrypt the signature and check, if
the message was modified, thus ensuring integrity. Furthermore, a sender can encrypt the
message using the public key of the receiver to ensure confidentiality [OAS06b].

We conceive confidentiality and integrity on a per tenant base, so that individual tenant
users do not need to own a X.509 certificate. Each tenant using the Web service has to know
the public key of JBIMulti2. In turn JBIMulti2 has to know the public keys of all tenants.
Both parties can then encrypt a message targeted to the other party and validate a message
signature. Public keys of tenants are stored as X.509 certificates in the Tenant Registry,
represented as key value pair, but not validated at a certificate authority. Authentication at the
Web service is implemented using a custom SOAP header element called TenantContext. It
contains a UUID of the tenant, a UUID of the user, and the user password. This header element
is encrypted and signed, preventing users of other tenants to act on behave of the sending
tenant. This solution expects that tenant users only have credentials for exactly one tenant,
otherwise tenant UUID and used X.509 certificate had also to be compared. Listing A.3 shows
the WS-Policy definitions of the Web service interface, including WS-SecurityPolicy [OAS09]
assertions and a custom assertion that claims a tenant context or a system administrator
context. Furthermore, Appendix A.1 contains XSDs of the JBIMulti2 Web service policies and
SOAP headers. Additionally, an example SOAP message is illustrated.

On the server side the policies can be ensured by two JAX-WS handlers. The first handler
checks if incoming messages contain required WS-Security SOAP headers, decrypts message
parts and validates signatures. For an outgoing message, it signs the message and encrypts
message parts. Then the second handler is invoked, which checks if an incoming message
contains a valid tenant context. The current prototype of JBIMulti2 (see Sect. 6.1) only provides
the second handler. However, the open source library Apache Web Services Security for
Java (WSS4J) could be used to implement WS-Security compliant encryption and signing.
WSS4J can interpret the SOAP envelope and perform all required decryption and validating
steps, relying on a static or in-memory Java keystore [AWS].

The Web service has three WSDL 1.1 portType elements: SystemAdminServicePortType,
TenantAdminServicePortType and TenantOperatorServicePortType. Each portType con-
tains only those operations, which match to a use case of the corresponding user role. A
system administrator authenticates with a token containing his user name and password.
Although not belonging to a tenant, a system administrator additionally provides a tenant
UUID, when he executes functions associated with this tenant. Therefore, the binding ele-
ment of the SystemAdminPortType does not reference the same policy as the tenant specific
port types.

5.2.3. Packaging and Deployment

Java EE 5 defines the four module types EJB Module, Web Module, Resource Adapter Module,
and Application Client Module. A complete deployment of the JBIMulti2 Web application
comprises modules of the first three module types. Although each Java EE module can be

46

5.2. Web Application

deployed separately, there are interface dependencies between different modules. Therefore,
deploying them as a single archive is reasonable. Furthermore, different Java EE modules
should share common libraries. For this reason, Java EE 5 provides the concept of an EAR
file that packages different Java EE modules and required libraries into a single file as an
enterprise application [JAV06].

jbimulti2-application.ear
META-INF

application.xml

lib
jbimulti2-jbi-jms.jar

jbimulti2-jbi-packaging.jar

jbimulti2-webgui.war
WEB-INF

web.xml

faces-config.xml
jbimulti2-webservice.jar

META-INF

easybeans.xml
handlers.xml

jbimulti2.wsdl

jbimulti2-application-domain.jar
META-INF

persistence.xml

jbimulti2-application-logic-accesslayer.jar
META-INF

ejb-jar.xml

jbimulti2-application-logic-configregistry.jar
jbimulti2-application-logic-serviceregistry.jar

jbimulti2-application-logic-tenantregistry.jar

jbimulti2-application-logic-jbimanager.jar
jbimulti2-application-activemq.rar

META-INF

jonas-ra.xml

Legend

Folder

Archive
Document

Figure 5.3.: EAR packaging of Web application. Illustrates all deployment descriptors that
are JOnAS specific or that contain important configurations.

We automate the build process of all JBIMulti2 components with the tool Apache Maven
[AMV]. The Maven plugin maven-ear-plugin facilitates the packaging of the EAR file and
generates an application.xml deployment descriptor for the enterprise application. Other
plugins package the different types of Java EE modules. The Java EE 5 specification states
that a human deployer may modify deployment descriptors inside the EAR file to adjust
application configurations according to the requirements of the given application server.
The JBIMulti2 Web application already ships with a collection of JOnAS specific deployment

47

5. Design

descriptors [OWJ] in different Java EE modules (see Fig. 5.3). All important configurations are
located in XML documents that allow to modify system administrator credentials, JAX-WS
handlers, Web context paths, JMS destinations, and persistence contexts.

5.3. Database Schemes

The database scheme of the Tenant Registry takes account of the fact that different applications
must be able to use the same instance of the Tenant Registry as a shared database. Tenant
users belong uniquely to one tenant, while both have a primary key represented as a UUID
string. Tenant users and tenants can have arbitrary key-value pairs assigned to them, with
each key-value pair only usable by a subset of applications.

Tenant

tenantId userId
tenantContextKey

TenantUser
(0,n)

belongs_to

KeyValuePair

has

OptionalUserEntry

has

OptionalTenantEntry

has has

key
value pairId

ValidApplicationhas

appName

(0,n)

(1,1)

(1,1)

(1,1)

(0,n)

(1,1)
(0,1) (0,1)

(1,1)

(1,n)

(1,n)

Figure 5.4.: Entity-relationship diagram of Tenant Registry using (Min,Max) Notation.

Figure 5.4 shows an entity-relationship diagram of the Tenant Registry. The attribute tenant-
ContextKey is a UUID string that uniquely identifies a combination of tenant user and tenant.
It can be contained in messages using protocols, which do not allow to add an structured
tenant context with tenantId, userId, and optional key-value pairs. The tenantContextKey
allows a message receiver to query the complete tenant context from the Tenant Registry.
Rather than associating KeyValuePair directly with tenant user and tenant, the weak entity
types OptionalTenantEntry and OptionalUserEntry represent intermediate relationship
entities. This prevents KeyValuePair from having null entries, when transformed to a rela-
tional model. The downside of this solution is that the application has to prevent a tenant
user or tenant from having two entries with the same key.

Likewise, the Service Registry has to be reusable by other applications to allow dynamic
retrieval of services. As a consequence, services and service assemblies may have a valid
combination of tenantId and userId as part of their primary key, but are not obligated to
do so. The entity types Service and ServiceAssembly have an aggregated primary key
that comprises an optional tenant context and a mandatory serviceName or respectively

48

5.3. Database Schemes

Service ServiceAssembly

tenantId
SAName

zipFile

tenantId

serviceName

wsdlFile implements

ServiceInterface

XMLNamespace interfaceName

(1,n)

(1,n)
userId userId

Figure 5.5.: Entity-relationship diagram of Service Registry using (Min,Max) Notation.

SAName. Moreover, interfaces a service implements are stored. This allows applications to
query services for matching interface names (see Fig. 5.5). Service assembly ZIP files are
stored as Binary Large Objects (BLOBs), whereas service WSDL files are stored as Character
Large Objects (CLOBs).

TenantAdminRole TenantOperatorRoletenantId tenantId

contains contains

TenantAdminPermission TenantOperatorPermission

roleNameroleName

typeId

typeDescription

typeId

typeDescription

tenantId

tenantId

tenantId

permits

ServiceUnitContingent ServiceRegistrationContingent

permits

tenantId tenantId

(0,n) (0,n)

(0,n) (0,n)

(0,1) (0,1)

(1,1) (1,1)

Figure 5.6.: Entity-relationship diagram of roles in Configuration Registry using (Min,Max)
Notation.

The Configuration Registry ensures data isolation between tenants by having a tenantId
primary key on entity types as described in Chong et al. [CCW06] (see Fig. 5.6). It references
the tenant in the Tenant Registry. Each tenant can have entities of type TenantAdminRole and
TenantOperatorRole, which are associated with pre-defined permissions and can be assigned
to tenant users. For each ServiceUnitContingent and ServiceRegistrationContinent a
corresponding permission entity is created automatically.

The amount value of a contingent entity is a share of a ServiceUnitQuota or ServiceReg-
istrationQuota entity (see Fig. 5.7). Each ServiceUnitQuota is uniquely related to a JBI-
Component entity and a tenant. A JBIComponent entity stores its content as ZIP file and can
be associated with many JBIContainer entities. Not belonging to a tenant, the entity types
JBICluster, JBIContainer, and JBIComponent do not have a tenantId attribute.

49

5. Design

JBICluster

ServiceAssemblyRef

contains JBIComponentJBIContainer

contains

uses

uses

ServiceUnitQuota

TenantRef

partitions

ServiceUnitContingent

tenantId
tenantId

tenantId

tenantId

uses

tenantId

tenantId

ServiceRef

uses

ServiceRegistrationContingent

partitions

ServiceRegistrationQuota

uses

tenantId

name

name

name amount

amount

amount

name

name

amount

date

SAName

date

serviceName

(0,n) (1,n)

(1,1)

(1,n)

(0,n) (1,1)

(0,n)

(0,n)
(1,1)

id

(0,n)

(1,1)

(1,1)

(1,1)
(0,n)

(1,n)

(0,n)

(1,1)

(1,1)

(0,n)

zipFile

userId

userId

date

installedBy

Figure 5.7.: Entity-relationship Diagram of JBI components in Configuration Registry using
(Min,Max) Notation.

One of the three EJB specification documents [EJB06] describes Java Persistence API (JPA),
providing object/relational mapping, which automatically transfers database records to entity
bean instances. By annotating entity beans with meta data, a developer can influence this
process. There are Java annotations for defining class attributes as primary keys, for defining
relations between entity beans and their cardinality, or for defining table names and row
names. The business logic layer of the JBIMulti2 Web application (see Fig. 5.2) contains a
Domain component with entity beans implementing the entity-relationship model described
in this section. Entity bean instances are persisted by using the JPA EntityManager. Once
persisted, an entity bean instance is associated to a database row and modifications to the
entity bean instance can be passed down.

5.4. Extensions to ServiceMix

For the JBIMulti2 system to work, extensions to the underlying Apache ServiceMix middle-
ware are necessary. As ServiceMix does not ship with a Web service interface for managing JBI
artifacts, we have designed an OSGi blueprint bundle that consumes management messages
coming from the Web application. Moreover, message flows resulting from deployed service
assemblies of tenant users must be isolated from message flows of other tenants. For this
purpose, multi-tenant JBI components are introduced that read the tenant context from service
units to ensure data isolation.

50

5.4. Extensions to ServiceMix

5.4.1. Management Interface Over Messaging

A selective message consumer, called JMSManagementService, is implemented for ServiceMix
that receives management messages from the JBIMulti2 Web application. The management
messages are sent to a JMS topic all ServiceMix instances subscribe to. As ServiceMix does not
provide a Web service interface for installing JBI components or deploying service assemblies,
the JMSManagementService calls methods on an existing internal JBI administration OSGi
service (see Fig. 5.1). Therefore, we leverage the OSGi platform [OSG11] ServiceMix is built on.
The JMSManagementService is also implemented as an OSGi bundle that has to be installed,
configured, and started on an ServiceMix instance, prior to registering the instance to the
JBIMulti2 Web application.

Messages sent to the JMSManagementService contain a combination of the following elements,
each representing a management command:

• JBI Component Install Command instructs the ServiceMix instance to install all JBI compo-
nents sent together with the command as binary data.

• JBI Service Assembly Deploy Command instructs the ServiceMix instance to deploy all
service assemblies sent together with the command as binary data. For each service
assembly a tenant context element is mandatory.

• JBI Service Assembly Undeploy Command instructs the ServiceMix instance to undeploy
all service assemblies referenced by name. For each service assembly a tenant context
element is mandatory.

• JBI Component Uninstall Command instructs the ServiceMix instance to uninstall all JBI
components referenced by name.

One message can be addressed to many JBI containers. If a message contains different
management commands, they are processed in the order above. As JMSManagementService is
a durable subscriber and a transactional client [HW03], messages are guaranteed to be processed
in the order they were sent by the JBIMulti2 Web application. If a message is malformed or
invalid, it is sent to a dead letter queue.

Messages contain a XML document with the root element JBIManagement (see Appendix A.2).
Binary data of JBI components and service assemblies is encoded as Base64 [FB96] character
strings and added as sub elements to the corresponding command element of a message. To
serialize XML documents in the JBIMulti2 Web application and to deserialize them again in
the JMSManagementService, the JAXB 2.0 based library JBIManagementXMLBinding is used
(see Fig. 5.1).

Before the JMSManagamentService deploys a service assembly, it reads the tenant context
from the JMS message and then adds the tenantId and userId to the service assembly
name, service unit names, and JBI deployment descriptors. This makes sure that different
tenant users can deploy service assemblies and service units with the same name. The
JMSManagementService must add the tenant context as a separate XML document to each
service unit contained in the service assembly, allowing data isolation on the level of JBI

51

5. Design

components. This solution aims to implement multi-tenancy, while still complying with the
JBI specification. A XSD containing the tenant context can be found in Listing A.1. We have
developed the tenant context XSD together with Essl [Ess11].

5.4.2. Multi-tenant JBI Components

A multi-tenant JBI component must ensure that a message exchange only involves service
units of the same tenant. We achieve this by introducing multi-tenant aware internal JBI
service endpoints. A service endpoint comprises a service name and an endpoint name. To
ensure data isolation, we replace the namespace prefix of the service name by a namespace
that contains the tenantId (see Listing 5.1). Interfaces are not multi-tenant aware in this
approach. Each JBI component provides a service unit manager that manages the life cycle of
service units, such as deploying, starting, or stopping [JBI05]. A multi-tenant aware service
unit contains a tenant context, represented as XML document. The service unit manager of a
multi-tenant JBI component must read the tenant context and inject it into those classes that
implement service endpoint registrations and message exchanges.

All JBI components included in ServiceMix are inherited from the common class DefaultCom-
ponent. In turn, this class and its base classes implement the two JBI interfaces Component
and ComponentLifeCycle, thus fulfilling the JBI contract. The former provides runtime in-
formation to the JBI container, such as the service unit manager, used for deploying service
units. The latter provides life cycle control to the JBI container, such as starting and stopping
the JBI component.

At runtime, the DefaultComponent manages a registry containing objects that implement the
internal interfaces Endpoint and ServiceUnit. The class BaseServiceUnitManager is used
by DefaultComponent as JBI service unit manager. It manages the life cycle of service units
and adds deployed service units to the registry. But instead of deploying service units given
by file path on its own, the BaseServiceUnitManager delegates this work to subordinate
deployers. There are two main types of deployers that rely on different artifacts contained in
a service unit: a WSDL Deployer generates endpoints from WSDL files, and a XBean Deployer
generates endpoints from a XBean file. The BaseServiceUnitManager asks consecutively
every deployer, if the given service unit contains the desired artifact. If the deployer confirms,
it is then commanded to process the deployment process. The result of the deployment
process is a ServiceUnit implementing instance that comprises all generated Endpoint
implementing instances. Each subclass of Endpoint processes JBI message exchanges and
implements a prescribed life cycle.

To ensure data isolation, multi-tenant aware endpoints and the new deployer XBeanDeploy-
erMT are implemented. In addition to creating endpoint objects from a XBean file, XBean-
DeployerMT reads a tenant context file. The tenant context is injected into all multi-tenant
aware endpoints that have been created in the process. Each multi-tenant aware endpoint
implements the interface TenantEndpoint, which is a subtype of Endpoint and expects a
tenant context with the tenantId. For target service endpoints the tenant operator may add

52

5.4. Extensions to ServiceMix

a option to the XBean definition that inhibits replacing the service namespace. This allows
targeting common platform-wide service endpoints.

Regarding the Apache Camel SE, the previous insights keep its validity, even though the
CamelJbiComponent is only a wrapper for the external Apache Camel implementation. There
is already a separate camel context created for each deployed service unit, thus data isolation
is ensured inside Apache Camel. Nevertheless JBI service endpoints extracted from the camel
context by the CamelJbiComponent have to be extended with multi-tenant awareness.

1 /*
2 input: tenantId, tenantUri, serviceLocalPart, endpointName, configuredLocationUriPrefix
3 example: http://localhost:8193/tenant-services/54ed4755-5965-4b47-a121-d25907e29c04/

ExampleService/ep
4 */
5 locationUri ::= locationUriPrefix (tenantId | tenantUri) serviceEndpoint
6 locationUriPrefix ::= "http://localhost:8193/tenant-services/" | configuredLocationUriPrefix
7 serviceEndpoint ::= "/" serviceLocalPart "/" endpointName
8

9 /*
10 input: tenantId, serviceLocalPart, endpointName, configuredServiceNamespacePrefix
11 example: {jbimulti2:tenant-endpoints/54ed4755-5965-4b47-a121-d25907e29c04}ExampleService:

ep
12 */
13 serviceEndpoint ::= serviceName ":" endpointName
14 serviceName ::= "{" serviceNamespacePrefix tenantId "}" serviceLocalPart
15 serviceNamespacePrefix ::= "jbimulti2:tenant-endpoints/" | configuredServiceNamespacePrefix

Listing 5.1: Location URI (top) and service endpoint (bottom) replacing patterns for the
multi-tenant HTTP BC servicemix-http-mt in Extended Backus–Naur Form
(EBNF).

The original ServiceMix BC for HTTP accepts a location URI defining, where to listen to
requests. This parameter is no longer allowed in the multi-tenant aware version of the
component. Instead, the location URI is dynamically built from the given tenant context. The
generated location URI is a concatenation of a common prefix and either the tenantUri or
the tenantId, if the context does not contain a tenant specific URI (see Listing 5.1).

Similar to the approach described in Section 3.1.2, a multi-tenant Apache ODE SE can be
realized. For this purpose, only the JBI integration layer of Apache ODE must be extended.
The internal process store of the Apache ODE JBI component uses the service unit file path as
the location of deployment units. As we separate service units of different tenants by a name
pattern inside ServiceMix, the Apache ODE process store is already multi-tenant aware. A
modified service unit manager in the JBI integration layer must load the tenant context prior
to delegating the deployment process to the process store. The tenant context is then used
throughout the JBI integration layer to ensure multi-tenant aware service endpoints.

53

5. Design

54

6. Implementation and Evaluation

Various challenges occurred during the implementation of a prototype that complies to the
concepts in Chapter 4 and conforms to the design of Chapter 5. This chapter describes chosen
implementation challenges in more detail. Furthermore, we evaluate the developed prototype
by utilizing it as an integration system for the Taxi Scenario (see Sect. 1.1).

6.1. Implementation

The current prototype of JBIMulti2 has been implemented as a hierarchical Maven project
[AMV]. Apache Maven executes various tasks during the build process of the system.
Different Maven plugins have been used to adapt the build process to the needs of the
JBIMulti2 components. This includes packaging Java EE modules and aggregating them
to an EAR, including a JOnAS specific deployment descriptor to the ActiveMQ resource
adapter, generating source code from XSDs for JAXB, packaging the JMSManagementService
as an OSGi blueprint bundle, and setting up projects for the modification of existing JBI
components. With the help of Apache Maven developers can modularize software systems,
restricting the dependencies between modules. Altogether, the current prototype consists
of two main Maven modules that implement the JBIMulti2 Web application and the Apache
ServiceMix extensions. Additionally, a third Maven module contains components for the Taxi
Scenario tailored to JBIMulti2. Project files for the Integrated Development Environment (IDE)
Eclipse 3.7 have been generated with Apache Maven and used during development. All Java
source code was compiled with the Java Development Kit (JDK) 6.

Out of scope is the implementation of a Web-based graphical user interface described in
Section 4.5.1, the implementation of a JAX-WS handler for controlling the WS-Security policies
designed in Section 5.2.2, the implementation of Web service operations that go beyond the
use cases of Section 4.4, and the development of a multi-tenant Apache ODE [AOD] JBI
component.

6.1.1. Java Annotations for Role-based Access Control

As described in Section 5.2, an EJB method interceptor is used to check authentication
and authorization of each call to the business logic access layer of the JBIMulti2 Web ap-
plication. In avoidance of duplicate source code, business methods do not check autho-
rization of calling users themselves. Instead, authorization functionality is taken over by
the EJB method interceptor authorizeCall() defined in the superclass Authenticated-
FacadeImpl of all façade enterprise beans (see Fig. 5.2). The EJB interceptor is a method

55

6. Implementation and Evaluation

that is annotated with the EJB annotation @AroundInvoke [EJB06] and executed for every
business method call. A method annotated with @AroundInvoke must claim an instance of
javax.interceptor.InvocationContext as method parameter. It can execute functionality
preceding and following the targeted business method call. For this purpose, the intercep-
tor calls the business method by invoking InvocationContext::proceed() at any point of
execution.

1 ...
2

3 @PermissionType(type = PermissionTypeEnum.MANAGE_TENANT_OPERATOR_ROLES)
4 public Collection<TenantOperatorPermissionEntry> listOperatorPermissions(String roleName

) throws AuthorizationException, ExecutionException {
5 ...
6 }
7

8 @PermissionTypes({ @PermissionType(type = PermissionTypeEnum.MANAGE_TENANT_ADMIN_ROLES),
@PermissionType(type = PermissionTypeEnum.MANAGE_TENANT_OPERATOR_ROLES) })

9 public Collection<TenantUserEntry> listTenantUsers() throws AuthorizationException,
ExecutionException {

10 ...
11 }
12

13 @PermissionType(type = PermissionTypeEnum.MANAGE_SERVICE_UNIT_CONTINGENTS)
14 public ServiceUnitContingentEntry createServiceUnitContingent(String jbiComponent,

String contingentName, int amount) throws AuthorizationException, ExecutionException
{

15 ...
16 }
17

18 ...

Listing 6.1: Excerpt from TenantAdminFacadeBean.java focusing on Java
annotations that define required permissions. A tenant administrator must
have the respective permissions to execute a business method. Only three
chosen business methods are shown and implementation details are omitted.

The EJB method interceptor authorizeCall() queries the Tenant Registry and the Configu-
ration Registry to check if the caller has a matching permission in one of his roles to execute
the current business method. Whenever a system administrator or tenant user invokes one of
the authentication methods in the superclass AuthenticatedFacadeImpl, an authentication
context is assigned to a private instance variable. The method interceptor can then authorize
a method invocation using the identification information in the previously stored authentica-
tion context. As the method interceptor must not check authorization of the authentication
methods, the method interceptor immediately accepts all invocations of business methods
declared in the superclass AuthenticatedFacadeImpl. Thus, the method interceptor only
checks authorization for invocations of business methods defined in the SystemAdminFacade-
Bean, TenantAdminFacadeBean, and TenantOperatorFacadeBean. These façade enterprise
beans annotate business methods with the Java annotation @PermissionType that inform the
method interceptor of the permission a caller must have. Where a business method allows
choosing from multiple permission types, the aggregation annotation @PermissionTypes

56

6.1. Implementation

is used (see Listing 6.1). The method interceptor retrieves all annotations of the targeted
business method via the InvocationContext object.

6.1.2. OSGi-based Management Service for Apache ServiceMix

We have implemented the OSGi blueprint bundle JMSManagementService that must be de-
ployed on Apache ServiceMix and listens to a JMS topic for incoming management messages
from the JBIMulti2 Web application (see Sect. 5.4.1). The Maven plugin maven-bundle-plugin by
the Apache Software Foundation facilitates developing OSGi bundles. As the XML descriptor
of a Maven project contains dependencies to other Maven projects, the maven-bundle-plugin
can add these dependencies as requirements to the OSGi descriptor of the current Maven
bundle project. In the case of the JMSManagementService, there are dependencies to the
Apache ActiveMQ [AMQ] Maven artifact activemq-core and to the Apache ServiceMix
Maven artifact org.apache.servicemix.jbi.deployer. The latter provides the interface
AdminCommandsService that declares methods for installing JBI components and deploying
service assemblies. Thus, during resolving of OSGi requirements in ServiceMix, the JMS-
ManagementService is wired to an ActiveMQ JMS implementation and to a JBI deployment
service. Both are already installed on ServiceMix.

As the JMSManagementService is an OSGi blueprint bundle, it contains an OSGi blueprint
descriptor that controls the instantiation and wiring of Java objects (see Listing 6.2). The
main class JMSManagementService is a Plain Old Java Object (POJO) that is initialized by the
Blueprint Container. In this process, the Blueprint Container sets all properties of the instance
to values defined in the blueprint descriptor. One property references an implementation
of the AdminCommandsService, for which the Blueprint Container searches in the service
registry of the OSGi framework. After all properties have been set, the Blueprint Container
calls the init-method of the created JMSManagementService instance.

During initialization the JMSManagementService instance creates a JMS connection to the
topic that provides JBI management messages. Additionally, a JMS connection to a dead
letter queue for unprocessable messages is created. A JMS durable topic subscriber object is
periodically queried for new messages in a separate thread. Once a new message has arrived,
it is unmarshalled to a Java object with JAXB. For the processing of tasks contained in the in-
coming message, we have created a simple handler framework. The unmarshalled message is
validated and processed by a chain of four handlers that consists of an InstallJBIComponen-
tHandler, a DeployServiceAssemblyHandler, an UndeployServiceAssemblyHandler, and
an UninstallJBIComponentHandler. All four handlers implement the same interface with
a validate() method and a process() method. Therefore, before the handlers process the
management tasks contained in the message, each must first report, if the corresponding task
is valid. For instance, an invalid message contains a JBI component that is already installed.
Only the handlers can directly call methods on the AdminCommandsService. Once all handlers
have been called, the JMSManagementService commits the processing of the JMS message to
the ActiveMQ broker. A commit is performed, even when the JMSManagementService has
redirected the message to the dead letter queue.

57

6. Implementation and Evaluation

1 <?xml version="1.0" encoding="UTF-8"?>
2 <blueprint xmlns="..." xmlns:cm="..." xmlns:ext="...">
3

4 <bean id="jmsManagementService" class="de.unistuttgart.iaas.jbimulti2.jbi.servicemix.
jmsmanagement.JMSManagementService"

5 init-method="afterPropertiesSet" destroy-method="destroy">
6 <property name="containerName" value="${containerName}" />
7 <property name="adminCommandsService" ref="adminCommandsService" />
8 <property name="connectionUrl" value="${connectionUrl}" />
9 <property name="topicName" value="${topicName}" />

10 <property name="deadLetterQueue" value ="${deadLetterQueue}" />
11 <property name="jmsUserName" value="${jmsUserName}" />
12 <property name="jmsPassword" value="${jmsPassword}" />
13 </bean>
14

15 <reference id="adminCommandsService" interface="org.apache.servicemix.jbi.deployer.
AdminCommandsService" />

16

17 <cm:property-placeholder persistent-id="de.unistuttgart.iaas.jbimulti2.jbi.servicemix.
jmsmanagement">

18 <cm:default-properties>
19 <cm:property name="containerName" value="jbi1" />
20 ...
21 </cm:default-properties>
22 </cm:property-placeholder>
23

24 </blueprint>

Listing 6.2: OSGi blueprint bundle descriptor [OSG09] of JMSManagementService
referencing an OSGi service interface provided by Apache ServiceMix that
allows installing JBI components and deploying service assemblies.

6.1.3. Multi-tenant Binding Component and Service Engine

As part of this work, the original ServiceMix BC for HTTP (version 2011.01) and the original
Apache Camel SE (version 2011.01) [ASM] have been extended to support multi-tenancy. A
future version of JBIMulti2 should also ship with a multi-tenant Apache ODE SE.

For the multi-tenant HTTP BC servicemix-http-mt, the design of Section 5.4.2 anticipates all
necessary extensions that have been made. The two endpoint types HttpConsumerEndpoint
and HttpProviderEndpoint implement the new interface TenantEndpoint that declares a
method for applying the tenant UUID to the endpoint configuration. The HttpSoapCon-
sumerEndpoint inherits from the HttpConsumerEndpoint. A problem occurred, when the
HttpSoapConsumerEndpoint tried to processes the mandatory WSDL file contained in a ser-
vice unit. Before publishing the WSDL file, the HttpSoapConsumerEndpoint replaces the
location URL of the SOAP binding with the proper Web address. As service endpoint names
are replaced to support multi-tenancy, the HttpSoapConsumerEndpoint was no longer able
to find the correct service definition in the WSDL file. Thus, the corrected version of the
multi-tenant HTTP BC uses the original service endpoint names when processing WSDL
files.

58

6.2. Evaluation

For the multi-tenant Camel SE servicemix-camel-mt, the design of Section 5.4.2 only holds true
for the CamelProviderEndpoint. As other JBI endpoints are targeted dynamically, depending
on the Camel routing definitions, there is no explicit consumer endpoint object. However,
a class named CamelConsumerEndpoint exists that dynamically transforms Camel URIs to
JBI service endpoint names for outgoing message exchanges. The multi-tenant version of
the CamelConsumerEndpoint contains the method configureTenancyAwareExchange() that
replaces the original transformation method to also include the tenant UUID.

It should be noted that from version 4.0.0 of Apache ServiceMix all JBI components are
packaged as OSGi bundles rather than as JBI packages. We noticed some incompatibility
issues, when deploying them as JBI packages via the AdminCommandsService. Particularly,
the Apache ServiceMix JBI shared library must be deployed additionally, otherwise the Java
class loader does not find necessary libraries. Furthermore, it was not possible to use a
HttpSoapProviderEndpoint with a JBI packaged HTTP BC.

6.2. Evaluation

For evaluation of the developed prototype, the Taxi Scenario (see Sect. 1.1) has been modified
to use Apache ServiceMix for communication between the involved Web applications. For
this purpose, JBIMulti2 is used to manage tenants and to deploy the required integration
services on one instance of Apache ServiceMix.

6.2.1. Deployment and Initialization

The evaluation takes place on a single virtual machine. The test system keeps the Web
applications of the Taxi Scenario prototype [Hag11] deployed on a separate Apache Tomcat
7.0.23 [ATC] Web container. An instance of the Java EE 5 certified application server JOnAS
5.2.2 [OWJ] hosts the JBIMulti2 EAR package. Currently, the Taxi Scenario Web applications
can not be deployed on JOnAS, because they ship with Java libraries that are also provided
by JOnAS, leading to class loading failures.

Three database connections are configured on JOnAS that connect to the Tenant Registry,
Service Registry and Configuration Registry created on PostgreSQL 9.1.1 middleware [PSQ].
In this process, the corresponding postgresql-9.1-901.jdbc3.jar Java Database Connec-
tivity (JDBC) driver must be installed on JOnAS. Additionally, one instance of Apache
ServiceMix 4.3.0 [ASM] has been installed. To establish the connection between ServiceMix
and the JBIMulti2 business logic, the JMSManagementService OSGi bundle must be deployed
on ServiceMix. According to the initial settings of the JMSManagementService, manage-
ment messages are expected on the ActiveMQ 5.3.1 [AMQ] message broker that runs inside
ServiceMix. The jonas-ra.xml deployment descriptor (see Sect. 5.2.3) initially targets the
standard URL of this internal message broker. Therefore, no configuration is required on the
side of JOnAS.

59

6. Implementation and Evaluation

To interact with JBIMulti2 over the Web Service API, we use soapUI 4.0.1 [SOA], a graphical
SOAP-based Web services testing tool. Once Tomcat, JOnAS, PostgreSQL, and ServiceMix
are running, the system administrator registers the ServiceMix instance to JBIMulti2 via
the Web Service API. The logical name of each individual ServiceMix instance is defined
in the configuration file of the JMSManagementService OSGi bundle. Then, the system
administrator installs the multi-tenant HTTP BC and the multi-tenant Camel SE. For this
purpose, the JBI component ZIP files are encoded as Base64 [FB96] character strings and
included in the respective SOAP request. From this moment on, JBIMulti2 is operational and
the system administrator can begin to add tenants to the Tenant Registry.

The Taxi Scenario is adapted for the evaluation of the multi-tenancy capabilities of JBIMulti2,
with tenants representing taxi companies. Thus, the system administrator adds two tenants
(see Fig. 6.1), assigns them to the cluster of the ServiceMix instance, and for both tenants adds
two tenant users. As a consequence, the system administrator can configure the quota of
service units for each tenant and each JBI component installed on the ServiceMix instance.
Finally, one tenant user per tenant obtains a tenant administrator role from the system
administrator. In doing so, the system administrator configures entities belonging to a tenant.
Therefore, the corresponding tenant UUID is additionally provided in the SOAP header.

At this point, the tenant administrator can appoint a tenant operator. The tenant administra-
tor creates service unit contingents and adds the corresponding permissions to the tenant
operator role, enabling the tenant operator to deploy service assemblies (see Fig. 6.2). In
conclusion, each taxi company can now deploy service units to integrate the Taxi Company
Web application, the Taxi Transmitter Web application, and the external Taxi Service Provider
Process (see Sect. 1.1).

For the configuration steps described above, we have added an appropriate soapUI project to
the deliverables of this work. It contains a test case that gradually sends the required SOAP
requests.

60

6.2. Evaluation

Fi
gu

re
6.

1.
:A

dd
Te

na
nt

R
eq

ue
st

ex
ec

ut
ed

by
sy

st
em

ad
m

in
is

tr
at

or
w

ith
so

ap
U

I4
.0

.1
[S

O
A

].
O

n
th

e
le

ft
si

de
th

e
SO

A
P

re
qu

es
tm

es
sa

ge
is

d
is

pl
ay

ed
,w

hi
le

on
th

e
ri

gh
ts

id
e

th
e

co
rr

es
po

nd
in

g
SO

A
P

re
sp

on
se

m
es

sa
ge

is
d

is
pl

ay
ed

.T
he

re
sp

on
se

co
nt

ai
ns

th
e

U
U

ID
ge

ne
ra

te
d

by
JB

IM
ul

ti
2

fo
r

th
e

te
na

nt
.

61

6. Implementation and Evaluation

Figure
6.2.:D

eploy
Service

A
ssem

bly
R

equestexecuted
by

tenantoperator
w

ith
soapU

I4.0.1
[SO

A
].O

n
the

leftside
the

SO
A

P
request

m
essage

is
displayed,w

hile
on

the
rightside

the
corresponding

SO
A

P
response

m
essage

is
displayed.The

tenantcontext
contains

soapU
Ivariables

referencing
a

tenantoperator
thatbelongs

to
the

tenantnam
ed

TaxiC
om

pany.

62

6.2. Evaluation

6.2.2. Tenant Context-based Routing

For this evaluation we assume that taxi companies host the Taxi Company Web application
and the Taxi Transmitter Web application on an own servlet container. Both Web applications
communicate with the Taxi Service Provider Process via a single ServiceMix instance and
are not extended regarding multi-tenancy. By contrast, the Taxi Service Provider Process
should be multi-tenant aware, which is not the case in the current Taxi Scenario prototype
[Hag11]. Therefore, we have extended the interfaces of the Taxi Service Provider Process to
accept a tenant UUID as an additional XML element. The multi-tenancy business integration
patterns by Mietzner et al. [MUTL09] are used to integrate the non-multi-tenant aware Web
applications of the taxi company with the multi-tenant aware BPEL process of the taxi service
provider (see Fig. 6.3). As the taxi company Web applications are not multi-tenant aware, this
evaluation is not based on the work of Essl [Ess11]. He describes how BCs add the tenant
context to the JBI normalized message format as a set of message properties, separating it
from the message metadata.

Legend
TC................Tenant Context Camel SE........Apache Camel Service Engine
HTTP BC......HTTP Binding Component MT...................Multi-tenancy Aware Version

ESB Avoiding Invocation

Taxi Company Taxi Service Provider

 Apache ServiceMix (ESB)

HTTP

WS

Apache Tomcat

Taxi C
om

pa ny
W

A
R

Taxi Transm
itter

W
A

R

HTTP

WS

G
oogle S

er vices
W

A
R

C
-C

A
S

T C
M

F
W

A
R

HTTP

WS

Taxi S
ervic e

P
rovider B

P
E

L

2

Tenant context-based
routing service

SOAPSOAPSOAP

Tenant context
appender service

 TC

1
 TC

TC

HTTP BC
(MT)

Camel SE
(MT)

HTTP BC Camel SE

Figure 6.3.: Integrate Taxi Scenario with tenant context-based routing [MUTL09] in JBI-
Multi2 environment. Uses glyphs that have been introduced by Chappel
[Cha04]. For bidirectional connectivity services incoming and outgoing ESB
endpoints are merged to simplify illustration.

The tenant operator of the taxi company must deploy service units that provide connectivity
services to the Web service interfaces of the Taxi Company Web application and the Taxi

63

6. Implementation and Evaluation

Transmitter Web application. Moreover, messages targeting the Taxi Service Provider Process
must be enriched with a tenant context, according to the tenant context appender pattern. On the
side of the taxi service provider, the tenant context contained in incoming booking requests is
used to route messages only to those taxis that belong to the respective taxi company. This
complies with the tenant context-based router pattern.

In this evaluation all Web applications are deployed on a single Tomcat Web container.
However, tenant operators on the side of the taxi company are free to configure bindings to
arbitrary Web service endpoints.

Taxi Company Integration

The current service assembly on the side of the taxi company contains three service units.
Two service units are deployed on the multi-tenant HTTP BC and connect ServiceMix
to the Web services of the Taxi Company Web application and the Taxi Transmitter Web
application. The third service unit is deployed on the multi-tenant Apache Camel SE
and appends a tenant context to messages before forwarding them to the Taxi Service
Provider Process. As these service units are deployed on the multi-tenant aware version
of the JBI components, created service endpoints are modified to ensure data isolation
inside ServiceMix. For instance, the original service namespace of the Taxi Transmitter
{http://www.taxiserviceprovider.eu/transmitter/definitions} is replaced with the
namespace {jbi:endpoint:jbimulti2:tenant-endpoints/tenantUUID} for each service
endpoint created by a service unit. Thus, except for the configuration of the external Web
service endpoints, the service assembly can be reused by other taxi companies.

Both the Taxi Company Web application and the Taxi Transmitter Web application require
a binding to the Web service port TaxiServiceProviderPort, provided by the Taxi Ser-
vice Provider Process. Additionally, the Taxi Transmitter Web application calls the Get-
TaxiDriverInformationPort of the Taxi Service Provider Process. As the tenant operator
of a taxi company deploys a service unit that substitutes the original SOAP bindings, the
Web applications now bind to other endpoint URLs. Each endpoint URL generated from the
multi-tenant HTTP BC consists of a common prefix, the tenant URI configured in the Tenant
Registry, and the service endpoint name (see Listing 6.3).

1 http://hostname:8193/tenant-services/taxicompany.example.org/TaxiServiceProvider/
TaxiServiceProviderPort/

2 http://hostname:8193/tenant-services/taxicompany.example.org/GetTaxiDriverInformation/
GetTaxiDriverInformationPort/

Listing 6.3: Endpoint URLs generated for inbound SOAP bindings, resulting from service
unit deployed on multi-tenant HTTP binding component. The constituent
taxicompany.example.org matches the tenant URI defined in the Tenant
Registry.

64

6.2. Evaluation

Listing 6.4 shows the configuration of the tenant context appender. The Camel route trans-
forms all incoming messages by calling an Extensible Stylesheet Language Transforma-
tion (XSLT) document that can read the appropriate tenant UUID from the JBI message
property javax.jbi.ServiceName. This property is provided by the JBI framework and
delivers the inbound service endpoint name of the current service unit. As service endpoints
must always contain the tenant UUID, this is a convenient method to transfer the tenant
UUID from the service unit to a message.

1 <?xml version="1.0" encoding="UTF-8"?>
2 <beans xmlns="..." xmlns:xsi="..." xmlns:osgi="..."
3 xmlns:camel="..." xsi:schemaLocation="..." >
4

5 <camelContext xmlns="..." id="taxi-tenant-context-enricher-su">
6 <route streamCache="true" >
7 <from uri="jbi:endpoint:http://jbimulti2.iaas.uni-stuttgart.de/taxiscenario/

TaxiTenantContextEnricher/ep" />
8 <to uri="xslt:tenantContextEnrich.xsl" />
9 <inOut uri="jbi:endpoint:http://www.taxiserviceprovider.eu/definitions/

TaxiServiceProvider/TaxiServiceProviderPort?targetServiceGlobal=true" />
10 </route>
11 </camelContext>
12 </beans>

Listing 6.4: Service unit configuration context.xml for the multi-tenant Camel SE that
appends a tenant UUID to messages targeting the Taxi Service Provider. The
transformation rules are defined in a separate XSLT document.

The outbound service endpoint has the option targetServiceGlobal set to true, because
the outgoing messages target service endpoints of the taxi service provider. Otherwise, the
outgoing messages would be routed to an analogous service endpoint that contains the tenant
UUID of the current taxi company, which does not exist.

Taxi Service Provider Integration

As opposed to the taxi company, the service assembly of the taxi service provider is global
and must be directly deployed to ServiceMix without going through JBIMulti2. Therefore,
the two service units are deployed on the original ServiceMix HTTP BC and Camel SE, which
run in parallel to the multi-tenant aware versions. The first service unit provides a binding to
the Web service interface of the BPEL process and a binding to the Web service interface of
the Taxi Transmitter Web application. The former accepts outgoing booking requests of taxi
customers, while the latter accepts incoming transport requests to taxi drivers. The second
service unit is deployed on the Camel SE and routes transport requests to a service endpoint
for the Taxi Transmitter Web application that refers to the appropriate tenant.

Listing 6.5 illustrates the configuration for the tenant context-based router. The tenant UUID is
queried from incoming messages and added as the header element tenantId to the message.
Then, the tenant UUID element is removed from the message metadata, because the Taxi

65

6. Implementation and Evaluation

Transmitter Web application does not accept a tenant context. Finally, the message is routed
to a service endpoint of the tenant that corresponds to the information contained in the
tenantId header element.

1 <?xml version="1.0" encoding="UTF-8"?>
2 <beans xmlns="..." xmlns:xsi="..." xmlns:osgi="..."
3 xmlns:camel="..." xsi:schemaLocation="..." >
4

5 <camelContext xmlns="..." xmlns:soap="..."
6 xmlns:tr="http://www.taxiserviceprovider.eu/transmitter/types"
7 id="taxi-transmitter-router-su" >
8 <route streamCache="true" >
9 <from uri="jbi:endpoint:http://jbimulti2.iaas.uni-stuttgart.de/taxiscenario/

TaxiTransmitterRouter/ep" />
10 <setHeader headerName="tenantId" >
11 <xpath resultType="java.lang.String">//tr:tenantId[1]/text()</xpath>
12 </setHeader>
13 <to uri="xslt:tenantContextFilter.xsl" />
14 <recipientList stopOnException="true" >
15 <simple>jbi:endpoint:jbimulti2:tenant-endpoints/${header.tenantId}/

TaxiTransmitter/TaxiTransmitterSOAP</simple>
16 </recipientList>
17 </route>
18 </camelContext>
19 </beans>

Listing 6.5: Service unit configuration context.xml for the standard Apache ServiceMix
Camel SE that routes a message to the appropriate Taxi Transmitter.

66

7. Outcome and Future Work

Contributing one building-block of a PaaS platform, this diploma thesis has originated
concepts and implementation strategies for a multi-tenant ESB based on Apache ServiceMix
[ASM]. In Chapter 2 we have presented relevant fundamentals, like cloud computing, SOA,
the ESB, multi-tenancy, and JBI. After an investigation of previous work on multi-tenant
PaaS platforms, we have introduced concepts for a multi-tenant ESB in Chapter 4. Attention
was focused on the possibility to integrate the multi-tenant ESB with other PaaS applications
by sharing a platform-wide registry of tenants and services. Regarding multi-tenancy, we
have focused on data isolation between tenants [CC06] for message flows inside the ESB
as well as for the management of ESB configuration artifacts. For this purpose, the JBI
specification [JBI05] was analyzed and it was identified that integration services must be
deployed on multi-tenant JBI components. This diploma thesis has conceived a multi-tenant
enterprise application based on Java EE technology that allows tenant users to deploy JBI
service assemblies to JBI containers like Apache ServiceMix. We have leveraged role-based
access control [SCFY96] to distinguish between tenant administrators and tenant operators,
the former giving limited access permissions to the latter. A use-case analysis has brought
out a JBI specific management concept for the ESB. Furthermore, we have conceived two
clustering scenarios for JBI containers to ensure scalability. Together, these concepts target the
fourth level of the SaaS maturity model [CC06].

These concepts have led to a system design in Chapter 5 that describes a multi-tenant Java EE
enterprise application for managing a cluster of JBI containers. Additionally, extensions to the
JBI container Apache ServiceMix have been designed for communication with the enterprise
application and to ensure data isolation for deployed JBI artifacts. We have leveraged
distributed transactions to ensure consistency between separate databases and the messaging
middleware used for management messages. Care has been taken that records stored in
databases are related to individual tenants as stated by Chong et al. [CCW06]. Moreover,
we have oriented towards the multi-tenancy enablement layer by Guo et al. [GSH+07] when
designing the business logic of the management application. A prototype that complies to the
design has been implemented and evaluated with the Taxi Scenario described in Chapter 1.
The prototype provides a Web service interface that allows system administrators and tenant
users to manage the mulit-tenant ESB.

Currently, the Taxi Scenario only uses one instance of Apache ServiceMix. However, the
system was designed to handle clusters of ServiceMix instances. All data structures of the
system allow for more than one ServiceMix instance. Furthermore, intelligent load balancing
for installing JBI components and deploying service assemblies to individual ServiceMix
instances were anticipated. As a consequence, the single component JBI Container Manager
(see Sect. 4.1.1) in the management application was designated to communicate with the

67

7. Outcome and Future Work

underlying ESB implementation. In the future, the management application should get
informed if management tasks have been successfully executed by Apache ServiceMix. There
already is a dead letter queue for unprocessable management messages (see Sect. 5.4.1). The
management enterprise application could reuse these messages to inform tenant users of the
status of tasks. In the scope of this diploma thesis, a multi-tenant HTTP binding component
and a multi-tenant Apache Camel service engine have been developed for Apache ServiceMix
(see Sect. 5.4.2). The lessons learned in this process can assist developers that implement other
multi-tenant JBI components. We have already conceived the possibility of a multi-tenant
Apache ODE [AOD] service engine.

It is also not clarified, how external endpoint references in Apache ServiceMix should be
handled, as they could lead to one tenant invoking external services of an other tenant via
internal JBI service endpoints. Moreover, only service endpoint names are multi-tenant aware
in the scope of this work. Accordingly, concepts for service interface names and operation
names have to be considered (see Sect. 5.4.2). Otherwise, messages could flow through service
endpoints of other tenants, too.

There is a Web service interface for the management application, but it is missing an imple-
mentation of the designed WS-Security mechanisms (see Sect. 5.2.2) as well as convenient
operations for other applications of a PaaS platform. Future versions of the Web service
interface should include operations for the retrieval of tenant context data and for the query
of registered services. The latter can be used in policy-based routing scenarios [MvLW+09],
where services are dynamically chosen dependent on the respective tenant and other param-
eters. The Service Registry conceptualized in this diploma thesis and the business logic of
the management application (see Sect. 4.2) already support multi-tenant aware registering of
services. There also should be an implementation for the Web-based graphical user interface
described in Section 4.5.1. Finally, performance isolation, an important characteristic of a
multi-tenant system, is out of scope in this work. But a multi-tenant ESB must ensure that
services executed on behave of one tenant do not influence services of other tenants executed
on the same instance.

68

Appendix A.

Interface Definitions

This chapter lists XSDs that illustrate the WS-ScurityPolicy [OAS09] based authentication, in-
tegrity, and confidentiality mechanisms of the JBIMulti2 Web service interface (see Sect. 5.2.2).
Furthermore, a XSD for management messages targeting the JMSManagementService
(see Sect. 5.4.1) is presented. For a detailed description of used XML namespaces look
up the specifications referenced in Table 1.1.

A.1. Web Service Interface

Except for the definition of the tenant context, definitions in this section are not supported by
the current implementation of JBIMulti2. They are solely intended to clarify the WS-Security
[OAS06a] and WS-ScurityPolicy [OAS09] concepts introduced in Section 5.2.2. This includes
a XSD of JBIMulti2-specific policies, a WSDL document extended with policy assertions, and
an example SOAP message complying to the previous definitions.

1 <xsd:schema xmlns:xsd="..."
2 xmlns:tns="http://jbimulti2.iaas.uni-stuttgart.de/tenant-context"
3 targetNamespace="http://jbimulti2.iaas.uni-stuttgart.de/tenant-context">
4

5 <xsd:simpleType name="uuidType">
6 <xsd:restriction base="xsd:string">
7 <xsd:pattern value="[a-f0-9]{8}-[a-f0-9]{4}-[a-f0-9]{4}-[a-f0-9]{4}-[a-f0-9]{12}" />
8 </xsd:restriction>
9 </xsd:simpleType>

10

11 <xsd:group name="tenantUserId">
12 <xsd:sequence>
13 <xsd:element name="TenantId" type="tns:uuidType" />
14 <xsd:element name="UserId" type="tns:uuidType" />
15 </xsd:sequence>
16 </xsd:group>
17

18 <xsd:element name="TenantContext">
19 <xsd:complexType>
20 <xsd:sequence>
21 <xsd:choice>
22 <xsd:element name="TenantContextKey" type="tns:uuidType" />

69

Appendix A. Interface Definitions

23 <xsd:group ref="tns:tenantUserId" />
24 </xsd:choice>
25 <xsd:element name="OptionalEntry" minOccurs="0" maxOccurs="unbounded">
26 <xsd:complexType>
27 <xsd:sequence>
28 <xsd:element name="Key" type="xsd:string" />
29 <xsd:element name="Value" type="xsd:anyType" />
30 </xsd:sequence>
31 </xsd:complexType>
32 </xsd:element>
33 </xsd:sequence>
34 </xsd:complexType>
35 </xsd:element>
36

37 <xsd:element name="SystemAdminContext">
38 <xsd:complexType>
39 <xsd:sequence>
40 <xsd:element name="UserId" type="xsd:string" />
41 <xsd:element name="Password" type="xsd:string" />
42 <xsd:element name="OpTenantID" type="tns:uuidType" minOccurs="0" />
43 </xsd:sequence>
44 </xsd:complexType>
45 </xsd:element>
46

47 </xsd:schema>

Listing A.1: Tenant context XSD of JBIMulti2. Used in SOAP header and as element in JMS
management messages. This XSD was developed together with Essl [Ess11].

1 <xsd:schema xmlns:xsd="..."
2 xmlns:tns="http://jbimulti2.iaas.uni-stuttgart.de/wsdl/policy"
3 targetNamespace="http://jbimulti2.iaas.uni-stuttgart.de/wsdl/policy">
4

5 <xsd:element name="TenantContext">
6 <xsd:complexType>
7 <xsd:sequence>
8 <xsd:element name="RequireValue" minOccurs="0">
9 <xsd:complexType>

10 <xs:attribute name="key" type="xsd:string" />
11 </xsd:complexType>
12 </xsd:element>
13 </xsd:sequence>
14 </xsd:element>
15

16 <xsd:element name="SystemAdminContext">
17 <xsd:complexType>
18 <xsd:sequence>
19 <xsd:element name="RequireOpTenantId" minOccurs="0">
20 <xsd:complexType />
21 </xsd:element>
22 </xsd:sequence>

70

A.1. Web Service Interface

23 </xsd:complexType>
24 </xsd:element>
25

26 </xsd:schema>

Listing A.2: Policies XSD of JBIMulti2.

1 <wsdl:definitions targetNamespace="http://jbimulti2.iaas.uni-stuttgart.de/wsdl"
2 xmlns:tns="http://jbimulti2.iaas.uni-stuttgart.de/wsdl" xmlns:wsdl="..."
3 xmlns:soap12="..." xmlns:wsp="..." xmlns:wsu="...">
4

5 <wsp:Policy wsu:Id="TenantAuthPolicy">
6 <wsp:ExactlyOne>
7 <wsp:All>
8 <wpjmu2:TenantContext
9 xmlns:wpjmu2="http://jbimulti2.iaas.uni-stuttgart.de/wsdl/policy">

10 <wpjmu2:RequireValue key="password" />
11 </wpjmu2:TenantContext>
12 <wsp:PolicyReference URI="#X509SignEncrypt" />
13 </wsp:All>
14 <wsp:All>
15 <wpjmu2:SystemAdminContext
16 xmlns:wpjmu2="http://jbimulti2.iaas.uni-stuttgart.de/wsdl/policy">
17 <wpjmu2:RequireOpTenantId />
18 </wpjmu2:SystemAdminContext>
19 <wsp:PolicyReference URI="#X509SignEncrypt" />
20 </wsp:All>
21 </wsp:ExactlyOne>
22 </wsp:Policy>
23

24 <wsp:Policy wsu:Id="SystemAdminAuthPolicy">
25 <wpjmu2:SystemAdminContext
26 xmlns:wpjmu2="http://jbimulti2.iaas.uni-stuttgart.de/wsdl/policy" />
27 <wsp:PolicyReference URI="#X509SignEncrypt" />
28 </wsp:Policy>
29

30 <wsp:Policy wsu:Id="X509SignEncrypt" xmlns:sp="...">
31 <wsp:ExactlyOne>
32 <wsp:All>
33 <sp:AsymmetricBinding>
34 <wsp:Policy>
35 <sp:InitiatorToken>
36 <sp:X509Token sp:IncludeToken="http://.../IncludeToken/Never">
37 <wsp:Policy> <sp:RequireThumbprintReference /> </wsp:Policy>
38 </sp:X509Token>
39 </sp:InitiatorToken>
40 <sp:RecipientToken>
41 <wsp:Policy>
42 <sp:X509Token sp:IncludeToken="http://.../IncludeToken/Never">
43 <wsp:Policy> <sp:RequireThumbprintReference /> </wsp:Policy>
44 </sp:X509Token>

71

Appendix A. Interface Definitions

45 </wsp:Policy>
46 </sp:RecipientToken>
47 <sp:AlgorithmSuite>
48 <wsp:Policy> <sp:TripleDesRsa15 /> </wsp:Policy>
49 </sp:AlgorithmSuite>
50 <sp:Layout>
51 <wsp:Policy> <sp:Strict /> </wsp:Policy>
52 </sp:Layout>
53 </wsp:Policy>
54 </sp:AsymmetricBinding>
55 <sp:SignedParts>
56 <sp:Body />
57 <sp:Header Namespace="http://jbimulti2.iaas.uni-stuttgart.de/tenant-context" />
58 </sp:SignedParts>
59 <sp:EncryptedParts>
60 <sp:Body />
61 <sp:Header Namespace="http://jbimulti2.iaas.uni-stuttgart.de/tenant-context" />
62 </sp:EncryptedParts>
63 </wsp:All>
64 </wsp:ExactlyOne>
65 </wsp:Policy>
66 ...
67 <wsdl:binding name="SystemAdminServiceSoap12Binding" type="tns:SystemAdminServicePortType"

>
68 <wsp:PolicyReference URI="#SystemAdminAuthPolicy" />
69 <soap12:binding style="document" transport="http://schemas.xmlsoap.org/soap/http" />
70 ...
71 </wsdl:binding>
72

73 <wsdl:binding name="TenantAdminServiceSoap12Binding" type="tns:TenantAdminServicePortType"
>

74 <wsp:PolicyReference URI="#TenantAuthPolicy" />
75 <soap12:binding style="document" transport="http://schemas.xmlsoap.org/soap/http" />
76 ...
77 </wsdl:binding>
78

79 <wsdl:binding name="TenantOperatorServiceSoap12Binding" type="
tns:TenantOperatorServicePortType">

80 <wsp:PolicyReference URI="#TenantAuthPolicy" />
81 <soap12:binding style="document" transport="http://schemas.xmlsoap.org/soap/http" />
82 ...
83 </wsdl:binding>
84 ...
85 </wsdl:definitions>

Listing A.3: Policies in WSDL document of JBIMulti2. This is an extension of the original
WSDL document of the JBIMulti2 implementation.

72

A.1. Web Service Interface

1 <soap:Envelope xmlns:soap="" xmlns:xenc="">
2 <soap:Header>
3 <ctxjmu2:TenantContext wsu:Id="Id-8e01e303"
4 xmlns:ctxjmu2="http://jbimulti2.iaas.uni-stuttgart.de/tenant-context">
5 <xenc:EncryptedData Id="EncDataId-8e01e303" Type="http://...#Content"
6 soap:mustUnderstand="1">
7 ...
8 </xenc:EncryptedData>
9 </ctxjmu2:TenantContext>

10 <wsse:Security xmlns:wsse="" soap:mustUnderstand="1">
11 <xenc:EncryptedKey Id="EncKeyId-urn:uuid:74738ff5536759589aee98fffdcd1876">
12 <xenc:EncryptionMethod Algorithm="http://...#rsa-1_5" />
13 <ds:KeyInfo xmlns:ds="">
14 <wsse:SecurityTokenReference>
15 <wsse:KeyIdentifier EncodingType="http://...#Base64Binary"
16 ValueType="http://...#ThumbprintSHA1">1PUOqBg9B88D+d78PpDk2Zs9kpE=
17 </wsse:KeyIdentifier>
18 </wsse:SecurityTokenReference>
19 </ds:KeyInfo>
20 <xenc:CipherData>
21 <xenc:CipherValue>w0mcJy...2+KP48=</xenc:CipherValue>
22 </xenc:CipherData>
23 <xenc:ReferenceList>
24 <xenc:DataReference URI="#EncDataId-8e01e303" />
25 <xenc:DataReference URI="#EncDataId-6704f01a" />
26 </xenc:ReferenceList>
27 </xenc:EncryptedKey>
28 <ds:Signature xmlns:ds="" Id="Signature-af014604">
29 <ds:SignedInfo>
30 <ds:CanonicalizationMethod Algorithm="http://...xml-exc-c14n#" />
31 <ds:SignatureMethod Algorithm="http://...#rsa-sha1" />
32 <ds:Reference URI="#Id-8e01e303">
33 <ds:Transforms>
34 <ds:Transform Algorithm="http://...xml-exc-c14n#" />
35 </ds:Transforms>
36 <ds:DigestMethod Algorithm="http://...#sha1" />
37 <ds:DigestValue>HFnzW9vpQov4goxllf51qhsUVdY=</ds:DigestValue>
38 </ds:Reference>
39 <ds:Reference URI="#Id-6704f01a">
40 <ds:Transforms>
41 <ds:Transform Algorithm="http://...xml-exc-c14n#" />
42 </ds:Transforms>
43 <ds:DigestMethod Algorithm="http://...#sha1" />
44 <ds:DigestValue>EpdZEMPmNStbK97oH6L8RlOlvVk=</ds:DigestValue>
45 </ds:Reference>
46 </ds:SignedInfo>
47 <ds:SignatureValue>Q7aB0B...wMkEeY=</ds:SignatureValue>
48 <ds:KeyInfo>
49 <wsse:SecurityTokenReference>
50 <wsse:KeyIdentifier EncodingType="http://...#Base64Binary"
51 ValueType="http://...#ThumbprintSHA1">/YzLL5spPxILKhTmO50jKDKnpO4=
52 </wsse:KeyIdentifier>
53 </wsse:SecurityTokenReference>
54 </ds:KeyInfo>

73

Appendix A. Interface Definitions

55 </ds:Signature>
56 </wsse:Security>
57 </soap:Header>
58 <soap:Body xmlns:wsu="" wsu:Id="Id-6704f01a">
59 <xenc:EncryptedData Id="EncDataId-6704f01a" Type="http://...#Content">
60 <xenc:EncryptionMethod Algorithm="http://...#tripledes-cbc" />
61 <ds:KeyInfo xmlns:ds="">
62 <wsse:SecurityTokenReference xmlns:wsse="">
63 <wsse:Reference
64 URI="#EncKeyId-urn:uuid:74738ff5536759589aee98fffdcd1876" />
65 </wsse:SecurityTokenReference>
66 </ds:KeyInfo>
67 <xenc:CipherData>
68 <xenc:CipherValue>+STotL...kR9x1w=</xenc:CipherValue>
69 </xenc:CipherData>
70 </xenc:EncryptedData>
71 </soap:Body>
72 </soap:Envelope>

Listing A.4: Example SOAP message to JBIMulti2 including WS-Security [OAS06a]
definitions. SOAP messages with security tokens are not supported by the
current implementation of the JBIMulti2 Web service interface.

74

A.2. JBI Management Interface

A.2. JBI Management Interface

Management messages sent by the JBIMulti2 Web application to the JMSManagementService
conform to the following XSD. A description of this definition is given in Section 5.4.1.

1 <xsd:schema xmlns:xsd="..."
2 xmlns:tns="http://jbimulti2.iaas.uni-stuttgart.de/jbi/jms"
3 xmlns:ctxjmu2="http://jbimulti2.iaas.uni-stuttgart.de/tenant-context"
4 targetNamespace="http://jbimulti2.iaas.uni-stuttgart.de/jbi/jms">
5

6 <xsd:import namespace="http://jbimulti2.iaas.uni-stuttgart.de/tenant-context" />
7

8 <xsd:element name="JBIManagement">
9 <xsd:complexType>

10 <xsd:sequence>
11 <xsd:element name="TargetJBIContainers" type="tns:targetJBIContainers" />
12 <xsd:element name="InstallJBIComponents" type="tns:installJBIComponents" minOccurs="

0" />
13 <xsd:element name="DeployServiceAssemblies" type="tns:deployServiceAssemblies"

minOccurs="0" />
14 <xsd:element name="UndeployServiceAssemblies" type="tns:undeployServiceAssemblies"

minOccurs="0" />
15 <xsd:element name="UninstallJBIComponents" type="tns:uninstallJBIComponents"

minOccurs="0" />
16 </xsd:sequence>
17 </xsd:complexType>
18 </xsd:element>
19

20 <xsd:complexType name="targetJBIContainers">
21 <xsd:sequence>
22 <xsd:element name="JBIContainer" type="xsd:string" maxOccurs="unbounded" />
23 </xsd:sequence>
24 </xsd:complexType>
25

26 <xsd:complexType name="installJBIComponents">
27 <xsd:sequence>
28 <xsd:element name="JBIComponent" maxOccurs="unbounded">
29 <xsd:complexType>
30 <xsd:sequence>
31 <xsd:element name="Name" type="xsd:string" />
32 <xsd:element name="ContentZIP" type="xsd:base64Binary" />
33 </xsd:sequence>
34 </xsd:complexType>
35 </xsd:element>
36 </xsd:sequence>
37 </xsd:complexType>
38

39 <xsd:complexType name="deployServiceAssemblies">
40 <xsd:sequence>
41 <xsd:element name="ServiceAssembly" maxOccurs="unbounded">
42 <xsd:complexType>
43 <xsd:sequence>

75

Appendix A. Interface Definitions

44 <xsd:element name="Name" type="xsd:string" />
45 <xsd:element ref="ctxjmu2:TenantContext" />
46 <xsd:element name="ContentZIP" type="xsd:base64Binary" />
47 </xsd:sequence>
48 </xsd:complexType>
49 </xsd:element>
50 </xsd:sequence>
51 </xsd:complexType>
52

53 <xsd:complexType name="undeployServiceAssemblies">
54 <xsd:sequence>
55 <xsd:element name="ServiceAssembly" maxOccurs="unbounded">
56 <xsd:complexType>
57 <xsd:sequence>
58 <xsd:element name="Name" type="xsd:string" />
59 <xsd:element ref="ctxjmu2:TenantContext" />
60 </xsd:sequence>
61 </xsd:complexType>
62 </xsd:element>
63 </xsd:sequence>
64 </xsd:complexType>
65

66 <xsd:complexType name="uninstallJBIComponents">
67 <xsd:sequence>
68 <xsd:element name="JBIComponent" maxOccurs="unbounded">
69 <xsd:complexType>
70 <xsd:sequence>
71 <xsd:element name="Name" type="xsd:string" />
72 </xsd:sequence>
73 </xsd:complexType>
74 </xsd:element>
75 </xsd:sequence>
76 </xsd:complexType>
77

78 </xsd:schema>

Listing A.5: Messages XSD of JBI management interface.

76

Bibliography

[4Ca] 4CaaSt – EU Project. http://www.4caast.eu/.

[AMA] Amazon Elastic Compute Cloud (Amazon EC2). http://aws.amazon.com/en/
ec2/.

[AMQ] The Apache Software Foundation. Apache ActiveMQ. http://activemq.
apache.org/.

[AMV] The Apache Software Foundation. Apache Maven. http://maven.apache.
org/.

[AOD] The Apache Software Foundation. Apache ODE (Orchestration Director Engine).
http://ode.apache.org/.

[APA11a] The Apache Software Foundation. Apache Camel User Guide 2.7.0, 2011. http:
//camel.apache.org/manual/camel-manual-2.7.0.pdf.

[APA11b] The Apache Software Foundation. Apache Karaf Users’ Guide 2.2.5,
2011. http://repo1.maven.org/maven2/org/apache/karaf/manual/2.2.5/
manual-2.2.5.pdf.

[APG+10] A. Azeez, S. Perera, D. Gamage, R. Linton, P. Siriwardana, D. Leelaratne, S. Weer-
awarana, and P. Fremantle. Multi-tenant SOA Middleware for Cloud Comput-
ing. In Proc. IEEE 3rd Int Cloud Computing (CLOUD ’10) Conf., pages 458–465,
2010.

[ARS] The Apache Software Foundation. Apache Aries. http://aries.apache.org/.

[ASM] The Apache Software Foundation. Apache ServiceMix. http://servicemix.
apache.org/.

[ATC] The Apache Software Foundation. Apache Tomcat. http://tomcat.apache.
org/.

[AWS] The Apache Software Foundation. Apache WSS4J. http://ws.apache.org/
wss4j/.

[BIMT05] BEA Systems, IBM, Microsoft, and TIBCO Software. Web Services Reliable
Messaging Protocol (WS-ReliableMessaging), 2005. IBM developerworks, http:
//www.ibm.com/developerworks/library/specification/ws-rm/.

[CC06] F. Chong and G. Carraro. Architecture Strategies for Catching the Long Tail,
2006. MSDN, http://msdn.microsoft.com/en-us/library/aa479069.aspx.

77

http://www.4caast.eu/
http://aws.amazon.com/en/ec2/
http://aws.amazon.com/en/ec2/
http://activemq.apache.org/
http://activemq.apache.org/
http://maven.apache.org/
http://maven.apache.org/
http://ode.apache.org/
http://camel.apache.org/manual/camel-manual-2.7.0.pdf
http://camel.apache.org/manual/camel-manual-2.7.0.pdf
http://repo1.maven.org/maven2/org/apache/karaf/manual/2.2.5/manual-2.2.5.pdf
http://repo1.maven.org/maven2/org/apache/karaf/manual/2.2.5/manual-2.2.5.pdf
http://aries.apache.org/
http://servicemix.apache.org/
http://servicemix.apache.org/
http://tomcat.apache.org/
http://tomcat.apache.org/
http://ws.apache.org/wss4j/
http://ws.apache.org/wss4j/
http://www.ibm.com/developerworks/library/specification/ws-rm/
http://www.ibm.com/developerworks/library/specification/ws-rm/
http://msdn.microsoft.com/en-us/library/aa479069.aspx

Bibliography

[CCA] EU ICT Project Context Casting (C-CAST). http://www.ict-ccast.eu/.

[CCW06] F. Chong, G. Carraro, and R. Wolter. Multi-Tenant Data Architecture, 2006.
MSDN, http://msdn.microsoft.com/en-us/library/aa479086.aspx.

[Cha04] D. A. Chappel. Enterprise Service Bus: Theory in Practice. O’Reilly Media, 2004.

[Chi06] E. Chinthaka. Web services and Axis2 architecture, 2006. IBM devel-
operworks, http://www.ibm.com/developerworks/webservices/library/
ws-apacheaxis2/.

[CHLP09] A. M. Colyer, H. Hildebrand, C. Leau, and A. Piper. Spring Dynamic Modules
Reference Guide 1.2.1, 2009. http://static.springsource.org/osgi/docs/
1.2.1/reference/pdf/spring-dm-reference.pdf.

[EJB06] Enterprise JavaBeans (EJB) 3.0, Final Release, 2006. JSR-220, http://jcp.org/
aboutJava/communityprocess/final/jsr220/.

[Ess11] S. Essl. Extending an Open Source Enterprise Service Bus for Multi-Tenancy
Support. Master’s thesis, Institute of Architecture of Application Systems,
University of Stuttgart, 2011.

[FB96] N. Freed and N. Borenstein. Multipurpose Internet Mail Extensions (MIME)
Part One: Format of Internet Message Bodies, 1996. RFC 2045, http://www.
ietf.org/rfc/rfc2045.txt.

[FLM10] C. Fehling, F. Leymann, and R. Mietzner. A Framework for Optimized Distri-
bution of Tenants in Cloud Applications. In Proc. IEEE 3rd Int Cloud Computing
(CLOUD ’10) Conf., pages 252–259, 2010.

[FUS11] FuseSource. Fuse ESB 4.4 – Using Java Business Integration, 2011. http://
fusesource.com/docs/esb/4.4/jbi/.

[Gaw09] J. Gawor. Building OSGi applications with the Blueprint Container specifi-
cation, 2009. IBM developerworks, http://www.ibm.com/developerworks/
opensource/library/os-osgiblueprint/.

[GMA] Google Maps API Web Services. http://code.google.com/intl/en/apis/
maps/documentation/webservices/.

[GSH+07] C. J. Guo, W. Sun, Y. Huang, Z. H. Wang, and B. Gao. A Framework for Native
Multi-Tenancy Application Development and Management. In Proc. 9th IEEE
Int. Conf. E-Commerce Technology and the 4th IEEE Int. Conf. Enterprise Computing,
E-Commerce, and E-Services CEC/EEE ’07, pages 551–558, 2007.

[Hag11] R. Hagin. Enabling Integration and Aggregation of Context Information into
WS-BPEL Processes. Master’s thesis, Institute of Architecture of Application
Systems, University of Stuttgart, 2011.

[HW03] G. Hohpe and B. Woolf. Enterprise Integration Patterns: Designing, Building, and
Deploying Messaging Solutions. Addison-Wesley Professional, 2003.

78

http://www.ict-ccast.eu/
http://msdn.microsoft.com/en-us/library/aa479086.aspx
http://www.ibm.com/developerworks/webservices/library/ws-apacheaxis2/
http://www.ibm.com/developerworks/webservices/library/ws-apacheaxis2/
http://static.springsource.org/osgi/docs/1.2.1/reference/pdf/spring-dm-reference.pdf
http://static.springsource.org/osgi/docs/1.2.1/reference/pdf/spring-dm-reference.pdf
http://jcp.org/aboutJava/communityprocess/final/jsr220/
http://jcp.org/aboutJava/communityprocess/final/jsr220/
http://www.ietf.org/rfc/rfc2045.txt
http://www.ietf.org/rfc/rfc2045.txt
http://fusesource.com/docs/esb/4.4/jbi/
http://fusesource.com/docs/esb/4.4/jbi/
http://www.ibm.com/developerworks/opensource/library/os-osgiblueprint/
http://www.ibm.com/developerworks/opensource/library/os-osgiblueprint/
http://code.google.com/intl/en/apis/maps/documentation/webservices/
http://code.google.com/intl/en/apis/maps/documentation/webservices/

Bibliography

[JAV06] Java Platform, Enterprise Edition 5 (Java EE), Final Release, 2006. JSR-244,
http://jcp.org/aboutJava/communityprocess/final/jsr244/.

[JAX06a] The Java Architecture for XML Binding (JAXB) 2.0, Final Release, 2006. JSR-222,
http://jcp.org/aboutJava/communityprocess/final/jsr222/.

[JAX06b] The Java API for XML-Based Web Services (JAX-WS) 2.0, Final Release, 2006.
JSR-224, http://jcp.org/aboutJava/communityprocess/final/jsr224/.

[JBI05] Java Business Integration (JBI) 1.0, Final Release, 2005. JSR-208, http://jcp.
org/aboutJava/communityprocess/final/jsr208/.

[JBI12] Dominik Muhler. JBI Multi-tenancy Multi-container Support (JBIMulti2) – Re-
quirements Specification, 2012. On CD-ROM belonging to this diploma thesis.

[JMS02] Java Message Service (JMS) 1.1, Final Release, 2002. JSR-914, http://jcp.org/
aboutJava/communityprocess/final/jsr914/.

[JSF06] JavaServer Faces Specification (JSF) 1.2, Final Release, 2006. JSR-252, http:
//jcp.org/aboutJava/communityprocess/final/jsr252/.

[Mar02] F. Marinescu. EJB Design Patterns: Advanced Patterns, Processes, and Idioms. John
Wiley & Sons, Inc., 2002.

[MPW11] I. K. Milinda Pathirage, Srinath Perera and S. Weerawarana. A Multi-tenant
Architecture for Business Process Executions. In Proc. IEEE 9th Int Conf. on Web
Services (ICWS ’11), pages 121–128, 2011.

[MUTL09] R. Mietzner, T. Unger, R. Titze, and F. Leymann. Combining Different Multi-
tenancy Patterns in Service-Oriented Applications. In Proc. IEEE Int. Enterprise
Distributed Object Computing Conf. EDOC ’09, pages 131–140, 2009.

[MvLW+09] R. Mietzner, T. van Lessen, A. Wiese, M. Wieland, D. Karastoyanova, and
F. Leymann. Virtualizing Services and Resources with ProBus: The WS-Policy-
Aware Service and Resource Bus. In Proc. IEEE Int. Conf. Web Services ICWS ’09,
pages 617–624, 2009.

[NIS11] National Institute of Standards and Technology. The NIST Definition of
Cloud Computing, 2011. http://csrc.nist.gov/publications/nistpubs/
800-145/SP800-145.pdf.

[OAS06a] OASIS. Web Services Security (WS-Security) 1.1, 2006. http://www.
oasis-open.org/standards/.

[OAS06b] OASIS. Web Services Security X.509 Certificate Token Profile 1.1, 2006. http:
//www.oasis-open.org/standards/.

[OAS07] OASIS. Web Services Business Process Execution Language (WS-BPEL) 2.0, 2007.
http://docs.oasis-open.org/wsbpel/2.0/CS01/wsbpel-v2.0-CS01.html.

[OAS09] OASIS. WS-SecurityPolicy 1.3, 2009. http://www.oasis-open.org/
standards/.

79

http://jcp.org/aboutJava/communityprocess/final/jsr244/
http://jcp.org/aboutJava/communityprocess/final/jsr222/
http://jcp.org/aboutJava/communityprocess/final/jsr224/
http://jcp.org/aboutJava/communityprocess/final/jsr208/
http://jcp.org/aboutJava/communityprocess/final/jsr208/
http://jcp.org/aboutJava/communityprocess/final/jsr914/
http://jcp.org/aboutJava/communityprocess/final/jsr914/
http://jcp.org/aboutJava/communityprocess/final/jsr252/
http://jcp.org/aboutJava/communityprocess/final/jsr252/
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
http://www.oasis-open.org/standards/
http://www.oasis-open.org/standards/
http://www.oasis-open.org/standards/
http://www.oasis-open.org/standards/
http://docs.oasis-open.org/wsbpel/2.0/CS01/wsbpel-v2.0-CS01.html
http://www.oasis-open.org/standards/
http://www.oasis-open.org/standards/

Bibliography

[OJ07] S. Ortiz Jr. Getting on Board the Enterprise Service Bus. Computer, 40:15–17,
April 2007.

[OPG06] The Open Group. The SOA Work Group: Definition of SOA, 2006. http://www.
opengroup.org/soa/soa/def.htm.

[OPG11] The Open Group. IBM Cloud Computing Reference Architecture 2.0,
2011. https://www.opengroup.org/cloudcomputing/uploads/40/23840/
CCRA.IBMSubmission.02282011.doc.

[OSG09] OSGi Alliance. OSGi Service Platform: Service Compendium Version 4.2, 2009.
http://www.osgi.org/Download/Release4V42/.

[OSG11] OSGi Alliance. OSGi Service Platform: Core Specification Version 4.3, 2011.
http://www.osgi.org/Download/Release4V43/.

[OWJ] OW2 Consortium. JOnAS: Java Open Application Server. http://wiki.jonas.
ow2.org/.

[OWO] OW2 Consortium. Orchestra: Open Source BPEL / BPM Solution. http://
orchestra.ow2.org/.

[PHE+06] S. Perera, C. Herath, J. Ekanayake, E. Chinthaka, A. Ranabahu, D. Jayasinghe,
S. Weerawarana, and G. Daniels. Axis2, Middleware for Next Generation Web
Services. In Proc. IEEE Conf. Web Services (ICWS ’06), pages 833–840, 2006.

[PSQ] PostgreSQL. http://www.postgresql.org/.

[SCFY96] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. Youman. Role-based Access
Control Models. Computer, 29:38–47, February 1996.

[SOA] SmartBear Software. soapUI. http://www.soapui.org.

[SOA07] SOAP Version 1.2 Part 1: Messaging Framework (Second Edi-
tion), 2007. W3C Recommendation, http://www.w3.org/TR/2007/
REC-soap12-part1-20070427/.

[SOA10] SOAP over Java Message Service 1.0, 2010. W3C Working Draft, http://www.
w3.org/TR/2010/WD-soapjms-20101026/.

[Tao01] L. Tao. Shifting Paradigms with the Application Service Provider Model. Com-
puter, 34:32–39, October 2001.

[WB09] C. D. Weissman and S. Bobrowski. The Design of the Force.com Multitenant
Internet Application Development Platform. In Proc. SIGMOD International Conf.
on Management of Data SIGMOD’09, pages 889–896. ACM, 2009.

[WCL+05] S. Weerawarana, F. Curbera, F. Leymann, T. Storey, and D. F. Ferguson. Web
Services Platform Architecture: SOAP, WSDL, WS-Policy, WS-Addressing, WS-BPEL,
WS-Reliable Messaging, and More. Prentice Hall, 2005.

[WSA04] Web Services Addressing (WS-Addressing), 2004. W3C Member Submission,
http://www.w3.org/Submission/2004/SUBM-ws-addressing-20040810/.

80

http://www.opengroup.org/soa/soa/def.htm
http://www.opengroup.org/soa/soa/def.htm
https://www.opengroup.org/cloudcomputing/uploads/40/23840/CCRA.IBMSubmission.02282011.doc
https://www.opengroup.org/cloudcomputing/uploads/40/23840/CCRA.IBMSubmission.02282011.doc
http://www.osgi.org/Download/Release4V42/
http://www.osgi.org/Download/Release4V43/
http://wiki.jonas.ow2.org/
http://wiki.jonas.ow2.org/
http://orchestra.ow2.org/
http://orchestra.ow2.org/
http://www.postgresql.org/
http://www.soapui.org
http://www.w3.org/TR/2007/REC-soap12-part1-20070427/
http://www.w3.org/TR/2007/REC-soap12-part1-20070427/
http://www.w3.org/TR/2010/WD-soapjms-20101026/
http://www.w3.org/TR/2010/WD-soapjms-20101026/
http://www.w3.org/Submission/2004/SUBM-ws-addressing-20040810/

Bibliography

[WSD01] Web Services Description Language (WSDL) 1.1, 2001. W3C Note, http://www.
w3.org/TR/2001/NOTE-wsdl-20010315.

[WSD06] WSDL 1.1 Binding Extension for SOAP 1.2, 2006. W3C Member Submission,
http://www.w3.org/Submission/2006/SUBM-wsdl11soap12-20060405/.

[WSP07] Web Services Policy 1.5 - Framework, 2007. W3C Recommendation, http:
//www.w3.org/TR/2007/REC-ws-policy-20070904/.

[XML02a] XML Encryption Syntax and Processing, 2002. W3C Recommendation, http:
//www.w3.org/TR/2002/REC-xmlenc-core-20021210/.

[XML02b] XML-Signature Syntax and Processing, 2002. W3C Recommendation, http:
//www.w3.org/TR/2002/REC-xmldsig-core-20020212/.

[XSD04] XML Schema Part 1: Structures Second Edition, 2004. W3C Recommendation,
http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/.

[ZSTC10] X. Zhang, B. Shen, X. Tang, and W. Chen. From Isolated Tenancy Hosted
Application to Multi-tenancy: Toward a Systematic Migration Method for Web
Application. In Proc. IEEE Int Software Engineering and Service Sciences (ICSESS
’10) Conf., pages 209–212, 2010.

All links were last followed on January 22, 2012.

81

http://www.w3.org/TR/2001/NOTE-wsdl-20010315
http://www.w3.org/TR/2001/NOTE-wsdl-20010315
http://www.w3.org/Submission/2006/SUBM-wsdl11soap12-20060405/
http://www.w3.org/TR/2007/REC-ws-policy-20070904/
http://www.w3.org/TR/2007/REC-ws-policy-20070904/
http://www.w3.org/TR/2002/REC-xmlenc-core-20021210/
http://www.w3.org/TR/2002/REC-xmlenc-core-20021210/
http://www.w3.org/TR/2002/REC-xmldsig-core-20020212/
http://www.w3.org/TR/2002/REC-xmldsig-core-20020212/
http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/

Declaration

All the work contained within this thesis, except where otherwise
acknowledged, was solely the effort of the author. At no stage was
any collaboration entered into with any other party.

Stuttgart, January 27, 2012 ——————————–
(Dominik Muhler)

	Introduction
	Motivating Scenario
	Scope of Work
	Outline
	Definitions and Conventions

	Fundamentals
	Cloud Computing
	Service-oriented Architecture
	Web Services Platform

	Enterprise Service Bus
	Multi-tenancy
	Technologies
	Java Business Integration
	OSGi Framework
	Apache ServiceMix

	Related Works
	WSO2 Platform-as-a-Service
	Multi-tenant SOA platform
	Multi-tenant BPEL engine

	Force.com Platform-as-a-Service

	Concept and Specification
	System Overview
	Components
	Scenarios

	Service Registry
	Multi-tenancy
	Role-based Access Control
	Tenant Registry
	Configuration Registry
	Service Assembly Processing

	Use Cases
	Application Interfaces
	Web-based Graphical User Interface
	Web Service API

	Non-functional Requirements

	Design
	Architectural Overview
	Components
	Integration
	Processing of JBI Artifacts

	Web Application
	Business Logic Access Layer
	Web Service
	Packaging and Deployment

	Database Schemes
	Extensions to ServiceMix
	Management Interface Over Messaging
	Multi-tenant JBI Components

	Implementation and Evaluation
	Implementation
	Java Annotations for Role-based Access Control
	OSGi-based Management Service for Apache ServiceMix
	Multi-tenant Binding Component and Service Engine

	Evaluation
	Deployment and Initialization
	Tenant Context-based Routing

	Outcome and Future Work
	Interface Definitions
	Web Service Interface
	JBI Management Interface

	Bibliography

