*
*
*
*
L 4

*
0.0 ¢
%%6%e%e

ode

0. 0.0, ¢
SR8

0’0

53

@,

N
AOOAALS

s

L)
*

*
*
*

*
*
*

*
*
*

L 4
*
*
*

-
*o
A

Univ

L)
¢, 0 000 0
‘z ‘0 0’0’0’0
L J

)

*5

.
.
.

ersity of Stuttgart

Faculty of Computer Science

Masterarbeit Nr. 3196

Analysis and Optimization of
Storage 10 in Distributed and
Massive Parallel High Performance

Course of Study:

Examiner:

Supervisor:

Commenced:

Completed:

CR-Classification:

Systems

Salem El Sayed Mohamed

Infotech

Prof. Dr. Sven Simon

Dipl. Inf. Simeon Wahl
M.Sc. Wenbin Li
Supervisor in IBM Dipl.-Ing. Heiko Schick

May 16, 2011
November 15, 2011

C.24,C4,D.4.2,D.43,H34

Institut fur Parallele und

e

Pa

Verteilte Systeme
S Abteilung Parallele Systeme

¥/ Universittsstralle 38
D-70569 Stuttgart

Acknowlegement

Thanks to Prof. Dr. Sven Simon for allowing me to work on such an intere&tpig. Thanks
to Dipl. Inf. Simeon Wahl and M.Sc. Wenbin Li for their supervision andieglv

But most of all thanks to Dipl.-Ing. Heiko Schick and everyone in the BlueeZ&ctive Storage
team for allowing me to be part of them for a complete year. My hope is thatwlbbenefit
from my work as much as | benefited from your advice and guidance.

Salem El Sayed M.

Declaration

All the work contained within this thesis,
except where otherwise acknowledged, was
solely the effort of the author. At no

stage was any collaboration entered into
with any other party.

(Salem EI Sayed Mohamed)

Abstract

Although Moore’s law ensures the increase in computational power, iforpgance appears
to be left behind. This minimizes the benefits gained from increased compuaigimmer. Pro-
cessors have to idle for a long time waiting for 10. Another factor that sloe/é®communica-
tion is the increased parallelism required in today’s computations. Most mpd@sressing units
are built from multiple weak cores. Since 10 has a low parallelism the weasauill decrease
system performance. Furthermore to avoid added delay of externagstdiuture High Per-
formance Computing (HPC) systems will employ Active Storage Fabrics (ABtese embed
storage directly into large HPC systems. Single HPC node |0 performandbeviifore require
optimization. This can only be achieved with a full understanding of the Ik siperations.
The analysis of the 10 stack under the new conditions of multi-core and vegsarallelism
leads to some important conclusions. The IO stack is generally built for silegiees and is
heavily optimized for HDD.

Two main optimization approaches are taken. The first is optimizing the 10 staaicton-
modate parallelism. Conclusions on IO analysis shows that a design basesieral parallel
operating storage devices is the best approach for parallelism in the dkd staparallel 10
device with unified storage space is introduced. The unified storage sfiaws for optimal
function division among resources for both read and write. The defgragoids large parallel
file systems overhead by using limited changes to a conventional file systethefruore the
interface of the 10 stack is not changed by the design. This is a rathertempoestriction to
avoid application rewrite. The implementation of such a design is shown to resultincrease
in performance.

The second approach is Optimizing the 10 stack for Solid State Drives (3%B)optimiza-
tion for the new storage technology demanded further analysis. Thesetlhat the 10 stack
requires revision on many levels for optimal accommodation of SSD. File systesiocation
of free blocks is used as an example. Preallocation is important for datagemcy on HDD.
However due to fast random access of SSD preallocation representseehead. By careful
analysis to the block allocation algorithms, preallocation is removed.

As an additional optimization approach IO compression is suggested foe firtark. It can
utilize idle cores during an IO transaction to perform on the fly IO data cossfe.

Contents

1

2

Introduction

10 in High Performance Computing

2.1 Active Storage Fabrics L.
2.2 Optimization Approaches
23 Outline

10 Stack

3.1 LinuxKernelComplexity
3.2 LinuxKernellOStack
3.3 Virtual FileSystem
34 FileSystem
3.5 BlockLayer
3.6 Storage Class Memoryand Hard Disks

Optimizing 10 Stack For Parallelism

4.1 Optimization Approaches
4.2 TestEnvironment
4.3 ParallellOAnalysis.
4.4 Implementing A Parallel IO Design
4.5 Testing Parallel IO Implementation.

Optimizing Kernel for Storage Class Memory

5.1 Optimization Approach
52 SSDIOAnalysis
5.3 Removing Ext2 Preallocation

Conclusion and Future Work

6.1 Conclusion e e
6.2 FutureWork

List of Figures

2.1 10stackforHPC 18
2.2 Data access time in CPU cycles for SRAM, DRAM and disk over the years 19

2.3 Traditional Blue Gene setting and Blue Gene Active Storage 20

3.1 KernellOStack 26
3.2 File system abstractionusingVFS oL 28
3.3 VFEScomponents e e 29
3.4 dasysopencallgraph 33
3.5 wvfsreadcallgraph 34
3.6 Loss of storage due to blocksizeonExt2 37

3.7 Block groups and device LayoutinExt2 37

3.8 Indirectionin Ext2 39
3.9 ext2getblockcallergraph 41
3.10 ext2getblockcallgraph 42
3.11 ext2getblockscall graphforread 42
3.12 Block layeroverview e e e 44
3.13 Representing requests inthe formofaBIO 48
3.14 Connecting block layer data structures 49
3.15 __blockdevdirect 1O call graph leading teubmitbio 50
3.16 submitbiocallgraph 50
3.17 Floating gate inflashmemory 52
3.18 NAND flash cell architecture 35
3.19 Typical SLC NAND flash chip packaging 57

4.1 Optimization of 10 stack using runtime IO libraries 60
4.2 SystemsetupforGPFS 62
4.3 System setup for Hadoop File System 63
4.4 Optimization of 10 stack using parallel filesystems 64
4.5 Dedicating core forcollective IO 56
4.6 Optimization of 10 stack using functional partitioning 67
4.7 NVM Express multiple queues with corebinding 68
4.8 NVM Express with differentqueue mapping 69

4.9 Example of a gnuplot figure for a FIO scriptoutput 74
4.10 Bandwidth forioDriveonanAppleG5. 16
4.11 IOPSforioDriveonanAppleG5o 77
4.12 Bandwidth for ioDrive on an Apple G5 with clock setto 1.25GHz 78
4.13 IOPS for ioDrive on an Apple G5 with clock setto 1.25GHz 79
4.14 CPU utilization during FIO test reading from ioDrive on Blue Gene/Q 80
4.15 CPU utilization during FIO test and setting CPU affinity 81
4.16 Percentage of IOPS improvement by setting CPU affinity 82
4.17 Percentage of ramdisk bandwidth vs jobs for GPFS with different NSD. . 83
4.18 Percentage of ramdisk IOPS vs jobs for GPFS with differentNSD 84
4.19 brd_makerequestcall graph results in simplmemcpy. 85
4.20 Ratio of bandwidth between single and multiple FIO jobs on a loop device . 86
4.21 Ratio of IOPS between single and multiple FIO jobs on a loop device7 8
4.22 Ratio of IOPS between single and multiple loop devices 8 8

4.23 Implementation of a parallel device system 90

4.24
4.25
4.26
4.27
4.28
4.29
51
5.2
53
54
5.5
5.6
5.7
5.8
59
5.10
5.11
5.12
5.13
5.14
5.15
5.16

Linking multiple loop devicesto asinglefile 91
Adding list of block devicesto VFS components. a3
submitbio the source of caller fargenericmakerequest 97
ext2direct 10 call graph with block device choicechain 101
IOPS for Ext2 with parallel device implementation 104
Ratio between IOPS with Ext2 parallel implementation and original Ext2 . .5 10
Pyramid of cycles needed to access different memory hierarchies. 106
Optimization of 10 stack using flash file systems 109
Optimization of IO stack using Flash Translation Layer (FTL) 110
Optimization of 10 stack using IO scheduling 115
Optimization of 10 stack by changing SSDdesign 9 11
Ratio of IOPS against single job for ioDrive on Apple G5 121
Ratio of Bandwidth against single job for ioDrive on Blue Gene/Q 122
CPU utilization during FIO test and setting CPU affinity 123
IOPS of Random Read from an ioDrive on Apple G5 125
IOPS of Random Write on anioDrive on Apple G5 126
Bandwidth of Random Read from an ioDrive on Apple G5 127
Bandwidth of Random Write on an ioDrive on Apple G5 128
Percentage of Bandwidth for Random Write versus Random ReaDigve . 129

Percentage of IOPS for Random Read with file system against without. . 130
ext2get blocks call graph with hierarchical and execution sequence 2 13
ext2getblocks call graph after removing preallocation 135

List of Tables

4.1 Table for ioDrive performance specification

Nomenclature

ASF
BIO
CPU
Ext
FIO
FTL
GPFS
HDD
HPC

Active Storage Fabrics

Block 10

Central Processing Unit
Extended File System
Flexible 10

Flash Translation Layer
Global Parallel File System
Hard Disk Drive

High Performance Computing
Input Output

IO Operations Per Second
Intellectual Property
Multi-Layer Cell

Message Passing Interface
Network Shared Disk
Non-Volatile Memory

Portable Operating System Interface for Unix
Parallel VFS

Single Layer Cell

Solid State Disk

Virtual File System

1 INTRODUCTION

1 Introduction

As electronic devices advance new challenges rise. The advance neda &ligh Performance
computing or HPC has generally taken place in the realm of processing.dodeed personal
computers have also been advancing quite rapidly in the area of pragesEnis has been
insured by Moore’s law, which suggests that transistor capacity pedohiples every 18 month.
Moore’s law has been in effect for quite a long time. Not only has the ggieg power increased
but a single processor now contains more complexity. As the modern Ceraassing Units or
CPUs hit their frequency limit expansion took place in a different dimengitodern processors
contain multiple cores each representing a full blown CPU. More overdhrgand hyper
threading meant that cores can operate on different threads and beitcgen them with less
latency.

In recent years the amount of data available grew dramatically. Theitaptiered by Hard
Disk Drives or HDD has risen. This meant that processing units now taithble capacity
of data to process on massive scales. However as processing paoiveapacity grew, the
performance of Input Output or 1O did not keep pace. In turn the gawden processor and
storage widened. Old processor units operated with a single cache fegemparison modern
processors contain up to four levels of cache. These attempt to hideldlyeesterted by HDD
data requests. Still the processor exhibits latency penalties whenewdrearnass occurs.

The 10 gap increased as the processing power changed shapernMwdeessors employ
multiple cores. Meanwhile HDDs although growing in speed and capacity, stilbhge all
accesses using a single queue. This is a preset limitation due to classidsdskskdesign. The
single head available for read and write operations resulted in an inhglér®ek. Furthermore
the need for a movable needle and a rotating disk leads to mechanical limitatiopeeid. s
Moving the head exerts delays called seek time. As each core runs wliffreads data is
anticipated to be scattered all over the storage space. This in turn leadittored seek time
as the HDD attempts fulfilling the requests made by different cores.

The 10 gap can especially be observed on HPC systems. Not only do riiy@gye more
complex 10 settings, but also contain far higher computational power thditidreal personal
computers. HPC systems are mainly build from dense integration of computatmdes. In
addition to that, data amounts for scientific applications have been rapidlyagiege Perfor-
mance of HPC processors can cover these massive amounts of datudrowe to the 10 gap
feeding processor with all this data requires the processor to wait. Tfedddle 10 periods
lead to performance degradation [1]. Nevertheless due to its complexitptisslie has been
previously ignored. As the IO become the systems bottleneck, this was rer jpossible [2].

As the scale and size of modern HPC increases, the use of separate stodacomputing
units is no longer possible. Some suggestions for the integration of stardg®mputing units
have already been made. Such integration would result in so called Adtiveg® Fabrics or
ASF [3]. These will require fast single node storage IO. In turn réagioptimization of single
node IO on HPC systems. The optimization at that level is mainly governed imeK© stack
issues. To perform such optimizations a detailed analysis of HPC singlestodae 10 is
needed. This is a new scale for IO optimization in HPC systems.

The task of finding more optimized approaches for accessing data is impdviast elements
and algorithms used in modern storage access are still based on old tegiésiobhe use of
new storage technologies meant that these algorithms are obsolete. Jdwefogacontinues use
of these 10 algorithms is the inherit complexity of the system. A modern operatgigm has
to support a wide range of different storage devices. In addition tastrae new technologies

Analysis and Optimization of Storage 10 in Distributed and Massive Paraiggi Herformance Systems 16

1 INTRODUCTION

do not yet have any interface standardization. Optimization of 10 holdsrthraige of better
performance using new storage technologies. Yet the optimization is peeviey complexity
and scale of challenge.

A common HPC proverb suggests that a super computer reduces a CRtlfroblem into
an 10 bound problem [4]. The same logic can be applied to 10 optimization.p&Hect IO
machine would convert any IO bound problem into a CPU bound problembdtileneck thus
keeps moving between these two computational boundaries. As the mmobasseen rapidly
growing in speed and computing power, it is time to do the same for |0.

The outline of the thesis is as follows. Chapter 2 introduces the problem in detad and
explains the optimization approaches studied. Chapter 3 contains a detailgsisanf the 10
stack of the traditional Linux Kernel. The chapter also explains basicelad State Disks or
SSDs. Chapter 4 deals with optimization of parallelism in the 1O stack. Chapteplaires
issues and optimizations done for using storage class memories and foousesemerging
technology of SSDs. Finally conclusions made from the study are givei alidh suggestions
for future work.

Analysis and Optimization of Storage 10 in Distributed and Massive Paraitgi Ferformance Systems 17

2 10 IN HIGH PERFORMANCE COMPUTING

2 10 in High Performance Computing

There are several challenges for storage 10 on HPC. The scalea®f@ssive compared to per-
sonal computers. Some scientific applications require large data sets. glitHmiprocessing
power is increasing rapidly the IO can no longer match the required peatfaze. Thus lead-
ing to a gap that is rapidly increasing [5]. The gap between |0 performamteomputational
power of the HPC increased interest in the area. The target is to achigikdata transfer
between storage and computing systems [6]. The main difficulty with achiewghgl® per-
formance on HPC is the complexity of the system. The HPC IO has been deslié¢topeveral
layers. These layers are typically very complicated. The complexity is & dagdt of the scale
on which each layer has to operate.

A typical personal computer contains a simple stack of layers through wiméctO request
has to move to be fulfilled. The request starts at the application. The ogesyttem then
channels the request towards the file system. Given that the file systdmaxis single device
the file system directs the request to the device driver. The devicesasd® storage to fulfill
the request. In comparison the HPC system has more massively scalexd Fyehermore the
10 request initiated by a node is usually not executed on the same node uGtimpin HPC is
densely packed and storage is located on separate systems. Thirefer@e additional layers
that exist on an HPC system.

The complexity of the HPC 10 stack can be seen in Figure 2.1 [7]. Each & {agers has to
operate on large scales. The 10 libraries available on a typical highrpefwe system have the
complexity of dealing with massively parallel applications. The libraries tbeediave to offer
both sequential and parallel access [7]. Applications on HPC systemsa@gcess in different
methods and using different patterns than that of typical user applicatitms.lO interface
for HPC applications has to also adapt for parallelism. Some HPC systems aitidigithe
application with the typical 10 interfaces such as POSIX short for Pori@plerating System
Interface for Unix . Other more common HPC IO interfaces also exist. Octeinterface is the
MPI-10 or Message Passing Interface 10 . These scale better with tledgplications. They
also provide operations that are required by parallel applications sushinghronization and
data coherency. The massive scale and parallelism of HPC applicati@ediadgravates the
HPC IO libraries and interface complexity.

High Level IO Libraries Large Scaled IO Libraries
MPI 10O POSIX IO Application 1O interface
1O Forwarding Moving IO Request to 1O Nodes
PVFS Lustre GPFS Parallel File Systems
Storage Infrastructure Multiple Disk Systems

Figure 2.1: Storage 10 stack for HPC

Typical HPC nodes are built to provide large scaled application with as naropwtational
power as possible. These therefore contain complex multi-core prese$sa@void wasting any
computing power the nodes run minimalistic operating systems [7]. The 10 leoweguires

Analysis and Optimization of Storage 10 in Distributed and Massive Paraiggi Herformance Systems 18

2 10 IN HIGH PERFORMANCE COMPUTING

additional complex algorithms. Therefore to avoid running these algorithniseooomputing
nodes dedicated nodes are used for 10. These nodes are typicathedeto as 10 nodes on the
IBM Blue Gene system [7]. The 10 nodes can run more complex 10 algorithowever the
distance has been further increased between computation and storage.

Typical disk access can no longer keep up with the rapid increase iagsiog power. Figure
2.2 shows how drastic the gap between disk and CPU has increased ovét]tinide disk
can no longer sufficiently feed the processing unit with data. The fidlwoesthat CPU cycles
needed over the years for accessing disk data has been increasiag vwlile capacity of disk
has been rapidly increasing and cost per gigabyte storage has bppmdr HPC systems over-
come disk limitations using several disk operating in parallel. The storage spmcreased by
the addition of a new disk. Also by using the disks in parallel the bandwidth@r@derations
per Second or IOPS are increased.

Data Access Time in CPU cycles

10000000

1000000

100000 [~

10000 |
B SRAM

B DRAM
1000 [~ [bisk

Cycles

100

10 = |

1 |~ | /
1980 1985 1990 1985 2000 2005 2010

Year
Figure 2.2: Data access time in CPU cycles for SRAM, DRAM and disk oveyehes

Parallel disk operation could virtually increase performance to infinity.hEtsk added to
the system promises the increase of performance. However utilizing adl igkther increases
overhead. In addition to that the disks parallelism is dependent on appliciia sets. Conven-
tional personal computer file systems operate on a single device. Thee?€& with distributed
storage employs so called parallel file systems. These operate across ndeNipkes. Parallel
file systems have to attempt switching as many devices together as possiblesiift they use
different types of data distribution. Some parallel file systems stripe datanrat chunks to be
divided across available disks. Others replicate the same files on diftks&n to read or write
different sections of files in parallel.

The HPC IO setting has served the applications well for the past yeargertNeless the
dramatic increase in data, storage capacity and the increase of IO gap neeamore flexi-
ble settings have to be researched. In addition to that the implication of utiliziugtoeage
technologies must be found. The 10 performance of the peta-scale yH&&rs must improve.

Analysis and Optimization of Storage 10 in Distributed and Massive Paraiggi Herformance Systems 19

2 10 IN HIGH PERFORMANCE COMPUTING

Thus making way for even higher IO demands of the next coming exald@aleera.

2.1 Active Storage Fabrics

One of the main difficulties introduced in HPC systems IO is the distance betwegwute and
storage units. Compute nodes have to forward IO requests to sepanatelé®. These access
a network to request the data from the storage systems. Due to computelinutkd RAM
capacity the nodes cannot request large data amounts for computatiencofitpute nodes
therefore spend longer times idle awaiting 10.

The ASF brings storage closer to compute nodes. The idea is to embeckataitginto the
densely packed computation systems. A Blue Gene rack would therefamErconaddition
to compute and 10 nodes storage units. This means a shorter distancerbebmgaute and
storage untis [3]. These ASF systems would be employed for data inteapgilieations. The
method for implementing ASF using Blue Gene is shown in Figure 2.3 [3].

Blue Gene
Blue Gene Active Storage
| B R S —
Eim/Empyan %* | =A==
[HEHH - o | e A=
O
L HEHEH r;/ Rlyne e R = e
EQDr' /94. @E'rﬁe = Q\,
Yy A sy A
10 Nodes \/ IO Nodes
Compute Nodes Internal Network Compute Nodes Storage Devices

Figure 2.3: Traditional Blue Gene setting and Blue Gene Active Storage

The ASF promises better performance of 10 bound applications. The ealle to embed
the storage into the HPC system. Placing HDD into a densely packed comptgm sgnot
possible. HDD are based on mechanical components and are rathemlaige. Thus new
storage technologies should be used instead. Storage class memoriesdaa eandidate for
ASF. One of the storage class memories is SSD. These offer a better fildnpemce and a
more dense packing. Another challenging aspect of ASF is that ordit@igge devices are not
build for parallelism on this scale. Blue Gene employs multi-core processitg Withough
the new storage technologies offer a more parallel access model, tradifioetdcks do not.
Therefore to achieve high 10 on an ASF system single node 1O to the emthatintage has to
be optimized.

The traditional 10 stack of common operating systems does not yet suppssive paral-
lelism. Furthermore the development of the stack has been mainly done in theeHDDue
to the basic technology differences between SSD and HDD there is rooimfoovement.
Optimization on a single node level would increase performance as a whdlefeystem.

Analysis and Optimization of Storage 10 in Distributed and Massive Paraiggi Herformance Systems 20

2 10 IN HIGH PERFORMANCE COMPUTING

2.2 Optimization Approaches

The operating system running on Blue Gene is a form of Linux. Thus thexUi@ stack has
to be optimized and adapted for ASF. The optimization has to employ ASF basitisefnore

it has to be based on the massive scale of parallelism present in the Blee Ggrm sign of
improvement the 10 stack should be able to communicate with the multitude of avaitabke c
on the single processing unit. Additionally it should be able to better prefomelation to the
new storage technologies.

An important concept to optimization is that it can only take place if the systemilis fu
understood. Every detail in the Linux Kernel relative to the 10 issue Ishio& analyzed. The
effects of different settings should be researched. This is not gnt&sis The Linux IO stack
is complicated and includes many operations. Storage device basics sisoubé atudied. The
device properties can be used to further optimize the 10 stack.

This study has targeted two main optimization approaches. The first is |Qefiana and
the second is optimization for storage class memories. 10 compression istdyge a third
possible optimization approach. However the first two optimizations show nmoneige for 10
performance. In comparison IO compression is and optimization that coulddzefor other
properties such as allocation of idle CPU time.

2.2.1 10 Parallelism

Processors internal parallelism is rapidly increasing. However the R stgquires adaptation of
more parallel data access forms. The difficulty therefore becomes aglé@tiior parallelism.
High level parallelism of 10 has long existed in the HPC systems. HPC hasdmploying
multiple disks and parallel file systems for many years. Since this form ofig@lésm has not
yet found its way into personal computers, the traditional 10 stack rem&imetie most part
unchanged.

The 10 parallelism required by the ASF is implemented on a single node levethEienge
is to adapt solutions made on the large scale for a single node. Technoddgiady offer
some of the large scale parallelism for single nodes. Parallelism using multiige isoone
form offered. Another is the implementation of SSD using several contsoll€herefore an
analogy could be made between large and small scale 10. Optimizations ddaryerscale
multi processors systems could be adapted for multi-core on a single pooc€&n the other
hand parallel file systems can run on a single node and use differanbltens on a single SSD
as different devices.

Large scale parallelism offers a good start for finding optimization agpexathat address
single node 10 parallelism. However adapting these optimizations faces sodgdimitation.
A single node does not have unlimited processing power. On that levelesostrces are shared.
The target therefore becomes scaling back high level parallelism to flesiogle operations.
This is indeed a difficult challenge. Large scale parallelism has dedicatedvare and can
further add more resources if necessary. In comparison rescanedimited on a single node.
In fact single nodes 10 parallelism will share resources with applicatidmusThe overhead
induced by the 10 on single nodes has to be as small as possible.

2.2.2 Storage Class Memory

Storage technology has remained dependent on HDD for many yearsndin difficulty with
improving HDD performance is mechanical limitations. This is an inherit progergll disk

Analysis and Optimization of Storage 10 in Distributed and Massive Paraitgi Ferformance Systems 21

2 10 IN HIGH PERFORMANCE COMPUTING

based storage systems. The limitation does not exist in emerging storagmelassies. Solid
state storage units such as flash can be written and read electronicakythElse technologies
offer better performance in comparison to traditional disk based systamaddition to that
SSDs consume less power and can be better packed into the dens HP@ssyste

The 10 stack has been mainly developed in the HDD era. This means that ofitimiza
done in relation to HDD access patterns. The SSD however is based omptetely different
technology. SSDs adhere to a different structure and organizatiothefumore inherit reliability
issues of flash based memory requires SSDs to be handled in a diffeteothtigan HDD. Some
attempts have been previously made for SSD access optimizations. HoweVer stack still
induces overhead running HDD access algorithms that do not benBf# SS

The 10 stack controls most of the underlying device performance. Thissnbat an op-
timization of the 10 stack for SSD would promise a better integration. For thatoserboth
SSD and the 10 stack has to be analyzed. It is crucial that adapting thed® fer SSD is
done in relation to the system in which the SSDs will be integrated. The ASkesdSDs to
operate in correlation with multiple weak cores. This further limits the performand opti-
mizations possible. The challenge of integrating SSDs into the ASF designlsrebddetween
several factors. Among these factors is the reliability of SSD, systenepieg, performance
and others. The difficulty of the balance is increased due to limited allowawekdhat can be
implemented on the system in general. In essence the optimization should ngé éhierfaces.
The target is therefore to avoid application rewrites.

2.2.3 10 Compression

The combination of processing power of modern CPUs with the slow |O ppediace leads to
CPU idle times. During those periods the CPU has almost no task, but stillroesspower.
IO compression indicates the ability of utilizing free CPU time to improve 10 perfaoealf
compression can be performed transparently the system could achievbandieidth with no
implications to the applications.

IO compression is a difficult subject that requires answers to many gusstihe method
of compression should be identified first. There are many differentitiigts for compressing
data. The compression algorithm is dependent on a multitude of factorse Tidude com-
pression rate, complexity of compression algorithm, computing power relgie application
data form. The selection of algorithm should also be done based on Spmedmression versus
10 performance gained. An additional difficulty is performing seamless cessjpn. Since the
applications should not be aware of the compression process, datd sbhbbe lost.

The next issue is the 10 layer in which compression is performed. The & s&dormed
of both hardware and software components. The software itself is diwde several layers.
The decision of compression layer is strongly related to purpose of cesipne A compression
done on the device for example would not benefit the 10 speed withaigtnsysvolvement. An
additional problem is read versus write compression in relation to CPU utilizatioidle CPU
during write used for compression might not be idle for decompression.

IO compression could be built on top of the previous two optimization appesadterefore
it was preferred to focus on parallelism and storage class memories. picedastill inter-
esting for future work. This is particularly true in combination with conclusimae for the
previously mentioned optimizations.

Analysis and Optimization of Storage 10 in Distributed and Massive Paraitgi Ferformance Systems 22

2 10 IN HIGH PERFORMANCE COMPUTING

2.3 OQutline

The rest of the thesis is outlined as follows. Chapter 3 is a detailed analykis @) stack of the
Linux Kernel. A special focus has been given to operation on SSDrefdre the final Section
in Chapter 3 explains SSD basics.

Chapter 4 deals with optimizing the stack for parallelism. After introducing the ©pap-
ter 4 shows the related work done for this optimization approach. The eetibs in chapter 4
explains the test environment. After that different IO tests that analya©thtack are provided
with conclusions drawn from the results. The final two sections in Chaptdérgtuce and test
a new implementation for parallelism based on the analysis and their conclusions

Chapter 5 deals with optimization done to better accommodate SSDs. The ftishsec
Chapter 5 shows previous work done on optimizing for SSD. The secectbs introduces
several 10 tests analyzing SSD and related factors. It also providesusions that can be
drawn from them. The test environment used has already been expiaiGédpter 4. The last
Section in Chapter 5 contains a detailed implementation of an example for improen@® th
stack for SSD.

Analysis and Optimization of Storage 10 in Distributed and Massive Paraiggi Herformance Systems 23

3 10 STACK

3 10 Stack

The representation of the 10 in the form of a stack is a common visual intatioreto the flow
of data from a device to the application or visa versa. It also facilitates tiaifunal division
among different Kernel components. This in itself makes traversing siack simpler and
easy to follow. Nonetheless, the requirement for clear function definibametimes becomes
difficult. To achieve this it is important to keep tasks of the same type in the saeiettawever
grouping tasks together is made difficult by the complexity of these tasks. feainiees requires
changes made in several stack layers, which complicates |0 developreernhere.

It is expected that most operating systems will have to move through almostrtteesteps to
accommodate the same underlying 10 hardware. Therefore it is safam@disat conclusions
made about one operating system could be in some form migrated to andibeiintix Kernel
being open source presents a viable example as to how the 10 stack awttidriu

The chapter is organized as follows. Section 3.1 discusses method &hehpsf analyzing
the Linux Kernel. Section 3.2 introduces the layers of the IO stack. Sectiaxplains the first
layer, the Virtual File System or VFS . Section 3.4 discusses the task ofdndivile systems
by explaining one of Linux native file systems the Ext2. Section 3.5 explaintatkeof the
block layer and refers to some of the device drivers requirements. FiBadiiion 3.6 explains
the underlying basics and reliability issues of SSDs.

3.1 Linux Kernel Complexity

The stack might looks quite organized, with clear definitions for each lagsks However
things get quite complicated when taking a look at the inner workings of thk gtsif. The
Kernel is made of millions of lines of code and thousands of functions. Sheeode has
evolved over different phases, it is an enormous task to understanafivdsat has been coded
into the Kernel basics. The code is made of hundreds of differentiunadities, which makes
the task of finding that which is relevant to the 10 stack difficult. Some divisixiats within
the source code. Despite that most of the functions depends on eachmdh@quire function
calls that lie outside of the layer itself grouped into one folder. Most of Lifans take the
magnitude of the Linux kernel as a sign of success of open sourcetojdevertheless the
size and complexity of some trivial tasks implementation shows some difficultiestimtiel
of code development. Most Linux code developers cannot hold the@ieweof such a complex
Kernel. This leads most towards focusing on the development of newiidasovhich would
later be built into the Kernel release. Mean while little is done to optimize the alréding
code.

One of the issues that makes the Linux Kernel attractive for most modetensy$s com-
patibility. The Linux Kernel support numerous processor architectanespromises easy use
of multiple file systems. Not to mention direct support of a multitude of devices.tidlis
promised with almost no change to the applications. In case of file systemsntimeurdcation
is well hidden under the VFS. File system operations is hidden to the extentbtbhange, not
even a recompile is needed for applications using different file systemsugjiththis compat-
ibility makes life easier for application developers, it over complicates tracmdfémnel code.
One example of such complexity is the need of function pointers. Since dadydiem im-
plementation has to overwrite basic function calls, the VFS has to use functioters within
certain constructs, which these file systems can then overwrite. This meattssthormal func-
tion call graph tools cannot follow this function calls, leaving the Kernegjpgowmer to fend for

Analysis and Optimization of Storage 10 in Distributed and Massive Paraitgi Ferformance Systems 24

3 10 STACK

himself. Additionally this technique of hiding true functions under a heavyrlajabstraction
means that the function call graph are long and hard to trace. Thefafdireg where the true
task is carried out sometimes becomes itself a burden, even more so forttgpgmize this
task. The difficulty increases when editing or adding new functions. A waieplicated net
of functions exists within the Kernel. Therefore editing Kernel functionamseretracing the
function call to make sure that this net has not been broken somewhageta®function call.

Even though most of what has been mentioned previously appears tohanlydifficulties
in tracing and optimizing, the Linux Kernel is still preferable to use for anslgad optimiza-
tion. As an open source project, the Linux code is well documented. @dvarks exist that
help with tracing. Nonetheless, caution is needed when referring to Lieurekbooks. Most
only contain a high level view of how the Kernel is implemented and seldom meautipcode.
Therefore mapping book explanations onto existing Kernel code is diffi€ior example in
[8] Linux is handled with a higher level view. Few attempts have been foonddoks that
contain code references. The Linux Kernel explanation found indfrs to some code de-
tails. Although code was well documented and a fine attempt to show as mamyagails as
possible was made, still a lot of important information is missing. This is not a fattednpt
on behalf of the writer, but can only be the result of the Kernels magnitndecamplexity.
Open source projects provide more documentation, yet it also results mi@iens. Numer-
ous Kernel versions exists and each changes just little enough for saicteep to be useless.
Therefore working with multitude of machines running different Kernedsyas the case of this
study, dealing with these changes becomes a burden. Therefore daasido be kept when
trying to use books such as to follow function calls. The Linux Kernel gkarfast, adding
functions as well as changing existing function names. All make the useosihpmssible for
basic understanding, but never sufficient for full realization of hotua Kernel code functions.

Aside from being open source and well documented, the Linux Kermghots a multitude
of smart tricks. These have been developed over long years by the imaiatal he abstraction
layers such as VFS and block layer might be difficult to follow, but make guifeod job when
it comes to adding new features. Well support is given therefore faodlsachanging archi-
tectures and changing applications. This feature seams to make the Linued idarattractive
operating system for even the most specialized of systems such as Higimaerce computing
and embedded systems. Another typical brilliant implementation for which thex IKemel
can be appreciated is the fact of it being object oriented. Although writtenrione object
oriented language, the Kernel is built on the concept itself. Structurssumtsare used as a
method to maintain many different combinations of systems. This sometimes facilitateg)tr
and optimizing the Kernel. Developers find the attributes neatly gathered ¢éogeth group
of structures. Even more fascinating is the method of linking one structure toetkt to make
different attributes accessible over almost the entire Kernel. This sometimssyer, makes
the optimization and development of new parts of the code more difficult. Spgaifilelines
have to be followed during code development. Not to mention how much &tisrto be spend
trying not to destroy the entire complex web of pointers that are contained ininlix Kernel.
Although being complex and difficult to trace and optimize, as is expected drowperating
system, the Linux Kernel still is the most suitable for this task. Aside fromipusvmentioned
reasons, the Linux Kernel runs on Blue Gene in different forms.

To facilitate tracing the Linux Kernel a documenting tool has been used te fraction
calls. The documenting tool called Doxygen produces both call and cadlphg. A call graph
shows the relationship of functions. The graph is organized by showlirignations called
by the function undergoing analysis. The call graph starts on the left watliutinction under

Analysis and Optimization of Storage 10 in Distributed and Massive Paraiggi Herformance Systems 25

3 10 STACK

examination and moves to the right with the called functions. On the other handll&egraph
is the opposite. A caller graph shows all functions that call the functioeuexbhmination. The
caller graph starts on the right and moves to the left ending with the functider @xamination.
Arrows always start at the caller and end at the callee. As previousltigned function pointers
are ignored by the documenting tool. Therefore function calls done witttimpointers must
be found explicitly in the Kernel code. Furthermore, due to the complexityekthux Kernel
running the documenting tool on a normal laptop can take several daigspriéferred to run
the tool in a virtual machine to be able to store the machine state in case of a syagmTo
further facilitate the documenting task, Kernel components not related t@thatk should be

excluded.

3.2 Linux Kernel 10 Stack

User Applications User
‘ Space
GNU C Library
System Call Interface
Virtual File System
| Kernel
Individual File Systems Space
Block Layer

Device Driver

|

Device

Figure 3.1: Kernel IO Stack

As seenin Figure 3.1 the Linux Kernel 10 stack is formed of several fayire user application
can make a system call directly using the corresponding system call ggdufaction. Another
option is to use intermediate methods such as the GNU C library or any othey libaaimple-
ments the POSIX standards. Although depicted here as a separate |lagyestéme call interface
is a mere collection of functions placed at different positions within the Heroge. As an
example the function call for mounting a file system is placef$inamespace.d herefore the
mounting option exists within the VFS and not in a separate collection. This is ronvemient
for developers as there is no need to pass the function parametergidefthe VFS to some
other module.
The main part of the Linux Kernel IO stack is formed of three main components

* Virtual File System (VFS)

Analysis and Optimization of Storage 10 in Distributed and Massive Paraiggi Herformance Systems 26

3 10 STACK

* Individual File Systems
 Block Device Layer

The VFS has the main task of abstracting all underlying layer functionsrebiieghe VFS
unifies access to all different types of file systems. This is not a trivikl ta$hough needed for
implementing unification over all file systems, it also needs to allow all these torpethere
different tasks unhindered [9, Ch. 8]. Once the VFS determines whe&hkystem the request
is intended for it moves to the next level selecting the corresponding fiterayisiterface or
functions.

The individual file systems on the other hand have the task of managing i@ dower
level. Files, folders and metadata are all well defined in this layer. But $ilecgystem im-
plementation differs, some of these have to be reimplemented in the VFS. Thigliadifile
systems organize the data directly on the storage block device and thetlsfmstore that data
on the device itself. In comparison all VFS metadata is kept in memory and is wetten to
the underlying layers. Therefore the individual file systems offer aguad interface functions
that overwrite some of the VFS generic functions. These functions amectiieed using func-
tion pointers from the VFS layer to operate on the file system. Some functimestia task
of mapping the changes that happen in VFS metadata onto the individualsi&ersynetadata,
which later could be written to the block device. On mounting the file system thestidns
are also used to fill in the VFS needed structures.

Most Linux books disregard the block layer in the 10 stack representationgo directly
into the device driver. Such disregard to the block layer can be found] iand in [8] to the
extend that the first doesn’t even contain a chapter under that nameauglthexplaining the
device driver might be adequate to explain basic 10 functions it doesepotsent the actual
implementation. The block layer has the same task towards the different dewiees as does
the VFS towards the different file systems. Therefore the device drxamwrites some of the
generic functions written in the block layer. On the other hand the devigerdiins mostly
in the kernel space. Nonetheless some devices move implementations bebxeeinskace
running on available CPUs and the device hardware itself. This is demimusinaigure 3.1 by
the overlap of the device driver with the space usually left for the devieH.its

Although here the functionality of each layer is clearly defined, the detailsshiiv how
difficult it is to follow the call graphs throughout all of these layers. In tie&t sections these
layers will be explained in more details. The explanations are following the eutlifiound
in [9], but is mostly done through observation and code reading. Asqugly mentioned it is
difficult to find a single source for Linux code explanations. Not to mentmm difficult it is to
directly read a C code and try to decode all pointers and function names.

Analysis and Optimization of Storage 10 in Distributed and Massive Paraitgi Ferformance Systems 27

3 10 STACK

3.3 Virtual File System

Application Application Application
C-Standard Library (Libc) User Space
A A
Systemn -
Calls
) 4 Y
Virtual File System (VFS) Kernel Space
Ext2/3 BTRFS Reisefs

Figure 3.2: File system abstraction using VFS

As seen in Figure 3.2 the VFS has the task of abstracting the file systens &océdse above
applications [9, Ch. 8]. This in turn enables the Kernel to support a lamgeber of different
file systems. This is done by providing uniform functions for above apjpdiea to manipulate
and access underlying data. Although file systems are stored on a bhick tieey have no
control over direct manipulation of data on those device. This task is leftetdlitck layer
and is therefore hidden from the file systems and in turn from the VFS. Ukisa@pproach,
theoretically changes can be made on one layer without effecting the Btlaetically however
on the interface between all layers is a heavy exchange of functionsaaadheters that need to
be kept in mind while optimizing any give layer.

To achieve the function implementation on basic level the VFS needs to proveieact
function pointers, not only the functions but also the file system itself. TR8 therefore
needs to mirror some of the file system components. The components of thar&EBown in
Figure 3.3. It therefore needs to show a uniform view of files and dataiteéa@applications need
for execution of these functions. The VFS then extracts the needed datpléanent the view
of this unified files system. This fits almost every view of files, excluding filashlve specific
functionalities such as device files. These types of files cannot be gagpm any other file
system except Linux native file systems. This can be attributed to the fathése files requires
the underlying file systems to store additional data needed by the VFS to mamiihda. This
in turn is not possible on a none Linux native file system.

Itis important to know that the VFS is not a file system in itself. The VFS requinglerlying
file systems that carry out the functions that cannot be performed betterig implementation
of the VFS. Even attempting such a unified file system would defeat the sigdfasimplicity
for which the VFS has been written [9, Ch. 8]. Therefore the VFS adisaman abstraction
layer for the file system modules forwarding all real file system requegtsetoorresponding
file system. The VFS uses a simple technique of presenting the informatiarecktpr each file
system in the form obbjectsor structs Thesestructsin turn contain function pointers defined
by each individual file system to refer to the functions needed by VFSrtg oat application
requests.

Given that the Extended file system family are Linux’s native file system, #@ Mas to be
specifically optimized for accessing Extended file systems [9, Ch. 8]. Hmide seen from

Analysis and Optimization of Storage 10 in Distributed and Massive Paraiggi Herformance Systems 28

3 10 STACK

@ Superblock O file instances of the superblock
6 ¥
s _files - >
f_dentry f_dentry f_dentry
L : Dentry f_op f_op f_op
d_ops » dentry_
\ d:sb operations
d inode
NAME
A
@ inode
iop inode_
— operations ’
i_dentry @ task_struct Efus&
i_sh i
ifop o:t;rations files

@address space _ — i_mapping

host

address_
a ops —®space_
ocperations

page_tree

Figure 3.3: VFS components shown with pointers

the method by which the VFS organizesstsucts It also can be observed by the fact that the
Ext2 file system uses mostly the VFS generic functions provided. This haskegt in mind
while editing the Extended file systems. Most Extende&dctshave the same name and almost
the same configuration as those in VFS. Yet changing the Extestdect names will not be
effecting the VFSstructs

3.3.1 VFS Components

Each process running in user space requires a list of all files openigdAs seen in Figure 3.3-
(5), thetask structstores a file list for all opened files by this process [9, Ch. 8]. fak& struct
is used by the Linux task scheduler to track running tasks and the relef@mation. Therefore
taskstructis not a direct component of the VFS, but needs to be mentioned herdtsga¢ool
by which opened file users can be tracked. This becomes relevangfordbess of opening and
closing files. On opening a file the process is therefore handed a filemtescThis integer is
only valid for this process and is hence useless for any other pragesisg at the same time.
It also means that the Kernel can use the same descriptor for two difféesropened by two
different processes [9, Ch. 8]. The file descriptor is passed to therfilesing the open system
call. The process then uses this descriptor as a parameter for all fuswaauriring this file. The
file descriptor in this case can also be used by processes as a paransgttetno calls. Once
the file is no longer in use the process should use the close system call. Tthis gives the file
descriptor back and allows another file to get it.

Each file is however uniquely identifiable using mode An inode contains the relevant

Analysis and Optimization of Storage 10 in Distributed and Massive Paraiggi Herformance Systems 29

3 10 STACK

metadata and data segments or at least pointers to the data segments. Ehissigr a unique
integer to identify each file. The curious thing abduddesis that they don't contain the file
name. Therefore the link is done through the unique Kernel identifierp@edsugnodeaccess
from the Kernel point of view, the Kernel keeps a global varidhtele hashtable There are
additional lists keeping track of theodeswithin the Kernel. These mostly serve the benefit of
defining the state of thimodescurrently used by the processes [9, Ch. 8].

While file descriptors are used by processes to uniquely identify a file withisaime process,
the Kernel usestruct filefor file identification. The filestructis shown in Figure 3.3-(6). These
as seen are linked to the process file list and tostipgerblock

It is worth mentioning here that everything under the Linux system is a fileeréfbre di-
rectories are also files with their data segments containing entries reprgsietilist of files
contained within this directory. The entries refer to thede number of the file or directory
that exists inside this directory [9, Ch. 8]. Using this concept the file lodlegomes clear. A
step by step operation traverses the direciooglefor the next directory in the list. Once found
the next directorynodeis traversed. This continues until the intended file or directory is found.
To speed up this operation for future lookups caches are used. Thisecmade obvious by
researching twice through the same list on a Linux system. The secorut seanore faster
and finds the target in less time. As a side note on accessing and seacchitaglésit is worth
mentioning that the optimization @iodeaccess will not increase read or write time. These op-
timizations will only speedup the lookup operation. Nonetheless applicatioith ihals with
large numbers of files might need such optimizations. It might be of interesinipare this
lookup technique with those implemented by other systems such as GPFS anploétiel or
large file systems.

Thesuperblockshown in Figure 3.3-(1), contains required metadata for the mount pdiigt. T
includes among others a pointer to the block device on which this mount poitatrésls The
superbloclalso contains a pointer giruct file systemtype This is a structure that is unique for
every file system that can be mounted and is registered by the VFS. Theamigumeart ofstruct
file_systemtypedefinition is shown below.

struct file_system_type {

const char *name;

int fs_flags;

int (*get_sb) (struct file_system_type *, int,
const char *, void *, struct vfsmount *);

struct dentry *(*mount) (struct file_system_type *, int,
const char *, void *);

void (*kill_sb) (struct super_block *);

struct module *owner;

struct file_system_type * next;

struct list_head fs_supers;

};

As seen thdile_systemtypecontains function pointers that are needed by the VFS to mount or
unmount a given file system. Any given file system needs to set this steuasimg its own
function pointers. As an example tfile_systemtypeof the Ext2 is shown below.

static struct file_system_type ext2_fs_type = {

Analysis and Optimization of Storage 10 in Distributed and Massive Paraiggi Herformance Systems 30

3 10 STACK

.owner = THIS_MODULE,
.name = "ext2",

.mount = ext2_mount,
.kill_sb = kill_block_super,

.fs_flags FS_REQUIRES_DEV,

};

These functions are then defined by the Ext2 suckaxé&mount Another option is to use the
predefined VFS generic functions suchkdk block super
Below are the main variables needed to explainstinect superblock

struct super_block {

struct list_head s_list; /* Keep this first */

dev_t s_dev; /* search index; _not_ kdev_t */
unsigned char s_dirt;

unsigned char s_blocksize_bits;

unsigned long s_blocksize;

struct file_system_type *s_type;
const struct super_operations *s_op;

struct mutex s_lock;

int s_count;

struct list_head S_inodes; /* all inodes */

struct list_head __percpu *s_files;

struct list_head s_files;

struct list_head s_dentry_lru; /* unused dentry lru */
int s_nr_dentry_unused; /* # of dentry on lru */

struct block_device *s_bdev;
struct backing_dev_info *s_bdi;
fmode_t s_mode;

const struct dentry_operations *s_d_op;
/* default d_op for dentries */

};

Thes fileslist is shown in the Figure 3.3 (6). Basic information for the mount point ssaha
blocksize or block device are also kept in theperblock Additionally as seen theuperblock
keeps a list of pointers timodes files anddentries

As mentioned previously, thetructsused by the VFS are not the same as those used by the
underlying file system. This is true even for Ext file systems which have alin@stame repre-
sentation. The fact thamodesduring runtime require additional variables than those stored on
the block device, makes the reason clear. Although the VFS uses thipptemsapport almost
any file system, it is still reasonable to expect a delay from file systems thateddibit the
same construction as the Linux native file systems. For these particulasstiéerss/the functions
needed to gather the information to construct the runsimgctswould be more complex than
their Linux native equivalent.

Using runtimestructsshow that most of the operations taking placesaperblockandinodes
are done in the memory. For that reasonghperblockhas to keep track of atlirty inodeson

Analysis and Optimization of Storage 10 in Distributed and Massive Paraiggi Herformance Systems 31

3 10 STACK

a single list. This is another art of cachin@irty inodesare not immediatly written back to
the file system. On calling a synchronization function or unmounting the fileraytbie Kernel
can refer to thesuperblockfor which inodesneed to be written back. Additionally to keep track
of accessednodeseachinode contains an access counter for counting number of processes
currently accessing the file of thisode On reaching zero thieodeis placed on a least recently
used list. This means that tirodecould be removed from the memory as it might no longer be
needed [9, Ch. 8].

Since file system are to a greater part kept on slow block storage medigF®eises a
directory entry cache or for shodentry. The VFS therefore definesstruct dentryas shown
in Figure 3.3-(3). Theseentryobjects are kept in the cache for all previously done lookup
operations [9, Ch. 8]. This speeds up future accesses to the samblblsoperations used for
maintaining thedentrycache is kept iris/dcache.c Cachedentriesform a network and link to
each other. During the lookup process for each traverssika dentryis created and linked to
the previously traversedentrywhich lies above it in the folder structure. THentrytherefore
plays a crucial role in cache organization [9, Ch.8].

As a final note on caching, tredruct filecontains a readahead field. On marking this field the
files data is readahead and stored in the cache. The consistency ed édehis guaranteed by
f_versionwhich is a variable in thetruct file Another pointer is stored in trsruct filefor the
current position in the file. This pointer is used for readahead and sggjude reading.

3.3.2 VFS Operations

As previously mentioned, the VFS depends on the file systems overwritingrthdn pointers
provided by the VFS. The VFS also gives the option of using generidibme As seen in
Figure 3.3 almost everstruct contains a pointer to a list of operations. This even includes the
superblockwhich is not shown in the figure, but can be seen irstingct superblockdefinition.
Theinode operationsre defined in thestruct inodeoperationsfor which the implementation
is present ininclude/linux/fs.h The list of possible functions is long. It is mostly contained
in changing the variables in tHaode itself. Therefore there are no read or write functions.
Just those which manipulate the file metadata. As an examjh@adé operationshe function
fallocate which is used for preallocation, for which the support exits starting at Ext<€h.

8]. This example shows how complex it is to gather all operations necdesal file systems
under one interface.

On the other hand, files rely on file system settingfileeoperationsn the VFS layer. These
operations mainly deal with the editing and manipulation of the data section of theTfie
complete list of pointers for the functions is storedstruct file operationswhich is defined in
include/linux/fs.h The following is a short list of some of the more important file operations
with a short explanation. The complete list can be found in [9, Ch. 8].

read/write used for reading and writing file data.

aio_read/aio_write used for asynchronous read and write. In realty all read and writes ar
asynchronous. Synchronous reads or writes are done usimgaador aiowrite and wait-
ing for the result of the read or write operation to be done.

fsync/fdatasync has the task of synchronization between cached data and data kept on the
storage medium.

Analysis and Optimization of Storage 10 in Distributed and Massive Paraiggi Herformance Systems 32

3 10 STACK

fasync signals processes that there has been a change in a file. This is importaseitwo
different processes are accessing the same file.

readv/writev is used to read or write a vector for fast scatter-gather operations.

lock is used to lock a file for a process. The application have to be carefig gsith harsh
synchronization methods. Locking a file that is needed by multiple procesghtmean
a massive reduction in performance.

do_filp_open

getname

fd_install

Figure 3.4: dasysopen call graph

Figure 3.4 shows part of the functidlm_sysopencall graph, which is used by the system call
open. The following describes part of this operation.

open is the system call invoked by the application. In [9, Ch. 8] the nhame of thersysall
is mentioned as beingysopen this was not the case with the Kernel under observation.
The system call almost immediately moves to callifigsysopen

do_sys_open takes care of the actual file opening. It finds an empty file descriptor witkin th
process and then calls the functiodo.filp_open

do_filp_open finds theinoderelated to this file using the traversing lookup. It then calls many
other functions to take care of initializing the readahsiadctsand updates theuperblock

fs_install is finally called by bydo_sysopento update thaask of the calling process before
returning to the user.

Itis important for the process to invoke the close system call once it isr@@kng or writing
the file. This allows another file to get the descriptor. Additionally each poiseallowed by
the Kernel a maximum number of opened files defined by a global variallle.K&rnel can
increase the number should the need for it arise [9, Ch. 8]. Yet thisrescadditional overhead
that should be avoided if possible.

3.3.3 VFS File Read

To read a file another system call callegd has to be invoked. The system call then checks
the existence of the file usirfigetlight. Then under the condition of file existence the current
position in the file is checked and the functiefs read is invoked. Figure 3.5 shows the call
graph of the functiowfsread Since the read operation is file system dependent, the functions
first checks for the existence of a read function by the underlying fiéegy. This is done

Analysis and Optimization of Storage 10 in Distributed and Massive Paraiggi Herformance Systems 33

3 10 STACK

walt_on_sync_kioch

do_sync_reac H wait_on_retry_sync_kioch |»

| vis_read H fenatify_access fsnotify_parent

rw_verify_area }—.-| security_file_permission |

| locks_mandatory_area I—

Figure 3.5: vfsread call graph

by checking the valuéile->f_op->read If the value isSNULL the generic read VFS function
do_syncread Figure3.5 is invoked. Throughout this entire call chain a buffer pointeargded
from one function to the next. The buffer is finally filled with the needed datzdhe final read
function is done. The issue of caching makes this simplified version far noonplcated. The
complicated caching function call graph will only be mentioned if a need fodste

The generic read routindo_syncread invokes an asynchronous read function. Since this
function is again file system dependedhd, syncread invokes the corresponding function from
the file operations. Therefore it udds->f_op->aio_read It has to be noticed here that the func-
tion itself is an asynchronous read function. To turn this into a synchsoreaddo_syncread
waits untilaio_read is done. This particular function call method shows how complicated it is
to trace such implementations. The function call graph given in Figure 3$rduieontain any
reference taio_read This is due to the function call being done via function pointers. Docu-
mentation tools such as doxygen cannot follow those function calls anddresrgnores them.
The best method to trace this is to move directly into the code. In this case ote mawve
constantly between different parts of the Kernel, including moving to uyidgrfile systems or
even further into the device layers.

File systems can use the generic VFS function implementatiaidaread This function can
be found inmm/filemap.ander the namegenericfile_aio_read The function checks whether
direct 10 will be used by checking the value of the variaBldIRECT which the application
can set. For direct 10 just a few lines of code are needed and mostwbthkds again delegated
to the function pointea_op->direct 1O which is set by the file system struct addresspace
operations.

Another option is to try to access the file using cached data. This is called rgagic. In
this casegenericfile_aio_read finds O_DIRECT unset. This access is itself very complicated
and involves a lot of function calls. The Kernel developers themselvest &d the difficulty
if this implementation. Although the explanation found in [9, Ch. 8] tries its beshtavs
how mapping read is done, it fails to fully explain the details. As an example €9, 8]
there is an explanation for the dependency of the mapping read functiarfuorction called

Analysis and Optimization of Storage 10 in Distributed and Massive Paraiggi Herformance Systems 34

3 10 STACK

do_genericmappingread This function could not be found in the Kernel under observation.
To decrease complexity this study will focus on the direct 10. This is redserwhen trying

to benchmark a system 10. Because of the fluctuation that the caching nnigbtifbto the
benchmark results, a direct IO call is preferred.

The write operation is not that different and takes almost the same patmdihalifference
is that the process needs to fill the buffer with the data that will be written toléhéMfost of the
functions found here for reading are implemented with the same name for wridisigg that
systemgenericfile_aio_read simply becomegenericfile_aio_write.

Important to know about operation pointers set by the file system implementsitioat the
none defined oNULL pointers allows the VFS to use its own generic functions. The file system
developers have to be therefore aware during file system implementationadlqmossible VFS
operations. That way they could either prevent or implement the operatitsnticat might be
run by the VFS.

Most of the remaining topics concerning the VFS are implementations of the mguartin
unmounting and registration of new file systems. Mounting is done using ttensgallmount
It is interesting to know that the VFS uses the file system implementation of a mmatidn.

For example the Ext2 file system uses its own implementaiwamount The VFS also needs
the file system to providefil _superto the mount function. This functions has the task to gather
the necessary information from its file system to fill the V&t8ict superblock Again file
system developers have to make sure thasthect superblockwas filled correctly or the VFS
might not be able to continue using the file system. The unmount has anoskemssall called
unmount Still the file system has to providelall _sb function which has the task of killing
the superblock The Ext2 in this case uses the VFS generic funckitinblock super There are
additional mounting and unmounting complex options. These include differemnting modes
such as shared mounting, slave mounting, unbindable mounting and privateingo[9, Ch.

8]. These are options that could be kept in mind during block layer optimization

It is essential to remember that the VFS explanation provided here is a simpi#iedDetails
are provided on a need to know basis. Any details overlooked in this sunwilklng mentioned
if necessary within the optimization and implementation sections.

3.4 File System

The Linux Kernel supports a multitude of diverse file systems. In [9, Chth® number is
mentioned to be more than 40. It seams that in this case the Linux Kernel isunite amount
of supported file systems. It has to be kept in mind though that most of tipegag file systems
cannot be used as boot file systems for the Linux Kernel. This can be saxjplgined by the
different types of files that the Linux Kernel requires from a file systeratore. In this case
only the native Linux file systems can be used. These file systems are atueetthe additional
information required by the different types of files related to Kernel afp@n. As an example,
the device file used by the Kernel to store device information can only bedsbor Linux native
file systems.

The main task of the file system is organizing the data on the storage devioeildi the
link between the raw bit data that is stored on the hardware and the files.tiituggh the VFS
construction might look the same as that of the file system the two have vesgeditffunctions.
For instance the VFS cannot access the files that lies in the file systemrmeattewithout using
the file systems functions. While the VFS has to store data used during runtésgstems have
to store data that is needed for other purposes such as recovergfaoraealthough file systems

Analysis and Optimization of Storage 10 in Distributed and Massive Paraiggi Herformance Systems 35

3 10 STACK

such as Linux native file systems might have the sametnames, they don’t contain the same
variables. For the file system developers editing or optimizing the Linux nfileveystems,
special care has to be taken whether dealt withctsbelong to the VFS or to the file system.
This is made in part more easier by the Kernel developers. Names in thesfigarsiegin with
the file systems name. As an example,shperblockin Ext2 is calledext2 superblock

File systems also have the task of preventing fragmentation of the underigificed This
is done because most of the file systems have been designed for thedisk based devices.
Since disks have a high seek time, which is the time to move the disk head to the dgupsi-
tion, fragmentation means higher read latency. The overhead taken bytiogibe prevention
of fragmentation is therefore justified.

Another issue that file systems have to take care of is consistency. Sivicesdean be
removed at any moment, the file system has to ensure that the data in memorsissecdnwvith
data on device. If power drops during the write of an important part ofrte@data the entire
file system could be lost. For example writing data without updatingrtbée means that the
data is forever lost. Even worse isaperbloclkwrite back that is could not be completed. This
might lead to a full file system destruction. Journaling is one of the technihatfile systems
use to provide consistency. The file system has to write every action thhtka taken onto the
device. That way the file system can undo any action that has not beessstully completed
after the power is restored.

Itis impossible to explain details on all file systems that the Linux Kernel stppbiherefore
in this work only one file system was chosen. The Ext2 was the best cémditiot only
is the Ext2 simpler than other file systems, but also is well documented by diffeo®ks.
Additionally the Ext2 file system is the basis for Ext3 and Ext4 which are the follpwersions
of the Ext2. Therefore most functions can be expected to be the samethal&xt2 does not
implement any journaling [9, Ch. 9] which is an added benefit for SSD dubetio limited
write/erase cycles.

3.4.1 Ext2

Since Ext2 is intended for block devices it can only deal with data in the sbfdpecks. The
data for the Ext2 can only be kept in blocks and no smaller units of data caavied without
using up an entire block of data. This might lead to losing some space. Filetothat occupy

an integer multiple of block, waste the remainder of a block that was not fullg file example
can be seen in Figure 3.6. The file system therefore has to decide onkasdedhat is not
going to waste too much space. Increasing the block size means wastingf @petce when

a file does not fill the block. On the other hand, if the block size is too smallricuat of
metadata including pointers and indirections means that a lot of administratido basione.

In addition to that small blocksizes lead to larger metadata that consumes géatge the
provided storage space. Therefore a optimum blocksize has to be. f&xtzionly supports a
limited number of blocksizes [9, Ch. 9]. Selecting an appropriate blocksiaksdsrelated to
the file sizes stored. If files are relatively large it is preferable to havegerdlocksize and
vice versa. The blocksize is stored in thet2 superblock defined ininclude/linux/ext2fs.h
using the variables_log_block size The variable stores the log to the base 2 of a multiple of
1024. slog_blocksizecan therefore only store the values 0, 1, and 2 giving the blocksizes
20 x 1024 = 1024, 2 x 1024= 2048 and 2 x 1024= 4096 respectively [9, Ch. 9]. Even
though Ext2 communicates with the device on a block base, the method of the dediage
has to be investigated. Some devices operate better with certain blocksizesex@mple is

Analysis and Optimization of Storage 10 in Distributed and Massive Paraiggi Herformance Systems 36

3 10 STACK

alignment in case of SSDs. These perform better when the block canrbd stoa single flash
memory page.

Figure 3.6: Storage is lost when using files that are not integer multipleslo€ia b

3.4.2 Ext2 Storage Layout

Figure 3.7 shows the device layout in Ext2. The device is divided into blookps. Each
block group stores a redundasuperblock In some later revisions the file system no longer
stores onesuperblockper block group, but stores it on either odd or even block groups @nly [
Ch. 9]. Having thesuperblockcloser to the block group means less seek time for disk device.
Redundancy also means thaperblockcannot be easily lost. Here it appears that a further
optimization of storage space can be made in respect to devices with low eekdime such

as SSDs. This could be performed by removingghperblockirom all block group and using
other means of backup. An additional advantage of low seek time devices p@4#sibility of
sizing the block group with no fear of increasing the seek time. For deviites$igh seek time
however increasing the block group means increased seek timarfont®sto data blocks. As
will be seen later from the reading process this can significantly increteseya

Super Group Data | Inode Inode
Block Group block descriptor | bitmap | bitmap tables Data blocks
1 Block k Blocks 1 Block 1 Block n Blocks m Blocks
. Boot
Device Layout Sector Block group O Block group 1 Block group n

Figure 3.7: Block groups and device Layout in Ext2

The following is a short description of all elements in a block group [9, ¢h. 9

Superblock is the main file system metadata. Contains all relevant information on the file
system, including which block groups are empty, blocksize and curresyitem status.
It also holds information on consistency with help of status variables. TheeKenly
uses thesuperbloclof the first block group. The rest are kept for backup or fastsgce

Group descriptor Reflects the status of the block groups of the entire file system.

Data and inode bitmap contains one bit for each data blockinode The bit indicates if the
data block orinodeis in use or free. A bit with value one means that the corresponding
data block oiinodeis occupied.

Analysis and Optimization of Storage 10 in Distributed and Massive Paraiggi Herformance Systems 37

3 10 STACK

Inode table contains alinodesof this block group.
Data blocks contains the actual data contents that are stored in the files.

The data structures used to define bothghperblockand theinodein Ext2 are almost the
same as those used in the VFS. The main difference is the name of the sguThesuperblock
is calledext2superblock and theinodeis calledext2inodewith both definitions found inn-
clude/linux/extfs.h Another important difference is the variables data type. Since the same
file system can be used on different processor architectures, Ext® lafine the variables in
a bit format [9, Ch. 9]. Therefore all internaiructvariables are defined using théeXX data
type. The data type stands for little endian wWKK indicating the bit length. The Kernel then
uses the architecture specific functions to convert these variables intgpé®needed by the
processor architecture. This might mean a slight slow down on architeaisieg big endian
when reading these variables.

It has to be kept in mind that during a read or a write the file system astymdrblockis
not used. As mentioned before in the VFS description stiyfgerblockinformation are kept in
the memory to speed up storage access. The file system has to therefdde ponsistency
and a frequent write back of changes made tosilggerblock Also for mounting or unmount-
ing operations done by the VFS to the file system it has to offer functions tr fi#move the
data structures kept in memory. Since these functions are lengthy andeowyan adminis-
tration factor in the file system they will not be further explained here. Eaeired parts for
implementation will be explained when needed.

Since thenodecan only hold a limited number of pointers to data blocks, another method has
to be found to increase the maximum size of a file. THoaleemploys indirection as a method
of referencing more blocks [9, Ch. 9]. As Figure 3.8 shows, indireati@ans using a pointer
to point to a block that contains pointers to data blocks. This means incraasisize of the
file to (blocksiz¢ pointersizg x blocksize This is also known as single indirection. To increase
the file size even further double indirection can be used. This means ugiaptar which
points to blocks containing themselves pointers to blocks of pointers. Tinedg@diinters then
point to data blocks. Using this meth¢ol ocksiz¢ pointersize? data blocks can be referenced.
Eventually triple indirection has the same effect using three pointer levelsougthindirection
appears to be quite simple to implement it will later be seen that it implies an ovedhead
the read or write process.

The number of direct data blocks is fixed in Ext2 to 12. There is only ondesinge double
and one triple indirection pointers. Therefore the position of each poinkerosn in advance
and Ext2 defines these into constants as seen below.

#define EXT2_NDIR_BLOCKS 12

#define EXT2_IND_BLOCK EXT2_NDIR_BLOCKS
#define EXT2_DIND_BLOCK (EXT2_IND_BLOCK + 1)
#define EXT2_TIND_BLOCK (EXT2_DIND_BLOCK + 1)
#define EXT2_N_BLOCKS (EXT2_TIND_BLOCK + 1)

EXT2NDIR BLOCKSdefines the number of directly addressable blocks or direct pointers.
These have an offset adleroto 11. The offset is relative to the beginning of data point-
ers within theinode EXT2IND_BLOCK is the single indirection pointer offset and has a
value of 12. EXT2DIND_BLOCK is the double indirection pointer offset and has a value of
13. Finally Ext2 TIND_.BLOCK is the triple indirection pointer offset and has the value 14.
EXT2N_BLOCKShas a value of 15 and is the total number of pointers stored in a sSiragle

Analysis and Optimization of Storage 10 in Distributed and Massive Paraiggi Herformance Systems 38

3 10 STACK

Inode Data
blocks
. Direct data block .;7
—_________Fp
1 -
P N]
12 direct i Single Indirection
pointers]
Indirection]
Single Indirection blocks |
Double Indirection
Triple Indirection M I

3.4.3 Ext2 Operations

h 4

Double Indirection j_

Figure 3.8: Indirection in Ext2

As was mentioned in the VFS, the file system has to overwrite the functions givithe op-
eration structures. These functions will later be referred to for cagrgirt the corresponding

functions by VFS.

There are three operations that are defined by the Ext2:

file_operations are used to manipulate files, which include read and write functions. Their
Ext2 definition is found irext2/file.c Part of the definition is shown below. As can be
seen from the comment above the definition of fileeoperations most of the function
pointers are defined &ULL to use the generic VFS defined functions.

/*

* We have mostly NULL’s here: the current defaults are ok for
* the ext2 filesystem.

*/

const struct file_operations ext2_file_operations = {

.1llseek =
.read =
.write =
.aio_read =
.alo_write =
.fsync =

generic_file_llseek,
do_sync_read,
do_sync_write,
generic_file_aio_read,
generic_file_aio_write,
ext2_fsync,

Analysis and Optimization of Storage 10 in Distributed and Massive Paraitgi Ferformance Systems

39

3 10 STACK

There is anothestruct file operationglefined inext2/dir.cfor directories calle@xt2 dir_operations
This is referred to when dealing with directories and is defined partiallylksvfo

const struct file_operations ext2_dir_operations = {

.1llseek = generic_file_llseek,
.read = generic_read_dir,
.readdir = ext2_readdir,

.fsync = ext2_fsync,

};

inode_operations are mostly concerned with changing tihedevariables. There are several
definitions ofinode operationssuch aext2file_inode operationsdefined inext2/file.cor
ext2 dir_inode operationsdefined inext2/dir.c

address_space_operations are used for general address space manipulationsaddressspaceoperations
form a connection between the file system and the block layer [9, Ch.h&).d&finition
used in the Ext2 is shown below.

const struct address_space_operations ext2_aops = {

.readpage = ext2_readpage,

.readpages = ext2_readpages,

.writepage = ext2_writepage,

.sync_page = block_sync_page,

.write_begin = ext2_write_begin,

.write_end = ext2_write_end,

.bmap = ext2_bmap,

.direct_IO = ext2_direct_IO,

.writepages = ext2_writepages,

.migratepage = buffer_migrate_page,
.is_partially_uptodate = block_is_partially_uptodate,
.error_remove_page = generic_error_remove_page,

};

3.4.4 Ext2 Read

To read data from an Ext2 file system the application has to use the cordésgsystem call
as discussed in the VFS. The VFS then selects the function pointer from themegations of
operation given by the Ext2. Using the VBS8perblockhe device on which the file system lies
is given to the functions that need this information as a parameter.

The main function that is used for reading or writing blocks to or from the El¢Zystem
is ext2getblock [9, Ch. 9]. As seen from Figure 3.9, which provides the caller graph fo
ext2getblock almost all other read or write operations depen@éxi2 get block As seen from
the function definition below the function requires a pointer toitiagle of the file to read or
write from, the sector to be read or written, a buffer to place the data intorantteger. The
integer is callectreateand has a value of zero for read and anything else indicates a write. The
inodehanded over to the function is the runtinrmodeand not the one stored on the Ext2 file
system. This can be seen from usstguct inodeand notstruct ext2inode

Analysis and Optimization of Storage 10 in Distributed and Massive Paraiggi Herformance Systems 40

3 10 STACK

int ext2_get_block(struct inode *inode, sector_t iblock,
struct buffer_head *bh_result, int create) {

int ret = ext2_get_blocks(inode, iblock, max_blocks, bh_result, create);

ext2_get_xip_mem

_ ext2_get block
ext2_delete_entry ext2_unlink i‘—l ext2_rmdir |

ext2_write_hegin | ext2_rename l | ext2_create |

__ext2_write_hegin /
N ext2_set_link | ext2_add_nondir |ﬂ—| ext2_mknod |

ext2_bmap
ext2_add_link ext2_link ext2_symlink

ext2_direct_|O
| ext?_make_empty H ext2_mkdir |

ext2_fiemap

ext2_nobh_write_begin l

i

ext2_get_hlock

ext2_nobh_writepage |

ext2_readpage
extZ_readpages
ext2_truncate ext2_delete_inode

ext2_writepage

ext2_writepages

Figure 3.9:ext2 getblockcaller graph

The functionext2 getblock has to be in the form ofetblockt provided by the VFS. That
means it has to take the same variables as parameters and return the sameedatetiy. 9].
This is quite important as this function will be given as a parameter to a lot of biteer level
functions in the VFS layer. As an example, the functidmockdevdirect 10 has a parameter
getblockt which ext2direct 10 has to provide.

ext2 getblockis a front function that calls the functi@xt2 getblocks which is the function
that carries out the block request. As seen in Figure 3.10 the fureti@met blockdoes not do
much. It simply callxt2 getblocks

Figure 3.11 shows part of the complex call grapterf2 getblocks The functions seen in
the call graph are the ones needed for the Ext2 read operation.

The first functionext2 get blockscalls isext2 block to_path The function is used to find the
path to the block in the indirection. It therefore returns an array of wff each indirection

Analysis and Optimization of Storage 10 in Distributed and Massive Paraitgi Ferformance Systems 41

3 10 STACK

| ext2_get_hlock }—hl ext2_get_hlocks I—

NS

Figure 3.10ext2 getblockcall graph

ext2_alloc_hranch

ext2_hlock_to_path

ext2_blks_to_allocate

ext2_splice_branch
ext2_get _hbranch

ext2_get_hlocks

| ext2_init_block_alloc_infa [

Figure 3.11ext2getblockscall graph for read

level. Sinceext2blockto_pathonly needs to perform integer operations on the block number
to find the offsets, no actual 10 is done in this step. The block number is siropthpared to

the possible numbers of blocks in each level to find the offset. The nurbeatiection levels
needed to address this block is then calculatedxtg get blocks

Now that the offsets for each indirection level is knoext2 get blockscan proceed to find
the address of the data blocks to be read. This is done by caki2get branchwhich has the
task of finding the physical address of the blocks involved in the indirectidherefore returns
a chain of triplets containing a key, a pointer and a buffer. These ar@aeaiidentification for
each indirection and final data block on the physical levedxtP get branchreaches the end of
the indirection levels and finds a valid pointer it retuihgl. This means that thext2 get blocks
was called for a read request.

The important thing to remember here is that2 get block does not read or write any data.
The buffer is the returned data containing the physical address of thebliterks that are to
be read or written. These physical addresses can then be used biy3hayér to forward the
request to the underlying block layer. The only function that a file systesigdata organization
and it therefore can only point the VFS as to where data should be @adbfrwritten to. This
means that more complex read operations sudiicgdevdirect 10 can usegetblock t, which
the VFS matches text2 getblockon an Ext2 file system, to find physical block address.

Analysis and Optimization of Storage 10 in Distributed and Massive Paraitgi Ferformance Systems 42

3 10 STACK

3.4.5 Ext2 Write

On the other hand, requesting more blocks for a write operation from ttifilex system is a
much more complicated process. In [9, Ch. 9] there are around four nskis teentioned that
the file system has to go through in order to supply more blocks.

* Number of indirection levels have to be found to address the requestdd blo

» Free blocks are found and reserved

» Adding the blocks to block list of the file

* Finally block preallocation is used to enhance performance of next wiéeations

Performing these tasks for finding, allocating and preallocating new bisdkighly compli-
cated. These however will only be explained in case of need for optimizafibis has the
added advantage of being able to compare original and optimized implementatiefy side.

As was the case at the end of the VFS description, the Ext2 file system is categland
contains many other features. Only the most important and needed funatidrfeatures has
been explained here. The rest will be explained if required during optiiniza

3.5 Block Layer

Most books consider this part to be simply an interface for driver mod@ékers mention it
briefly and do not go into details. As was shown in Figure 3.1 the driver lid®iween the
block device layer and the device space. As will be seen from the exjgamd the block layer,
the device driver has the ability to overwrite some functions provided. Ehe&e designers
have therefore the option of implementing some of the device operations in\te diiver.
Another possibility is implementing the same device operations in hardware a&oetiyplacing
it on the device. Hardware design means longer design time and highee degts. On the
other hand device driver implementation means higher CPU utilization. Theréie choice of
implementation is not just dependent on device design and device complexiéjsb dependent
on target architectures. As an example, Blue Gene contains multiple weak leading to a
higher latency with device driver implementations.

Figure 3.12 shows the communications from user space to block layer.[8] Qh this figure
the user space is at the bottom. The VFS has the task of communicating with thepase.
File operations defined by the file system are then used by the VFS to talk ttotkedevice.

The Kernel has another type of devices called character devicesndimedifference is that
character devices can only communicate in a stream of data and canmoidoenty accessed.
A keyboard for example is a character device. Thus keyboards thereccessed randomly.
The interest is in storage 10. Therefore character device operatiimonbe explained.

As block device need to address data in the form of a block their is a regenteto define
different chunks of data. Block devices have a limit for the size of the setatitiressable block
of data. This is referred to aector Usually the size is 512 bytes. On the other hand the file
system has to define its smallest chunk of addressable data which is usiaigddas a block.
Therefore the Kernel has to store a block size variablstanctsrepresenting the file system.
Since the block device cannot offer smaller chunks of data, the blockag® be a multiple of
sectors. Finally a page size is the data size which the memory management M) (Mes.
This is architecture specific [8, Ch. 14]. For most x86 architecturesdfe pize is 4KB. On

Analysis and Optimization of Storage 10 in Distributed and Massive Paraiggi Herformance Systems 43

3 10 STACK

Block
device database
block_device ‘
Block device

Inode -
/ operations

A

Gen
y Disk
File operations ‘ \
Request queue
10 Scheduler
request sorting
Kernel

User

User space application

Figure 3.12: Block layer overview

the other hand some POWER architectures offer the possibility of choostageen 4KB and
64KB page size.

3.5.1 Block Device Representation

Under the Linux Kernel motto "Everything is a file”, devices are repre=gnsing a file called
device file [9, Ch. 6]. The Kernel also uses additional identification nusifoe each device.
This includes major and minor numbers. Important here is to know that eesigedcan be
uniguely identified by the Kernel. Also usually these unigue identification nusrdre stored in
the structures that are relevant to the device. The Kernel also keep®fraevery added device
using a hash table this is called a block device database and is shown in &8, Ch. 6].
To add to this list of devices the Kernel ussdd diskwhich is defined irblock/genhd.c

Since devices are represented by files, normal read or write operatiorise performed on
such files. This also means that devices can be written to or read from witi@need for file
systems or mounting. This will be of further benefit when it comes to bendtingaoverhead
caused by file system in an 10 operation. Considering that block devaresantain partitions,
the Kernel creates a device file for each partition. As mentioned in the fiterayshe device
files cannot be stored on none Linux native file systems. This is a diredlt if the device
files needing additionadtructsand data stored for their operations. In addition to normal read
and write operations Linux has to provide special functions to manipulaieetevihe Kernel
therefore provides an IOCTL or Input Output Control interface [B, 6]. The IOCTL provide
an interface for configuring and editing devices. The VFS defines lO@fictions which are
used by calling the corresponding system calls.

The representation of devices in the form of a file means that the VFS peétdsrs to the
file operations. These are usually provided by the file system. Yet deldsafe special files on

Analysis and Optimization of Storage 10 in Distributed and Massive Paraitgi Ferformance Systems 44

3 10 STACK

which the file system, even Linux native file systems, file operations campeoat. Therefore
the block layer has to define special file operations for the block deviglewds part of the file
operations specific for the device files. These file operations are défifgblockdev.c

const struct file_operations def_blk_fops = {

.open = blkdev_open,

.release = blkdev_close,

.read = do_sync_read,

.write = do_sync_write,
.aio_read = generic_file_aio_read,
.aio_write = blkdev_aio_write,
.mmap = generic_file_mmap,
.fsync = blkdev_fsync,

.unlocked_ioctl = block_ioctl,

};

The functioninit_specialinodethen defines the file operations for inedeof the device file
as shown below. The function simply selects the appropriate file operatamnslie file mode.

void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)

{

inode->i_mode = mode;

} else if (S_ISBLK(mode)) {
inode->i_fop = &def_blk_fops;
inode->i_rdev = rdev;

}
EXPORT_SYMBOL (init_special_inode);

Additionally the block layer has to define address space operations fdethee file which
can also be found ifs/blockdev.c This and the previous file operations definition show how
difficult it is to differentiate between the layers in the Kernel. Although it issidered that these
definitions are part of the block layer, their implementation is found in the fileesy$older of
the Linux Kernel.
The device layer also defines another group of operations specitiefares calletlock deviceoperations
These can be found include/linux/blkdev.hPart of thestructdefinition can be found below.

struct block_device_operations {

int (*open) (struct block_device *, fmode_t);

int (*release) (struct gendisk *, fmode_t);

int (*locked_ioctl) (struct block_device *,
fmode_t, unsigned, unsigned long);

int (*ioctl) (struct block_device *,
fmode_t, unsigned, unsigned long);

int (*compat_ioctl) (struct block_device *,
fmode_t, unsigned, unsigned long);

Analysis and Optimization of Storage 10 in Distributed and Massive Paraiggi Herformance Systems 45

3 10 STACK

int (*direct_access) (struct block_device *, sector_t,
void **, unsigned long *);

int (*media_changed) (struct gendisk *);

struct module *owner;

};

Each device driver can then define its own function pointers to overwetetfunctions. As
an example thetruct blockdevic operationgfor the loop device is shown below. Any operation
that is not defined or hashull value means either generic functions will be used or this option
is not defined by the block device.

static const struct block_device_operations lo_fops = {

.owner = THIS_MODULE,
.open = lo_open,
.release = lo_release,
.ioctl = lo_ioctl,

#ifdef CONFIG_COMPAT

.compat_ioctl = lo_compat_ioctl,
#endif
s

3.5.2 Block Layer Components

As seen in Figure 3.12 thgendiskhas an important role in the communication with the device.
Part ofstruct gendisks shown below. Thetruct gendislkeeps track of the entire device which
makes it an additional abstraction level on the generic level. Hence the remeeqdisk [9,

Ch. 6]. Additionally as seen below ttstruct blockdeviceoperationsof the block device has a
pointer within thestruct gendiskThese are then linked to the ones defined by the device driver.
It is important to note here that these operations should not be invokexdlginastead the file
operations ofile_operationsshould be used. In turn the file operations will invoke the necessary
block deviceoperationd9, Ch. 6].

struct gendisk {
int major; /* major number of driver */
int first_minor;
int minors;

struct disk_part_tbl *part_tbl;
struct hd_struct partO;

const struct block_device_operations *fops;
struct request_queue *queue,

atomic_t sync_io; /* RAID */
struct work_struct async_notify;

Analysis and Optimization of Storage 10 in Distributed and Massive Paraiggi Herformance Systems 46

3 10 STACK

The most important variable present in tteuct gendisks the struct requesgjueue Any
communication with a block device is done using a single request queue. THnews as
request queue management. It has to be noted here that, while the Kasnsbrtrol of the
caches, manipulating the queues is done by the block layer [9, Ch. &]ofRhe definition of
struct requesueues shown below.

struct request_queue

{
struct list_head queue_head;
struct request *last_merge;
struct elevator_queue *elevator;
request_fn_proc *request_£fn;
make_request_fn *make_request_£fn;
prep_rq_fn *prep_rq_£fn;
unprep_rq_£fn *unprep_rq_£fn;
unplug_£fn *unplug_=fn;
merge_bvec_fn *merge_bvec_£fn;
prepare_flush_fn *prepare_flush_£fn;
rq_timed_out_fn *rq_timed_out_£fn;
dma_drain_needed_fn *dma_drain_needed;
sector_t end_sector;
struct request *boundary_rq;
struct timer_list unplug_timer;
int unplug_thresh; /* After this many requests */
unsigned long unplug_delay; /* After this many jiffies */
struct work_struct unplug_work;
s

Therequestqueuecontains pointers to functions which can be set by the device driveseThe
includemakerequestfn which is used to add a request to the queue. Any communication with
the device is done using thequestqueuefunctions. Using a request queue is important for
performance. The overall performance would drop if there was naejirecase of disk com-
munication. To prevent long seek times the Kernel employs an IO scheudtlese task is to
reorder and merge requests. The main task of the 10 scheduler is atl be¢ter performance.
This might result in some tasks being delayed more than others [8, Ch. id]Orschedulers
are also known aslevators To give the 10 scheduler enough time to reorder or merge requests,
the Kernel plugs the request queue after inserting a request. Pluggiggdhie means stopping
the device driver from carrying out the requests. Once sufficient tiasepassed or enough
requests have been made the queue is unplugged. The functions eideganeeded for this
operation can be found struct requesfueueshown above.

Another important data structure shown belowsiruct request The task of the function
makerequestfn is to fill a request and add it to the queue. Older Kernel versions usetiiit a
requests in the form of buffers. This meant that a request could onkaicoa single block on

Analysis and Optimization of Storage 10 in Distributed and Massive Paraitgi Ferformance Systems 47

3 10 STACK

the device. To improve performance the Kernel now admits requests inrtheofa struct bio
[8, Ch. 14]. BIO stands for Block 10.

struct request {
struct list_head queuelist;

struct request_queue *q;

int cpu;
unsigned int __data_len; /* total data len */
sector_t __sector; /* sector cursor */

struct bio *bio;
struct bio *biotail;

struct gendisk *rq_disk;
s

A bio shown in Figure 3.13 contains multiple vectors each containing pointers toediffe
physical pages [8, Ch. 14].

struct hio

bi_io_vec \i_i:x
Y

bio_vec | bio_vec|bio_vec|bio_vec

¢ Page
Page

Page

Page

Figure 3.13: Representing requests in the form of a BIO

The final structure that the Kernel needs to represent a block devidedkdevice It is
mostly used by the VFS layer. Thatruct blockdevicerepresents partitions as well as com-
plete block devices. The relation betwestnuct blockdeviceand struct gendisks shown in
Figure 3.14. In the figure there is a singleuct blockdevicerepresenting the complete block
device. Each partition on the device is also represented by a septartateblockdevice The
connection betweestruct gendiskand the different partitions is done using a list calfet.
This containdhd_structwhich points to thédlock deviceof each partition [9, Ch. 6]. Addition-

Analysis and Optimization of Storage 10 in Distributed and Massive Paraiggi Herformance Systems 48

3 10 STACK

ally eachblock devicecontains a pointer to th&truct gendiskhat represents the block device it
is stored on. This can be seen in #tauct blockdevicedefinition shown below.

sfruct block_device .
Representsthe | bd_containg
entire block device b d_part

bd_disk

struct gendisk

bd_contains
hd_part
bd_disk

part struct biock_device
Each represents a
partition

request gueue bd_contains

bd_part
bd_disk

struct hd _struct

part
Contains a list
of partitions

Figure 3.14: Connecting block layer data structures

struct block_device {

dev_t bd_dev; /* not a kdev_t - it’s a search key */
struct super_block * bd_super;

int bd_openers;

struct mutex bd_mutex; /* open/close mutex */

struct list_head bd_inodes;

struct block_device * bd_contains;
unsigned bd_block_size;
struct hd_struct * bd_part;

};

3.5.3 Submitting Requests

The final point that has to be made about the block layer is how the VFSubanitsa request.
The file system controls the method by which the access is going to take placemake a
simple example, the direct IO call graph could be followed. As seen in Figdfethe main
function called by the direct 10 access of a file systemlidockdevdirect 10. The numbers in
Figure 3.15 show the order of relevant function execution. From thesfigblockdevdirect 10

Analysis and Optimization of Storage 10 in Distributed and Massive Paraiggi Herformance Systems 49

3 10 STACK

callsdirectio_worker (Figure 3.15 (1)) which in turn calldo_direct 10 (Figure 3.15 (2)). This
function has to take care of where the blocks are to be read from or wtdteherefore
do_direct 10 has to callgetmore blocks(Figure 3.15 (3)). The VFS decides on the appropriate
file systemget more blocksimplementation. The file system only provides the blocks physical
addresses will be read or written. The next steps of the call graphthavarget of creating a
struct biothat will be finally admitted to the lower block device levels ussupmitbio (Fig-

ure 3.15 (4)).

bio_set_pages_dirty

dio_bio_submit

3
dio_hio_add_page
| submit_page_section)—b{ dio_send_cur_page
dio_new_hio
2.| do_direct 10

clean_blockdev_aliases

3 .| get_more_blocks

dio_complete

dio_await_completion

aio_complete
dio_bio_complete
dio_await_one

__filemap_fdatawrite_range |
| __ blockdev_direct_|O |—.’ filemap_write_and_wait_range
»

T wait_on_page_writeback_range ‘

.| direct_io_worker

Figure 3.15: __blockdevdirect 10 call graph leading teubmitbio

The functionsubmitbio is the main function used in communicating with block device. Part
of the call graph is shown in Figure 3.18ubmitbio calls genericmakerequestproviding it
with thebio. As thegenericmakerequestunction takes only theio as a parametesubmitbio
has to mark thdio as being either a read or write request. It is important to know that the only
function that calls thgenericmakerequestis submitbio. This means that no request can be
submitted to the block layer without the use of this function.

count_vm_events

submit_hio

generic_make_request

task_io_account_read __generic_make_request

Figure 3.16: submibio call graph

The next step is fogenericmakerequestto call __genericmakerequestas seen in Fig-
ure 3.16. The reason for this complicated call scheme is the amount ofrdicgpthat has

Analysis and Optimization of Storage 10 in Distributed and Massive Paraiggi Herformance Systems 50

3 10 STACK

to be done to admit a single request. Another problem that complicates the impi¢ioreof
__genericmakerequestis the possibility of recursive calls. Due to the limited stack available
for the Kernel, thegenericmakerequesthas to limit the number of recursive calls done using
__genericmakerequesf9, Ch. 6].

__genericmakerequesftinds the appropriatstruct requesgueueto which the request has to
be made. The request queue has a pointer tmtilerequestfn which was set by the driver. The
block layer provides a generinakerequestfunction. Yet some driver prefer to use their own
implementation. The reason is usually the different approach that thesesdiake to writing
to the underlying device. For example, while schedulers and queue piuiggiseful for a disk
device, aramdiskwould not benefit from these methods. In fact taendiskimplementation
found in driver/block/brd.cprovided by the Linux Kernel does not use any queuing system.
The implementation of thenakerequestfn for the ramdiskcarries out the request as soon as
it arrives by callingmemcpy Device drivers have to set thieakerequestfn used by calling
blk_gueuemakerequestwhich takes the request queue and itekerequestfn as parameters.
The functionblk_queuemakerequestinks makerequestfn to the request queue of this device.

In case of disk based devices thekerequestfn would use the elevator functions provided by
the block layer to find the appropriate position to insert the request into #ngeqT he elevator
functions represents the 10 scheduler operations. This is done by dakirignctions found in
struct elevatorops The definition of the elevator operations is done based on which schedule
is used. It is important to give the scheduler sufficient time to merge andaetirte requests.
Therefore thenakerequestfn has to implement the queue plugging. This will prevent the queue
requests from being carried out until the scheduler had enough timeftrmpeeordering and
merging of requests. After the timeout, which by default is 3 milliseconds gstgxecution is
allowed.

The final step in a request is the execution. This is done by catiggestfn. This function
however is device dependent and therefore irrelevant to the disoussie. Additionally most
devices taken into consideration in this study do not contaéyaestfn. This is because these
drivers try to bypass the queue and schedulers provided by the LiatneK One example was
mentioned before is theamdisk The ramdisksimply carries out the request as soon as it is
made. Therefore there is no need fequestin.

As has been the case with the former Linux Kernel 10 stack layers, they§itera and VFS,
the block layer is complicated and too lengthy to describe in full. Only compoaadti&inctions
that are at the heart of the block layer were mentioned. In case neadiditipnal parts and
components will be described in the implementation.

3.6 Storage Class Memory and Hard Disks

Few years ago the choice for storage medium was limited to either fast bhuexpensive
RAM or cheap but slow HDDs. Given that RAM is a volatile memory that woutfline long
life batteries to support the storage unit, the choice was practically limited to HB® main
problem with HDD is the mechanical component. The concept of rotating dekonly be
realized with addition of motors. This meant that there is a physical limitation to #exispy
which such devices can operate. An additional limitation for HDD is the usesiofighe request
gueue. HDDs cannot support more request queues since only alséaglean be packaged into
the device. This meant that the storage can only handle requests in sdriz\zer in parallel.
Considering that the amount of storage on single HDD was constantly sicgetine time to
read all the data present on the storage also increased. Although 10 IBokimereased their

Analysis and Optimization of Storage 10 in Distributed and Massive Paraiggi Herformance Systems 51

3 10 STACK

speed it quickly became obvious that storage will be the new system bokleS8ecvers and
large storage systems tried to increase speed by running several HpRgaitel. Yet as the
gap between CPU and IO widened more and more HDDs had to be addesglystam grew in
complexity and the overhead for managing the large number of HDDs bedaitnie v

Due to the inherit limitations of HDDs developers were looking forward to ateshnology.
The flash technology had already been invented in the late 80s [10]. pilasbnted proper-
ties that HDD could not provide. The ability to be programed, erased atlalectronically
represented a huge advantage. Additionally being none-volatile meantteaternal power is
needed to keep the data. Despite all the advantages flash was not aaloptstbrage device
until the beginning of the 21th century. Some reliability issues which will be latplagned
prevented the immediate adoption. To increase the reliability many differemttions and al-
gorithms had to be created. Also the amount of stored data was limited by thistoasgze
[10]. Therefore the flash devices had to wait till the transistor size alldosea viable storage
to be built using this technology.

Figure 3.17 shows how data is stored in a flash device [11]. A floating gatesigended
between the gate and the substrate. The target is to store data by trapgiransla the floating
gate using tunneling. The gate is considered erased and containing thd velien there are no
electrons present on the gate. On the other hand if the floating gate cdrapipsd electrons it
signals the value 0. This means that all units contain the value 1 until a writet@mgechanges
it to 0. The write is done by applying high voltages to the gate which allows efectootunnel
from the substrate to the floating gate. An erase takes place by applyingitgppigh voltage
to allow the trapped electrons to tunnel back to the substrate [11]. Readinglie is done
by applying the normal voltage level on the gate and detect the formation fedranel in the
substrate. In case of having trapped charge on the floating gate theethewuld either be
not formed or weakly formed. The circuit can therefore conclude thateas written to the
circuit. If there is no charge trapped on the floating gate, the transistomunitibn as a normal
transistor and a 1 can be detected.

Programmed

Word Line

Oxide Layer Control Gate
Floating Gate

Z//{/ﬁ Bit Line
o

7
.

.

Figure 3.17: Floating gate in flash memory

There are two different methods in which the flash transistors can b@egdogether. The
method of the cell interface suggest how the data is read from the flash merfie first
method is a NOR construction. The advantage of a NOR flash memory is thattiegaad and
written one byte at a time. The write however has to assume a previous &Rdséipwever

Analysis and Optimization of Storage 10 in Distributed and Massive Paraiggi Herformance Systems 52

3 10 STACK

the complexity of the NOR circuit means that the storage density of such at égdunited.
That is why NOR can be applied in other more smaller units of storage. NOR iby/mesd in
embedded systems [12]. Since the NOR flash is not suitable as a massagestoit it will not
be further investigated.

The second possible cell interface is the NAND which is shown in Figure[31]8 The main
difference to NOR is that the NAND cells can only be accessed in a padeak ¢onstruction.
Also NAND promised higher storage density which made the NAND more suitabkdoage
than NOR. As seen in Figure 3.18 the cells take the form of an array. kactine contains 4K
pages. Each page contains additional spare bytesbiflitee runs across 64 pages. The figure
represents an 8Gb SLC 50nm flash [11].

|
1 ﬁ @
Floating Gates ﬁ_:m
b

|
0
Word Lines -7 Il \T

Bit Lines

64 |pages
per|block
Control Gates

4K page

| 4,096 + 128 bytes (33,792 cells) |
|

| per 4K page

Figure 3.18: NAND flash cell architecture

3.6.1 Flash Memory Operations

The flash memory allows only three basic operations. These are read,aard program. The
NAND cells layout limit the minimum number of cells to be operated on. The reachtbipe
can be done in random and the size is not limited. This shows the most impaitamtage

of the flash, which is the high speed random access. In comparisorefeen only be done
on a complete block. The target is to drain all floating gates. This means thaitsalire
erased to a value of 1. The reason for being only able to write one blakirat is the shared
wordlinesandbitlines The difficulty with erasing a complete block lies with the high voltages
required. These stress the block leading it to fail after a limited number ségrarhe final
operation is cell programming which is used to write a 0 on a flash cell. The NAjOut
allows for programming only a single page at a time. Furthermore programmingndgoccur

Analysis and Optimization of Storage 10 in Distributed and Massive Paraiggi Herformance Systems 53

3 10 STACK

on a previously erased block. This is because the floating gate chamget ¢e drained by the
programming operation. Another important aspect of writing is that it can lbalgone on a
whole page. Additionally a block must be programmed sequentially one pageénag but not

at once. Further details on the read, erase and program operatbes faaund in [10], [11] and
[12].

There are two main types of flash memory the Single Layer Cell or SLC and tite Myer
Cell or MLC. In a SLC each flash transistor can only contain a single bitotmparison a MLC
flash transistor can contain more than one bit. This is achieved by usingediffeltage levels
to signal different values. Both SLC and MLC use the same voltage rargfethe SLC can
only detect two values with a wide voltage threshold. On the other hand MEE smmaller
thresholds to divide the voltage range into four or more values. That niteahg 2x MLC
can store 2bits instead of one. The storage density is therefore effgadioubled for MLC
compared to SLC. The main problem however with using MLC is the sensitivifgtacting the
different values. This means that the circuit for reading and writing is roomgplex. MLC also
requires several write operations to achieve the correct voltage legditiénally reading with
this high voltage sensitivity means a higher error rate. Therefore ML®@ttkes's of magnitude
lower write/erase cycles than SLC. In fact many sources report 100v@ite/erase cycles for
SLC and only 10,000 write/erase cycles. This main difference makes SLE suitable for
enterprise applications where heavy read and write will strain the flasbede\However MLC
is more suitable for consumer products that allow for a higher error rat@amorter product
life. A more detailed comparison between SLC and MLC can also be foundjn[fl] and
[12].

3.6.2 Flash Memory Reliability

The main reason for the late adoption of the flash memory is the reliability chadlehgerved
in the technology. As has been mentioned before each block needs taske &efore it can be
rewritten. The erase and the write operations require high voltages vireoh the floating gate
construction. The cell will therefore eventually fail due to trapped elestin the oxide layer.
Another factor that leads to failure is the break down in the oxide structine@oxide layers are
pointed to in Figure 3.17 [11]. The damage caused cannot be fixed. Dattihe cells have a
limited number of erase/write cycles.

Another reliability factor of flash is the data retention limit. Due to leakage the flpatin
gate cannot retain the charge indefinitely. Therefore the storage wiltiealy lose all data.
Manufacturers target a data retention period of 10 years. This mightifieient for most
application. Despite that the system has to be prepared for data retemtios €rhe reason
is that the data retention is dependent on the already performed writeégdss. Therefore
more frequently used blocks have a shorter data retention period [dLbrW, does the system
prepared for blocks failing during runtime, there are also bad blockatbatelivered in a newly
produced flash chip. These are guaranteed to be no more than 2% byriii@abarer [11]. Bad
blocks are the result of the complex manufacturing cycles that flash cavestd go through.

Not only does the flash units contain failing blocks due to limited write/erases;ymlg also
reading and writing causes disturbance in neighboring bits. A readtapecan flip uninten-
tionally other bits. The risk however is higher with a write operation. Theom&sthat write
uses higher voltage than read. Also several read operations on thégamght lead to drain-
ing the trapped electrons in the floating gate. This effectively removes ftterwdata. Write
on the other hand has a higher chance of disturbing charges on oiebowng floating gates

Analysis and Optimization of Storage 10 in Distributed and Massive Paraiggi Herformance Systems 54

3 10 STACK

[12]. The system has to detect these bit flips and fix the error. This is nanplcated than it

looks. Given that a value can only be written back to the bit after erasinghbke block, the bit

flips cannot be simply rewritten. This indicates that blocks which contain d letite and read

operations will have to be refreshed after a given time. Until the block issbéd the system
will have to endure the errors during runtime. The read and write distuaes tmore effect on
MLC. This is because the MLC uses lower voltage thresholds betweenllésva

3.6.3 Increasing Reliability in SSDs

In order to increase reliability the flash storage card or solid state disk)(B&Dto employ a
wide range of techniques. This is crucial for using NAND flash as a géouait. The first and
far most important issue that has to be addressed is the limited write/erase [Ejelsystem
designed for HDD are allowed to write to the same address as often asamgceln a flash
that would mean destroying a group of pages or blocks more rapidly thansotlihis cannot
be allowed, as it might lead the device as a whole to be destroyed. SSD ctanerfs have
therefore resolved the issue by use of wear leveling. The target of lexesding is to use all
blocks on the SSD equally. This can be practically achieved using one gidsgible ways. The
first method is using SSD specific file systems. These file systems will havegsensible for
dividing the load across all existing blocks [13]. This however has thedack of preventing
the use of SSD with conventional file systems. Therefore the second misthuate widely
used. In this method the SSD itself becomes responsible for wear levelingheSa basis
blocks cannot be grounded to a specific address since the SSD is altomesle blocks around.
Conventional file systems however require a stable address spacth&&SD employs a Flash
Translation Layer or FTL. The idea is that the file system would see a uaifigiess space. The
SSD controller on the other hand would be allowed to place blocks wheréhaear leveling
algorithm requires. The controller then records the physical addressha FTL and links it
to the address seen by the file system. Although this might require additiomddead, it is
commonly used due to its backwards compatibility with HDD. Additional informatiomwear
leveling can be found in [11] and [10].

Wear leveling algorithms can choose between two different approadtesfirst is called
static wear leveling. On placing a new page into the SSD the controller onlkshedind the
least used free page. The second approach is called dynamic wdargeue this case the
controller checks for the least used page among all free and uses [i@je By moving data
around the controller can achieve higher wear leveling. Most SSD metougas are not satisfied
by the added product life time using wear leveling. To increase the life time @irtthict even
further a method called over-provisioning is used. Most SSDs contain storage than is
reported. The controller therefore has added space for furtherlexsing. This allows the
controller to retire some blocks once they have reached a certain erebf16y.

As mentioned earlier flash devices are error prone. SSDs therefeeetdi@vercome this
limitation. Most SSDs incorporate strong error correction and detectiomicaods. The target
is to discover any error that might have occurred during the read ggodde SSD has to carry
extra data to support these mechanisms. However there is a limit for how nmactcan be
detected and corrected. This limit is determined by the used algorithm [11heJsther hand a
write failure can be easily detected by the controller. The write then is rapeatthe same or
on a different pages. Pages that result into too many write or read fadveaetired. Each page
carries bits that can be used to mark the page or block as bad or défecthig controller then
has to avoid those blocks for any future write operations.

Analysis and Optimization of Storage 10 in Distributed and Massive Paraiggi Herformance Systems 55

3 10 STACK

Each page has to contain additional data for error detection and correatichanisms. This
means that writing a certain amount of data into a SSD might result in writing manentha
intended. This is called write amplification [11]. In fact write amplification is vedifsan first
realized. A write failure might result in having to repeat the write operatiahraark the failed
block as a bad block. The difficulty becomes more visible when noticing thapa pannot
be written without being erased first. In that aspect if a write was intended éertain data
unit within the page the whole page has to be repeated in another block. eAragtion is
to erase the whole block and rewrite it again in the same location. Since anoyxds has a
high latency SSD controllers try to avoid them as much as possible. The S&ifotieeopts for
using a different page instead of updating the old one. The old page istided for deletion
[11]. This technique is called garbage collection. Performing the deletionesittimme allows
for usage of idle time during which the controller is not fully utilized. Howevehéd controller
uses up all of the freshly erased blocks a costly erase cycle will have petiormed. SSDs
might therefore have a different performance for different condition

The complexity of the controller of a typical SSD targets mainly the increasadfrance.
The increase of life time of SSD is an important factor in Using this technology sterage
device. The more mechanisms are used to increase reliability the further thpdiieof a flash
device can be extended. For example, by using proper wear levelingth8&h-500 can sustain
constant writes at full bandwidth for up to 3.25 years. By using additionas and tolerating
higher block failure rate the RamSan-500 can sustain the constant wriih bamdwidth for
more than 15 years [10]. This shows how much the usage of differdmiiteees can make SSD
endurance comparable to that of HDD. Since SSDs are more robust hBnthé¢ system is
promised as a whole a higher reliability by overcoming SSD challenges.

From the previously mentioned reliability issues it becomes obvious that SSbelandled
in a different method than HDD. The problem however is that systems heme primarily
designed to operate with HDD. One of the major issues is the single quelsiopef HDDs.
In comparison a SSD operates with a wide range of inherit parallelism. @kemdor the needed
parallelism in building such SSDs is the limited single flash chip performance.glesthip is
divided as shown in Figure 3.19 into several Dies. The chip as a whotessHata pins [10].
The chip therefore gives a preset limitation for performance. Howeyéhd use of complex
controllers an SSD can combine the usage of multiple NAND chips to increafemance.
The inherit included parallel operation of a SSD can process more tleaop@ration at a time.
Yet applications and operating systems have not been designed foutpate. In fact most
applications use sequential reads and writes. An application is suspemiileétie 10 operation
takes place preventing it from creating new requests to be processardltep

The system design for HDD has other implications. The most critical desfggthis seek
time for HDD. Operating systems and file systems are designed on the bastPtiatme is
cheap and seek time is far more expensive. This concept is rooted intestige of the operating
system so that it performs a lot of merging and reordering on the recgudststted to the device
in an attempt to lower the seek time. Aggressive prefetching is hindered i maving the
head to far and cost the system expensive seek time. Since SSDs &etveatly no seek time,
the CPU time used for merging is wasted. In ordinary personal computalisidepart of the
CPU time to do worthless seek time reduction is not a problem. The number sfisdeerly
low in those applications and single core performance is still relatively higts. fiowever is not
the case for HPC. In these systems their is a larger number of cores @lhgi@. In addition
to that these cores are fairly weak. The system cannot afford additiomgoutation.

Although many have looked at SSDs as being a simple performance inaré@sdackward

Analysis and Optimization of Storage 10 in Distributed and Massive Paraiggi Herformance Systems 56

3 10 STACK

64 Plane:
Blocks 2048 Blocks

Chip Package
Four dies in two chip
enable groups

Figure 3.19: Typical SLC NAND flash chip packaging

compatibility has lead to an inefficient use. As mentioned before SSD haveousmreliability
issues that need to be taken into consideration when accessing the dasedacturers develop
their cards trying to shield users from reliability issues. Despite that, applsatiite systems
and operating systems can further help to increase reliability. Efficieasa@iso can resultin a
major performance increase when it comes to SSDs. This however reggtinenking the entire
IO stack to accommodate SSDs unique access properties.

There are several different types of flash devices available in thestnditke most commonly
used are MLC based flash USB devices. In fact MLC has overwhelmeedhdirket. MLC
represents 80% of the total NAND market versus SLC for 2007 [12]wéder the systems
targeted in this study cannot tolerate the high error rate produced by tleddsigns. Therefore
the focus will be on PClexpress adapted SLC devices. These ar@risdgegrade units that
exhibit far less errors and failures. It remains to be said that in compatasbelDD, price per
storage unit for SSD is very high. This can be noticed by observing #rernarket as well as
the enterprise markets. A single 1TB PClexpress SLC SSD can cost asas86K US dollars.
It is therefore unfair to compare the prices on the basis of storage uhigscdmparison might
be more logical on the basis of performance. Hundreds of HDD might édeukoperating in
parallel to achieve performance of a single SSD. The price therefomriEs more convenient
and understandable for high end applications.

Analysis and Optimization of Storage 10 in Distributed and Massive Paraiggi Herformance Systems 57

4 OPTIMIZING 10 STACK FOR PARALLELISM

4 Optimizing 10 Stack For Parallelism

Moore’s law dictates that the number of transistors per chip have to keegasicg. This still
remains true until today. In previous days most of the increase in penfmeraffered by new
chips was based on frequency scaling upwards, a trend that hagdtopphe turn of the 21st
century. This lead processor designers into the new era of multi-coreer@eommon market
processing units contain at least two cores. In fact Intel has present®0-core chip prototype
[14]. Not only does this strain applications towards applying themselves amt@any core
design, but also strains the system to supply sufficient resourcesdpregpests from all cores.
One such strained resource is 0.

The scale of the 10 problem is known in the technical community, more so fohitie
performance computing systems. Scaling 10 to meet the requirements of aehapsirallel
system is a difficult task. Although many scientific applications running oretegstems have
been using all processing units available, 1O has been preventing therfacaling [15]. Under
current 1O design many applications lead to long processing idle time waitin® eaduests.
This meant that the further optimization of applications for parallelism wouldaatffective
in case the application is 10 bounded. In fact adding more processingrpeauld not be
of benefit once any application has reached the furthest limit to its compwbispect. The
previous point explains the known HPC proverb "A super computer ivigeléor transforming
a compute-bound problem into an 10-bound problem” [4]. To put this@sp& a practical
sense, it is considered that a peta-flop system should be able to perfeingle bit of 10 for
each instruction. This leads the system to needing at least a 100TB/staifhsdsbandwidth
[14]. Given the scale of the problem many researchers have bedémgamn solving 10 on the
large scale of HPC.

As demonstrated in the introduction, one solution that shows promise is the impigioen
of active storage. Since the design of HPC usually involves a massiveilgp@omputational
unit, there is no space left for storage within the same unit. This means thagjetisr kept
in another system. Under these circumstances an IO request has to nomghthrlong stack
involving a network request. To solve this the active storage introducesgstainits directly
into the computational system or vise versa.

The direct integration of storage into the computational units meant that theseatwe to
communicate on a more basic level. In other words the multi-core design beetewant to
the 10 construction of the active storage design. Seen from the presiayter, the 10 stack
of Linux has been mostly designed for single queue access. In faeniheg race conditions
using locking mechanisms was done on a file level and have been onlytlyeceved to a
block level. Such limited single node storage 10 performance might limit the astorage
model performance.

Another aspect that introduced an additional challenge is the use of 88Dsnly do SSDs
add difficulty by having a different access pattern than traditional dtakisalso introduce the
presence of multi-controllers. To increase performance and saturdg®@?€ss links, SSD de-
signers have opted to adding multi-controllers onto a single SSD card. Thist tied the
operating system has to deal with not one but multiple devices. Trying tareentPC appli-
cation developers to handle multiple devices on a single node is not useéubrdtess requires
too much effort and eventually means that the application will be too archigesparcific. An
effort has to be made to handle these multiple devices in either a global omacaler. Thus
finding an appropriate handling method of multiple devices is an important caméitidetter
performance in ASF. Due to the multiple layers that exist in a HPC system, it is iambdo

Analysis and Optimization of Storage 10 in Distributed and Massive Paraiggi Herformance Systems 58

4 OPTIMIZING 10 STACK FOR PARALLELISM

decide on an appropriate handling layer for the 10 problems on singlesnode

Reading through many of the current HPC research concerning I@s teahe conclusion
that there is very few papers related to single node storage 10. Norsthmgd level or global
storage |0 research is applicable in this case. The argument could betmaadeoblems which
were rising a few years ago on a large 10 scale have now moved into tHe sioge. Indeed
the presence of multi-core and multi-controllers dictate that some of the solutealson the
global level might be useful for a single node. This argument has to tedullg dealt with.
The compute power present on a single node might not be sufficientder$aale middleware.
After all it is not desirable for the service computation to over utilize the singtienIn other
words, although single node might implement large scale solutions, suchedigldde systems,
the node still needs to be able to meet application requirements.

The outline of the chapter is as follows. In Section 4.1 some of the relatedisipresented
in the form of possible optimizations for IO access. Most of these studiesatoned before
address the HPC system on a large scale. Therefore the adaptatiosetietions on the
single node will be pointed out. This will serve the further explanation of thts &@nd imple-
mentations concluded later in the chapter. Section 4.2 provides a detailedatigieof the test
environment. Section 4.3 shows the analysis which includes tests done @ piegformance
of different settings and the conclusions that can be drawn from th#seSection 4.4 explains
in details a suggestion for a possible parallel 10 design based on the yseauialysis results.
Finally Section 4.5 shows the results from testing the suggested parallesighde

4.1 Optimization Approaches

There are many different types of optimization approaches describegliegbarch. In [1] three
main types of optimization categories for optimizing parallelism are providedseThaee opti-
mization of runtime IO libraries, optimization of parallel file systems and cachiregefzhing
and data distribution strategies. An additional target for optimization is furatjmartitioning.
The term functional partitioning is used to indicate binding resources téfgpfeinctions. Due
to the presence of multi-core processors which use multi-controller stdeagees, a well de-
fined functional layout might increase performance. The following sestgive insight into
some of these optimization approaches and signify how these could betadtledO stack on
a single node level.

4.1.1 Runtime 10 Libraries

Runtime libraries are well suited for optimization. Although POSIX is thought to éstidndard
for 10 libraries, most tend to disregard it due to its limitation [2]. This comes asderstand-
able problem in case of HPC systems. Since there exists thousands e§gingcunits in a
single HPC system, collecting data on the fly and rearranging the 10 in agw®dould in-
crease performance. One such method is the use of collective 10. Indhigdeae all processes
share information on their 10 requests. In that way the collective 10 lisaréa decide on an
appropriate approach to requesting the 10 from lower layers [16].

One approach to improving collective 10 is mentioned in [16]. Here spawi@ngpecific
threads that carry out the collective 10 services is used to improverpaaface. Yet the paper
warns against uncontrolled thread spawning. Not all 10 servicesegeitiormed in a separate
thread. Therefore only part of the 10 can be done in the backgrdl6id [

The reason for using runtime 10 libraries vary according to applicatiomgyukem. The

Analysis and Optimization of Storage 10 in Distributed and Massive Paraiggi Herformance Systems 59

4 OPTIMIZING 10 STACK FOR PARALLELISM

main reason is avoiding clashes on either the disk access or on cacheHewm@ig multiple
applications accessing a group of disks at the same time might mean that seekiirniien
into consideration. It might be left to the drivers how the seek time is minimizedadbéen
explained in the block layer. But as mentioned driver 10 scheduling is tiimeprove overall
performance. In turn this might lead to some applications being deprived fofrisake of seek
time minimization. While an 10 scheduler on the block layer might not be able to comatanic
with the application for 10 access patterns, runtime IO libraries can. Tdrerd¢iiey give the
opportunity of avoiding application starvation during IO access due to h@dding.

On the other hand, the main target for using collective IO libraries is to awmdecmisses.
A multi-core processor means multi-threads running on the same cachechifpeacess is
left to regulate its own cache use, avoidable cache misses might occurct®ellk® has the
opportunity of dividing the cache not equally but logically. In that sensegsses that need the
same data might share cache space and would not overwrite each ettaernsm dhort collective
IO can predict cache accesses, combine data space and prevewttowg of needed cache.
Although caching is an important advantage for runtime 10 libraries it is a conspleject that
runs on multiple levels.

As seen in Figure 4.1, the optimization mainly focuses on the interface betweapplica-
tion on the lower levels. Some optimization will have to be done in the VFS. This aisedhe
VES controls the lower level layers. Therefore the VFS will have to beatgabwith functions
that might be needed by the runtime 10 libraries to perform their collective 10.

User ‘ User Applications ‘
Space

GNU C Library

‘ System Call Interface

I Virtual File System

Runtime 10 Libraries
‘ Optimization

Kernel ‘
Space ‘ Individual File Systems ‘

Block Layer

Device Driver

\ Device |

Figure 4.1: Optimization of IO stack using runtime 1O libraries

Although optimization of 10 libraries appears to be viable and simple to implements & ha
multitude of disadvantages. One obvious disadvantage is changing thadetésf which the
application communicates its |10 requests. This means that all applications Haeawritten
on a basic level. Not only do these rewrites have to change the applicationdi@ace, but
also need to identify the amount of 10 and the timing for these 10 before hgutlem to the
libraries to make the optimization useful. A solution could be applying these IO ojatiionzs
to an already existing 10 library. In [17], it is suggested to use MPI-ICalipras a promising
ground for potential optimization. The reason mentioned is that the MPI-IGastavare layer
between the user and the file system. This however still might involve soménteention.

Analysis and Optimization of Storage 10 in Distributed and Massive Paraiggi Herformance Systems 60

4 OPTIMIZING 10 STACK FOR PARALLELISM

This optimization is still limiting to those applications using the optimized libraries.

Another obvious disadvantage that the optimization of runtime 1O libraries fateandling
multiple devices. The IO libraries have to have an underlying multiple devicdléranMost
papers therefore mention the presence of an underlying parallel ftensy$his means that the
distribution of data among these devices is not just dictated by the libraryrinHis leads to a
further complication of the design and the necessary optimization. Eventtlopdementing a
runtime library that can deal with multiple devices is possible, nonetheless it mgpelling
to do so. Unless the application developer is prepared to deal with multipleedemicmultiple
systems, the library will not offer better performance. In such a casapjplecation will have to
signal IO schemes to the library. Itis therefore inevitable that some apphesafiitl not perform
well.

Also, while all applications using the optimized runtime 10 library might improve qrerf
mance, those not using the library might degrade overall performartas.niean that all ap-
plications running on the system must be using these optimized libraries. itioadd that
it means that the Kernel has to be searched for 10 access and rewnteatito®rding to the
rules set by the libraries. This might also lead to some complicated Kernélasrat must be
performed to avoid 10 clashes.

As mentioned before, runtime 10 libraries optimize for specific consideratidi®e most
important one is seek time. Since the optimizations considered in this work aé bassSSD
access on single nodes, decreasing seek time would not increasemaerde. In fact some
of the optimizations mentioned in the papers are not very suitable for the Blne §atting.
As an example, in [16] the possibility of spawning threads to perform 10asiged. While
this might increase parallelism, the performance still remains under the metbge single
core performance. Specially in case many calculations have to be donege mquest and
decide on an appropriate request layout. Thus using such optimizatiortsoldlthe systems
performance hostage to Blue Genes weak single core performance.

4.1.2 Parallel File Systems

Since HPC systems cannot function without 1O, they have been alwagsndent on increasing
parallelism. Most HPC and in fact servers scale their IO by increasinguhser of disks
and controllers used [18]. Since no application is prepared to deal witlathaunt of disks
and controllers, parallel file systems had to be implemented. There are rnugmigpes. The
goal from a parallel file system is to combine the access of multiple disks intagke sinit.
That means that the application eventually has to deal with a single file systemsAdivision
among devices is left to the parallel file system.

Parallel file systems allow multiple nodes access to multiple devices. The main ta&Cof
parallel file systems is providing global data access from all nodesrgraséhe system [2].
Some file systems therefore employ multiple 10 servers for that purposedafaes then scat-
tered among the devices. For that parallel file systems use differemhesh&or example, IBM
GPFS (Global Parallel File System) uses striping [4]. That means thatdeade shares part
of the file. Using this method the parallelism is guaranteed through activatisevefal disk
devices even if all applications operate on the same file.

Another example for data distribution is Hadoop file system. In this case data &riped
but replicated several times across multiple nodes [19]. The differdrdesgn between GPFS
and Hadoop file system means they have different applications. GPFiliscoallow multiple
nodes access to the same data located on different devices. This implidsehsaparation

Analysis and Optimization of Storage 10 in Distributed and Massive Paraiggi Herformance Systems 61

4 OPTIMIZING 10 STACK FOR PARALLELISM

between compute nodes and data servers. This is reflected in the poitegsun on each side.
Compute nodes requesting data mount the file system and run as clientgjtrest rdata from
the servers running as GPFS service nodes. The setup of suchra g&ysteown in Figure 4.2.
From the construction it is obvious that this system is adapted for high $ealerhmunication
and is appropriate for current Blue Gene setup.

Compute Nodes‘ ‘ ‘ ‘ ‘ ‘
L

‘ Compute Network Switch ‘

10 Servers >

Storage

Figure 4.2: System setup for GPFS

One of parallel file systems biggest challenges is metadata. These areathdith indicates
where and how the actual data is stored. Since loosing metadata means thesingplete set
of data, these have to be put in a setting that guarantees their surviv@hekiissue revolving
around metadata is fast access. Shared data means shared metadata.turhdeads to a
possible bottleneck. GPFS offers complete parallel access to both damaetadata [6]. This
has the advantage of avoiding the bottleneck and the possible metadatanosiserXactor in
GPFS is that it can employ RAID for data backup and fault tolerance. Sugleqy is a direct
result of using striping and supporting multiple devices.

Hadoop on the other hand uses a different construction as seen ie Bi@url9]. The setup
uses a single node for metadata. This node is called name node. Not onlynantlieenode a
potential bottleneck, it also presents a failure risk. If lost the entire fileerysvill be rendered
useless. The rest of the setup contains clients which communicates with thedatato read
or write data. Additionally the Hadoop file system can implement data replicatiaeweral
data nodes. Not only does this help with data protection, but also ensaradkefism.

The major difference between Hadoop and GPFS is how the applicationsnrtime two
file systems. GPFS is implemented to run separately on different machinevite ssvdes
that request data from storage units. In comparison Hadoop file systesmaist to run on the
same nodes requesting the data. Hadoop has the intention of writing the datarmhreading
it multiple times [19]. In other words, Hadoops intention is for the programs toentovthe
data and not the other way around. As a direct result Hadoop file systemiented only for
applications using its own implemented map reduce interface. That is also wimalneOSIX
requests cannot be used to access the Hadoop file system. GPFSthoamem mounted as a
normal file system and accessed using normal POSIX.

The Hadoop file system could be a suitable candidate for an active ssmtigg. However it
is a more high level 10 concept which is not interesting on a single node iforpeance level.
Additionally due to the difficulty in benchmarking 10 as will be seen from thet sections,

Analysis and Optimization of Storage 10 in Distributed and Massive Paraiggi Herformance Systems 62

4 OPTIMIZING 10 STACK FOR PARALLELISM

HDES Distributed - L
Client File System Secondary
Name Node
FSData < Name Node
Stream
| Client Node
Data Node Data Node e Data Node

Figure 4.3: System setup for Hadoop File System

comparing Hadoop performance with GPFS or normal IO is not possibodiarequires spe-
cial benchmarks or needs the 10 benchmarking tools to be rewritten in a hagereonstruct.
Single node 10 performance will therefore be lost in the middle of high leDelAdditionally
Hadoop file system does not support multiple devices it much rather dappattiple nodes
with storage on board. Again this makes the single node performance afaoplialuster irrel-
evant for this study.

In comparison to Hadoop, GPFS is more appropriate for single node f@rp@nce analysis.
Although GPFS offers many advantages, there still are difficulties thatthawe dealt with. One
important problem is the setup. Client and service nodes in a GPFS clustg@arated. This
means that an active storage node must operate as both client and sedécdhis might strain
the limited computation power. GPFS therefore introduces an overheadbthidtle avoided.
For example multi-controllers on a single node could be detected as a single.dgvis can be
implemented in either the VFS or on the driver level as will be demonstrated bgltbeing
sections.

There are factors that might imply that GPFS data distribution is not suitabtédaactive
storage setup. One such factor, is a direct consequence of datagstéysirdata is distributed
evenly among the nodes with files being striped no one node holds a completelata. This
leads the active storage nodes request to be burdening not only itsCGowut Ithe 10 of the
neighboring nodes as well. This might look like it is defeating the purposeeaddtive storage.
It would be much mare convenient to have the single node only using thetdegd sn its own
storage device. Nonetheless it still remains interesting to see how GPFSleadlth a speed
up in performance of single node 10. In other words, an active stonaggd benefit from a
two view file system. External nodes access a global file system stripaesikaall active storage
nodes. Mean while each active storage node has a local view of datdoasdot require a
global access to fulfill its data requests. This combination would therefarefibboth targets
equally.

As can be seen from Figure 4.4 the optimization from using a parallel filésrayfecuses on
optimizing individual file systems. The VFS might also need to be optimized. triHaentire
implementation of the parallel file system can be done on the VFS layer. Thésitteanake
the VFS aware of data distribution among the underlying mount points. InHf@dbas already
been implemented as a separate file system called PVFS or Parallel VFS [6].

Additional changes have to be made on the block layer level to accommodatauttigle
devices. Figure 4.4 does not include these changes. This is becassetliages are irrelevant

Analysis and Optimization of Storage 10 in Distributed and Massive Paraiggi Herformance Systems 63

4 OPTIMIZING 10 STACK FOR PARALLELISM

User { ‘ User Applications ‘

Space
GNU C Library

‘ System Call Interface ‘

I Virtual File System

Parallel File System

Kernel ‘ Optimization

Space | indwidual File Systems

Block Layer

Device Driver

[Deviee |

Figure 4.4: Optimization of 10 stack using parallel file systems

to the parallel file system. The block layer needs only to present the multipleedeand leave
the parallel file system to deal with them.

4.1.3 Functional Partitioning

As the number of cores per processing unit increases so does thetagipes. The problem
however is that most applications performance does not scale with themassigof new cores
[14]. Although HPC applications should have a better scaling performatitiethey exhibit
difficulties. In the current HPC systems an overwhelming number of multijiaeessors exist.
Not only does the application and the operating system scheduler haveide thiese cores
among themselves, but also have to manage a complex hierarchical memony. Sylsteaging
these cores adds difficulty to the application and the operating system. €dngithe number
of cores to be managed means that old scheduling techniques might nbtieaef

Another aspect that is also overwhelming the applications and operatiegs/is the amount
of available data. While parallel file systems might be a well suited tool to stage Eata
amounts, most are not designed for application fast access. Usuallygh#adn of a file system
is to speed up current access and has no overview over data placeédmeahn active storage
system this becomes even more problematic. Giving up expensive stondgelded into the
computing system without prior knowledge of data usage, might not be inetteiiierest of
performance. The same concept could be said for caches. Additionakxistence of multiple
controllers on a single card means that the system has to manage diffevergsd Not only
does the file system or in this case local parallel file systems have to dedidezolocation, but
also decide which device to use in addressing this data. While it might seechtaging the
currently available device or the one with least traffic is reasonable, thiegrore complicated.
In most, if not all cases data has to be read and written using the same dehiseneans that
the parallel file system will have to consider read traffic before execatingite. On higher
levels parallel file systems can simply stripe or duplicate data to avoid paratetomnflicts on
the same device. This is not a viable solution with active storage. Single noglegpected in
this case to have expensive limited storage space.

An alternative for traditional scheduling is functional partitioning. The téunctional par-

Analysis and Optimization of Storage 10 in Distributed and Massive Paraiggi Herformance Systems 64

4 OPTIMIZING 10 STACK FOR PARALLELISM

titioning refers to binding certain resources to specific functions. Thusatiget is to assign
a number of cores to certain applications or certain services. In [14%erigdon is provided
for using a functional runtime library to assign cores to part of the applitaor example an
application that contains significant 10 operations would signal that itsi@edin 10 threads on
a separate core. This however dictates rewriting applications which haspossibly avoided.
Another viable preposition made in [14] is giving specific cores to specBiD Services. As
described in the previous section, some SSD need additional servicesulhbe implemented
on a driver level. To avoid letting these services slow down applicationdditianal core could
be awarded to these services.

Functional partitioning of CPU affinity decreases the switching time fromge®¢o process.
The technique can be even taken further. Instead of just allowing appiisdo request cores
for services, cores could be completely allocated to specific IO servi2ypesemoving a core
from the CPU scheduling list in Linux the CPU will be registered by the opeyaystem but
no process will ever be scheduled on it. That leaves the core opepdoifis allocation which
could be done usingaskset As an example to that approach can be found in [20], which
targets core allocation for collective 0. Instead of running a collect@dibbrary a core is
allocated to collective 10. All other cores send their IO requests to the ta#d© core, which
processes them and sends a total request on behalf of all corescobept for this can be
seen in Figure 4.5. It has to be noted though that this design carries thdisdragons of
collective 10. The optimization still remains mainly for seek time reduction and fineref
minimal relevance to SSD.

Caore 2
A
Caore 1 ‘ Core 2 ‘ -« |CoreN
A ‘ ‘ Core 1
! ; ! i - Core N
1o 1O 10 :
buffer buffer buffer 10 10 Lo}
i Fy buffer | | buffer buffer
i A A F
H r H ’ L i H
— Storage I Storage -
(a) Parallel 10 on multiple core (b) Diverting one core for collective 10

Figure 4.5: Dedicating core for collective IO

Despite the fact that functional partitioning on the basis of core affinity migitease per-
formance, it could also limit it. Some modern processing units use multiple weak fmre
increased parallelism. Some operations divided among applications that difiesent cores
might not perform well if assigned to a single core. Even if the core hastimer task than
the allocated operation, the limitation remains due to low core frequency and linsitepute
capacity. In fact the proposed design of collective 10 in [20] might limit thHaltperformance
of the system. Cores might idle waiting for the so called coordinator core tbteeir requests
to the storage.

On the other hand, memory or storage affinity might be a method for improvicgeaty. For
example, in [21] a method is introduced for memory affinity on hierarchical nosahg multi-

Analysis and Optimization of Storage 10 in Distributed and Massive Paraiggi Herformance Systems 65

4 OPTIMIZING 10 STACK FOR PARALLELISM

processor level. This is of great benefit for modern processormesigthough modern multi-
core processors might contain cache for each core, on some memdrh&veventually have
to share. In fact that is the case when it comes to RAM which will be sharedl Bpplications
running on all cores. If applications do not share data they will eventogéywrite each other.
RAM misses are expensive, even more so for HPC. If data is presemiaipal file system the
HPC node will have to forward a request through complex networksieftre memory affinity
becomes a possible candidate for limiting the number of RAM misses. In case aiftise
storage layout memory affinity techniques can even serve determining esbdication could
write into the active storage. Using memory or storage affinity, performamade be enhanced
on an even larger level.

Storage affinity is a technique by which storage can be divided among aipqtis. It can also
be a technique by which device allocation can be performed in case ofmasiltigle controller
storage units. This means that data has to be allocated with a global layolicafipps are
bound to certain devices or certain storage space. Considering thiesfeattive storage systems
will contain fast but expensive storage this might be a viable solution toesftlg use the
available storage space. Additionally it will limit the number of writes, which isessary for
some storage technologies such as SSD. In fact global data layowd aystems have been
introduced to increase parallel 10 performance as seen in [1]. H&dadeout was shown to be
the description as to how the data will be divided among multiple file serversa siagle node
system the same could be defined for dividing data among separate cosiokikevices.

Active storage will contain fast and expensive storage units that ceuttehlt with as either
slow memory or fast storage. Therefore both techniques for storagmamory affinity could
be applicable. In fact storage affinity will have to be mixed with global apftinascheduling
in an HPC. Data will have to be stored as close as possible to the currentitiogepplication.
Therefore it is of advantage to have a parallel file system that communaraigesontrolled by
the process scheduling unit.

Using memory or storage affinity might be a good solution to reduce datasatices Nev-
ertheless, unless applications signal their data use before hand, it rightriplicated to im-
plement. Some data layouts that might be of benefit for one group of apptisatight be a
disadvantage for another. Active storage units will have to supportialatat changes. There-
fore simple data use counters will have to continue to exist to signal datamekvOther more
general memory or storage affinity algorithms have to be defined as welin@metarget from
these algorithms would be to keep application developers independentiesystem architec-
ture. The ideal case is achieved if the application developer can runrtfeeagaplication on an
active storage system and still achieve the most efficient storage wsblpos

As seen in Figure 4.6 optimization has to be done on many different layer. o€Core
affinity can be implemented in the application layer. Since this is not in the intefrést ¢O
layer it might be ignored. Another possibility is adding service cores. dlgsrtake certain
responsibilities such as file system defined functions. In fact one canrimaptestorage affinity
using core affinity. In this case a core would be awarded to finding bestoahe for dividing
the storage on currently running applications. This could already be ithoocase of using
parallel file systems. These already implement different threads foreitfelients or services.
Therefore cores can be allocated for such processes to guarahigie @egree of quality of
service. Additionally service cores can be applied to carry out devieerdipecific operations.
For instance queue handling can be carried out on a single core. Aoptiwn is to allow device
driver developers to take over the scheduling of a core to carry mitedservices. Therefore
an SSD might implement garbage collection and wear leveling in the device drideallocate

Analysis and Optimization of Storage 10 in Distributed and Massive Paraiggi Herformance Systems 66

4 OPTIMIZING 10 STACK FOR PARALLELISM

a complete core for these processes.

e User Applications
1
User GNU C Library
Space
o Kernel
CPU Affinity _ | Space System Call Interface
Optimization ‘
Virtual File System e
. — ; Storage Affinity
Individual File Systems - Optimization
Block Layer et
m=: Device Driver

\ De\lrice |

Figure 4.6: Optimization of 10 stack using functional partitioning

On the other hand storage affinity can be implemented into several diflf@estack layers.
Figure 4.6 shows storage affinity optimization pointing to three layers VFSyithdil file sys-
tems and block layer. Since all three might select the storage device Uisedtiag certain
device controllers to certain tasks could be done in one of the three. TBek¥é&ps track of
superblock®f mount points which contains the block device on which the file system isdstore
Therefore the VFS could have a list of devices and point to any of thesasi certain tasks
call the appropriate system call. The VFS however cannot select thalttatation layout. This
task is performed by the file system. Therefore a parallel file system mighgbed solution to
perform storage affinity. Nonetheless the VFS will have to keep the fiteisyaware of current
allocation needs. Another possible candidate for storage affinity implementattbe block
layer. There already exist device drivers that control device seteclioese have the added ad-
vantage of simplifying the operating system view of the system. The devieer dsiregistered
as a single block device and the file system does not even have to codeuiez boundary
effects or allocation schemes over different devices.

Although resource binding is an appropriate approach to todays multircoitecontroller
systems, the implementation is complex. The functional partitioning cannot ke idarme
layer. A complete system view is needed. If the implementation takes place in theléyers,
upper layers will have to pass system information to lower layers and visa.vEhe complexity
increases even more if the implementation is to be architecture independent.

4.1.4 NVM Express

Hard disk interfaces have evolved over many years. The device icgédbfecame so important
that even operating systems changed their block device interface to acdatertttem. File sys-
tems and allocation strategies are heavily optimized for hard disks. The maieptan which

Analysis and Optimization of Storage 10 in Distributed and Massive Paraiggi Herformance Systems 67

4 OPTIMIZING 10 STACK FOR PARALLELISM

these optimization have been taking place is that CPU time is cheap and seek timens ex
sive. Therefore file systems implement allocation strategies targeting camidjleoallocation.
Random read or write is avoided as much as possible.

During the recent years SSD and other Non-Volatile Memory (NVM) stadeghpear on the
market. Since these technologies needed to be integrated into presemtsyttp, the interface
of a disk was adapted. Manufacturers designed their card interfac@dtidn as a hard disk.
The target was to avoid file system rewrite. However the CPU kept deogeseek time which
is no longer necessary for the new technology. SSDs have almost kdirsee Additionally,
while hard drives are easily integrated into the system, each SSD manafatcas to spend
money on developing complex drivers. This is because of the missing umifexthce.

As a solution Intel and other companies set out to define a new interfawastacalled the
NVMexpress [22]. The standard targets the SSD design on a PCleareeiThe idea is to create
a uniform communication method by which any SSD can be integrated into thensysteout
the need for lengthy and difficult device drivers. The NVM Expressfingd as a scalable host
controller interface. This has been specifically designed for entempeisds and client systems
that use SSD on PClexpress [22].

The basic idea of the NVM Express interface is to use multiple queues. $Bescéorm
their requests and add them into a submission queue. The controller woulcaimplete these
requests and return them into a completion queue. There are many differbatween this
interface and the old queue interface provided by Linux. There camh &xisany queues as
needed. The interface supports up to 64K 10 queues with each quppersng up to 64K
commands [22]. This means that queues could be binded to cores or esgesc Figure 4.7
shows the possibility of binding queues to cores. Another possibility is showigure 4.8.
In this case several applications each having their own submission guagese completion
queue [22].

Host
Controller Core 0 Core 1 Core N
Management
Admin Admin L8] 10 10 10 10 L&)
Submission Completien Submission Completion Submission Completion 1T Submission Completion
Queue Queue Queue 1 Queue 1 Queue 2 Queue 2 Queue N Queue N
A [[
¥) 4 Y 5
Controller

Figure 4.7: NVM Express multiple queues with core binding

The NVM as explained in the literature has a lot to promise. However there ia $titl of
unknown. Not only do SSD manufacturers have to implement the standarthé@wtaards, but
also IO libraries have to be rewritten. This might also mean a rewrite of apphsafite disad-
vantage of the NVM Express is that it has not yet been widely adopteck e manufacturers
of SSD PClexpress cards adopt the standard IO libraries will be eldanthe final point will

Analysis and Optimization of Storage 10 in Distributed and Massive Paraiggi Herformance Systems 68

4 OPTIMIZING 10 STACK FOR PARALLELISM

Host
Core A Core B

10 10 10 10 1o e}
Submission Completion Submissian Submission Submission Completion
QUQ M Qu% N nge X nge Y nge Z Qu% w

A 3
y 4 A \
Controller

Figure 4.8: NVM Express with different gueue mapping

be for Kernel developers to follow. The intention then is to be able to plag&8D card into
any system and have it function as needed. Not only will that mean safforgseof device
driver development, but also means easier optimization of Kernel archigeftiuthe sake of
supporting none-volatile memory.

4.2 Test Environment

A single node in a Blue Gene/Q contains a processor with 18 cores. Sieceoom is used
for operating services and one is kept in reserve only 16 are availabégplications. Each of
these cores supports four threads and runs at a modest 1.6 GH&[2&}.that the Linux Kernel
counts each thread as a separate CPU, performaad roc/cpuinfoprints the total to be 68
CPUs.

The architecture of the cores implemented into the Blue Gene/Q is the A2 ca® dashe
POWER architecture [23]. Due the unique implementation, pre-tests had tmbdalport code
onto the complex Blue Gene/Q architecture. For example, on testing divBBe&ds it was
necessary to go through several testing phases prior to Blue Gene/QTtestsard would be
first tested on a86 processor architecture. Tik86 is the most commonly known processor
instruction set. For that reason, the card is expected to function at sp#offi rates on ar86
processor. Several differex®6 processing units have been used in the testing process. One was
a quad-core Intel i7 CPU 920 with a frequency of 2.67GHz and duahthper core.

The next step would be to test on a similar architecture to that of the Blue GeBe&ihg
that the A2 core is based on the POWER architecture, testing should beodan®OWER
processor. Therefore a G5, which is a POWER Macintosh, is usedGbhhlmntains two dual
core 970MP with a frequency of 2.5GHz. Porting from #86to the POWER architecture on
the G5 is complicated. This is because of the differences present in thectistrset between
the two processor architectures. This meant that some of the optimizatioadatad6 would
not work on the POWER processor. It has to be noted that in some cadeas testing loop
devices oramdisksthere was no need for the middle step of testing on the G5. The reason is
that these devices do not contain any architectural specific implementafioasfore a direct
comparison can be done between the performance of such devig86 and Blue Gene/Q or

Analysis and Optimization of Storage 10 in Distributed and Massive Paraiggi Herformance Systems 69

4 OPTIMIZING 10 STACK FOR PARALLELISM

between the G5 performance and Blue Gene/Q.

The final step is testing on the target architecture the Blue Gene/Q. Duetitogatie device
on the G5 most of the architecture problems should have been solved iretheusrstep. How-
ever the Blue Gene/Q has its own unique architecture. Therefore adtlititrarages had to be
made to complete the porting to the Blue Gene/Q. Although the porting procesg erldrcom-
plex it gave the opportunity of comparing performance. Not only does Blelree/Q contain a
unique processing architecture, but also is a HPC build for parallehtipes. Comparing Blue
Gene/Q performance with that of a G5 meant comparing a commercial compeutempance
with that of an HPC system. On the other hand comparing Blue Gene/Q perfcemath that
of ax86 meant comparing performance of different processor architecture.

Due to the diversity of architectures it is important to label performance.plokerefore
every performance plot shown will have a description of the processiiigon which the test
was performed on the top.

4.2.1 Test script

The used IO tester is called Flexible 10 or FIO. It is an open source begrtding tool that has
been used within many other projects. FIO spawns many threads thatrreatiecfrom or to
a specified file that it creates. This file is placed into the device under testte$hscript itself
was perfected over a multitude of tests. Since FIO contains a large numdifflecént settings
and parameters, the testing scheme is complicated. The following will be adglseription of
some of the FIO test parameters. There is a brief explanation of all FIOnsmiilable in the
HOWTOfile provided with the tool. However parameters effect on the output is notiomed,
as well as special use of some other parameters. The explanation gikethibrefore also
includes test observations.

Benchmarking 10 is complicated. On one side there are different things teumeedO can
be measured as the number of IO operations per second or IOPS.dtstahe measured as
bandwidth, which is the amount of data that can be transfered per sedtmde is a direct
relation between IOPS and bandwidth. This relation is defined by the ambdatathat is
requested in a single 10 operation. The correlation will be defined anditiesttee next section.

Another factor that complicates the testing of 10 is the large number of panantiest affect
the 10 performance. The parameter list used in the test script is showm. belo

fio \
--name=$FI0_NAME \
--rw=$FI0O_MODE \
--size=$FILESIZE \
--directory=$FI0_DIRECTORY \
--bs=$FI0_BLOCKSIZE \
--numjobs=$j \
--runtime=$FI0_RUNTIME \
--loops=$FI0_LOOPS \
--direct=$FI0_DIRECT \
--ioengine=$FI0_IOENGINE \

The following is a detailed explanation of used parameters.

name is the name given to the test.

Analysis and Optimization of Storage 10 in Distributed and Massive Paraiggi Herformance Systems 70

4 OPTIMIZING 10 STACK FOR PARALLELISM

rw is the mode of the test. Possible modes are read, write and read/write fensaflO or
random read, random write and random read/write for random |O.

size is the size of the file to read or write from. The file size is an important paranieteeas-
ing it means larger seek times in case of hard disks. It also means that the tthatéile is
addressed using indirection. In case of hard disks this results in egen t&ek times. On
the other hand for SSD it might mean that during a write more blocks have tpdatad.
This leads to write amplification. While choosing the file size it has to be noticed that
unless the filenames are set and therefore the number of files is kepartpresch job
will create a file of this size. Therefore the aggregate file size witiloa jobx size

directory / filename thedirectoryis the location where the files are placed for testing. The
location has to be on the device under test. There is also the possibility of th&ing
filename By defining not only the filename but also the path to the file the test directory
can be chosen. Another useful trick is the ability to use more than one fiis.nféans
that more than one test directory and therefore device can be testedabibeime. This
is useful in case multiple devices or parallel operation should be testedeugoi only
the directory is set FIO will create one file per job. If several filenamegaen, then
all jobs will operate on all files at the same time. This means that all devices tesie
will be accessed from all jobs. Moreover settiiiignamecan be used to test raw device
performance. Raw device data is useful in finding overhead of filermggpeocessing.

bs holds the value of thélocksize As mentioned before their is a direct relation between
IOPS and bandwidth. The relation is dependent on the amount of data peguiest. The
blocksize is the amount of data that is contained in a single 10 request. Sinikk@Rs and
bandwidth are inversely proportional, increasing the blocksize meamsatd#ing IOPS
and increasing bandwidth. On the other hand, decreasing blocksizeteattreasing
IOPS and decreasing bandwidth. This will be further investigated in the tests

numjobs is the number of threads that the FIO job will spawn. The main target is for the
performance to increase with increasing the number of jobs. There asefatdors that
have to be kept in mind. For examplefilenameis set then all jobs will operate on all
files at the same time.

runtime indicates how long the test will run. Unless set the FIO job will run for a Veng
time. There has been no indication as to how long that is. Most probably theites
terminate after reading or writing the entire file size. Thatimehas to be set at a rea-
sonable amount. It was found that 308y 5min are sufficient for a single test. It has to
be noted here that the test does not have to runrfon5This is just an indication that the
test will be terminated in case it took longer thanib.

loops is the number of times the test should be repeated. In some cases if the runtime is to
short as in testingamdisksthe number of loops helps increase runtime. This increases
the precision of testing.

direct if set to one indicates that non-buffered 10 should be used. In ordeeriohmark the
IO link correctly direct 10 was almost always selected. Not only is cacretbuffered
IO more complicated, but also means that performance will vary over matsy tésing
direct 10 means testing the 10 under the worst case, which means alkasaesulted in
a cache or buffer miss.

Analysis and Optimization of Storage 10 in Distributed and Massive Paraitgi Ferformance Systems 71

4 OPTIMIZING 10 STACK FOR PARALLELISM

ioengine defines the IO engine used. The IO engine defines how a job issues raqguést
to the file. Theioenginehas been set tlibaio which is Linux native asynchronous 10
engine. An additional advantage is thidaio only supports the use of non-buffered or
direct 10.

The following shows an example for the output of a FIO test.

Fusio: (groupid=0, jobs=1): err= 0: pid=5030
read : 10=65536KB, bw=1158.6KB/s, iops=1158 , runt= 56570msec
slat (usec): min=186 , max=23738 , avg=837.08, stdev=247.00
clat (usec): min=3 , max=143 , avg= 7.56, stdev= 2.36
lat (usec): min=196 , max=23761 , avg=849.06, stdev=247.29
bw (KB/s) : min= 1028, max= 1972, per=12.52},
avg=1159.10, stdev=140.72

cpu 1 usr=2.99%, sys=48.76%, ctx=127005, majf=0, minf=5
10 depths : 1=100.0%, 2=0.0%, 4=0.0%, 8=0.0%,
16=0.0%, 32=0.0%, >=64=0.0%
submit : 0=0.0%, 4=100.0%, 8=0.0%, 16=0.0%,

32=0.0%, 64=0.0%, >=64=0.0%
complete : 0=0.0%, 4=100.0%, 8=0.0%, 16=0.0%,
32=0.0%, 64=0.0%, >=64=0.0%
issued r/w/d: total=65536/0/0, short=0/0/0
lat (usec): 4=0.01%, 10=97.56%, 20=1.70%, 50=0.73%, 100=0.01%
lat (usec): 250=0.01%

As can be seen the name of the test is used to identify the output. The nditddean is the
mode, read or write. Whether the test was a random or sequential reaideois not indicated.
It is therefore preferred to use the test name to indicate a sequentiaidamnatest. As can be
seen there are many measures taken from a single job. Since we are amlgtaden the IOPS
and bandwidth, we can ignore most of the rest. Bandwidth of a single joles giybw. IOPS
are given byiops FIO also can give the output in the form of numbers separated by semicolo
Although this might be the better choice for plotting the results, this output dutentain the
IOPS.

The output given above is one out of eight for each job that has hEemned by FIO. This
means that the IOPS and bandwidth given is not the total. To find the total a@dBandwidth
the individual results have to be added. The semicolon separated catipupfovided by FIO
cannot be used due to the missing IOPS results. Therefore the scrifut fiad a method of
choosing the correct value and adding to find the total IOPS or bandwikctk. method for
finding the IOPS is given below. As can be seen the trick is to use string niatigouto find
the value. The loop then adds all found values and sets the variable to tH®®&that will be
printed. The same is done with bandwidth.

I0PS=0
iops=‘grep iops= < $tmpfile | cut -d’=’ -f 4 \\
| cut -4> > -f 1 | tr -4 >,’¢
for i in $iops; do
ni=‘norma $i°
I0PS=‘echo $I0PS + $ni | bcf
done

Analysis and Optimization of Storage 10 in Distributed and Massive Paraitgi Ferformance Systems 72

4 OPTIMIZING 10 STACK FOR PARALLELISM

At the end of each test output the aggregated values of all jobs is giMeis.could be an
alternative to the previous method for finding the total bandwidth. Howewastobserved that
the total bandwidth calculated using the script was different than the gafgrbandwidth given
by FIO. As the method of calculation of the aggregate bandwidth is not ktleeyaummation
script was used. Another reason for using the summation script is thaBfe 4ggregate value
is not given in the list of total results.

The test script has gone through several revisions. The most imppriaem is finding
the parameters against which the IOPS and bandwidth will be tested. Athirdests were
done against changing both the number of jobs and the blocksize. Thitsnesthe count of
different job number multiplied by the number of different blocksizes testetddme. Due to
the complexity of reading the performance change for increasing job mumdbgéest was later
changed to output the results only against the jobs number. The test wally tilsen repeated
twice, once for a blocksize of 4KB and again for a blocksize of 64KBtJeesults might be
shown in either performance against job count or performance adpdatsisize.

Below is the output from the test script. The date and time of the test is printei. iST
important in case the tests need to be recreated. As the Blue Gene/Q envitasmeder
development and therefore constantly changes it is important to know wdiions can be
used for getting the same test results. Using this technique the cause forestdschange
can be identified. The rest of the upper parameters show the test paraasetgven to the FIO
thread. Additionally the file size is printed before each job number result.tdthkfile size
however remains the same as has been explained in the FIO parameters.

#DATE=2011-08-29 09:53:17
#FIO_BLOCKSIZE=4k
#FIO_DIRECTORY=/mnt/TEST
#FI0_MODE=randread
#TOTAL_FILESIZE=1024M
#jobs BW[MB/s] IOPS
FILESIZE=1024M

1 21 5493

FILESIZE=512M

2 41 10710

FILESIZE=256M

4 82 21029

FILESIZE=128M

8 154 39541

FILESIZE=64M

16 283 72568
FILESIZE=32M

32 477 122287
FILESIZE=16M

64 746 191153

Finally gnuplot is used to plot the output. An example for the final result @asden in
Figure 4.9. The figure shows the IOPS as plotted against the number of jobs

Analysis and Optimization of Storage 10 in Distributed and Massive Paraiggi Herformance Systems 73

4 OPTIMIZING 10 STACK FOR PARALLELISM

IOFS - Random Read from RamSan-70 (ext2, block size 4kB)
(4% Intel Core(TM) i7 CPU 920 @ 2.67GHz)

FIO Blocksize = 4kB —+—
200000 F F1O Elocksize = G4kB ——]

150000 F

10PS

100000 |

50000

124 8 16 3z 64
Mumber of FIO jobs

Figure 4.9: Example of a gnuplot figure for a FIO script output

4.3 Parallel 10 Analysis

Previous sections have made some points which show how parallelism issedrea a global
level. As the active storage will need to communicate on a single node leadligliam needs to
be pushed lower. That is, solutions that were previously implementedseszuesral computing
units has to be implemented on single nodes. In fact observing the developitd?C over the
years, the same has been done on different layers. The modersgomocentains several cores
and the modern SSD storage unit could contain multiple devices. Theré&quarhllelism is
required on an even smaller scale. This is not as simple task. On a globahi@kemmenting
complex algorithms and configuration is possible. In contrast trying to implethergame on
the scale of a single node has many limitations. As an example, parallel file systEmassive
programs. Implementing the same on a single node might need redefinition ohtteifuof a
parallel file system. Under these circumstances it appears that some oftraiply mentioned
concepts should be tested given the new limitations. The following sectiome define of the
tests done over multiple settings. The target was to find some efficient methdseasing
parallelism.

4.3.1 Testing Effect of CPU Frequency on 10

As mentioned before, modern CPU are moving towards the usage of smad&emeores.
Besides using a different architecture, the Blue Gene/Q employs an A2vooking at 1.6GHz.
The target here is to find the effects of lowering the frequency on therpsnce of the 10.
The best candidate for testing the 10 under the effect of lowering thef@uency is using an
actual physical SSD. Hard disks require a good deal of CPU utilizationdardo avoid seek
time. However the CPU is not expected to dominate the IO operation. Undestimation
using the hard disk would not be useful. On the other hand if a virtual ésiased such as

Analysis and Optimization of Storage 10 in Distributed and Massive Paraitgi Ferformance Systems 74

4 OPTIMIZING 10 STACK FOR PARALLELISM

Read Bandwidth (64kB) | 770 MB/s
Write Bandwidth (64kB) | 790 MB/s
Read IOPS (512 Byte) 140,000
Write IOPS (512 Byte) 135,000
Mixed IOPS (75/25/r/w) | 119,000
Access Latency (512 Byte) 26 ps

Table 4.1: Table for ioDrive performance specification

loop devices or ramdisk, there might be no separation between performhapucdue to 10 and
drop due to module operations.

SSD performs many different services to support its operations. Maturérs have the op-
tion of implementing these services either directly on the card in hardware othiatdriver.
For example, garbage collection could be implemented as a hardware fiesuhe SSD con-
troller. On the other hand it could be programmed into the driver module. Diatdalifferent
SSDs might not be equally dependent on the CPU frequency. Nonetlitakestill important to
know how the CPU frequency would effect such combination.

The SSD card used for testing frequency effect is an ioDrive prediby Fusion-io one of
the most known SSD manufacturers. The ioDrive contains a single contaolikis therefore
detected as a single device. This helps decrease the overhead of cgpleiriormance of mul-
tiple devices. The ioDrive used is a SLC with a capacity of 320GB. Th@pegnce expectation
are given by the table [4.1] [24]. Although the card has a driver thaparis 64K pages, it can
only be used for th&86 architecture. This meant that the Blue Gene/Q used Linux had to be
patched to use 4K pages instead of 64K pages. In turn this might alresudyiresome of the
performance for IOPS and even bandwidth being lost.

It is expected that the results will not be the same as those given by thficagmns. The
reason is that the ioDrive driver has been optimizedx®8 architecture and not for POWER.
The ioDrive driver is closed source. Therefore there is no roomaligerving how the internals
of the driver work. There is also no possibility of optimization of the drivAdditionally
the G5 is the most appropriate device to test frequency change. This te dusntaining a
POWER processor which is similar to that of the Blue Gene/Q. Additionally usmple tools
it is possible to decrease the frequency of the CPU. The test results stitivbe that of the
random read. Although random write was also performed, concerneagiéncy change, the
same conclusions can be drawn. Thus the random read tests are sufifictais purpose.

Figure 4.10 shows the ioDrive bandwidth versus blocksize. As candretbe bandwidth
gradually increase with increasing the blocksize. This is due to the fadtghamount of data
read per request is becoming larger. This continues until the link is saturatiglitionally the
bandwidth increases with increasing the number of jobs. This as well cestimtil the parallel
10 limitis reached. As seen from the figure the bandwidth end performambtaese to 800MB/s
which is given by the ioDrive specification. However this limit is reached wibliogksize of
128KB. The blocksize shown in the specification for the read bandwidthK860nly for a
job count of 32 and 64 can the maximum bandwidth be reached at the spé&diK& blocksize.
This means that we need double the blocksize to achieve the same perfermsahe one given
by the ioDrive specifications. It should be noted that increasing the $ilbelks dependent on
the access pattern of the applications. Not all application will benefit friargar blocksize. In
fact increasing the blocksize specially in case of writing will decrease@&fldrance. It should

Analysis and Optimization of Storage 10 in Distributed and Massive Paraiggi Herformance Systems 75

4 OPTIMIZING 10 STACK FOR PARALLELISM

also be noticed that this bandwidth can only be reached by using 4 jobs er mor

Bandwidth - Random Read from Fusion-io (ext2, block size 4kB)
APPLE G5 (2 x Dual Core 970MP 2 5GHz, 4GB RAM)

1000 T T T
jobs= 1, Filesize= 8192M —_—

| jobs= 2, Filesize= 4096M ——
jobs= 4, Filesize= 2048M ——
jobs= 8, Filesize= 1024M —=—
jobs= 16, Filesize= 512M e i
jobs= 32, Filesize= 256M
| jobs= 64, Filesize= 128M

900

800

700

600 |

500

400 |

Bandwidth MB/s

300

200

100

1 2 4 8 16 32 64 128
Blocksize KB

Figure 4.10: Bandwidth vs blocksize for ioDrive on an Apple G5

On the other hand, Figure 4.11 shows the IOPS versus blocksize of ttiego this case the
IOPS decrease with increasing the blocksize. As has been mentioned thefie is an inverse
proportional relation between IOPS and bandwidth which is governedepltitksize. This
indicates that either the system can run many 10 operations with small blockdeg IO oper-
ations with large blocksize. The figure shows how the performance stajtadoally decrease
at the blocksize of 8KB. The maximum value however for the IOPS doemeet the ioDrive
specification. This indicates that the architecture effects the IOPS aridenbaindwidth. It is
therefore expected that decreasing the frequency would effect tkienoma IOPS. Additionally
the IOPS increase by increasing the number of jobs. In fact there ispattex symmetry be-
tween the bandwidth and the IOPS in the vertical direction. That is by iringetiee number of
jobs both IOPS and bandwidth will increase. However once the numbebsgfgither saturate
the bandwidth or the IOPS, adding more jobs will no longer increase therpehce. On the
contrary adding jobs beyond a certain point might mean a decrease @mmarfce. In compar-
ison to hard disks however the performance drop does not happen theeease in seek time.
It appears due to increase in CPU utilization. This correlates with differbatween hard disks
and SSD systems. While systems containing hard disks consider that seekdipensive and
CPU time is cheap, modern systems containing SSD have no seek time and frexvae\exCPU
time.

Given that the target of the test is to find the effect of frequency dseren 10 performance
the CPU clock has to be decreased. The tool used to decrease the €jedntty is called
cpuspeedUsing the tool the CPU frequency is scaled to half and is monitored duringlthe F
test usingwatch grep clock /proc/cpuinfoThis makes sure that the CPU scaling tool does not
undo the frequency decrease. Thus the CPU frequency of the Gkapasat 1.25GHz while
running the same FIO test.

Figure 4.12 shows the bandwidth versus blocksize for the ioDrive on ai@bfrequency

Analysis and Optimization of Storage 10 in Distributed and Massive Paraiggi Herformance Systems 76

4 OPTIMIZING 10 STACK FOR PARALLELISM

IOPS - Random Read from Fusion-io (ext2, block size 4kB)
APPLE G5 (2 x Dual Core 970MP 2.5GHz, 4GB RAM)

70000

"jobs= 1, Filesize= 81892M —+—
jobhs= 2, Filesize= 4096M ——
50000 | jobs= 4, Filesize= 2048M —%— |
jobs= 8, Filesize= 1024M —85—
jobs= 16, Filesize= 512M

jobs= 32, Filesize= 256M —=— |
jobs= 64, Filesize= 128M

50000 |

40000 |

10PS

30000 |

20000

10000 |

Elocksize KB

Figure 4.11: IOPS vs blocksize for ioDrive on an Apple G5

scaled to 1.25GHz. Although the frequency is decreased it can be sg¢hatmaximum band-
width can still be reached. This means that the maximum bandwidth is not effegténe
frequency. Nonetheless the frequency change can still be obsenvdte bandwidth curves.
As can be seen from the figures, the saturation is first reached at ksizlwof 64KB. This
means that the decrease of frequency leads to moving the saturation Of lihk in the direc-
tion of larger blocksizes. This indicates that processors with lower &ecyuwill require larger
blocks to achieve maximum bandwidth. Another important observation is thiealdrehavior
of increasing number of jobs. Using lower CPU frequency meant thag ikamo longer any
difference between having 8 or more jobs at lower blocksizes. Havilhgréguency meant
that, for example, at a blocksize of 16KB there was a large differencandwidth between
using 16 and 32 jobs. One can conclude from this that having a low fneg&PU using larger
blocksizes has a better effect on bandwidth than using more jobs.

In contrast to the bandwidth the maximum of IOPS is affected strongly by trease of CPU
frequency. This can be seen in Figure 4.13. Not only does the fregudrange decrease the
number of 10 requests that an application can make, but also decreagesfibrmance of the
driver. Therefore if the card is too heavily dependent on workeatisdhe IOPS will decrease
even more. The figure also shows how drastically the decrease okfregis on parallelism.
The single job performance at a blocksize of 1KB drops from 1225414 T@PS. On the other
hand the 32 job performance drops from 59093 to 29294 I0OPS. Thissntleainalmost half of
the performance has been lost. In fact the maximum of the full frequesnoyat be reached.
Observing the figure in the vertical direction it can be concluded that ttseobperformance
increase with increasing the number of jobs. Finally the limit is reached andaisiag the
number of jobs no longer increases the performance. This results inrfayrpance change
between having 8 jobs or more. By close observation and comparison witlattasvidth it is
possible to detect a correlation between the drop in IOPS performandheamtiange in the
bandwidth. At full CPU frequency the blocksize 16KB allowed high baidtlwdue to a large

Analysis and Optimization of Storage 10 in Distributed and Massive Paraitgi Ferformance Systems 77

4 OPTIMIZING 10 STACK FOR PARALLELISM

Bandwidth - Random Read from Fusion-io (ext2, block size 4kB)
APPLE G5 (2 x Dual Core 970MP 1250MHz, 4GB RAM)

jobs= 1, Filesize= B192M —+—
900 - jobs= 2, Filesize= 4096M ——
jobs= 4, Filesize= 2048M ——
jobs= 8, Filesize= 1024M —8—
| jobs= 16, Filesize= 512M i
jobs= 32, Filesize= 256M —a— /"’f///w

| jobs= 64, Filesize= 128M

Bandwidth MB/s

1 2 4 8 16 32 64 128
Elocksize KB

Figure 4.12: Bandwidth vs blocksize for ioDrive on an Apple G5 with cloekte 1.25GHz

number of IOPS. At half CPU frequency this is no longer the case. TdrerbOPSs decrease at
low blocksizes pushes the bandwidth saturation to higher blocksizes.

As mentioned before the decrease in IOPS on decreasing CPU frgdaehue to the perfor-
mance drop in both request making and driver performance. Since orrmGe&&) increasing
the frequency is not possible by design, other methods need to be foimodgase performance.
In case needing high bandwidth the blocksize has to be increased, @swelteasing the num-
ber of reading or writing threads. On the other hand achieving highes I®Rot as simple as
achieving high bandwidth. First the driver has to be optimized for loweueacy by pushing
most services into hardware. SSD cards are should preferablyripegfirbage collection and
other services on card and not in the driver. Another possibility is using icustiroller devices.
This means that many drivers and file systems and IO stack operationsmiii parallel. In-
creasing number of controllers should continue to increase the IOP&sinthe selection of
appropriate device for read or write is kept to the application, the perfuwenghould linearly
increase. This should continue until CPU utilization is at maximum. This is true ifghkca-
tion is simply mapped to one device. On the other hand, if the selection is done bydtem,
the overhead of selection will also take part of the CPU utilization. For exaragiarallel file
system needs to spawn worker threads that divide the file access oratlable devices. One
last factor remaining is the link speed. Once the PClexpress bus is sdtthratecrease of
devices used will not increase IOPS.

4.3.2 Testing Functional Partitioning

Mentioned in the previous section is the possibility of using functional partitgptorenhance
the performance. This is especially true in case of having service thitestdsan be mapped on
different cores. Additionally if the core have multiple threads, functiosatiponing might be
an optimization step. On such architecture avoiding placing two procesdhs same core is

Analysis and Optimization of Storage 10 in Distributed and Massive Paraiggi Herformance Systems 78

4 OPTIMIZING 10 STACK FOR PARALLELISM

IOPS - Random Read from Fusion-io (ext2, block size 4kB)
APPLE G5 (2 x Dual Core 970MP 1.25GHz, 4GB RAM)

70000

"jobs= 1, Filesize= 81892M —+—
jobhs= 2, Filesize= 4096M ——
50000 | jobs= 4, Filesize= 2048M —%— |
jobs= 8, Filesize= 1024M —85—
jobs= 16, Filesize= 512M

50000 k jobs= 32, Filesize= 256M —=— |
jobs= 64, Filesize= 128M

40000 |

10PS

30000 |

20000

10000 |

Elocksize KB

Figure 4.13: IOPS vs blocksize for ioDrive on an Apple G5 with clock sdt25GHz

helpful. For example, the Blue Gene/Q has 17 cores each contains 4sthiidedLinux Kernel
however, has 68 possible CPUs to schedule the tasks to. This is becaugeritiel considers
every thread a CPU. Thus the Kernel might consider that giving a gso@eclusively CPU 1
means that the process is free to run at all times. Considering that CPleadt®y 1, 2 and 3
all share the same core, the Kernel is mistaken. Therefore a utilization BtJagtven by the
Kernel is already at its maximum allowed utilization at only 25%.

Since the Fusion-io driver is closed source there is no method to know leogetkices are
implemented. However by observing the CPU utilization during an 10 test, tasichwake up
most of the CPU time can be founthp which is a tool provided by Linux to show the current
running processes can be used for that purpose. The tool has addigiatures such as showing
CPU utilization and which CPU each processes is running on. By obsedherigp command
output during FIO tests on the Fusionio card ioDrive, it was found thatthee three tasks
spawn by the driver.

A full observation of the CPU utilization during a FIO test is needed. Showkigare 4.14
is the CPU utilization in percentage during a FIO test. The test was done orea3®lue/Q,
but limited the number of CPUs to 20. This helped observe the behavior ¢iveited number
of CPUs. As can be seen the Utilization of the first few CPUs is very higls ifldicates that
some threads are needed by the driver to carry out the requests sulimittedFIO jobs. It is
also worth knowing that CPU 0 is used for interrupt requests. That ntkahevery interrupt is
automatically routed to core O thread 0.

Considering that the first four CPUs share the same core, a CPU utiliztioore than 50%
for CPU 2 means that the core is taken for half the time by a single threadisuhy a better
CPU scheduling might lead to improving performance.

There are three main components that can be edited to achieve a betteliaghddhese are
the Kernel scheduler, the FIO tool and the test script. By manipulating theeKecheduler the
processes can be placed into the appropriate CPU. This howevereseghanging the Kernel

Analysis and Optimization of Storage 10 in Distributed and Massive Paraiggi Herformance Systems 79

4 OPTIMIZING 10 STACK FOR PARALLELISM

CPU utilization during Random Read from Fusion-io

100 T T T T T T T T T T T T T
jobs= 16, Filesize=512M and blocksize=1 —+—
90 F
80
70 F

60

50

Utilization

40

30

20 ¢

10

01 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
CPU number

Figure 4.14: CPU utilization during FIO test reading from ioDrive on Blua&€

inner workings. Not only is this complicated, but also might disturb other sidegsses needed.
This might unintentionally result in performance changes that would noohsidered. The
second option is to change the FIO tool. Although this is less complex it still insdive
changing of a complex tool. Also the risk of unintentionally changing perfageaalculation
through side effects is still present. In fact it is seldom a good idea to nmiatépihe tool used
for benchmarking. The final option is changing the test script. Linuxidesvthe option of
setting core affinity for processes using thsksetcommand. The test script spawns the FIO
job then iterates waiting for all jobs to spawn. Once the Process ID or Rilbedound they
are passed ttaskset The appropriate core is chosen and the thread is mapped. Changing the
test script meant that there is a risk of part of the CPU utilization going to tife.s€his can be
avoided by breaking the iteration once all processes are found. Argifaelvantage for using
thetasksein the test script is that the tasks could have operated for a few cyclestimes CPU
than the one intended by the script. This might result in error containettsedine margin
of error can be decreased by increasing the time of FIO test operathis.will increase the
average utilization of the intended CPU towards the ideal case.

The main target of the division of CPU among driver threads and the eliffdflO jobs is
the minimization of collision. Therefore giving each task a CPU is not sufticks mentioned
before each four adjacent threads share one core. Thus theltaogehe giving each related IO
job its own core. Since the first core receives the interrupts nothing witbeduled on core 0.
To the first three cores the three threads spawn by the ioDrive drilldyenbinded. This means
thattasksewill set the CPU affinity of these three threads to CPU 4, 8 and 12. Sinceigro
need to repeat the test for all different numbers of jobs it is sufficiepétiorm the test once. It
was found that 8 jobs reach the highest performance possible for @88 and bandwidth on
the Blue Gene/Q in combination with the ioDrive. Therefore performing theotesst for 8 jobs
is adequate. These 8 FIO jobs were binded usasgseto CPU 16, 20, 24, 28, 32, 36, 40 and
44,

Analysis and Optimization of Storage 10 in Distributed and Massive Paraiggi Herformance Systems 80

4 OPTIMIZING 10 STACK FOR PARALLELISM

Setting the CPU affinity of the processes as previously explained resultieel ©PU utiliza-
tion shown in Figure 4.15. The utilization in this case has been taken overrtimdate FIO test.
The average was then taken over the time. To ensure the accuracy obtlesgit was carried
out using complex scripts. The scripts target finding the CPU and add ugitization over
thousands ofop output. Additionally the script has to be capable of excluding irrelevanttes
such as the occurrence of a zero utilization before the job has beenegadnother important
aspect of the script is finding the average. Therefore each time al usidiiation value has
been found a counter is increased by which later the total CPU utilization wdiMided. Since
the output of theop command is refreshed after a constant interval of time, the number of use-
ful CPU utilization values is proportional to time. On these bases the CPU utilizgitren in
the figure are acceptably accurate values. It is important to note hethéhatilization values
mentioned here are system utilization. These are therefore time spend bithan Creating
10 requests or driver operations. The CPUs used for FIO job spérghapercentage of time
in CPU 10 utilization according to thiop command output. This utilization percentage is the
amount of time spend by the CPU waiting for 0. This reached values of mane/®.

CPU utilization during Random Read from Fusion-io

100 T T T T T T T T
Utilization over complete fio test using taskset ——
90 -
80 -
0 -

60

50

Utilization

40
30 r

20 .
4 2 12 16 20 24 28 32 36 40 44

CPU number

Figure 4.15: CPU utilization during FIO test and setting CPU affinity

Once the test is concluded the IOPS can be compared with the ones famal O test
without setting CPU affinity. Figure 4.16 shows the percentage of improvieofierising func-
tional partitioning. The percentage is taken from the maximum achieved 10f8utvsetting
CPU affinity. This is the IOPS at 1KB blocksize. The figure compares thfenpeance of an 8
job test with and without usintaskset

Figure 4.16 shows an improvement for the usage of functional partitioniigs howeve
decreases as expected by increasing the blocksize. The perforimgorogement comes from
the fact that processes are utilizing a complete core. This means that thkeSdhaduler is not
allowed to move the process around. This in turn leads to saving valuablédisgitome lost
during process migration. Additionally the core is no longer shared among hayltipcesses
running on different threads. This means that the process is allowed toare than 25% CPU

Analysis and Optimization of Storage 10 in Distributed and Massive Paraiggi Herformance Systems 81

4 OPTIMIZING 10 STACK FOR PARALLELISM

IOPS - Random Read from Fusion-io (ext2, block size 4kB)
BG/Q (16 Core 1.6GHz, 4GB RAM)

200

jobs= 8, Filesize= 1024Mi, WITHOUT taskset —+—
jobs= 8, Filesize= 1024M, WITH taskset —«—

150

100

% of IOFS
at 1KE without taskset

50

1 2 4 8 16 32 64 128
Elocksize KB

Figure 4.16: Percentage of IOPS improvement by setting CPU affinity

utilization without depriving other threads.

Although there is an achieved performance increase from using fuatpamtitioning it is
limited. As can be seen by Figure 4.15 the service processes used by tive ialbeady utilizes
more than 85% of a single core. Considering that the FIO jobs all are usiogy120% of CPU
utilization, the bottleneck is assumed to be the driver threads. Therefomiyhenethod for
increasing the I0OPS further is the use of multiple controllers. Another optidividing the
driver into several threads to perform the same task. This however imigbbmplicated and
is not possible without a deep understanding of the controller implementationetheless,
this test proves that better performance can be achieved using fuhgamttioning. It also
indicates that better resource management improves performance withoegtth for hardware
upgrades.

4.3.3 Testing Parallel File Systems

The use of parallel file systems has been mentioned before as one of theuguestsful methods
for increasing performance of I0. Modern servers depend onasirg number of hard disks to
increase 10 performance. To achieve that parallel file systems ard¢abaddle the increasing
number of devices. Therefore using parallel file system to combine tlierpamce of multi-
controller SSD is a well suited method for increasing parallel performance.

Given that IBM GPFS is the most commonly used file system for HPC, it is apipte for
using on the Blue Gene/Q. The main advantage in using GPFS is that norme e&@tbe
used to access the file system. Therefore the GPFS created can be namuhdedessed just as
any other file system. This makes the testing process easier. In fact tiesaRee script can be
used making the results comparable to previous tests.

GPFS defines service and client nodes. The service nodes contastsrdge devices which
will be accessed by the client nodes. In order to achieve using the sateeas@ storage and

Analysis and Optimization of Storage 10 in Distributed and Massive Paraiggi Herformance Systems 82

4 OPTIMIZING 10 STACK FOR PARALLELISM

processing unit, the Blue Gene/Q node is defined as both client and seodee This leads

to having both threads operating on the same node. Another important igRUBR¥S is that

it only accepts certain types of devices. However these physical deaieemissing on the
Blue Gene/Q specially if it is necessary to test performance change withemushldevices.
This meant that GPFS had to be tricked to acaaptdisksas being actual physical devices.
Considering that theamdisksare suppose to perform better than any other available devices,
scaling by increasing the number of devices will be due to the use of GPFS.

Under GPFS each device attached must be given a globally accessiblee&D NSD stands
for Network Shared Disk. It is expected that increasing the number & Bf®uld increase
performance. The test therefore was performed using several N&ditionally the relation
between blocksize and performance had already been establisheevipuprtests. Thus the
test can be performed using a single FIO blocksize. This was choserdtdBhdn addition to
that the number of jobs are plotted on the X-axis. Considering that the tesgeb jobs and
number of NSD keeping the blocksize constant makes the plot easier tomefadt as will be
seen later from the figures there is no longer a need to present bothai@P&andwidth. The
difference between the two becomes a constant factor which is the blecksiz

Figure 4.17 shows the bandwidth of different NSD counts. The bandvindthe plot is
represented as a percentage oflmadiskperformance. It should be noted that tlaendiskis
mounted using an Ext2 file system.

Bandwidth - Random Read from GFFS (ramdisk NSD)

BG/Q
80 T T T
gMNsDh —— FIO: Blocksize=4KE, TotalFile Size=1G
12 NSD —— GPFES: Page Pool=128M, GPF S Blocksize=64KB

70 F16 NSD —#%—

60

50

40

30

% of ramdisk Bandwidth

20

10

12 4 8 16 3z 64
Mumber of FIO jobs

Figure 4.17: Percentage of ramdisk bandwidth vs jobs for GPFS with eliffé&tSD

There are many observation that can be drawn from Figure 4.17. Kirstising the number
of NSD increases performance for higher number of jobs. This wascéeg as more jobs are
needed to saturate the bandwidth at a constant blocksize. The sameaasebed for IOPS
as seen in Figure 4.18. Although the figure might give the illusion that peeoce drops for
higher job numbers, this is not true. Th@ndiskbandwidth increases almost linearly with the
increase of number of jobs. The figures therefore indicate that batidusthg GPFS does not
increase as quickly as that of a singéendiskwhen increasing number of jobs. Therefore the

Analysis and Optimization of Storage 10 in Distributed and Massive Paraiggi Herformance Systems 83

4 OPTIMIZING 10 STACK FOR PARALLELISM

percentage drops as seen in the figure.

I0PS - Random Read from GPFS (ramdisk MN3D)

BG/Q
80 T T T
8 NSD —— FIO: Blocksize =4KB, TotalFile Size=1G
12 MSD —— GPF5:Fage Pool=128M, GPF S Blocksize=64 KB

70 16 NSD —%—

60

50

40

30

% of ramdisk |OPS

20

10

12 4 8 16 32 G4
Mumber of FIO jobs

Figure 4.18: Percentage of ramdisk IOPS vs jobs for GPFS with diff&N8it

Considering that each of the NSD used by GPFS@&wdiskthere is an obvious massive drop
in performance. For example, best bandwidth achieved by a GPFS wit8N®% of single
ramdiskperformance at 16 jobs. Instead, it was expected that the perforibamtese to 8 times
that of a singleeamdisk This could be explained by the number of threads that GPFS has to
use to service the file system. In other words, GPFS represents a lamdpeasd. This overhead
leads to the decrease of performance. However it should be notedishaditiparison is to some
extend unfair. Theamdiskbeing part of the RAM is the fastest storage possible. Nonetheless the
test shows the massive impact that a complex file system can have ompaaréa. Therefore
it might be more efficient to use other methods for combining multiple devices angée s
node. For example, combining several devices in the driver is more gt for this case.
It still remains to test how the overhead of GPFS will affect performancawfi-controller
SSD. Although the overhead might not limit device capabilities as drasticallytias tase with
ramdisk still there will be limitations. On increasing SSD controllers the performancedwidit
some point limited either by the number of processes the diver spawns &. @Rfeod parallel
driver implementation should result in the GPFS overhead limitation to be reéicsted

4.3.4 Testing Loop Devices Parallelism

The SSD market is one of the most expensive. A single SSD card caasosich as 15K dol-

lars. This is not the only reason for SSD limited available testing time. Testingvheegdneans

that the setting cannot be changed. Therefore only the constructien gwthe manufacturer

can be tested. This indicates the need for a more flexible testing environraeexltibits some

of the SSD featurefRamdisksnight appear as a suitable candidate. Random access cannot be
dominated by seek time which makes it close to the performance of SSD. Amaiveantage of
ramdisksis the ease of setting and the open source module. This makes it easy te emang

Analysis and Optimization of Storage 10 in Distributed and Massive Paraiggi Herformance Systems 84

4 OPTIMIZING 10 STACK FOR PARALLELISM

manipulate the implementation cimdisks The disadvantage however is thaaandiskhas al-
most no driver like functions. Theaakerequestfn eventually leads to a simplaemcpywhich
can be seen by Figure 4.19. This means that there is almost no delaydesmcraamdiskand
there is no need to spawn any service threads. Therefore the CPU wall present a possible
bottleneck. This results in thamdiskbeing unsuitable for further test implementation.

bio_endio

brd_make request

copy_to_brd
brd_lookup_page

brd_do_bvec

copy_fram_brd

copy_to_hrd_setup

\:Jl.r memepy
brd_insert_page

Figure 4.19brd_makerequestread or write result in a simplaemcpy

Another viable candidate is the loop device. By using the loop device thesstodiles
can be emulated as being a block device. The main advantage for using @eldog is that
it spawns a thread that deals with the device access. This means that theeloop has the
similar limitations to that of a regular SSD. An additional advantage is that the legpalis
setup on top of a file. That file can be allocated anywhere. Therefore filéhwas allocated on
aramdiskthe seek time would be zero. This results in an almost equal relative perfoenta
that of a SSD.

In order to estimate parallel performance of a loop device there is a neecdturaénow well
does a single device deal with the increase of job number. As the numbésafgale so should
the performance. The result of the bandwidth ratio against a single jobuasih Figure 4.20.
The ratio shows how the performance is marginally improved by using an atdijab. The
figure shows how the performance is doubled at low blocksizes. At higbeksizes there is a
50% or less bandwidth increase. Additionally there is no increase in batidiaycadding more
jobs. In fact the bandwidth almost does not increase passed therparioe of a two job FIO
test. This indicates that the limitation factor of the loop device is the thread crieapeform
the read.

The exact same observation can be drawn from Figure 4.20. This ghewatio of IOPS
between single and multiple jobs random reading from a single loop devieaeshlt is almost
the exact factor distribution as that given by the bandwidth. Given thes tha direct relation
between IOPS and bandwidth which is governed by the blocksize thenrbasomes obvious.
The figures are based on a ratio that eliminates that factor. The ratio ivikienliof bandwidth
or IOPS values with that of a single job at the same blocksize. That way thkslite effect is
eliminated.

Figure 4.20 and Figure 4.21 give the illusion that performance decre@tesncreasing

Analysis and Optimization of Storage 10 in Distributed and Massive Paraiggi Herformance Systems 85

4 OPTIMIZING 10 STACK FOR PARALLELISM

Bandwidth - Random Read from Ramdisk using 1 Loop Device (ext2, block size 4kB)
BG/Q (16 Core 1.6GHz, 4GB RAM)

Jobs= 2, Filesize= 1024M —+—
Jobs= 4, Filesize=512M ——
Jobs= B, Filesize= 256M ——
Jobs= 16, Filesize= 128M —a—
Jobs= 32, Filesize= G4M

25T Jobs= 64, Filesize= 32M —a

=2048M

1, Filessize

Ratio of Bandwidth

against Johs

15

1 2 4 8 16 32 64 128
Elocksize KB

Figure 4.20: Ratio of bandwidth between single and multiple FIO jobs randading from a
single loop device

blocksize. This however is false. Increasing the blocksize still inceettee bandwidth and
decreases the IOPS. The figures simply point out that performaneages more using smaller
blocksizes. There is a simple explanation to that. As mentioned before |I@R#ected more
by parallelism than bandwidth. Given that IOPS increase by decreasrgdbksize the dif-
ference becomes more visible at smaller blocksizes. As for the middle vdlb&scksize both
the IOPS and bandwidth are at average values. Therefore the faatorease of performance
against that of single job appears to be high.

The main observation that needs to be drawn here is that loop devices derfaym better
when using more jobs. Therefore loop devices have low parallelism. As medtloefore this
makes them an almost ideal candidate for testing. If it is possible to increapertfiormance of
the loop devices without major changes to the loop device itself it might be pessido the
same for SSD technology.

The multi-controller configuration of an SSD can also be applied to loop devitkee FIO
test script can use tHidgenameto point to several different block devices. Using this concept and
setting up multiple loop devices the parallelism can be tested. It is expectedihginaultiple
loop devices will increase performance when increasing the number of Jdterefore the test
was done against the increase of number of FIO jobs used. This in tusrttakresulting plot
more readable. The blocksize has been kept constant at 64KB owvartihetest.

Figure 4.22 shows the ratio of IOPS between using a single and multiple loogedevhe
plot shows the results for three settings using 2, 4 and 8 loop devicesadithg from them
in parallel. As seen at higher number of jobs the performance incredssswging more loop
devices. The increase however is not directly proportional to the nuaildeop devices used.
As seen the performance nearly doubles at 64 jobs when using two le@gsleOn the other
hand when using 8 loop devices the performance factor is only arounat 54 jobs. If the
performance increase was linear the 8 loop devices would result in@merfice factor increase

Analysis and Optimization of Storage 10 in Distributed and Massive Paraiggi Herformance Systems 86

4 OPTIMIZING 10 STACK FOR PARALLELISM

I0PS - Random Read from ramdisk (ext2, block size 4kE)
BG/Q (16 Core 1.6GHz, 4GB RAM)

jobs= 2, Filesize= 1024M —+—
jobs= 4, Filesize= 512M ——
jobs= 8, Filesize= 256M ——
jobs= 16, Filesize= 128M —8—
jobs= 32, Filesize= 64M

25T jobs= 64, Filesize= 32M —a

Ratio of IOPS
=1, Filesize=2048M

against Joh

15

1 2 4 8 16 32 64 128
Elocksize KB

Figure 4.21: Ratio of IOPS between single and multiple FIO jobs random igp&dim a single
loop device

of 8. This however is not possible. As the number of loop devices ineadoes the overhead.
Each loop device spawns a separate thread which uses up part ofthetii&tion. Another
reason for the performance increase factor limitation is job device access\intige number of
devices increase so does the time needed for the jobs to access eacteditke. The access
pattern has been explained before for a multiple device FIO test. As ment@ubddevice
and therefore each file is accessed by all jobs. There is no functiari#tigning in this case.
However this is similar to the expected result of using multiple devices. In f&€treS division
among the devices would have been much different. GPFS would stripeditessall devices.
Therefore each file accessing all files would access all devices.

Another important observation that can be drawn from Figure 4.22 is thegehof increase
saturation point. As can be seen, using two loop devices increasesnpenice until using 4
jobs. After that point using more jobs does not increase performamceonparison using 8
loop devices keeps increasing IOPS all the way till 16 jobs. Using more jol@slaop device
almost does not increase the performance. This can be explained byrtiEenof jobs that
are needed to fully utilize a loop device. Shown by Figure 4.20 after usingdisreading
from a single loop device performance is not increased. Therefarg msiltiple devices would
not increase performance passed using more than two jobs per loog.d@éViis leads to the
performance of a two loop device test to saturate at 4 jobs. In turn it ledkls tOPS of a 4 and
8 loop device test to saturate at 8 and 16 jobs respectively.

There is no reason to show the plot for bandwidth. This is because tideviatih plot is the
exact same as the one shown for IOPS. As has been explained biefiregooth IOPS and
bandwidth against number of FIO jobs will give the same curves. Coisglrat Figure 4.22
shows a ratio between performance of single and multiple loop devices,nteviatkh plot looks
exactly the same. Even for IOPS and bandwidth against blocksize thetd @no difference
between the two plots. This is due to the ratio removing the blocksize as the dgastaming

Analysis and Optimization of Storage 10 in Distributed and Massive Paraiggi Herformance Systems 87

4 OPTIMIZING 10 STACK FOR PARALLELISM

IOPS - Random Read from Loop Devices with file system (ext2, FIO Blocksize 64KE)
BG/Q (16 Core L.EGHz, 4GB RAM)

lllsing ™WO Ioolp devices R
Using FOUR loop devices ——
Using EIGHT loop devices —H—

Ratio of IOPS
against Single Loop Device

1 2 4 8 16 32 64
Mumber of FIO Jobs

Figure 4.22: Ratio of IOPS between single and multiple loop devices

the difference between IOPS and bandwidth. That has already been &y Figure 4.20 and
Figure 4.21 which show no difference between IOPS and bandwidth valieris used.

4.4 Implementing A Parallel 10 Design

As defined by the previous shown tests the optimization is dependent on faféotars. The
one with the most performance increase is using multiple devices. The Iibst gptimization
factors can be done on top of using multiple devices. As an example, usictipiual partition-
ing for a multiple device setting can optimize performance further. Therethss omportant
observations that can be drawn as well. One such observation is thé losg device to test
improvements to SSD multiple device settings.

An important issue when dealing with multiple devices is where to combine thepenfce.
In the tests shown in section 4.3.4 on testing loop devices the parallel penfcerhas been
achieved on the application layer. In other words the FIO test recogalkzdsvices and dis-
tributes them accordingly. As mentioned before FIO just makes all jobsfreawdall available
devices. Although this seems as a possible solution it requires changingdieations. Ad-
ditionally this does not allow for global distribution of performance. This banmplemented
if the application has some information on the global state of the system. SinceiltHeaad/
to drastic changes to the application and an over complication of implementatiois, tluisa
possible solution.

Another layer available for combining multiple block devices is the block laydre Best
position would be the driver implementation. In fact there are some cardsahtin multiple
controllers which are shown to the system as a single block device. ThedraniSis one
example. The main advantage is that such implementation avoids changinglibetagpplayer.
Additionally it avoids the complexity of having to deal with multiple block devices aystem
level. In other words implementing a driver for multiple devices avoids the feedsing

Analysis and Optimization of Storage 10 in Distributed and Massive Paraiggi Herformance Systems 88

4 OPTIMIZING 10 STACK FOR PARALLELISM

complicated parallel file systems. The disadvantage however is that the lajeskdoes not
have a global view of the system. Therefore, although the driver ctibdi® requests over the
available devices it cannot achieve any function binding. An importamhplafor such a case
is write versus read distribution. On receiving a write request the draredistribute the request
on any available device. This is specially true for SSD. These containhatfisslation layer
(FTL) which is responsible for mapping addresses. Therefore amgutige address to another
device is allowed by the driver. In comparison when a read requdsesthe driver can no
longer map it to any device. The read has to be done from the block devieioh the data is
stored. This means that the driver is no longer free to choose the distnb@ieen that data is
usually read more than written, the driver is not always free to choosgidtréution suitable.

The third possible option for utilizing multiple block devices is on the system lagesre
possibility is to allow the operating system to bind applications to certain block eevithis
might be effective if the operating system has information on data read ateddene by ap-
plications. However further complicating the operating system of single ctanmuales is not a
good approach. On the other hand the most commonly used method on alglebél parallel
file systems. Not only do they provide a global access to all devices, bhegan manage data
distribution. Also by adding data layout awareness into the file system dagasacan be opti-
mized for different access patterns. On the other hand there are mawyaligages to using a
parallel file system. As previously shown parallel file system can represmassive overhead.
This is specially true for complex global file systems. Additionally to achievepatallelism
some parallel file systems stripe over multiple devices. In turn this leads to appisaaving
to read from all devices simultaneously. This might be counter productive.

Considering the previous points and the tests made in the previous secti@njstiieom
for improvement. There is a need for a better distribution pattern of acgedsfarent block
devices. Another factor for increasing freedom of access is beilegtalwrite then read the
same data from different devices. This will allow the most optimum use of dellocation.
The file system or operating system is free to distribute applications orsapaéterns among
block devices. Therefore reaching best performance through bagiod of task and functional
partitioning.

Figure 4.23 shows a suggestion for implementing such parallel device sy$temsystem
contains a single uniform file system that has a view of the entire storage.spasen that the
file system can be mapped to the uniform storage space there is no neectoamsplex parallel
file system. This is the most important point of the design. The storage spaoeiferm single
unit space. Thus all block devices or controllers can use any availklule device to access any
block in the memory space. Not only does this serve the use simple file systeuiss, means
that any application can use any block device to access any data bldekt the file system is
free to distribute the access as it considers best. The same data cad dedeaitten from two
different block devices. This means that any suitable access patterssiblgo The file system
can schedule a write on one block device and read the data later fronearfetinthermore the
file system can be any common file system. The edit is confined to the acdasskd. This
means that the file system can operate as it would on any other single bioc&.de

The design shown in Figure 4.23 can be implemented for testing. Consideangnble-
menting a uniform storage on a SSD requires changes on the hardwelrthkedesign will be
implemented using virtual devices. The following sections will show an implementatithe
given design. It has to be noticed that the main difficulty in the design wasgaig as little
as possible. The Kernel should not be drastically changed. Additionalfxt2 which is the
file system used for testing the implementation concept should also not be neiempéal from

Analysis and Optimization of Storage 10 in Distributed and Massive Paraiggi Herformance Systems 89

4 OPTIMIZING 10 STACK FOR PARALLELISM

IC reguest IO request

Y Y
File System ‘
N

Device Drivers

Controllers or
block devices

Mesh connection

\‘

Storage Space

Figure 4.23: Implementation of parallel device system

scratch. The target is to achieve a better performance with as little disruptiomfite system as
possible. In some cases the file system was found to handle issues #habhbheen anticipated.
That resulted into an even simpler design.

4.4.1 Block Layer Implementation

The first level of implementation is getting two or more block devices to recogmideaise the
same storage space. One complex solution would be to ediaithdiskmodule available in
the Linux Kernel. The idea is to get athmdisksto access the same memory space. Therefore
implementing the required link. As mentioned before this requires complex ebao¢he mod-
ule. An additional disadvantage to usirggmdisksis the fast access that these devices exhibit
which was proven by previous tests. This therefore would mean thatshksare not compara-
ble. Another problem is thatmmdiskoperates directly on RAM. Manipulating access patterns
means risking accessing wrong memory locations. In turn this might resultrécoverable
errors. Thus leading to complex debugging sessions. Additionally therpehce using such
changes would not be comparable to that of a sirgtediskdue to module changes.

This step has to be achieved with as little change to the device as possiblemaéssimated
before the loop device is a suitable candidate for testing performancgahardditionally
using the loop device would avoid some of the difficulties exhibited byrdnedisk The loop
device is set up on top of a file. Therefore using it would avoid direct mgmapping. This in
turn would avoid the need for complex debugging. In fact it was fountittiican be achieved
with no changes to the loop device module itself.

Creating a loop device is done by running theetupcommand. The parameters required in
this step are loop device to setup and the file on top of which the loop deviceensitt The
command does not check if the file is used by another loop device. Theatimglosetupfor
different loop devices using the same file is possible. During a read orapetion these loop
devices will therefore access the same storage space.

Analysis and Optimization of Storage 10 in Distributed and Massive Paraiggi Herformance Systems 90

4 OPTIMIZING 10 STACK FOR PARALLELISM

fdevfloop0 fdeviloopl /deviloop2 fdevfloopN

losetup \' \
file

Figure 4.24: Linking multiple loop devices to a single file

4.4.2 Registering Multiple Devices

Given that the file system has to access many devices it has to know whichslig can access.
How a file system registers the device it is stored on has been explainedviir$18ection 3.3
and individual file system Section 3.4. The target here is to limit changes tofthiae file
system. This will facilitate testing changes. Additionally by avoiding extendiaanges to the
Kernel other file system operations will not be affected. However sineekernel needs to
register the possible block devices the VFS has to know which ones toatesaith the file
system. The VFS is responsible for runtime variables that are set to catieffile system
operations. Although it is possible to store the names of the devices andhtieber on the file
system, this will only be a temporary or a testing solution. The proper techisidaethe VFS
to detect how many devices the file system contains. The next step is foFtBdéovassociate
those devices to the file system.

Given that the test is performed using loop devices it is possible to hava adir count of
loop devices needed. That count could be kept in the file system. Angitiendgs to add an
integer to the VFS. Although it is a must to add the block devices associated fililsgstem to
the VFS, it is preferred to not add the count into the VFS directly. The nuofti@ock devices
used in accessing the file system is a factor that would be changed dbns@imen that the
VFS changes result into a full recompile of the entire kernel, adding thetaoto the VFS is
counter productive. To achieve a dynamic environment the best solutimfoisn a list of block
devices. The advantage of lists is the changeable length, which is notsthevith arrays.

The Kernel already presents a list implementation. This makes forming a bévitedist
much simpler. However a nestruct needs to be defined. The code for thtsuctis shown
below. This contains three variables. Tsteuct blockdevice *sbdevis the block device vari-
able. This will be later used as an identifier for block access. It has tooteed that the
block devicedoes not contain the regular block device name sucli@sgloopO Later in the
process of mounting the file system this variable will have to be found. Tktevagable is the
list variable defined by the Kernel. The source code for the implementati@siin the Linux
Kernel can be found imclude/linux/list.h Using predefined lists in Linux is quite simple. All
needed functions are already implemented. The ones used will be explaieedequired.

struct list_loop_bd {
struct block_device *s_bdev;
struct list_head list_s_bdev;
atomic_t access_count;

};

Analysis and Optimization of Storage 10 in Distributed and Massive Paraiggi Herformance Systems 91

4 OPTIMIZING 10 STACK FOR PARALLELISM

The third and last variable istruct listloop_bd is atomict accesscount This is an integer
that is used for counting how many request currently access the déhecimportant aspect
of this variable is using thatomict provided by Linux. Instead of using a normal integer the
atomic integer is used to avoid possible race conditions. This is necessanytgat multiple
processes can operate on the device at the same time.

As proven earlier the VFS has to register the list of block devices. Thestes is to find
where to register the list within the VFS. As shown in Figure 3.3 there are megett runtime
variables that could contain this list. The best approach is to add the list indapleeblock This
is because thsuperbloclexists once for each file system. In fact thededoes not contain any
pointer to the block device on which the file system exists. Therefore dfikingperations the
inodepoints to thesuperblockand then points to the block device variable in sperblock

Figure 4.25 shows part of Figure 3.3 with the location of the block device listsefen the
list has been added w&iruct superblock This is shown by the circle in Figure 4.25 (1). The
list variable is defined as shown in the code segment below. Another impotiservation is
that the variables_bdevhas not been removed from thaperblock This has two main reasons.
The first is as mentioned before changing as little as possible in the Kernehirmptation. The
second and most important reason is thatstmact superblockis used by all file systems. If
the variables_bdevhad been deleted these file systems would have required patching.orberef
keeping the variable demonstrates how simple itis to add functionality withoutldisgumormal
Kernel processes.

struct block_device *s_bdev;

/*

* list of loop block devices controlled by the super_block
*/

struct list_loop_bd *loop_s_bdev;

The next step is to fill the list with block devices.

4.4.3 Mounting Ext2 with Multiple Devices

Mounting a file system is a complex operation that involves creating many cocguigxonents.
These will later be used to access the file system, ensure coherenac@peadqgperation. Once
again the target is to confine the changes to the Ext2 module. Even therestsdmugild be kept
at a minimum. Given that Ext2 is compiled into the Kernel by default, the Kerndiguration
should be changed. Another possible option is to compile the Ext2 module witheaediff
name. This approach is useful in case the original Ext2 is needed by thelKer booting.
In fact it was found that some Linux Kernel versions mount the first iniiatdiskas an Ext2
file system. These Kernels cannot boot if the Ext2 file system is not compiledhia Kernel.
The target then is to change the Ext2 enough for it to be registered by tha¥ & different file
system. This can be achieved by replacing every account of the Ext2lmeamother. That way
one guarantees that the file system is unrecognizable by the VFS as the2ald'ke problem
here is that even Ext2 interface files need to be changed. This inclutleslpdhe files found
in fs/ext2but also the Ext2 files found imclude/linux

The difficulty with recompiling the Ext2 as a different file system becomes oisvimce the
file system is used. Changing the Ext2 module means that the file system isreshlsgethe
VFS as a different file system type. However the tools needed to use thg defined file
system are missing. The main problem is formating a device using the new fitgrsy$he

Analysis and Optimization of Storage 10 in Distributed and Massive Paraiggi Herformance Systems 92

4 OPTIMIZING 10 STACK FOR PARALLELISM

Superblock o
file instances of the superblock

5 _files
s_bdev \b - >
<f"'_ T =" =]
loop_s bdev>
== f_dentry f_dentry f_dentry
u . _ _ !
A @ Deniry |tor | |op | f_op
d_ops > ggg:gti_ons
d sh
d inode
NAME

@ inade

i op g iNOdE_
= operations
i_dentry

i sh

i_fop - file_

= - operations
i_mapping

Figure 4.25: Adding list of block devices to VFS components

tools available for formating an Ext2 file system are externals added tooksseTieed to be
rewritten to format using the new file system. Attempting to use the new file systeatéss
a device formatted using an Ext2 tool will fail. The VFS checks the file systgma before
mounting. If the type does not match, the mount process is aborted. Thiatieslibat the tools
for formatting a device using the new file system requires rewriting Ext2 egistiols. This
however is a complicated process.

The case for compiling the Ext2 as a new file system is unavoidable in casethellKoes
not accept loading the Ext2 as a module. However the devices usedtiog s not need such
drastic measures. Thus the Kernel configuration file can be updateduothBdExt2 use as a
module. The Ext2 can then be compiled and loaded after the machine hassultgdooted.
Compiling a Kernel for the Blue Gene/Q without the need for the Ext2 module slgesAlso
booting a node using that Kernel does not show any problems. Howev&xt2 mount has to
be forced using théypeoption for the mount command. This is to avoid the Kernel using any
other file system type to mount the Ext2.

The mounting process is carried out by VFS. This might indicate the difficdliseting
multiple block devices without changing the VFS. Nevertheless the VFS mounmtiogss is
dependent on individual file system implementation of certain helper fursct®iven that each
file system has a different architecture, the VFS has to employ the helpetidios to fill the
runtime variables. Therefore the VFS requests the file system to defireftimesions into the
file_systemtype Shown below is thdile_systemtype definition of the Ext2. The code shows
two important variableget sb andkill_sbwhich are set t@xt2 get sb andkill _block superre-
spectively.

static struct file_system_type ext2_fs_type = {
.owner = THIS_MODULE,

Analysis and Optimization of Storage 10 in Distributed and Massive Paraiggi Herformance Systems 93

4 OPTIMIZING 10 STACK FOR PARALLELISM

.name = "ext2",

.get_sb = ext2_get_sb,
.kill_sb = kill_block_super,
.fs_flags = FS_REQUIRES_DEV,

};

On mounting a new file system the VFS refers to these pointers to accesadtieris needed.
getsbis used to get theuperblockirom the file system. As mentioned before VFS is optimized
for using Linux native file systems. Therefaegt2 getsbonly needs to cal§jet sh bdev Still
the VFS requires the file system to fill out theperblock This however cannot be done using
generic VFS functions. Thusxt2getsb has to supply a function pointer tget shbdev The
function pointer has to point tofdl _superfunction. In case of of the Ext2 the function is called
ext2fill_super As the name suggests the function has the task of filling the S®&rblock
with the required data from the file system. Therefore the best position to iretitléz list of
loop devices is irext2fill _super

It is necessary to mention here that the mounting process might be differerther Kernel
versions. On the Kernel used on tk&6 system the Extdile_systemtype did not contain a
getsbvariable. Instead it contained a variable calleduntwhich was set t@xt2mount The
functionext2 mountthen calls a generic function from the VFS caltaduntbdev This function
however still requires &ll _superfunction pointer. In turn the Ext2 usext2fill_super That
means that the changes made onx8&Kernel are compatible with the changes made on Blue
Gene/Q. The code for the initialization of the block device list is shown below.

/*My variables*/

fmode_t mode = FMODE_READ | FMODE_EXCL | FMODE_WRITE;
int nr_loop_dev;

int total_loop_dev=6;

struct block_device *bdev;

struct list_loop_bd *list_bdev;

char loop_devices[20];

/* Adding the additional loop devices */
sb->loop_s_bdev = kzalloc(sizeof (struct list_loop_bd), GFP_KERNEL);
INIT_LIST_HEAD(&(sb->loop_s_bdev->list_s_bdev));

/* Create a new list_loop_bd */
for (nr_loop_dev=0; nr_loop_dev < total_loop_dev ;
nr_loop_dev++){
sprintf (loop_devices, "/dev/loop’d", nr_loop_dev);
bdev = open_bdev_exclusive(loop_devices, mode, sb->s_type);
//bdev = blkdev_get_by_path(loop_devices, mode,
// sb->s_type) ;
list_bdev = kzalloc(sizeof (¥list_bdev), GFP_KERNEL);
list_bdev->s_bdev = bdev;
list_bdev->s_bdev->bd_super=sb;
atomic_set(&list_bdev->access_count, 0);
list_add(&(list_bdev->list_s_bdev),
&(sb->loop_s_bdev->list_s_bdev));

Analysis and Optimization of Storage 10 in Distributed and Massive Paraiggi Herformance Systems 94

4 OPTIMIZING 10 STACK FOR PARALLELISM

}

The code given shows the adjustment mad@itsuper These target the initialization of the
block device list with the loop devices. The code starts with defining suppodbles. The
most important variable i®tal_loop_devwhich represents the number of loop devices that will
be used. The code then initializes the list usiNgT_LIST_HEAD. Filling the list is done in a
loop. Each iteration a loop device is added to the list. The loop has to find thecttmop
device name. Given that loop devices are named in ascending orderpthadds a count to
the string/dev/loop The resulting string however does not identify the block device on adfern
level. The identification as explained in the block layer Section 3.5 is done asingjuestruct
block device To reach from the name of the block device a special function has todmke us
The function is callepenbdevexclusive It opens the block device by returning teuct
block deviceassociated with the given name.

Two lines are commented into thik_supercode given above. These show thttict blockdevice
is found using a different function callddkdevgetby path There is noopenbdevexclusive
on the Kernel used on the x86 system. Therefore a replacement wak fas pointed out ear-
lier the Kernel changes rapidly. Not only does the implementation of functibaage but the
interface as well. Patching the Kernel is a simple method for moving charggasfie machine
to the other. Despite that the practical use of patches is difficult. Chaagesetdom be added
to another Kernel without checking functionality.

Thefill_superhas to set thést_bdevthat will be added to the list. It does that by settmlgdev
to the found variable usingpenbdevexclusive It also needs to seth of the block device to
the superblock being filled. This is required as the VFS needs to know whsigherblockto
use when accessing a block device. Using the atomic funetiomic setthe access counter
of the device is set to zero. Finally the complete list element can be added totth&Hhis
process shown here will be done once for mounting the file system. Ifdherdoes not need
to be optimized further. An advantage to that is the possibility of adgdiimgk that would print
messages to the Kernel log. These can be checked to confirm that teet ecoounting process
has been performed.

4.4.4 Unmounting Ext2 with Multiple Devices

Multiple devices and variables have been created to mount the Ext2 file syGiesn.that these
are not considered by the original Ext2 implementation, the normal unmoeratign does not
remove these devices or variables. There is a need for a clean unmocesg The file system
needs to be tested using several different configurations. If the lersycannot be properly
unmounted the whole system will need to be restarted to apply these chdnggetherefore
important to edit the unmount process to undo the changes done duringimgoun

The Ext2file_systemtypedefines a variable for removing tiseperblock The VFS will call
kill_sb when unmounting the file system. This pointer is set by ExtRiltoblock super The
problem here is that this function is a VFS generic function which is used Iny rother file
systems. Changinlgll _block supertherefore is not possible.

This is where the logic of the VFS implementation can be used. The Ext2 cageliaa
function called for removing theuperblock This can be achieved by settikil _sbto a different
function. In this case the function is call&dl _block superloop. The code of the function is
shown below.

void kill_block_super_loop(struct super_block *sb)

Analysis and Optimization of Storage 10 in Distributed and Massive Paraiggi Herformance Systems 95

4 OPTIMIZING 10 STACK FOR PARALLELISM

{
struct list_head *p;
struct list_loop_bd *tmp;
struct block_device *bdev = NULL ;
fmode_t mode = sb->s_mode;
list_for_each(p, &(sb->loop_s_bdev->list_s_bdev)){
tmp = list_entry(p, struct list_loop_bd, list_s_bdev);
bdev = tmp->s_bdev;
bdev->bd_super = NULL;
sync_blockdev(bdev) ;
WARN_ON_ONCE(! (mode & FMODE_EXCL));
blkdev_put(bdev, mode | FMODE_EXCL);
}
kill_block_super(sb);
}

Removing a block device requires calling several functions to perfoteaaap kill _block superloop
loops over all devices in the list usifit_for_each This is a Kernel defined function. For
each device thbd_superhas to be set tblULL to set the device free for another mount. Next
syncblockdevis called. Performing a synchronization makes sure that all data cacheuoewill
written back to the device. In turn preventing data loss. The final step i4 thg@block device.
Thereforeblkdevputis called to free the block device.

As mentioned before the original Ext2 mount process called the funktibiblock super
during the unmount process. Since there is no need to repeat the fgnatiplementation the
function is just called. Again this shows that the design makes room for h&xt2operations
to function without disturbance. An Ext2 file system that does not requéirenthitiple device
design can disregard the mounting and unmounting of the loop devices.tuglrgrihe file
system will be unmounted as a normal Ext2 usingkiieblock supet

4.4.5 Accessing Ext2 Multiple Devices

The complex call graphs for reading or writing a file has been explaine@ W@ Section 3.3.
The data access explained has stopped at callinditeet IO function implemented by the file
system. The only interest in following this long function chain is to locate the @inthich
the device used is found. The Ext2 file system setsdifext 1O to its own implementation
ext2direct 10. This function has to pass the device on which the file system is preseloicte
devdirect10. This function has been explained in the block layer Section 3.5.

The functionext2direct 1O is a good position for selecting the device. All functions below
that are implemented into the block layer. On the other hand any function ait®direct IO
does not contain any reference to the block device. Shown below is deefaoext2 direct 1O
function. As can be seen there is a block device pointer passadadevdirect |O. This block
device comes from the file system. Tinede-=>i_sb->s bdevis the pointer to the block device
element in thesuperblock

static ssize_t

ext2_direct_I0(int rw, struct kiocb *iocb, const struct iovec *iov,
loff_t offset, unsigned long nr_segs)

{

Analysis and Optimization of Storage 10 in Distributed and Massive Paraiggi Herformance Systems 96

4 OPTIMIZING 10 STACK FOR PARALLELISM

struct file *file = iocb->ki_filp;
struct inode *inode = file->f_mapping->host;

return blockdev_direct_IO0O(rw, iocb, inode, inode->i_sb->s_bdev, iov,
offset, nr_segs, ext2_get_block, NULL);

According to the implementation axt2direct IO the block device is selected and handed
over to the next level. This however is misleading. This device is only ugefihfting some
mapping information on the block device. Although the use of different lompcds to call
blockdevdirect 1O might result in correct output, it will not increase the performance results
This is because the previously mentioned loop devices all have the same gagfpimation.
Choosing the block device from which the data is finally read is called somrevdige. To
discover whether or not the additional devices are being accesstmptbemmand output has
to be observed. Every loop device on setup spawns a new threaa: thheads have to be active
during the read or write operation. Therefore if only one loop devicetigeathen the file is
being read or written to by a single loop device.

Finding the actual device which is used for the read or write operation @Satrior the
implementation to be able to use all loop devices. The best method is to start aténdeeel.
The function used for adding a request to the block devioggikerequest Since this function is
depended on the device driver, the function calling it must be the oneidgcid the appropriate
device. This function is_genericmakerequestwhich gets its block device from thao that
it takes as a parameter. Therefore it is important to find the point at viandety bi_bdevis set.
Given that this variable has to be set by either the block layer or the filensythie search is
difficult and long. The best method to facilitate the search is to take a look aathgraph that
leads to__genericmakerequest This time however it is important to move backwards in the
call graph to find the source and not the result of the call.

count_vm_events

submit_hio

generic_make_request

task_io_account_read __generic_make_request

Figure 4.26: submibio is the source of caller fargenericmakerequest

Figure 4.26 shows that the source call fagenericmakerequesis submitbio. This indicates
that thebio has to come from the direct IO. The reason is that the direct IO operamtolput
together the appropriat#o before usingsubmitbio to submit it to the block layer. The problem
here is that the design demands not changing the direct 1O layer too mugbidodisturbing
other functions.

The construction of the direct 1O call level can be foundsfiirect-io.c The main function
used by the Ext2 to carry out a direct 10_iblockdevdirect 0. This function has to carry out
a lot of administrative organizing to admit the firtaib to block layer. It is important at this

Analysis and Optimization of Storage 10 in Distributed and Massive Paraiggi Herformance Systems 97

4 OPTIMIZING 10 STACK FOR PARALLELISM

point to mention the difference betweeri@ and adio. Thestruct biois used by the VFS to
admit any request to the block layer. Thi® has been extensively explained in Section 3.5 on
the block layer. On the other hastruct diois used by the direct 10. It helps organize the data
that is related to a direct 1O access. Despite usingltbdor organization in the direct 10 call,
the block layer can only accepté#o. Therefore thalio has to create neWwio to be admitted to
the block layer. Given the interest in knowing where e sets its block device variable it is
necessary to locate the point of creating a feav The function that does the setting is called
dio_bio_alloc. It gets the block device as a parameter.

Once again the call source dio_bio_alloc has to be found to see where the block device is
set. This function is called bgio_newhbio which gets its block device from the buffer head
associated with thdio. A hint towards where the buffer is set is given in a comment added
to thestruct diodeclaration. The comment explains tisatuct bufferhead mapbh is the last
result of functiongetblock As explained in Section 3.4 each file system providgetblock
function. For the Ext2 file system it is callext2 get blocks This function sets the buffer head
at the end once the blocks have been allocated. For that purposetiariutedledmapbh is
used. This function finds the appropriate block device from the file sysidus.indicates that
thegetblockfunction is the one that sets block device on which the access is done.

The challenge now is to find an appropriate point for the implementation to ettaadlock
device used. This can be divided into two steps. The first step is decidimich block device
to use. The second step is to set the used block device to the chosen one.

As explained before the functia@xt2 direct IO is the first function that uses the block device.
As a result it is an appropriate point in the call chain to decide on the blogkedeThe choice
can be done using different methods. One such method is finding the ssmkblock device
and bind the request to that block device. For that purpose the atomgsammanter placed into
the block device list can be used. Such an implementation is shown in the dode Gé/en is
only the part of theext2direct IO that selects and then uses the block device in the next function
call.

/* Dividing req using access countx*/

struct list_head *p;
struct list_loop_bd *loop_bdev;
struct list_loop_bd *tmp;
int min = atomic_read(&(loop_bdev->access_count));
loop_bdev = list_first_entry(
& (inode->i_sb->loop_s_bdev->list_s_bdev),
struct list_loop_bd, list_s_bdev);

/*Finding the block device with zero or smallest access count*/
list_for_each(p, &(inode->i_sb->loop_s_bdev->list_s_bdev))
{

tmp = list_entry(p, struct list_loop_bd, list_s_bdev);

if (atomic_read(&(tmp->access_count)) == 0){
loop_bdev = tmp;
break;

}

if (min < atomic_read(&(tmp->access_count))) {

Analysis and Optimization of Storage 10 in Distributed and Massive Paraiggi Herformance Systems 98

4 OPTIMIZING 10 STACK FOR PARALLELISM

loop_bdev = tmp;
min = atomic_read(&(tmp->access_count));

}

atomic_inc(&(loop_bdev->access_count));

ret = blockdev_direct_IO(rw, iocb, inode, loop_bdev->s_bdev,
iov, offset, nr_segs, ext2_get_block, NULL);

atomic_dec(&(loop_bdev->access_count));

As seen in the code above, the function iterates through the list of blodkedevin each
iteration the access count is compared with the minimum. If the access countlisrshem the
minimum a new minimum is set. In case a zero access count loop device is fauter#tion is
broken. Otherwise the iteration continues until the minimum is found. Each time theamn
changes the associated list element is kedbap_bdev Once the iteration is done the list
element block device can be accessed.

The least access count method promises a division of load across leicpgdeAs a result
a high performance might be expected. However the presence of a itdap w call that is
performed hundreds of times might be a performance downgrade. Atioaddl throttle for
the performance of the access count method is the number of atomic opgtatibhave to be
carried out. Eventually there is also no guarantee that this method will divideettiormance
equally. The first loop device on the list is promised the first job. If these ¢aim be performed
in less time than that needed to add a new job the first device will continue tedeAlshough
there is no problem with over loading one loop device over the others, seediffers for actual
physical controllers. There, dividing the performance more acrodsattevare is an important
wear leveling technique. An additional factor is that the division of jobsigedo a list iteration.
Given that finding the minimum takes time, it is not guaranteed that the leasblesgddevice
will be chosen. For instance the first device might have been done withkeegmming the least
used and is not chosen. This happens if the first device accesshamibeen checked before
the job finished.

A different more simpler method for choosing the device to access is Ralmal- In this
method the requests are given to the next device on the list. Therefadindithe requests
equally over the list of devices. The implementation is shown below. The chalisrto find the
loop device next for use without knowing the number of existing loop dsevite avoid having
to pass the number of loop device from the point of setting to the point ofnsher method
is implemented. The function uses a static defined global variable dittset I0_count The
function moves into a list iteration in which the list entry is counted. Once the blalbiable is
equal to the count the iteration is broken and the block device is taken. li§tlead is reached
the global counter is set back to zero.

/*Dividing req using remainder of count*/

/*My Variables*/

struct list_loop_bd *loop_bdev=NULL;
struct list_head *p;

int count = 0;

static atomic_t direct_IO_count;

Analysis and Optimization of Storage 10 in Distributed and Massive Paraiggi Herformance Systems 99

4 OPTIMIZING 10 STACK FOR PARALLELISM

atomic_inc(&direct_I0_count);
loop_bdev = list_first_entry(&(inode->i_sb->loop_s_bdev->list_s_bdev),
struct list_loop_bd, list_s_bdev);

/*Finding the block device next for usex/
list_for_each(p, &(inode->i_sb->loop_s_bdev->list_s_bdev))
{
count++;
if (atomic_read(&direct_IO_count) == count)
break;
if (list_is_last(p , &(inode->i_sb->loop_s_bdev->list_s_bdev)))
atomic_set(&direct_IO0_count, 0);
}
loop_bdev = list_entry(p, struct list_loop_bd, list_s_bdev);

atomic_inc(&(loop_bdev->access_count));

ret = blockdev_direct_I0(rw, iocb, inode, loop_bdev->s_bdev,
iov, offset, nr_segs, ext2_get_block, NULL) ;

atomic_dec (& (loop_bdev->access_count));

The second challenge is getting the access to be directed to the block dessmnc This
is complicated as shown by the previous explanation of the position of blodkedaccess.
Although the final set of the block device is done in #ha2 getblocksthe choice cannot be
moved. The reason is that within a single direct 10 access severalstsgare made to the
block layer. Each request then calls #sd2 getblocksin case more blocks are needed to be
added to the read or write operation. Considering that each of theseste@ure grouped into
a unified access, it is reasonable to carry out all on the same devicdifiibelty is keeping
the appropriate device in the list all over the entire access. The probleomies clear when
looking at call graph of_blockdevdirect 1O. This is shown in Figure 3.15 which can be found
in Section 3.5.

The call graph of _blockdevdirect 10 explains the difficulty with moving the chosen device
towards the access point. The call starts in the Ext2 layer and moves into ¢eé Irim-
plemented for the block device and then moves again into the Ext2 to find the Wdodedo
access. The problem is to keep the chosen device the same over alleotéties An additional
challenge is to avoid changing the block device access scheme for otheystidens.

Figure 4.27 shows the problem of gapping the direct 1O call towardsniegiback into
the ext2getblocks There are multiple gaps that the device choice have to bridge in order to
reach the final access selection point. The challenge is to cross thaseitagut changing the
parameter list of the functions.

The first gap is between tlext2 direct 10 and the__blockdevdirect IO. Given that the block
device choice has already been handed from the first to the secondpheag already been
bridged. As mentioned before thiko is used to keep data across all function calls within the
direct IO call. Therefore every function on the gap interacts with this strac The functions
directio_worker, do_direct1O and getmoreblocksall receive thedio as a parameter. This
makes passing the block device far easier. By embedding the block detddhenio all direct

Analysis and Optimization of Storage 10 in Distributed and Massive Paraitgi Ferformance Systems 100

4 OPTIMIZING 10 STACK FOR PARALLELISM

| submit_page_section

do_direct IO get_more_blocks

ext?_get block I—I-l ext? get blocks

(direct_io_worker

extz_direct 10 h‘(ﬁblockdevﬁdirectﬁlc\ p—p-} filemap write_and_wait_range [

Figure 4.27ext2direct IO call graph with block device choice chain

IO functions can use the same block device across the same access.
First the following line is added tstruct diodefinition.

struct block_device *1list_bdev; /*Loop device for the dio operationx/

Next the device is set inblockdevdirect 10 before callingdirectio_worker. This is shown
by the code below. There is the possibility to allow Ext2 direct IO by a diffeEet2 mount
point. The mount point that does not use multiple loop devices will have to ataidging the
dio->list_bdevvariable. To achieve that an appropriate if condition can be put beéttieg
the variable. The if condition can check on a variable that is set in the bledkeal variable.
Another option is to try to use theontainerof function to find the list element from the block
device variable. If this element exists the mount point is a multiple loop device tn@iven
that the implementation needs to be tested without any other parallel direct Wifferent
mount points, there is no need to further complicate the implementation. Howewszdfthe
containerof function has to be handled with care. The function can return strangeemimn
some cases it was even found to return the same pointer it was given. @littioa function
itself does not throw error outputs, using these pointers will. The file systemter to normal
applications cannot recover from false pointers. These will result iaradd panic.

dio->1list_bdev = bdev;

retval = direct_io_worker(rw, iocb, inode, iov, offset,
nr_segs, blkbits, get_block, end_io,
submit_io, dio);

Now thedio contains the correct block device. Once the call foraki2 get blocksis reached,
the device has to be moved into the buffer head. This is dogetimore blockswhich is shown
in the code below. To avoid destroying otlet2 get blockscalls from other devices that have

Analysis and Optimization of Storage 10 in Distributed and Massive Paraitgi Ferformance Systems 101

4 OPTIMIZING 10 STACK FOR PARALLELISM

not been mounted using multiple Ext2 design an if condition has to be usedn Gatother
devices will not set thelio device variable, the if condition has to simply check for the value of
the variable if set or not.

if (dio->1ist_bdev)
map_bh->b_bdev = dio->list_bdev; /*Set the buffer head
device to the loop device */

Within theext2 getblockscall the buffer head has to be set to the block device passed before
leaving the function. As the buffer head might be reseted during opeiaigomportant to save
it at the start of the function using a block device variable. Onceextizget blockshas found
the blocks that will be read the buffer head is set to the device. In ordeak® sure that this
call has been done through the direct 10 layer from a multiple device Ext@atiee variable
set at the beginning is checked. If the variable contains a value the devibanged. This
implementation is shown in the code below.

struct block_device *bdev = bh_result->b_bdev;

map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
if (bdev)
bh_result->b_bdev = bdev;

As seen from the above the implementation is very complicated and involvesfduotton
changes. The challenge is not just to find the location at which the diffeagimbles are set
and used, but also how to change them. The problem with optimizing the LintneKes
not disturbing normal functionality. For instance, if the previous functioeae been changed
permanently, access through other methods than direct IO would nobkawepossible. This
would have meant a great deal of rewrite to other functions and protmathlg libraries resulting
in application changes. As explained before this has to be avoided asall co

A final point to be made on the implementation is coherence. Usually paralley§iteras
have to guarantee locking on different block devices. This adds adéypemplexity to the file
system in order to prevent reading old data from a block device while tiaehda been updated
on another. The design avoids this by having a unified storage spaedildystem therefore
has to only assume coherence and race conditions on the level of a fiterspdtem. The Ext2
file system originally prevents reading a block that is currently written byreamgrocess. This
will remain the case for the implementation irrelevant of whether the block is eadyusing
a different or the same block device.

4.5 Testing Parallel 10 Implementation

The test configuration on a Blue Gene/Q has already been explained ils detdection 4.2.
Additionally in Section 4.3.4 the parallelism of the loop devices has been testedprévious
tests show that using multiple loop devices increases the performance vétaive block de-
vices were separated. That meant that the access took place on eatuadlock device
using different file system and therefore different files. This howev@ot the case with the
previously explained implementation. For the test script all devices areusetem a single file

Analysis and Optimization of Storage 10 in Distributed and Massive Paraitgi Ferformance Systems 102

4 OPTIMIZING 10 STACK FOR PARALLELISM

system. On that basis there is no need to change the test script when té&imgionumbers
of loop devices. In comparison each different number of loop devistsvi# require a recom-
pile of the Ext2 file system. In each recompilation the number of loop devicesfasa read
or write operation has to be changedfsext2/super.cThe exact position and variable can be
found from Section 4.4.3.

The Ext2 with multiple loop device automatically adds the given number of loop egvic
to the list. The method has been previously explained in Section 4.4.3. DespitbeHaop
devices have to be set up to point to the same file. This has been explainsttion3!.4.1. On
changing the number of loop devices used by the Ext2 file system the nuflbepalevices
setup has to be changed as well. A possible error will occur only if the nuaitbeop devices
setup is lower than that of the loop devices used. In this case the file sysieny v0 access
a loop device that does not exist. In case the number of loop devicesisgfgater the excess
loop devices will be ignored by the file system. Additionally the default of theix ikernel is 8
loop devices. To perform tests with more the Kernel code has to be athaAgether option is
to boot the Kernel with the optiomaxloop set to the needed number of loop devices. The later
option is preferred since it does not involve patching and recompiling thexli{ernel.

As explained in the implementation and how the access is done in Section 4.4.%uthere
different methods for selecting the block device. For the tests shown logligithe Round-robin
access has been considered. The reason for that is the difficultysettizy the use of access
count. During the early phases of development the access count mbathweldsan overload of
access on the first device. This however was due to the use of coprpikcommands. These
consume long periods of time to be fulfilled. This in turn leads to distorting theialivisf
requests among the loop devices. To count the division another schemening access could
be found. The challenge is to guarantee that the access counting willflueinice the results.
Since this is very complicated and meant explaining different complex resaltegshwas done
using only Round-robin. The reason for the simplicity of Round-robin isstingal division of
access. Nonetheless this equality has to be proven. To achieve thaep ttemmand is used to
observe activity of loop device threads. During a read or a write all leyice threads used in
the Ext2 file system list have to be active. Using this technique all test resuistieen proven
to operate on all loop devices in the list of the file system.

Figure 4.28 shows the result for testing the implementation with different niamidoop
devices. The test has been repeated for 2, 4, 6, 8 and 16 deviaegestiits shown in the figure
are for IOPS. As previously explained due to a constant blocksize latithg the ratio there
will be no difference between bandwidth and IOPS plots. For that reasoe it no need to
show the bandwidth.

Comparing the results shown in Figure 4.28 by those achieved in Section 4idydaant
to have a global view of performance increase. The advantages iofjreunified storage over
all block devices has been already mentioned. Nonetheless it was ekfietténe Ext2 imple-
mentation will add overhead thereby slowing down the parallelism of blocicegvThe factor
however that was not taken into account was the existence of multiple Ext2tqpoints. That
means that there are a lot more active threads catering to the different pnitst Therefore,
as seen in Figure 4.28, counter to the expectation there is an increastomaeice.

The performance results show that by increasing the number of dewedsy the Ext2 file
system performance increases. This however only happens wheasitgy the number of jobs
performing a read or write. It has been explained before that the logpede=quires at least
two jobs to saturate the IOPS. This would mean that by adding one loop dewicedditional
two jobs are required to saturate the file system. The saturation has bdemedrby the

Analysis and Optimization of Storage 10 in Distributed and Massive Paraitgi Ferformance Systems 103

4 OPTIMIZING 10 STACK FOR PARALLELISM

IOFS - Random Read from Ext2 Multiple Devices (FIO Blocksize 64KB)
BG/Q (16 Core 1.6GHz, 4GB RAM)

12

Iéxt2 with 2 Lolop Devices S
Ext2 with 4 Loop Devices —+—
Ext2 with 6 Loop Devices —#%—
10 Ext2 with 8 Loop Devices —&—
Ext2 with 16 Loop Devices

Ratio of IOPS
against Single Loop Device
i
i

1 2 4 8 16 32 64
Mumber of FIO Jobs

Figure 4.28: Ratio of IOPS of Ext2 with parallel device implementation againgtesioop
device

results shown in Section 4.3.4 and in Figure 4.22. There it is shown that a2d 8 loop

device setting saturates around 4, 8 and 16 jobs respectively. Hofeetbe Ext2 parallel |10

implementation the output shows different results. The 2 loop device settingadtiliates at 4
jobs. In comparison to previous results the 4, 6 and 8 loop device settirgt@lbte at 8 jobs.
This means that there is an improvement for the performance of 8 loop datiGjobs. This
indicates that the throttle for 8 jobs on an 8 loop devices was the excess of pwats and not
the loop devices.

The 16 loop device setting behaves contrary to the expectation. Instbadinf) a saturation
point at 32 jobs it is moved to only 16 jobs. Even the saturation behavior isrglift than
anticipated. For other numbers of loop devices the saturation or maximum wakieither
constant after it was reached or slightly increased. In the case of tliwa@levice setting the
performance starts to decrease for more than 32 jobs. This indicatesah#tdlbottleneck is
no longer the number of block devices or jobs. The bottleneck is the CPEx@ained earlier
Blue Gene/Q contains 16 cores each with 4 threads. Given that eachduime dequires one
thread it is logical that the performance increase has to stop at 16 joloer the assumption
of perfect scheduling the 16 loop device threads will be scheduled dliffééent cores. Even
if the 16 jobs are also equally divided among the cores, they will still run osdhee core as a
loop device. That indicates that the jobs will have to take part of the compptwer given to
the loop device.

As the number of jobs increase, the portion of compute power that the ladped@reads
have to give up increases. Thus decreasing allowed maximum perfemahe target here
is to show that the ceiling of the addition of block devices to the design is fullermiggnt
on the system. Each block device requires service and driver thréea$® in turn require
compute power. As shown in this test there is an opportunity of adding 1& Himdces. This
however should not be implemented. FIO jobs only read or write data. Aapymications will

Analysis and Optimization of Storage |0 in Distributed and Massive Paraiggi Ferformance Systems 104

4 OPTIMIZING 10 STACK FOR PARALLELISM

require additional compute power for application operations. This haskepiegn mind while
designing the system. There is no need for a perfect IO machine on whiappiication can
run. Important to remember is that block devices come with a cost. Not onlstartbardware
and design, but also a cost to the system for support.

IOPS - Random Read from Ext2 Multiple Devices (FIO Elocksize 64KB)
BG/Q (16 Core 1.6GHz, 4GB RAM)

T T T
Ext2 with 2 Loop Devices —+—
Ext2 with 4 Loop Devices —¢—
Ext2 with 8 Loop Devices —#—

25 |

15 |

Ratio of IOPS
against Mormal Ext2 with Same no. of Loop Devices

05 |

1 2 1 8 16 32 64
Mumber of FIO Jobs

Figure 4.29: Ratio between IOPS with Ext2 parallel implementation and original Ex

Figure 4.29 shows a ratio between IOPS for the Ext2 implementation and theftD Bfe
original Ext2. The ratio is taken between equal numbers of loop devicexaA be seen the
performance achieved is slightly higher than that from using original Ext2oltiple devices.
This as explained before is due to having multiple mounting points. The maximureveow
achieved at the higher number of jobs is almost the same. As can be seetotpdvice
setting has a large difference at 8 jobs. The reason was as previaptyned that the throttle
exists due to the multiple mount points and not due the number of loop devices.aain the
figure shows only the IOPS. The bandwidth figure is exactly the same antheardifore not be
shown.

Figure 4.29 shows a performance improvement over using original Exeapite that the
results should be evaluated with care. As explained in Section 4.2 on thett#sg she FIO
script uses théilenamevariable to address several devices. In turn this leads to all jobs reading
and writing to all devices, but only to a single file on each device. In congratize parallel
10 Ext2 implementation uses one file for each job. Therefore the differanigbt be the file
number and not the implementation. However in worst case the implementation i$tlinpe
as well as the original Ext2. In light of the advantages for using multiple biieskces without
changing the application, this is still an excellent result. Additionally for the imph¢atien any
block device used can access the same files. Therefore read andoaritbs equally divided
on all block devices. In fact the read test results shown in this sectios eaere on data that
was written to/dev/loopCGand read from the entire list of loop devices.

Analysis and Optimization of Storage 10 in Distributed and Massive Paraitgi Ferformance Systems 105

5 OPTIMIZING KERNEL FOR STORAGE CLASS MEMORY

5 Optimizing Kernel for Storage Class Memory

As the processing power continues to increase with multi-core the 10 gaipges to increase.
Although there is substantial development taking place to enhance IO linke,dtileremains
a gap between CPU and storage. Figure 5.1 shows that there is a 5 o@gigtuaa gap in
cycles between accessing disks and accessing memory [25]. This is aatfeat time for
an application to wait for an 10 operation to be concluded. Flash memorysepsean ideal
candidate to form a more faster storage unit. As shown in the figure the galy 8 magnitudes
of cycles between SSD and memory.

{2-10 cycles)

Memory
(100 cycles) \ A

Remote Memory

(10,000 cycles) 5 Orders of
Magnitude
Gap

Flash Memory

{100,000 cycles)

Spinning Disks y
(10,000,000 cycles)

Figure 5.1: There is a 5 order magnitude difference between accessingrynand accessing
disks

Many developers have so far treated SSD as being a simple substitutioDErIH fact in
the realm of the user space not much has been done to improve the sttragetawards SSD.
Fearing backward compatibility SSD manufacturers use the same interéac8SD as those
used for HDD. That means building complicated layers of abstraction.Xaonge, HDDs are
accessed on the basis of sectors set usually to 512KB. In comparifbne§&ire access on a
larger page base which is usually set to 4KB [26]. The reason for the B8D page size is that
writes can only be done one page at a time. The difference will effect tbeghput of a write
operation. Writes in this case need to be buffered and merged due to otiysssizes being
sent to the SSD. On the other hand reads also need to be buffered to albmstant SSD read
of a page size. The buffer is then allowed to send only a single sector dize tpper layers.
This backward compatibility meant that some of the added performance istestusing SSD.

Problems become even more drastic when referring to reliability issues ofSthe Rue to
the limited write/erase cycles that flash cells can endure SSD controlleradhaweploy wear
leveling techniques. The target is divide use among all flash cells. Simvemtonal file sys-

Analysis and Optimization of Storage 10 in Distributed and Massive Paraitgi Ferformance Systems 106

5 OPTIMIZING KERNEL FOR STORAGE CLASS MEMORY

tems can only use a single physical address space, SSD controllett® lieygement complex
FTL. The advantage is that the file system remains unaware of block motvem#re physical
SSD layer. However the write becomes more complicated and require drestieeads.

Another factor affecting SSD compatibility is the design aspects targeting HBB.main
problem is the fundamental characteristic differences between the twwlegies. While HDD
delays suffer the most from seek time, SSDs practically have no seek titrtheYeystem design
including file systems, operating systems and middle-ware have been spcifjtimized to
decrease seek time. Some optimizations have even went as far as remayegsag prefetch-
ing to prevent additional seek time. All these design issues rooted into thentdesign is
limiting the full potential of SSD.

The Chapter is outlined as follows. Section 5.1 explains related work ardusions that
can be drawn from it. This section is divided into different optimization apgines. Section 5.2
shows analysis and tests done for factors affecting SSD perform@heeection introduces the
conclusions that can be drawn from the test results. Section 5.3 shaxaiauple of improving
the 10 stack for SSD. The section explains the details of removing preallocaticch is not
useful for SSD access patterns.

5.1 Optimization Approach

The SSD technology is further adopted into low and high end products dine tanderlying
advantages. The system built on top therefore will have to adapt to allthefumprovement.
However as will be shown by the optimization approaches this is not a simpleTtaekHDDs
has become such a viable part of the design that the entire 10 stack maspeéically opti-
mized for its benefit. Due to the drastic differences between the HDD and3aethnology
this makes the migration complicated. In fact many concepts used under HDbBawdlIto be
abandoned when dealing with SSDs.

SSDs have only been recently adopted as a viable storage unit due tomuey the reli-
ability challenges inherited by the technology. Therefore most paperstadés found did
either target optimization for a reliability defect or presented performarrease due to using
SSD. An additional problem faced is no clear categorization of optimizatidve t&chniques
are strongly related to each other. Nonetheless the following subsectibehaw some of the
found studies on targeting optimization for or to SSDs. Additionally some studliesfficulties
and challenges on SSDs will be shown. The main target is to observe hdectivécal com-
munity is trying to adopt SSD into existing systems. However since most papensrationed
lack a clear cut optimization approach observations and conclusions wltbebe drawn on
the basis of the available data.

5.1.1 SSD Optimized File Systems

The complexity of a file system was discussed in Section 3.4. As has baethedde system
is a complicated middle-ware. As has been discussed before in Section & @tadwo ap-
proaches to accommodate wear leveling. The first is using a specific filsy$his will have
to integrate the wear leveling algorithm allowing use division over flash cefis.riain advan-
tage of this approach is removing the need for a costly FTL. The complexitever has not
disappeared and has to be implemented into the file system. Thereforet§appew functions
has to be implemented such as out of place write [13].

Although this might appear as a new concept the Linux Kernel has codtdiresupport for

Analysis and Optimization of Storage 10 in Distributed and Massive Paraitgi Ferformance Systems 107

5 OPTIMIZING KERNEL FOR STORAGE CLASS MEMORY

such types of file systems for many years. File systems such as JFFSFS8RI[Eve been part
of the Linux Kernel for a long time. JFFS stands for Journaling Flash Figtefy[13]. Most
file systems for flashed are based on a log construct. Log based filensyate an additional
option to perform wear leveling. The basic idea is to represent the compéesgsiem as being
a log. Only the head of the log can be updated and the log continues to moveuilaiciorm.
The difficulty of this type is that updated blocks cannot be changed in plEas means that
new blocks have to be used. The file system has to keep track of blagikwveto know which
to use and which not to. The disadvantage is that these file system sinfportation has to be
kept in the RAM and is created at runtime. Therefore at each mount thie fileosystem has
to be checked to recreate the support information [13].

Flash based file systems have a need for supporting out of place writesieEessity origi-
nates due to the using wear leveling techniques. This means that blocksipdatgesually not
done in the same place. The block is rather copied and updated in a new nwgésg. In fact
SSD controllers usually perform the same operation to increase write.speasing a block
before writing is a time inefficient operation. However as the number of wpezations that
have been performed increases the space of free storage will secpgiakly. A log file system
will therefore approach its circular end. Since all the blocks have beitiemthe log file system
will not be able to continue writing. Considering that the log file system hasrirdtion on the
block versions it can delete outdated blocks. This process is calledggacblection [13]. SSD
controllers use the same method.

Figure 5.2 shows the optimization layers of the 10 stack by using flash filersgsté is
important to note that the layer names have been intentionally changed. Twiduatfile
system has been substituted by flash file systems. The block layer and devier still are
necessary to communicate with the device. However the device has beaegedita NAND
flash memory. This indicates that the controller design of the SSD is made fdesidug to
the missing FTL. In fact the controller can be reduced even further byialipthe file system
to track bad blocks and performing some error detection and correctioritafgs. Although
this appears to be useful for decreasing controller and therefodevhes complexity it rather
complicates the file system.

The desire is to divide the complexity onto different layers in a more optimizkdda. Given
that the target environment contains multiple weak cores using more complitatgttems is
not desired. Therefore a different more suitable middle ground hasftmbd for implementing
a flash file system. One such implementation is the usage of Nameless writesed efat the
write operation to only signal the controller with the data to be written. The ctertidecides
on a suitable location and returns a confirmation to the file system which inchelesldress of
the data. Hence the name nameless writes [27]. The file system will therafaréddistinguish
between new writes and updates. The need for the division is that theleninust be able
to identify blocks that are out of date. This is solved by allowing the file systesend a free
command on a certain block to the controller [27]. In fact many SSDs alreapyort atrim
command that allows signaling the controller of unused blocks. The main distade for the
method indicated for updating is the two steps needed. The first step is @alnmameless
write. The second is a free or trim command.

A nameless write results in a delayed address knowledge for the file systenfileTsystem
has to therefore coupe with the temporary set back in not knowing thessidh read request
therefore cannot be submitted until the device is fully done with the write. Citdy the con-
troller sends back the address of the written data can the request be sdbhiite however
does not constitute a large delay. The read request would have Hagedlender all conditions

Analysis and Optimization of Storage 10 in Distributed and Massive Paraitgi Ferformance Systems 108

5 OPTIMIZING KERNEL FOR STORAGE CLASS MEMORY

User User Applications
Space '
GNU C Library
\
System Call Interface
Virtual File System
Kernel ‘
Space Flash File System -
| Using Flash File
Systems
Block Layer

Device Driver 3=

| NAND Flash Memory —

Figure 5.2: Optimization of 1O stack using flash file systems

until the write operation is concluded. Another factor that complicates this mhéththe need
for a reclaim operation requested by the controller to the file system. Theottenrequires
carrying out garbage collection operations or additional dynamic wealingv This means
that the controller might need to move a block that has been addressedfilg #ystem. The
controller therefore has to request a reclaim first on the addressTB&]Jobvious disadvantage
for this process is the added 10 operations needed to be performeanNds the controller
delayed in completing garbage collection operations, but also the file systeto keep track
of physical position of data versions. That means that a reclaim operatgirt send the file
system into search mode to find the physical address to be reclaimed in itaddredses. If
found, the file system then has to do an additional write to move the data to epbifsical
address before allowing the controller to reclaim.

Although using nameless writes has disadvantages it also contains manyaagsm Having
a file system that is aware of the underlying physical NAND constructisuit®in layout aware-
ness during read and write operations [27]. For example the file systemrita data in a better
block form matching the need of the controller. Frequently read data caritben several times
to allow for less read disturbance across certain blocks. Additionally a apiéeation that is
known to be rewritten in a few cycles can be kept in RAM to avoid wasting a Aerdee cycle.
A further and rather important advantage for nameless writes is the friseodiof SSD services
between file system and controller. A system that has weak cores caadofifl the controller.
On the other hand systems that have better CPU performance can utilize itolBiyng simpler
controllers the time to market is significantly reduced.

The more widely used option for wear leveling in SSD is the use of FTL. Thimmws
preferred due to the ability to use any file system on top of the SSD. Thevhatlkcompatibility
however comes at a high price to the controller. All NAND flash servicesdée done in the
controller. This rather complicates the design. Since the above |0 stack Eeunaware of
the existence of the SSD, requests are not optimized. Some conventiosgsfdens such as

Analysis and Optimization of Storage 10 in Distributed and Massive Paraitgi Ferformance Systems 109

5 OPTIMIZING KERNEL FOR STORAGE CLASS MEMORY

BTRFS have been trying to implement such an optimization for FTL designed.S%@mvever
the SSD does its best to hide its identity from the above system. Therefdréilsgystems can
only engage the optimizations if the user specifically indicates the underlyiragstdevice to
be a SSD.

Shown in Figure 5.3 is the optimization of the IO stack using FTL. As can be seeom-
parison to Figure 5.2 an additional layer has been added above the NABIDflemory. This
layer is the FTL required to map the file system on the lower storage. The mantade of
such low level optimization is specifically targeting SSD functions. Manufacswan increase
performance using different hardware and software layouts. Weeling, garbage collection
and other SSD services can be done as efficiently as possible. The iffiostt ghart for de-
signing an SSD specific file system is the absence of detailed information &Sthéardware.
The reason is that most SSD manufacturers keep there hardware detiésem driver soft-
ware a secret. Therefore most file systems that are designed for SlbDstwe able to make
full optimizations. The file system designer will have to make assumptions that mg/Hit
all controller types. On these basis having the controller carrying out itssewices means a
higher overall optimization for the SSD access. This however might nouleedr the system
in general. File systems will still have difficulties in optimizing access to SSD amdftire the
system loses efficiency.

User User Applications
Space ‘
GNU C Library
System Call Interface
Virtual File System
Kernel |
Space Individual File System
Block Layer

Device Driver 5=

| Using Flash Translation
I Layer

| Flash Translation Layer J—
|

| NAND Flash Memory —

Figure 5.3: Optimization of IO stack using Flash Translation Layer (FTL)

An additional factor that rather limits the use of the conventional 10 stack wé&h-tFL is
the missing parallelism. As mentioned in Section 3.6, SSDs have inherited parakeliltm
into them. Since HDD do not share this feature the 10 stack is sequentiatimgnin fact the
application is the one that has to signal parallel access. Parallel actebge @chieved if the
application uses asynchronous IO or AlO. For that purpose the Limure{ offerdibaio [28].

Abstraction is mainly done to achieve compatibility. For example, the FTL targstsaabion

Analysis and Optimization of Storage 10 in Distributed and Massive Paraitgi Ferformance Systems 110

5 OPTIMIZING KERNEL FOR STORAGE CLASS MEMORY

of the underlying SSD to allow compatibility with file systems. This however indidading
the controller with operations to hide the SSD functions from the system. lti@udtb that the
CPU is loaded by operations that are not needed such as seek time nedbitéicystem stride
to allocate contingent blocks as close as possible to each other. In facatheeason for block
allocation complexity is the use of preallocation. The technique preallocatesia of blocks to
the file that are close to the previously allocated data blocks. The targetisefoext blocks of
data to be placed in the preallocated free blocks to allow for less seek timeg deigithand write
operations. Not only is this an added overhead and a further complicatios &étready complex
write operation, but also serves no purpose. The file system operaetefogical addresses that
are irrelevant to FTL. While to the file system block O is next to block 1, on thesigal layer
these two blocks can be no where near each other. The controller wi ffladwo blocks as it
sees fit and will signal the FTL with the actual physical addressesefdrerthere is absolutely
no requirement to waste CPU time on performing such complicated preallockjaiitans.

Another property of file systems is targeting the decrease of fragmenthtibtDD allowing
data to become fragmented means that applications will have to move acressliakgspaces.
This means that a file write operation and a later read would result in largkrtisees. In
comparison SSD do not exhibit any form of seek time that would justify theoti€PU for a
decrease of fragmentation. Since most file systems use a block basetiailtivare is no fear
of loss of free space due to fragmentation.

Seek time has to be avoided at all cost on HDD. This means that aggnessfistching cannot
be allowed [28]. Only prefetching on adjacent or sequential data isSkhpesI he main reason
for that is hindering the head from moving too far from an actual readriie wperation. In
comparison an SSD would be able to perform real aggressive priefgidtring an idle period.
That could result in very high performance improvement on the applicati@n.lay

Linux offers the ability of accessing the block devices without the use ¢¢ aystems. This
has the added benefit of allowing applications with their own data allocatioraddicssing
schemes to directly bypass the file system layer. The reason for mentioisingtstanding fea-
ture is the need for measuring the overhead of file systems. Some paperieady observed
the overhead of some file systems on the performance of the SSD. In £6yénhead of the
XFS has been measured and found to be high in case of random writes. tBat many factors
affect such a test it will be more convenient to repeat it on the availableoement.

5.1.2 Access Patterns and Scheduling

One of the difficulties is the essence of accessing difference betweétbideand SSD. While
the first exhibits large seek times the second does not. This however is ertiy tf an iceberg.
The complication and the difference increases by taking into accountiligfisgdsues of SSD.
Additionally the unique write/erase cycles of SSD means that there is a compdifehgnt
access pattern dependency. The problem becomes even more diffienlt@alizing that obser-
vations have been HDD oriented. Some performance differences lrepaterns are attributed
to wrong properties due to miss understanding SSD layouts.

Predictability is an important property when testing storage devices. Due tuathes of
storage devices predicting timing of request fulfillment is not an easy tagkD skek time
means that a write or read request can exhibit a wide range of delayefdteethe latency
becomes dependent on how fragmented the devices is and how well th&clOas/ers above
are able to avoid straining the HDD. As mentioned earlier the 10 stack waswesigth HDDs
in mind. The target became to avoid reasons for low predictability using elifféechniques.

Analysis and Optimization of Storage 10 in Distributed and Massive Paraitgl Rerformance Systems 111

5 OPTIMIZING KERNEL FOR STORAGE CLASS MEMORY

Seek time as the largest predictability issue for HDD became the focus poioksépatterns
are kept as sequential as possible. File systems employ allocation and qataficschemes
that would allow file data to be as contingent as possible.

On designing access patterns for SSD different issues arise. Usisgrtie preconceptions
for SSD as those used for HDD is a mistake. On the other hand consid&Dgd3e access
pattern independent is also false. The unique SSD design makes it iotgdoé] yet the reasons
are different than HDD [28]. While SSDs have no seek time they still conthier dactors that
make different access patterns behave differently. One of thesedicability factors is the
services that are required to support the SSD [28].

The most noticeable difference is that SSDs do not exhibit equal rebai@e times. While
read can be done at random and any place in the SSD, write is limited to &ee gfn additional
problem with write is that pages can only be written sequentially within SSD hldd¢ks means
that page number 0 can only be written after page number 1 within the same[b0jcK he
need to erase a block before writing to the pages also makes the write psboesr. This
therefore would indicate a drastic mismatch in write versus read latency D{Z$[26]. The
problem is however that this is not always true. Since allocation is hiddem dfwove layers
using the FTL, the controller tries to hide the side effects. As an exampl&ptiers avoid as
much as possible using a full write/erase cycle. As explained in Section B place writing
is used to write all incoming data in free blocks. This however increaseagdicpability. Once
the SSD is full garbage collection will have to be switched on to free spacdact some SSD
exhibit sudden write delays after long write periods. These are due tmtiteotter trying to
free space for the incoming write requests [28].

Another issue that makes a write request slower than read is the efi@etrging. Data can
be read almost at different granularity. Since SSDs are forced to @salihe interfaces as those
of HDD, SDD needs to simulate sector sizes. The sector is usually 512KBenlsifact most
conventional file systems operate only with sectors sizes. In comparidos &ferate at a page
size of 4KB and blocks of 64 pages. Simulating a sector size for readtigres is simple. Even
if the controller needs to read additional data it can ignore or buffer giefe¢he page and send
the sector chunk required to the above layers. This however is diffevemrite operations.
These can only happen in page sizes. Since the controller is not willing te wesrest of the
page the sector written will need to be merged with others. The merge opeadtigno the
latency of the write requests [26].

Access patterns are usually divided into two main categories random qudrg@l. As ex-
plained before HDD are faster in case of sequential access due tadeeletime. SSDs however
are different. The main advantage that almost all sources state for S8@xgick random ac-
cess allowed under a fully electronic technology. In some cases this bgcoisleading. As
discussed in the previous paragraphs, read is different than writndom read is large orders
of magnitude faster on a SSD than on a HDD. Write are different. They higmendent on
different factors. A random write could be delayed longer than a se@levrite due to the
difficulty with merging sectors into pages. The problem however is that mapgrg tend to
attribute specific latencies with random access to fragmentation. In [36jetiif latencies were
found for different access patterns done on different SSD typks.nfain observation despite
that is the controller effect that must have lead to such pattern diffeseli¢leile fragmentation
might have a large influence on HDD latency this is not the case with SSD. &yade file sys-
tems might lead to useless overhead. Avoiding fragmentation on file systerslegeuseful in
on a SSD employing a FTL. While the file systems believes it has proclaimed centiagdress
spaces the controller reorganizes this into a different pattern.

Analysis and Optimization of Storage 10 in Distributed and Massive Paraitgi Ferformance Systems 112

5 OPTIMIZING KERNEL FOR STORAGE CLASS MEMORY

It is difficult to conclude how much latency is influenced with access patteange. The
reason is the use of controllers that hide the actual access pattern thHdahdspbace on the
physical level. As mentioned before a sequential write is preferred éocdmtrol to be able
to perform sector merging. Additionally the pages within the same block have twrikten
sequentially. Random write however might lead to a high garbage collecterhead. This is
only true if the random write involves updating already existing data. Thedwatdifference
however between random and sequential writes is dependent on aigorged to implement
the controller. In fact a sequential write might be turned into a random prieebcontroller to
write in freshly erased blocks. The opposite is also possible. Randagssaagite might result
in a fully sequential write due to use of FTL.

The issue of random versus sequential access becomes even maimgevhen observing
SSD layout. As mentioned in Section 3.6, SSD cards are made of sevenainiasory chips.
This means that SSD has an inherit internal parallelism. In fact this propadtgs the random
access more efficient. The reason is that by accessing differenttbkipsntroller can perform
several read or write operations in parallel. Random access howeesmadt dictate accessing
data on different chips. This leads to the parallel access increaseighbermapping dependent
[31]. Another issue that is rather interesting is mixing the two operationsaeddvrite. As
flash memory chips cannot perform both operations on some levels antiegtisae there is an
expected performance degradation. This has been shown to be t{j81ase

The life span of a SSD is to a large extend dependent on the workload [@idu32]. As
a direct result the controller becomes responsible for acting on chaagaegs pattern to avoid
early failure. In fact all wear leveling techniques are specifically design approach a more
random pattern. This is because random patterns allow the chip and hlbzation to be
further divided among all available memory units. For that reason patt@gendency cannot
be simply observed from higher stack levels. In fact the file system hastaimaffect on the
pattern. Although preallocation, for example, tries to increase data contingema SSD this
would not result in physical data contingency. Under these conditionBl¢hgystem has the
illusion that future reads are sequential, while physically the reads ademdy divided across
the SSD. Even though the write in a sequential manner into a flash block migyeiade latency
file system algorithms cannot help. Reserving the next page in a flash toldakure writes
would hinder the writing of any subsequent page in the block. Since theotlenwill probably
not allow that, the page will be claimed for other write operations.

Many applications exhibit random access and might even be dominated%y.i§iven that
HDD do not perform well under these conditions, the 10 stack tries tocagra more sequen-
tial access pattern. The difficulty however is that the 10 stack has nootontr applications [0
patterns. As a consequence the IO stack uses other techniques to allaw anifiorm access
pattern. The most important technique to that purpose is scheduling. By gviitig enough
there is a good probability that two 10 requests will occur that are closeriaddress space.
The 10 stack therefore holds a queue as explained in Section 3.5 fobalitsed requests. The
target is to rearrange and merge requests to approach a more secpaess.

As explained before SSDs do not exhibit any seek time and are mostlysguatsrn inde-
pendent due to FTL use. Since this is the most important reason for implemardatgduler,
most conventional HDD designed schedulers will result in avoidabléheaer[25]. In fact most
SSD driver designs avoid using queues and schedulers. This is mos#ybgiaverwriting the
makerequestoffered by the block layer. The Linux Kernel offers several scies. The sim-
plest to understand is called noop scheduler. The noop does no Bogetall. The request
is simply placed in the queue as soon as it arrives. On an HDD the noop Williethe worst

Analysis and Optimization of Storage 10 in Distributed and Massive Paraitgi Ferformance Systems 113

5 OPTIMIZING KERNEL FOR STORAGE CLASS MEMORY

performance. In comparison best performance is achieved usingpasebeduler on a SSD
[26]. This is a strong indication that conventional schedulers are ahead that adds latency
to the SSD access. SSD manufacturers prefer overwritingilie@requestfunction instead of
switching to the noop scheduler. This is because there is no method to sighallt® stack
which scheduler to use. The choice is left to the Kernel and the user.

Although there is no direct performance improvement from using HDDddbes, this by
no means denies performance increase in general to using schedu®sDo The target is to
observe SSD properties and implement schedulers exclusively for. SBilsis the target of
the scheduler design in [26]. The idea presented is that merging diffezetor write requests
lead to additional overhead. Therefore the scheduler introduced jrs{@@ests servicing all
sectors in the same block as soon as they arrive. Thus reducing mevgirigead. Using this
scheduling scheme the controller would receive a group of contingetarse¢hat can be merged
into a page. There is no seek reduction done in this scheduler.

The explanation of SSD access patterns showed that in some cases feirsepgréo have
sequential writes. This is true for SSD cards that exhibit large write tolegadcy mismatch.
The reason is trying to get the writes done as a bulk might allow the controlleo toate
optimized writing. Also it allows the controller to simplify merging sectors into pagbghv
has been pointed out before. In addition to that controllers might avogingra block for a
single page. However for chunks of data a block erase is worth it. Not miomethat the erase
delay will be divided over the total number of write requests written into thatdblonder these
conditions using write deferring might be useful. The term write defer mtwatisa write will
not be serviced until a certain point in time. This is allowed since most applisadiomot wait
for write confirmation to continue. This has been shown to provide perfarenenprovement
[29]. The problem with deferring is its need for merging different IO ragiens to form more
contingent data units. Merging is a CPU heavy operation [28]. This comes aurprise. CPU
has to compare every incoming request with previously made ones to fisithigamerges. Once
that is done the actual merge operation can begin. It is therefore logatabyhincreasing the
write defer window results in larger CPU overhead [29].

Another interesting write improvement is write alignment. The target is to align &ksvio
block boundaries. For SSDs this becomes an advantage as the conaliaroid unnecessary
block erase. This shows significant promise in improving the write perforenalmc[29] it is
reported to increase the performance by as much as 50%.

As a byproduct to schedulers the queue became a useful tool for impgleméair access.
This however is not realized by HDD schedulers. It is important to knowdtizedulers target
mostly overall performance. To that end some schedulers allow starvdsome requests. This
might be in the interest of overall system performance in the preseneelofisme. SSDs sched-
ulers however can be designed in a more efficient method. Differenieguzan be assigned to
different users or different files and data [28]. In fact a reaBlmnassumption to improve per-
formance is to assign different queues to different storage spaealédision should not be one
sided. Allowing the controller to initiate different queues might give the pdgsikor further
internal SSD parallelism. In all cases queue plugging has to be avoideckaslis in overhead
that is not useful for the SSD [28]. The issue on a new form of queinitggface for SSDs has
been extensively explained in Section 4.1.4. The interface explained i& ataedard called
NVM Express.

Figure 5.4 shows the optimization layers for implementing 10 scheduling. Thei¥F&
sponsible for the implementation of the schedulers. Therefore most optimizalioaike place
in the VFS layer. Furthermore the choice for appropriate schedulerriertly reserved to the

Analysis and Optimization of Storage 10 in Distributed and Massive Paraitgl Rerformance Systems 114

5 OPTIMIZING KERNEL FOR STORAGE CLASS MEMORY

user. To change that aspect the VFS can be allowed to choose th@rgierecheduler. This
would be useful if the VFS can somehow detect that the underlying stdeagee is a SSD.

User User Applications
Space '
GNU C Library
System Call Interface
Virtual File System -
Kernel ‘
Space Individual File System
— Scheduling
Block Layer -t

Device Driver 3=

|
| Flash Translation Layer |
|

\ NAND Flash Memory |

Figure 5.4: Optimization of 10 stack using 10 scheduling

Although the VFS chooses the scheduler, it does not decide on how lpiapphis choice
is still done in the block layer. In fact the VFS merely supplies the block lay#r function
pointers to the scheduler. Since the block layer allows the driver to oierive makerequest
function the driver has the opportunity to discard all scheduling andiggetihe optimization
done from a scheduling scheme therefore becomes a cooperation hétweselayers the VFS,
block layer and driver. It remains to be noted that the device in the 10 si@skeen replaced
by the FTL and NAND flash memory. This is done to indicate that the accessrpdéteided on
in the scheduling scheme might be distorted by the controller. Hence the optiminatiod be
further improved if the controller is involved.

5.1.3 Internal SSD Optimization

SSDs differ on many layers from HDD. The main difference is in the amotisexvice that
an SSD requires. Storage access in a SSD is no longer only depemdérd device itself.
SSDs access time suffers from the reliability constraints. An obvious examptaited SSD
throughput due to reliability issues is write amplification [33]. A 1MB write opieraon an
HDD would usually result in almost exactly 1MB physical write. SSDs regeirer detection
and correction bits. These add to the write amount, not to mention the addesy lat@noducing
these bits. The detection of errors also limits the throughput of the readtapgmore so for
MLC than for SLC.
Another example of how the throughput is limited by reliability of SSD is the remerd

of out of place write. This is a direct result of SSDs need to employ weatitgyto increase

Analysis and Optimization of Storage 10 in Distributed and Massive Paraigl Rerformance Systems 115

5 OPTIMIZING KERNEL FOR STORAGE CLASS MEMORY

the life span of the device. Out of place writes cannot function unlesslage collection
algorithm is utilized [33]. The problem with garbage collection algorithm is tharestictability
that is present in the amount of overhead induced by running it. A writeatipa on a freshly
erased SSD has a low latency. As more write requests are serviced ting pitihe new writes
becomes difficult. Although it is preferred to run the garbage collectionrithgo during idle
times, at a certain storage space consumption level it will have to be switoch&the problem
is that the writes will have to be delayed till some blocks are erased. Oveisjomting and
other techniques can be employed to minimize the effect. Despite these techihiguizlay of
writing to a SSD will degrade over time. The amount of degradation is depéndgehe SSD
design.

The most important aspect of optimization is rethinking internal SSD functigssshown
before reliability factors dominate performance. These can therefohatdled on a system
basis or an internal SSD basis. While the previous sections point to thiepr®ielated with
systems adoption of SSD, the most important optimization can be done from with®Sb
itself. Using special algorithms and further optimizing the 10 stack to operdiiglaefficiency
with SSDs is not a simple task. The biggest obstacle is analyzing the SSD itSBI§ &@ntain
many different algorithms most of which is based on manufacturers IntedleBroperty or
IP. This in turn means that most information on the actual implementation of the SE® is
available.

Analyzing and comparing SSDs is not just complicated due to the use of IR buitalso
difficult due to the interface used. SSDs attempt to simulate HDD interfaces usdukwith
legacy designs. This however means that many of the underlying implemernsstidden [34].
In fact as mentioned before the interface hides even the aspect ofvilce deing a flash based
storage unit. This extremely complicates the analyses and in turn makes dgsigeanal stack
operations for SSD almost impossible. However some conclusions caralwa fhom either
flash memory basics or from tests done on SSD.

The most important observation for SSD is the need for driver suppart. t® the common
interface used to support most available HDD these can function withouet of installing
drivers. SSDs on the other hand require a driver to operate cotrAstlyconsequence designing
a high end SSD is done both in hardware and software. In fact many op#rations that have
been attributed to the controller could be easily moved to the device driver.diBtortion of
the border between hardware and software SSD design is a massive limitaiotual SSD
analysis. While one SSD is dependent on CPU frequency due to dpesations another is
not. The SSD designs usually hide on which level any of the service tippesare done. As a
direct result performance of the same SSD might change when porting diffeent system.

Although the analysis is made difficult by the absence of a clear hardvweases/software
SSD design, there are advantages to this design concept. There iamg#or improving SSD
specifically for a given system. While some systems may benefit from a Isofferare driver
others will not. The use of multiple weak cores means that driver is limited byetfermance
of a single core. Therefore the system will benefit from a more hasingrlemented controller.
In fact this is the expectation that has been proven by the frequencyltessn Section 4.3.1.
The benefit is increased by applying a controller than has more specifiwdug optimizations
done for the system implementation. One such optimization is the use of lesdetgction and
correction code in case the system already builds on higher level emdiihg codes. This in
turn will increase read and specially write operation due to reduction in tite amnplification.
Additional more specific enhancements would result in even more effidmaige utilization.

Despite hardware being more efficient and faster in handling issues aitotlage level, the

Analysis and Optimization of Storage 10 in Distributed and Massive Paraitgi Ferformance Systems 116

5 OPTIMIZING KERNEL FOR STORAGE CLASS MEMORY

software implementation is still used. The main reason is that hardware desigmicated
and time consuming. Yet the use of larger more complex software driveudshot be viewed
as a final limitation. The issue of parallel operation is a great aspect ofdrdtve performance
can be enhanced. To achieve better performance multiple thread dieetise best approach
[28]. It should be noted however that the limit of such thread design is ¢ &bility to carry
out parallel processing which depends on core count. Yet another limitatithe use of SSD
software services is the extend by which these operations can be ekecptrallel. While a
process such as garbage collection can be done in parallel, errdi@etew correction cannot.
In addition to that software is limited due runtime information loss. This means thatya f
software operated SSD controller is at risk of losing more in case of ardosse

Finding the border between hardware and software implementation in relapenftomance
is difficult. This is quite obvious when dealing with the out of place writes. Aslared in
Section 5.1.1 there are two options for achieving a viable SSD wear levelifirt is using
a flash file system that would support the out of place write. This implementtit@afore
pushes the wear leveling issue to an even higher stack level than the @iheemost important
advantage from operating at these software levels is more stack inform&iiensystem can
rather enhance placement of data and can support even longer Weaterd®. This can also
be made true for a driver that can further gather more information froraltbge layers. The
other option for supporting out of place writes is using a FTL. The ptypera controller that
implements wear leveling techniques completely in hardware is more appealirgémsywith
low CPU performance. On the other hand complicating either the hardwareftarare of a
controller implementation due to a large FTL is inefficient. The design of the FHigisly
dependent on the size of mapping. To allow smaller more efficient write tbpesahe FTL
will grow in size wasting both storage and processing time [28]. On thosegsoas explained
previously in Section 5.1.1 in [27] a middle solution was presented. Nameléss \give the
opportunity of implementing hardware wear leveling without the need of a Nbnetheless
there are other constraints to that approach that have been mentionetiam Sel. 1.

SSDs internal design offers an added dimension of optimization. The igdeeatlelism of
SSD give a high interest to the controller performance and viable enfmamte [31]. The
parallelism appears due to the need of using multiple flash chips in the des&®Ds. The
controller therefore has the ability of further enhancing efficiency biditig requests among
these different chips. Until now only the SSD controller stands to benefit this feature.
However by specifically optimizing the upper 10 stack layers the optimizatioteancreased.
For example, single read and write queues need to be reformed into moréegquapallel
operations. To achieve this the internals that supply the SSDs paralleligmtidiae understood
[31]. Yet another more important aspect of internal SSD parallelism is iffieutty of the
level of operation. Challenges need to be handled on a much more globlahtev need to be
performed in the firmware [31]. On one hand the lower level design @lligéism has a larger
set of limitations, on the other it has the opportunity to benefit from previgpereence. While
firmware could not support complex stripping algorithms from parallel fistesys, it could use
similar simplified techniques.

One of the benefits for parallelism on the low level is hiding delays inducedrltg opera-
tions in flash memory [35]. While HDD can service a single write or read ojperat a time,
SSD can use multiple chips to induce several reads or writes. By obsarmiglg chip behavior
the performance can be increased even further. As previouslyteeldgorSection 5.1.2 perform-
ing mixed reads and writes degrades performance. This can be exgdginkigb behavior which
cannot perform two different operations in the same enable groupreftine by allowing the

Analysis and Optimization of Storage 10 in Distributed and Massive Paraitgl Rerformance Systems 117

5 OPTIMIZING KERNEL FOR STORAGE CLASS MEMORY

controller to detect future read operations writes can be performed fenedif flash chips than
the ones used for the read. That can only be achieved if the uppes lsymehow inform the
controller by the upcoming access pattern.

One of the major difficulties in implementing parallelism on this low level in SSD is the
requirement of a parallel FTL [36]. This is not a simple requirement. The $tbuld not act
as a performance bottleneck. The overall SSD layout is complex andee@adressing many
different spaces using multiple buses. The FTL has to be able to deal withthkse issues
and more. Thus making the FTL a viable candidate for optimization. For insemgaging
several different controllers into a unified FTL will eventually lead to a tafgserformance. On
the other hand using several FTL is not a simple task. A FTL needs to Istacly aware of
controller wear leveling and changes done on the lower level. The FTEeftdrercould divide
the mapping of the underlying storage space among smaller more efficiers. tabiether
important aspect that complicates parallelism of FTL is the added dimensi@mailgh services
that request changes. The controller might be accessing and updatifgltHor dynamic wear
leveling. Mean while the parallel operating garbage collector might be tryingdom the FTL
of moving blocks to other locations to perform an erase. In addition to thatdbBTL data
is fatal. While bit and byte errors are recoverable by error correctiohdatection algorithms,
loosing FTL mappings is not. If the file system attempts an access using a lagiass to
which the physical address has been lost by the FTL the data canretdxered. In fact such
data loss cannot be recovered even though the data exists on the stoitag&urthermore the
location at which the data is written is not recovered by the garbage coll@tter=TL in such
a case will have to handle the incoming request from the controller to relteawata for an
address that the FTL doesn’t recognize. All this factors into the complekayparallel FTL.

Figure 5.5 shows the layers on which the optimization is done. Device dawetroller
and FTL changes have been previously explained. The problem kovgethat limitations are
inherited into the controller due to the block layer. This means that applyinggelsato the
device driver might require removing some of these limitations. In fact thekbayer is the
first line of layers that could inform upper layer of the device type. Im tinis can be used
to trigger a more SSD efficient upper layer operation. The block layerralkts the ability to
take on some of the functions required by the lower layers. There hasnod@erature found
on the opportunity of enhancing the wear leveling or the parallel acceslseohlock layer.
In fact the block layer might be useful in functioning with specified optimizatior SSD
without changing the upper layers. Nonetheless the power of the bloek lagnains limited
and therefore might not offer real optimization chances.

Although the optimization of the SSD design only points to lower layers an optimization
the complete 10 stack might be the result. As discussed before designing Ehec®8oller
might be useful if done with upper layer functionalities in mind. The SSD ctetrbas been
attempting to shield upper layers from physical address change usingTHELfile system
therefore engages costly allocation algorithm in the hope of decreasirrglglabsent seek times
for SSDs. One suggestion is to find a method to enhance internal SSI3 &measds the access
patterns of the HDD. Not only will this increase general internal SSDoperdnce but it will
make the allocation algorithms useful. A case can therefore be made fang§gbp same
scheduling algorithms but enhance the SSD controller towards this schemse hdwever is
counter to the norm, which dictates that software be optimized for hardwelnecd the opposite.
Nonetheless the method might show room for improving performance of $3&gacy HDD
interfaces.

Analysis and Optimization of Storage 10 in Distributed and Massive Paraitgi Ferformance Systems 118

5 OPTIMIZING KERNEL FOR STORAGE CLASS MEMORY

User User Applications
Space ‘
GNU C Library
\
|
System Call Interface
Virtual File System
Kernel |
Space Individual File System
Block Layer -
Device Driver | SSD Design
Optimization

|
SSD Controller
| Flash Translation Layer |

| NAND Flash Memory \

Figure 5.5: Optimization of IO stack by changing SSD design

5.2 SSD 10 Analysis

In the previous sections some inferences have been made as to how&SB@an be improved.
To find which implementations show more improvement it is crucial to performraélO tests
under different conditions. The challenge however is the difficulty wittingdO on SSD.
As previously mentioned SSDs hide most of the implementation under HDD irgerfahile
being able to test a typical SSD it is quite complicated to attribute performanngel@acertain
properties.

Due to the unique architecture of the Blue Gene/Q machine porting SSDglisveot made
easy. Almost all SSD manufacturers develop their drivers&83machines. Since Blue Gene/Q
is not compatible with the&86 architecture the porting is made difficult. Furthermore the SSD
are mostly optimized for thg86 architecture. Therefore a high drop in performance could be
expected when porting the driver. Some SSDs perform some of theicegrnn the driver
itself employing different algorithms. The driver becomes a complex unitréuatires detailed
information on hardware to optimize for a given system. In addition to that tthégers hold
IP. which the manufacturer prefers not to share with others. Thus Werslof such cards are
closed source. Not only does this prevent optimization on the Blue Genef@Jdm hinders
detailed analyses of the cards internals.

The difficulty of porting drivers onto the unique Blue Gene/Q architectlas seen on many
levels. For example, theB6 architecture mostly runs with a default page size of 4KB. The Blue
Genes/Q Linux Kernel defaults to the 64KB page size. Since the cankrglare designed
on thex86 some are incompatible with the page size of 64KB. This prevents testing thé actua
difference in performance between a card on the Blue Gene/Q and othéeeatures. Other

Analysis and Optimization of Storage 10 in Distributed and Massive Paraitgi Ferformance Systems 119

5 OPTIMIZING KERNEL FOR STORAGE CLASS MEMORY

difficulties arise also from the implementation of the Blue Gene/Q on the basis BOWER
architecture. Yet another difference is the massive parallelism reqoiréglde multi-core Blue
Gene/Q to utilize the computing power available. This is not anticipated by the S8Dfawa
tures and therefore might not be utilized. Under these circumstances teating be made by
accounting for the differences. To conclude different aspects @nhg@&ormance a set of tests
have to be done. Despite the difficulty of testing SSD, this study is not intdrastpecific
SSD performance. The interest is in finding general properties of S&Rdhkld lead to a more
optimized 10 access on SSD. Therefore tests might not be performed mE$Ds but also on
general upper layers. In addition to that comparing absolute perfoemmamobers is not neces-
sary. More information can be found in comparing job scaling performandeatios between
different test conditions.

The next sections attempt to perform some tests and elaborates on sousioosdhat can
be drawn from these tests. It should be noted that the test environneghhere is the same as
has been explained in Section 4.2. In addition to that the same test scriptdrasiged in an
attempt to unify the test. This in turn allows comparison of test results acrdesedif settings.

5.2.1 Apple G5 and Blue Gene/Q Tests

As explained earlier there is an inherit difficulty with testing SSDs. One diffida testing
the difference between hardware and software implementation of SSDs.ma@m problem
is finding two cards that can be compared on these basis. Most manafaatior not supply
specific informations on the SSD provided. Therefore attempting to find the ddiyservice
implementation difficult and in some cases even impossible. Under those cos(diitidimg two
cards to compare based on the software to hardware implementation is sibiguos

Given that the target is to find how the new architecture of the Blue Gene/Q gffgbt per-
formance, tests have to be performed on a wide set of machines. Thigkefitbhe finding
differences between hardware and software SSD service implementasionentioned before
in Section 4.2 the Blue Gene/Q contains 18 cores that run at 1.6GHz. In deorpthe men-
tioned G5 only contains two dual cores that run at 2.5GHz. In plain nunitierapparent that
the Blue Gene/Q should outperform the G5. However the frequency &3he higher than that
of a single core in Blue Gene/Q.

The test comparison between 10 on Blue Gene/Q and 10 on G5 becomestingréue
to the architecture differences. A well designed SSD card performing ofiots operations
in hardware should increase performance on the Blue Gene/Q due to thasied computa-
tional power. The expectation therefore is that performance shoulekiseron the Blue Gene/Q
specially when it comes to job scaling. In other words, by increasing theojobt@ higher per-
formance increase is expected on the Blue Gene/Q than on the G5. Fauhasgthe ioDrive
introduced in Section 4.3.1 is used.

Figure 5.6 shows the performance of the ioDirve on the G5. The figureshiolyws the ratio
between single job performance and different tests with increasing nurhjys. The target
is to find the scaling behavior of the ioDrive on the G5. As can be seen ingheefthe IOPS
scale well with increasing the number of FIO jobs operating on the drivex.ificrease in IOPS
decreases at higher number of jobs. This however could be attributed tionited compute
power available on the G5 to accommodate the number of jobs running. Ithé&astaling of
FIO at 64 jobs at lower blocksize shows this effect. The IOPS of the 6&l@lest should have
remained at the maximum level. This would have meant that the bottleneck is &thieik|
or the driver. Since the IOPS dropped at higher job numbers it meangetfatmance has its

Analysis and Optimization of Storage 10 in Distributed and Massive Paraitgi Ferformance Systems 120

5 OPTIMIZING KERNEL FOR STORAGE CLASS MEMORY

bottleneck in the computation. The G5 no longer can support all these F&njitibout them
sharing CPU utilization.

I0PS - Random Read from Fusion-io (ext2, block size 4kB)
APPLE G5 (2 x Dual Core 970MP 2.5GHz, 4GB RAM)

jobs= 2, Filesize= 4096M —+—
jobs= 4, Filesize= 2048M —s¢—
7 b jobs= 8, Filesize= 1024M —#— |
jobs= 16, Filesize= 512M —8—
jobs= 32, Filesize= 256M

jobs= 64, Filesize= 128M —s— |

8192m
o

1, Filesize

.

Ratio of IOPS

against Job

1 2 1 8 16 32 64 128
Blocksize KB

Figure 5.6: Ratio of IOPS against single job for ioDrive on Apple G5

It should be noted here that the G5 contains processors that also empIBPWER archi-
tecture. This makes the results compatible with the Blue Gene/Q. The optimizatiotscom
in the introduction of this section still are not available. The performancefibrer is expected
to be worse tham86 architecture. This however means that the difference between the G5 and
the Blue Gene/Q is limited to the number of cores and frequency. There araatdlarchitec-
tural differences that might effect the 10 performance. This comes fhe fact that the G5 is a
more general purpose personal computer. However the Blue Gen&€zddes to G5 are still
less than that of differences to tk86 architecture. In addition to that by limiting comparison
to performance differences and not using absolute IOPS or bandwaltitothparison becomes
more relevant. The target therefore is to find the difference in perfarenagaling on multiple
jobs.

Since the Blue Gene/Q contains a far superior computation power on a sgugdhan that
of the G5 the expectations point to better performance. However as s&aguire 5.7 this is
not the case. It is obvious that the performance increase has almoatiibeysaximum or even
lower than that of the G5. Contrary to the expectations the performancetestat 8 jobs.
The problem here is obviously not the number of jobs used by the FIO wigiea plenty of
computing power to utilize. This conclusion can be made as the saturation a$ 8igbinot
appear on the G5 which has less computational power. In addition to thastslineluding 8
jobs or more have almost the same distribution along the different block$izhe.bottleneck
is the computational power of the Blue Gene/Q then adding more jobs woulddeaveased
performance. However as can be seen this is not the case. An 8 jobsEs@éeformance almost
exactly as a 64 job test. Thus it can be concluded that the bottleneck is rmtaivehelming
number of FIO threads started in each test.

Given that the performance on the Blue Gene/Q saturates after 8 jobf#st@exist a bot-

Analysis and Optimization of Storage 10 in Distributed and Massive Paraitgi Ferformance Systems 121

5 OPTIMIZING KERNEL FOR STORAGE CLASS MEMORY

I10PS - Random Read from Fusion-io (ext2, block size 4kB)
BG/Q (16 Core L.EGHz, 4GB RAM)

jobs= 2, Filesize= 4096M —+—
jobs= 4, Filesize= 2048M ——
7 b jobs= 8, Filesize= 1024M —%— |
jobs= 16, Filesize= 512M —8—
jobs= 32, Filesize= 256M

jobs= 64, Filesize= 128M —=— |

8192M
o

1, Filesize

Ratio of IOPS
=

against Joh

1 2 4 8 16 32 64 128
Elocksize KB

Figure 5.7: Ratio of Bandwidth against single job for ioDrive on Blue Gene/Q

tleneck. The reason for the saturation of the Blue Gene/Q IOPS perfoetanld be defined
by the card limitations. There are two observations that could lead to a cludaintis bot-

tleneck might be. The first is the single device present on the card. Thivéopecifications
point to it using a single controller. In addition to that the ioDrive presenisgiesblock device

to the Kernel. This however is not always a proof single device opematiBat as mentioned
the specifications refer to a single device. For the device to be a bottlerepkittormance on
the Blue Gene/Q has to be exactly the same as that on the G5. In other wolisttibeeck

should not just appear on the Blue Gene/Q but also on the G5. Since thitiemase it could
be concluded that the controller is not fully utilized on he Blue Gene/Q. Toreréhe controller

is not the bottleneck.

The second clue to the Blue Gene/Q bottleneck is the CPU utilization. Figured@& she
CPU utilization of during a FIO test on the Blue Gene/Q. This figure has besiopsly shown
in Section 4.3.2. The utilization shown in the figure dictates that the bottleneckdsitiee per-
formance. The thread that has been binded to CPU 4 and 8 are ioDrigadth This explains
the reason for having a worse performance on the Blue Gene/Q thamthiz 5. Although
Blue Gene/Q possesses higher computational power, the single thréawiaerce is still lim-
ited by the core frequency. The driver appears to set the limit for theidegperformance of
the ioDrive.

The main design issue of a SSD is choosing the level of operation for tieeserlt should be
noticed that the tests shown here cannot speculate on whether the ipBrfivems such services
in the driver or in the controller. Despite that it appears obvious that usiftyvare limits
performance. To mend this limitation two possibilities exist. The first option is to implemen
a more parallel driver. If the driver can therefore utilize more CPUs #réopmance can be
further enhanced. The challenge with driver parallelism is how far tHe S3vices can be
performed in parallel. Some services do not allow parallel performandeet there are several
situations in which these parallel services will have to synchronize to fample update the

Analysis and Optimization of Storage 10 in Distributed and Massive Paraitgi Ferformance Systems 122

5 OPTIMIZING KERNEL FOR STORAGE CLASS MEMORY

CPU utilization during Random Read from Fusion-io

100 T T T T T T T T
Utilization ov er complete fio test using taskset —+—
90 +
80 -
0 -

60

50

Utilization

40 r
30

20 1
4 8 12 16 20 24 28 32 36 40 44

CPU number

Figure 5.8: CPU utilization during FIO test and setting CPU affinity

FTL. Furthermore creating these threads indicates that part of the coqmaimer will be
utilized by SSD services. This means that applications will be deprived dmmputational
power that was reserved for them. In fact Section 4.3.2 has showndhgilete cores have
to be reserved to the driver to allow for better performance. Therefeaftware SSD service
design is not advisable. In addition to that the performance of the driveadk will still be
bound by the frequency of the modern cores which is being lowered damiter consumption
issues.

Another option for solving the bottleneck of a single driver is implementingvware serviced
SSDs. The driver in this case should only operate as an abstraction tSher®l for SSD
optimized access. All other SSD services should be implemented in hardWhig.design
promises almost system independent performance. The bottleneck wenlddHonger be the
single core frequency. It should be noted however that the contraidonmance could also
be the bottleneck. Thus the device design is a balance between systentsnegberformance
versus hardware controller performance. That is proven by the Bame/®. Although single
core performance is limited, any SSD controller could not provide suchivegsarallelism as
present on the Blue Gene/Q. Therefore single block device perfoamaight be limited by the
controller speed. However on the Blue Gene/Q a multi-threaded drivethbasgpportunity of
utilizing more cores. It should be noted that most SSD designers providigbaccess using
multiple controllers. These then operate in parallel to provide higher pesfoce. There are
other disadvantages to this design which have been discussed in detailgriemMioes Chapter 4.

It remains to be said that Figure 5.6 and Figure 5.7 represents only the HdRR@ver given
that these figures are showing IOPS ratio the bandwidth performancie wioow the exact
same curves. For that reason the bandwidth figures are omitted. ThesklIR® decrease
with increasing the blocksize. On the other hand the bandwidth increasegengasing the
blocksize. The inverse relation between two performance countersdhatvincreasing one
does in fact decrease the other. This should be kept in mind on chooseygpeopriate SSD.

Analysis and Optimization of Storage 10 in Distributed and Massive Paraitgi Ferformance Systems 123

5 OPTIMIZING KERNEL FOR STORAGE CLASS MEMORY

The bandwidth given in the specifications should be associated with thestdedior which
the bandwidth has been achieved. It should however be noted that @Dst[Befer a lower
blocksize to increase life span. By allowing the applications to request lalgeksizes means
that the SSD has to write or read larger storage data. As mentioned befogegta limit to
number of write/erase cycles allowed on a flash memory. On the other hasahédidlocksizes
means that the controller has to do time consuming merges. The reason as etehétore is
that there is a lower limit to size of written data to an SSD. The lower limit is set at8ie S
page size.

5.2.2 Read vs. Write

As elaborated in Section 5.1.2 on access patterns there is a mismatch betagcandenrite
operations on SSDs. Therefore itis important to find how this mismatch effedtsrmance. Up
to this point only read results have been presented. This was due to thireflathe conclusions
that were drawn were mainly dependent on scaling. However it is impddeeddress how
write performance differ from read. In this case more conclusions eairdwn from absolute
figure of performance. In addition to that it is important to show both banitiwadd IOPS
performance change across blocksize changes.

The main problem with performing these tests on the Blue Gene/Q is risking hdagmgded
performance due to limited single core frequency. In comparison the Gésaus limitation.
The tests therefore should be done on the G5 to have better comparisordeinto provide
viable results an actual SSD has to be used. The issue of write to reagmiffeshould show
how these two operations should be handled.

Figure 5.9 shows the IOPS of random read from the ioDrive. As caede, $OPS decrease
by increasing the blocksize. The maximum performance is limited to 60K |IOP&rpari-
son Figure 5.10 shows the IOPS of random write on the ioDrive. The maxiasushown has
saturated at around 50K IOPS. In fact most jobs show lower |OP Saait &ach point. Some
show slight increase to the write versus read. However this increakklmdue to test fluctua-
tion. The main conclusion that could be drawn is that IOPS are decreggeafbrming a write
operation.

The two figures for the IOPS reflect the expectations. Write requires opeations than
read. Therefore write has to have a lower performance than that éadaaperation. However
it was expected that the performance difference would be much largeexpglained a single
write operation might even require an erase cycle. Placement and welimdemake the write
operation complicated. The write operation used here however did ralt tease limitations.
The main difficulty with testing write on SSDs is making sure that the storage is ftilizeal.
Only then can the effect of the service and reliability avoidance proaesssked. For example
the test should be repeated until the garbage collection has to be endsiged.there is no
intention here to destroy the available SSD the test cannot run the SSD to thellesfste that
the shown results are important. SSDs do not always operate at the maximunirlifaitt the
target from these designs is an active storage. These do not fully utiézeatds performance.
In addition to that the tests shows the basic difference between write ath@pesgations on a
card. The IOPS difference between a write and a read can be fully &tlibo the difference
of flash memory write to read mismatch. In addition to that random write has lsseh Whis
means that some updates has to be done to previously written locations.riftuleotherefore
has the choice of either trying to write in place or performing out of place svrifEhe first
choice delays the write until performing an erase. The later howeveirescgwitching to the

Analysis and Optimization of Storage 10 in Distributed and Massive Parailigi Rerformance Systems 124

5 OPTIMIZING KERNEL FOR STORAGE CLASS MEMORY

IOPS - Random Read from Fusion-io (ext2, block size 4kB)
APPLE G5 (2 x Dual Core 970MP 2.5GHz, 4GB RAM)

70000

"jobs= 1, Filesize= 81892M —+—
jobhs= 2, Filesize= 4096M ——
50000 | jobs= 4, Filesize= 2048M —%— |
jobs= 8, Filesize= 1024M —85—
jobs= 16, Filesize= 512M

jobs= 32, Filesize= 256M —=— |
jobs= 64, Filesize= 128M

50000 |

40000 |

10PS

30000 |

20000

10000 |

Elocksize KB

Figure 5.9: IOPS of Random Read from an ioDrive on Apple G5

garbage collection later. The test however is not long enough to haveso#srinfluenced
by side operations such as garbage collection. Therefore an outoef wlite would result in
almost a pure read.

There is a difference between the distribution of IOPS and bandwidtlsabtocksize. As
a result the bandwidth curves could lead to different conclusions tharothiae IOPS. Fig-
ure 5.11 shows the bandwidth of random read from an ioDrive. As eaebn the bandwidth
increases with increasing the blocksize. The maximum is reached justo$tibet 800 MB/s.
In comparison Figure 5.12 shows the bandwidth of random write on anvieDFhe maximum
has massively dropped to just over 300 MB/s. As mentioned earlier it icteghthat write is a
higher delay. This delay highly effects larger blocksizes. As expeaddnmance drops. How-
ever as discussed earlier the effects that change read to write penfarisgpurely due to flash
memory. A write operation requires the use of high voltages. Furthermonertteerequires
creating or updating the FTL table entry. This in turn leads to further delayeder the delay
would be more effected if the controller decides on an in place write. In aw&se an entire
block would be erased.

The effect of an out of place write should not drastically degradeopadnce of writes.
By combining the results of both performance differences on the bandaatHOPS several
conclusions can be drawn. IOPS dominate the performance at smallesikkgkThe decrease
at smaller blocksizes detected on the IOPS curves is modest. Therefanebié concluded that
performance drop on smaller blocksizes is mainly due to write to read pericendifference.
On the other hand bandwidth dominates the performance at larger black3ize decrease at
lareger blocksizes detected on the bandwidth curves is massive. diteeitefan be concluded
that performance drop on larger blocksizes is due to more than justedifferof read to write
performance on flash. The controller therefore appears to be seledting place writes at low
blocksizes or for small sized write requests. Yet on larger blocksizéardarge sized write
requests the controller updates in place. This means that the write has tayexder the erase

Analysis and Optimization of Storage 10 in Distributed and Massive Paraitgi Ferformance Systems 125

5 OPTIMIZING KERNEL FOR STORAGE CLASS MEMORY

IOPS - Random Write from Fusion-io (ext2, block size 4kB)
APPLE G5 (2 x Dual Core 970MP 2.5GHz, 4GB RAM)

70000

"jobs= 1, Filesize= 81892M —+—
jobhs= 2, Filesize= 4096M ——
50000 | jobs= 4, Filesize= 2048M —%— |
jobs= 8, Filesize= 1024M —85—
jobs= 16, Filesize= 512M

50000 k jobs= 32, Filesize= 256M —=— |
jobs= 64, Filesize= 128M

40000 |

10PS

30000 |

20000

10000 |

1 2 4 8 16 32 64 128
Elocksize KB

Figure 5.10: IOPS of Random Write on an ioDrive on Apple G5

to take place first.

As mentioned before, most SSDs prefer smaller blocksizes. The maimnsabat the con-
troller can more easily select blocks to place them into. In addition to thatadevete request
could be fitted into the same flash block. Thus all these write requests waare e erase
delay that might be required. Furthermore the life span of the SSD is imcte@be controller
becomes able to perform more optimized wear leveling. Additionally the file systartd not
have to write data that is unnecessary to fill the data request. The writedtonismatch there-
fore becomes a difficult issue that requires solving. It should be notgdcctimclusions made
here concerning controller implementation is based on the results showviitl. réreains diffi-
cult to make decisive determinations on how the controller is built. The perfarenia governed
by complex algorithms hidden beneath layers of interfaces. The complexigfahe prevents
finding actual bottlenecks. In fact the difference between read aitelatismall and large block-
sizes could be due to garbage collection. The controller could be switchnhgge collection
algorithms for large blocksizes to free these as quickly as possible foefutites. This would
contradict the conclusions made on in place versus out of place writegeudothe reason why
garbage collection effect in this case is dismissed is the uniform curvégheriblocksizes for
bandwidth. If the write was delayed due to garbage collection or any othiabitity service
there should have been more fluctuations in the performance. It is edpbataeliability ser-
vices do not operate at full capacity during write. Therefore their infteeon curves cannot be
leading to such uniform results as those shown in Figure 5.12.

The disadvantage of trying to change performance using blocksize ig tbat application
factor. It is therefore a specification of the system rather than a chhlegiactor. Some settings
necessitates the use of IOPS while others build on bandwidth. From theyseesults it is
obvious that specifically for writes both is not achievable using these settigite requires
better bandwidth performance. This could for example be achieved thefustripping data
across more internal chips. Figure 5.13 shows the performance deakmg blocksize for

Analysis and Optimization of Storage 10 in Distributed and Massive Paraitgi Ferformance Systems 126

5 OPTIMIZING KERNEL FOR STORAGE CLASS MEMORY

Bandwidth - Random Read from Fusion-io (ext2, block size 4kB)
APPLE G5 (2 x Dual Core 970MP 2. 5GHz, 4GB RAM)

jobs= 1, Filesize= B192M —+—
900 - jobs= 2, Filesize= 4096M ——
jobs= 4, Filesize= 2048M ——
jobs= 8, Filesize= 1024M —8—
| jobs= 16, Filesize= 512M -
jobs= 32, Filesize= 256M
| jobs= 64, Filesize= 128M

600

500

Bandwidth MB/s

400

00

200

100

1 2 4 8 16 32 64 128
Elocksize KB

Figure 5.11: Bandwidth of Random Read from an ioDrive on Apple G5

writes as a percentage of reads. The performance drop shown cetédotte be explained by
the failure of the controller to divide larger sized blocks across diftdtash chips. Thus leading
to performance drops at larger blocksizes which become limited by singldahibwvidth. One
reason for the controller to keep larger blocks as a single group in ddltstecrease the size of
the FTL. The block written as a unit could be addressed using a single&ephgddress, leading
to only a single entry in the FTL.

As parallelism by utilization of several flash chips would increase bandviiditould be
advisable for the controller to attempt breaking larger blocksizes. Thirgygiself the ability
to write these smaller chunks on different flash chips. The utilization havwatbe write and
read of such breaking is highly dependent on access patterns. If mafpleations access
their files in sequential order at the same time, the controller should sacrifigebandwidth
and allocate the block into a single chip. This would allow the controller to read fnany chips
in parallel to serve all applications. On the other hand if the applicationsesferming more
parallel file read and writing the controller should preferably stripe thekbémross multiple
flash chips. This would allow later the application to access the file using pavp#eation
and increase performance. It is shown by this that application informaticacoess patterns
is crucial for design of optimum performance. Although this might not besiptesfor general
purpose computers, HPC systems are unique and mostly built for sciengiéiaro. This in
turn leads to understandable and application uniform access patterneulthbe researched.

Another issue that has not been anticipated or accounted for is cadfiguye 5.13 shows
slightincrease of write operations versus read at smaller blocksiz&sZ@nd 4 jobs. Although
these could be explained as normal test fluctuations, they can be attribwiachiog. At low
number of jobs at small blocksizes the controller could be avoiding a writg 8glplacing the
block into the cache. The write would then be handled later. This would trerpfevent future
write operations into the cached data from having to erase a block. Itdshekept in mind
however that FIO test cannot detect whether the delay is for writing tolthsiqal flash storage

Analysis and Optimization of Storage 10 in Distributed and Massive Paraitgi Ferformance Systems 127

5 OPTIMIZING KERNEL FOR STORAGE CLASS MEMORY

Bandwidth - Random Wirte from Fusion-io {ext2, block size 4kB)
APPLE G5 (2 x Dual Core 970MP 2. 5GHz, 4GB RAM)

jobs= 1, Filesize= B192M —+—
900 - jobs= 2, Filesize= 4096M ——
jobs= 4, Filesize= 2048M ——
jobs= 8, Filesize= 1024M —8—
| jobs= 16, Filesize= 512M
jobs= 32, Filesize= 256M —a—
| jobs= 64, Filesize= 128M

600

500

Bandwidth MB/s

400

00

200

100

1 2 4 8 16 32 64 128
Elocksize KB

Figure 5.12: Bandwidth of Random Write on an ioDrive on Apple G5

or into the temporary SSD cache. Given that both are reported by theoltento the upper
layers as successful writes FIO adds these cache writes to the part@nidis is an additional
proof to the complexity of trying to test SSDs.

5.2.3 File System Overhead

A file system has to add as little overhead as possible. However there is @mfilst system
that does not add any overhead. The file systems task during a reaiecoperation is to find
requested blocks or allocate new blocks. During a read operation theaijgm requests blocks
of data from the file system. These blocks are marked by the block numberfil& system
has then to find the physical addresses of these blocks. On write thestiégrsin turn provides
physical address for blocks in which the data can be written.

Linux gives the ability of raw device access. The application can be alltoveidectly access
the block device without the need of a file system. This is done by providinggpkcation
with the block device file. Since the file system determines allocation of phyasilcliesses, in
raw device access the application has to do the allocation. This howeesrthe opportunity
of finding overhead in case of a simple file system such as the Ext2.

Section 4.3.3 on testing parallel file systems has previously shown the adeidreparallel
file systems. The Ext2 is expected to have a lower overhead. This is mainly theesimplicity
of Ext2, in comparison to the complex parallel file systems. In addition to thatlekfile
systems depend on using multiple devices spread across severas.sdiverExt2 uses single
devices mounted on a single point. However to achieve relatively goodrpehce using Ext2
on loop devices several devices have to be used in parallel. Thethéotest has to compare
how performance changes with changing the number of loop devicedlas we

Figure 5.14 shows the overhead produced by the usage of the file sysdaran be seen the
performance difference for a single loop device is relatively low. Thiggalise a read operation

Analysis and Optimization of Storage 10 in Distributed and Massive Paraitgi Ferformance Systems 128

5 OPTIMIZING KERNEL FOR STORAGE CLASS MEMORY

IOPS - Random Write vs Random Read from Fusion-io {ext2, block size 4kB)
APPLE G5 (2 x Dual Core 970MP 2.5GHz, 4GB RAM)

" jobs= 1, Filesize= 8182M —+—
johs= 2, Filesize= 4096M —»—
jobs= 4, Filesize= 2048M —%—
jobs= 8, Filesize= 1024M —85—

jobs= 16, Filesize= 512M i

jobs= 32, Filesize= 256M —=—

jobs= 64, Filesize= 128M

140 |

120

100 |

80

60

40

20

(IOPS Random Write / 1OPS Random Read) X 100

1 2 4 8 16 32 64 128
Elocksize KB

Figure 5.13: Percentage of Bandwidth of Random Write versus Rand@a & an ioDrive on
Apple G5

in Ext2 does minimum operations. In fact all that is required from the file sys&do return the
physical addresses corresponding to the block number. Nonetheteggsiiites separate block
access. The file system has to access the device in case of havingtiodirdtis is because
the pointers or physical addresses are saved on the device. Theddexalanation of the read
operation in an Ext2 file system is explained in Section 3.4.1.

The overhead in Figure 5.14 was expected to increase with increasingitiigen of loop
devices. This is because the number of loop devices require themseboesging power. In
addition to that each mount point requires separate operations. Hotievezsult show that
performance difference for some points does not increase much wittasiog humber of loop
devices.

Raw block device access removes overhead of file system. Howevehys&a address
selection is left to the application. Since the FIO benchmark does not sleessapatterns and
how division is divided among devices, it becomes difficult to compardteesin addition to
that loop devices are more bound by the processing frequency. Thefdieindicates that
while the overhead exists, it cannot be attributed fully to the file system.

On the other hand write operations are more complex and require furtbelatens from the
file system. Based on that the write operation overhead should increlaisecafinot be proven
using loop device. The loop device is bound to the processing powerlaedita a single thread
as has been shown in Section 4.3.4. Therefore the difference betwiéeamd read operations
does not exist on loop devices. In addition to traahdiskscannot be used to find write overhead
due to their speed and direct access to RAM.

Analysis and Optimization of Storage 10 in Distributed and Massive Paraitgi Ferformance Systems 129

5 OPTIMIZING KERNEL FOR STORAGE CLASS MEMORY

IOPS - Random Read from Loop Devices With and Without Filesystem (FIO Blocksize 64kE)
BG/Q (16 Core 1.6GHz, 4GB RAM)

120

bNEIoop de\flice —
TWO loop devices ——
115 ~FOUR loop devices — —#—
EIGHT loop devices —8—

110 |

105 -

T /9(7,-:{_’:(}%
95 1

a0 r

% of IOPS with Filesystem
against IOFS without Filesystem

a5

a0

1 2 4 8 16 32 64
Mumber of FIO Jobs

Figure 5.14: Percentage of IOPS for Random Read with file system agaiihsut

5.3 Removing Ext2 Preallocation

The difficulty with finding an appropriate implementation for improving SSD is sufopy the

different types and implementations. Therefore it is preferred to findpiimzation that fits
the basic flash memory access. File systems exerts efforts in attempting tasgeseek time.
Since flash devices do not exhibit seek time, these algorithms become auvagéehead. One
such algorithm is preallocation.

File systems operate on the basis of blocks. Section 3.4.1 has explainectbiatriye space
of an Ext2 file system is divided into block groups. Within these block grtlupgata blocks are
stored. The file uses itaodeto store the pointer to the data blocks associated with it. For that
purpose thénodeemploys direct and indirect pointers. On the basis of such file layout &sing
file can be fragmented across the entire file systems storage space. ywutlolaHDDs which
suffer from seek time would result in massive read and write delays. $hiregeven worse when
accounting for indirection blocks which contain data block pointers. Thetigection blocks
have to be read to find the physical addresses of the data blocks. Aapadisbetween the
indirection blocks and the corresponding data blocks has to be covetéd BIDD head. This
in turn will result in additional seek time. Therefore the file system attempts to pldection
and data blocks of the same file as contingent as possible. Those shoube @lsced as close
as possible to the filéaode The result is far better sequential read time on HDD. Thus the file
system allows a relative high CPU utilization to avoid file fragmentation.

The difficulty in avoiding file fragmentation is that files are usually not writteraglbnce.
Data blocks of a file seldom come as a single unit. Furthermore the file systattyusrites
and reads several files at the same time. This means that data blocks vehabbsarto the file
are at risk of being allocated to a different file. The file system thereforploys reservation
windows to anticipate file allocations [9]-Chapter9. This type of reservédicalled prealloca-
tion. The file system uses several complex allocation schemes to keep al efrétdile as close

Analysis and Optimization of Storage 10 in Distributed and Massive Paraitgi Ferformance Systems 130

5 OPTIMIZING KERNEL FOR STORAGE CLASS MEMORY

together as possible. In addition to that the file system allocates new unaiseldlacks to the

file that could be used for future writes. This however is not an easy &iske the file system
has no record of future writes these preallocated blocks could be afagtace. Therefore the
file system has to be able to reclaim such blocks without a free operationtii® application.

Furthermore the file system has to be able to balance between neighborigdilteeir preal-

located blocks. Another issue is the free space available on the stondge. dehe file system

has to be able to reclaim these preallocated blocks for actual data.

As will be shown later, preallocation complicates a write operation. The fikegyBowever
has the notion that such CPU utilization is cheaper than expensive seek tinsemparison
SSDs exhibit no seek time. This makes them ideal candidates for randessa@onventional
file systems such as the Ext2 have no method of identifying the underlyingstiy@e. There-
fore the contingent allocation algorithms are used no matter the device typpit®that Ext2
supports switching off preallocation using a file or application setting. Neteth the contin-
gent data allocation cannot be switched off. In addition to that seveo&daile function calls
are still performed regardless of preallocation setting. CPU time in a multi-cmieoament
with weak single core performance is expensive. Therefore suctiqguation overhead should
be avoided.

Although sequential write operations on some SSD show better perforrtareceould not
be addressed with the usage of preallocation. Preallocated blockstasgitten back to the
device. That is no actual 10 appears to be happing for preallocatianfiléhsystem just keeps
a record of preallocated blocks. Even pointers should not be writtdntbabe device. This is
done to avoid permanently allocating preallocated blocks to the file in caseystearsfailure.
The target of preallocation is the avoidance of future seek time for writespedially for read
operations. On the other hand SSD employ a FTL that hides the actual @llgdtress space
from the file system. Thus the file system is allocating logical addressesithabivmap to the
lower physical storage. Therefore preallocation has no benefit ednagsfor SSD operation.

The following explanation will attempt to explain the effort of removing prealtmn over-
head and decreasing write complexity in the Ext2 file system. The write openatilohe
demonstrated and changes will be provided side by side to the original wHiteonistruction.
An effort is made to keep code inclusion to the minimum. The target is to show hewrée
for such a complex operation might could be approached. It should beamed that there is
no detailed source on how such operations are done. The informatiem lgére are found by
analyzing the Ext2 implementation. Readers interested in further informatiaitdsing to have
a look into the original Kernel Ext2 code. However such approachldhmudone with caution.
The implementation is complicated and requires advanced knowledge on feéensydn some
cases detailed knowledge on processor architecture is required as well.

5.3.1 Ext2 Get Blocks Function

Due to the complexity of the write operation done in the Ext2 file system the agipwil be
made in a hierarchical form. This form is an analogy to the call path aéxtizget blocksfunc-
tion. Figure 5.15 shows the call graph in a hierarchical form. The nundpefithe functions

is done in accordance to the execution sequence. The second nuprieeerds the hierarchical
order. If there is no number it is directly called keyxt2getblocks Using this scheme.f is
called by 6, while 6.2 is called by 61 and so on. It of absolute importance to follow the com-
plete write operation. Some function names is deceiving. For example a fufatiallocation
with no reservation could still contain some reference to preallocation.ite¢bpt some of the

Analysis and Optimization of Storage 10 in Distributed and Massive Paraitgi Ferformance Systems 131

5 OPTIMIZING KERNEL FOR STORAGE CLASS MEMORY

more complex issues that are irrelevant to the issue will be omitted.

‘ ext?2_get_blocks

1. —ﬁ ext2_block_to_path

|
2. —ﬁ ext2_get_branch ‘
3. —ﬁ ext2_init_block_alloc ‘

|

4. —ﬂ ext?_find_goal

4.1 ext2_find_near ‘

5. —ﬂ ext?_blocks_to_allocate ‘

6. ext2_alloc_branch |

6.1 Lﬂ ext?_alloc_blocks ‘

6.2 L»{ ext2_new_blocks ‘

6.3 \—b{ ext2_try_to_allocate_with_rsv ‘

6.4 ext?2_try to_allocate ‘

6.5 M find_next_usable_block ‘

Figure 5.15: extayet blocks call graph with hierarchical and execution sequence

The first function called is .lext2block to_path The task of the function is to fill the offset
list of the indirection blocks. The indirection has been explained in Sectiot.3The offsets
within each indirect block can be found using block number. TherefoextRblock to_path
does not perform any 10. The next function called.ie22 get branch It has the task of finding
the actual physical addresses of both indirection and data bl@s#2.get branch produces a
chain of addresses using the offset list within the indirection units. Thigifamhas to use 10 to
access each indirection block with the offset to find the physical addaeesl in the indirection
block.

The ext2getblockscan be used for both read and write operation. In a read operation the
function 2 returns aNULL pointer. Using a conditioext2 get blocksfinds this case and loops
over the sequence of addresses. Finally it jumps to the end and sets thedirigng buffer to
the physical address. This buffer will be handed to the VFS to perfoerhltitk read operation.

In case of a write thext2 get blockstask becomes providing the VFS with physical addresses
to write to. For that purpose the function has to first find available data blfmrkallocation.
Next the data blocks physical address must be added timdlde as either a direct or indirect
pointer. The later case might result in adding indirection blocks to provideesfor the pointer.

Assuming an allocation call, the next function calledesy2 get blockis 3. ext2init_block alloc_info.
The task of this function is to initiate block allocation info. Mainly this is done to atetae
information necessary for the reservation window. If preallocation isthoff the reservation
window is set to a size of zero. For the purpose of removing preallocatioetibn 3 can be
completely removed. Any setting done withintBat is still necessary for finding data blocks
can be moved text2getblock One such setting from.Bis the block allocation info structure.
This is set to thenodeblock allocation info which can be performed éxt2getblock The

Analysis and Optimization of Storage 10 in Distributed and Massive Paraitgi Ferformance Systems 132

5 OPTIMIZING KERNEL FOR STORAGE CLASS MEMORY

block allocation info is needed to find last allocated logical and physicakbloc

The next function called is.4ext2find goal As the name suggest the function attempts to
find a goal block near of which the new blocks should be allocated. Thkldock is usually
set to the block next to the last allocated block. If the allocation info has pest imitialized
meaning the last allocated block is zero themxt2 find_goal calls 41 ext2find_near. This in
turn attempts to find another block with sufficient locality. It first attempts to segdiadto a
previous pointer if it exists. Next option is for it to allocate near the indiredbiock. Finally if
that is not possible it attempts to allocate in the same block group as thatinbttee Important
is to realize that the goal block will only be used for locality. The data do¢shaee to be
actually placed into it. Under this condition the two function calls can be avoidée. goal
block can be immediately set to the some place within the same block groupiasdieeThis
is could be done iext2getblocks

The functionext2getblockshas to find the number of blocks to allocate. This does not
just hint to number of data blocks but to indirect blocks as well. This is dgnealling 5
ext2blks to_allocate The function returns the count of total blocks to be allocated.

5.3.2 Function 6. ext2_alloc_branch

Up to this point no allocation has been made. Previous function calls wereimadeeffort to
prepare the data necessary for allocation. The actual allocation rsijpp@rext2 alloc_branch

As can be seen in Figure 5.15 many functions are called to achieve sutedisgation. The
first called function is the .@ ext2alloc_blocks As the name suggest the allocation is done in
this function. The task therefore of 6xt2alloc_branchis to allocate the branch and prepare
it to be added to thenode The blocks provided by.& are zeroed out and then the indirection
chain is written to them. It should be noted here thag¢X2 alloc_branchcan only allocate a
single branch. The final indirect block contains a list of pointers to theldatks. This means
that 61 ext2 alloc_blocksallocates blocks for the branch and as many data blocks as required or
stops once it cannot allocate more to the same branch. Therefore angdtinas to signal the
number of direct or data blocks allocated.

5.3.3 Function 6.1 ext2_alloc_blocks

The function 61 ext2 alloc_blocksattempts the allocation of minimum set of blocks. The num-
ber required for allocation is the total of indirect blocks for the branchdigiteon to at least

a single direct block. If more blocks are available allocation continues dhtéguired direct
blocks are allocated. Still.6& ext2 alloc_blocksdoes not do the block allocation itself. Instead
it calls 6.2 ext2newblocks As the name suggests functior2@inds and allocates a new set of
contingent blocks. Since Bext2alloc_blockscould require more blocks than currently avail-
able in a contingent group, it repeatedly call@ 8xt2newblocks This continues until the
required number of blocks is allocated. It is important thatekt2 alloc_blockskeeps track of
whether the indirection blocks have been allocated or not. If the minimum ischagved an
error has to be returned.

5.3.4 Function 6.2 ext2_new_blocks

The most complex of all functions isBext2newblocks This is because the actual allocation
takes place in this function. The allocation scheme is mentioned in the commeamttabdunc-
tion as being relative to the goal block. The goal block is used if empty. tfishaot possible,

Analysis and Optimization of Storage 10 in Distributed and Massive Paraitgi Ferformance Systems 133

5 OPTIMIZING KERNEL FOR STORAGE CLASS MEMORY

a free block is searched for within a distance of 32 blocks from the doakb Otherwise a
forward search is conducted for a free block. For that purposeutietidn 62 ext2 new blocks
uses the bitmaps. The function starts by checking for sufficient quotaealdy the VFS for
allocation to this file. The function then tries to set reservation information.elfite system
is mounted without preallocation the reservation window has the size of Thie part can be
removed as there is no need for an added check operation if the préaloedl not be used.
An additional reservation part that can be removed is the check focisulfifree blocks for
reservation.

Since the file system has a limit of available block&, &t2 newblockshas to check if free
blocks are available. If sufficient free blocks are availabffihds by usage of the goal block a
group target. This is the block group that the allocation should be done witbiractual alloca-
tion block allocation within the target groupXext2 new blocksuses 63 ext2 try_to_allocate with_rsv.
It should be noted that 8 can only allocate within the same block group. If allocation is not pos-
sible within that group another group with sufficient free blocks for bdtitation and preallo-
cation blocks has to be found. On failing to find an appropriate block gsdliext2 new blocks
switches off preallocation and repeats the block group finding proEesaly if no block group
is found error is returned, signaling that no free space is available. shbiss the amount of
overhead such reservation tables can place on the file system allocattmsgr Therefore in
the interest of removing preallocation block groups are immediately seaf@heitle containing
sufficient free blocks without reservation. The issue of preallocaticepisatedly checked. Thus
several other changes have been made to this function. These hauevess the same issues
as mentioned before.

Once 62 ext2newblocksgets the blocks allocated it has to check for conflicts. The allocation
blocks have to be out of the range of the data block bitmapntheebitmap and thénodetable.
Now 6.2 has to adjust the number of free blocks available. Additionatbyext2 new blocks
already took the number of blocks required for allocation from the VFSaqu&iven that
not all of these blocks were allocated the remainder has to be returned YgheFurther
administrative tasks are done at the end.@f & should be noted that information that is stored
on the block device is kept in buffers. As26ext2 newblockschanges these buffers it marks
them as dirty. Therefore the final step ir26s to synchronize with the block device. This will
write all dirty buffers back to the storage.

5.3.5 Function 6.3 ext2_try_to_allocate_with_rsv

As mentioned earlier,.8 ext2new blockscalls 63 ext2 try_to_allocate with_rsv. This is a func-
tion that attempts allocation using reservation. However it starts by cheakirfigrfreservation
window. If the file system is mounted with no reservation thehekt2 try_to_allocate with_rsv
calls another function .8 ext2try_to_allocate This shows that preallocation can produce an
overhead even when switched off. Again due to lack of interest in pozdién this function
call can be removed. Therefore every call fa8 6xt2try_to_allocate with_rsvis replaced with
6.4 ext2try_to_allocate This has to be done in3ext2newblocks Based on this setting the
rest of 63 ext2try_to_allocate with_rsv can be ignored.

5.3.6 Function 6.4 ext2_try_to_allocate

The actual block allocation happens im@&xt2try_to_allocate The function sets a range of
blocks to search within for free blocks. In case of preallocation theeraget to the reservation

Analysis and Optimization of Storage |0 in Distributed and Massive Paraigg Ferformance Systems 134

5 OPTIMIZING KERNEL FOR STORAGE CLASS MEMORY

window. Since preallocation no longer exists this check can be omitted. Foreatlocation

the window is set to start at the goal block and end at the group block&adhen calls &
find_nextusableblock As the name suggests this returns a free usable block or a negative num-
ber in case of failure. Once a usable block is fourtlét2 try_to_allocateloops on subsequent
blocks to check the bitmap. The loop ends at either finding a used blockahring the number

of requested blocks. The functiond6now has a group of contingent allocated blocks. The
bitmap is updated to allocate the blocks. Finally the number of allocated blockarised with

the physical address of the first block.

5.3.7 After Removing Preallocation

Although preallocation can be switched off in the Ext2 filesystem, this doesenaive over-
head. The previous explanation demonstrates how complicated suchl Kditseare. Fig-
ure 5.16 shows the call graph@ft2 get blocksafter removing preallocation. The figure cancels
out functions that have been removed. It also highlights functions thatlteen edited.

| ext2_get blocks |

1. —ﬁ ext2_block_to_path ‘
2. —ﬁ ext2_get_branch ‘
3. wextisinit-biockaHoe——

4. —»}exti—fmd—gnul—}
4.1 wa—m—'
5. —ﬂ ext?_blocks_to_allocate ‘

6. ext2_alloc_branch |

6.1 Lﬂ ext?_alloc_blocks ‘

6.2 L-l ext?_new_blocks |
6.3

64l »l ext2_try to_allocate |

6.5 M find_next_usable_block ‘

Figure 5.16: extayetblocks call graph after removing preallocation

The changes done on the file system are difficult to be tested. The isfféghly dependent
on the processing speed and the underlying device. On most settingsfénerdi&é might not
be noticed at all. However it can be shown that applying changes diegemad SSDs access
patterns is possible. In fact the call graph can be optimized even fu@reisuch optimiza-
tion is the repeated call of. B ext2newblocksdue to it being able to allocate only contingent
blocks. Literally the whole call graph beneati &xt2 alloc_blockscan be removed. To achieve
that 61 could use & find_nextusableblock to find the next free blocks. Perform the con-
tingent block allocation explained in&bext2try_to_allocate If more blocks are needed than
allocated the process could be repeated. Once ddrex& alloc_blocksreturns all blocks to 6

Analysis and Optimization of Storage 10 in Distributed and Massive Paraitgi Ferformance Systems 135

5 OPTIMIZING KERNEL FOR STORAGE CLASS MEMORY

ext2 alloc_branchto complete the allocation process. Not only will this save the cost for devera
function calls, but also will completely remove preallocation checks. In additichat side ad-
ministrative issues within removed functions such as variable creation willdided. It should

be noticed however that this requires a further detailed look at functiorieinemtation. Error
handling is done by checking function return type. The task of erradlivandone in a removed
function will have to be performed somewhere else.

The Kernel and associated file systems can adapt for SSD usagecdmég even adapted
to switch between SSD and HDD. However such changes must be made wélinfosmation
about complete 10 stack. This does not just include block devices, leat &plication. The
difficulty shown by removing the preallocation will also be faced in furtheimoging Kernel
file systems. These optimizations are worth it. The SSD might not be the onlgstmehnol-
ogy for which such optimizations are useful. In fact SSD is not the onlyagtechnology for
which optimization in general must be done. For that reason, file systeragdatart acquiring
information from block devices on their types. This will facilitate the develspask for setting
optimizations. A file system can switch on and off certain functions for diffetechnologies.
However such switching will have to be done with better care. As seefigaration although
switched off still represents overhead that can be avoided. This iepjpdae due to the file sys-
tem expectation that the normal case is the usage of preallocation. To optimizewitching
developers will have to make more effort in more fluent switching.

Analysis and Optimization of Storage 10 in Distributed and Massive Paraitgi Ferformance Systems 136

6 CONCLUSION AND FUTURE WORK

6 Conclusion and Future Work

6.1 Conclusion

Computational power of HPC systems has dramatically increased over thgepas. How-
ever 10 has not increased enough to fulfill the transfer rate requiresuich powerful comput-
ing units. The IO gap is increased by the amount of data capacity availaltPi© applica-
tions. Active storage fabrics is a possible solution that embeds storageenttP(@ units. This
promises the decrease of distance between data stored and the compiisinghuschallenge
of active storage is to enhance single node IO performance. Most ld&€smare not optimized
for internal communication with storage devices. To achieve such optimizatietaded under-
standing of the 10 stack is required and storage devices need to be stedliftermore storage
IO must be analyzed under different conditions to inspect possible optioriza

Analysis of storage 10 show that the 10 stack is formed of several confgyexs. The com-
plexity is increased by the abstraction required to communicate with diffefersty§tems and
different devices. The 10 stack is generally built for single requestiga resulting in low paral-
lelism. Since modern processors are built using multiple cores, single gpetstion becomes
a bottleneck. Additionally new storage technology provides more than ook Bivice to the
system on the same hardware. The 10 stack has difficulty in utilizing thesk téaices in par-
allel. The emerging solid state technology such as SSD promises highempanfze. However
the development of 10 stack has been mostly done in the HDD era. The S&B&tie have to
implement HDD interfaces to communicate with the IO stack. By hiding the SSD idengity th
10 stack continues to optimize access of storage for HDD. SSD is baseditiarant storage
concept. Thus the optimized HDD access is suboptimal for SSD.

Parallelism has been generally designed on higher system levels. Aslmmphsize de-
creases problems faced on system levels are now faced within singleLiamgs.scale solutions
offer a starting point for optimizing parallelism on single node. The challefig@plementing
the large scale solutions is the limitations existing on single nodes. System parabelis-
tions can afford overheads induced by complex parallel file systemsniparison single node
computing capacity is limited and shared with applications. Furthermore anagsistsat 1O
performance is effected by CPU frequency. In general lower CBgUEncy results in poor 10
performance. Operation of IO can be enhanced by the use of funigbiarigioning. The target
is to bind 1O processes to different CPUs. Also division of available btkces among pro-
cesses or CPU could further increase 10 efficiency. To overcomkegiegice limitations the |10
stack has to utilize several block devices. These will offer more perfocmé used efficiently
in parallel.

The target of a parallel 10 stack implementation is to achieve an efficient fuseaable
resources. However changes to original 10 stack must be reduceahitiraum. The purpose
is to avoid complex Kernel changes that could result in disturbing normatd€k operations.
Other unaltered functions should continue to operate unhindered. Fudteethere is an im-
mense difficulty in altering current existing applications. This has delaypticagions from
exploiting new optimized IO interfaces. A parallel IO stack should thereftiez enhanced op-
eration without requesting changes to the applications. The parallel IO implatioen should
accommodate current interfaces using a transparent parallelism. Hagemeplications and in-
terfaces advance the implementation must be able adapt achieving samerqudréttenance.
There is an inherit advantage to functional binding in parallel systemghB&breason a parallel
10 implementation should be able to divide operation among available reso@oe®nt de-

Analysis and Optimization of Storage 10 in Distributed and Massive Paraitgi Ferformance Systems 138

6 CONCLUSION AND FUTURE WORK

vices allow for free write division on block devices but restrict readsitivi. Write operations
can therefore utilize block devices in the most optimal method. In comparisgnoerations
need to be performed on the same devices on which the data has been wkiftarallel 10

implementation should provide the same for read division among block deAdiethese re-
strictions should be held without performance degradation and with a snsall Tioe target is
to utilize parallelism for increased 10 operations per time unit.

The proposed implementation addresses the limitations and specification®defjam a
parallel 10. By use of a unified file system, all devices can be accesseg conventional 10
interfaces. Parallelism becomes transparent to applications. Theseecafoté operate un-
changed. In addition to that by utilizing simple conventional file systems, théhead is kept
to a minimum. This could not be achieved by the use of complicated parallel filensys
Furthermore the use of a global storage space available to all deviceseffiicient resources
utilization. Reads can be divided among devices in the most optimal method. Dédta vait-
ten and subsequently read from a different device. The unified otiowal file system used
carry out normal data locking algorithms. Thus there is no need for peirigrdata locking on
the device level. The implementation promises a free division of operationsgarasources.
Allocation of devices for processes or CPU could be implemented with simpleggeba The
parallel 10 implementation proposed achieves these specifications by as littiiaheo the
Kernel as possible. Other file systems can operate without the needafogehThe Kernel can
employ traditional access schemes without being prevented by the implemetatiomormal
Kernel operations. Furthermore testing the implementation showed an iedrpagormance.
By increasing number of devices an increase in performance is obséi¢keough proposed im-
plementation is realized using loop devices, a hardware design is possibkmwiie changes.
The design offers the possibility of supporting current and future ated such as NVM Ex-
press. The support requires minimum changes to the implementation and daptd@future
application needs.

On the other hand, SSDs are superior to HDDs on many levels. They daoffert from seek
times. Thus promising higher random access performance than prowdeaitmon HDD.
Previously addressed parallelism can further utilize underlying SSCepiep. However the 10
stack has been mainly developed and optimized for HDDs. These HDD optinnig@tiGcome
cases lead to processing overhead which is wasted when performe&iDoac8ess. Therefore
their was a requirement for detailed analysis of SSD operation in correiaiibhO stack HDD
optimizations. Reliability issues faced by SSD means that conventional filevsyssmnnot use
their own address space. Wear leveling requires out of place writingreidre if conventional
file systems were directly accessing the flash memory on SSD, enduramde dvastically
drop. Most SSDs solve this problem by the use of Flash Translation $aydfTL. The file
system is provided a different address space scheme than implementesl gy ical layer.
Other SSDs require complete change of file systems. This has the disapvahtaequiring
application changes and is seldom compatible with existing stack layers. Arissoe for
the use of SSD is access pattern behavior. While HDD requires sequartdess for better
performance, SSD are limited by other factors. Reliability constraints of S8flogys wear
leveling, garbage collection and error correction and detection codss. SSDs cannot write
without a previous erase. There is an added complexity due to the minimum ardswrite
sizes allowed by a flash memory. These issues need to be addressed®pticentroller. To
achieve optimum performance the controller design should also be doneoirdance with the
system configuration. A system employing a processor with multiple weak eareld benefit
from a hardware designed controller. A software design that is nabpgptely done using

Analysis and Optimization of Storage 10 in Distributed and Massive Paraitgi Ferformance Systems 139

6 CONCLUSION AND FUTURE WORK

several threads result in a limited performance. This design would becependent on the
weak frequency of the single core.

Due to SSD complexity these analysis are difficult. Performance is highlyndepéon de-
sign. However by analyzing performance under different conditiongesconclusions could be
made on SSD operation. Analysis show that an added computing performeégicenot in-
crease the 10 parallel operation of a SSD. Software device driverssimitfe or small number
of threads result in a binding to a single core. Thus additional computerpoawdd not sub-
sequently increase |0 performance. Using multiple threads to implement d#iee could
increase performance. However the SSD controller operation shotilsbnse the computing
power available. The SSD device drivers in an active storage coafignmwill share processing
power with applications. Priority should remain for processing applicatibomsomparison a
more hardware based controller implementation promises a system independbee hardware
design would not be effected by CPU frequency as much as a softwaenmaptation. Still the
SSD will remain limited by best hardware performance possible. A softwesid however
would have the full processing power available on the system to utilize. Anatbue for SSD
is the write versus read performance. The inherit flash memory result inex lorite perfor-
mance. This affects most of all the maximum bandwidth that the device can imtgenal SSD
parallelism would provide for a better write performance. Additionally by tbe af more ap-
plication and system related controller designs write latency can be redDoattollers should
handle reliability issues with more efficiency. Furthermore analysis of thestional file sys-
tems show that overhead is limited. This however is dependent on the systErmance and
the underlying device design. Conventional file systems utilize CPU time to auDid $€ek
time. SSDs do not benefit from seek time reduction. Thus file system @edan be further
decreased by removing seek time reduction algorithms. This is true for tHe V@hstack.

As an example for overhead reduction by redesign of 10 stack for $&4aJlocation is re-
moved from the a conventional file system. Conventional file systems pra@lfsee blocks to
a file in order to provide more contingent data allocation. To achieve praéhodn contingent
form file systems employ complicated algorithms. These exert an overheanpiutation to
the storage 10 requests. SSDs have a better random access pecd®theanHDD. Furthermore
SSDs use a different physical address space for allocation thandtshown for the file system.
Thus preallocation makes no improvement to SSD performance. Althougletlgdtem might
provide a method for switching off preallocation, the overhead is not mechedsed by this
method. The actual removing of preallocation is shown to be a complicated imghgtioan
Despite that it is possible and could result in better performance. Thegga@t removing pre-
allocation required analyzing every function in the function call graphefifocation method.
Functions used for preallocation are removed. Other functions are ¢dlitadid preallocation
and reduce complexity. This should be done with absolute care. Functionklsiot be altered
to the extend of failing. Applications should also not be changed due tdquation removal.
Additionally the Kernel should remain unchanged if at all possible. Thallpeation removal
done in this study shows that these restrains can be kept. The write foedusead which
promises better performance.

6.2 Future Work

10 will continue to be in the center of attention of the HPC community. Building futuassive
scale computers will be dependent on how far IO can be optimized. In@ssas processing
units continue to grow in parallelism, so should 10. Parallelism has to be adiopddabth new

Analysis and Optimization of Storage 10 in Distributed and Massive Paraitgi Ferformance Systems 140

6 CONCLUSION AND FUTURE WORK

storage technologies and the existing IO stack. The design mentioned in thyssktaws how
far parallelism can achieve higher 10 performance. The hardwaregelsaequired by the design
are simple and easy to implement. The global storage space shared ambolierercan be
fabricated by the use of bus system connecting all flash memory chips withraitbllers. The
bus system would require an additional bus arbiter which regulates [ffis. tighe controllers
themselves could be implemented on Field Programmable arrays or FPGAgeSharthe 10
stack could be implemented without the need of Kernel or module recompilefil&tsystem
will have to detect on the fly how many devices exist on the same board anchwoicate
with the same storage space. This could be achieved by a signal that tigehasato send
to the file system informing it with the number of devices. Another possibility igHerfile
system to detect the number of devices using the PCI bus registration itifemnfaurthermore
the file system could implement different access patterns. The allocatiorvickdecould be
done on a CPU or process basis. Further functional partitioning schtmyuksshow higher 10
performance.

The market already offers several SSD designs with multiple devicesiogla board. These
however do not contain a global storage space. Each controller camwoicate to only a
hardwired set of flash chips. By sacrificing the global storage spa&cddhign can adapt to
these SSDs. The file system will have to map the address space duringrdateoowa single
devices. This will allow the file system to divide the write requests among thiakbladevices.
However read operations will have to be done on the same device as writtAtittough this
limits the design advantages, it still give the opportunity of testing the design eétiphysical
SSD devices.

The most important aspect of parallelism is the use of an appropriate pditallgystem.
These file systems are however too complex for single node performaheestudy done here
offered the redesign of a conventional file system to adopt parallelismth&napproach could
be the simplification of complex existing parallel file systems. This would requiextensive
effort in understanding such file systems. In addition to that the use afigldile systems of
global scale in ASF should be studied. Parallel file systems operate ona giel of data and
divided the data according to replication and performance factors. Daséod however does
not consider any computation issues. By using parallel file systems singés math storage
will have to access data on the global file system including data on adjagées.nit would
be beneficial to study the possibility of dual address space. The glbayftem operates and
saves data on the complete ASF using one address space. The sed@sd apgace would be
the view of the single node to information on the storage next to it. Using this satsimgle
node would be allowed to do faster 10 without the need of accessing glebabrks.

As shown by this study there is large room for improving the 10 stack to a88js. To
achieve better understanding of possible optimization for the 10 stack mahgsenhas to be
done on the SSDs offered by the market. Also it is important to implement ana test SSD
design in relation to current modern processors with parallelism and hegdi@sh memory
services. Since the 10 stack still requires SSDs to use HDD interfact@s)ingtion of SSD
for HDD access patterns could result in better performance. For exam@3&SD could divide
contingent data offered by HDD scheduling schemes on different¢laipls. This would result
in internal SSD parallelism.

Further optimization of 10 stack for SSD is required. Since the SSD will hacedaist with
HDD the IO stack will have to support optimizations for both. In the interestsefr friendly
systems the user should not be required to enter the type of device faptingzation to be
activated. The 10 stack should be able to detect the device storage tgpty tlesigned SSDs

Analysis and Optimization of Storage 10 in Distributed and Massive Paraitgl Rerformance Systems 141

6 CONCLUSION AND FUTURE WORK

could set a variable signaling the storage type. The HDD could be set deftndt for such a
variable. Not only will this facilitate optimization for SSD but also provide depels with the
ability for optimization for future storage technologies.

6.2.1 10 Compression

IO compression is a fast emerging tool for optimizing 10. It requires eiters$udy. There are
many different types and algorithms that perform compression. Thésediferent compres-
sion rates and different compression speeds. The compression catlepénds on the type and
form of data. This will therefore also require an extensive study oliegtppn data form. It is of
absolute importance that the compression be transparent. Data shoudosittly the compres-
sion or decompression. This in turn will avoid application changes. Anathgortant factor
is compression and decompression processing requirements. As shibwmstudy functional
partitioning increases performance. Therefore allocating cores to thpression operation
could further increase benefits from IO compression. However the @sipn should decrease
disturbance to the application. For that reason it should not take to muchi@Bltb compress
or decompress from the running applications. Another option is for casane to utilize idle
cores. An algorithm offering different compression rates at diffiepeacessing requirements
could be implemented. Using this compression algorithm the system could supgoyr com-
pute bound threads at low compression rates or few |0 bound threhidfhatompression rates.
The difficulty however with this implementation is compression versus decosipresThe
system will have to guarantee idle cores during decompression. Duringeaoperation the
system is free to choose the rate and speed of compression accordimgtienof idle cores. In
comparison during a read operation requiring decompression the sydbeomid by the rate of
compression done during write.

Compression can be implemented on many different 10 levels. The main two ®ptiaitable
is software versus hardware compression. To increase 10 perfoesaftware compression can
be implemented on the upper layers of the 10 stack. Some file systems alréadgonhpres-
sion. Another option is to implement compression in the device driver. Thisdnadlow for
compression in relation to the underlying storage technology. The usétwhse compression
would allow for a high IOPS and bandwidth to be supported at the same timeeehsfom
tests done in this study bandwidth and IOPS are inversely proportional withldbksize as the
factor between them. By using compression large block sizes could beadeck This would
allow for the increase of IOPS without decreasing the bandwidth. Hawesbkould be noted
that the term IOPS used in this case refer to actual IOPS. These areRISed¢hieved after
compression. The compression operation itself will result in additional lptdie same issue
is applicable to bandwidth.

Another option is the use of hardware compression. An SSD offeringpardicompression
would not increase 10 performance. The data has to be decompresfeed teturned to the
system during a read operation. However on board compressiors dfferincrease of SSD
endurance. By storing less data during a write operation, number of waise/eycles used will
be decreased. The problem however becomes out of place writings B8 to use out of
place writes due to wear leveling techniques. Data updates are written tealoathtion and
the old data is market for garbage collection. A compression done on thefghendata would
require a rewrite to decompress, update and rewrite the whole data. Natitrhis result in
write delay but also might decrease SSD endurance.

IO compression requires further analysis of the 10 stack. It also regjfurther understanding

Analysis and Optimization of Storage 10 in Distributed and Massive Paraitgl Ferformance Systems 142

6 CONCLUSION AND FUTURE WORK

of storage technology. The analysis should be done with referencéhtid®atack parallelism
and SSD implementations.

Analysis and Optimization of Storage 10 in Distributed and Massive Paraitgi Ferformance Systems 143

References

References

[1] Y. Chen, X. Sun, R. Thakur, H. Song and H. Jin, “Improving piatd/O performance
with data layout awareness,” @luster Computing (CLUSTER), 2010 IEEE International
Conference onpp. 302 —311, sept. 2010.

[2] A. Jackson, F. Reid, J. Hein, A. Soba and X. Saez, “High peréorce 1/0O,”Parallel,
Distributed, and Network-Based Processing, Euromicro Conferencead. 0, pp. 349—
356, 2011.

[3] B. G. Fitch, A. Rayshubskiy, M. C. Pitman, T. J. C. Ward and R. Sn@n, “Using the
active storage fabrics model to address petascale storage challengemceedings of
the 4th Annual Workshop on Petascale Data Stoy&j@SW '09, (New York, NY, USA),
pp. 47-54, ACM, 20009.

[4] A. Snell, GPFS: optimizing performance with parallel data managememntersect360
Research, Inc., August 2010. White Paper.

[5] S. Seelam, I. H. Chung, J.Bauer and H. F. Wen, “Masking I/O latersiyg application
level I/O caching and prefetching on Blue Gene systemdairallel Distributed Process-
ing (IPDPS), 2010 IEEE International Symposium pp. 1 -12, Apr. 2010.

[6] F. Schmuck and R. Haskin, “GPFS: a shared-disk file system fgelaomputing clus-
ters,” inln Proceedings of the 2002 Conference on File and Storage Technsleis&T)
pp. 231-244, 2002.

[7] N.Ali, P. Carns, K. Iskra, D. Kimpe, S. Lang, R. Latham, R. Ros3Mard and P. Sadayap-
pan, “Scalable I/O forwarding framework for high-performance cotimgusystems,” in
Cluster Computing and Workshops, 2009. CLUSTER '09. IEEE Intemel Conference
on, pp. 1 -10, 31 2009-Sept. 4 20009.

[8] R. Love,Linux Kernel Developmeniddison-Wesley Professional, 2010.
[9] W. Mauerer,Professional Linux Kernel Architectur&Viley Publishing, Inc., 2008.

[10] W. Hutsell, J. Bowen, and N. EkkeFlash Solid-State Disk ReliabilityTexas Memory
Systems, Inc., Houston, Texas USA., Nov. 2008. White Paper.

[11] E. SpanjerFlash Management — Why and How? A detailed overview of flash mameagem
techniques SMART Modular Technologies, Nov. 2009. White Paper.

[12] M. Sanvido, F. R. Chu, A. Kulkarni and R. Selinger, “NAND flastemory and its role in
storage architecturesProceedings of the IEEEoI. 96, pp. 1864 —1874, Nov. 2008.

[13] C. Egger, “File systems for flash devices.” http://www-vs.informatik.un
ulm.de/teach/ss10/rb/docs/flashausarbeitung.pdf, Jun. 2010.

[14] M. Li, S. S. Vazhkudai, A. R. Butt, F. Meng, X. Ma, Y. Kim, C. Engelntaand G. Ship-
man, “Functional partitioning to optimize end-to-end performance on marg/aschitec-
tures,” inProceedings of the 2010 ACM/IEEE International Conference for HigfoPe
mance Computing, Networking, Storage and Ana)y\8G '10, (Washington, DC, USA),
pp. 1-12, IEEE Computer Society, 2010.

Analysis and Optimization of Storage 10 in Distributed and Massive Paraitgl Rerformance Systems 144

References

[15] S. W. Son, S. Lang, P. Carns, R. Ross, R. Thakur, B. OzisikyijfRaKumar, W. Liao and
A. Choudhary, “Enabling active storage on parallel /O software stagk Mass Storage
Systems and Technologies (MSST), 2010 IEEE 26th Symposipm dn-12, may 2010.

[16] P. M. Dickens and R. Thakur, “Improving collective 1/0O performancing threads,” in
Proceedings of the 13th International Symposium on Parallel Proogssml the 10th
Symposium on Parallel and Distributed ProcessiiRiPS '99/SPDP '99, (Washington, DC,
USA), pp. 38-45, IEEE Computer Society, 1999.

[17] K. Coloma, A. Ching, A. Choudhary, W. Liao, R. Ross, R. Tha&nod L. Ward, “A new
flexible MPI collective I/O implementation,” il€luster Computing, 2006 IEEE Interna-
tional Conference arpp. 1 —-10, sept. 2006.

[18] S. Nagar, H. Franke, P. W. Y. Wong, B. Pulavarty, J. Morganl.ahr, B. Hartner and
S. Bhattacharya, “Improving linux block 1/0 for enterprise workloadis,/n Proceedings
of the Ottawa Linux Symposiuympp. 390 —406, jun. 2002.

[19] T. White,Hadoop The Definitive Guide, Second Editi@iReilly Media, Inc., 2011.

[20] L. Ou, X. Chen, X. B. He, C. Engelmann and S. L. Scott, “Achieviognputational 1/0
efficiency in a high performance cluster using multicore processorBfdoeedings of the
4t High Availability and Performance Workshop (HAPCW) 2006, in conjunaiiith the
7t Los Alamos Computer Science Institute (LACSI) Symposium 2006

[21] C. P. Ribeiro, J. F. Mehaut and A. Carissimi, “Memory affinity mamaget for numer-
ical scientific applications over multi-core multiprocessors with hierarchicahong” in
Parallel Distributed Processing, Workshops and Phd Forum (IPDP&040 IEEE Inter-
national Symposium qpp. 1 —4, april 2010.

[22] NVM Express, http://www.nvmexpress.orif)VVM Express Explaine@011. White Paper.

[23] M. Feldman, “IBM specs out Blue Gene/Q chip,HPC Wire Aug. 2011.
http://mww.hpcwire.com/hpcwire/2011-08-22/ibspecsout blue geneg_chip.html.

[24] Fusion-io, Inc.,ioDrive Data Sheet2010. http://www.fusionio.com/data-sheets/iodrive-
data-sheet/.

[25] J. He, J. Bennett and A. Snavely, “DASH-IO: an empirical stufiflash-based 10 for
HPC,” in Proceedings of the 2010 TeraGrid Conferen€& '10, (New York, NY, USA),
pp. 10:1-10:8, ACM, 2010.

[26] M. Dunn and A. L. N. Reddy, “A new I/O scheduler for solid stateides.” Department
of Electrical and Computer Engineering Texas A&M University, Tech.. R&§MU-ECE-
2009-02-3, 2009.

[27] A. C. Arpaci-Dusseau, R. H. Arpaci-Dusseau and V. Prabhak “Removing the costs of
indirection in flash-based SSDs with nameless writesPrmceedings of the 2nd USENIX
conference on Hot topics in storage and file systatiaeStorage’10, (Berkeley, CA, USA),
pp. 1-1, USENIX Association, 2010.

Analysis and Optimization of Storage 10 in Distributed and Massive Paraigl Rerformance Systems 145

http://xcr.cenit.latech.edu/hapcw2006
http://lacsi.krellinst.org

References

[28] E. Seppanen, M. T. O’Keefe and D. J. Lilja, “High performanobdsstate storage under
linux,” in Mass Storage Systems and Technologies (MSST), 2010 IEEE 26ths8ymp
on, pp. 1 -12, May 2010.

[29] Y. Wang, K. Goda, M. Nakano and M. Kitsuregawa, “Flash SSierded 10 management
for data intensive applications,” ifroceedings of the 9th USENIX Conference on File and
Storage Technologies (FAST 2011)

[30] F. Chen, D. A. Koufaty and X. Zhang, “Understanding intrinsi@atteristics and sys-
tem implications of flash memory based solid state drivesPrisceedings of the eleventh
international joint conference on Measurement and modeling of compystemsSIG-
METRICS '09, (New York, NY, USA), pp. 181-192, ACM, 20009.

[31] F. Chen, R. Lee and X. Zhang, “Essential roles of exploiting irgeparallelism of flash
memory based solid state drives in high-speed data processihfjghrPerformance Com-
puter Architecture (HPCA), 2011 IEEE 17th International Symposiumppn266 —277,
Feb. 2011.

[32] N. Agrawal, V. Prabhakaran, T. Wobber, J. D. Davis, M. Mss®mand R. Panigrahy, “De-
sign tradeoffs for SSD performance,” WSENIX 2008 Annual Technical Conference on
Annual Technical ConferencéBerkeley, CA, USA), pp. 57-70, USENIX Association,
2008.

[33] X.Y.Hu, E. Eleftheriou, R. Haas, I. lliadis and R. Pletka, “Write difigation analysis in
flash-based solid state drives,”roceedings of SYSTOR 2009: The Israeli Experimental
Systems Conferenc8YSTOR '09, (New York, NY, USA), pp. 10:1-10:9, ACM, 2009.

[34] X. Ouyang, D. Nellans, R. Wipfel, D. Flynn and D. K. Panda, “Beg block 1/O: rethink-
ing traditional storage primitives,” iRligh Performance Computer Architecture (HPCA),
2011 IEEE 17th International Symposium @p. 301 —-311, Feb. 2011.

[35] C. Dirik and B. Jacob, “The performance of PC solid-state disi&D(§ as a function of
bandwidth, concurrency, device architecture, and system orgamZa8tGARCH Com-
put. Archit. Newsvol. 37, pp. 279-289, Jun. 2009.

[36] J. Lee, E. Byun, H. Park, J. Choi, D. Lee and S. H. Noh, “C3*8: configurable and
accurate clock precision solid state drive simulatorPmceedings of the 2009 ACM sym-
posium on Applied ComputingsAC '09, (New York, NY, USA), pp. 318-325, ACM,
2009.

Analysis and Optimization of Storage 10 in Distributed and Massive Paraitgi Ferformance Systems 146

	Introduction
	IO in High Performance Computing
	Active Storage Fabrics
	Optimization Approaches
	Outline

	IO Stack
	Linux Kernel Complexity
	Linux Kernel IO Stack
	Virtual File System
	File System
	Block Layer
	Storage Class Memory and Hard Disks

	Optimizing IO Stack For Parallelism
	Optimization Approaches
	Test Environment
	Parallel IO Analysis
	Implementing A Parallel IO Design
	Testing Parallel IO Implementation

	Optimizing Kernel for Storage Class Memory
	Optimization Approach
	SSD IO Analysis
	Removing Ext2 Preallocation

	Conclusion and Future Work
	Conclusion
	Future Work

