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Abstract
The development of self-reconfigurable modular robots has experienced significant pro-
gress. Continuous improvement during the past twenty years produced flexible and
easy maintainable robot mechanisms. Self reconfiguring modular robots consist of vari-
ous similar robotic modules and are designed to establish manifold connections between
each of these link modules. Moreover these modules are able to perform movements to
change the shape or the position of the robotic chain.

In this thesis the main focus lies on the analysis of kinematics and dynamics of small mod-
ular robot organisms and their movement pattern. Although diverse linkage mechanisms
do exist, practically no motion of one module can be accomplished without interacting
with a second one. Therefore furthermore fundamental is the study and examination of
dyad kinematics which represent the pattern of movement between solely two modules.
However generation and simulation of models of modular robot kinematics and dynam-
ics are complex and manual derivation needs tremendous efforts as every configuration
and alternation of shape induce new changes of parameters´ values. Besides machine-
driven computation requires a great deal of energy and increased storage capacity if ev-
ery module constellation and applicable movements are predefined in a database. To
avoid this squandering of resources a framework is implemented in Matlab based on
Chen´s theory to design an accurate dynamic model.
In the end, this thesis shall provide a farther step towards a robust and flexible modular
robot organism which is able to perform reliable interaction with the environment to
constitute to an optimized and effective realization of tasks assigned to it in industry or
in the future private households.
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1 Introduction

The world of Robotics has to live up to the ideals of humanoid robots due to exagger-
ated expectations of ever improving and impressively looking robots communicated by
media and yet achievements can be seen. However not only regarding the appearances
accomplishments are in process.
In the last two decades a tremendous effort has been made to an augmentation of func-
tionality. Since it is a well known fact regarding society that there is strength in numbers,
cooperation between robots gains importance in science every day. Hoping to implement
team work and collaboration for a more effective working routine in industry, in the last
twenty years researchers´ focus was drawn towards reconfigurable modular robots.

(a) (b) (c)

Figure 1.1: Humanoid Robots: (a) Asimo [Asimo, 2004]. (b) Aldebaran Nao H21
[Aldebaran, 2010]. (c) Qrio with Dog Aibo [Qrio, 2006]

Robots automation and electro-mechanical devices came a long way until they achieved
indispensability in several industry sectors. But also concerning several environments
where danger or health damaging circumstances prevent mankind from proper indepen-
dent reliable work performance and hiring of handcrafts is irresponsible, robot manipu-
lators are involved. Even in medical issues where humans´ preciseness is not serving the
need, perfectly trimmed computer-controlled mini robots can assist.
In these named areas collaboration enlarges the spectrum of robot application. This is
why currently the attention of researchers and the development at major institutes in-
creasingly comprise multiple cooperating robots up to the innovation of modular robots,
which bring along huge advantages for a promising future.

1



1 Introduction

1.1 Motivation

The elegance and benefits of modular robot assemblies lie in their reconfiguration and
simplicity which guarantee that all modules are replaceable. If complications occur, prob-
lems are easily specified and solved as only the affected module has to be compensated
by a second similar module, thus maintenance is easy. But the principal effect of modu-
lar robot is their adaptability to optimize their functionality by altering their shapes for
according to the tasks.
Modular robots are assemblies of smaller or bigger chains of modules. Modules can be
links or joints to establish a wide range of different robot geometries. This allows the
system to cope flexibly with any solicited task and supplies the assembly configuration
with agility.
Intuitively motion needs strict control mechanisms in order to obtain desired movement
pattern. Obviously not only control experiments can lead to significant results but also
computational simulation plays an important role.
To receive trustworthy simulation results the precise modeling is the basis component.
Dynamical and Kinematical models of the robot assemblies have to be detected.
Nonetheless classical dynamical model generation does not include ever changing mod-
ular assemblies. It is rather established for robots with fixed geometrical appearances,
where models can be derived a priori of the simulation.
These deriving techniques cost much time and effort as they have to be done manually
or can be provided by commercial software packages with predefined models of existing
robots. This explains why the common approach of model generation is not appropriate
for the modular robot assemblies. Modular robots do not suit any predefined patterns
as the possible robot geometries can adapt endless different shapes. Software packages
would need huge libraries of robot configurations and computer would lack of disk stor-
age capacity and efficiency would not be granted, if conventional modeling techniques
were used.
This thesis deals with the automatic model procedure for modular robot assemblies for
control and simulation purposes based on screw theory.

1.2 Goals

As can be seen in the former section model generation for modular reconfigurable robot
dynamics and kinematics can be hard work. To avoid complicated techniques an easy
framework for modular robot is examined to obtain the needed models for the dynamics
and kinematics computation.
An anterior endeavor to handle automatic model generation for modular robots was the
Denavit-Hartenberg Parameterization.
Denavit-Hartenberg convention is an approach introduced by Richard S. Hartenberg
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1 Introduction

and Jacques Denavit to find good coordinate frames of robotic configurations. Denavit-
Hartenberg describes the motion of a series of rigid links connected by various joints to
obtain forward and inverse kinematics. Two adjacent modules are considered. The first
one is called the previous whereas the second is the actual module.
Selecting frames of references is based on basic transformations to allow a minimal rep-
resentation. There are four parameters, which need to be defined, to specify the transfor-
mation between two coordinate systems:

• d: is the depth along the previous actuator axis from its origin to the normal. Link
offset.

• r: is the distance along the rotated x-axis. Alternatively it is spoken as radius of
rotation about previous z-axis. Link length.

• α: rotates about the new x-axis to bring z into line with its desired position. Link
twist.

• θ: rotates along the previous z-axis to align the x-axis. Thus it is the angle about the
previous z to align the previous x with the new origin. Joint angle.

However the automatic model generation including Denavit-Hartenberg parameters does
not distinguish precisely between the spatial relation and the arranging module´s se-
quence in the robot incidence. Moreover a different initial or zero position causes dissim-
ilar assortment of parameters, as the Denavit-Hartenberg method depends on it. Also
the smallest of the deviance of parallelism bring about a new set of parameters.

Therefore the following framework shall be independent of the robot´s actual geometry
to save storage space and be more effective.

Figure 1.2: Automatic Model Generation [Chen and Yang, 1998].

Figure 1.2 presents the general design of the framework of the general model approach
is shown in [Chen and Yang, 1998]. The authors describe the main components as the
following:

• Data Base
The Data Base is referring to a library where all the possible components of a mod-
ular robot assembly are stored. Furthermore it contains all the specifications and
description of the basic components. For example actuators, sensors end-effectors
can be found in this component database.

3



1 Introduction

• Assembly Incidence Matrix
The Assembly Incidence Matrix (AIM) is very important for this modeling tech-
nique as it describes the current modular robot assembly based on a kinematic
graph. The AIM shows the different linkage and connection mechanisms and con-
veys type and sequence of the actual robot incidence, without changing other pa-
rameters modules can be attached or detached.

• Modeling Techniques for Kinematics and Dynamics
It is very important to stress that the Modeling Techniques for Kinematics and Dy-
namics are geometry. Therefore the kinematics and dynamics are represented by
Lie Groups and Lie Algebra to provide the independence of the joint types.

As Chen et al. developed the theoretical framework, this thesis is aimed at actually im-
plementing it and providing a further step towards modular robot with full functionality.

1.3 Current and Related Projects

Various research institutes developed modular robot systems and manufactured proto-
types. Figure 1.3 supplies examples.

(a) (b)

Figure 1.3: Modular Snake Robots: (a) CKBot [CKBot, 2009]. (b) Anna Konda
[AnnaKonda, 2006].

The Modular Robotics Lab (ModLab), a subgroup of the GRASP Lab and the Mechanical
Engineering and Applied Mechanics Department at the University of Pennsylvania de-
veloped the CKBot (Connector Kinetic roBot) module to be fast, small, and inexpensive.
[CKBot, 2009]
Anna Konda is a water-powered fire fighting snake robot developed by The Founda-
tion for Scientific and Industrial Research at the Norwegian Institute of Technology (SIN-
TEF).Further Reading on
[AnnaKonda, 2006]
This thesis is not based on related projects but contains slight similarities to the two
projects SYMBRION (Symbiotic Evolutionary Robot Organisms) and REPLICATOR (Robotic
Evolutionary Self-Programming and Self-Assembling Organisms) which are sponsored

4



1 Introduction

by the European Commission.

The main focus of these projects is to investigate and develop novel principles of adapta-
tion and evolution for symbiotic multi-robot organisms based on bio-inspired approaches
and modern computing paradigms.
The REPLICATOR focuses inter alia on intelligent, reconfigurable and adaptable "carrier"
of sensors (sensors network), extremely powerful computational on-board resources and
systems with a large number of light modules or medium number of heavy modules.
Therefore the thesis can be rather correlated with the latter project.
Further information can be found on [SYMBRION, 2008].

1.4 Organization of this thesis

This thesis consists of 5 Chapters:

• Chapter 1 represents the general introduction into the multi robot organisms and
the correlated problems. It comprises motivation and goals of this thesis and gives
hints about former, present and future work or projects.

• Chapter 2 is about the theoretical foundations of the automatic generation of kine-
matics and dynamics models: module design, screw theory and the basics of geo-
metric formulations of modular robot assemblies.

• Chapter 3 explains the differences between theory and adapted practically applied
methods.

• Chapter 4 contains the implementations developed during this thesis. All imple-
mentations are employed in MatLab.

• Chapter 5 provides the conclusion, where the most important items are stressed
and furthermore gives hints for further studies.
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2 Foundations

In this chapter the theoretical foundations of module design in robotics are described.
Simultaneously it pictures module assemblies in general as well as module assemblies
in general. Furthermore the principle pillars of the screw theory, the mathematical back-
ground of the dynamics and kinematics description, are regarded. In detail the principle
pillars of geometric representation are explained with special focus on the relevant ma-
trices for the automated model generation for modular robot dynamics.

2.1 General Description of Module Design in Robotics

The trend in the last two decades has been towards robots that are applicable to a huge
range of diverse assignments of tasks. Beyond that the robots need to be flexible and
robust to interact safely in their ever changing environment. Therefore a new concept of
robots has been initiated which represents a powerful method to adjust a robot according
to the expectations and intentions of the instructor.
This method comprises a new constructing describing method called module set and
was introduced by [Chen and Yang, 1997]. They had the purpose to improve production
and proposed the reconfigurable modular robot system which is constructed of various
modules. These robot systems can vary in various ways. Theoretically there exist no
restrictions regarding the number of module or the connecting interaction between those
modules. The characteristics of the modules differ slightly from one research center to
another. However, they have all these features in common: Modules are non complex,
simple, cheap and easy to maintain structures with multiple connecting ports.
Due to the theory of [Chen and Yang, 1998], which is implemented in this bachelor the-
sis, a module can be one out of three different type sizes but should be cubic to guarantee
a maximum of possible connection surfaces. The interaction between the modules can
take place in one out of three modes. The rigid, the revolute and the prismatic connect-
ing ports form the named three types. The connection between two modules always is
build up by so called connectors.

Optimally a robot system consists of a minimal number of modules to live up to the ex-
pectations brought up with its task that has to be completed. This induces efficiency and
energy reduction through a minimized weight. Generally with this condition in mind the
bandwidth of the system will enlarge and celerity will increment.

Both connectors and the linkable modules are named modules. To obtain an easy way
to differentiate between those two kinds of elements the following nomenclature is rec-
ommended. Modules are considered as links if they consist of connecting ports but need
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2 Foundations

Figure 2.1: Two different Module Types both in Dyadconfiguration:(a)[iMobot, 2011],(b)
[CKBot, 2009]

a connector to accomplish a connection in contrast to connectors which are described by
joints. The names are derived of the kinematic features of the module types. The con-
necting ports of a module are those sides of it, which are able to establish a connection of
power, mechanics and control. Therefore the perfect conditions are symmetrical shapes
and multiple accesses to synthesize connections. All these requirements are met by the
cubic module. As mentioned above cubes are the easiest and miscellaneously deployable
elements in module sets. Until today joints are restricted to a maximum of one degree-
of-freedom if a single one is considered. The different connectors´ features are described
in the following:

• Revolute joints:
The connectors receive the name revolute joint if they are connected to the surfaces
of two modules and cause those sides to rotate against each other. So they are the
rotary joints, which rotate along their joint axis.

Figure 2.2: Revolute Joint and its Rotation Possibility

• Prismatic joints:

7



2 Foundations

On the other hand prismatic joints exist which produce a linear translation between
two connected modules. These joints move linearly along their translation axis.

Figure 2.3: Prismatic Joint and its Translation Possibility

• Virtual joints:
The use of virtual joint does not allow any joint displacement at all, so it is a rigid
connection between two link modules and is used whenever no movement between
two modules should take place.

Figure 2.4: Virtual Joint neither Translation nor Roatation Possibilities

2.1.1 Module Assemblies

The idea of modular robots brings with it the opportunity of any possible configura-
tion and sequence of modules. This means that an immense spectrum of assembly con-
stellations have to be reduced to reasonable and clear subassembly groups. Therefore
two main classes are distinguished within modular robot assemblies, the serial and the
tree typed robot assembly. The idea of modular robots brings with it the opportunity of
any possible configuration and sequence of modules. This means that an immense spec-
trum of assembly constellations have to be reduced to reasonable and clear subassembly
groups. Therefore two main classes are distinguished within modular robot assemblies,
the serial and the tree typed robot assembly. The former refers to an ordinary chain in-
cluding one starting and one final point connected through a simple consecution of chain
links. The latter represents not only one simple chain but a more complicated struc-
ture. Starting from one module it can diverge into diverse branches leading to various
endpoints. Thus the tree typed robot assembly often is also referred to as the so called

8



2 Foundations

branching type.

Figure 2.5: Modular Robot Assemblies: Serial Type

(a) (b)

Figure 2.6: Modular Robot Assemblies: Branched Types (b) . (a)

2.1.2 Module Traversing Order

To obtain a mechanism that delivers the order of the assembled link modules the module
traversing order is from utmost significance. The module traversing order defines the
sequence in which the modules receive their label. Labels designate an individual num-
ber to each module to differentiate between them effortlessly. This assignment will gain
importance in the automatic generation of a model for dynamics of a modular reconfig-
urable robot.
The two characterized groups, the serial and the branching types, need to be considered
in a slightly different way. As the former refers to a normal chain its module traversing
order can follow the typical order from its starting point to the end of the chain. Different
search algorithms like the Depth-First-Search or Breadth- First- Search deliver the same
results. But this does not apply to the later group, the tree typed robot assemblies, which
contain diverse branches and tips. This is why the order numbers of the link and joint
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2 Foundations

modules depend on the graph´s searching algorithm. In this case only the Depth-First-
Search and the Breadth-First-Search are analyzed to determine the traversing order.

• Breadth-First-Search
Breath-First-Search is known as a graph search method. The algorithm defines a root
node and always starts at this elected point with exploring all its neighbor nodes.
After finishing exploring them, it begins to explore each of their yet unexplored
adjacent nodes. This will be repeated until the goal node is found.

• Depth-First-Search
Depth-First-Search is also a traversing method of graphs. As the Breadth-First-Search
the algorithm begins at the node which was selected as the root. Then the explo-
ration continues on the branch of the nearest node as long as it finds the goal node
or until it is at the end of the branch. If it does not find a child node, the back-
tracking will be employed until a unexplored branch is found to be the next to be
explored.

So in conclusion it can be said: The farther from the base module the higher is the num-
ber of the vertices in the graph considered with Depth-First-Search, whereas Breadth-
First- Search is almost the contrary. Breadth- First- Search will compute a totally different
traversing order. But both search methods do have in common that their first fixed mod-
ule always is declared as the base module.
More information about the mentioned fields of module sets and module traversing or-
der can be found in [Deo, 1974], [Chen and Yang, 1997] and [Wurst, 1986] or in the basic
works as stated above.

2.2 Screw Theory

The idea of screw theory is not new. It was first developed by Sir Robert Stawell Ball in
1876 for application in kinematics and statics of mechanisms [Ball, 1876] but it sank into
oblivion. Today it reacquires and increases its importance in Robotics due to excellent
application possibilities and results in model generation compared to common methods
since screw theory simplifies calculations based on geometries in a three dimensional
space.

An adequate method to cope with the problems that occur during the calculations of
kinematics and dynamics of rigid bodies is screw theory. It considers the resulting trans-
lational and angular velocities supplementary to the emerging forces and moments as
pairs of vectors. Generally screw theory displaces a whole system of elements by a pair
of two components, where one component can be seen as a rotation and the other one
as a translation. To alleviate the access to the mathematical background of Screw Theory
and Lie Algebra, the basics or the often used terms are described.

10



2 Foundations

• Screw
The Chasle theorem is commonly known: A spatial displacement can be depic-
tured as a rotation and a translation parallel to the rotation axis or in line with it
to describe the transformation of a rigid body movement from its first to its second
position.
As rotation and the linear displacement are defined for one line, the image of a
screw motion came up. In technical mechanics these six parameters to describe
spatial displacement are characterized by three Euler Angles, which leads to the
disadvantage of suffering singularities.
In contrary to the methods applied in common mechanics, the Screw Theory is an
interesting upcoming instrument to facilitate the calculations. The screw itself is a
pair of vectors, which consists of the four independent components of the Plucker
vector that defines the screw axis [Wikipedia, ] on the one hand and the revolute
angle about and the translational movement along this screw axis.
The outcome of this theory can be easily verified by imagining the rigid body un-
der a constant spiral screw motion. By applying endless pitch to a screw the end
route can be imagined as a straight path. The exact opposite is the pure rotation.
It is represented if the screw motion has no pitch at all; that is the trajectory solely
traces circles. Here it can be realized that the pitch of a screw relates their rotation
and translational movement mutually.
The calculus and the transformation rules will not be described because it will
go beyond the scope of this thesis. The interested reader detailed explanation in
[Murray and Li, 1994].

• Twist
Theinfinitesimal version of a screw motion is called a twist[Murray and Li, 1994].
Screws are referred to as the screw of first order, while twists are also named as
screws of second order. Equivalently they are also pairs of vectors but instead of
containing the motion representation, twists offer the velocity description of a rigid
body.
The first component is the angular velocity around the joint axis, the second one
however is the linear velocity along the very axis.

v̂2 =

[
~v2
~ω

]
=

[
1 −[~r12]×
0 1

]
·
[
~v1
~ω

]
(2.1)

– ~ω : Angular velocity of the rigid body.

– ~v1: First point´s linear velocity.

– ~v2: Second point´s linear velocity.

– [ ~r12]× : The 3× 3 cross product.

• Wrench
The last pairs of vectors in the line of screws are the wrenches. The first vector
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Figure 2.7: Twist: Pair of angular and linear velocity vector.

adhered to it is the force and the second one is the torque vector. Both have their
origin in employing the Newton´s laws to a rigid body. Congruently as explained
in the paragraph of screws. Since forces depend on their point of application and
their line of activity, they represent the Plucker coordinates of a spatial line with
an infinite pitch. The torque is comparable to the rotary movement, it is a pure
moment and independent of a line in space so it is a zero pitch screw.

τ̂2 =

[
~F
~τ2

]
=

[
1 0

−[~r12]× 1

]
·
[
~F
~τ1

]
(2.2)

Figure 2.8: Wrench: Pair of force and torque vector.

– ~ω: Resulting forces directed on the rigid body.

– ~τ1: First point´s moment.

– ~τ2: Second point´s moment.

– ~[r12]×: The 3× 3 cross product.

To comprehend the automated model generation, which will be discussed in chapter
"Implementation", these explanations may be pointed out first:
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2 Foundations

• Homogeneous Representation:
The transformation of points and vectors by rigid motion transformations have an
uncomplicated representation regarding matrices and vectors ∈ R4. To achieve
a vector ∈ R4 the so called homogeneous coordinates, a 1 is appended to points
coordinates. Considering vectors as difference of points, they have a 0 as their
fourth coordinate.

• Product of Exponentials:
Instead of a complicated derivation of the joint angles based on given positions and
orientations of frame, the product of exponentials of twists can be used to repre-
sents the kinematics of an open-chain mechanism.

• Skew Symmetric Matrix:
A Matrix M that satisfies the equation M = M−T is a skewsymmetric one. In
mathmatics these matrices are often marked by a hat: M̂.

For further examination of screw theory applied to robotics please refer to [Murray and Li, 1994]
or [Siciliano and Khatib, 2008].

2.3 Geometric Formulation of Modular Robots

2.3.1 Connectivity Matrix

The Connectivity Matrix CM(~G) is designating the accessibility between one module to
its neighbour modules in a modular robot assembly. To obtain the Connectivity Matrix
first a directed graph ~G of the kinematic chain needs to be generated. Modular robot
assemblies can adopt a broad range of different appearances. Still every configuration
can be depictured in a kinematic graph as it is a kinematic chain. The modular robot´s
kinematic graph needs to be in its directed form in order to derive its Connectivity Matrix.

In a kinematic graph every module is represented by a vertex and can be connected by
edges, the joints of the module assemblies. A directed graph ~G differs from a ordinary
graph G since it delivers the directions of the connections. In a directed graph the di-
rection of an edge points from the starting vertex to the reachable vertex. As commonly
known a directed graph can be represented by a vertex-edge-matrix or a vertex- vertex-
matrix, whose entries equal either one or zero. The Connectivity Matrix is represented
by a vertex-vertex-matrix.

13
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Definition 2.1 (Connectivity Matrix)

The Connectivity Matrix of a directed kinematic graph ~G of a modu-
lar robot with n + 1 modules (vertices) is an (n + 1)× (n + 1) matrix,
CM(~G) = [cmij], i, j = 0, . . . , n, such that cmij = 1, if there is a di-
rected path of length one solely from vi to vj; cmij = 0, otherwise.
[Chen and Yang, 1998]

Example of a Modular Robot:

Figure 2.9: Modular Robot Assembly with n = 9 Modules and n− 1 = 8 Joints.

CM(~G) =



0 1 0 0 1 0 1 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0


(2.3)

The belonging Connectivity Matrix CM(~G).

2.3.2 Accessibility Matrix

The Accessibility Matrix R(~G) is specifying the accessibilities between all the different
modules in a modular robot assembly. To obtain the Accessibility Matrix first a directed
graph ~G of the kinematic chain needs to be generated. The other way to achieve the Ac-
cessibility Matrix is to derive it from the Assembly Incidence Matrix by alternating the
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Figure 2.10: The Directed Kinematic Graph ~G with 9 Vertices vi and 8 Edges ej of the given
robot.

Connectivity Matrix.

The Connectivity Matrix and the Accessibility Matrix assume the same size consequently
the Accessibility Matrix is also pictured in a vertex-vertex-matrix. Despite the fact that
a modular robot can appear in various shapes the directed graph ~G and therefore the
Accessibility Matrix of each peculiar modular robot is creatable to obtain a general rep-
resentation form.

Definition 2.2 (Accessiblity Matrix)

The Accessibility Matrix of a directed kinematic graph ~G of a modular
robot with n+ 1 modules (vertices) is an (n+ 1)× (n+ 1) matrix,R(~G)
= [rij], i, j = 0, . . . n, such that rij = 1, if there is a directed path of length
one or more from vi to vj; rij = 0, otherwise. [Chen and Yang, 1998]

If a modular robot incidence contains n modules, its joints are restricted to n − 1 joints
and the Accessibility Matrix is a (n)× (n) matrixR(~G) = [rij], i, j = 0, . . . n− 1. As there
should not exist loops in a modular robot incidence all the diagonal entries of the Acces-
sibility Matrix are set to zero to ensure there will be no directed edge from vi to vi.

By examining the Accessibility Matrix two main facts can be affirmed: The first infor-
mation, the Accessibility Matrix reveals, is the quantity of paths. The number of paths
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equals the number of all zero rows of the Accessibility Matrix. Secondly but not of minor
importance the Accessibility Matrix shows from which vertices vertex vi can be reached
- the direction of the edge kept in mind. The Connectivity Matrix eases the derivation
of the Accessibility Matrix. If cmij = 1 row j has to be added to row i. This algorithm
is to repeat for all the ones even the by adding newly generated ones. This computation
accelerates the automatic model generation.

R(~G) =



0 1 1 1 1 1 1 1 1
0 0 1 1 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0


(2.4)

Figure 2.11: Example of the Modular Robot with n = 9 Modules and n− 1 = 8 Joints and
the belonging Accessibility MatrixR(~G).

2.3.3 Assembly Incidence Matrix

The Assembly Incidence Matrix is an improved way to describe the modular robot as-
sembly. In contrary to the Denavit-Hartenberg parameterization the Assembly Incidence
Matrix characterizes both the module assembly sequence and the completed robots basic
geometry. As it is explained in the passage of the Accessibility Matrix, a modular robot
can be seen as a kinematic chain, which can be represented by a directed graph and as a
result numerically in a vertex-edge incidence matrix, which is very important to derive
an Assembly Incidence Matrix out of a directed graph or the other way round.

Vertex-Edge Matrix

The vertex-edge matrix M(~G) = [mij] is of a (n) × (n − 1) form, i = 0, . . . , n − 1,j =
1, . . . , n− 1. This is obvious as a modular robot assembly consists of n link modules and
connected by (n-1) joints.

16



2 Foundations

Definition 2.3 (Vertex-Edge Matrix)

The Vertex-Edge Matrix of a directed kinematic graph ~G of a mod-
ular robot with n + 1 modules (vertices) and n joints (edges) is an
(n + 1) × (n) matrix, M(~G)= [mij], i = 0, . . . , n, j = 1, . . . , n,
such that mij = 1, if there is a connection of vi to ej; mij = 0,
otherwise,[Chen and Yang, 1998].

The entry mij equals 1 if edge j has a connection to vertex i, otherwise the entry is set to
zero. There is an easy way to check, whether the vertex-edge matrix is suitable or meets
the requirements: Solely two entries of each column are allowed to equal 1, because one
edge can only connect two ports or two modules respectively.

The Vertex-Edge Matrix M(~G) can be converted into the Assembly Incidence Matrix
A(~G).

Definition 2.4 (Assembly Incidence Matrix)

Let ~G be a kinematic graph of a modular robot and M(~G) be its inci-
dence matrix. Let port be the set of labels assigned to the connecting
ports on the link modules. The Assembly Incidence Matrix of the robot
A(~G) is formed by substituting the 1s inM(~G) with labels in port on
respective modules. One extra column and row are augmented toA(~G)
to show the types of link and joint modules.[Chen and Yang, 1998]

Now to obtain the entries of the Assembly Incidence Matrix out of the vertex-edge ma-
trix, all the ones are substituted by the labels of the connecting ports of each link.

Accordingly a method to distinguish the connecting ports of each link has to exist.
There are various techniques to label these interfaces, thus labeling is not unique. But in
this thesis only two methods are explained and the applicability of these two label tech-
niques is restricted to cubic modules of all sizes.
The first one is a simple description according to the coordinates of the modules. Every
single module annexes their middle to an imaginary Cartesian coordinate system. The
six sides of the cube module can now be adjoined to the coordinate axes which cross their
side orthogonally in positive or negative direction.

The second assignment follows the pattern of a gaming dice. According to the design
of a gaming dice the sum of two opposite sides have to equal seven. By applying these
techniques to label the sides of the cubes, the set of labels are:
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L1 = { − x, − y, − z, x, y, z} L2 = {1, 2, 3, 4, 5, 6} (2.5)

Furthermore an additional row and an additional column are inserted to give considera-
tion to both the geometry and the incidence sequence. The added row denotes whether
the joints are prismatic, revolute, or virtual by the symbols Jpi, Jri and Jvi. Respectively
Lpi, Lri, and Lci are the denotations of prismatic, revolute, and cubic link modules. The
index i explaining which joint or link is considered, i = n− 1. So the types of links and
joints of a completed modular robot are indicated in the AIM. A special role plays the
module v0 as it declares the base or root vertex and so is denoted by a B. In this thesis
only cubic modules are worked with, which leads to the conclusion that denotations of
link modules are abundant. Instead filling the entries of the last column with C1, C2 and
so on to distinguish different sizes of cube modules is beneficial. In the example below,
the color will differentiate between the cubes like visualized in Figure 2.9, so they are
defined by Cp, Ct, Cb and Cg for pink, turquoise, black and green, respectively. A huge
advantage of this representation method is that only a small component library is needed.
This database preserves the specifications of the standard links and joint modules, sen-
sors, actuators like the end-effectors. But it does not instruct the robots geometries or the
sequences´ types.
Different geometries of robot assemblies are conducted by calculating the sequences of
the known link and joint modules. This raises the opportunity to gain a huge amount of
information with a limited database or small background. All in all, the AIM together
with the component database and the modeling methods for kinematics and dynamics
are geometry-independent and thus the ideal way to automatically generate a model for
modular robots.
The equivalent Vertex-Edge MatrixM(~G) of the n = 9 modular robot and its AIM A(~G)
with cube labels L2:

M(~G) =



1 0 0 1 0 1 0 0
1 1 0 0 0 0 0 0
0 1 1 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 1 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 1 0
0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 1


A(~G) =



4 0 0 3 0 5 0 0
5 4 0 0 0 0 0 0
0 3 2 0 0 0 0 0
0 0 5 0 0 0 0 0
0 0 0 4 3 0 0 0
0 0 0 0 4 0 0 0
0 0 0 0 0 2 4 0
0 0 0 0 0 0 3 5
0 0 0 0 0 0 0 2


(2.6)

The equivalent Assembly Incidence MatrixA(~G) with coordinate labels L1 and the addi-
tional row and column:
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A(~G) =



e1 e2 e3 e4 e5 e6 e7 e8 Links
v0 −y 0 0 y 0 −x 0 0 B
v1 −x −y 0 0 0 0 0 0 Cp
v2 0 y x 0 0 0 0 0 Ct
v3 0 0 −y 0 0 0 0 0 Cp
v4 0 0 0 −y y 0 0 0 Cb
v5 0 0 0 0 −y 0 0 0 Ct
v6 0 0 0 0 0 x −y 0 Cb
v7 0 0 0 0 0 0 y −x Cg
v8 0 0 0 0 0 0 0 x Cg
Joints Jr Jr Jr Jv Jr Jv Jr Jr


(2.7)

2.3.4 Path Matrix

The Accessibility Matrix helps to find unique ways from the base to the tips of tree-typed
modular robots or in general to any link module. These unique ways are called a path.
The Path Matrix considers solely the paths from the base to the very tips of every branch.
This means that only those rows of the Accessibility Matrix are considered, which contain
zeros in all entries. The ends of the paths are named pendant links and their quantity
determines the number of paths.

Definition 2.5 (Path Matrix)

The Path Matrix of a directed kinematic graph ~G of a modular robot
with n + 1 modules (vertices) and p paths is an (p) × (n + 1) matrix,
P(~G) = [pij], i = 1, . . . , p, j = 1, . . . , n, such that pij = 1, if path pi
contains vertex vj, pij = 0, otherwise. [Chen and Yang, 1999]

This means that the Path Matrix gives information about the quantity of paths, their
lengths and sequences of modules and last but not least the pendant links.

The belonging Path Matrix PM(~G):

PM(~G) =

 1 1 1 1 0 0 0 0 0
1 0 0 0 1 1 0 0 0
1 0 0 0 0 0 1 1 1

 (2.8)

The next chapter "Representation of Multi-Robot Organisms" will seize the general de-
scription and geometrical representation forms that were pointed out, engross the ideas
and apply them to the present module types.
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The chapter Representation of Multi-Robot Organisms is extending the chapter founda-
tions. It comprises the adapted geometric formulation of modules due to different char-
acteristics. Therefore it includes a brief analysis of the used hardware design of modular
robot platforms backbone and scout, the specific modules of SYMBRION and REPLICA-
TOR applied in this thesis. Moreover modification in representation involves alterations
of kinematic and dynamical aspects of modular robots and thus implies further adjust-
ment in the automatic model generation.

Figure 3.1: Scout and Backbone cube modules developed in SYMBRION and
REPLICATOR

3.1 Adapted Module Design

The theoretician Chen and his companions defined their theory of automatic model gen-
eration for modular reconfigurable robot dynamics and kinematics to a main part based
on the Assembly Incidence Matrix. This Assembly Incidence Matrix on the other hand is
found on idealistic cube modules with perfect connectivity conditions. The modules are
seen as homogeneous cubes with six identical sides and six connection ports. These con-
nection ports are free to build up connection with other link modules in every of their six
directions. This means that one module can interact with up to six other modules, which
leads to innumerable connection possibilities as even three dimensional connections are
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achievable.

Furthermore by applying Chen´s method for this mentioned connections extra joint mod-
ules are expected. Extra joints refer to joint modules or connectors which are not inte-
grated in the link module itself and can be attached to every arbitrary side. These joints
can have three attainable movement possibilities. The first one is able to rotate around its
joint axis and the second one allows a translational movement along its joint axis whereas
the third one is a rigid joint and is not able to perform any movement at all.
But the reality offers a more complex basis of modules and joints, which differ from the
named idealized cube shaped modules.

This Bachelor Thesis is introducing a concept of an Adapted Assembly Incidence Ma-
trix to perform a similar calculation of the dynamics and kinematics of modular robot
incidences based on modular robot platforms "Backbone" and "Scout". These two are
heterogeneous state of the art platforms which are worked with and developed in vari-
ous known projects as SYMBRION and REPLICATOR.
Due to growing interest and research in modular reconfigurable robots the platforms are
already in the fifth generation but are still in an improving process. Especially in design-
ing Printed Circuit Boards advancement can be achieved.
To obtain an impression of the analyzed platforms, "Backbone" and "Scout" cubes pho-
tographs are provided below.

Figure 3.2: Backbone Platform: Front and Right Side. [Kernbach et al., 2011]

As one can see in Figure 3.1 and Figure 3.2 both the Scout and the Backbone platforms are
manufactured slightly differently. Figure 3.2 proves that the "Backbone" platform is not
a totally symmetric cube as requested from the cubes in theory. Only the front and the
right side of the "Backbone" platform is pictured since the left and the right side are built
equally. Thus the modules of the "Backbone" platform are symmetric to their diagonals
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(a) (b)

Figure 3.3: Scout Platform: (a) Front and Right Side. (b) Rear and Left Side (in Progress).
[Kernbach et al., 2011]

as two congruent L-shaped elements are assembled to form a cube.
Figure 3.1 demonstrates that neither the "Scout" platform is a totally symmetric module
as required in theory. In contrary to the "Backbone" platform, the "Scout" platform is not
constructed of two equivalent elements but can be described by one U-shaped Element
and an extra side.

But both platforms show the same main distinctness from the modules in the theoretical
approach. The predominant difference is the joint module, which is already integrated in
the link module. "Backbone" and "Scout" both have a rotary joint incorporated as one of
their main components. The rotary axes are integrated in Figure 3.1
The cubes shown in Figure 3.1 are able to perform rotary movements around their joint
axis. This circumrotation is proscribed to transgress the 180◦ limit.
Furthermore Figure 3.1 ensures that one module is in possession of only one Degree Of
Freedom (DOF). To reassure this requirement of one DOF it is indispensable to connect
two modules through a rigid connector, else the connector would add a second DOF. Two
or more DOF should be avoided to keep the ordinary approximated structure of the As-
sembly Incidence Matrix to be able to preserve the general form of the automatic model
generation. This leads to the conclusion that named two platforms are not allowed and
not able to perform any translational movement at all.

Accordingly the distinction between joint and link modules is redundant. For that reason
the adjustment of denomination has to be effected: In the following a module is desig-
nating a module with an integrated joint module unless it is explicitly called a joint or
link module.
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(a) (b)

Figure 3.4: Integrated Rotary Joints: (a) Scout. (b) Backbone.

3.2 Adapted Assembly Incidence Matrix

Chen introduced the common Assembly Incidence Matrix as an essential part of their
general method to generate a graph of a modular robot formation. The Assembly Inci-
dence Matrix is a simple matrix that´s purpose is to represent the robot assembly and its
geometry. As the Assembly Incidence Matrix is depending on the current robot´s con-
stellation of its modules it cannot be independent of the features of the specific modules.
If one consider a module of one of these platforms to be constructed like a gaming dice
and having its top side labeled by one and the other surfaces congruently following the
gaming dice pattern respectively, a design like in Figure 3.2 is the result.
The described alterations in module and joint description draw particular conclusions.
The cubes shown in figures 3.2 are able to perform rotary movements around its joint
axis. This circumrotation is proscribed to transgress the 180◦ limit, which allows the con-
nection side, currently labeled by three, to obtain additionally the positions held by the
sides labeled with one and six.

As discussed before the modules in Figure 3.2 are able to perform rotary movements
around its joint axis limited to a total of 180◦ by a rotation maximum of +90◦ or -90◦.
The outcome of this 180◦ rotation of the third surface is that sides one and six do not exist
as proper PCB sides with connection ports to enter a relationship with another module.
Hence sides one and six should be seen as placeholders rather than independent sides
and are marked as red PCBs.
To simplify the assembling of two robot modules the following assumption is made:
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(a) (b)

Figure 3.5: Modules Labeled by L2: (a) Scout. (b) Backbone.

(a) (b)

Figure 3.6: Scout Platform: (a) Dyad Labeled with Gaming Dice Pattern L2. (b) Side three
rotated by 90◦.

Theorem 3.2.1 (Planar Connection)

Modular robots do only enter a connection in the horizontal plane.
Under no conditions a connection leading to a third dimension is to be
established.
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This raises the first restriction: It is obvious that only a connection between the sides two,
three, four or five can be built up and held.
A second constraint has to be acknowledged due to the varying connection ports of the
two platforms. As mentioned above the theoretical approach is based on equivalent con-
nection ports which establish their mechanical, power and control connection. These
platforms though force us to characterize and differentiate between two versions of con-
nection ports. On the one hand exists an active and on the other hand a passive connector.
The former docking unit is described as CoBoLD, Cone Bolt Locking Device, which
owned its name from its shape. As it is genderless it is able to establish a connection
with all the other docking elements, whether they are passive or not. The passive lock-
ing devices are also genderless but are only able to connect with an active element. The
connection itself regarding power and control must not be distinguished. Further infor-
mation in [Kernbach et al., 2011].
As it is very likely that the platforms soon in the near future will be constituted of only
active connecting ports, all generally possible connections regarding the platforms will
be included in the calculations and the second restriction will be neglected in the follow-
ing.

Nontheless a modification of the normal Assembly Incidence Matrix is absolutely neces-
sary. An Assembly Incidence Matrix teaches the contemplator to evaluate the geometry
and the sequence of modules of the specified robot assembly matrix. Due to the follow-
ing reasons the Adapted Assembly Incidence Matrix will be introduced later on if all the
alterations are explained:

• Vertex-Edge: The vertex-edge matrix cannot be seen as equivalent to the one spec-
ified in the anterior section. On the one hand it offers the same information for
explaining which module is connected to which module but on the other hand it
does not represent the joints as there are no such extra joint objects as specified by
Chen.

• Labels: As far as the labels are concerned, the gaming dice pattern will be used with
the exclusion of the numbers one and six since these are the forbidden connecting
ports to ensure that only planar connections will be established.

• Additional Column: Moreover the cube modules do suffer a change in definition.
The cubes are seen to be symmetric regarding the normal to the joint axis which
passes almost the middles of sides two and five. The additional column, which de-
scribes the module type, does not convey further information as all modules are of
the same size. The exact measurement can be seen in the section, which specifies
the two platforms.
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• Additional Row: Even the additional row, which describes the joint types in Chen´s
Assembly Incidence Matrix, has to cope with alterations as a translational move-
ment between two link modules is not possible at all using the considered platforms
leaving only the rigid or revolute joint as an option. As every module contains a
revolute joint in its center but establishes a rigid connection with another module
to form a dyad, the additional row as it is stated by Chen does not impart extra
knowledge.

However various configurations between modules are possible to create dyads. On the
one hand the difficulty in obtaining the Adapted Assembly Incidence Matrix is located
in the different movements which can be obtained due to different assemblies of sides.
On the other hand the difficulty primarily is caused by the lack of joints as extra joint
modules. Before introducing the Adapted Assembly Incidence Matrix a few foundations
will be explained below.
Consequently the section "Joint Axes Configurations" explains the basic axes constella-
tion of one dyad and an auxiliary look-up-table will be introduced to separate the indi-
vidual appearances of the dyads easily.

3.2.1 Joint Axes Configurations

All in all there exist two main movements next to the rigid connection. The movement
are caused by the integrated rotating joints and the varying orientation of their axes. For
a caterpillar-like movement the joint axes of the dyads need to be in line. If they are
orthogonally collocated, movement in rectangular directions is possible. For example a
body torso with arms and legs can be implemented.

As announced earlier this Bachelor Thesis provides a look-up table, which allows an easy
way to differentiate between the orthogonal and the parallel connection of two modules
in a dyad with one look. As described above joint axes influence the movement patterns
and therefore have to be divided into two main classes, the generally serial and the or-
thogonal axes, which will be denoted by the set S . . . and set SO respectively.

Furthermore a finer classification of the former group is necessary as the serial connec-
tion of a dyad, can end up with parallel axes or with all joint axes situaded on one line.
This is why set S . . . is will be labeled by SS if all the axes are in line and otherwise serial
modules which axes are parallel arranged are denoted by SP .
The first letter S of all three groups is implying the serial combination of two modules.
All groups have that feature in common as only dyads are considered. The second letter
indicates the mutual constellation of the axes and can presume the letters S , O, P and
specifies the serial, orthogonal and parallel axes.

In the following label two and five are seen as elements of the SS - set: 2, 5 ∈ SS or SS
= {2, 5} and the elements three and four are members of the SP-set: 3, 4 ∈ SP or SP =
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{3, 4}.

The general group GG of possible link connection variations is:

GG = {(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (2, 1), (2, 2), (2, 3),
(2, 4), (2, 5), (2, 6), (3, 1), (3, 2), (3, 3), (3, 4), (3, 5), (3, 6),
(4, 1), (4, 2), (4, 3), (4, 4), (4, 5), (4, 6), (5, 1), (5, 2), (5, 3),
(5, 4), (5, 5), (5, 6), (6, 1), (6, 2), (6, 3), (6, 4), (6, 5), (6, 6)}

(3.1)

The state of the art development of the link cubes with by design limited mechanical
conditions induce the following constraints C, CSS , CSP and CSO which have to be
subtracted from GG , to obtain the designated set:
The lack of connection ports on side one and six, which forces the link modules to con-
nect only if they are in their horizontal plane form, when standard configurations are
achieved, is formulated by the general constraint C, which is principally valid and has to
be applied to all connections:

C = {(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6),
(2, 1), (2, 6), (3, 1), (3, 6), (4, 1), (4, 6),
(6, 1), (6, 2), (6, 3), (6, 4), (6, 5), (6, 6),
(5, 1), (5, 6)}

(3.2)

It implies that neither connection port one nor connection port six enters a connection
with another module.
To guarantee that all axes are parts of one line, constraint CSS is compulsory:

CSS = {(2, 3), (2, 4), (3, 2), (3, 3), (3, 4), (3, 5),
(4, 2), (4, 3), (4, 4), (4, 5), (5, 3), (5, 4)}

(3.3)

CSP confirms that all axes are parallel:

CSP = {(2, 2), (2, 3), (2, 4), (2, 5), (3, 2), (3, 5),
(4, 2), (4, 5), (5, 2), (5, 3), (5, 4), (5, 5)}

(3.4)

Last but not least CSO verifies the orthogonality of all the combinations of modules:

CSO = {(2, 2), (2, 5), (3, 3), (3, 4), (4, 3), (4, 4),
(5, 2), (5, 5)}

(3.5)
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Then the assignment of a connection variety to a dyad, the pair of two combined link
modules, is easy. To obtain set SO, for orthogonal joint axes additional constraint CSO
has to be included in C:

SO = GG \ C ∪ CSO
= {(2, 2), (2, 3), (2, 4), (2, 5), (3, 2), (3, 5),

(4, 2), (4, 5), (5, 2), (5, 3), (5, 4), (5, 5)}
(3.6)

The set SS is given by reducing GG by set SO and the additional constraint CSS :

SO = GG \ (C ∪ CSS ∪ SO)
= {(2, 2), (2, 5), (5, 2), (5, 5)}

(3.7)

SP can be calculated by subtracting CSP and SO from GG

SP = GG \ (C ∪ CSP ∪ SO)
= {(3, 3), (3, 4), (4, 3), (4, 4)}

(3.8)

Table 3.1 gives an overview about the different serial combination possibilities to distin-
guish between the individual appearances of the dyads easily:

Set SS: Set SP: Set SO:
Serial Modules, Serial Axes Serial Modules, Parallel Axes Serial Modules, Orthogonal Axes
1st Mod. 2nd Mod. 1st Mod. 2nd Mod. 1st Mod. 2nd Mod.

2 2 3 3 2 3
2 5 3 4 2 4
5 2 4 3 3 2
5 5 4 4 3 5

4 2
4 5
5 3
5 4

Table 3.1: Look-Up Table for Dyads labeled by L∈ and their Axes Constellations.

The look-up-table 3.1 permits three general axes constellations of two link modules.

28



3 Representation of Multi-Robot Organisms

To point out the differences between the three connection varieties, examples of dyads
as members of each set are presented, offering the standard configuration and the spec-
trum of movement possibilities. The following figures show models of the platform type
"Scout". In order to keep the figures standardized green illustrates theoretically enabled
connecting ports whereas red is highlighting the forbidden ones.
Light green indicates the punctures of the rotation axes. This means that the cube sides
two and five are always painted in light green. The joint axes are furthermore marked by
a bidirectional arrow clarifying that circulation is caused by these axes and that these are
the lines around which particular sides can revolve.
Dark green is reserved for sides three and four.
Red is the color for inhibited connection. As side one and its opposing side six are not
able to enter any connection due to prohibited three dimensional connections, they are
colored red.
If a rotation took place the faded side three will be marked orange, because the connec-
tion port wandered from side three or four to side one or six or the other way round.
The orange colored labels can theoretically enter a relationship with another module if
the whole assembly assumes the two-dimensional shape and the rotating elements their
initial position,the standard configuration.
These rules reduce the complexity of robot assembly figures and show details about exe-
cutable revolving deformation and accomplishable geometries.

The DOF of these dyads which models the movement pattern under a joint displacement
are illustrated in the next paragraph.

• Set SO:

(a) (b)

Figure 3.7: Dyad Configurations SO: (a) Type (3,4) SO Standard Configuration (b) Rota-
tion Movement limited to a total of 180◦.
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• Set SP :

(a) (b)

Figure 3.8: Dyad Configurations SP : (a) Type (3,4) SP Standard Configuration (b) Rota-
tion Movement limited to a total of 180◦.

• Set SS :

(a) (b)

Figure 3.9: Dyad Configurations SS focusing on side three: (a) Type (5,2) SS Standard
Configuration (b) Rotation Movement limited to a total of 180◦.

Absolutely important is the fact that not the module itself is revolving around the
axis, what would require a joint between the two links, but the side three solely.
This guarantees an independent movement of the second link module relative to
the first link module. Of course side three of the first link module also might per-
form a revolute movement of 180◦, which is not shown in another graphic. A diffi-
culty though occurs if side four performs a rotation, if the platform "Scout" is used
as it is U-shaped. It forces sides two and five to adapt exactly to and further to exe-
cute its movement. A second example of SS 3.2.1 demonstrates this uniqueness.

Obviously independent movement of the two elements of the dyad is not possible if
a rotation of side four is imposed on it. Any rotation of side four in this constellation
enforces the adjacent link to join the behavior. There is a rigid connection between
the link modules in both constellation, but the differences is occulted in the rigid
connection between sides two, four and five due to the described U-shape. Only
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(a) (b)

Figure 3.10: Dyad Configurations SS focusing on side four: (a) Type (2,5) SS Standard
Configuration (b) Rotation Movement limited to a total of 180◦.

side three is a completely independent side regarding its moving sector.
These two patterns are all possible constellations of the SS group.

After explaining the joint configuration sets, the definition of the AAIM can be presented.

Definition 3.1 (Adapted Assembly Incidence Matrix)

Let ~G be a kinematic graph of a modular robot and M(~G) be its inci-
dence matrix. Let port be the set of labels assigned to the connecting
ports on the link modules. The Adapted Assembly Incidence Matrix of the
robot AAIM(~G) is formed by substituting the 1s inM(~G) with labels
in port on respective modules. One extra column and row are aug-
mented toAAIM(~G) to show the types of link modules and joint con-
nection varieties. The Adapted Assembly Incidence Matrix of a directed
kinematic graph ~G of a modular robot with n+ 1 modules (vertices) and
n joints (edges) is an (n + 2)× (n + 1) matrix, AAIM(~G) = [aaimij].

The AAIM differs from the AIM as follows. The last row recites the joint configuration
set as the mentioned joints do not exist as extra joint modules but are the connection sides
of the first link module. The last column solely declares the basis b.

AAIM(~G) =


e1 e2 Links

v0 3 0 B
v1 4 3 C
v2 0 4 C
Joints SP SP 0

 (3.9)

Figure 3.11: A serial typed robot consisting of n = 3 modules and its AAIM.
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The chapter Implementation consists of two main components. Firstly it provides a gen-
eral overview of the automated model generation for modular reconfigurable robot dy-
namics and secondly it explains the framework developed during this thesis step by step.
A few fragments of the MATLAB Code, which produces the geometric representation of
the matrices and partial extracts of the Forwards Kinematics are integrated in the expla-
nations.

4.1 Automatic Model Generation

In the former chapters "Foundations" and "Representation of Multi-Robot Organisms"
the Adapted Assembly Incidence and the kinematic models of dyads were discussed in
detail. Together they form the prerequisites to initiate the forward kinematics calcula-
tions of branched or serial typed modular robot with no closed loops.
To understand the calculations of the entire modular robot, they are developed out of
the recursive kinematics calculations of single dyads according to the Depth-First-Search
algorithm, the graph traversing order, which has to be determined in advance.

4.1.1 Dyad Kinematics

As described in Foundations two connected modules are seen as a dyad, where the first
link module is denoted by vi and the adjacent one by vj. Basically the connecting joint
module is referred to as ej. The indices point out that vj and ej are congregated and called
link assembly j in the following.

The indices of all matrices, calculations or transformations E indicate in which frames
they are expressed:

• Ei: E is expressed in frame i.

• Ej: E is expressed in frame j.

• Eij: E is expressed in frame j relative to frame i.

The order, in which the modules are denoted, is determined by the graph traversing al-
gorithm. In the following the Depth-First-Search is employed. It declares module v0 as
base module b and its neighbor module as v1.
e0 is not specified in the Assembly Incidence Matrix as it is the additional joint but will
be considered in the calculation by the joint angle q0.
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Both the frames and the additional basis joint are visualized in Figure 4.1.1:

(a) (b)

Figure 4.1: Dyad Kinematics: (a) Basis b: Additional Joint Module e0 of Link Module v0
.(b) Visualization of Dyads´ Denotations and Frames.

The relative pose Tij of module j relative to module j can be represented in a 4× 4 homo-
geneous matrix. In pose both the position and orientation are included.

Tij(qj) = Tij(0) exp ŝjqj (4.1)

Tij(0) =
[

Rij(0) dij(0)
0 1

]
(4.2)

ŝj =

[
ŵj vj
0 0

]
(4.3)

• Tij:
The 4 × 4 homogeneous Tij describes relative pose of frame j relative to frame i.
Both the relative and the following initial pose are members of the Euclidean group
SE(3).

• Tij(0):
Like Tij the initial pose Tij(0) of frame j relative to frame i is also a 4× 4 homoge-
neous matrix.

• Rij(0):
As Tij(0) contains the initial position and the initial orientation, the matrix Rij(0)
represents the orientation whereas

• dij(0):
The 3× 1 vector dij(0) tells the initial position of frame j relative to frame i.

• ŝj:
The Matrix ŝj represents the twist of joint ej and is furthermore element of se(3)
the Lie Algebra of SE(3). As described in the screw theory section, ŝj is the skew-
symmetric representation in matrix form of the six elements row vector sj = (vj, wj).
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• vj:
The three elements line vector vj represents the translational part of the relative
positions´ distance. If pj is a position vector of any point along the joint axis, then
it is defined as follows: vj = (vj, vj, vj) = wj × pj.

• wj:
The three elements row vector wj depicts the normalized directional vector of joint
j relative to its frame. Therefore it is of immense importance for the revolute joints
as wj describes the relative rotation.

• qj:
Joint angles of link module j will be denotated by qj.

The explanations of ŝj, wj and vj point out that for a pure rotation equation sj = (vj, wj)
assumes the reduced form: sj = (0, wj), in contrary to prismatic joints which produce
this simplification: sj = (0, wj).

T0n(q) = T01(q1)T12(q2)T23(q3) . . . Tn−1n(qn)

= T01(0) exp ŝ1q1T12(2) exp ŝ2q2T23(0) exp ŝ3q3 . . . Tn−1n(0) exp ŝnqn
(4.4)

MATLAB-Code:
% Dyad Frame Configuration
% T_ij = 4x4 homogeneous Matrix
% Determine dij and Rij for all Links in each Path
% Tij0cell{x,y}= initial pose of Frame y relative to x
Tij = sym(eye(4));
T_0 = eye(4);
Tij0cell = cell(max(pos(:,1)),max(pos(:,2)));
for x = 1:r

for y = 1:r
Tij0cell{x,y} = eye(4);

end
end

for x = 1:c
if (pairs(x,1) == 2)

dij = [l 0 0]’;
elseif (pairs(x,1) == 3)

dij = [0 l 0]’;
elseif (pairs(x,1) == 4)

dij = [0 -l 0]’;
elseif (pairs(x,1) == 5)

dij = [-l 0 0]’;
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else
disp(’Error occured’);

end
if ((lastrowAAIM(x)~= 0) && (pairs(x,1) + pairs(x,2) ~= 7))

Rij = [-1 0 0;
0 -1 0;
0 0 1];

else
if (( pairs(x,1)== 2 && pairs(x,2) == 3)...

||(pairs(x,1)== 3 && pairs(x,2) == 5)...
||(pairs(x,1)== 4 && pairs(x,2) == 2)...
||(pairs(x,1)== 5 && pairs(x,2) == 4))

Rij = [0 -1 0;
1 0 0;
0 0 1];

else
Rij = [0 1 0;

-1 0 0;
0 0 1];

end
Tij(1:3,4) = vpa(dij);
Tij(1:3,1:3) = vpa(Rij);
Tij0cell{pos(x,1),pos(x,2)} = Tij;

end
end
Tij0mat = [T_0;cat(1,Tij0cell{:})];

With this dyad kinematics knowledge in mind the forward kinematics for a whole mod-
ular robot can be calculated in a recursive way.

4.1.2 Forward Kinematics

[Chen and Yang, 1996] proposed a straightforward formula to calculate all the forward
transformations of a modular branching robot recursively. For that reason the so called
TreeRobotKinematics Algorithm calculates the forward transformations of a modular
robot starting from its base link to its entire pendant links according to the pattern repre-
sented in Figure 4.2.
In the following, as well as in the framework, the Depth-First-Search algorithm is em-
ployed because the traversing order is obviously easier to recognize than the Breadth-
First-Search-Algorithm, despite the fact that both be similiar regarding their complexibil-
ity.

To start this algorithm three points have to be clear. Firstly the Adapted Assembly In-
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Figure 4.2: TreeRobotKinematics Algorithm.

cidence Matrix AAIM(~G), to determine the assembly’s geometry, secondly the pose of
the base module Tb and lastly all the angles configurations q of all the joints including e0
due to the used platforms. Then the default value will be assigned to initial module lo-
cation Ti j(0) and the algorithm starts with the base module set as the current link module.

Afterwards a loop to develop the poses of all links, the dyads forwards kinematics is
passed through until the last link module of the robot according to the Depth-First-Search
algorithm is found. At the end all the forward transformations, namely all the positions
and orientations of all link modules in relation to the base frame are determined.

4.1.3 Dynamics

This subsection is dedicated to achieve an accurate dynamic model of a branching type
modular robot. Because the Newton-Euler equation and the Lagrangian Method in its
closed-form have an equivalent relationship, the implementation of the following illus-
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tration delivers the equations of motions of any modular robot assembly and therefore
its Dynamic Model.

Although normally it is indispensable to calculate a transformation matrix to ensure that
the mass frame j∗ of the link assembly and the ordinary frame j of the link module co-
incide with each other, in the case of the applied platforms the transformation can be
neglected as the joint is already incorporated.
This is why the Newton-Euler equation of link assembly j can directly be written in the
coordinate frame j of its link module without applying the Huygens-Steiner theorem.
Please note, that the Newton-Euler equation is transformed into its adjoint representa-
tion.

Fj = MjV̇j − adT
Vj
(MjVj) (4.5)

Mj =

[
mj I mj p̂j∗ j

mj p̂j∗ j Jj∗ −mj p̂2
j∗ j

]
(4.6)

• Fj:
The 6× 1 column vector Fj = [ f j, τj] consists of the resultant forces f j and all the
applied torques τj, both ∈ R3×1. Thus it describes the resultant wrench applied to
the link assembly j.

• Mj:
Represents the Generalized Mass Matrix Mj ∈ R6×6 under the condition that the
coordinate axes of the frame j and the mass frame j∗ parallel.

• Vj:
The generalized body velocity, a 6 × 1 column vector Vj = [vj, wj]. It comprises
body translational velocity vj as well as wj, the angular velocity of the body.

• V̇j:
Like the generelized body velocity Vj,the generalized body acceleration V̇j is a 6× 1
column vector.

• adT
Vj

:

The transposed version of the adjoint matrix of Vj is adT
Vj
∈ R6×6.

• p̂j∗ j:
Is declared as the skew-symmetric matrix representation of pj∗j, the relative posi-
tion vector of frame j and j∗.

adT
Vj
= (adVj)

T =

[
ŵj v̂j
0 ŵj

]T

=

[
−ŵj 0
−v̂j −ŵj

]
(4.7)

AdT
Tmn

= (AdTmn)
T =

[
Rmn p̂mnRmn

0 Rmn

]T

=

[
RT

mn 0
−RT

mn pmn RT
mn

]
(4.8)
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• adT
Vj

:

The transposed version of the adjoint matrix of Vj is adT
Vj
∈ R6×6.

• AdT
Tmn

:
This is the transpose of the adjoint presentation of Tmn ∈ SE(3) it is used to trans-
form forces, torques, velocities and acceleration from frame m to frame n.

Recursive Newton-Euler Algorithm

The recursive Newton-Euler Algorithm can be subdivided into two main processes, the
forward and the backward iteration. This is why it is called a two-step iteration process.
The forward iteration produces the generalized velocity and the genralized acceleration
from the base module to the ends of all branches of a robot assembly.
In contrast to the forward iteration the generalized forces of all branches are propagated
backwards from the tips to the root module in the backward iteration.

AdT
Tmn

= (AdTmn)
T =

[
Rmn p̂mnRmn

0 Rmn

]T

=

[
RT

mn 0
−RT

mn pmn RT
mn

]
(4.9)

• Forward Iteration

V = GSq̇ (4.10)

V̇ = GT_0V̇0 + GSq̈ + GA1V (4.11)

• Backward Iteration:

V̇ = GTFE + GTMV̇0 + GTA2MV (4.12)

τ = STF (4.13)

• V and V̇ :
Generalized body velocity and acceleration column vector V = [V1, V2, . . . , Vn] and
V̇ = [V̇1, V̇2, . . . , V̇n] ∈ R6×6.

• V̇0:
Generalized body velocity V̇0 = (0, 0, g, 0, 0, 0)T ∈ R6×1 of the base module.

• GT0 :
Adjoint Representation GT0 ∈ R6n×6.

GT0 =



AdT−1
01

AdT−1
02

AdT−1
03

...
AdT−1

0n

 ∈ R6n×6 (4.14)
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Equation 4.14 shows the general format of the matrix GT0 . Every row contains the
computation of transpose of the inverted adjoint representation AdT−1

0i
= Ad−1

T0i
. To

obtain the complete Matrix the adjoint representations of the forward transforma-
tion T0i every module i = 0, . . . , n with respect to the base module ”0” are combined
according to the Graph´s Traversing Order.

Definition 4.1 (Adjoint Representation Matrix)

The Adjoint Representation Matrix of a directed kinematic graph ~G of a
modular robot with n + 1 modules (vertices) is an 6(n + 1)× 6 matrix,
GT′(~G) = [gT0i1], i = 0, . . . , n, such that gT0i1 = AdT−1

0i
, where T0i is the

Forward Transformation of module i relative to the base frame.

• G :
Transmission Matrix G ∈ R6n×6n.

G =


I6x6 0 0 · · · 0

r12AdT−1
12

I6x6 0 · · · 0
r13AdT−1

13
r23AdT−1

23
I6x6 · · · 0

...
...

...
. . .

...
r1n AdT−1

1n
r2n AdT−1

2n
r3n AdT−1

3n
· · · I6x6

 ∈ R6n×6n (4.15)

The Transmission Matrix G is of supreme importance for the succeeding compu-
tation of the closed-form equation of Motion. The scheme of G represented in
equation 4.15 discloses the involvement of the Accessibility matrix R(~G) and its
elements rij. If rij = 1, the Forward Transformation Tij from frame of module i to
the one of module j will be calculated. Subsequently the Adjoint Representation
AdTij will be inverted and the calculated AdT−1

ij
will be inserted in G in the place

(j, i).

Definition 4.2 (Transmission Matrix)

The Transmission Matrix of a directed kinematic graph ~G of a modular
robot with n + 1 modules (vertices) is an 6(n + 1) × 6(n + 1) matrix,
G(~G) = [gij], i, j = 0, . . . , n, such that gij = AdT−1

ji
, if the corresponding

element of the Accessibility Matrix R(~G) equals one, rji = 1. If i = j,
gij = I6×6; gij = 0, otherwise.

MATLAB-Code:

% Computation of G_T0
% T0j and T0jcell are the Forward Kinematics T0j(q)
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T0jcell = cell(1,c);
add = 0;
for rowsPM = 1:p

prod = 1;
for y = 1:pathjoints(rowsPM)

Tij0 = Tij0cell{pos(y+add,1),pos(y+add,2)};
prod = prod*Tij0*twistexp(S{y+add,y+add},q(y+add));
if(y == max(pathjoints(rowsPM)))
T0jpath{rowsPM,1}= prod;
end
T0jcell{1,y+add} = prod;

end
add=add+pathjoints(rowsPM);

end
T0j = [T_0*twistexp(S{1,1},0);cat(1, T0jcell{:})];
G_T0(6*rows-5:6*rows,1:6)= iadR0(T0j(4*rows-3:4*rows,:));
end
G_T0;
G_T0cell = cell(c,1);
for x = 2:c

G_T0cell{x,1} = iadR0(T0jcell{1,x});
end
% Precondition for Computation of G
% dyadcell{x,y} = Txy(q(y)) of Frame y relative to x
dyadcell = cell(r,r);
for x = 1:r

for y = 1:r
if(y >= x)

dyadcell{x,y} = zeros(4);
else

if(TAM(x,y)==1)
[dist, path, pred] = shortestpath(bg, y, x);
if (length(path)>2)

prod = 1;
for h=1:length(path)-1

prod=prod*Tij0cell{path(h),path(h+1)}

*twistexp(S{path(h+1),path(h+1)},
q(path(h+1)));

end
dyadcell{x,y}=prod;

else
tij=Tij0cell{y,x}*twistexp(S{x,x},q(x));
dyadcell{x,y}=tij;

end
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else
dyadcell{x,y}=zeros(4);

end
end

end
%%%% Calculate the Transmission Cell Gcell %%%%
Gcell = cell(r,r);
for x = 1:r

for y = 1:r
if (x == y)

Gcell{x,y} = eye(6);
elseif (y > x)

Gcell{x,y} = zeros(6);
else

if (TAM(x,y) == 1)
Gcell{x,y} = TAM(x,y)*iadR0(dyadcell{x,y});

elseif (TAM(x,y) == 0)
Gcell{x,y} = zeros(6);

else
disp(’error occured’)

end
end

end
end

• S:
Joint Twist Matrix S = diag[s1, s2, . . . , sn] ∈ R6n×n. Twists s in module coordinates.
MATLAB-Code:

% Generate Twist Coordinates for all Modules
% S = eye(r)*twistcoordinates = Rotation about x-Axes
S=cell(r,r);
for x = 1:r

for y = 1:r
if (x == y)

S{x,y} = [0,0,0,1,0,0]’;
else

S{x,y} = [0,0,0,0,0,0]’;
end

end
end

• q̇ and q̈ :
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Joint velocity and acceleration column vector q̇ = [q̇1, q̇2, . . . , q̇n] and q̈ = [q̈1, q̈2, . . . , q̈n] ∈
Rn×1.

• A1 and Ȧ2 :
Adjoint representations A1 = diag [−ads1 q̇1 ,−ads2 q̇2 , . . . ,−adsn q̇n ] and A2 = diag
[−adT

V1
,−adT

V2
, . . . ,−adT

Vn
] ∈ R6n×6n.

• M:
Represents the combined generalized Mass Matrix M = diag [M1, M2, . . . , Mn] ∈
R6n×6n.

• F and FE :
The body wrench vector F = [F1, F2, . . . , Fn] and the external wrench vector FE =
[Fe

1 , Fe
2 , . . . , Fe

n] ∈ R6n×1.

Equation of Motion

By combining the equations 4.10, 4.11, 4.12 and 4.13 the closed-form equation of motion
for the modular robot can be obtained.

M(q)q̈ + C(q, q̇)q̇ + N(q) = τ (4.16)

• M(q): is the Mass Matrix

M(q) = STGTMGS (4.17)

• C(q, q̇): is the Centrifugal and Coriolis Acceleration

C(q, q̇) = STGT(MGA1 + A2M)GS (4.18)

• N(q): is the Gravitational and External Force

N(q) = STGTMGT0 V̇0 + STGTFE (4.19)

MATLAB-Code:
% Computes Motion Euations with symbolic data
M = S’*G’*GM*G*S;
C = S’*G’*(GM*G*A1+A2*GM)*G*S;
Grav = S’*G’*GM*G_T0*V0dot;
FExt = S’*G’*Fe;
N = Grav+FExt;
invMG = inv(sym(MG));
qddot = invMG*(tau’-(C*qdot’+N));
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As a conclusion the main steps of the generation of dynamical model for any branching
type modular robot is illustrated in the next Figure.

Figure 4.3: DynamicModelGeneration
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4.1.4 Comparison of Modular Robot Assembly Prototypes

To demonstrate the capabilities of the framework four typical modular robot assemblies
and their geometrical representation forms are listed in the following tables. Additionally
all the computation even the results of the Dynamical Model Generation of the elemen-
tary modular robot incidence, the dyad, are presented.

Modular Robot Assembly Directed Graph

Adapted Assembly Incidence Matrix Connectivity Matrix

AAIM =


e1 e2 Links

v0 3 0 B
v1 4 3 C
v2 0 4 C
Joints SP SP 0

 CM =

( v0 v1

v0 0 1
v1 0 0

)

Accessibility Matrix Path Matrix

R =

( v0 v1

v0 0 1
v1 0 0

)
PM =

( v0 v1

p1 1 1
)

Table 4.1: Serial Type Modular Robot Assembly with n = 3 Modules.
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Modular Robot Assembly Directed Graph

Adapted Assembly Incidence Matrix Connectivity Matrix

AAIM =



e1 e2 e3 L
v0 3 2 4 B
v1 4 0 0 C
v2 0 3 0 C
v3 0 0 3 C
J SP S0 SP 0

 CM =


v0 v1 v2 v3

v0 0 1 1 1
v1 0 0 0 0
v2 0 0 0 0
v3 0 0 0 0



Accessibility Matrix Path Matrix

R =


v0 v1 v2 v3

v0 0 1 1 1
v1 0 0 0 0
v2 0 0 0 0
v3 0 0 0 0

 PM =


v0 v1 v2 v3

p1 1 1 0 0
p2 1 0 1 0
p3 1 0 0 1



Table 4.2: Branching Type Modular Robot Assembly with n = 4 Modules.
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Modular Robot Assembly Directed Graph

Adapted Assembly Incidence Matrix Connectivity Matrix

AAIM =



e1 e2 e3 e4 L
v0 3 2 4 5 B
v1 4 0 0 0 C
v2 0 3 0 0 C
v3 0 0 3 0 C
v4 0 0 0 3 C
J SP S0 SP SO 0

 CM =



v0 v1 v2 v3 v4

v0 0 1 1 1 1
v1 0 0 0 0 0
v2 0 0 0 0 0
v3 0 0 0 0 0
v4 0 0 0 0 0 0


Accessibility Matrix Path Matrix

R =



v0 v1 v2 v3 v4

v0 0 1 1 1 1
v1 0 0 0 0 0
v2 0 0 0 0 0
v3 0 0 0 0 0
v4 0 0 0 0 0 0

 PM =


v0 v1 v2 v3 v4

p1 1 1 0 0 0
p2 1 0 1 0 0
p3 1 0 0 1 0
p4 1 0 0 0 1



Table 4.3: Branching Type Modular Robot Assembly with n = 5 Modules.
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Modular Robot Assembly Directed Graph

Adapted Assembly Incidence Matrix Connectivity Matrix

AAIM =



e1 e2 e3 e4 L
v0 4 2 0 3 B
v1 4 0 0 0 C
v2 0 3 4 0 C
v3 0 0 3 0 C
v4 0 0 0 4 C
J SP S0 SP SP 0

 CM =



v0 v1 v2 v3 v4

v0 0 1 1 0 1
v1 0 0 0 0 0
v2 0 0 1 0 0
v3 0 0 0 0 0
v4 0 0 0 0 0 0


Accessibility Matrix Path Matrix

R =



v0 v1 v2 v3 v4

v0 0 1 1 1 1
v1 0 0 0 0 0
v2 0 0 1 0 0
v3 0 0 0 0 0
v4 0 0 0 0 0 0

 PM =


v0 v1 v2 v3 v4

p1 1 1 0 0 0
p2 1 0 1 1 0
p3 1 0 0 0 1



Table 4.4: Branching Type Modular Robot Assembly with n = 5 Modules.
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Modular Robot Assembly Directed Graph

Adapted Assembly Incidence Matrix Connectivity Matrix

AAIM =


e1 Links

v0 3 B
v1 4 C
Joints SP 0

 CM =


v0 v1 v2

v0 0 1 0
v1 0 0 1
v2 0 0 0


Accessibility Matrix Path Matrix

R =


v0 v1 v2

v0 0 1 1
v1 0 0 1
v2 0 0 0


PM =

( v0 v1 v2

p1 1 1 1
)

Adjointrepresentation

GT0 =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 −1 0 0 0 0

cos(q1) 0 sin(q1) l sin(q1) 0 −1 l cos(q1)
−1 sin(q1) 0 cos(q1) l cos(q1) 0 l sin(q1)

0 0 0 0 −1 0
0 0 0 cos(q1) 0 sin(q1)
0 0 0 − sin(q1) 0 cos(q1)


Transmission Matrix

G =



1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1.0 0 0 0 0 0 0
0 −1 0 0 0 0 1 0 0 0 0 0

cos(q2) 0 sin(q2) l sin(q2) 0 −1 l cos(q2) 0 1 0 0 0 0
−1 sin(q2) 0 cos(q2) l cos(q2) 0 l sin(q2) 0 0 1 0 0 0

0 0 0 0 −1 0 0 0 0 1 0 0
0 0 0 cos(q2) 0 sin(q2) 0 0 0 0 1 0
0 0 0 −1 sin(q2) 0 cos(q2) 0 0 0 0 0 1
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4 Implementation

Modular Robot Assembly Directed Graph

Mass Matrix

M(q) =

(
3 cos(10)2

250 + 3 sin(10)2

250 + 1
500 0

0 1
500

)

Coriolis and Centrifugal Acceleration

C(q, q̇) =
(

0 0
0 0

)

Gravitational and External Forces

N(q) =
(

0.3 sin(5)− 0.3 sin(10) + cos(5) cos(10) + 0.3 cos(10) sin(10) + sin(5) sin(10)
0.3 sin(10)

)

Closed-Form Equation of Motion

τ =

(
0.3 sin(5)− 0.3 sin(10) + cos(5) cos(10) + 0.3 cos(10) sin(10) + sin(5) sin(10)

0.3 sin(10) + 10q2− 1 g l m my sin(q2)

)
Table 4.5: Dynamics and Kinematics of a Dyad with n = 2 Modules.

This was an illustrating example of the framework and its ability to generate a model of
kinematics and dynamics for any modular robot. The smallest possible configuration was
chosen as bigger assemblies´ matrices exceed the margin. Still it is a suitable demonstra-
tion and representation of the most convenient way to obtain a kinematic and dynamical
model for modular robot assemblies.
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5 Conclusion

This thesis provides a firm basis in automatically developing models for kinematics and
dynamics of modular robots assemblies. The elaborated Matlab framework based on
screw theory and the adaptations to the theoretical approach shall provide further promis-
ing steps towards fast adapting modular robots which are suitable for multiple tasks.

It is desirable that future researchers continue these directions of screw theory based cal-
culations and examine thoroughly inverse kinematics to achieve a foundation to develop
an optimal control mechanism, such that in the near future multi modular robots are able
to precisely follow desired trajectories.

5.1 Summary

In the course of this thesis the framework of an automated model generator for dynam-
ics and kinematics of reconfigurable modular robot systems is elaborated to meet the
requirements of applicable and suitable models for platforms that are not yet as ideal-
ized as postulated or assumed in articles and theoretical examinations.
Particularly the focus of attention was drawn on the questions: How to implement a cor-
rect representation of the platforms "Scout" and "Backbone" regarding their extraordinary
characteristic cube modules? And on account of these deviations of shape and function-
ality, which alternations need to be carried into execution?
These questions were answered by the introduced Adapted Assembly Incidence Matrix,
by modified joint representations and furthermore by restrictions and connecting rules.
Another idea was to support the finding of accurate models by supplying an overview
of different connection varieties, which was realized by the look-up table.
Above all stands the development of the automatic model generator, which provides a
step by step solution for simulation and control purposes.

In contrast to many other comparable multi robot organism approaches, this thesis exam-
ines the kinematics and dynamics of modular robots founded on screw theory to face the
huge challenge of modeling systems of high complexity, where traditional model gen-
eration methods fail or deliver unsatisfying or incomplete results due to the immense
number of degrees of freedom.
This framework is able to supply the user with the specified modular robot representation
forms by calculating the dyads´ Forward Transformations depending on various calcula-
tions based on the Assembly Incidence Matrix. Additionally the recursive Newton-Euler
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5 Conclusion

Algorithm is applied to specify the dynamics of the modular robot incidence. Both kine-
matic and dynamical formulations are assembled to obtain the closed form equations of
motions, which is the purpose of this simulation process.

5.2 Further research

During the elaboration process of this thesis new thoughts and ideas entered my mind,
but the predefined time to work on a Bachelor thesis is very limited and it is not possible
to pursue all of them. Additionally to those concepts which were already mentioned in
the former chapters of this thesis, the below ideas are presented to arouse deeper interest
in the research topic of modular robots:

• Inverse Kinematics:
Tree typed modular robots need a special treatment and strategies to solve all dif-
ferential kinematic equation simultaneously and to obtain the solution for a given
pose, [Chen and Yang, 1999].

• Random Friction Models
One favorable approach is the least square observer which has to be constructed
for the online estimation of friction dynamics. A perturbed system model gov-
erning the friction estimation error is to be derived and a Model Reference Adap-
tive Control has to be derived to mitigate its effect. Also, stability conditions for
the perturbed system model using the Lyapunov stability theory can be applied,
[Cho et al., 2009].

• Feedback Linearization:
Robot Systems are often highly complicated non linear systems. In order to control
them, the nonlinearities have to be converted into preferably realistic linear systems
without greater loss of information since common control methods involve linear
systems.

• Optimal Position and Trajectory Control
As mentioned trajectory and position control is a very interesting topic, which lead
to immense improvement of the functionality of modular robots and amplifies the
range of possible applications. Control techniques may be robust adaptive or opti-
mal controllers.

Last but not least the framework of this thesis will be supplemented by another the-
sis, which is effectuation an Graphical User Interface, which allows the user to create
Modular Robot Assemblies graphically and supply this framework with the belonging
Assembly Incidence Matrix to commence the calculation of simulation parameters.
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