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Abstract

Although Moore’s law ensures the increase in computational power, IO performance appears
to be left behind. This minimizes the benefits gained from increased computational power. Pro-
cessors have to idle for a long time waiting for IO. Another factor that slows the IO communica-
tion is the increased parallelism required in today’s computations. Most modernprocessing units
are built from multiple weak cores. Since IO has a low parallelism the weak cores will decrease
system performance. Furthermore to avoid added delay of external storage, future High Per-
formance Computing (HPC) systems will employ Active Storage Fabrics (ASF). These embed
storage directly into large HPC systems. Single HPC node IO performance willtherefore require
optimization. This can only be achieved with a full understanding of the IO stack operations.
The analysis of the IO stack under the new conditions of multi-core and massive parallelism
leads to some important conclusions. The IO stack is generally built for singledevices and is
heavily optimized for HDD.

Two main optimization approaches are taken. The first is optimizing the IO stack toaccom-
modate parallelism. Conclusions on IO analysis shows that a design based onseveral parallel
operating storage devices is the best approach for parallelism in the IO stack. A parallel IO
device with unified storage space is introduced. The unified storage space allows for optimal
function division among resources for both read and write. The design also avoids large parallel
file systems overhead by using limited changes to a conventional file system. Furthermore the
interface of the IO stack is not changed by the design. This is a rather important restriction to
avoid application rewrite. The implementation of such a design is shown to resultin an increase
in performance.

The second approach is Optimizing the IO stack for Solid State Drives (SSD). The optimiza-
tion for the new storage technology demanded further analysis. These show that the IO stack
requires revision on many levels for optimal accommodation of SSD. File systempreallocation
of free blocks is used as an example. Preallocation is important for data contingency on HDD.
However due to fast random access of SSD preallocation represents an overhead. By careful
analysis to the block allocation algorithms, preallocation is removed.

As an additional optimization approach IO compression is suggested for future work. It can
utilize idle cores during an IO transaction to perform on the fly IO data compression.
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1 INTRODUCTION

1 Introduction

As electronic devices advance new challenges rise. The advance in the area of High Performance
computing or HPC has generally taken place in the realm of processing power. Indeed personal
computers have also been advancing quite rapidly in the area of processing. This has been
insured by Moore’s law, which suggests that transistor capacity per chipdoubles every 18 month.
Moore’s law has been in effect for quite a long time. Not only has the processing power increased
but a single processor now contains more complexity. As the modern CentralProcessing Units or
CPUs hit their frequency limit expansion took place in a different dimension.Modern processors
contain multiple cores each representing a full blown CPU. More over threading and hyper
threading meant that cores can operate on different threads and switchbetween them with less
latency.

In recent years the amount of data available grew dramatically. The capacity offered by Hard
Disk Drives or HDD has risen. This meant that processing units now had available capacity
of data to process on massive scales. However as processing power and capacity grew, the
performance of Input Output or IO did not keep pace. In turn the gap between processor and
storage widened. Old processor units operated with a single cache level. In comparison modern
processors contain up to four levels of cache. These attempt to hide the delay exerted by HDD
data requests. Still the processor exhibits latency penalties whenever a cache miss occurs.

The IO gap increased as the processing power changed shape. Modern processors employ
multiple cores. Meanwhile HDDs although growing in speed and capacity, still managed all
accesses using a single queue. This is a preset limitation due to classical diskbased design. The
single head available for read and write operations resulted in an inherit bottleneck. Furthermore
the need for a movable needle and a rotating disk leads to mechanical limitations in speed.
Moving the head exerts delays called seek time. As each core runs different threads data is
anticipated to be scattered all over the storage space. This in turn leads to additional seek time
as the HDD attempts fulfilling the requests made by different cores.

The IO gap can especially be observed on HPC systems. Not only do they employ more
complex IO settings, but also contain far higher computational power than traditional personal
computers. HPC systems are mainly build from dense integration of computational nodes. In
addition to that, data amounts for scientific applications have been rapidly increasing. Perfor-
mance of HPC processors can cover these massive amounts of data. However due to the IO gap
feeding processor with all this data requires the processor to wait. TheseCPU idle IO periods
lead to performance degradation [1]. Nevertheless due to its complexity the IO issue has been
previously ignored. As the IO become the systems bottleneck, this was no longer possible [2].

As the scale and size of modern HPC increases, the use of separate storage and computing
units is no longer possible. Some suggestions for the integration of storage and computing units
have already been made. Such integration would result in so called Active Storage Fabrics or
ASF [3]. These will require fast single node storage IO. In turn requiring optimization of single
node IO on HPC systems. The optimization at that level is mainly governed by Kernel IO stack
issues. To perform such optimizations a detailed analysis of HPC single nodestorage IO is
needed. This is a new scale for IO optimization in HPC systems.

The task of finding more optimized approaches for accessing data is important. Most elements
and algorithms used in modern storage access are still based on old technologies. The use of
new storage technologies meant that these algorithms are obsolete. The reason for continues use
of these IO algorithms is the inherit complexity of the system. A modern operating system has
to support a wide range of different storage devices. In addition to thatsome new technologies
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1 INTRODUCTION

do not yet have any interface standardization. Optimization of IO holds the promise of better
performance using new storage technologies. Yet the optimization is prevented by complexity
and scale of challenge.

A common HPC proverb suggests that a super computer reduces a CPU bound problem into
an IO bound problem [4]. The same logic can be applied to IO optimization. Theperfect IO
machine would convert any IO bound problem into a CPU bound problem. The bottleneck thus
keeps moving between these two computational boundaries. As the processor has been rapidly
growing in speed and computing power, it is time to do the same for IO.

The outline of the thesis is as follows. Chapter 2 introduces the problem in moredetail and
explains the optimization approaches studied. Chapter 3 contains a detailed analysis of the IO
stack of the traditional Linux Kernel. The chapter also explains basics of Solid State Disks or
SSDs. Chapter 4 deals with optimization of parallelism in the IO stack. Chapter 5 explains
issues and optimizations done for using storage class memories and focuseson the emerging
technology of SSDs. Finally conclusions made from the study are given along with suggestions
for future work.

Analysis and Optimization of Storage IO in Distributed and Massive Parallel High Performance Systems 17
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2 IO in High Performance Computing

There are several challenges for storage IO on HPC. The scale of IOis massive compared to per-
sonal computers. Some scientific applications require large data sets. Although the processing
power is increasing rapidly the IO can no longer match the required performance. Thus lead-
ing to a gap that is rapidly increasing [5]. The gap between IO performanceand computational
power of the HPC increased interest in the area. The target is to achieve rapid data transfer
between storage and computing systems [6]. The main difficulty with achieving high IO per-
formance on HPC is the complexity of the system. The HPC IO has been developed in several
layers. These layers are typically very complicated. The complexity is a direct result of the scale
on which each layer has to operate.

A typical personal computer contains a simple stack of layers through whichthe IO request
has to move to be fulfilled. The request starts at the application. The operating system then
channels the request towards the file system. Given that the file system exists on a single device
the file system directs the request to the device driver. The device accesses the storage to fulfill
the request. In comparison the HPC system has more massively scaled layers. Furthermore the
IO request initiated by a node is usually not executed on the same node. Computation in HPC is
densely packed and storage is located on separate systems. Thereforethere are additional layers
that exist on an HPC system.

The complexity of the HPC IO stack can be seen in Figure 2.1 [7]. Each of these layers has to
operate on large scales. The IO libraries available on a typical high performance system have the
complexity of dealing with massively parallel applications. The libraries therefore have to offer
both sequential and parallel access [7]. Applications on HPC systems require access in different
methods and using different patterns than that of typical user applications.The IO interface
for HPC applications has to also adapt for parallelism. Some HPC systems still provide the
application with the typical IO interfaces such as POSIX short for PortableOperating System
Interface for Unix . Other more common HPC IO interfaces also exist. One such interface is the
MPI-IO or Message Passing Interface IO . These scale better with the HPC applications. They
also provide operations that are required by parallel applications such as synchronization and
data coherency. The massive scale and parallelism of HPC applications indeed aggravates the
HPC IO libraries and interface complexity.

Figure 2.1: Storage IO stack for HPC

Typical HPC nodes are built to provide large scaled application with as much computational
power as possible. These therefore contain complex multi-core processors. To avoid wasting any
computing power the nodes run minimalistic operating systems [7]. The IO however requires
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additional complex algorithms. Therefore to avoid running these algorithms onthe computing
nodes dedicated nodes are used for IO. These nodes are typically referred to as IO nodes on the
IBM Blue Gene system [7]. The IO nodes can run more complex IO algorithm.However the
distance has been further increased between computation and storage.

Typical disk access can no longer keep up with the rapid increase in processing power. Figure
2.2 shows how drastic the gap between disk and CPU has increased over time[1]. The disk
can no longer sufficiently feed the processing unit with data. The figure shows that CPU cycles
needed over the years for accessing disk data has been increasing. Mean while capacity of disk
has been rapidly increasing and cost per gigabyte storage has been dropping. HPC systems over-
come disk limitations using several disk operating in parallel. The storage space is increased by
the addition of a new disk. Also by using the disks in parallel the bandwidth and IO Operations
per Second or IOPS are increased.

Figure 2.2: Data access time in CPU cycles for SRAM, DRAM and disk over theyears

Parallel disk operation could virtually increase performance to infinity. Each disk added to
the system promises the increase of performance. However utilizing all disks together increases
overhead. In addition to that the disks parallelism is dependent on application data sets. Conven-
tional personal computer file systems operate on a single device. Therefore HPC with distributed
storage employs so called parallel file systems. These operate across multipledevices. Parallel
file systems have to attempt switching as many devices together as possible. As aresult they use
different types of data distribution. Some parallel file systems stripe data into small chunks to be
divided across available disks. Others replicate the same files on different disks to read or write
different sections of files in parallel.

The HPC IO setting has served the applications well for the past years. Nevertheless the
dramatic increase in data, storage capacity and the increase of IO gap means new more flexi-
ble settings have to be researched. In addition to that the implication of utilizing new storage
technologies must be found. The IO performance of the peta-scale HPC systems must improve.
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Thus making way for even higher IO demands of the next coming exa-scaleHPC era.

2.1 Active Storage Fabrics

One of the main difficulties introduced in HPC systems IO is the distance between compute and
storage units. Compute nodes have to forward IO requests to separate IOnodes. These access
a network to request the data from the storage systems. Due to compute nodes limited RAM
capacity the nodes cannot request large data amounts for computation. The compute nodes
therefore spend longer times idle awaiting IO.

The ASF brings storage closer to compute nodes. The idea is to embed storage units into the
densely packed computation systems. A Blue Gene rack would therefore contain in addition
to compute and IO nodes storage units. This means a shorter distance between compute and
storage untis [3]. These ASF systems would be employed for data intensiveapplications. The
method for implementing ASF using Blue Gene is shown in Figure 2.3 [3].

Figure 2.3: Traditional Blue Gene setting and Blue Gene Active Storage

The ASF promises better performance of IO bound applications. The challenge is to embed
the storage into the HPC system. Placing HDD into a densely packed compute system is not
possible. HDD are based on mechanical components and are rather largein size. Thus new
storage technologies should be used instead. Storage class memories are an ideal candidate for
ASF. One of the storage class memories is SSD. These offer a better IO performance and a
more dense packing. Another challenging aspect of ASF is that ordinarystorage devices are not
build for parallelism on this scale. Blue Gene employs multi-core processing units. Although
the new storage technologies offer a more parallel access model, traditionalIO stacks do not.
Therefore to achieve high IO on an ASF system single node IO to the embedded storage has to
be optimized.

The traditional IO stack of common operating systems does not yet supportmassive paral-
lelism. Furthermore the development of the stack has been mainly done in the HDDera. Due
to the basic technology differences between SSD and HDD there is room for improvement.
Optimization on a single node level would increase performance as a whole for the system.
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2.2 Optimization Approaches

The operating system running on Blue Gene is a form of Linux. Thus the Linux IO stack has
to be optimized and adapted for ASF. The optimization has to employ ASF basics. Furthermore
it has to be based on the massive scale of parallelism present in the Blue Gene. As a sign of
improvement the IO stack should be able to communicate with the multitude of available cores
on the single processing unit. Additionally it should be able to better preform inrelation to the
new storage technologies.

An important concept to optimization is that it can only take place if the system is fully
understood. Every detail in the Linux Kernel relative to the IO issue should be analyzed. The
effects of different settings should be researched. This is not an easy task. The Linux IO stack
is complicated and includes many operations. Storage device basics should also be studied. The
device properties can be used to further optimize the IO stack.

This study has targeted two main optimization approaches. The first is IO parallelism and
the second is optimization for storage class memories. IO compression is suggested as a third
possible optimization approach. However the first two optimizations show more promise for IO
performance. In comparison IO compression is and optimization that could beused for other
properties such as allocation of idle CPU time.

2.2.1 IO Parallelism

Processors internal parallelism is rapidly increasing. However the IO stack requires adaptation of
more parallel data access forms. The difficulty therefore becomes adapting IO for parallelism.
High level parallelism of IO has long existed in the HPC systems. HPC has beenemploying
multiple disks and parallel file systems for many years. Since this form of parallelism has not
yet found its way into personal computers, the traditional IO stack remainedfor the most part
unchanged.

The IO parallelism required by the ASF is implemented on a single node level. Thechallenge
is to adapt solutions made on the large scale for a single node. Technologiesalready offer
some of the large scale parallelism for single nodes. Parallelism using multiple cores is one
form offered. Another is the implementation of SSD using several controllers. Therefore an
analogy could be made between large and small scale IO. Optimizations done onlarge scale
multi processors systems could be adapted for multi-core on a single processor. On the other
hand parallel file systems can run on a single node and use different controllers on a single SSD
as different devices.

Large scale parallelism offers a good start for finding optimization approaches that address
single node IO parallelism. However adapting these optimizations faces single node limitation.
A single node does not have unlimited processing power. On that level mostresources are shared.
The target therefore becomes scaling back high level parallelism to fit single node operations.
This is indeed a difficult challenge. Large scale parallelism has dedicated hardware and can
further add more resources if necessary. In comparison resourcesare limited on a single node.
In fact single nodes IO parallelism will share resources with application. Thus the overhead
induced by the IO on single nodes has to be as small as possible.

2.2.2 Storage Class Memory

Storage technology has remained dependent on HDD for many years. The main difficulty with
improving HDD performance is mechanical limitations. This is an inherit propertyin all disk

Analysis and Optimization of Storage IO in Distributed and Massive Parallel High Performance Systems 21
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based storage systems. The limitation does not exist in emerging storage classmemories. Solid
state storage units such as flash can be written and read electronically. Thus these technologies
offer better performance in comparison to traditional disk based systems. In addition to that
SSDs consume less power and can be better packed into the dens HPC systems.

The IO stack has been mainly developed in the HDD era. This means that optimization is
done in relation to HDD access patterns. The SSD however is based on a completely different
technology. SSDs adhere to a different structure and organization. Furthermore inherit reliability
issues of flash based memory requires SSDs to be handled in a different method than HDD. Some
attempts have been previously made for SSD access optimizations. However the IO stack still
induces overhead running HDD access algorithms that do not benefit SSDs.

The IO stack controls most of the underlying device performance. This means that an op-
timization of the IO stack for SSD would promise a better integration. For that purpose both
SSD and the IO stack has to be analyzed. It is crucial that adapting the IO stack for SSD is
done in relation to the system in which the SSDs will be integrated. The ASF requires SSDs to
operate in correlation with multiple weak cores. This further limits the performance and opti-
mizations possible. The challenge of integrating SSDs into the ASF design is a balance between
several factors. Among these factors is the reliability of SSD, system properties, performance
and others. The difficulty of the balance is increased due to limited allowed changes that can be
implemented on the system in general. In essence the optimization should not change interfaces.
The target is therefore to avoid application rewrites.

2.2.3 IO Compression

The combination of processing power of modern CPUs with the slow IO performance leads to
CPU idle times. During those periods the CPU has almost no task, but still consumes power.
IO compression indicates the ability of utilizing free CPU time to improve IO performance. If
compression can be performed transparently the system could achieve morebandwidth with no
implications to the applications.

IO compression is a difficult subject that requires answers to many questions. The method
of compression should be identified first. There are many different algorithms for compressing
data. The compression algorithm is dependent on a multitude of factors. These include com-
pression rate, complexity of compression algorithm, computing power required and application
data form. The selection of algorithm should also be done based on speed of compression versus
IO performance gained. An additional difficulty is performing seamless compression. Since the
applications should not be aware of the compression process, data should not be lost.

The next issue is the IO layer in which compression is performed. The IO stack is formed
of both hardware and software components. The software itself is divided into several layers.
The decision of compression layer is strongly related to purpose of compression. A compression
done on the device for example would not benefit the IO speed without system involvement. An
additional problem is read versus write compression in relation to CPU utilization. An idle CPU
during write used for compression might not be idle for decompression.

IO compression could be built on top of the previous two optimization approaches. Therefore
it was preferred to focus on parallelism and storage class memories. The topic is still inter-
esting for future work. This is particularly true in combination with conclusionsmade for the
previously mentioned optimizations.
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2.3 Outline

The rest of the thesis is outlined as follows. Chapter 3 is a detailed analysis ofthe IO stack of the
Linux Kernel. A special focus has been given to operation on SSD. Therefore the final Section
in Chapter 3 explains SSD basics.

Chapter 4 deals with optimizing the stack for parallelism. After introducing the topicChap-
ter 4 shows the related work done for this optimization approach. The next section in chapter 4
explains the test environment. After that different IO tests that analyze theIO stack are provided
with conclusions drawn from the results. The final two sections in Chapter 4introduce and test
a new implementation for parallelism based on the analysis and their conclusions.

Chapter 5 deals with optimization done to better accommodate SSDs. The first section in
Chapter 5 shows previous work done on optimizing for SSD. The second section introduces
several IO tests analyzing SSD and related factors. It also provides conclusions that can be
drawn from them. The test environment used has already been explainedin Chapter 4. The last
Section in Chapter 5 contains a detailed implementation of an example for improving the IO
stack for SSD.
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3 IO Stack

The representation of the IO in the form of a stack is a common visual interpretation to the flow
of data from a device to the application or visa versa. It also facilitates the functional division
among different Kernel components. This in itself makes traversing such stack simpler and
easy to follow. Nonetheless, the requirement for clear function definition sometimes becomes
difficult. To achieve this it is important to keep tasks of the same type in the same level. However
grouping tasks together is made difficult by the complexity of these tasks. Somefeatures requires
changes made in several stack layers, which complicates IO development even more.

It is expected that most operating systems will have to move through almost the same steps to
accommodate the same underlying IO hardware. Therefore it is safe to assume that conclusions
made about one operating system could be in some form migrated to another. The Linux Kernel
being open source presents a viable example as to how the IO stack could function.

The chapter is organized as follows. Section 3.1 discusses method and problems of analyzing
the Linux Kernel. Section 3.2 introduces the layers of the IO stack. Section 3.3explains the first
layer, the Virtual File System or VFS . Section 3.4 discusses the task of individual file systems
by explaining one of Linux native file systems the Ext2. Section 3.5 explains thetask of the
block layer and refers to some of the device drivers requirements. FinallySection 3.6 explains
the underlying basics and reliability issues of SSDs.

3.1 Linux Kernel Complexity

The stack might looks quite organized, with clear definitions for each layerstask. However
things get quite complicated when taking a look at the inner workings of the stack itself. The
Kernel is made of millions of lines of code and thousands of functions. Sincethe code has
evolved over different phases, it is an enormous task to understand most of what has been coded
into the Kernel basics. The code is made of hundreds of different functionalities, which makes
the task of finding that which is relevant to the IO stack difficult. Some divisionexists within
the source code. Despite that most of the functions depends on each other and require function
calls that lie outside of the layer itself grouped into one folder. Most of Linuxfans take the
magnitude of the Linux kernel as a sign of success of open source projects. Nevertheless the
size and complexity of some trivial tasks implementation shows some difficulties in that model
of code development. Most Linux code developers cannot hold the overview of such a complex
Kernel. This leads most towards focusing on the development of new functions which would
later be built into the Kernel release. Mean while little is done to optimize the alreadyexisting
code.

One of the issues that makes the Linux Kernel attractive for most modern systems is com-
patibility. The Linux Kernel support numerous processor architecturesand promises easy use
of multiple file systems. Not to mention direct support of a multitude of devices. Allthis is
promised with almost no change to the applications. In case of file systems the communication
is well hidden under the VFS. File system operations is hidden to the extend that no change, not
even a recompile is needed for applications using different file systems. Although this compat-
ibility makes life easier for application developers, it over complicates tracing the Kernel code.
One example of such complexity is the need of function pointers. Since each file system im-
plementation has to overwrite basic function calls, the VFS has to use function pointers within
certain constructs, which these file systems can then overwrite. This means that the normal func-
tion call graph tools cannot follow this function calls, leaving the Kernel programmer to fend for
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himself. Additionally this technique of hiding true functions under a heavy layer of abstraction
means that the function call graph are long and hard to trace. Thereforefinding where the true
task is carried out sometimes becomes itself a burden, even more so for tryingto optimize this
task. The difficulty increases when editing or adding new functions. A widecomplicated net
of functions exists within the Kernel. Therefore editing Kernel functions means retracing the
function call to make sure that this net has not been broken somewhere along the function call.

Even though most of what has been mentioned previously appears to only show difficulties
in tracing and optimizing, the Linux Kernel is still preferable to use for analysis and optimiza-
tion. As an open source project, the Linux code is well documented. Several books exist that
help with tracing. Nonetheless, caution is needed when referring to Linux Kernel books. Most
only contain a high level view of how the Kernel is implemented and seldom mentionany code.
Therefore mapping book explanations onto existing Kernel code is difficult. For example in
[8] Linux is handled with a higher level view. Few attempts have been found for books that
contain code references. The Linux Kernel explanation found in [9] refers to some code de-
tails. Although code was well documented and a fine attempt to show as many callgraphs as
possible was made, still a lot of important information is missing. This is not a failedattempt
on behalf of the writer, but can only be the result of the Kernels magnitude and complexity.
Open source projects provide more documentation, yet it also results more versions. Numer-
ous Kernel versions exists and each changes just little enough for some patches to be useless.
Therefore working with multitude of machines running different Kernels, as was the case of this
study, dealing with these changes becomes a burden. Therefore cautionhas to be kept when
trying to use books such as to follow function calls. The Linux Kernel changes fast, adding
functions as well as changing existing function names. All make the use of books possible for
basic understanding, but never sufficient for full realization of how actual Kernel code functions.

Aside from being open source and well documented, the Linux Kernel contains a multitude
of smart tricks. These have been developed over long years by the maintainers. The abstraction
layers such as VFS and block layer might be difficult to follow, but make quitea good job when
it comes to adding new features. Well support is given therefore for rapidly changing archi-
tectures and changing applications. This feature seams to make the Linux Kernel an attractive
operating system for even the most specialized of systems such as high performance computing
and embedded systems. Another typical brilliant implementation for which the Linux Kernel
can be appreciated is the fact of it being object oriented. Although written ina none object
oriented language, the Kernel is built on the concept itself. Structures orstructsare used as a
method to maintain many different combinations of systems. This sometimes facilitates tracing
and optimizing the Kernel. Developers find the attributes neatly gathered together in a group
of structures. Even more fascinating is the method of linking one structure to the next to make
different attributes accessible over almost the entire Kernel. This sometimes,however, makes
the optimization and development of new parts of the code more difficult. Specific guidelines
have to be followed during code development. Not to mention how much efforthas to be spend
trying not to destroy the entire complex web of pointers that are contained in the Linux Kernel.
Although being complex and difficult to trace and optimize, as is expected froman operating
system, the Linux Kernel still is the most suitable for this task. Aside from previous mentioned
reasons, the Linux Kernel runs on Blue Gene in different forms.

To facilitate tracing the Linux Kernel a documenting tool has been used to trace function
calls. The documenting tool called Doxygen produces both call and caller graphs. A call graph
shows the relationship of functions. The graph is organized by showing all functions called
by the function undergoing analysis. The call graph starts on the left with the function under
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examination and moves to the right with the called functions. On the other hand thecaller graph
is the opposite. A caller graph shows all functions that call the function under examination. The
caller graph starts on the right and moves to the left ending with the function under examination.
Arrows always start at the caller and end at the callee. As previously mentioned function pointers
are ignored by the documenting tool. Therefore function calls done with function pointers must
be found explicitly in the Kernel code. Furthermore, due to the complexity of the Linux Kernel
running the documenting tool on a normal laptop can take several days. Itis preferred to run
the tool in a virtual machine to be able to store the machine state in case of a systemcrash. To
further facilitate the documenting task, Kernel components not related to the IO stack should be
excluded.

3.2 Linux Kernel IO Stack

Figure 3.1: Kernel IO Stack

As seen in Figure 3.1 the Linux Kernel IO stack is formed of several layers. The user application
can make a system call directly using the corresponding system call interface function. Another
option is to use intermediate methods such as the GNU C library or any other library that imple-
ments the POSIX standards. Although depicted here as a separate layer thesystem call interface
is a mere collection of functions placed at different positions within the Kernel code. As an
example the function call for mounting a file system is placed infs/namespace.c. Therefore the
mounting option exists within the VFS and not in a separate collection. This is more convenient
for developers as there is no need to pass the function parameters defined in the VFS to some
other module.

The main part of the Linux Kernel IO stack is formed of three main components:

• Virtual File System (VFS)
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• Individual File Systems

• Block Device Layer

The VFS has the main task of abstracting all underlying layer functions. Thereby the VFS
unifies access to all different types of file systems. This is not a trivial task. Although needed for
implementing unification over all file systems, it also needs to allow all these to perform there
different tasks unhindered [9, Ch. 8]. Once the VFS determines which file system the request
is intended for it moves to the next level selecting the corresponding file system interface or
functions.

The individual file systems on the other hand have the task of managing data on the lower
level. Files, folders and metadata are all well defined in this layer. But sincefile system im-
plementation differs, some of these have to be reimplemented in the VFS. The individual file
systems organize the data directly on the storage block device and thereforealso store that data
on the device itself. In comparison all VFS metadata is kept in memory and is never written to
the underlying layers. Therefore the individual file systems offer a group of interface functions
that overwrite some of the VFS generic functions. These functions are then called using func-
tion pointers from the VFS layer to operate on the file system. Some functions have the task
of mapping the changes that happen in VFS metadata onto the individual file system metadata,
which later could be written to the block device. On mounting the file system these functions
are also used to fill in the VFS needed structures.

Most Linux books disregard the block layer in the IO stack representationand go directly
into the device driver. Such disregard to the block layer can be found in [9] and in [8] to the
extend that the first doesn’t even contain a chapter under that name. Although explaining the
device driver might be adequate to explain basic IO functions it does not represent the actual
implementation. The block layer has the same task towards the different devicedrivers as does
the VFS towards the different file systems. Therefore the device driveroverwrites some of the
generic functions written in the block layer. On the other hand the device driver runs mostly
in the kernel space. Nonetheless some devices move implementations between kernel space
running on available CPUs and the device hardware itself. This is demonstrated in Figure 3.1 by
the overlap of the device driver with the space usually left for the device itself.

Although here the functionality of each layer is clearly defined, the details willshow how
difficult it is to follow the call graphs throughout all of these layers. In thenext sections these
layers will be explained in more details. The explanations are following the outline in found
in [9], but is mostly done through observation and code reading. As previously mentioned it is
difficult to find a single source for Linux code explanations. Not to mention how difficult it is to
directly read a C code and try to decode all pointers and function names.
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3.3 Virtual File System

Figure 3.2: File system abstraction using VFS

As seen in Figure 3.2 the VFS has the task of abstracting the file system access for the above
applications [9, Ch. 8]. This in turn enables the Kernel to support a largenumber of different
file systems. This is done by providing uniform functions for above applications to manipulate
and access underlying data. Although file systems are stored on a block device they have no
control over direct manipulation of data on those device. This task is left to the block layer
and is therefore hidden from the file systems and in turn from the VFS. Usingthis approach,
theoretically changes can be made on one layer without effecting the other.Practically however
on the interface between all layers is a heavy exchange of functions andparameters that need to
be kept in mind while optimizing any give layer.

To achieve the function implementation on basic level the VFS needs to provide abstract
function pointers, not only the functions but also the file system itself. The VFS therefore
needs to mirror some of the file system components. The components of the VFSare shown in
Figure 3.3. It therefore needs to show a uniform view of files and data that the applications need
for execution of these functions. The VFS then extracts the needed data toimplement the view
of this unified files system. This fits almost every view of files, excluding files that have specific
functionalities such as device files. These types of files cannot be supported on any other file
system except Linux native file systems. This can be attributed to the fact that these files requires
the underlying file systems to store additional data needed by the VFS to manipulate them. This
in turn is not possible on a none Linux native file system.

It is important to know that the VFS is not a file system in itself. The VFS requires underlying
file systems that carry out the functions that cannot be performed by the generic implementation
of the VFS. Even attempting such a unified file system would defeat the purpose of simplicity
for which the VFS has been written [9, Ch. 8]. Therefore the VFS acts only as an abstraction
layer for the file system modules forwarding all real file system requests tothe corresponding
file system. The VFS uses a simple technique of presenting the information required for each file
system in the form ofobjectsor structs. Thesestructsin turn contain function pointers defined
by each individual file system to refer to the functions needed by VFS to carry out application
requests.

Given that the Extended file system family are Linux’s native file system, the VFS has to be
specifically optimized for accessing Extended file systems [9, Ch. 8]. This can be seen from
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Figure 3.3: VFS components shown with pointers

the method by which the VFS organizes itsstructs. It also can be observed by the fact that the
Ext2 file system uses mostly the VFS generic functions provided. This has to be kept in mind
while editing the Extended file systems. Most Extendedstructshave the same name and almost
the same configuration as those in VFS. Yet changing the Extendedstruct names will not be
effecting the VFSstructs.

3.3.1 VFS Components

Each process running in user space requires a list of all files opened for it. As seen in Figure 3.3-
(5), thetaskstructstores a file list for all opened files by this process [9, Ch. 8]. Thetaskstruct
is used by the Linux task scheduler to track running tasks and the relevantinformation. Therefore
taskstruct is not a direct component of the VFS, but needs to be mentioned here sinceit is a tool
by which opened file users can be tracked. This becomes relevant for the process of opening and
closing files. On opening a file the process is therefore handed a file descriptor. This integer is
only valid for this process and is hence useless for any other process running at the same time.
It also means that the Kernel can use the same descriptor for two different files opened by two
different processes [9, Ch. 8]. The file descriptor is passed to the fileon using the open system
call. The process then uses this descriptor as a parameter for all functions requiring this file. The
file descriptor in this case can also be used by processes as a parameter tosystem calls. Once
the file is no longer in use the process should use the close system call. This inturn gives the file
descriptor back and allows another file to get it.

Each file is however uniquely identifiable using aninode. An inode contains the relevant
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metadata and data segments or at least pointers to the data segments. The Kernel issues a unique
integer to identify each file. The curious thing aboutinodesis that they don’t contain the file
name. Therefore the link is done through the unique Kernel identifier. To speed upinodeaccess
from the Kernel point of view, the Kernel keeps a global variableinodehashtable. There are
additional lists keeping track of theinodeswithin the Kernel. These mostly serve the benefit of
defining the state of theinodescurrently used by the processes [9, Ch. 8].

While file descriptors are used by processes to uniquely identify a file within the same process,
the Kernel usesstruct filefor file identification. The filestruct is shown in Figure 3.3-(6). These
as seen are linked to the process file list and to thesuperblock.

It is worth mentioning here that everything under the Linux system is a file. Therefore di-
rectories are also files with their data segments containing entries representing the list of files
contained within this directory. The entries refer to theinodenumber of the file or directory
that exists inside this directory [9, Ch. 8]. Using this concept the file lookupbecomes clear. A
step by step operation traverses the directoryinodefor the next directory in the list. Once found
the next directoryinodeis traversed. This continues until the intended file or directory is found.
To speed up this operation for future lookups caches are used. This can be made obvious by
researching twice through the same list on a Linux system. The second search is more faster
and finds the target in less time. As a side note on accessing and searching for inodesit is worth
mentioning that the optimization ofinodeaccess will not increase read or write time. These op-
timizations will only speedup the lookup operation. Nonetheless applications which deals with
large numbers of files might need such optimizations. It might be of interest to compare this
lookup technique with those implemented by other systems such as GPFS and other parallel or
large file systems.

Thesuperblock, shown in Figure 3.3-(1), contains required metadata for the mount point. This
includes among others a pointer to the block device on which this mount point is stored. The
superblockalso contains a pointer tostruct filesystemtype. This is a structure that is unique for
every file system that can be mounted and is registered by the VFS. The important part ofstruct
file systemtypedefinition is shown below.

struct file_system_type {

const char *name;

int fs_flags;

int (*get_sb) (struct file_system_type *, int,

const char *, void *, struct vfsmount *);

struct dentry *(*mount) (struct file_system_type *, int,

const char *, void *);

void (*kill_sb) (struct super_block *);

struct module *owner;

struct file_system_type * next;

struct list_head fs_supers;

...

};

As seen thefile systemtypecontains function pointers that are needed by the VFS to mount or
unmount a given file system. Any given file system needs to set this structure using its own
function pointers. As an example thefile systemtypeof the Ext2 is shown below.

static struct file_system_type ext2_fs_type = {
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.owner = THIS_MODULE,

.name = "ext2",

.mount = ext2_mount,

.kill_sb = kill_block_super,

.fs_flags = FS_REQUIRES_DEV,

};

These functions are then defined by the Ext2 such asext2mount. Another option is to use the
predefined VFS generic functions such askill block super.

Below are the main variables needed to explain thestruct superblock.

struct super_block {

struct list_head s_list; /* Keep this first */

dev_t s_dev; /* search index; _not_ kdev_t */

unsigned char s_dirt;

unsigned char s_blocksize_bits;

unsigned long s_blocksize;

struct file_system_type *s_type;

const struct super_operations *s_op;

struct mutex s_lock;

int s_count;

struct list_head s_inodes; /* all inodes */

struct list_head __percpu *s_files;

struct list_head s_files;

struct list_head s_dentry_lru; /* unused dentry lru */

int s_nr_dentry_unused; /* # of dentry on lru */

struct block_device *s_bdev;

struct backing_dev_info *s_bdi;

fmode_t s_mode;

const struct dentry_operations *s_d_op;

/* default d_op for dentries */

...

};

Thes files list is shown in the Figure 3.3 (6). Basic information for the mount point such as the
blocksize or block device are also kept in thesuperblock. Additionally as seen thesuperblock
keeps a list of pointers toinodes, files anddentries.

As mentioned previously, thestructsused by the VFS are not the same as those used by the
underlying file system. This is true even for Ext file systems which have almostthe same repre-
sentation. The fact thatinodesduring runtime require additional variables than those stored on
the block device, makes the reason clear. Although the VFS uses this concept to support almost
any file system, it is still reasonable to expect a delay from file systems that don’t exhibit the
same construction as the Linux native file systems. For these particular file systems the functions
needed to gather the information to construct the runtimestructswould be more complex than
their Linux native equivalent.

Using runtimestructsshow that most of the operations taking place onsuperblockandinodes
are done in the memory. For that reason thesuperblockhas to keep track of alldirty inodeson
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a single list. This is another art of caching.Dirty inodesare not immediatly written back to
the file system. On calling a synchronization function or unmounting the file system the Kernel
can refer to thesuperblockfor which inodesneed to be written back. Additionally to keep track
of accessedinodeseachinode contains an access counter for counting number of processes
currently accessing the file of thisinode. On reaching zero theinodeis placed on a least recently
used list. This means that theinodecould be removed from the memory as it might no longer be
needed [9, Ch. 8].

Since file system are to a greater part kept on slow block storage media, theVFS uses a
directory entry cache or for shortdentry. The VFS therefore defines astruct dentryas shown
in Figure 3.3-(3). Thesedentryobjects are kept in the cache for all previously done lookup
operations [9, Ch. 8]. This speeds up future accesses to the same files.Most operations used for
maintaining thedentrycache is kept infs/dcache.c. Cachedentriesform a network and link to
each other. During the lookup process for each traversedinodea dentryis created and linked to
the previously traverseddentrywhich lies above it in the folder structure. Thedentrytherefore
plays a crucial role in cache organization [9, Ch.8].

As a final note on caching, thestruct filecontains a readahead field. On marking this field the
files data is readahead and stored in the cache. The consistency of cached files is guaranteed by
f versionwhich is a variable in thestruct file. Another pointer is stored in thestruct filefor the
current position in the file. This pointer is used for readahead and sequential file reading.

3.3.2 VFS Operations

As previously mentioned, the VFS depends on the file systems overwriting the function pointers
provided by the VFS. The VFS also gives the option of using generic functions. As seen in
Figure 3.3 almost everystructcontains a pointer to a list of operations. This even includes the
superblock, which is not shown in the figure, but can be seen in thestruct superblockdefinition.
The inode operationsare defined in thestruct inodeoperationsfor which the implementation
is present ininclude/linux/fs.h. The list of possible functions is long. It is mostly contained
in changing the variables in theinode itself. Therefore there are no read or write functions.
Just those which manipulate the file metadata. As an example ofinode operationsthe function
fallocatewhich is used for preallocation, for which the support exits starting at Ext4[9, Ch.
8]. This example shows how complex it is to gather all operations necessaryfor all file systems
under one interface.

On the other hand, files rely on file system setting thefile operationsin the VFS layer. These
operations mainly deal with the editing and manipulation of the data section of the file. The
complete list of pointers for the functions is stored instruct fileoperationswhich is defined in
include/linux/fs.h. The following is a short list of some of the more important file operations
with a short explanation. The complete list can be found in [9, Ch. 8].

read/write used for reading and writing file data.

aio read/aio write used for asynchronous read and write. In realty all read and writes are
asynchronous. Synchronous reads or writes are done using aioread or aiowrite and wait-
ing for the result of the read or write operation to be done.

fsync/fdatasync has the task of synchronization between cached data and data kept on the
storage medium.
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fasync signals processes that there has been a change in a file. This is important incase two
different processes are accessing the same file.

readv/writev is used to read or write a vector for fast scatter-gather operations.

lock is used to lock a file for a process. The application have to be careful using such harsh
synchronization methods. Locking a file that is needed by multiple processesmight mean
a massive reduction in performance.

Figure 3.4: dosysopen call graph

Figure 3.4 shows part of the functiondo sysopencall graph, which is used by the system call
open. The following describes part of this operation.

open is the system call invoked by the application. In [9, Ch. 8] the name of the system call
is mentioned as beingsysopen, this was not the case with the Kernel under observation.
The system call almost immediately moves to callingdo sysopen.

do sys open takes care of the actual file opening. It finds an empty file descriptor within the
process and then calls the functiondo filp open.

do filp open finds theinoderelated to this file using the traversing lookup. It then calls many
other functions to take care of initializing the readaheadstructsand updates thesuperblock

fs install is finally called by bydo sysopento update thetaskof the calling process before
returning to the user.

It is important for the process to invoke the close system call once it is donereading or writing
the file. This allows another file to get the descriptor. Additionally each process is allowed by
the Kernel a maximum number of opened files defined by a global variable. The Kernel can
increase the number should the need for it arise [9, Ch. 8]. Yet this requires additional overhead
that should be avoided if possible.

3.3.3 VFS File Read

To read a file another system call calledread has to be invoked. The system call then checks
the existence of the file usingfget light. Then under the condition of file existence the current
position in the file is checked and the functionvfs read is invoked. Figure 3.5 shows the call
graph of the functionvfs read. Since the read operation is file system dependent, the functions
first checks for the existence of a read function by the underlying file system. This is done
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Figure 3.5: vfsread call graph

by checking the valuefile->f op->read. If the value isNULL the generic read VFS function
do syncreadFigure3.5 is invoked. Throughout this entire call chain a buffer pointer ishanded
from one function to the next. The buffer is finally filled with the needed data once the final read
function is done. The issue of caching makes this simplified version far more complicated. The
complicated caching function call graph will only be mentioned if a need for it exists.

The generic read routinedo syncread invokes an asynchronous read function. Since this
function is again file system dependent,do syncread invokes the corresponding function from
the file operations. Therefore it usesfile->f op->aio read. It has to be noticed here that the func-
tion itself is an asynchronous read function. To turn this into a synchronous readdo syncread
waits untilaio read is done. This particular function call method shows how complicated it is
to trace such implementations. The function call graph given in Figure 3.5 does not contain any
reference toaio read. This is due to the function call being done via function pointers. Docu-
mentation tools such as doxygen cannot follow those function calls and therefore ignores them.
The best method to trace this is to move directly into the code. In this case one hasto move
constantly between different parts of the Kernel, including moving to underlying file systems or
even further into the device layers.

File systems can use the generic VFS function implementation foraio read. This function can
be found inmm/filemap.cunder the namegenericfile aio read. The function checks whether
direct IO will be used by checking the value of the variableO DIRECT which the application
can set. For direct IO just a few lines of code are needed and most of thework is again delegated
to the function pointera op->direct IO which is set by the file system instruct addressspace
operations.

Another option is to try to access the file using cached data. This is called mapping read. In
this casegenericfile aio read finds O DIRECT unset. This access is itself very complicated
and involves a lot of function calls. The Kernel developers themselves admit to the difficulty
if this implementation. Although the explanation found in [9, Ch. 8] tries its best to show
how mapping read is done, it fails to fully explain the details. As an example in [9,Ch. 8]
there is an explanation for the dependency of the mapping read function ona function called
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do genericmappingread. This function could not be found in the Kernel under observation.
To decrease complexity this study will focus on the direct IO. This is reasonable when trying
to benchmark a system IO. Because of the fluctuation that the caching might bring into the
benchmark results, a direct IO call is preferred.

The write operation is not that different and takes almost the same path. Themain difference
is that the process needs to fill the buffer with the data that will be written to the file. Most of the
functions found here for reading are implemented with the same name for writing. Using that
systemgenericfile aio readsimply becomesgenericfile aio write.

Important to know about operation pointers set by the file system implementationis that the
none defined orNULL pointers allows the VFS to use its own generic functions. The file system
developers have to be therefore aware during file system implementation about all possible VFS
operations. That way they could either prevent or implement the operation calls that might be
run by the VFS.

Most of the remaining topics concerning the VFS are implementations of the mounting or
unmounting and registration of new file systems. Mounting is done using the system callmount.
It is interesting to know that the VFS uses the file system implementation of a mount function.
For example the Ext2 file system uses its own implementationext2mount. The VFS also needs
the file system to provide afill superto the mount function. This functions has the task to gather
the necessary information from its file system to fill the VFSstruct superblock. Again file
system developers have to make sure that thestruct superblockwas filled correctly or the VFS
might not be able to continue using the file system. The unmount has another system call called
unmount. Still the file system has to provide akill sb function which has the task of killing
thesuperblock. The Ext2 in this case uses the VFS generic functionkill block super. There are
additional mounting and unmounting complex options. These include differentmounting modes
such as shared mounting, slave mounting, unbindable mounting and private mounting [9, Ch.
8]. These are options that could be kept in mind during block layer optimization.

It is essential to remember that the VFS explanation provided here is a simplifiedview. Details
are provided on a need to know basis. Any details overlooked in this summerywill be mentioned
if necessary within the optimization and implementation sections.

3.4 File System

The Linux Kernel supports a multitude of diverse file systems. In [9, Ch. 9] the number is
mentioned to be more than 40. It seams that in this case the Linux Kernel is unique in the amount
of supported file systems. It has to be kept in mind though that most of the supported file systems
cannot be used as boot file systems for the Linux Kernel. This can be simplyexplained by the
different types of files that the Linux Kernel requires from a file systemto store. In this case
only the native Linux file systems can be used. These file systems are able to store the additional
information required by the different types of files related to Kernel operation. As an example,
the device file used by the Kernel to store device information can only be stored on Linux native
file systems.

The main task of the file system is organizing the data on the storage device. Itbuilds the
link between the raw bit data that is stored on the hardware and the files. Even though the VFS
construction might look the same as that of the file system the two have very different functions.
For instance the VFS cannot access the files that lies in the file system underneath without using
the file systems functions. While the VFS has to store data used during runtime, file systems have
to store data that is needed for other purposes such as recovery. Therefore, although file systems
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such as Linux native file systems might have the samestructnames, they don’t contain the same
variables. For the file system developers editing or optimizing the Linux nativefile systems,
special care has to be taken whether dealt withstructsbelong to the VFS or to the file system.
This is made in part more easier by the Kernel developers. Names in the file system begin with
the file systems name. As an example, thesuperblockin Ext2 is calledext2superblock.

File systems also have the task of preventing fragmentation of the underlying device. This
is done because most of the file systems have been designed for the use ondisk based devices.
Since disks have a high seek time, which is the time to move the disk head to the required posi-
tion, fragmentation means higher read latency. The overhead taken by computing the prevention
of fragmentation is therefore justified.

Another issue that file systems have to take care of is consistency. Since devices can be
removed at any moment, the file system has to ensure that the data in memory is consistent with
data on device. If power drops during the write of an important part of themetadata the entire
file system could be lost. For example writing data without updating theinodemeans that the
data is forever lost. Even worse is asuperblockwrite back that is could not be completed. This
might lead to a full file system destruction. Journaling is one of the techniquesthat file systems
use to provide consistency. The file system has to write every action that has been taken onto the
device. That way the file system can undo any action that has not been successfully completed
after the power is restored.

It is impossible to explain details on all file systems that the Linux Kernel supports. Therefore
in this work only one file system was chosen. The Ext2 was the best candidate. Not only
is the Ext2 simpler than other file systems, but also is well documented by different books.
Additionally the Ext2 file system is the basis for Ext3 and Ext4 which are the following versions
of the Ext2. Therefore most functions can be expected to be the same. Alsothe Ext2 does not
implement any journaling [9, Ch. 9] which is an added benefit for SSD due totheir limited
write/erase cycles.

3.4.1 Ext2

Since Ext2 is intended for block devices it can only deal with data in the shapeof blocks. The
data for the Ext2 can only be kept in blocks and no smaller units of data can besaved without
using up an entire block of data. This might lead to losing some space. Files thatdo not occupy
an integer multiple of block, waste the remainder of a block that was not fully filled. An example
can be seen in Figure 3.6. The file system therefore has to decide on a block size that is not
going to waste too much space. Increasing the block size means wasting a lot of space when
a file does not fill the block. On the other hand, if the block size is too small the amount of
metadata including pointers and indirections means that a lot of administration hasto be done.
In addition to that small blocksizes lead to larger metadata that consumes a largepart of the
provided storage space. Therefore a optimum blocksize has to be found. Ext2 only supports a
limited number of blocksizes [9, Ch. 9]. Selecting an appropriate blocksize isalso related to
the file sizes stored. If files are relatively large it is preferable to have a larger blocksize and
vice versa. The blocksize is stored in theext2superblock defined ininclude/linux/ext2fs.h
using the variables log block size. The variable stores the log to the base 2 of a multiple of
1024. s log block sizecan therefore only store the values 0, 1, and 2 giving the blocksizes
20

× 1024= 1024, 21 × 1024= 2048 and 22 × 1024= 4096 respectively [9, Ch. 9]. Even
though Ext2 communicates with the device on a block base, the method of the device storage
has to be investigated. Some devices operate better with certain blocksizes. One example is
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alignment in case of SSDs. These perform better when the block can be stored on a single flash
memory page.

Figure 3.6: Storage is lost when using files that are not integer multiples of a block

3.4.2 Ext2 Storage Layout

Figure 3.7 shows the device layout in Ext2. The device is divided into block groups. Each
block group stores a redundantsuperblock. In some later revisions the file system no longer
stores onesuperblockper block group, but stores it on either odd or even block groups only [9,
Ch. 9]. Having thesuperblockcloser to the block group means less seek time for disk device.
Redundancy also means thesuperblockcannot be easily lost. Here it appears that a further
optimization of storage space can be made in respect to devices with low or no seek time such
as SSDs. This could be performed by removing thesuperblockfrom all block group and using
other means of backup. An additional advantage of low seek time devices is the possibility of
sizing the block group with no fear of increasing the seek time. For devices with high seek time
however increasing the block group means increased seek time frominodesto data blocks. As
will be seen later from the reading process this can significantly increase latency.

Figure 3.7: Block groups and device Layout in Ext2

The following is a short description of all elements in a block group [9, Ch. 9]:

Superblock is the main file system metadata. Contains all relevant information on the file
system, including which block groups are empty, blocksize and current filesystem status.
It also holds information on consistency with help of status variables. The Kernel only
uses thesuperblockof the first block group. The rest are kept for backup or fast access.

Group descriptor Reflects the status of the block groups of the entire file system.

Data and inode bitmap contains one bit for each data block orinode. The bit indicates if the
data block orinode is in use or free. A bit with value one means that the corresponding
data block orinodeis occupied.
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Inode table contains allinodesof this block group.

Data blocks contains the actual data contents that are stored in the files.

The data structures used to define both thesuperblockand theinode in Ext2 are almost the
same as those used in the VFS. The main difference is the name of the structures. Thesuperblock
is calledext2superblock and theinode is calledext2 inodewith both definitions found inin-
clude/linux/ext2fs.h. Another important difference is the variables data type. Since the same
file system can be used on different processor architectures, Ext2 has to define the variables in
a bit format [9, Ch. 9]. Therefore all internalstructvariables are defined using theleXX data
type. The data type stands for little endian withXX indicating the bit length. The Kernel then
uses the architecture specific functions to convert these variables into thetypes needed by the
processor architecture. This might mean a slight slow down on architectures using big endian
when reading these variables.

It has to be kept in mind that during a read or a write the file system actualsuperblockis
not used. As mentioned before in the VFS description, thesuperblockinformation are kept in
the memory to speed up storage access. The file system has to therefore provide consistency
and a frequent write back of changes made to thesuperblock. Also for mounting or unmount-
ing operations done by the VFS to the file system it has to offer functions to fillor remove the
data structures kept in memory. Since these functions are lengthy and only serve an adminis-
tration factor in the file system they will not be further explained here. The required parts for
implementation will be explained when needed.

Since theinodecan only hold a limited number of pointers to data blocks, another method has
to be found to increase the maximum size of a file. Theinodeemploys indirection as a method
of referencing more blocks [9, Ch. 9]. As Figure 3.8 shows, indirectionmeans using a pointer
to point to a block that contains pointers to data blocks. This means increasingthe size of the
file to (blocksize/pointersize)×blocksize. This is also known as single indirection. To increase
the file size even further double indirection can be used. This means using apointer which
points to blocks containing themselves pointers to blocks of pointers. These final pointers then
point to data blocks. Using this method(blocksize/pointersize)2 data blocks can be referenced.
Eventually triple indirection has the same effect using three pointer levels. Although indirection
appears to be quite simple to implement it will later be seen that it implies an overheadduring
the read or write process.

The number of direct data blocks is fixed in Ext2 to 12. There is only one single, one double
and one triple indirection pointers. Therefore the position of each pointer isknown in advance
and Ext2 defines these into constants as seen below.

#define EXT2_NDIR_BLOCKS 12

#define EXT2_IND_BLOCK EXT2_NDIR_BLOCKS

#define EXT2_DIND_BLOCK (EXT2_IND_BLOCK + 1)

#define EXT2_TIND_BLOCK (EXT2_DIND_BLOCK + 1)

#define EXT2_N_BLOCKS (EXT2_TIND_BLOCK + 1)

EXT2NDIR BLOCKSdefines the number of directly addressable blocks or direct pointers.
These have an offset ofzero to 11. The offset is relative to the beginning of data point-
ers within theinode. EXT2 IND BLOCK is the single indirection pointer offset and has a
value of 12. EXT2DIND BLOCK is the double indirection pointer offset and has a value of
13. Finally Ext2 TIND BLOCK is the triple indirection pointer offset and has the value 14.
EXT2N BLOCKShas a value of 15 and is the total number of pointers stored in a singleinode.
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Figure 3.8: Indirection in Ext2

3.4.3 Ext2 Operations

As was mentioned in the VFS, the file system has to overwrite the functions given in the op-
eration structures. These functions will later be referred to for carrying out the corresponding
functions by VFS.

There are three operations that are defined by the Ext2:

file operations are used to manipulate files, which include read and write functions. Their
Ext2 definition is found inext2/file.c. Part of the definition is shown below. As can be
seen from the comment above the definition of thefile operations, most of the function
pointers are defined asNULL to use the generic VFS defined functions.

/*

* We have mostly NULL’s here: the current defaults are ok for

* the ext2 filesystem.

*/

const struct file_operations ext2_file_operations = {

.llseek = generic_file_llseek,

.read = do_sync_read,

.write = do_sync_write,

.aio_read = generic_file_aio_read,

.aio_write = generic_file_aio_write,

.fsync = ext2_fsync,

...

};
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There is anotherstruct fileoperationsdefined inext2/dir.cfor directories calledext2dir operations.
This is referred to when dealing with directories and is defined partially as follow.

const struct file_operations ext2_dir_operations = {

.llseek = generic_file_llseek,

.read = generic_read_dir,

.readdir = ext2_readdir,

.fsync = ext2_fsync,

...

};

inode operations are mostly concerned with changing theinodevariables. There are several
definitions ofinodeoperationssuch asext2file inodeoperationsdefined inext2/file.cor
ext2dir inodeoperationsdefined inext2/dir.c.

address space operations are used for general address space manipulations. Theaddressspaceoperations
form a connection between the file system and the block layer [9, Ch. 9]. The definition
used in the Ext2 is shown below.

const struct address_space_operations ext2_aops = {

.readpage = ext2_readpage,

.readpages = ext2_readpages,

.writepage = ext2_writepage,

.sync_page = block_sync_page,

.write_begin = ext2_write_begin,

.write_end = ext2_write_end,

.bmap = ext2_bmap,

.direct_IO = ext2_direct_IO,

.writepages = ext2_writepages,

.migratepage = buffer_migrate_page,

.is_partially_uptodate = block_is_partially_uptodate,

.error_remove_page = generic_error_remove_page,

};

3.4.4 Ext2 Read

To read data from an Ext2 file system the application has to use the corresponding system call
as discussed in the VFS. The VFS then selects the function pointer from the implementations of
operation given by the Ext2. Using the VFSsuperblockthe device on which the file system lies
is given to the functions that need this information as a parameter.

The main function that is used for reading or writing blocks to or from the Ext2file system
is ext2get block [9, Ch. 9]. As seen from Figure 3.9, which provides the caller graph for
ext2get block, almost all other read or write operations depend onext2get block. As seen from
the function definition below the function requires a pointer to theinodeof the file to read or
write from, the sector to be read or written, a buffer to place the data into and an integer. The
integer is calledcreateand has a value of zero for read and anything else indicates a write. The
inodehanded over to the function is the runtimeinodeand not the one stored on the Ext2 file
system. This can be seen from usingstruct inodeand notstruct ext2inode.
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int ext2_get_block(struct inode *inode, sector_t iblock,

struct buffer_head *bh_result, int create) {

...

int ret = ext2_get_blocks(inode, iblock, max_blocks, bh_result, create);

...

}

Figure 3.9:ext2get blockcaller graph

The functionext2get block has to be in the form ofget block t provided by the VFS. That
means it has to take the same variables as parameters and return the same data type [9, Ch. 9].
This is quite important as this function will be given as a parameter to a lot of other higher level
functions in the VFS layer. As an example, the functionblockdevdirect IO has a parameter
get block t whichext2direct IO has to provide.

ext2get block is a front function that calls the functionext2get blocks, which is the function
that carries out the block request. As seen in Figure 3.10 the functionext2get blockdoes not do
much. It simply callsext2get blocks.

Figure 3.11 shows part of the complex call graph ofext2get blocks. The functions seen in
the call graph are the ones needed for the Ext2 read operation.

The first functionext2get blockscalls isext2block to path. The function is used to find the
path to the block in the indirection. It therefore returns an array of offsets for each indirection
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Figure 3.10:ext2get blockcall graph

Figure 3.11:ext2get blockscall graph for read

level. Sinceext2block to path only needs to perform integer operations on the block number
to find the offsets, no actual IO is done in this step. The block number is simply compared to
the possible numbers of blocks in each level to find the offset. The number of indirection levels
needed to address this block is then calculated byext2get blocks.

Now that the offsets for each indirection level is knownext2get blockscan proceed to find
the address of the data blocks to be read. This is done by callingext2get branchwhich has the
task of finding the physical address of the blocks involved in the indirection. It therefore returns
a chain of triplets containing a key, a pointer and a buffer. These are a unique identification for
each indirection and final data block on the physical level. Ifext2get branchreaches the end of
the indirection levels and finds a valid pointer it returnsNull. This means that theext2get blocks
was called for a read request.

The important thing to remember here is thatext2get blockdoes not read or write any data.
The buffer is the returned data containing the physical address of the data blocks that are to
be read or written. These physical addresses can then be used by the VFS layer to forward the
request to the underlying block layer. The only function that a file system has is data organization
and it therefore can only point the VFS as to where data should be read from or written to. This
means that more complex read operations such asblockdevdirect IO can useget block t, which
the VFS matches toext2get blockon an Ext2 file system, to find physical block address.
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3.4.5 Ext2 Write

On the other hand, requesting more blocks for a write operation from the Ext2 file system is a
much more complicated process. In [9, Ch. 9] there are around four main tasks mentioned that
the file system has to go through in order to supply more blocks.

• Number of indirection levels have to be found to address the requested block

• Free blocks are found and reserved

• Adding the blocks to block list of the file

• Finally block preallocation is used to enhance performance of next write operations

Performing these tasks for finding, allocating and preallocating new blocksis highly compli-
cated. These however will only be explained in case of need for optimization. This has the
added advantage of being able to compare original and optimized implementationsside by side.

As was the case at the end of the VFS description, the Ext2 file system is complicated and
contains many other features. Only the most important and needed functionsand features has
been explained here. The rest will be explained if required during optimization.

3.5 Block Layer

Most books consider this part to be simply an interface for driver modules. Others mention it
briefly and do not go into details. As was shown in Figure 3.1 the driver lies inbetween the
block device layer and the device space. As will be seen from the explanation of the block layer,
the device driver has the ability to overwrite some functions provided. The device designers
have therefore the option of implementing some of the device operations in the device driver.
Another possibility is implementing the same device operations in hardware and directly placing
it on the device. Hardware design means longer design time and higher device costs. On the
other hand device driver implementation means higher CPU utilization. Therefore the choice of
implementation is not just dependent on device design and device complexity, but also dependent
on target architectures. As an example, Blue Gene contains multiple weak cores leading to a
higher latency with device driver implementations.

Figure 3.12 shows the communications from user space to block layer [9, Ch. 6]. In this figure
the user space is at the bottom. The VFS has the task of communicating with the user space.
File operations defined by the file system are then used by the VFS to talk to the block device.

The Kernel has another type of devices called character devices. Themain difference is that
character devices can only communicate in a stream of data and cannot be randomly accessed.
A keyboard for example is a character device. Thus keyboards cannot be accessed randomly.
The interest is in storage IO. Therefore character device operations will not be explained.

As block device need to address data in the form of a block their is a requirement to define
different chunks of data. Block devices have a limit for the size of the smallest addressable block
of data. This is referred to assector. Usually the size is 512 bytes. On the other hand the file
system has to define its smallest chunk of addressable data which is usually defined as a block.
Therefore the Kernel has to store a block size variable onstructsrepresenting the file system.
Since the block device cannot offer smaller chunks of data, the block sizehas to be a multiple of
sectors. Finally a page size is the data size which the memory management unit (MMU) uses.
This is architecture specific [8, Ch. 14]. For most x86 architectures the page size is 4KB. On
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Figure 3.12: Block layer overview

the other hand some POWER architectures offer the possibility of choosing between 4KB and
64KB page size.

3.5.1 Block Device Representation

Under the Linux Kernel motto ”Everything is a file”, devices are represented using a file called
device file [9, Ch. 6]. The Kernel also uses additional identification numbers for each device.
This includes major and minor numbers. Important here is to know that every device can be
uniquely identified by the Kernel. Also usually these unique identification numbers are stored in
the structures that are relevant to the device. The Kernel also keeps track of every added device
using a hash table this is called a block device database and is shown in Figure3.12 [9, Ch. 6].
To add to this list of devices the Kernel usesadd diskwhich is defined inblock/genhd.c.

Since devices are represented by files, normal read or write operationscan be performed on
such files. This also means that devices can be written to or read from without the need for file
systems or mounting. This will be of further benefit when it comes to benchmarking overhead
caused by file system in an IO operation. Considering that block devices can contain partitions,
the Kernel creates a device file for each partition. As mentioned in the file system, the device
files cannot be stored on none Linux native file systems. This is a direct result of the device
files needing additionalstructsand data stored for their operations. In addition to normal read
and write operations Linux has to provide special functions to manipulate devices. The Kernel
therefore provides an IOCTL or Input Output Control interface [9, Ch. 6]. The IOCTL provide
an interface for configuring and editing devices. The VFS defines IOCTL functions which are
used by calling the corresponding system calls.

The representation of devices in the form of a file means that the VFS needspointers to the
file operations. These are usually provided by the file system. Yet device files are special files on
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which the file system, even Linux native file systems, file operations cannot operate. Therefore
the block layer has to define special file operations for the block device. Below is part of the file
operations specific for the device files. These file operations are defined in fs/blockdev.c.

const struct file_operations def_blk_fops = {

.open = blkdev_open,

.release = blkdev_close,

.read = do_sync_read,

.write = do_sync_write,

.aio_read = generic_file_aio_read,

.aio_write = blkdev_aio_write,

.mmap = generic_file_mmap,

.fsync = blkdev_fsync,

.unlocked_ioctl = block_ioctl,

...

};

The functioninit specialinodethen defines the file operations for theinodeof the device file
as shown below. The function simply selects the appropriate file operations from the file mode.

void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)

{

inode->i_mode = mode;

...

} else if (S_ISBLK(mode)) {

inode->i_fop = &def_blk_fops;

inode->i_rdev = rdev;

...

}

EXPORT_SYMBOL(init_special_inode);

Additionally the block layer has to define address space operations for thedevice file which
can also be found infs/blockdev.c. This and the previous file operations definition show how
difficult it is to differentiate between the layers in the Kernel. Although it is considered that these
definitions are part of the block layer, their implementation is found in the file system folder of
the Linux Kernel.

The device layer also defines another group of operations specific fordevices calledblock deviceoperations.
These can be found ininclude/linux/blkdev.h. Part of thestructdefinition can be found below.

struct block_device_operations {

int (*open) (struct block_device *, fmode_t);

int (*release) (struct gendisk *, fmode_t);

int (*locked_ioctl) (struct block_device *,

fmode_t, unsigned, unsigned long);

int (*ioctl) (struct block_device *,

fmode_t, unsigned, unsigned long);

int (*compat_ioctl) (struct block_device *,

fmode_t, unsigned, unsigned long);
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int (*direct_access) (struct block_device *, sector_t,

void **, unsigned long *);

int (*media_changed) (struct gendisk *);

struct module *owner;

...

};

Each device driver can then define its own function pointers to overwrite these functions. As
an example thestruct blockdevicoperationsfor the loop device is shown below. Any operation
that is not defined or has aNull value means either generic functions will be used or this option
is not defined by the block device.

static const struct block_device_operations lo_fops = {

.owner = THIS_MODULE,

.open = lo_open,

.release = lo_release,

.ioctl = lo_ioctl,

#ifdef CONFIG_COMPAT

.compat_ioctl = lo_compat_ioctl,

#endif

};

3.5.2 Block Layer Components

As seen in Figure 3.12 thegendiskhas an important role in the communication with the device.
Part ofstruct gendiskis shown below. Thestruct gendiskkeeps track of the entire device which
makes it an additional abstraction level on the generic level. Hence the name generic disk [9,
Ch. 6]. Additionally as seen below thestruct blockdeviceoperationsof the block device has a
pointer within thestruct gendisk. These are then linked to the ones defined by the device driver.
It is important to note here that these operations should not be invoked directly. Instead the file
operations orfile operationsshould be used. In turn the file operations will invoke the necessary
block deviceoperations[9, Ch. 6].

struct gendisk {

int major; /* major number of driver */

int first_minor;

int minors;

struct disk_part_tbl *part_tbl;

struct hd_struct part0;

const struct block_device_operations *fops;

struct request_queue *queue;

atomic_t sync_io; /* RAID */

struct work_struct async_notify;

...

};
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The most important variable present in thestruct gendiskis thestruct requestqueue. Any
communication with a block device is done using a single request queue. This isknown as
request queue management. It has to be noted here that, while the Kernel has control of the
caches, manipulating the queues is done by the block layer [9, Ch. 6]. Part of the definition of
struct requestqueueis shown below.

struct request_queue

{

struct list_head queue_head;

struct request *last_merge;

struct elevator_queue *elevator;

request_fn_proc *request_fn;

make_request_fn *make_request_fn;

prep_rq_fn *prep_rq_fn;

unprep_rq_fn *unprep_rq_fn;

unplug_fn *unplug_fn;

merge_bvec_fn *merge_bvec_fn;

prepare_flush_fn *prepare_flush_fn;

rq_timed_out_fn *rq_timed_out_fn;

dma_drain_needed_fn *dma_drain_needed;

sector_t end_sector;

struct request *boundary_rq;

struct timer_list unplug_timer;

int unplug_thresh; /* After this many requests */

unsigned long unplug_delay; /* After this many jiffies */

struct work_struct unplug_work;

...

};

Therequestqueuecontains pointers to functions which can be set by the device driver. These
includemakerequestfn which is used to add a request to the queue. Any communication with
the device is done using therequestqueuefunctions. Using a request queue is important for
performance. The overall performance would drop if there was no queue in case of disk com-
munication. To prevent long seek times the Kernel employs an IO scheduler,whose task is to
reorder and merge requests. The main task of the IO scheduler is an overall better performance.
This might result in some tasks being delayed more than others [8, Ch. 14]. The IO schedulers
are also known aselevators. To give the IO scheduler enough time to reorder or merge requests,
the Kernel plugs the request queue after inserting a request. Plugging the queue means stopping
the device driver from carrying out the requests. Once sufficient time has passed or enough
requests have been made the queue is unplugged. The functions and variables needed for this
operation can be found instruct requestqueueshown above.

Another important data structure shown below isstruct request. The task of the function
makerequestfn is to fill a request and add it to the queue. Older Kernel versions used to admit
requests in the form of buffers. This meant that a request could only contain a single block on
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the device. To improve performance the Kernel now admits requests in the form of astruct bio
[8, Ch. 14]. BIO stands for Block IO.

struct request {

struct list_head queuelist;

struct request_queue *q;

int cpu;

unsigned int __data_len; /* total data len */

sector_t __sector; /* sector cursor */

struct bio *bio;

struct bio *biotail;

struct gendisk *rq_disk;

...

};

A bio shown in Figure 3.13 contains multiple vectors each containing pointers to different
physical pages [8, Ch. 14].

Figure 3.13: Representing requests in the form of a BIO

The final structure that the Kernel needs to represent a block device isblock device. It is
mostly used by the VFS layer. Thestruct blockdevicerepresents partitions as well as com-
plete block devices. The relation betweenstruct blockdeviceandstruct gendiskis shown in
Figure 3.14. In the figure there is a singlestruct blockdevicerepresenting the complete block
device. Each partition on the device is also represented by a separatestruct blockdevice. The
connection betweenstruct gendiskand the different partitions is done using a list calledpart.
This containshd structwhich points to theblock deviceof each partition [9, Ch. 6]. Addition-
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ally eachblock devicecontains a pointer to thestruct gendiskthat represents the block device it
is stored on. This can be seen in thestruct blockdevicedefinition shown below.

Figure 3.14: Connecting block layer data structures

struct block_device {

dev_t bd_dev; /* not a kdev_t - it’s a search key */

struct super_block * bd_super;

int bd_openers;

struct mutex bd_mutex; /* open/close mutex */

struct list_head bd_inodes;

struct block_device * bd_contains;

unsigned bd_block_size;

struct hd_struct * bd_part;

...

};

3.5.3 Submitting Requests

The final point that has to be made about the block layer is how the VFS can submit a request.
The file system controls the method by which the access is going to take place. To make a
simple example, the direct IO call graph could be followed. As seen in Figure3.15 the main
function called by the direct IO access of a file system isblockdevdirect IO. The numbers in
Figure 3.15 show the order of relevant function execution. From the figure blockdevdirect IO
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callsdirect io worker (Figure 3.15 (1)) which in turn callsdo direct IO (Figure 3.15 (2)). This
function has to take care of where the blocks are to be read from or writtento. Therefore
do direct IO has to callget moreblocks(Figure 3.15 (3)). The VFS decides on the appropriate
file systemget moreblocksimplementation. The file system only provides the blocks physical
addresses will be read or written. The next steps of the call graph havethe target of creating a
struct bio that will be finally admitted to the lower block device levels usingsubmitbio (Fig-
ure 3.15 (4)).

Figure 3.15: blockdevdirect IO call graph leading tosubmitbio

The functionsubmitbio is the main function used in communicating with block device. Part
of the call graph is shown in Figure 3.16.submitbio calls genericmakerequestproviding it
with thebio. As thegenericmakerequestfunction takes only thebio as a parameter,submitbio
has to mark thebio as being either a read or write request. It is important to know that the only
function that calls thegenericmakerequestis submitbio. This means that no request can be
submitted to the block layer without the use of this function.

Figure 3.16: submitbio call graph

The next step is forgenericmakerequestto call genericmakerequestas seen in Fig-
ure 3.16. The reason for this complicated call scheme is the amount of accounting that has
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to be done to admit a single request. Another problem that complicates the implementation of
genericmakerequestis the possibility of recursive calls. Due to the limited stack available

for the Kernel, thegenericmakerequesthas to limit the number of recursive calls done using
genericmakerequest[9, Ch. 6].

genericmakerequestfinds the appropriatestruct requestqueueto which the request has to
be made. The request queue has a pointer to themakerequestfnwhich was set by the driver. The
block layer provides a genericmakerequestfunction. Yet some driver prefer to use their own
implementation. The reason is usually the different approach that these drivers take to writing
to the underlying device. For example, while schedulers and queue plugging is useful for a disk
device, aramdiskwould not benefit from these methods. In fact theramdisk implementation
found in driver/block/brd.cprovided by the Linux Kernel does not use any queuing system.
The implementation of themakerequestfn for the ramdiskcarries out the request as soon as
it arrives by callingmemcpy. Device drivers have to set themakerequestfn used by calling
blk queuemakerequestwhich takes the request queue and themakerequestfn as parameters.
The functionblk queuemakerequestlinks makerequestfn to the request queue of this device.

In case of disk based devices themakerequestfnwould use the elevator functions provided by
the block layer to find the appropriate position to insert the request into the queue. The elevator
functions represents the IO scheduler operations. This is done by callingthe functions found in
struct elevatorops. The definition of the elevator operations is done based on which scheduler
is used. It is important to give the scheduler sufficient time to merge and reorder the requests.
Therefore themakerequestfn has to implement the queue plugging. This will prevent the queue
requests from being carried out until the scheduler had enough time to perform reordering and
merging of requests. After the timeout, which by default is 3 milliseconds, request execution is
allowed.

The final step in a request is the execution. This is done by callingrequestfn. This function
however is device dependent and therefore irrelevant to the discussion here. Additionally most
devices taken into consideration in this study do not contain arequestfn. This is because these
drivers try to bypass the queue and schedulers provided by the Linux Kernel. One example was
mentioned before is theramdisk. The ramdisksimply carries out the request as soon as it is
made. Therefore there is no need forrequestfn.

As has been the case with the former Linux Kernel IO stack layers, the file system and VFS,
the block layer is complicated and too lengthy to describe in full. Only componentsand functions
that are at the heart of the block layer were mentioned. In case needed,additional parts and
components will be described in the implementation.

3.6 Storage Class Memory and Hard Disks

Few years ago the choice for storage medium was limited to either fast but very expensive
RAM or cheap but slow HDDs. Given that RAM is a volatile memory that would require long
life batteries to support the storage unit, the choice was practically limited to HDD.The main
problem with HDD is the mechanical component. The concept of rotating diskscan only be
realized with addition of motors. This meant that there is a physical limitation to the speed by
which such devices can operate. An additional limitation for HDD is the use of asingle request
queue. HDDs cannot support more request queues since only a singlehead can be packaged into
the device. This meant that the storage can only handle requests in serial and never in parallel.
Considering that the amount of storage on single HDD was constantly increasing the time to
read all the data present on the storage also increased. Although IO links also increased their
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speed it quickly became obvious that storage will be the new system bottleneck. Servers and
large storage systems tried to increase speed by running several HDDs inparallel. Yet as the
gap between CPU and IO widened more and more HDDs had to be added. Thesystem grew in
complexity and the overhead for managing the large number of HDDs became visible.

Due to the inherit limitations of HDDs developers were looking forward to a newtechnology.
The flash technology had already been invented in the late 80s [10]. Flashpresented proper-
ties that HDD could not provide. The ability to be programed, erased and read electronically
represented a huge advantage. Additionally being none-volatile meant thatno external power is
needed to keep the data. Despite all the advantages flash was not adoptedas a storage device
until the beginning of the 21th century. Some reliability issues which will be later explained
prevented the immediate adoption. To increase the reliability many different inventions and al-
gorithms had to be created. Also the amount of stored data was limited by the transistor size
[10]. Therefore the flash devices had to wait till the transistor size allowedfor a viable storage
to be built using this technology.

Figure 3.17 shows how data is stored in a flash device [11]. A floating gate issuspended
between the gate and the substrate. The target is to store data by trapping electrons in the floating
gate using tunneling. The gate is considered erased and containing the value 1 when there are no
electrons present on the gate. On the other hand if the floating gate containstrapped electrons it
signals the value 0. This means that all units contain the value 1 until a write operation changes
it to 0. The write is done by applying high voltages to the gate which allows electrons to tunnel
from the substrate to the floating gate. An erase takes place by applying opposite high voltage
to allow the trapped electrons to tunnel back to the substrate [11]. Reading the value is done
by applying the normal voltage level on the gate and detect the formation of a channel in the
substrate. In case of having trapped charge on the floating gate the channel would either be
not formed or weakly formed. The circuit can therefore conclude that a0 was written to the
circuit. If there is no charge trapped on the floating gate, the transistor will function as a normal
transistor and a 1 can be detected.

Figure 3.17: Floating gate in flash memory

There are two different methods in which the flash transistors can be grouped together. The
method of the cell interface suggest how the data is read from the flash memory. The first
method is a NOR construction. The advantage of a NOR flash memory is that it can be read and
written one byte at a time. The write however has to assume a previous erase [12]. However
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the complexity of the NOR circuit means that the storage density of such a circuit is limited.
That is why NOR can be applied in other more smaller units of storage. NOR is mostly used in
embedded systems [12]. Since the NOR flash is not suitable as a massive storage unit it will not
be further investigated.

The second possible cell interface is the NAND which is shown in Figure 3.18[11]. The main
difference to NOR is that the NAND cells can only be accessed in a page or block construction.
Also NAND promised higher storage density which made the NAND more suitable for storage
than NOR. As seen in Figure 3.18 the cells take the form of an array. Eachwordlinecontains 4K
pages. Each page contains additional spare bytes. Thebitline runs across 64 pages. The figure
represents an 8Gb SLC 50nm flash [11].

Figure 3.18: NAND flash cell architecture

3.6.1 Flash Memory Operations

The flash memory allows only three basic operations. These are read, erase and program. The
NAND cells layout limit the minimum number of cells to be operated on. The read operation
can be done in random and the size is not limited. This shows the most important advantage
of the flash, which is the high speed random access. In comparison the erase can only be done
on a complete block. The target is to drain all floating gates. This means that allbits are
erased to a value of 1. The reason for being only able to write one block ata time is the shared
wordlinesandbitlines. The difficulty with erasing a complete block lies with the high voltages
required. These stress the block leading it to fail after a limited number of erases. The final
operation is cell programming which is used to write a 0 on a flash cell. The NANDlayout
allows for programming only a single page at a time. Furthermore programming can only occur
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on a previously erased block. This is because the floating gate charge cannot be drained by the
programming operation. Another important aspect of writing is that it can onlybe done on a
whole page. Additionally a block must be programmed sequentially one page ata time but not
at once. Further details on the read, erase and program operations can be found in [10], [11] and
[12].

There are two main types of flash memory the Single Layer Cell or SLC and the Multi-Layer
Cell or MLC. In a SLC each flash transistor can only contain a single bit. In comparison a MLC
flash transistor can contain more than one bit. This is achieved by using different voltage levels
to signal different values. Both SLC and MLC use the same voltage range.Yet the SLC can
only detect two values with a wide voltage threshold. On the other hand MLC uses smaller
thresholds to divide the voltage range into four or more values. That meansthat a 2x MLC
can store 2bits instead of one. The storage density is therefore effectively doubled for MLC
compared to SLC. The main problem however with using MLC is the sensitivity ofdetecting the
different values. This means that the circuit for reading and writing is morecomplex. MLC also
requires several write operations to achieve the correct voltage level. Additionally reading with
this high voltage sensitivity means a higher error rate. Therefore MLC hasorders of magnitude
lower write/erase cycles than SLC. In fact many sources report 100,000 write/erase cycles for
SLC and only 10,000 write/erase cycles. This main difference makes SLC more suitable for
enterprise applications where heavy read and write will strain the flash devices. However MLC
is more suitable for consumer products that allow for a higher error rate and a shorter product
life. A more detailed comparison between SLC and MLC can also be found in [10], [11] and
[12].

3.6.2 Flash Memory Reliability

The main reason for the late adoption of the flash memory is the reliability challenges observed
in the technology. As has been mentioned before each block needs to be erased before it can be
rewritten. The erase and the write operations require high voltages which strain the floating gate
construction. The cell will therefore eventually fail due to trapped electrons in the oxide layer.
Another factor that leads to failure is the break down in the oxide structure.The oxide layers are
pointed to in Figure 3.17 [11]. The damage caused cannot be fixed. Due tothat the cells have a
limited number of erase/write cycles.

Another reliability factor of flash is the data retention limit. Due to leakage the floating
gate cannot retain the charge indefinitely. Therefore the storage will eventually lose all data.
Manufacturers target a data retention period of 10 years. This might be sufficient for most
application. Despite that the system has to be prepared for data retention errors. The reason
is that the data retention is dependent on the already performed write/erasecycles. Therefore
more frequently used blocks have a shorter data retention period [11]. Not only does the system
prepared for blocks failing during runtime, there are also bad blocks thatare delivered in a newly
produced flash chip. These are guaranteed to be no more than 2% by the manufacturer [11]. Bad
blocks are the result of the complex manufacturing cycles that flash chips have to go through.

Not only does the flash units contain failing blocks due to limited write/erase cycles, but also
reading and writing causes disturbance in neighboring bits. A read operation can flip uninten-
tionally other bits. The risk however is higher with a write operation. The reason is that write
uses higher voltage than read. Also several read operations on the samebit might lead to drain-
ing the trapped electrons in the floating gate. This effectively removes the written data. Write
on the other hand has a higher chance of disturbing charges on other neighboring floating gates
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[12]. The system has to detect these bit flips and fix the error. This is more complicated than it
looks. Given that a value can only be written back to the bit after erasing thewhole block, the bit
flips cannot be simply rewritten. This indicates that blocks which contain a lot of write and read
operations will have to be refreshed after a given time. Until the block is refreshed the system
will have to endure the errors during runtime. The read and write disturbs have more effect on
MLC. This is because the MLC uses lower voltage thresholds between bit values.

3.6.3 Increasing Reliability in SSDs

In order to increase reliability the flash storage card or solid state disk (SSD) has to employ a
wide range of techniques. This is crucial for using NAND flash as a storage unit. The first and
far most important issue that has to be addressed is the limited write/erase cycle. File system
designed for HDD are allowed to write to the same address as often as necessary. In a flash
that would mean destroying a group of pages or blocks more rapidly than others. This cannot
be allowed, as it might lead the device as a whole to be destroyed. SSD manufacturers have
therefore resolved the issue by use of wear leveling. The target of wear leveling is to use all
blocks on the SSD equally. This can be practically achieved using one of twopossible ways. The
first method is using SSD specific file systems. These file systems will have to beresponsible for
dividing the load across all existing blocks [13]. This however has the drawback of preventing
the use of SSD with conventional file systems. Therefore the second methodis more widely
used. In this method the SSD itself becomes responsible for wear leveling. Onthese basis
blocks cannot be grounded to a specific address since the SSD is allowedto move blocks around.
Conventional file systems however require a stable address space. Thus the SSD employs a Flash
Translation Layer or FTL. The idea is that the file system would see a unifiedaddress space. The
SSD controller on the other hand would be allowed to place blocks where ever the wear leveling
algorithm requires. The controller then records the physical address ina the FTL and links it
to the address seen by the file system. Although this might require additional overhead, it is
commonly used due to its backwards compatibility with HDD. Additional information onwear
leveling can be found in [11] and [10].

Wear leveling algorithms can choose between two different approaches.The first is called
static wear leveling. On placing a new page into the SSD the controller only checks to find the
least used free page. The second approach is called dynamic wear leveling. In this case the
controller checks for the least used page among all free and used pages [12]. By moving data
around the controller can achieve higher wear leveling. Most SSD manufacturers are not satisfied
by the added product life time using wear leveling. To increase the life time of theproduct even
further a method called over-provisioning is used. Most SSDs contain morestorage than is
reported. The controller therefore has added space for further wear leveling. This allows the
controller to retire some blocks once they have reached a certain error level [10].

As mentioned earlier flash devices are error prone. SSDs therefore have to overcome this
limitation. Most SSDs incorporate strong error correction and detection techniques. The target
is to discover any error that might have occurred during the read process. The SSD has to carry
extra data to support these mechanisms. However there is a limit for how much error can be
detected and corrected. This limit is determined by the used algorithm [11]. Onthe other hand a
write failure can be easily detected by the controller. The write then is repeated on the same or
on a different pages. Pages that result into too many write or read failures are retired. Each page
carries bits that can be used to mark the page or block as bad or defect [10]. The controller then
has to avoid those blocks for any future write operations.
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Each page has to contain additional data for error detection and correction mechanisms. This
means that writing a certain amount of data into a SSD might result in writing more than was
intended. This is called write amplification [11]. In fact write amplification is worse than first
realized. A write failure might result in having to repeat the write operation and mark the failed
block as a bad block. The difficulty becomes more visible when noticing that a page cannot
be written without being erased first. In that aspect if a write was intended for a certain data
unit within the page the whole page has to be repeated in another block. Another option is
to erase the whole block and rewrite it again in the same location. Since an erase cycle has a
high latency SSD controllers try to avoid them as much as possible. The SSD therefore opts for
using a different page instead of updating the old one. The old page is thenmarked for deletion
[11]. This technique is called garbage collection. Performing the deletion at later time allows
for usage of idle time during which the controller is not fully utilized. However ifthe controller
uses up all of the freshly erased blocks a costly erase cycle will have to be performed. SSDs
might therefore have a different performance for different conditions.

The complexity of the controller of a typical SSD targets mainly the increase of endurance.
The increase of life time of SSD is an important factor in Using this technology asa storage
device. The more mechanisms are used to increase reliability the further the lifespan of a flash
device can be extended. For example, by using proper wear leveling the RamSan-500 can sustain
constant writes at full bandwidth for up to 3.25 years. By using additionalunits and tolerating
higher block failure rate the RamSan-500 can sustain the constant write at full bandwidth for
more than 15 years [10]. This shows how much the usage of different techniques can make SSD
endurance comparable to that of HDD. Since SSDs are more robust than HDD the system is
promised as a whole a higher reliability by overcoming SSD challenges.

From the previously mentioned reliability issues it becomes obvious that SSD must be handled
in a different method than HDD. The problem however is that systems have been primarily
designed to operate with HDD. One of the major issues is the single queue operation of HDDs.
In comparison a SSD operates with a wide range of inherit parallelism. The reason for the needed
parallelism in building such SSDs is the limited single flash chip performance. A single chip is
divided as shown in Figure 3.19 into several Dies. The chip as a whole shares data pins [10].
The chip therefore gives a preset limitation for performance. However by the use of complex
controllers an SSD can combine the usage of multiple NAND chips to increase performance.
The inherit included parallel operation of a SSD can process more than one operation at a time.
Yet applications and operating systems have not been designed for that purpose. In fact most
applications use sequential reads and writes. An application is suspendeduntil the IO operation
takes place preventing it from creating new requests to be processed in parallel.

The system design for HDD has other implications. The most critical design aspect is seek
time for HDD. Operating systems and file systems are designed on the basis thatCPU time is
cheap and seek time is far more expensive. This concept is rooted into the design of the operating
system so that it performs a lot of merging and reordering on the requestssubmitted to the device
in an attempt to lower the seek time. Aggressive prefetching is hindered to avoid moving the
head to far and cost the system expensive seek time. Since SSDs have practically no seek time,
the CPU time used for merging is wasted. In ordinary personal computers lending part of the
CPU time to do worthless seek time reduction is not a problem. The number of cores is fairly
low in those applications and single core performance is still relatively high. This however is not
the case for HPC. In these systems their is a larger number of cores all awaiting IO. In addition
to that these cores are fairly weak. The system cannot afford additional computation.

Although many have looked at SSDs as being a simple performance increasein IO, backward
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Figure 3.19: Typical SLC NAND flash chip packaging

compatibility has lead to an inefficient use. As mentioned before SSD have numerous reliability
issues that need to be taken into consideration when accessing the device.Manufacturers develop
their cards trying to shield users from reliability issues. Despite that, applications, file systems
and operating systems can further help to increase reliability. Efficient access also can result in a
major performance increase when it comes to SSDs. This however requires rethinking the entire
IO stack to accommodate SSDs unique access properties.

There are several different types of flash devices available in the market. The most commonly
used are MLC based flash USB devices. In fact MLC has overwhelmed the market. MLC
represents 80% of the total NAND market versus SLC for 2007 [12]. However the systems
targeted in this study cannot tolerate the high error rate produced by the MLC designs. Therefore
the focus will be on PCIexpress adapted SLC devices. These are enterprise grade units that
exhibit far less errors and failures. It remains to be said that in comparison to HDD, price per
storage unit for SSD is very high. This can be noticed by observing the user market as well as
the enterprise markets. A single 1TB PCIexpress SLC SSD can cost as muchas 30K US dollars.
It is therefore unfair to compare the prices on the basis of storage units. The comparison might
be more logical on the basis of performance. Hundreds of HDD might be needed operating in
parallel to achieve performance of a single SSD. The price therefore becomes more convenient
and understandable for high end applications.
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4 Optimizing IO Stack For Parallelism

Moore’s law dictates that the number of transistors per chip have to keep increasing. This still
remains true until today. In previous days most of the increase in performance offered by new
chips was based on frequency scaling upwards, a trend that has stopped by the turn of the 21st
century. This lead processor designers into the new era of multi-core. Current common market
processing units contain at least two cores. In fact Intel has presented an 80-core chip prototype
[14]. Not only does this strain applications towards applying themselves ontoa many core
design, but also strains the system to supply sufficient resources to cover requests from all cores.
One such strained resource is IO.

The scale of the IO problem is known in the technical community, more so for thehigh
performance computing systems. Scaling IO to meet the requirements of a massively parallel
system is a difficult task. Although many scientific applications running on these systems have
been using all processing units available, IO has been preventing the further scaling [15]. Under
current IO design many applications lead to long processing idle time waiting on IO requests.
This meant that the further optimization of applications for parallelism would notbe effective
in case the application is IO bounded. In fact adding more processing power would not be
of benefit once any application has reached the furthest limit to its computational aspect. The
previous point explains the known HPC proverb ”A super computer is a device for transforming
a compute-bound problem into an IO-bound problem” [4]. To put this aspect into a practical
sense, it is considered that a peta-flop system should be able to performa single bit of IO for
each instruction. This leads the system to needing at least a 100TB/s of sustained bandwidth
[14]. Given the scale of the problem many researchers have been working on solving IO on the
large scale of HPC.

As demonstrated in the introduction, one solution that shows promise is the implementation
of active storage. Since the design of HPC usually involves a massively parallel computational
unit, there is no space left for storage within the same unit. This means that storage is kept
in another system. Under these circumstances an IO request has to move through a long stack
involving a network request. To solve this the active storage introduces storage units directly
into the computational system or vise versa.

The direct integration of storage into the computational units meant that these two have to
communicate on a more basic level. In other words the multi-core design became relevant to
the IO construction of the active storage design. Seen from the previouschapter, the IO stack
of Linux has been mostly designed for single queue access. In fact preventing race conditions
using locking mechanisms was done on a file level and have been only recently moved to a
block level. Such limited single node storage IO performance might limit the activestorage
model performance.

Another aspect that introduced an additional challenge is the use of SSDs. Not only do SSDs
add difficulty by having a different access pattern than traditional disks,but also introduce the
presence of multi-controllers. To increase performance and saturate PCIexpress links, SSD de-
signers have opted to adding multi-controllers onto a single SSD card. This meant that the
operating system has to deal with not one but multiple devices. Trying to convince HPC appli-
cation developers to handle multiple devices on a single node is not useful. The process requires
too much effort and eventually means that the application will be too architecture specific. An
effort has to be made to handle these multiple devices in either a global or localmanner. Thus
finding an appropriate handling method of multiple devices is an important condition for better
performance in ASF. Due to the multiple layers that exist in a HPC system, it is important to
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decide on an appropriate handling layer for the IO problems on single nodes.
Reading through many of the current HPC research concerning IO, leads to the conclusion

that there is very few papers related to single node storage IO. Nonetheless high level or global
storage IO research is applicable in this case. The argument could be madethat problems which
were rising a few years ago on a large IO scale have now moved into the single node. Indeed
the presence of multi-core and multi-controllers dictate that some of the solutionsused on the
global level might be useful for a single node. This argument has to be carefully dealt with.
The compute power present on a single node might not be sufficient for large scale middleware.
After all it is not desirable for the service computation to over utilize the single node. In other
words, although single node might implement large scale solutions, such as parallel file systems,
the node still needs to be able to meet application requirements.

The outline of the chapter is as follows. In Section 4.1 some of the related workis presented
in the form of possible optimizations for IO access. Most of these studies asmentioned before
address the HPC system on a large scale. Therefore the adaptation of these solutions on the
single node will be pointed out. This will serve the further explanation of the tests and imple-
mentations concluded later in the chapter. Section 4.2 provides a detailed explanation of the test
environment. Section 4.3 shows the analysis which includes tests done on the IO performance
of different settings and the conclusions that can be drawn from the results. Section 4.4 explains
in details a suggestion for a possible parallel IO design based on the previous analysis results.
Finally Section 4.5 shows the results from testing the suggested parallel IO design.

4.1 Optimization Approaches

There are many different types of optimization approaches described in the research. In [1] three
main types of optimization categories for optimizing parallelism are provided. These are opti-
mization of runtime IO libraries, optimization of parallel file systems and caching, prefetching
and data distribution strategies. An additional target for optimization is functional partitioning.
The term functional partitioning is used to indicate binding resources to specific functions. Due
to the presence of multi-core processors which use multi-controller storagedevices, a well de-
fined functional layout might increase performance. The following sections give insight into
some of these optimization approaches and signify how these could be addedto the IO stack on
a single node level.

4.1.1 Runtime IO Libraries

Runtime libraries are well suited for optimization. Although POSIX is thought to be the standard
for IO libraries, most tend to disregard it due to its limitation [2]. This comes as anunderstand-
able problem in case of HPC systems. Since there exists thousands of processing units in a
single HPC system, collecting data on the fly and rearranging the IO in accordance could in-
crease performance. One such method is the use of collective IO. In this technique all processes
share information on their IO requests. In that way the collective IO libraries can decide on an
appropriate approach to requesting the IO from lower layers [16].

One approach to improving collective IO is mentioned in [16]. Here spawningIO specific
threads that carry out the collective IO services is used to improve performance. Yet the paper
warns against uncontrolled thread spawning. Not all IO services can be performed in a separate
thread. Therefore only part of the IO can be done in the background [16].

The reason for using runtime IO libraries vary according to applications using them. The
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main reason is avoiding clashes on either the disk access or on cache level.Having multiple
applications accessing a group of disks at the same time might mean that seek time isnot taken
into consideration. It might be left to the drivers how the seek time is minimized as has been
explained in the block layer. But as mentioned driver IO scheduling is doneto improve overall
performance. In turn this might lead to some applications being deprived of IO for sake of seek
time minimization. While an IO scheduler on the block layer might not be able to communicate
with the application for IO access patterns, runtime IO libraries can. Therefore they give the
opportunity of avoiding application starvation during IO access due to IO scheduling.

On the other hand, the main target for using collective IO libraries is to avoid cache misses.
A multi-core processor means multi-threads running on the same cache. If each process is
left to regulate its own cache use, avoidable cache misses might occur. Collective IO has the
opportunity of dividing the cache not equally but logically. In that sense processes that need the
same data might share cache space and would not overwrite each others data. In short collective
IO can predict cache accesses, combine data space and prevent overwriting of needed cache.
Although caching is an important advantage for runtime IO libraries it is a complex subject that
runs on multiple levels.

As seen in Figure 4.1, the optimization mainly focuses on the interface between the applica-
tion on the lower levels. Some optimization will have to be done in the VFS. This is because the
VFS controls the lower level layers. Therefore the VFS will have to be updated with functions
that might be needed by the runtime IO libraries to perform their collective IO.

Figure 4.1: Optimization of IO stack using runtime IO libraries

Although optimization of IO libraries appears to be viable and simple to implement, it has a
multitude of disadvantages. One obvious disadvantage is changing the interface by which the
application communicates its IO requests. This means that all applications have tobe rewritten
on a basic level. Not only do these rewrites have to change the application IOinterface, but
also need to identify the amount of IO and the timing for these IO before handing them to the
libraries to make the optimization useful. A solution could be applying these IO optimizations
to an already existing IO library. In [17], it is suggested to use MPI-IO library as a promising
ground for potential optimization. The reason mentioned is that the MPI-IO is asoftware layer
between the user and the file system. This however still might involve some userintervention.

Analysis and Optimization of Storage IO in Distributed and Massive Parallel High Performance Systems 60



4 OPTIMIZING IO STACK FOR PARALLELISM

This optimization is still limiting to those applications using the optimized libraries.
Another obvious disadvantage that the optimization of runtime IO libraries have, is handling

multiple devices. The IO libraries have to have an underlying multiple device handler. Most
papers therefore mention the presence of an underlying parallel file system. This means that the
distribution of data among these devices is not just dictated by the library. In turn this leads to a
further complication of the design and the necessary optimization. Even though implementing a
runtime library that can deal with multiple devices is possible, nonetheless it is not compelling
to do so. Unless the application developer is prepared to deal with multiple devices on multiple
systems, the library will not offer better performance. In such a case theapplication will have to
signal IO schemes to the library. It is therefore inevitable that some applications will not perform
well.

Also, while all applications using the optimized runtime IO library might improve perfor-
mance, those not using the library might degrade overall performance. This mean that all ap-
plications running on the system must be using these optimized libraries. In addition to that
it means that the Kernel has to be searched for IO access and rewrite them according to the
rules set by the libraries. This might also lead to some complicated Kernel rewrites that must be
performed to avoid IO clashes.

As mentioned before, runtime IO libraries optimize for specific considerations. The most
important one is seek time. Since the optimizations considered in this work are based on SSD
access on single nodes, decreasing seek time would not increase performance. In fact some
of the optimizations mentioned in the papers are not very suitable for the Blue Gene setting.
As an example, in [16] the possibility of spawning threads to perform IO is provided. While
this might increase parallelism, the performance still remains under the mercy ofthe single
core performance. Specially in case many calculations have to be done to merge request and
decide on an appropriate request layout. Thus using such optimizations willhold the systems
performance hostage to Blue Genes weak single core performance.

4.1.2 Parallel File Systems

Since HPC systems cannot function without IO, they have been always dependent on increasing
parallelism. Most HPC and in fact servers scale their IO by increasing the number of disks
and controllers used [18]. Since no application is prepared to deal with that amount of disks
and controllers, parallel file systems had to be implemented. There are numerous types. The
goal from a parallel file system is to combine the access of multiple disks into a single unit.
That means that the application eventually has to deal with a single file system. Access division
among devices is left to the parallel file system.

Parallel file systems allow multiple nodes access to multiple devices. The main task ofHPC
parallel file systems is providing global data access from all nodes present in the system [2].
Some file systems therefore employ multiple IO servers for that purpose. Thedata is then scat-
tered among the devices. For that parallel file systems use different schemes. For example, IBM
GPFS (Global Parallel File System) uses striping [4]. That means that eachdevice shares part
of the file. Using this method the parallelism is guaranteed through activation ofseveral disk
devices even if all applications operate on the same file.

Another example for data distribution is Hadoop file system. In this case data is not striped
but replicated several times across multiple nodes [19]. The difference of design between GPFS
and Hadoop file system means they have different applications. GPFS is build to allow multiple
nodes access to the same data located on different devices. This implies an inherit separation
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between compute nodes and data servers. This is reflected in the processes that run on each side.
Compute nodes requesting data mount the file system and run as clients that request data from
the servers running as GPFS service nodes. The setup of such a system is shown in Figure 4.2.
From the construction it is obvious that this system is adapted for high scale IO communication
and is appropriate for current Blue Gene setup.

Figure 4.2: System setup for GPFS

One of parallel file systems biggest challenges is metadata. These are the data which indicates
where and how the actual data is stored. Since loosing metadata means loosingthe complete set
of data, these have to be put in a setting that guarantees their survival. Another issue revolving
around metadata is fast access. Shared data means shared metadata. That in turn leads to a
possible bottleneck. GPFS offers complete parallel access to both data andmetadata [6]. This
has the advantage of avoiding the bottleneck and the possible metadata loss. Another factor in
GPFS is that it can employ RAID for data backup and fault tolerance. Such property is a direct
result of using striping and supporting multiple devices.

Hadoop on the other hand uses a different construction as seen in Figure 4.3 [19]. The setup
uses a single node for metadata. This node is called name node. Not only is thename node a
potential bottleneck, it also presents a failure risk. If lost the entire file system will be rendered
useless. The rest of the setup contains clients which communicates with the datanodes to read
or write data. Additionally the Hadoop file system can implement data replication onseveral
data nodes. Not only does this help with data protection, but also ensures parallelism.

The major difference between Hadoop and GPFS is how the applications runon the two
file systems. GPFS is implemented to run separately on different machines to service nodes
that request data from storage units. In comparison Hadoop file system ismeant to run on the
same nodes requesting the data. Hadoop has the intention of writing the data once and reading
it multiple times [19]. In other words, Hadoops intention is for the programs to move to the
data and not the other way around. As a direct result Hadoop file systemis indented only for
applications using its own implemented map reduce interface. That is also why normal POSIX
requests cannot be used to access the Hadoop file system. GPFS however, can be mounted as a
normal file system and accessed using normal POSIX.

The Hadoop file system could be a suitable candidate for an active storagesetting. However it
is a more high level IO concept which is not interesting on a single node IO performance level.
Additionally due to the difficulty in benchmarking IO as will be seen from the next sections,
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Figure 4.3: System setup for Hadoop File System

comparing Hadoop performance with GPFS or normal IO is not possible. Hadoop requires spe-
cial benchmarks or needs the IO benchmarking tools to be rewritten in a map reduce construct.
Single node IO performance will therefore be lost in the middle of high level IO. Additionally
Hadoop file system does not support multiple devices it much rather supports multiple nodes
with storage on board. Again this makes the single node performance of a Hadoop cluster irrel-
evant for this study.

In comparison to Hadoop, GPFS is more appropriate for single node IO performance analysis.
Although GPFS offers many advantages, there still are difficulties that have to be dealt with. One
important problem is the setup. Client and service nodes in a GPFS cluster are separated. This
means that an active storage node must operate as both client and servicenode. This might strain
the limited computation power. GPFS therefore introduces an overhead that could be avoided.
For example multi-controllers on a single node could be detected as a single device. This can be
implemented in either the VFS or on the driver level as will be demonstrated by thefollowing
sections.

There are factors that might imply that GPFS data distribution is not suitable forthe active
storage setup. One such factor, is a direct consequence of data striping. As data is distributed
evenly among the nodes with files being striped no one node holds a complete set of data. This
leads the active storage nodes request to be burdening not only its own IO but the IO of the
neighboring nodes as well. This might look like it is defeating the purpose of the active storage.
It would be much more convenient to have the single node only using the data stored on its own
storage device. Nonetheless it still remains interesting to see how GPFS couldlead to a speed
up in performance of single node IO. In other words, an active storagewould benefit from a
two view file system. External nodes access a global file system striped across all active storage
nodes. Mean while each active storage node has a local view of data anddoes not require a
global access to fulfill its data requests. This combination would therefore benefit both targets
equally.

As can be seen from Figure 4.4 the optimization from using a parallel files system focuses on
optimizing individual file systems. The VFS might also need to be optimized. In fact the entire
implementation of the parallel file system can be done on the VFS layer. The ideais to make
the VFS aware of data distribution among the underlying mount points. In factthis has already
been implemented as a separate file system called PVFS or Parallel VFS [6].

Additional changes have to be made on the block layer level to accommodate themultiple
devices. Figure 4.4 does not include these changes. This is because these changes are irrelevant
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Figure 4.4: Optimization of IO stack using parallel file systems

to the parallel file system. The block layer needs only to present the multiple devices and leave
the parallel file system to deal with them.

4.1.3 Functional Partitioning

As the number of cores per processing unit increases so does the expectations. The problem
however is that most applications performance does not scale with the assignment of new cores
[14]. Although HPC applications should have a better scaling performance, still they exhibit
difficulties. In the current HPC systems an overwhelming number of multi-coreprocessors exist.
Not only does the application and the operating system scheduler have to divide these cores
among themselves, but also have to manage a complex hierarchical memory system. Managing
these cores adds difficulty to the application and the operating system. Considering the number
of cores to be managed means that old scheduling techniques might not be efficient.

Another aspect that is also overwhelming the applications and operating systems is the amount
of available data. While parallel file systems might be a well suited tool to store large data
amounts, most are not designed for application fast access. Usually the intention of a file system
is to speed up current access and has no overview over data placement.On an active storage
system this becomes even more problematic. Giving up expensive storage embedded into the
computing system without prior knowledge of data usage, might not be in the best interest of
performance. The same concept could be said for caches. Additionally the existence of multiple
controllers on a single card means that the system has to manage different devices. Not only
does the file system or in this case local parallel file systems have to decide ondata location, but
also decide which device to use in addressing this data. While it might seem thatchoosing the
currently available device or the one with least traffic is reasonable, thingsare more complicated.
In most, if not all cases data has to be read and written using the same device.This means that
the parallel file system will have to consider read traffic before executinga write. On higher
levels parallel file systems can simply stripe or duplicate data to avoid parallel read conflicts on
the same device. This is not a viable solution with active storage. Single nodesare expected in
this case to have expensive limited storage space.

An alternative for traditional scheduling is functional partitioning. The termfunctional par-
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titioning refers to binding certain resources to specific functions. Thus thetarget is to assign
a number of cores to certain applications or certain services. In [14] a description is provided
for using a functional runtime library to assign cores to part of the application. For example an
application that contains significant IO operations would signal that it needs to run IO threads on
a separate core. This however dictates rewriting applications which has to be possibly avoided.
Another viable preposition made in [14] is giving specific cores to specific SSD services. As
described in the previous section, some SSD need additional services thatcould be implemented
on a driver level. To avoid letting these services slow down applications an additional core could
be awarded to these services.

Functional partitioning of CPU affinity decreases the switching time from process to process.
The technique can be even taken further. Instead of just allowing applications to request cores
for services, cores could be completely allocated to specific IO services.By removing a core
from the CPU scheduling list in Linux the CPU will be registered by the operating system but
no process will ever be scheduled on it. That leaves the core open for specific allocation which
could be done usingtaskset. As an example to that approach can be found in [20], which
targets core allocation for collective IO. Instead of running a collective IO library a core is
allocated to collective IO. All other cores send their IO requests to the collective IO core, which
processes them and sends a total request on behalf of all cores. Theconcept for this can be
seen in Figure 4.5. It has to be noted though that this design carries the samelimitations of
collective IO. The optimization still remains mainly for seek time reduction and therefore of
minimal relevance to SSD.

(a) Parallel IO on multiple core (b) Diverting one core for collective IO

Figure 4.5: Dedicating core for collective IO

Despite the fact that functional partitioning on the basis of core affinity mightincrease per-
formance, it could also limit it. Some modern processing units use multiple weak cores for
increased parallelism. Some operations divided among applications that run on different cores
might not perform well if assigned to a single core. Even if the core has noother task than
the allocated operation, the limitation remains due to low core frequency and limited compute
capacity. In fact the proposed design of collective IO in [20] might limit the total performance
of the system. Cores might idle waiting for the so called coordinator core to send their requests
to the storage.

On the other hand, memory or storage affinity might be a method for improving efficiency. For
example, in [21] a method is introduced for memory affinity on hierarchical multi-core multi-
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processor level. This is of great benefit for modern processor designs. Although modern multi-
core processors might contain cache for each core, on some memory level they eventually have
to share. In fact that is the case when it comes to RAM which will be shared by all applications
running on all cores. If applications do not share data they will eventuallyoverwrite each other.
RAM misses are expensive, even more so for HPC. If data is present in aglobal file system the
HPC node will have to forward a request through complex networks. Therefore memory affinity
becomes a possible candidate for limiting the number of RAM misses. In case of an active
storage layout memory affinity techniques can even serve determining whichapplication could
write into the active storage. Using memory or storage affinity, performance could be enhanced
on an even larger level.

Storage affinity is a technique by which storage can be divided among applications. It can also
be a technique by which device allocation can be performed in case of usingmultiple controller
storage units. This means that data has to be allocated with a global layout. Applications are
bound to certain devices or certain storage space. Considering the factthat active storage systems
will contain fast but expensive storage this might be a viable solution to efficiently use the
available storage space. Additionally it will limit the number of writes, which is necessary for
some storage technologies such as SSD. In fact global data layout aware systems have been
introduced to increase parallel IO performance as seen in [1]. Here data layout was shown to be
the description as to how the data will be divided among multiple file servers. Fora single node
system the same could be defined for dividing data among separate controllers or devices.

Active storage will contain fast and expensive storage units that could be dealt with as either
slow memory or fast storage. Therefore both techniques for storage and memory affinity could
be applicable. In fact storage affinity will have to be mixed with global application scheduling
in an HPC. Data will have to be stored as close as possible to the currently operating application.
Therefore it is of advantage to have a parallel file system that communicatesor is controlled by
the process scheduling unit.

Using memory or storage affinity might be a good solution to reduce data access time. Nev-
ertheless, unless applications signal their data use before hand, it might be complicated to im-
plement. Some data layouts that might be of benefit for one group of applications might be a
disadvantage for another. Active storage units will have to support datalayout changes. There-
fore simple data use counters will have to continue to exist to signal data relevance. Other more
general memory or storage affinity algorithms have to be defined as well. Themain target from
these algorithms would be to keep application developers independent fromthe system architec-
ture. The ideal case is achieved if the application developer can run the same application on an
active storage system and still achieve the most efficient storage use possible.

As seen in Figure 4.6 optimization has to be done on many different layers. CPU or core
affinity can be implemented in the application layer. Since this is not in the interest of the IO
layer it might be ignored. Another possibility is adding service cores. These overtake certain
responsibilities such as file system defined functions. In fact one can implement storage affinity
using core affinity. In this case a core would be awarded to finding best methods for dividing
the storage on currently running applications. This could already be donein case of using
parallel file systems. These already implement different threads for different clients or services.
Therefore cores can be allocated for such processes to guarantee ahigh degree of quality of
service. Additionally service cores can be applied to carry out device driver specific operations.
For instance queue handling can be carried out on a single core. Another option is to allow device
driver developers to take over the scheduling of a core to carry out device services. Therefore
an SSD might implement garbage collection and wear leveling in the device driver and allocate
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a complete core for these processes.

Figure 4.6: Optimization of IO stack using functional partitioning

On the other hand storage affinity can be implemented into several differentIO stack layers.
Figure 4.6 shows storage affinity optimization pointing to three layers VFS, individual file sys-
tems and block layer. Since all three might select the storage device used, allocating certain
device controllers to certain tasks could be done in one of the three. The VFS keeps track of
superblocksof mount points which contains the block device on which the file system is stored.
Therefore the VFS could have a list of devices and point to any of these incase certain tasks
call the appropriate system call. The VFS however cannot select the dataallocation layout. This
task is performed by the file system. Therefore a parallel file system might bea good solution to
perform storage affinity. Nonetheless the VFS will have to keep the file system aware of current
allocation needs. Another possible candidate for storage affinity implementation is the block
layer. There already exist device drivers that control device selection. These have the added ad-
vantage of simplifying the operating system view of the system. The device driver is registered
as a single block device and the file system does not even have to considerdevice boundary
effects or allocation schemes over different devices.

Although resource binding is an appropriate approach to todays multi-coremulti-controller
systems, the implementation is complex. The functional partitioning cannot be done in one
layer. A complete system view is needed. If the implementation takes place in the lower layers,
upper layers will have to pass system information to lower layers and vice versa. The complexity
increases even more if the implementation is to be architecture independent.

4.1.4 NVM Express

Hard disk interfaces have evolved over many years. The device interface became so important
that even operating systems changed their block device interface to accommodate them. File sys-
tems and allocation strategies are heavily optimized for hard disks. The main concept on which
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these optimization have been taking place is that CPU time is cheap and seek time is expen-
sive. Therefore file systems implement allocation strategies targeting contiguous file allocation.
Random read or write is avoided as much as possible.

During the recent years SSD and other Non-Volatile Memory (NVM) startedto appear on the
market. Since these technologies needed to be integrated into present system setup, the interface
of a disk was adapted. Manufacturers designed their card interface to function as a hard disk.
The target was to avoid file system rewrite. However the CPU kept decreasing seek time which
is no longer necessary for the new technology. SSDs have almost no seek time. Additionally,
while hard drives are easily integrated into the system, each SSD manufacturer has to spend
money on developing complex drivers. This is because of the missing unifiedinterface.

As a solution Intel and other companies set out to define a new interface standard called the
NVMexpress [22]. The standard targets the SSD design on a PCIe interface. The idea is to create
a uniform communication method by which any SSD can be integrated into the system without
the need for lengthy and difficult device drivers. The NVM Express is defined as a scalable host
controller interface. This has been specifically designed for enterpriseneeds and client systems
that use SSD on PCIexpress [22].

The basic idea of the NVM Express interface is to use multiple queues. Processes form
their requests and add them into a submission queue. The controller would then complete these
requests and return them into a completion queue. There are many differences between this
interface and the old queue interface provided by Linux. There can exist as many queues as
needed. The interface supports up to 64K IO queues with each queue supporting up to 64K
commands [22]. This means that queues could be binded to cores or to processes. Figure 4.7
shows the possibility of binding queues to cores. Another possibility is shownin Figure 4.8.
In this case several applications each having their own submission queue share one completion
queue [22].

Figure 4.7: NVM Express multiple queues with core binding

The NVM as explained in the literature has a lot to promise. However there is stilla lot of
unknown. Not only do SSD manufacturers have to implement the standard intotheir cards, but
also IO libraries have to be rewritten. This might also mean a rewrite of applications. The disad-
vantage of the NVM Express is that it has not yet been widely adopted. Once the manufacturers
of SSD PCIexpress cards adopt the standard IO libraries will be changed. The final point will
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Figure 4.8: NVM Express with different queue mapping

be for Kernel developers to follow. The intention then is to be able to place any SSD card into
any system and have it function as needed. Not only will that mean saving efforts of device
driver development, but also means easier optimization of Kernel architecture for the sake of
supporting none-volatile memory.

4.2 Test Environment

A single node in a Blue Gene/Q contains a processor with 18 cores. Since one core is used
for operating services and one is kept in reserve only 16 are available for applications. Each of
these cores supports four threads and runs at a modest 1.6GHz [23].Given that the Linux Kernel
counts each thread as a separate CPU, performing acat /proc/cpuinfoprints the total to be 68
CPUs.

The architecture of the cores implemented into the Blue Gene/Q is the A2 core based on the
POWER architecture [23]. Due the unique implementation, pre-tests had to be done to port code
onto the complex Blue Gene/Q architecture. For example, on testing diverse SSD cards it was
necessary to go through several testing phases prior to Blue Gene/Q tests. The card would be
first tested on anx86 processor architecture. Thex86 is the most commonly known processor
instruction set. For that reason, the card is expected to function at specification rates on anx86
processor. Several differentx86processing units have been used in the testing process. One was
a quad-core Intel i7 CPU 920 with a frequency of 2.67GHz and dual thread per core.

The next step would be to test on a similar architecture to that of the Blue Gene/Q. Seeing
that the A2 core is based on the POWER architecture, testing should be doneon a POWER
processor. Therefore a G5, which is a POWER Macintosh, is used. TheG5 contains two dual
core 970MP with a frequency of 2.5GHz. Porting from thex86 to the POWER architecture on
the G5 is complicated. This is because of the differences present in the instruction set between
the two processor architectures. This meant that some of the optimizations done for x86would
not work on the POWER processor. It has to be noted that in some cases such as testing loop
devices orramdisksthere was no need for the middle step of testing on the G5. The reason is
that these devices do not contain any architectural specific implementations.Therefore a direct
comparison can be done between the performance of such devices onx86and Blue Gene/Q or
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between the G5 performance and Blue Gene/Q.
The final step is testing on the target architecture the Blue Gene/Q. Due to porting the device

on the G5 most of the architecture problems should have been solved in the previous step. How-
ever the Blue Gene/Q has its own unique architecture. Therefore additional changes had to be
made to complete the porting to the Blue Gene/Q. Although the porting process is long and com-
plex it gave the opportunity of comparing performance. Not only does BlueGene/Q contain a
unique processing architecture, but also is a HPC build for parallel operations. Comparing Blue
Gene/Q performance with that of a G5 meant comparing a commercial computer performance
with that of an HPC system. On the other hand comparing Blue Gene/Q performance with that
of ax86meant comparing performance of different processor architecture.

Due to the diversity of architectures it is important to label performance plots. Therefore
every performance plot shown will have a description of the processingunit on which the test
was performed on the top.

4.2.1 Test script

The used IO tester is called Flexible IO or FIO. It is an open source benchmarking tool that has
been used within many other projects. FIO spawns many threads that read or write from or to
a specified file that it creates. This file is placed into the device under test. The test script itself
was perfected over a multitude of tests. Since FIO contains a large number ofdifferent settings
and parameters, the testing scheme is complicated. The following will be a shortdescription of
some of the FIO test parameters. There is a brief explanation of all FIO options available in the
HOWTOfile provided with the tool. However parameters effect on the output is not mentioned,
as well as special use of some other parameters. The explanation given here therefore also
includes test observations.

Benchmarking IO is complicated. On one side there are different things to measure. IO can
be measured as the number of IO operations per second or IOPS. It canalso be measured as
bandwidth, which is the amount of data that can be transfered per second. There is a direct
relation between IOPS and bandwidth. This relation is defined by the amount of data that is
requested in a single IO operation. The correlation will be defined and tested in the next section.

Another factor that complicates the testing of IO is the large number of parameters that affect
the IO performance. The parameter list used in the test script is shown below.

fio \

--name=$FIO_NAME \

--rw=$FIO_MODE \

--size=$FILESIZE \

--directory=$FIO_DIRECTORY \

--bs=$FIO_BLOCKSIZE \

--numjobs=$j \

--runtime=$FIO_RUNTIME \

--loops=$FIO_LOOPS \

--direct=$FIO_DIRECT \

--ioengine=$FIO_IOENGINE \

The following is a detailed explanation of used parameters.

name is the name given to the test.
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rw is the mode of the test. Possible modes are read, write and read/write for sequential IO or
random read, random write and random read/write for random IO.

size is the size of the file to read or write from. The file size is an important parameter.Increas-
ing it means larger seek times in case of hard disks. It also means that the datain the file is
addressed using indirection. In case of hard disks this results in even larger seek times. On
the other hand for SSD it might mean that during a write more blocks have to be updated.
This leads to write amplification. While choosing the file size it has to be noticed that
unless the filenames are set and therefore the number of files is kept constant, each job
will create a file of this size. Therefore the aggregate file size will benum job×size.

directory / filename thedirectory is the location where the files are placed for testing. The
location has to be on the device under test. There is also the possibility of usingthe
filename. By defining not only the filename but also the path to the file the test directory
can be chosen. Another useful trick is the ability to use more than one file. This means
that more than one test directory and therefore device can be tested at thesame time. This
is useful in case multiple devices or parallel operation should be tested. However if only
the directory is set FIO will create one file per job. If several filenames aregiven, then
all jobs will operate on all files at the same time. This means that all devices under test
will be accessed from all jobs. Moreover settingfilenamecan be used to test raw device
performance. Raw device data is useful in finding overhead of file systems processing.

bs holds the value of theblocksize. As mentioned before their is a direct relation between
IOPS and bandwidth. The relation is dependent on the amount of data per IO request. The
blocksize is the amount of data that is contained in a single IO request. Since the IOPS and
bandwidth are inversely proportional, increasing the blocksize means decreasing IOPS
and increasing bandwidth. On the other hand, decreasing blocksize leads to increasing
IOPS and decreasing bandwidth. This will be further investigated in the tests.

numjobs is the number of threads that the FIO job will spawn. The main target is for the
performance to increase with increasing the number of jobs. There are many factors that
have to be kept in mind. For example iffilenameis set then all jobs will operate on all
files at the same time.

runtime indicates how long the test will run. Unless set the FIO job will run for a verylong
time. There has been no indication as to how long that is. Most probably the test will
terminate after reading or writing the entire file size. Theruntimehas to be set at a rea-
sonable amount. It was found that 300s or 5min are sufficient for a single test. It has to
be noted here that the test does not have to run for 5min. This is just an indication that the
test will be terminated in case it took longer than 5min.

loops is the number of times the test should be repeated. In some cases if the runtime is too
short as in testingramdisksthe number of loops helps increase runtime. This increases
the precision of testing.

direct if set to one indicates that non-buffered IO should be used. In order tobenchmark the
IO link correctly direct IO was almost always selected. Not only is cachedand buffered
IO more complicated, but also means that performance will vary over many tests. Using
direct IO means testing the IO under the worst case, which means all accesses resulted in
a cache or buffer miss.
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ioengine defines the IO engine used. The IO engine defines how a job issues an IOrequest
to the file. Theioenginehas been set tolibaio which is Linux native asynchronous IO
engine. An additional advantage is thatlibaio only supports the use of non-buffered or
direct IO.

The following shows an example for the output of a FIO test.

Fusio: (groupid=0, jobs=1): err= 0: pid=5030

read : io=65536KB, bw=1158.6KB/s, iops=1158 , runt= 56570msec

slat (usec): min=186 , max=23738 , avg=837.08, stdev=247.00

clat (usec): min=3 , max=143 , avg= 7.56, stdev= 2.36

lat (usec): min=196 , max=23761 , avg=849.06, stdev=247.29

bw (KB/s) : min= 1028, max= 1972, per=12.52%,

avg=1159.10, stdev=140.72

cpu : usr=2.99%, sys=48.76%, ctx=127005, majf=0, minf=5

IO depths : 1=100.0%, 2=0.0%, 4=0.0%, 8=0.0%,

16=0.0%, 32=0.0%, >=64=0.0%

submit : 0=0.0%, 4=100.0%, 8=0.0%, 16=0.0%,

32=0.0%, 64=0.0%, >=64=0.0%

complete : 0=0.0%, 4=100.0%, 8=0.0%, 16=0.0%,

32=0.0%, 64=0.0%, >=64=0.0%

issued r/w/d: total=65536/0/0, short=0/0/0

lat (usec): 4=0.01%, 10=97.56%, 20=1.70%, 50=0.73%, 100=0.01%

lat (usec): 250=0.01%

As can be seen the name of the test is used to identify the output. The next identification is the
mode, read or write. Whether the test was a random or sequential read orwrite is not indicated.
It is therefore preferred to use the test name to indicate a sequential or random test. As can be
seen there are many measures taken from a single job. Since we are only interested in the IOPS
and bandwidth, we can ignore most of the rest. Bandwidth of a single job is given bybw. IOPS
are given byiops. FIO also can give the output in the form of numbers separated by semicolon.
Although this might be the better choice for plotting the results, this output does not contain the
IOPS.

The output given above is one out of eight for each job that has been spawned by FIO. This
means that the IOPS and bandwidth given is not the total. To find the total IOPSand bandwidth
the individual results have to be added. The semicolon separated output form provided by FIO
cannot be used due to the missing IOPS results. Therefore the script hasto find a method of
choosing the correct value and adding to find the total IOPS or bandwidth.The method for
finding the IOPS is given below. As can be seen the trick is to use string manipulation to find
the value. The loop then adds all found values and sets the variable to the total IOPS that will be
printed. The same is done with bandwidth.

IOPS=0

iops=‘grep iops= < $tmpfile | cut -d’=’ -f 4 \\

| cut -d’ ’ -f 1 | tr -d ’,’‘

for i in $iops; do

ni=‘norma $i‘

IOPS=‘echo $IOPS + $ni | bc‘

done
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At the end of each test output the aggregated values of all jobs is given.This could be an
alternative to the previous method for finding the total bandwidth. However itwas observed that
the total bandwidth calculated using the script was different than the aggregate bandwidth given
by FIO. As the method of calculation of the aggregate bandwidth is not knownthe summation
script was used. Another reason for using the summation script is that the IOPS aggregate value
is not given in the list of total results.

The test script has gone through several revisions. The most importantproblem is finding
the parameters against which the IOPS and bandwidth will be tested. At firstthe tests were
done against changing both the number of jobs and the blocksize. This results in the count of
different job number multiplied by the number of different blocksizes tests to be done. Due to
the complexity of reading the performance change for increasing job number the test was later
changed to output the results only against the jobs number. The test was usually then repeated
twice, once for a blocksize of 4KB and again for a blocksize of 64KB. Tests results might be
shown in either performance against job count or performance againstblocksize.

Below is the output from the test script. The date and time of the test is printed. This is
important in case the tests need to be recreated. As the Blue Gene/Q environment is under
development and therefore constantly changes it is important to know whichrevisions can be
used for getting the same test results. Using this technique the cause for a test result change
can be identified. The rest of the upper parameters show the test parameters as given to the FIO
thread. Additionally the file size is printed before each job number result. Thetotal file size
however remains the same as has been explained in the FIO parameters.

#DATE=2011-08-29 09:53:17

#FIO_BLOCKSIZE=4k

#FIO_DIRECTORY=/mnt/TEST

#FIO_MODE=randread

#TOTAL_FILESIZE=1024M

#jobs BW[MB/s] IOPS

FILESIZE=1024M

1 21 5493

FILESIZE=512M

2 41 10710

FILESIZE=256M

4 82 21029

FILESIZE=128M

8 154 39541

FILESIZE=64M

16 283 72568

FILESIZE=32M

32 477 122287

FILESIZE=16M

64 746 191153

Finally gnuplot is used to plot the output. An example for the final result can be seen in
Figure 4.9. The figure shows the IOPS as plotted against the number of jobs.
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Figure 4.9: Example of a gnuplot figure for a FIO script output

4.3 Parallel IO Analysis

Previous sections have made some points which show how parallelism is increased on a global
level. As the active storage will need to communicate on a single node level parallelism needs to
be pushed lower. That is, solutions that were previously implemented across several computing
units has to be implemented on single nodes. In fact observing the development of HPC over the
years, the same has been done on different layers. The modern processor contains several cores
and the modern SSD storage unit could contain multiple devices. Therefore IO parallelism is
required on an even smaller scale. This is not as simple task. On a global levelimplementing
complex algorithms and configuration is possible. In contrast trying to implementthe same on
the scale of a single node has many limitations. As an example, parallel file systemsare massive
programs. Implementing the same on a single node might need redefinition of the function of a
parallel file system. Under these circumstances it appears that some of the previously mentioned
concepts should be tested given the new limitations. The following sections define some of the
tests done over multiple settings. The target was to find some efficient methods of increasing
parallelism.

4.3.1 Testing Effect of CPU Frequency on IO

As mentioned before, modern CPU are moving towards the usage of smaller weaker cores.
Besides using a different architecture, the Blue Gene/Q employs an A2 core working at 1.6GHz.
The target here is to find the effects of lowering the frequency on the performance of the IO.
The best candidate for testing the IO under the effect of lowering the CPUfrequency is using an
actual physical SSD. Hard disks require a good deal of CPU utilization in order to avoid seek
time. However the CPU is not expected to dominate the IO operation. Under this assumption
using the hard disk would not be useful. On the other hand if a virtual device is used such as
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Read Bandwidth (64kB) 770 MB/s
Write Bandwidth (64kB) 790 MB/s
Read IOPS (512 Byte) 140,000
Write IOPS (512 Byte) 135,000
Mixed IOPS (75/25/r/w) 119,000
Access Latency (512 Byte) 26 µs

Table 4.1: Table for ioDrive performance specification

loop devices or ramdisk, there might be no separation between performancedrop due to IO and
drop due to module operations.

SSD performs many different services to support its operations. Manufacturers have the op-
tion of implementing these services either directly on the card in hardware or intothe driver.
For example, garbage collection could be implemented as a hardware featureinto the SSD con-
troller. On the other hand it could be programmed into the driver module. Due tothat different
SSDs might not be equally dependent on the CPU frequency. Nonetheless it is still important to
know how the CPU frequency would effect such combination.

The SSD card used for testing frequency effect is an ioDrive produced by Fusion-io one of
the most known SSD manufacturers. The ioDrive contains a single controller and is therefore
detected as a single device. This helps decrease the overhead of combining performance of mul-
tiple devices. The ioDrive used is a SLC with a capacity of 320GB. The performance expectation
are given by the table [4.1] [24]. Although the card has a driver that supports 64K pages, it can
only be used for thex86 architecture. This meant that the Blue Gene/Q used Linux had to be
patched to use 4K pages instead of 64K pages. In turn this might already result in some of the
performance for IOPS and even bandwidth being lost.

It is expected that the results will not be the same as those given by the specifications. The
reason is that the ioDrive driver has been optimized forx86 architecture and not for POWER.
The ioDrive driver is closed source. Therefore there is no room forobserving how the internals
of the driver work. There is also no possibility of optimization of the driver.Additionally
the G5 is the most appropriate device to test frequency change. This is dueto it containing a
POWER processor which is similar to that of the Blue Gene/Q. Additionally using simple tools
it is possible to decrease the frequency of the CPU. The test results shown will be that of the
random read. Although random write was also performed, concerning frequency change, the
same conclusions can be drawn. Thus the random read tests are sufficient for this purpose.

Figure 4.10 shows the ioDrive bandwidth versus blocksize. As can be seen the bandwidth
gradually increase with increasing the blocksize. This is due to the fact thatthe amount of data
read per request is becoming larger. This continues until the link is saturated. Additionally the
bandwidth increases with increasing the number of jobs. This as well continues until the parallel
IO limit is reached. As seen from the figure the bandwidth end performanceis close to 800MB/s
which is given by the ioDrive specification. However this limit is reached with ablocksize of
128KB. The blocksize shown in the specification for the read bandwidth is 64KB. Only for a
job count of 32 and 64 can the maximum bandwidth be reached at the specified 64KB blocksize.
This means that we need double the blocksize to achieve the same performance as the one given
by the ioDrive specifications. It should be noted that increasing the blocksize is dependent on
the access pattern of the applications. Not all application will benefit from alarger blocksize. In
fact increasing the blocksize specially in case of writing will decrease SSDendurance. It should
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also be noticed that this bandwidth can only be reached by using 4 jobs or more.

Figure 4.10: Bandwidth vs blocksize for ioDrive on an Apple G5

On the other hand, Figure 4.11 shows the IOPS versus blocksize of the ioDrive. In this case the
IOPS decrease with increasing the blocksize. As has been mentioned before there is an inverse
proportional relation between IOPS and bandwidth which is governed by the blocksize. This
indicates that either the system can run many IO operations with small blocksizeor few IO oper-
ations with large blocksize. The figure shows how the performance starts togradually decrease
at the blocksize of 8KB. The maximum value however for the IOPS does notmeet the ioDrive
specification. This indicates that the architecture effects the IOPS and notthe bandwidth. It is
therefore expected that decreasing the frequency would effect the maximum IOPS. Additionally
the IOPS increase by increasing the number of jobs. In fact there is an expected symmetry be-
tween the bandwidth and the IOPS in the vertical direction. That is by increasing the number of
jobs both IOPS and bandwidth will increase. However once the number of jobs either saturate
the bandwidth or the IOPS, adding more jobs will no longer increase the performance. On the
contrary adding jobs beyond a certain point might mean a decrease in performance. In compar-
ison to hard disks however the performance drop does not happen dueto increase in seek time.
It appears due to increase in CPU utilization. This correlates with difference between hard disks
and SSD systems. While systems containing hard disks consider that seek time isexpensive and
CPU time is cheap, modern systems containing SSD have no seek time and have expensive CPU
time.

Given that the target of the test is to find the effect of frequency decrease on IO performance
the CPU clock has to be decreased. The tool used to decrease the CPU frequency is called
cpuspeed. Using the tool the CPU frequency is scaled to half and is monitored during the FIO
test usingwatch grep clock /proc/cpuinfo. This makes sure that the CPU scaling tool does not
undo the frequency decrease. Thus the CPU frequency of the G5 waskept at 1.25GHz while
running the same FIO test.

Figure 4.12 shows the bandwidth versus blocksize for the ioDrive on a G5with frequency
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Figure 4.11: IOPS vs blocksize for ioDrive on an Apple G5

scaled to 1.25GHz. Although the frequency is decreased it can be seen that the maximum band-
width can still be reached. This means that the maximum bandwidth is not effected by the
frequency. Nonetheless the frequency change can still be observedon the bandwidth curves.
As can be seen from the figures, the saturation is first reached at a blocksize of 64KB. This
means that the decrease of frequency leads to moving the saturation of the IO link in the direc-
tion of larger blocksizes. This indicates that processors with lower frequency will require larger
blocks to achieve maximum bandwidth. Another important observation is the vertical behavior
of increasing number of jobs. Using lower CPU frequency meant that there is no longer any
difference between having 8 or more jobs at lower blocksizes. Having full frequency meant
that, for example, at a blocksize of 16KB there was a large difference in bandwidth between
using 16 and 32 jobs. One can conclude from this that having a low frequency CPU using larger
blocksizes has a better effect on bandwidth than using more jobs.

In contrast to the bandwidth the maximum of IOPS is affected strongly by the decrease of CPU
frequency. This can be seen in Figure 4.13. Not only does the frequency change decrease the
number of IO requests that an application can make, but also decreases the performance of the
driver. Therefore if the card is too heavily dependent on worker threads the IOPS will decrease
even more. The figure also shows how drastically the decrease of frequency is on parallelism.
The single job performance at a blocksize of 1KB drops from 12254 to 7411 IOPS. On the other
hand the 32 job performance drops from 59093 to 29294 IOPS. This means that almost half of
the performance has been lost. In fact the maximum of the full frequency cannot be reached.
Observing the figure in the vertical direction it can be concluded that the loss of performance
increase with increasing the number of jobs. Finally the limit is reached and increasing the
number of jobs no longer increases the performance. This results in no performance change
between having 8 jobs or more. By close observation and comparison with thebandwidth it is
possible to detect a correlation between the drop in IOPS performance andthe change in the
bandwidth. At full CPU frequency the blocksize 16KB allowed high bandwidth due to a large
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Figure 4.12: Bandwidth vs blocksize for ioDrive on an Apple G5 with clock set to 1.25GHz

number of IOPS. At half CPU frequency this is no longer the case. Therefore IOPSs decrease at
low blocksizes pushes the bandwidth saturation to higher blocksizes.

As mentioned before the decrease in IOPS on decreasing CPU frequency is due to the perfor-
mance drop in both request making and driver performance. Since on modern CPU increasing
the frequency is not possible by design, other methods need to be found toincrease performance.
In case needing high bandwidth the blocksize has to be increased, as wellas increasing the num-
ber of reading or writing threads. On the other hand achieving higher IOPS is not as simple as
achieving high bandwidth. First the driver has to be optimized for lower frequency by pushing
most services into hardware. SSD cards are should preferably perform garbage collection and
other services on card and not in the driver. Another possibility is using multi-controller devices.
This means that many drivers and file systems and IO stack operations will run in parallel. In-
creasing number of controllers should continue to increase the IOPS. In case the selection of
appropriate device for read or write is kept to the application, the performance should linearly
increase. This should continue until CPU utilization is at maximum. This is true if the applica-
tion is simply mapped to one device. On the other hand, if the selection is done by the system,
the overhead of selection will also take part of the CPU utilization. For example, a parallel file
system needs to spawn worker threads that divide the file access on the available devices. One
last factor remaining is the link speed. Once the PCIexpress bus is saturated the increase of
devices used will not increase IOPS.

4.3.2 Testing Functional Partitioning

Mentioned in the previous section is the possibility of using functional partitioning to enhance
the performance. This is especially true in case of having service threadsthat can be mapped on
different cores. Additionally if the core have multiple threads, functional partitioning might be
an optimization step. On such architecture avoiding placing two processes onthe same core is
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Figure 4.13: IOPS vs blocksize for ioDrive on an Apple G5 with clock set to1.25GHz

helpful. For example, the Blue Gene/Q has 17 cores each contains 4 threads. The Linux Kernel
however, has 68 possible CPUs to schedule the tasks to. This is because the Kernel considers
every thread a CPU. Thus the Kernel might consider that giving a process exclusively CPU 1
means that the process is free to run at all times. Considering that CPU or thread 0, 1, 2 and 3
all share the same core, the Kernel is mistaken. Therefore a utilization of a CPU given by the
Kernel is already at its maximum allowed utilization at only 25%.

Since the Fusion-io driver is closed source there is no method to know how the services are
implemented. However by observing the CPU utilization during an IO test, tasks which take up
most of the CPU time can be found.top which is a tool provided by Linux to show the current
running processes can be used for that purpose. The tool has additional features such as showing
CPU utilization and which CPU each processes is running on. By observingthe top command
output during FIO tests on the Fusionio card ioDrive, it was found that there are three tasks
spawn by the driver.

A full observation of the CPU utilization during a FIO test is needed. Shown inFigure 4.14
is the CPU utilization in percentage during a FIO test. The test was done on a Blue Gene/Q,
but limited the number of CPUs to 20. This helped observe the behavior over alimited number
of CPUs. As can be seen the Utilization of the first few CPUs is very high. This indicates that
some threads are needed by the driver to carry out the requests submittedby the FIO jobs. It is
also worth knowing that CPU 0 is used for interrupt requests. That meansthat every interrupt is
automatically routed to core 0 thread 0.

Considering that the first four CPUs share the same core, a CPU utilization of more than 50%
for CPU 2 means that the core is taken for half the time by a single thread. Thatis why a better
CPU scheduling might lead to improving performance.

There are three main components that can be edited to achieve a better scheduling. These are
the Kernel scheduler, the FIO tool and the test script. By manipulating the Kernel scheduler the
processes can be placed into the appropriate CPU. This however requires changing the Kernel
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Figure 4.14: CPU utilization during FIO test reading from ioDrive on Blue Gene/Q

inner workings. Not only is this complicated, but also might disturb other side processes needed.
This might unintentionally result in performance changes that would not be considered. The
second option is to change the FIO tool. Although this is less complex it still involves the
changing of a complex tool. Also the risk of unintentionally changing performance calculation
through side effects is still present. In fact it is seldom a good idea to manipulate the tool used
for benchmarking. The final option is changing the test script. Linux provides the option of
setting core affinity for processes using thetasksetcommand. The test script spawns the FIO
job then iterates waiting for all jobs to spawn. Once the Process ID or PID can be found they
are passed totaskset. The appropriate core is chosen and the thread is mapped. Changing the
test script meant that there is a risk of part of the CPU utilization going to the script. This can be
avoided by breaking the iteration once all processes are found. Another disadvantage for using
thetasksetin the test script is that the tasks could have operated for a few cycles on another CPU
than the one intended by the script. This might result in error contained results. The margin
of error can be decreased by increasing the time of FIO test operation. This will increase the
average utilization of the intended CPU towards the ideal case.

The main target of the division of CPU among driver threads and the different FIO jobs is
the minimization of collision. Therefore giving each task a CPU is not sufficient. As mentioned
before each four adjacent threads share one core. Thus the targetbecame giving each related IO
job its own core. Since the first core receives the interrupts nothing will bescheduled on core 0.
To the first three cores the three threads spawn by the ioDrive driver will be binded. This means
thattasksetwill set the CPU affinity of these three threads to CPU 4, 8 and 12. Since there is no
need to repeat the test for all different numbers of jobs it is sufficient toperform the test once. It
was found that 8 jobs reach the highest performance possible for both IOPS and bandwidth on
the Blue Gene/Q in combination with the ioDrive. Therefore performing the testonce for 8 jobs
is adequate. These 8 FIO jobs were binded usingtasksetto CPU 16, 20, 24, 28, 32, 36, 40 and
44.
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Setting the CPU affinity of the processes as previously explained resulted inthe CPU utiliza-
tion shown in Figure 4.15. The utilization in this case has been taken over the complete FIO test.
The average was then taken over the time. To ensure the accuracy of the process it was carried
out using complex scripts. The scripts target finding the CPU and add up theutilization over
thousands oftopoutput. Additionally the script has to be capable of excluding irrelevant results
such as the occurrence of a zero utilization before the job has been spawned. Another important
aspect of the script is finding the average. Therefore each time a useful utilization value has
been found a counter is increased by which later the total CPU utilization will bedivided. Since
the output of thetop command is refreshed after a constant interval of time, the number of use-
ful CPU utilization values is proportional to time. On these bases the CPU utilizationgiven in
the figure are acceptably accurate values. It is important to note here thatthe utilization values
mentioned here are system utilization. These are therefore time spend by the CPU in creating
IO requests or driver operations. The CPUs used for FIO job spend ahigh percentage of time
in CPU IO utilization according to thetop command output. This utilization percentage is the
amount of time spend by the CPU waiting for IO. This reached values of more than 70%.

Figure 4.15: CPU utilization during FIO test and setting CPU affinity

Once the test is concluded the IOPS can be compared with the ones for a normal FIO test
without setting CPU affinity. Figure 4.16 shows the percentage of improvement of using func-
tional partitioning. The percentage is taken from the maximum achieved IOPS without setting
CPU affinity. This is the IOPS at 1KB blocksize. The figure compares the performance of an 8
job test with and without usingtaskset.

Figure 4.16 shows an improvement for the usage of functional partitioning.This howeve
decreases as expected by increasing the blocksize. The performanceimprovement comes from
the fact that processes are utilizing a complete core. This means that the Linux Scheduler is not
allowed to move the process around. This in turn leads to saving valuable switching time lost
during process migration. Additionally the core is no longer shared among multiple processes
running on different threads. This means that the process is allowed to use more than 25% CPU
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Figure 4.16: Percentage of IOPS improvement by setting CPU affinity

utilization without depriving other threads.
Although there is an achieved performance increase from using functional partitioning it is

limited. As can be seen by Figure 4.15 the service processes used by the ioDrive already utilizes
more than 85% of a single core. Considering that the FIO jobs all are using below 20% of CPU
utilization, the bottleneck is assumed to be the driver threads. Therefore theonly method for
increasing the IOPS further is the use of multiple controllers. Another option isdividing the
driver into several threads to perform the same task. This however mightbe complicated and
is not possible without a deep understanding of the controller implementation. Nonetheless,
this test proves that better performance can be achieved using functional partitioning. It also
indicates that better resource management improves performance without the need for hardware
upgrades.

4.3.3 Testing Parallel File Systems

The use of parallel file systems has been mentioned before as one of the mostsuccessful methods
for increasing performance of IO. Modern servers depend on increasing number of hard disks to
increase IO performance. To achieve that parallel file systems are usedto handle the increasing
number of devices. Therefore using parallel file system to combine the performance of multi-
controller SSD is a well suited method for increasing parallel performance.

Given that IBM GPFS is the most commonly used file system for HPC, it is appropriate for
using on the Blue Gene/Q. The main advantage in using GPFS is that normal POSIX can be
used to access the file system. Therefore the GPFS created can be mountedand accessed just as
any other file system. This makes the testing process easier. In fact the exact same script can be
used making the results comparable to previous tests.

GPFS defines service and client nodes. The service nodes contains thestorage devices which
will be accessed by the client nodes. In order to achieve using the same node as a storage and

Analysis and Optimization of Storage IO in Distributed and Massive Parallel High Performance Systems 82



4 OPTIMIZING IO STACK FOR PARALLELISM

processing unit, the Blue Gene/Q node is defined as both client and servicenode. This leads
to having both threads operating on the same node. Another important issue with GPFS is that
it only accepts certain types of devices. However these physical devices are missing on the
Blue Gene/Q specially if it is necessary to test performance change with number of devices.
This meant that GPFS had to be tricked to acceptramdisksas being actual physical devices.
Considering that theramdisksare suppose to perform better than any other available devices,
scaling by increasing the number of devices will be due to the use of GPFS.

Under GPFS each device attached must be given a globally accessible NSDname. NSD stands
for Network Shared Disk. It is expected that increasing the number of NSD should increase
performance. The test therefore was performed using several NSD.Additionally the relation
between blocksize and performance had already been established by previous tests. Thus the
test can be performed using a single FIO blocksize. This was chosen to be4KB. In addition to
that the number of jobs are plotted on the X-axis. Considering that the test changes jobs and
number of NSD keeping the blocksize constant makes the plot easier to read. In fact as will be
seen later from the figures there is no longer a need to present both IOPSand bandwidth. The
difference between the two becomes a constant factor which is the blocksize.

Figure 4.17 shows the bandwidth of different NSD counts. The bandwidthin the plot is
represented as a percentage of theramdiskperformance. It should be noted that theramdiskis
mounted using an Ext2 file system.

Figure 4.17: Percentage of ramdisk bandwidth vs jobs for GPFS with different NSD

There are many observation that can be drawn from Figure 4.17. First increasing the number
of NSD increases performance for higher number of jobs. This was expected as more jobs are
needed to saturate the bandwidth at a constant blocksize. The same can beobserved for IOPS
as seen in Figure 4.18. Although the figure might give the illusion that performance drops for
higher job numbers, this is not true. Theramdiskbandwidth increases almost linearly with the
increase of number of jobs. The figures therefore indicate that bandwidth using GPFS does not
increase as quickly as that of a singleramdiskwhen increasing number of jobs. Therefore the

Analysis and Optimization of Storage IO in Distributed and Massive Parallel High Performance Systems 83



4 OPTIMIZING IO STACK FOR PARALLELISM

percentage drops as seen in the figure.

Figure 4.18: Percentage of ramdisk IOPS vs jobs for GPFS with differentNSD

Considering that each of the NSD used by GPFS is aramdiskthere is an obvious massive drop
in performance. For example, best bandwidth achieved by a GPFS with 8 NSD is 70% of single
ramdiskperformance at 16 jobs. Instead, it was expected that the performancebe close to 8 times
that of a singleramdisk. This could be explained by the number of threads that GPFS has to
use to service the file system. In other words, GPFS represents a large overhead. This overhead
leads to the decrease of performance. However it should be noted that this comparison is to some
extend unfair. Theramdiskbeing part of the RAM is the fastest storage possible. Nonetheless the
test shows the massive impact that a complex file system can have on performance. Therefore
it might be more efficient to use other methods for combining multiple devices on a single
node. For example, combining several devices in the driver is more appropriate for this case.
It still remains to test how the overhead of GPFS will affect performance ofmulti-controller
SSD. Although the overhead might not limit device capabilities as drastically as isthe case with
ramdisk, still there will be limitations. On increasing SSD controllers the performance willbe at
some point limited either by the number of processes the diver spawns or GPFS. A good parallel
driver implementation should result in the GPFS overhead limitation to be reachedfirst.

4.3.4 Testing Loop Devices Parallelism

The SSD market is one of the most expensive. A single SSD card can costas much as 15K dol-
lars. This is not the only reason for SSD limited available testing time. Testing hardware means
that the setting cannot be changed. Therefore only the construction given by the manufacturer
can be tested. This indicates the need for a more flexible testing environment that exhibits some
of the SSD features.Ramdisksmight appear as a suitable candidate. Random access cannot be
dominated by seek time which makes it close to the performance of SSD. Anotheradvantage of
ramdisksis the ease of setting and the open source module. This makes it easy to change and
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manipulate the implementation oframdisks. The disadvantage however is that aramdiskhas al-
most no driver like functions. Themakerequestfn eventually leads to a simplememcpy, which
can be seen by Figure 4.19. This means that there is almost no delay for accessing aramdiskand
there is no need to spawn any service threads. Therefore the CPU will never present a possible
bottleneck. This results in theramdiskbeing unsuitable for further test implementation.

Figure 4.19:brd makerequestread or write result in a simplememcpy

Another viable candidate is the loop device. By using the loop device the access to files
can be emulated as being a block device. The main advantage for using a loopdevice is that
it spawns a thread that deals with the device access. This means that the loopdevice has the
similar limitations to that of a regular SSD. An additional advantage is that the loop device is
setup on top of a file. That file can be allocated anywhere. Therefore if the file was allocated on
a ramdiskthe seek time would be zero. This results in an almost equal relative performance to
that of a SSD.

In order to estimate parallel performance of a loop device there is a need to measure how well
does a single device deal with the increase of job number. As the number of jobs scale so should
the performance. The result of the bandwidth ratio against a single job is shown in Figure 4.20.
The ratio shows how the performance is marginally improved by using an additional job. The
figure shows how the performance is doubled at low blocksizes. At higher blocksizes there is a
50% or less bandwidth increase. Additionally there is no increase in bandwidth by adding more
jobs. In fact the bandwidth almost does not increase passed the performance of a two job FIO
test. This indicates that the limitation factor of the loop device is the thread createdto perform
the read.

The exact same observation can be drawn from Figure 4.20. This showsthe ratio of IOPS
between single and multiple jobs random reading from a single loop device. The result is almost
the exact factor distribution as that given by the bandwidth. Given that there is a direct relation
between IOPS and bandwidth which is governed by the blocksize the reason becomes obvious.
The figures are based on a ratio that eliminates that factor. The ratio is the division of bandwidth
or IOPS values with that of a single job at the same blocksize. That way the blocksize effect is
eliminated.

Figure 4.20 and Figure 4.21 give the illusion that performance decreaseswith increasing
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Figure 4.20: Ratio of bandwidth between single and multiple FIO jobs random reading from a
single loop device

blocksize. This however is false. Increasing the blocksize still increases the bandwidth and
decreases the IOPS. The figures simply point out that performance increases more using smaller
blocksizes. There is a simple explanation to that. As mentioned before IOPS are affected more
by parallelism than bandwidth. Given that IOPS increase by decreasing the blocksize the dif-
ference becomes more visible at smaller blocksizes. As for the middle values of blocksize both
the IOPS and bandwidth are at average values. Therefore the factor of increase of performance
against that of single job appears to be high.

The main observation that needs to be drawn here is that loop devices do not perform better
when using more jobs. Therefore loop devices have low parallelism. As mentioned before this
makes them an almost ideal candidate for testing. If it is possible to increase the performance of
the loop devices without major changes to the loop device itself it might be possible to do the
same for SSD technology.

The multi-controller configuration of an SSD can also be applied to loop devices. The FIO
test script can use thefilenameto point to several different block devices. Using this concept and
setting up multiple loop devices the parallelism can be tested. It is expected that using multiple
loop devices will increase performance when increasing the number of jobs. Therefore the test
was done against the increase of number of FIO jobs used. This in turn makes the resulting plot
more readable. The blocksize has been kept constant at 64KB over theentire test.

Figure 4.22 shows the ratio of IOPS between using a single and multiple loop devices. The
plot shows the results for three settings using 2, 4 and 8 loop devices and reading from them
in parallel. As seen at higher number of jobs the performance increases when using more loop
devices. The increase however is not directly proportional to the numberof loop devices used.
As seen the performance nearly doubles at 64 jobs when using two loop devices. On the other
hand when using 8 loop devices the performance factor is only around 5.5at 64 jobs. If the
performance increase was linear the 8 loop devices would result in a performance factor increase
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Figure 4.21: Ratio of IOPS between single and multiple FIO jobs random reading from a single
loop device

of 8. This however is not possible. As the number of loop devices increase so does the overhead.
Each loop device spawns a separate thread which uses up part of the CPU utilization. Another
reason for the performance increase factor limitation is job device access time. As the number of
devices increase so does the time needed for the jobs to access each of thedevices. The access
pattern has been explained before for a multiple device FIO test. As mentionedeach device
and therefore each file is accessed by all jobs. There is no functional partitioning in this case.
However this is similar to the expected result of using multiple devices. In fact aGPFS division
among the devices would have been much different. GPFS would stripe files across all devices.
Therefore each file accessing all files would access all devices.

Another important observation that can be drawn from Figure 4.22 is the change of increase
saturation point. As can be seen, using two loop devices increases performance until using 4
jobs. After that point using more jobs does not increase performance. In comparison using 8
loop devices keeps increasing IOPS all the way till 16 jobs. Using more jobs on 8 loop device
almost does not increase the performance. This can be explained by the number of jobs that
are needed to fully utilize a loop device. Shown by Figure 4.20 after using twojobs reading
from a single loop device performance is not increased. Therefore using multiple devices would
not increase performance passed using more than two jobs per loop device. This leads to the
performance of a two loop device test to saturate at 4 jobs. In turn it leads tothe IOPS of a 4 and
8 loop device test to saturate at 8 and 16 jobs respectively.

There is no reason to show the plot for bandwidth. This is because the bandwidth plot is the
exact same as the one shown for IOPS. As has been explained before plotting both IOPS and
bandwidth against number of FIO jobs will give the same curves. Considering that Figure 4.22
shows a ratio between performance of single and multiple loop devices, the bandwidth plot looks
exactly the same. Even for IOPS and bandwidth against blocksize there would be no difference
between the two plots. This is due to the ratio removing the blocksize as the factorgoverning
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Figure 4.22: Ratio of IOPS between single and multiple loop devices

the difference between IOPS and bandwidth. That has already been shown by Figure 4.20 and
Figure 4.21 which show no difference between IOPS and bandwidth whenratio is used.

4.4 Implementing A Parallel IO Design

As defined by the previous shown tests the optimization is dependent on a lot of factors. The
one with the most performance increase is using multiple devices. The rest ofthe optimization
factors can be done on top of using multiple devices. As an example, using functional partition-
ing for a multiple device setting can optimize performance further. There are other important
observations that can be drawn as well. One such observation is the use of loop device to test
improvements to SSD multiple device settings.

An important issue when dealing with multiple devices is where to combine the performance.
In the tests shown in section 4.3.4 on testing loop devices the parallel performance has been
achieved on the application layer. In other words the FIO test recognizesall devices and dis-
tributes them accordingly. As mentioned before FIO just makes all jobs readfrom all available
devices. Although this seems as a possible solution it requires changing the applications. Ad-
ditionally this does not allow for global distribution of performance. This canbe implemented
if the application has some information on the global state of the system. Since this will lead
to drastic changes to the application and an over complication of implementation, thisis not a
possible solution.

Another layer available for combining multiple block devices is the block layer. The best
position would be the driver implementation. In fact there are some cards thatcontain multiple
controllers which are shown to the system as a single block device. The RamSan-70 is one
example. The main advantage is that such implementation avoids changing the application layer.
Additionally it avoids the complexity of having to deal with multiple block devices on asystem
level. In other words implementing a driver for multiple devices avoids the needfor using
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complicated parallel file systems. The disadvantage however is that the blocklayer does not
have a global view of the system. Therefore, although the driver can distribute requests over the
available devices it cannot achieve any function binding. An important example for such a case
is write versus read distribution. On receiving a write request the drivercan distribute the request
on any available device. This is specially true for SSD. These contain a flash translation layer
(FTL) which is responsible for mapping addresses. Therefore changing the address to another
device is allowed by the driver. In comparison when a read request arrives the driver can no
longer map it to any device. The read has to be done from the block device on which the data is
stored. This means that the driver is no longer free to choose the distribution. Given that data is
usually read more than written, the driver is not always free to choose thedistribution suitable.

The third possible option for utilizing multiple block devices is on the system layer.One
possibility is to allow the operating system to bind applications to certain block devices. This
might be effective if the operating system has information on data read and write done by ap-
plications. However further complicating the operating system of single compute nodes is not a
good approach. On the other hand the most commonly used method on a globallevel is parallel
file systems. Not only do they provide a global access to all devices, they also can manage data
distribution. Also by adding data layout awareness into the file system data access can be opti-
mized for different access patterns. On the other hand there are many disadvantages to using a
parallel file system. As previously shown parallel file system can represent a massive overhead.
This is specially true for complex global file systems. Additionally to achieve fullparallelism
some parallel file systems stripe over multiple devices. In turn this leads to applications having
to read from all devices simultaneously. This might be counter productive.

Considering the previous points and the tests made in the previous section, there is room
for improvement. There is a need for a better distribution pattern of accessing different block
devices. Another factor for increasing freedom of access is being able to write then read the
same data from different devices. This will allow the most optimum use of device allocation.
The file system or operating system is free to distribute applications or access patterns among
block devices. Therefore reaching best performance through both division of task and functional
partitioning.

Figure 4.23 shows a suggestion for implementing such parallel device system.The system
contains a single uniform file system that has a view of the entire storage space. Given that the
file system can be mapped to the uniform storage space there is no need to use a complex parallel
file system. This is the most important point of the design. The storage space isa uniform single
unit space. Thus all block devices or controllers can use any available block device to access any
block in the memory space. Not only does this serve the use simple file systems, italso means
that any application can use any block device to access any data block. Infact the file system is
free to distribute the access as it considers best. The same data can be read and written from two
different block devices. This means that any suitable access pattern is possible. The file system
can schedule a write on one block device and read the data later from another. Furthermore the
file system can be any common file system. The edit is confined to the access ofblocks. This
means that the file system can operate as it would on any other single block device.

The design shown in Figure 4.23 can be implemented for testing. Considering that imple-
menting a uniform storage on a SSD requires changes on the hardware level the design will be
implemented using virtual devices. The following sections will show an implementation of the
given design. It has to be noticed that the main difficulty in the design was changing as little
as possible. The Kernel should not be drastically changed. Additionally the Ext2 which is the
file system used for testing the implementation concept should also not be reimplemented from
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Figure 4.23: Implementation of parallel device system

scratch. The target is to achieve a better performance with as little disruption tothe file system as
possible. In some cases the file system was found to handle issues that have not been anticipated.
That resulted into an even simpler design.

4.4.1 Block Layer Implementation

The first level of implementation is getting two or more block devices to recognizeand use the
same storage space. One complex solution would be to edit theramdiskmodule available in
the Linux Kernel. The idea is to get allramdisksto access the same memory space. Therefore
implementing the required link. As mentioned before this requires complex changes to the mod-
ule. An additional disadvantage to usingramdisksis the fast access that these devices exhibit
which was proven by previous tests. This therefore would mean that the results are not compara-
ble. Another problem is that aramdiskoperates directly on RAM. Manipulating access patterns
means risking accessing wrong memory locations. In turn this might result in unrecoverable
errors. Thus leading to complex debugging sessions. Additionally the performance using such
changes would not be comparable to that of a singleramdiskdue to module changes.

This step has to be achieved with as little change to the device as possible. As demonstrated
before the loop device is a suitable candidate for testing performance changes. Additionally
using the loop device would avoid some of the difficulties exhibited by theramdisk. The loop
device is set up on top of a file. Therefore using it would avoid direct memory mapping. This in
turn would avoid the need for complex debugging. In fact it was found that this can be achieved
with no changes to the loop device module itself.

Creating a loop device is done by running thelosetupcommand. The parameters required in
this step are loop device to setup and the file on top of which the loop device will be set. The
command does not check if the file is used by another loop device. Thus repeatinglosetupfor
different loop devices using the same file is possible. During a read or writeoperation these loop
devices will therefore access the same storage space.
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Figure 4.24: Linking multiple loop devices to a single file

4.4.2 Registering Multiple Devices

Given that the file system has to access many devices it has to know which devices it can access.
How a file system registers the device it is stored on has been explained in theVFS Section 3.3
and individual file system Section 3.4. The target here is to limit changes to that of the file
system. This will facilitate testing changes. Additionally by avoiding extensive changes to the
Kernel other file system operations will not be affected. However sincethe Kernel needs to
register the possible block devices the VFS has to know which ones to associate with the file
system. The VFS is responsible for runtime variables that are set to cater for the file system
operations. Although it is possible to store the names of the devices and therenumber on the file
system, this will only be a temporary or a testing solution. The proper techniqueis for the VFS
to detect how many devices the file system contains. The next step is for the VFS to associate
those devices to the file system.

Given that the test is performed using loop devices it is possible to have a firm set count of
loop devices needed. That count could be kept in the file system. Another option is to add an
integer to the VFS. Although it is a must to add the block devices associated with afile system to
the VFS, it is preferred to not add the count into the VFS directly. The number of block devices
used in accessing the file system is a factor that would be changed constantly. Given that the
VFS changes result into a full recompile of the entire kernel, adding the count into the VFS is
counter productive. To achieve a dynamic environment the best solution isto form a list of block
devices. The advantage of lists is the changeable length, which is not the case with arrays.

The Kernel already presents a list implementation. This makes forming a block device list
much simpler. However a newstruct needs to be defined. The code for thisstruct is shown
below. This contains three variables. Thestruct blockdevice *sbdevis the block device vari-
able. This will be later used as an identifier for block access. It has to be noticed that the
block devicedoes not contain the regular block device name such as/dev/loop0. Later in the
process of mounting the file system this variable will have to be found. The next variable is the
list variable defined by the Kernel. The source code for the implementation oflists in the Linux
Kernel can be found ininclude/linux/list.h. Using predefined lists in Linux is quite simple. All
needed functions are already implemented. The ones used will be explained when required.

struct list_loop_bd {

struct block_device *s_bdev;

struct list_head list_s_bdev;

atomic_t access_count;

};
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The third and last variable instruct list loop bd is atomic t accesscount. This is an integer
that is used for counting how many request currently access the device.The important aspect
of this variable is using theatomic t provided by Linux. Instead of using a normal integer the
atomic integer is used to avoid possible race conditions. This is necessary given that multiple
processes can operate on the device at the same time.

As proven earlier the VFS has to register the list of block devices. The next step is to find
where to register the list within the VFS. As shown in Figure 3.3 there are many different runtime
variables that could contain this list. The best approach is to add the list into thesuperblock. This
is because thesuperblockexists once for each file system. In fact theinodedoes not contain any
pointer to the block device on which the file system exists. Therefore duringfile operations the
inodepoints to thesuperblockand then points to the block device variable in thesuperblock.

Figure 4.25 shows part of Figure 3.3 with the location of the block device list. As seen the
list has been added tostruct superblock. This is shown by the circle in Figure 4.25 (1). The
list variable is defined as shown in the code segment below. Another important observation is
that the variables bdevhas not been removed from thesuperblock. This has two main reasons.
The first is as mentioned before changing as little as possible in the Kernel implementation. The
second and most important reason is that thestruct superblock is used by all file systems. If
the variables bdevhad been deleted these file systems would have required patching. Therefore
keeping the variable demonstrates how simple it is to add functionality without disturbing normal
Kernel processes.

struct block_device *s_bdev;

/*

* list of loop block devices controlled by the super_block

*/

struct list_loop_bd *loop_s_bdev;

The next step is to fill the list with block devices.

4.4.3 Mounting Ext2 with Multiple Devices

Mounting a file system is a complex operation that involves creating many complexcomponents.
These will later be used to access the file system, ensure coherence and proper operation. Once
again the target is to confine the changes to the Ext2 module. Even then changes should be kept
at a minimum. Given that Ext2 is compiled into the Kernel by default, the Kernel configuration
should be changed. Another possible option is to compile the Ext2 module with a different
name. This approach is useful in case the original Ext2 is needed by the Kernel for booting.
In fact it was found that some Linux Kernel versions mount the first initialramdiskas an Ext2
file system. These Kernels cannot boot if the Ext2 file system is not compiled into the Kernel.
The target then is to change the Ext2 enough for it to be registered by the VFS as a different file
system. This can be achieved by replacing every account of the Ext2 nameby another. That way
one guarantees that the file system is unrecognizable by the VFS as the old Ext2. The problem
here is that even Ext2 interface files need to be changed. This includes not only the files found
in fs/ext2but also the Ext2 files found ininclude/linux.

The difficulty with recompiling the Ext2 as a different file system becomes obvious once the
file system is used. Changing the Ext2 module means that the file system is registered by the
VFS as a different file system type. However the tools needed to use the newly defined file
system are missing. The main problem is formating a device using the new file system. The
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Figure 4.25: Adding list of block devices to VFS components

tools available for formating an Ext2 file system are externals added tools. These need to be
rewritten to format using the new file system. Attempting to use the new file system to access
a device formatted using an Ext2 tool will fail. The VFS checks the file system type before
mounting. If the type does not match, the mount process is aborted. This indicates that the tools
for formatting a device using the new file system requires rewriting Ext2 existing tools. This
however is a complicated process.

The case for compiling the Ext2 as a new file system is unavoidable in case the Kernel does
not accept loading the Ext2 as a module. However the devices used for testing do not need such
drastic measures. Thus the Kernel configuration file can be updated to allow the Ext2 use as a
module. The Ext2 can then be compiled and loaded after the machine has successfully booted.
Compiling a Kernel for the Blue Gene/Q without the need for the Ext2 module is possible. Also
booting a node using that Kernel does not show any problems. Howeverthe Ext2 mount has to
be forced using thetypeoption for the mount command. This is to avoid the Kernel using any
other file system type to mount the Ext2.

The mounting process is carried out by VFS. This might indicate the difficulty of setting
multiple block devices without changing the VFS. Nevertheless the VFS mountingprocess is
dependent on individual file system implementation of certain helper functions. Given that each
file system has a different architecture, the VFS has to employ the helper functions to fill the
runtime variables. Therefore the VFS requests the file system to define these functions into the
file systemtype. Shown below is thefile systemtypedefinition of the Ext2. The code shows
two important variablesget sbandkill sbwhich are set toext2get sbandkill block superre-
spectively.

static struct file_system_type ext2_fs_type = {

.owner = THIS_MODULE,
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.name = "ext2",

.get_sb = ext2_get_sb,

.kill_sb = kill_block_super,

.fs_flags = FS_REQUIRES_DEV,

};

On mounting a new file system the VFS refers to these pointers to access the functions needed.
get sbis used to get thesuperblockfrom the file system. As mentioned before VFS is optimized
for using Linux native file systems. Thereforeext2get sbonly needs to callget sb bdev. Still
the VFS requires the file system to fill out thesuperblock. This however cannot be done using
generic VFS functions. Thusext2get sbhas to supply a function pointer toget sb bdev. The
function pointer has to point to afill superfunction. In case of of the Ext2 the function is called
ext2fill super. As the name suggests the function has the task of filling the VFSsuperblock
with the required data from the file system. Therefore the best position to initialize the list of
loop devices is inext2fill super.

It is necessary to mention here that the mounting process might be differentfor other Kernel
versions. On the Kernel used on thex86 system the Ext2file systemtype did not contain a
get sbvariable. Instead it contained a variable calledmountwhich was set toext2mount. The
functionext2mountthen calls a generic function from the VFS calledmountbdev. This function
however still requires afill superfunction pointer. In turn the Ext2 usesext2fill super. That
means that the changes made on thex86Kernel are compatible with the changes made on Blue
Gene/Q. The code for the initialization of the block device list is shown below.

/*My variables*/

fmode_t mode = FMODE_READ | FMODE_EXCL | FMODE_WRITE;

int nr_loop_dev;

int total_loop_dev=6;

struct block_device *bdev;

struct list_loop_bd *list_bdev;

char loop_devices[20];

/* Adding the additional loop devices */

sb->loop_s_bdev = kzalloc(sizeof(struct list_loop_bd), GFP_KERNEL);

INIT_LIST_HEAD(&(sb->loop_s_bdev->list_s_bdev));

/* Create a new list_loop_bd */

for (nr_loop_dev=0; nr_loop_dev < total_loop_dev ;

nr_loop_dev++){

sprintf(loop_devices, "/dev/loop%d", nr_loop_dev);

bdev = open_bdev_exclusive(loop_devices, mode, sb->s_type);

//bdev = blkdev_get_by_path(loop_devices, mode,

// sb->s_type);

list_bdev = kzalloc(sizeof(*list_bdev), GFP_KERNEL);

list_bdev->s_bdev = bdev;

list_bdev->s_bdev->bd_super=sb;

atomic_set( &list_bdev->access_count, 0);

list_add(&(list_bdev->list_s_bdev),

&(sb->loop_s_bdev->list_s_bdev));
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}

The code given shows the adjustment made tofill super. These target the initialization of the
block device list with the loop devices. The code starts with defining supportvariables. The
most important variable istotal loop devwhich represents the number of loop devices that will
be used. The code then initializes the list usingINIT LIST HEAD. Filling the list is done in a
loop. Each iteration a loop device is added to the list. The loop has to find the correct loop
device name. Given that loop devices are named in ascending order, the loop adds a count to
the string/dev/loop. The resulting string however does not identify the block device on a Kernel
level. The identification as explained in the block layer Section 3.5 is done usinga uniquestruct
block device. To reach from the name of the block device a special function has to be used.
The function is calledopenbdevexclusive. It opens the block device by returning thestruct
block deviceassociated with the given name.

Two lines are commented into thefill supercode given above. These show thatstruct blockdevice
is found using a different function calledblkdevget by path. There is noopenbdevexclusive
on the Kernel used on the x86 system. Therefore a replacement was found. As pointed out ear-
lier the Kernel changes rapidly. Not only does the implementation of functionschange but the
interface as well. Patching the Kernel is a simple method for moving changes from one machine
to the other. Despite that the practical use of patches is difficult. Changes can seldom be added
to another Kernel without checking functionality.

Thefill superhas to set thelist bdevthat will be added to the list. It does that by settings bdev
to the found variable usingopenbdevexclusive. It also needs to setsb of the block device to
the superblock being filled. This is required as the VFS needs to know whichsuperblockto
use when accessing a block device. Using the atomic functionatomicset the access counter
of the device is set to zero. Finally the complete list element can be added to the list. The
process shown here will be done once for mounting the file system. It therefore does not need
to be optimized further. An advantage to that is the possibility of addingprintk that would print
messages to the Kernel log. These can be checked to confirm that the correct mounting process
has been performed.

4.4.4 Unmounting Ext2 with Multiple Devices

Multiple devices and variables have been created to mount the Ext2 file system.Given that these
are not considered by the original Ext2 implementation, the normal unmount operation does not
remove these devices or variables. There is a need for a clean unmount process. The file system
needs to be tested using several different configurations. If the file system cannot be properly
unmounted the whole system will need to be restarted to apply these changes.It is therefore
important to edit the unmount process to undo the changes done during mounting.

The Ext2file systemtypedefines a variable for removing thesuperblock. The VFS will call
kill sb when unmounting the file system. This pointer is set by Ext2 tokill block super. The
problem here is that this function is a VFS generic function which is used by many other file
systems. Changingkill block supertherefore is not possible.

This is where the logic of the VFS implementation can be used. The Ext2 can change the
function called for removing thesuperblock. This can be achieved by settingkill sbto a different
function. In this case the function is calledkill block superloop. The code of the function is
shown below.

void kill_block_super_loop(struct super_block *sb)
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{

struct list_head *p;

struct list_loop_bd *tmp;

struct block_device *bdev = NULL ;

fmode_t mode = sb->s_mode;

list_for_each(p, &(sb->loop_s_bdev->list_s_bdev)){

tmp = list_entry(p, struct list_loop_bd, list_s_bdev);

bdev = tmp->s_bdev;

bdev->bd_super = NULL;

sync_blockdev(bdev);

WARN_ON_ONCE(!(mode & FMODE_EXCL));

blkdev_put(bdev, mode | FMODE_EXCL);

}

kill_block_super(sb);

}

Removing a block device requires calling several functions to perform a cleanup.kill block superloop
loops over all devices in the list usinglist for each. This is a Kernel defined function. For
each device thebd superhas to be set toNULL to set the device free for another mount. Next
syncblockdevis called. Performing a synchronization makes sure that all data cached willbe
written back to the device. In turn preventing data loss. The final step is to put the block device.
Thereforeblkdevput is called to free the block device.

As mentioned before the original Ext2 mount process called the functionkill block super
during the unmount process. Since there is no need to repeat the functions implementation the
function is just called. Again this shows that the design makes room for normal Ext2 operations
to function without disturbance. An Ext2 file system that does not require the multiple device
design can disregard the mounting and unmounting of the loop devices. Eventually the file
system will be unmounted as a normal Ext2 using thekill block super.

4.4.5 Accessing Ext2 Multiple Devices

The complex call graphs for reading or writing a file has been explained in the VFS Section 3.3.
The data access explained has stopped at calling thedirect IO function implemented by the file
system. The only interest in following this long function chain is to locate the pointat which
the device used is found. The Ext2 file system sets thedirect IO to its own implementation
ext2direct IO. This function has to pass the device on which the file system is present toblock-
devdirect IO. This function has been explained in the block layer Section 3.5.

The functionext2direct IO is a good position for selecting the device. All functions below
that are implemented into the block layer. On the other hand any function aboveext2direct IO
does not contain any reference to the block device. Shown below is the code forext2direct IO
function. As can be seen there is a block device pointer passed toblockdevdirect IO. This block
device comes from the file system. Theinode->i sb->s bdevis the pointer to the block device
element in thesuperblock.

static ssize_t

ext2_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,

loff_t offset, unsigned long nr_segs)

{
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struct file *file = iocb->ki_filp;

struct inode *inode = file->f_mapping->host;

return blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,

offset, nr_segs, ext2_get_block, NULL);

}

According to the implementation ofext2direct IO the block device is selected and handed
over to the next level. This however is misleading. This device is only used for finding some
mapping information on the block device. Although the use of different loop devices to call
blockdevdirect IO might result in correct output, it will not increase the performance results.
This is because the previously mentioned loop devices all have the same mapping information.
Choosing the block device from which the data is finally read is called somewhere else. To
discover whether or not the additional devices are being accessed thetop command output has
to be observed. Every loop device on setup spawns a new thread. These threads have to be active
during the read or write operation. Therefore if only one loop device is active then the file is
being read or written to by a single loop device.

Finding the actual device which is used for the read or write operation is crucial for the
implementation to be able to use all loop devices. The best method is to start at the lower level.
The function used for adding a request to the block device ismakerequest. Since this function is
depended on the device driver, the function calling it must be the one deciding on the appropriate
device. This function is genericmakerequestwhich gets its block device from thebio that
it takes as a parameter. Therefore it is important to find the point at whichbio->bi bdevis set.
Given that this variable has to be set by either the block layer or the file system the search is
difficult and long. The best method to facilitate the search is to take a look at thecall graph that
leads to genericmakerequest. This time however it is important to move backwards in the
call graph to find the source and not the result of the call.

Figure 4.26: submitbio is the source of caller forgenericmakerequest

Figure 4.26 shows that the source call forgenericmakerequestissubmitbio. This indicates
that thebio has to come from the direct IO. The reason is that the direct IO operation has to put
together the appropriatebio before usingsubmitbio to submit it to the block layer. The problem
here is that the design demands not changing the direct IO layer too much to avoid disturbing
other functions.

The construction of the direct IO call level can be found infs/direct-io.c. The main function
used by the Ext2 to carry out a direct IO isblockdevdirect IO. This function has to carry out
a lot of administrative organizing to admit the finalbio to block layer. It is important at this
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point to mention the difference between abio and adio. Thestruct bio is used by the VFS to
admit any request to the block layer. Thebio has been extensively explained in Section 3.5 on
the block layer. On the other handstruct diois used by the direct IO. It helps organize the data
that is related to a direct IO access. Despite using thedio for organization in the direct IO call,
the block layer can only accept abio. Therefore thedio has to create newbio to be admitted to
the block layer. Given the interest in knowing where thebio sets its block device variable it is
necessary to locate the point of creating a newbio. The function that does the setting is called
dio bio alloc. It gets the block device as a parameter.

Once again the call source ofdio bio alloc has to be found to see where the block device is
set. This function is called bydio newbio which gets its block device from the buffer head
associated with thedio. A hint towards where the buffer is set is given in a comment added
to thestruct diodeclaration. The comment explains thatstruct bufferhead mapbh is the last
result of functionget block. As explained in Section 3.4 each file system provides aget block
function. For the Ext2 file system it is calledext2get blocks. This function sets the buffer head
at the end once the blocks have been allocated. For that purpose a function calledmapbh is
used. This function finds the appropriate block device from the file system.This indicates that
theget block function is the one that sets block device on which the access is done.

The challenge now is to find an appropriate point for the implementation to change the block
device used. This can be divided into two steps. The first step is deciding on which block device
to use. The second step is to set the used block device to the chosen one.

As explained before the functionext2direct IO is the first function that uses the block device.
As a result it is an appropriate point in the call chain to decide on the block device. The choice
can be done using different methods. One such method is finding the least used block device
and bind the request to that block device. For that purpose the atomic access counter placed into
the block device list can be used. Such an implementation is shown in the code below. Given is
only the part of theext2direct IO that selects and then uses the block device in the next function
call.

/* Dividing req using access count*/

...

struct list_head *p;

struct list_loop_bd *loop_bdev;

struct list_loop_bd *tmp;

int min = atomic_read(&(loop_bdev->access_count));

loop_bdev = list_first_entry(

&(inode->i_sb->loop_s_bdev->list_s_bdev),

struct list_loop_bd, list_s_bdev);

/*Finding the block device with zero or smallest access count*/

list_for_each(p, &(inode->i_sb->loop_s_bdev->list_s_bdev))

{

tmp = list_entry(p, struct list_loop_bd, list_s_bdev);

if ( atomic_read(&(tmp->access_count)) == 0 ){

loop_bdev = tmp;

break;

}

if ( min < atomic_read(&(tmp->access_count)) ) {
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loop_bdev = tmp;

min = atomic_read(&(tmp->access_count));

}

}

atomic_inc(&(loop_bdev->access_count));

ret = blockdev_direct_IO(rw, iocb, inode, loop_bdev->s_bdev,

iov, offset, nr_segs, ext2_get_block, NULL);

atomic_dec(&(loop_bdev->access_count));

...

As seen in the code above, the function iterates through the list of block devices. In each
iteration the access count is compared with the minimum. If the access count is smaller than the
minimum a new minimum is set. In case a zero access count loop device is found the iteration is
broken. Otherwise the iteration continues until the minimum is found. Each time the minimum
changes the associated list element is kept inloop bdev. Once the iteration is done the list
element block device can be accessed.

The least access count method promises a division of load across loop devices. As a result
a high performance might be expected. However the presence of a loop within a call that is
performed hundreds of times might be a performance downgrade. An additional throttle for
the performance of the access count method is the number of atomic operations that have to be
carried out. Eventually there is also no guarantee that this method will divide the performance
equally. The first loop device on the list is promised the first job. If these jobs can be performed
in less time than that needed to add a new job the first device will continue to be used. Although
there is no problem with over loading one loop device over the others, the case differs for actual
physical controllers. There, dividing the performance more across thehardware is an important
wear leveling technique. An additional factor is that the division of jobs is done in a list iteration.
Given that finding the minimum takes time, it is not guaranteed that the least usedblock device
will be chosen. For instance the first device might have been done with a jobbecoming the least
used and is not chosen. This happens if the first device access counthas been checked before
the job finished.

A different more simpler method for choosing the device to access is Round-robin. In this
method the requests are given to the next device on the list. Therefore dividing the requests
equally over the list of devices. The implementation is shown below. The challenge is to find the
loop device next for use without knowing the number of existing loop devices. To avoid having
to pass the number of loop device from the point of setting to the point of use another method
is implemented. The function uses a static defined global variable calleddirect IO count. The
function moves into a list iteration in which the list entry is counted. Once the global variable is
equal to the count the iteration is broken and the block device is taken. If thelist end is reached
the global counter is set back to zero.

/*Dividing req using remainder of count*/

...

/*My Variables*/

struct list_loop_bd *loop_bdev=NULL;

struct list_head *p;

int count = 0;

static atomic_t direct_IO_count;
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atomic_inc(&direct_IO_count);

loop_bdev = list_first_entry(&(inode->i_sb->loop_s_bdev->list_s_bdev),

struct list_loop_bd, list_s_bdev);

/*Finding the block device next for use*/

list_for_each(p, &(inode->i_sb->loop_s_bdev->list_s_bdev))

{

count++;

if ( atomic_read(&direct_IO_count) == count)

break;

if ( list_is_last(p , &(inode->i_sb->loop_s_bdev->list_s_bdev)))

atomic_set(&direct_IO_count, 0);

}

loop_bdev = list_entry(p, struct list_loop_bd, list_s_bdev);

atomic_inc(&(loop_bdev->access_count));

ret = blockdev_direct_IO(rw, iocb, inode, loop_bdev->s_bdev,

iov, offset, nr_segs, ext2_get_block, NULL);

atomic_dec(&(loop_bdev->access_count));

...

The second challenge is getting the access to be directed to the block device chosen. This
is complicated as shown by the previous explanation of the position of block device access.
Although the final set of the block device is done in theext2get blocksthe choice cannot be
moved. The reason is that within a single direct IO access several requests are made to the
block layer. Each request then calls theext2get blocksin case more blocks are needed to be
added to the read or write operation. Considering that each of these requests are grouped into
a unified access, it is reasonable to carry out all on the same device. Thedifficulty is keeping
the appropriate device in the list all over the entire access. The problem becomes clear when
looking at call graph of blockdevdirect IO. This is shown in Figure 3.15 which can be found
in Section 3.5.

The call graph of blockdevdirect IO explains the difficulty with moving the chosen device
towards the access point. The call starts in the Ext2 layer and moves into the direct IO im-
plemented for the block device and then moves again into the Ext2 to find the block device to
access. The problem is to keep the chosen device the same over all of these calls. An additional
challenge is to avoid changing the block device access scheme for other filesystems.

Figure 4.27 shows the problem of gapping the direct IO call towards returning back into
the ext2get blocks. There are multiple gaps that the device choice have to bridge in order to
reach the final access selection point. The challenge is to cross those gaps without changing the
parameter list of the functions.

The first gap is between theext2direct IO and the blockdevdirect IO. Given that the block
device choice has already been handed from the first to the second the gap has already been
bridged. As mentioned before thedio is used to keep data across all function calls within the
direct IO call. Therefore every function on the gap interacts with this structure. The functions
direct io worker, do direct IO and get moreblocksall receive thedio as a parameter. This
makes passing the block device far easier. By embedding the block device into thedio all direct
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Figure 4.27:ext2direct IO call graph with block device choice chain

IO functions can use the same block device across the same access.
First the following line is added tostruct diodefinition.

struct block_device *list_bdev; /*Loop device for the dio operation*/

Next the device is set in blockdevdirect IO before callingdirect io worker. This is shown
by the code below. There is the possibility to allow Ext2 direct IO by a different Ext2 mount
point. The mount point that does not use multiple loop devices will have to avoidchanging the
dio->list bdevvariable. To achieve that an appropriate if condition can be put before setting
the variable. The if condition can check on a variable that is set in the block device variable.
Another option is to try to use thecontainerof function to find the list element from the block
device variable. If this element exists the mount point is a multiple loop device mount. Given
that the implementation needs to be tested without any other parallel direct IO ondifferent
mount points, there is no need to further complicate the implementation. However ifused the
containerof function has to be handled with care. The function can return strange pointers. In
some cases it was even found to return the same pointer it was given. Although the function
itself does not throw error outputs, using these pointers will. The file systemcounter to normal
applications cannot recover from false pointers. These will result in a Kernel panic.

...

dio->list_bdev = bdev;

retval = direct_io_worker(rw, iocb, inode, iov, offset,

nr_segs, blkbits, get_block, end_io,

submit_io, dio);

...

Now thedio contains the correct block device. Once the call for theext2get blocksis reached,
the device has to be moved into the buffer head. This is done inget moreblockswhich is shown
in the code below. To avoid destroying otherext2get blockscalls from other devices that have
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not been mounted using multiple Ext2 design an if condition has to be used. Given that other
devices will not set thedio device variable, the if condition has to simply check for the value of
the variable if set or not.

if(dio->list_bdev)

map_bh->b_bdev = dio->list_bdev; /*Set the buffer head

device to the loop device */

Within theext2get blockscall the buffer head has to be set to the block device passed before
leaving the function. As the buffer head might be reseted during operationit is important to save
it at the start of the function using a block device variable. Once theext2get blockshas found
the blocks that will be read the buffer head is set to the device. In order tomake sure that this
call has been done through the direct IO layer from a multiple device Ext2 thedevice variable
set at the beginning is checked. If the variable contains a value the deviceis changed. This
implementation is shown in the code below.

...

struct block_device *bdev = bh_result->b_bdev;

...

map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));

if(bdev)

bh_result->b_bdev = bdev;

...

As seen from the above the implementation is very complicated and involves a lot of function
changes. The challenge is not just to find the location at which the different variables are set
and used, but also how to change them. The problem with optimizing the Linux Kernel is
not disturbing normal functionality. For instance, if the previous functionshave been changed
permanently, access through other methods than direct IO would not havebeen possible. This
would have meant a great deal of rewrite to other functions and probablyto the libraries resulting
in application changes. As explained before this has to be avoided at all cost.

A final point to be made on the implementation is coherence. Usually parallel file systems
have to guarantee locking on different block devices. This adds a layerof complexity to the file
system in order to prevent reading old data from a block device while the data has been updated
on another. The design avoids this by having a unified storage space. The file system therefore
has to only assume coherence and race conditions on the level of a normalfile system. The Ext2
file system originally prevents reading a block that is currently written by another process. This
will remain the case for the implementation irrelevant of whether the block is beingread using
a different or the same block device.

4.5 Testing Parallel IO Implementation

The test configuration on a Blue Gene/Q has already been explained in details in Section 4.2.
Additionally in Section 4.3.4 the parallelism of the loop devices has been tested. The previous
tests show that using multiple loop devices increases the performance. However the block de-
vices were separated. That meant that the access took place on each individual block device
using different file system and therefore different files. This however is not the case with the
previously explained implementation. For the test script all devices are seenunder a single file
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system. On that basis there is no need to change the test script when testing different numbers
of loop devices. In comparison each different number of loop devices test will require a recom-
pile of the Ext2 file system. In each recompilation the number of loop devices used for a read
or write operation has to be changed infs/ext2/super.c. The exact position and variable can be
found from Section 4.4.3.

The Ext2 with multiple loop device automatically adds the given number of loop devices
to the list. The method has been previously explained in Section 4.4.3. Despite that the loop
devices have to be set up to point to the same file. This has been explained in Section 4.4.1. On
changing the number of loop devices used by the Ext2 file system the number of loop devices
setup has to be changed as well. A possible error will occur only if the number of loop devices
setup is lower than that of the loop devices used. In this case the file system will try to access
a loop device that does not exist. In case the number of loop devices setupis greater the excess
loop devices will be ignored by the file system. Additionally the default of the Linux Kernel is 8
loop devices. To perform tests with more the Kernel code has to be changed. Another option is
to boot the Kernel with the optionmax loopset to the needed number of loop devices. The later
option is preferred since it does not involve patching and recompiling the Linux Kernel.

As explained in the implementation and how the access is done in Section 4.4.5 thereare
different methods for selecting the block device. For the tests shown belowonly the Round-robin
access has been considered. The reason for that is the difficulty of dissecting the use of access
count. During the early phases of development the access count method showed an overload of
access on the first device. This however was due to the use of complexprintk commands. These
consume long periods of time to be fulfilled. This in turn leads to distorting the division of
requests among the loop devices. To count the division another scheme ofcounting access could
be found. The challenge is to guarantee that the access counting will not influence the results.
Since this is very complicated and meant explaining different complex results the test was done
using only Round-robin. The reason for the simplicity of Round-robin is theequal division of
access. Nonetheless this equality has to be proven. To achieve that thetop command is used to
observe activity of loop device threads. During a read or a write all loop device threads used in
the Ext2 file system list have to be active. Using this technique all test results have been proven
to operate on all loop devices in the list of the file system.

Figure 4.28 shows the result for testing the implementation with different numbers of loop
devices. The test has been repeated for 2, 4, 6, 8 and 16 devices. The results shown in the figure
are for IOPS. As previously explained due to a constant blocksize and plotting the ratio there
will be no difference between bandwidth and IOPS plots. For that reason there is no need to
show the bandwidth.

Comparing the results shown in Figure 4.28 by those achieved in Section 4.3.4 isimportant
to have a global view of performance increase. The advantages of having a unified storage over
all block devices has been already mentioned. Nonetheless it was expected that the Ext2 imple-
mentation will add overhead thereby slowing down the parallelism of block devices. The factor
however that was not taken into account was the existence of multiple Ext2 mount points. That
means that there are a lot more active threads catering to the different mountpoints. Therefore,
as seen in Figure 4.28, counter to the expectation there is an increase in performance.

The performance results show that by increasing the number of devices used by the Ext2 file
system performance increases. This however only happens when increasing the number of jobs
performing a read or write. It has been explained before that the loop device requires at least
two jobs to saturate the IOPS. This would mean that by adding one loop devicesan additional
two jobs are required to saturate the file system. The saturation has been confirmed by the
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Figure 4.28: Ratio of IOPS of Ext2 with parallel device implementation against single loop
device

results shown in Section 4.3.4 and in Figure 4.22. There it is shown that a 2, 4and 8 loop
device setting saturates around 4, 8 and 16 jobs respectively. Howeverfor the Ext2 parallel IO
implementation the output shows different results. The 2 loop device setting stillsaturates at 4
jobs. In comparison to previous results the 4, 6 and 8 loop device setting all saturate at 8 jobs.
This means that there is an improvement for the performance of 8 loop devices at 8 jobs. This
indicates that the throttle for 8 jobs on an 8 loop devices was the excess of mount points and not
the loop devices.

The 16 loop device setting behaves contrary to the expectation. Instead ofhaving a saturation
point at 32 jobs it is moved to only 16 jobs. Even the saturation behavior is different than
anticipated. For other numbers of loop devices the saturation or maximum valuewas either
constant after it was reached or slightly increased. In the case of the 16loop device setting the
performance starts to decrease for more than 32 jobs. This indicates that that the bottleneck is
no longer the number of block devices or jobs. The bottleneck is the CPU. Asexplained earlier
Blue Gene/Q contains 16 cores each with 4 threads. Given that each loop device requires one
thread it is logical that the performance increase has to stop at 16 jobs. Under the assumption
of perfect scheduling the 16 loop device threads will be scheduled on 16different cores. Even
if the 16 jobs are also equally divided among the cores, they will still run on thesame core as a
loop device. That indicates that the jobs will have to take part of the computingpower given to
the loop device.

As the number of jobs increase, the portion of compute power that the loop device threads
have to give up increases. Thus decreasing allowed maximum performance. The target here
is to show that the ceiling of the addition of block devices to the design is fully dependent
on the system. Each block device requires service and driver threads,these in turn require
compute power. As shown in this test there is an opportunity of adding 16 block devices. This
however should not be implemented. FIO jobs only read or write data. Actualapplications will
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require additional compute power for application operations. This has to bekept in mind while
designing the system. There is no need for a perfect IO machine on which no application can
run. Important to remember is that block devices come with a cost. Not only a cost of hardware
and design, but also a cost to the system for support.

Figure 4.29: Ratio between IOPS with Ext2 parallel implementation and original Ext2

Figure 4.29 shows a ratio between IOPS for the Ext2 implementation and the IOPSfor the
original Ext2. The ratio is taken between equal numbers of loop devices. As can be seen the
performance achieved is slightly higher than that from using original Ext2 on multiple devices.
This as explained before is due to having multiple mounting points. The maximum however
achieved at the higher number of jobs is almost the same. As can be seen the 8loop device
setting has a large difference at 8 jobs. The reason was as previously explained that the throttle
exists due to the multiple mount points and not due the number of loop devices. Once again the
figure shows only the IOPS. The bandwidth figure is exactly the same and willtherefore not be
shown.

Figure 4.29 shows a performance improvement over using original Ext2. Despite that the
results should be evaluated with care. As explained in Section 4.2 on the test setting the FIO
script uses thefilenamevariable to address several devices. In turn this leads to all jobs reading
and writing to all devices, but only to a single file on each device. In comparison the parallel
IO Ext2 implementation uses one file for each job. Therefore the differencemight be the file
number and not the implementation. However in worst case the implementation still performs
as well as the original Ext2. In light of the advantages for using multiple blockdevices without
changing the application, this is still an excellent result. Additionally for the implementation any
block device used can access the same files. Therefore read and writescan be equally divided
on all block devices. In fact the read test results shown in this section were done on data that
was written to/dev/loop0and read from the entire list of loop devices.
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5 Optimizing Kernel for Storage Class Memory

As the processing power continues to increase with multi-core the IO gap continues to increase.
Although there is substantial development taking place to enhance IO links, there still remains
a gap between CPU and storage. Figure 5.1 shows that there is a 5 order magnitude gap in
cycles between accessing disks and accessing memory [25]. This is rather a great time for
an application to wait for an IO operation to be concluded. Flash memory represents an ideal
candidate to form a more faster storage unit. As shown in the figure the gap isonly 3 magnitudes
of cycles between SSD and memory.

Figure 5.1: There is a 5 order magnitude difference between accessing memory and accessing
disks

Many developers have so far treated SSD as being a simple substitution for HDD. In fact in
the realm of the user space not much has been done to improve the storage access towards SSD.
Fearing backward compatibility SSD manufacturers use the same interfaces for SSD as those
used for HDD. That means building complicated layers of abstraction. For example, HDDs are
accessed on the basis of sectors set usually to 512KB. In comparison SSD require access on a
larger page base which is usually set to 4KB [26]. The reason for the large SSD page size is that
writes can only be done one page at a time. The difference will effect the throughput of a write
operation. Writes in this case need to be buffered and merged due to only sectors sizes being
sent to the SSD. On the other hand reads also need to be buffered to allow aconstant SSD read
of a page size. The buffer is then allowed to send only a single sector size tothe upper layers.
This backward compatibility meant that some of the added performance is lost when using SSD.

Problems become even more drastic when referring to reliability issues of the SSD. Due to
the limited write/erase cycles that flash cells can endure SSD controllers haveto employ wear
leveling techniques. The target is divide use among all flash cells. Since conventional file sys-

Analysis and Optimization of Storage IO in Distributed and Massive Parallel High Performance Systems 106



5 OPTIMIZING KERNEL FOR STORAGE CLASS MEMORY

tems can only use a single physical address space, SSD controllers haveto implement complex
FTL. The advantage is that the file system remains unaware of block movement on the physical
SSD layer. However the write becomes more complicated and require drastic overheads.

Another factor affecting SSD compatibility is the design aspects targeting HDD.The main
problem is the fundamental characteristic differences between the two technologies. While HDD
delays suffer the most from seek time, SSDs practically have no seek time. Yet the system design
including file systems, operating systems and middle-ware have been specifically optimized to
decrease seek time. Some optimizations have even went as far as removing aggressive prefetch-
ing to prevent additional seek time. All these design issues rooted into the current design is
limiting the full potential of SSD.

The Chapter is outlined as follows. Section 5.1 explains related work and conclusions that
can be drawn from it. This section is divided into different optimization approaches. Section 5.2
shows analysis and tests done for factors affecting SSD performance.The section introduces the
conclusions that can be drawn from the test results. Section 5.3 shows anexample of improving
the IO stack for SSD. The section explains the details of removing preallocation which is not
useful for SSD access patterns.

5.1 Optimization Approach

The SSD technology is further adopted into low and high end products due tothe underlying
advantages. The system built on top therefore will have to adapt to allow further improvement.
However as will be shown by the optimization approaches this is not a simple task. The HDDs
has become such a viable part of the design that the entire IO stack has been specifically opti-
mized for its benefit. Due to the drastic differences between the HDD and the SSD technology
this makes the migration complicated. In fact many concepts used under HDD willhave to be
abandoned when dealing with SSDs.

SSDs have only been recently adopted as a viable storage unit due to overcoming the reli-
ability challenges inherited by the technology. Therefore most papers andstudies found did
either target optimization for a reliability defect or presented performance increase due to using
SSD. An additional problem faced is no clear categorization of optimization. The techniques
are strongly related to each other. Nonetheless the following subsections will show some of the
found studies on targeting optimization for or to SSDs. Additionally some studies for difficulties
and challenges on SSDs will be shown. The main target is to observe how thetechnical com-
munity is trying to adopt SSD into existing systems. However since most papers as mentioned
lack a clear cut optimization approach observations and conclusions will have to be drawn on
the basis of the available data.

5.1.1 SSD Optimized File Systems

The complexity of a file system was discussed in Section 3.4. As has been seen the file system
is a complicated middle-ware. As has been discussed before in Section 3.6 there are two ap-
proaches to accommodate wear leveling. The first is using a specific file system. This will have
to integrate the wear leveling algorithm allowing use division over flash cells. The main advan-
tage of this approach is removing the need for a costly FTL. The complexity however has not
disappeared and has to be implemented into the file system. Therefore support for new functions
has to be implemented such as out of place write [13].

Although this might appear as a new concept the Linux Kernel has contained the support for
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such types of file systems for many years. File systems such as JFFS and JFFS2 have been part
of the Linux Kernel for a long time. JFFS stands for Journaling Flash File System [13]. Most
file systems for flashed are based on a log construct. Log based file systems are an additional
option to perform wear leveling. The basic idea is to represent the complete file system as being
a log. Only the head of the log can be updated and the log continues to move in circular form.
The difficulty of this type is that updated blocks cannot be changed in place. This means that
new blocks have to be used. The file system has to keep track of block versions to know which
to use and which not to. The disadvantage is that these file system supportinformation has to be
kept in the RAM and is created at runtime. Therefore at each mount the whole file system has
to be checked to recreate the support information [13].

Flash based file systems have a need for supporting out of place writes. The necessity origi-
nates due to the using wear leveling techniques. This means that block updates are usually not
done in the same place. The block is rather copied and updated in a new write process. In fact
SSD controllers usually perform the same operation to increase write speed. Erasing a block
before writing is a time inefficient operation. However as the number of write operations that
have been performed increases the space of free storage will decrease quickly. A log file system
will therefore approach its circular end. Since all the blocks have been written the log file system
will not be able to continue writing. Considering that the log file system has information on the
block versions it can delete outdated blocks. This process is called garbage collection [13]. SSD
controllers use the same method.

Figure 5.2 shows the optimization layers of the IO stack by using flash file systems. It is
important to note that the layer names have been intentionally changed. The individual file
system has been substituted by flash file systems. The block layer and device driver still are
necessary to communicate with the device. However the device has been changed to NAND
flash memory. This indicates that the controller design of the SSD is made far simpler due to
the missing FTL. In fact the controller can be reduced even further by allowing the file system
to track bad blocks and performing some error detection and correction algorithms. Although
this appears to be useful for decreasing controller and therefore hardware complexity it rather
complicates the file system.

The desire is to divide the complexity onto different layers in a more optimized fashion. Given
that the target environment contains multiple weak cores using more complicatedfile systems is
not desired. Therefore a different more suitable middle ground has to befound for implementing
a flash file system. One such implementation is the usage of Nameless writes. The idea is for the
write operation to only signal the controller with the data to be written. The controller decides
on a suitable location and returns a confirmation to the file system which includesthe address of
the data. Hence the name nameless writes [27]. The file system will therefore have to distinguish
between new writes and updates. The need for the division is that the controller must be able
to identify blocks that are out of date. This is solved by allowing the file systemto send a free
command on a certain block to the controller [27]. In fact many SSDs alreadysupport atrim
command that allows signaling the controller of unused blocks. The main disadvantage for the
method indicated for updating is the two steps needed. The first step is an normal nameless
write. The second is a free or trim command.

A nameless write results in a delayed address knowledge for the file system. The file system
has to therefore coupe with the temporary set back in not knowing the address. A read request
therefore cannot be submitted until the device is fully done with the write. Only after the con-
troller sends back the address of the written data can the request be submitted. This however
does not constitute a large delay. The read request would have been delayed under all conditions
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Figure 5.2: Optimization of IO stack using flash file systems

until the write operation is concluded. Another factor that complicates this method is the need
for a reclaim operation requested by the controller to the file system. The controller requires
carrying out garbage collection operations or additional dynamic wear leveling. This means
that the controller might need to move a block that has been addressed by thefile system. The
controller therefore has to request a reclaim first on the address [27]. The obvious disadvantage
for this process is the added IO operations needed to be performed. Notonly is the controller
delayed in completing garbage collection operations, but also the file system has to keep track
of physical position of data versions. That means that a reclaim operationmight send the file
system into search mode to find the physical address to be reclaimed in its usedaddresses. If
found, the file system then has to do an additional write to move the data to another physical
address before allowing the controller to reclaim.

Although using nameless writes has disadvantages it also contains many advantages. Having
a file system that is aware of the underlying physical NAND construction results in layout aware-
ness during read and write operations [27]. For example the file system can write data in a better
block form matching the need of the controller. Frequently read data can bewritten several times
to allow for less read disturbance across certain blocks. Additionally a writeoperation that is
known to be rewritten in a few cycles can be kept in RAM to avoid wasting a write/erase cycle.
A further and rather important advantage for nameless writes is the free division of SSD services
between file system and controller. A system that has weak cores can offload to the controller.
On the other hand systems that have better CPU performance can utilize it. By allowing simpler
controllers the time to market is significantly reduced.

The more widely used option for wear leveling in SSD is the use of FTL. This option is
preferred due to the ability to use any file system on top of the SSD. The backward compatibility
however comes at a high price to the controller. All NAND flash services has to be done in the
controller. This rather complicates the design. Since the above IO stack layers are unaware of
the existence of the SSD, requests are not optimized. Some conventional filesystems such as
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BTRFS have been trying to implement such an optimization for FTL designed SSDs. However
the SSD does its best to hide its identity from the above system. Therefore such file systems can
only engage the optimizations if the user specifically indicates the underlying storage device to
be a SSD.

Shown in Figure 5.3 is the optimization of the IO stack using FTL. As can be seen, in com-
parison to Figure 5.2 an additional layer has been added above the NAND flash memory. This
layer is the FTL required to map the file system on the lower storage. The main advantage of
such low level optimization is specifically targeting SSD functions. Manufacturers can increase
performance using different hardware and software layouts. Wear leveling, garbage collection
and other SSD services can be done as efficiently as possible. The most difficult part for de-
signing an SSD specific file system is the absence of detailed information on theSSD hardware.
The reason is that most SSD manufacturers keep there hardware details and even driver soft-
ware a secret. Therefore most file systems that are designed for SSDs will not be able to make
full optimizations. The file system designer will have to make assumptions that might not fit
all controller types. On these basis having the controller carrying out its own services means a
higher overall optimization for the SSD access. This however might not be true for the system
in general. File systems will still have difficulties in optimizing access to SSD and therefore the
system loses efficiency.

Figure 5.3: Optimization of IO stack using Flash Translation Layer (FTL)

An additional factor that rather limits the use of the conventional IO stack with the FTL is
the missing parallelism. As mentioned in Section 3.6, SSDs have inherited parallelismbuild
into them. Since HDD do not share this feature the IO stack is sequential by nature. In fact the
application is the one that has to signal parallel access. Parallel access can be achieved if the
application uses asynchronous IO or AIO. For that purpose the Linux Kernel offerslibaio [28].

Abstraction is mainly done to achieve compatibility. For example, the FTL targets abstraction
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of the underlying SSD to allow compatibility with file systems. This however indicatesloading
the controller with operations to hide the SSD functions from the system. In addition to that the
CPU is loaded by operations that are not needed such as seek time reduction. File system stride
to allocate contingent blocks as close as possible to each other. In fact themain reason for block
allocation complexity is the use of preallocation. The technique preallocates a group of blocks to
the file that are close to the previously allocated data blocks. The target is for the next blocks of
data to be placed in the preallocated free blocks to allow for less seek time during read and write
operations. Not only is this an added overhead and a further complication tothe already complex
write operation, but also serves no purpose. The file system operates on a logical addresses that
are irrelevant to FTL. While to the file system block 0 is next to block 1, on the physical layer
these two blocks can be no where near each other. The controller will place the two blocks as it
sees fit and will signal the FTL with the actual physical addresses. Therefore there is absolutely
no requirement to waste CPU time on performing such complicated preallocation algorithms.

Another property of file systems is targeting the decrease of fragmentation.In HDD allowing
data to become fragmented means that applications will have to move across larger disk spaces.
This means that a file write operation and a later read would result in larger seek times. In
comparison SSD do not exhibit any form of seek time that would justify the useof CPU for a
decrease of fragmentation. Since most file systems use a block based allocation there is no fear
of loss of free space due to fragmentation.

Seek time has to be avoided at all cost on HDD. This means that aggressiveprefetching cannot
be allowed [28]. Only prefetching on adjacent or sequential data is possible. The main reason
for that is hindering the head from moving too far from an actual read or write operation. In
comparison an SSD would be able to perform real aggressive prefetching during an idle period.
That could result in very high performance improvement on the application layer.

Linux offers the ability of accessing the block devices without the use of a file systems. This
has the added benefit of allowing applications with their own data allocation andaddressing
schemes to directly bypass the file system layer. The reason for mentioning this outstanding fea-
ture is the need for measuring the overhead of file systems. Some papers have already observed
the overhead of some file systems on the performance of the SSD. In [25] the overhead of the
XFS has been measured and found to be high in case of random writes. Given that many factors
affect such a test it will be more convenient to repeat it on the available environment.

5.1.2 Access Patterns and Scheduling

One of the difficulties is the essence of accessing difference between theHDD and SSD. While
the first exhibits large seek times the second does not. This however is only the tip of an iceberg.
The complication and the difference increases by taking into account reliability issues of SSD.
Additionally the unique write/erase cycles of SSD means that there is a completelydifferent
access pattern dependency. The problem becomes even more difficult when realizing that obser-
vations have been HDD oriented. Some performance differences between patterns are attributed
to wrong properties due to miss understanding SSD layouts.

Predictability is an important property when testing storage devices. Due to thenature of
storage devices predicting timing of request fulfillment is not an easy task. HDD seek time
means that a write or read request can exhibit a wide range of delay. Therefore the latency
becomes dependent on how fragmented the devices is and how well the IO stack layers above
are able to avoid straining the HDD. As mentioned earlier the IO stack was designed with HDDs
in mind. The target became to avoid reasons for low predictability using different techniques.
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Seek time as the largest predictability issue for HDD became the focus point. Access patterns
are kept as sequential as possible. File systems employ allocation and preallocation schemes
that would allow file data to be as contingent as possible.

On designing access patterns for SSD different issues arise. Using thesame preconceptions
for SSD as those used for HDD is a mistake. On the other hand considering SSD to be access
pattern independent is also false. The unique SSD design makes it unpredictable, yet the reasons
are different than HDD [28]. While SSDs have no seek time they still contain other factors that
make different access patterns behave differently. One of these unpredictability factors is the
services that are required to support the SSD [28].

The most noticeable difference is that SSDs do not exhibit equal read and write times. While
read can be done at random and any place in the SSD, write is limited to free space. An additional
problem with write is that pages can only be written sequentially within SSD blocks. This means
that page number 0 can only be written after page number 1 within the same block[10]. The
need to erase a block before writing to the pages also makes the write process slower. This
therefore would indicate a drastic mismatch in write versus read latency for SSD [29] [26]. The
problem is however that this is not always true. Since allocation is hidden from above layers
using the FTL, the controller tries to hide the side effects. As an example, controllers avoid as
much as possible using a full write/erase cycle. As explained in Section 3.6 out of place writing
is used to write all incoming data in free blocks. This however increases unpredictability. Once
the SSD is full garbage collection will have to be switched on to free space. In fact some SSD
exhibit sudden write delays after long write periods. These are due to the controller trying to
free space for the incoming write requests [28].

Another issue that makes a write request slower than read is the effect ofmerging. Data can
be read almost at different granularity. Since SSDs are forced to use the same interfaces as those
of HDD, SDD needs to simulate sector sizes. The sector is usually 512KB in size. In fact most
conventional file systems operate only with sectors sizes. In comparison SSDs operate at a page
size of 4KB and blocks of 64 pages. Simulating a sector size for read operations is simple. Even
if the controller needs to read additional data it can ignore or buffer the rest of the page and send
the sector chunk required to the above layers. This however is different for write operations.
These can only happen in page sizes. Since the controller is not willing to waste the rest of the
page the sector written will need to be merged with others. The merge operationadds to the
latency of the write requests [26].

Access patterns are usually divided into two main categories random and sequential. As ex-
plained before HDD are faster in case of sequential access due to lowerseek time. SSDs however
are different. The main advantage that almost all sources state for SSDs isthe quick random ac-
cess allowed under a fully electronic technology. In some cases this becomes misleading. As
discussed in the previous paragraphs, read is different than write. A random read is large orders
of magnitude faster on a SSD than on a HDD. Write are different. They highlydependent on
different factors. A random write could be delayed longer than a sequential write due to the
difficulty with merging sectors into pages. The problem however is that many papers tend to
attribute specific latencies with random access to fragmentation. In [30] different latencies were
found for different access patterns done on different SSD types. The main observation despite
that is the controller effect that must have lead to such pattern differences. While fragmentation
might have a large influence on HDD latency this is not the case with SSD. Onceagain file sys-
tems might lead to useless overhead. Avoiding fragmentation on file system level is not useful in
on a SSD employing a FTL. While the file systems believes it has proclaimed contingent address
spaces the controller reorganizes this into a different pattern.
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It is difficult to conclude how much latency is influenced with access pattern change. The
reason is the use of controllers that hide the actual access pattern that is taking place on the
physical level. As mentioned before a sequential write is preferred for the control to be able
to perform sector merging. Additionally the pages within the same block have to be written
sequentially. Random write however might lead to a high garbage collection overhead. This is
only true if the random write involves updating already existing data. The latency difference
however between random and sequential writes is dependent on algorithms used to implement
the controller. In fact a sequential write might be turned into a random one by the controller to
write in freshly erased blocks. The opposite is also possible. Random access write might result
in a fully sequential write due to use of FTL.

The issue of random versus sequential access becomes even more interesting when observing
SSD layout. As mentioned in Section 3.6, SSD cards are made of several flash memory chips.
This means that SSD has an inherit internal parallelism. In fact this propertymakes the random
access more efficient. The reason is that by accessing different chipsthe controller can perform
several read or write operations in parallel. Random access however does not dictate accessing
data on different chips. This leads to the parallel access increase to be highly mapping dependent
[31]. Another issue that is rather interesting is mixing the two operations readand write. As
flash memory chips cannot perform both operations on some levels at the same time there is an
expected performance degradation. This has been shown to be the case[31].

The life span of a SSD is to a large extend dependent on the workload layout [31] [32]. As
a direct result the controller becomes responsible for acting on changingaccess pattern to avoid
early failure. In fact all wear leveling techniques are specifically designed to approach a more
random pattern. This is because random patterns allow the chip and block utilization to be
further divided among all available memory units. For that reason pattern dependency cannot
be simply observed from higher stack levels. In fact the file system has almost no effect on the
pattern. Although preallocation, for example, tries to increase data contingency, on a SSD this
would not result in physical data contingency. Under these conditions thefile system has the
illusion that future reads are sequential, while physically the reads are randomly divided across
the SSD. Even though the write in a sequential manner into a flash block might decrease latency
file system algorithms cannot help. Reserving the next page in a flash blockto future writes
would hinder the writing of any subsequent page in the block. Since the controller will probably
not allow that, the page will be claimed for other write operations.

Many applications exhibit random access and might even be dominated by it [25]. Given that
HDD do not perform well under these conditions, the IO stack tries to approach a more sequen-
tial access pattern. The difficulty however is that the IO stack has no control over applications IO
patterns. As a consequence the IO stack uses other techniques to allow a more uniform access
pattern. The most important technique to that purpose is scheduling. By waiting long enough
there is a good probability that two IO requests will occur that are closer in the address space.
The IO stack therefore holds a queue as explained in Section 3.5 for all submitted requests. The
target is to rearrange and merge requests to approach a more sequentialaccess.

As explained before SSDs do not exhibit any seek time and are mostly access pattern inde-
pendent due to FTL use. Since this is the most important reason for implementinga scheduler,
most conventional HDD designed schedulers will result in avoidable overhead [25]. In fact most
SSD driver designs avoid using queues and schedulers. This is mostly done by overwriting the
makerequestoffered by the block layer. The Linux Kernel offers several schedulers. The sim-
plest to understand is called noop scheduler. The noop does no scheduling at all. The request
is simply placed in the queue as soon as it arrives. On an HDD the noop will exhibit the worst
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performance. In comparison best performance is achieved using a noop scheduler on a SSD
[26]. This is a strong indication that conventional schedulers are an overhead that adds latency
to the SSD access. SSD manufacturers prefer overwriting themakerequestfunction instead of
switching to the noop scheduler. This is because there is no method to signal tothe IO stack
which scheduler to use. The choice is left to the Kernel and the user.

Although there is no direct performance improvement from using HDD schedulers, this by
no means denies performance increase in general to using schedulers on SSD. The target is to
observe SSD properties and implement schedulers exclusively for SSDs. This is the target of
the scheduler design in [26]. The idea presented is that merging different sector write requests
lead to additional overhead. Therefore the scheduler introduced in [26] suggests servicing all
sectors in the same block as soon as they arrive. Thus reducing merging overhead. Using this
scheduling scheme the controller would receive a group of contingent sectors that can be merged
into a page. There is no seek reduction done in this scheduler.

The explanation of SSD access patterns showed that in some cases it is preferred to have
sequential writes. This is true for SSD cards that exhibit large write to readlatency mismatch.
The reason is trying to get the writes done as a bulk might allow the controller to do more
optimized writing. Also it allows the controller to simplify merging sectors into pages which
has been pointed out before. In addition to that controllers might avoid erasing a block for a
single page. However for chunks of data a block erase is worth it. Not to mention that the erase
delay will be divided over the total number of write requests written into that block. Under these
conditions using write deferring might be useful. The term write defer meansthat a write will
not be serviced until a certain point in time. This is allowed since most applications do not wait
for write confirmation to continue. This has been shown to provide performance improvement
[29]. The problem with deferring is its need for merging different IO operations to form more
contingent data units. Merging is a CPU heavy operation [28]. This comes as no surprise. CPU
has to compare every incoming request with previously made ones to find possible merges. Once
that is done the actual merge operation can begin. It is therefore logical that by increasing the
write defer window results in larger CPU overhead [29].

Another interesting write improvement is write alignment. The target is to align all writes to
block boundaries. For SSDs this becomes an advantage as the controller can avoid unnecessary
block erase. This shows significant promise in improving the write performance. In [29] it is
reported to increase the performance by as much as 50%.

As a byproduct to schedulers the queue became a useful tool for implementing fair access.
This however is not realized by HDD schedulers. It is important to know that schedulers target
mostly overall performance. To that end some schedulers allow starvation of some requests. This
might be in the interest of overall system performance in the presence of seek time. SSDs sched-
ulers however can be designed in a more efficient method. Different queues can be assigned to
different users or different files and data [28]. In fact a reasonable assumption to improve per-
formance is to assign different queues to different storage space. The decision should not be one
sided. Allowing the controller to initiate different queues might give the possibility for further
internal SSD parallelism. In all cases queue plugging has to be avoided as itresults in overhead
that is not useful for the SSD [28]. The issue on a new form of queuinginterface for SSDs has
been extensively explained in Section 4.1.4. The interface explained is a new standard called
NVM Express.

Figure 5.4 shows the optimization layers for implementing IO scheduling. The VFSis re-
sponsible for the implementation of the schedulers. Therefore most optimizationwill take place
in the VFS layer. Furthermore the choice for appropriate scheduler is currently reserved to the
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user. To change that aspect the VFS can be allowed to choose the appropriate scheduler. This
would be useful if the VFS can somehow detect that the underlying storagedevice is a SSD.

Figure 5.4: Optimization of IO stack using IO scheduling

Although the VFS chooses the scheduler, it does not decide on how to apply it. This choice
is still done in the block layer. In fact the VFS merely supplies the block layer with function
pointers to the scheduler. Since the block layer allows the driver to overwrite themakerequest
function the driver has the opportunity to discard all scheduling and queuing. The optimization
done from a scheduling scheme therefore becomes a cooperation between three layers the VFS,
block layer and driver. It remains to be noted that the device in the IO stackhas been replaced
by the FTL and NAND flash memory. This is done to indicate that the access pattern decided on
in the scheduling scheme might be distorted by the controller. Hence the optimization would be
further improved if the controller is involved.

5.1.3 Internal SSD Optimization

SSDs differ on many layers from HDD. The main difference is in the amount of service that
an SSD requires. Storage access in a SSD is no longer only dependent on the device itself.
SSDs access time suffers from the reliability constraints. An obvious exampleto limited SSD
throughput due to reliability issues is write amplification [33]. A 1MB write operation on an
HDD would usually result in almost exactly 1MB physical write. SSDs requireerror detection
and correction bits. These add to the write amount, not to mention the added latency of producing
these bits. The detection of errors also limits the throughput of the read operation, more so for
MLC than for SLC.

Another example of how the throughput is limited by reliability of SSD is the requirement
of out of place write. This is a direct result of SSDs need to employ wear leveling to increase
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the life span of the device. Out of place writes cannot function unless a garbage collection
algorithm is utilized [33]. The problem with garbage collection algorithm is the unpredictability
that is present in the amount of overhead induced by running it. A write operation on a freshly
erased SSD has a low latency. As more write requests are serviced the placing of the new writes
becomes difficult. Although it is preferred to run the garbage collection algorithm during idle
times, at a certain storage space consumption level it will have to be switched on. The problem
is that the writes will have to be delayed till some blocks are erased. Over provisioning and
other techniques can be employed to minimize the effect. Despite these techniques the delay of
writing to a SSD will degrade over time. The amount of degradation is dependent on the SSD
design.

The most important aspect of optimization is rethinking internal SSD functions.As shown
before reliability factors dominate performance. These can therefore behandled on a system
basis or an internal SSD basis. While the previous sections point to the problems related with
systems adoption of SSD, the most important optimization can be done from within the SSD
itself. Using special algorithms and further optimizing the IO stack to operate athigh efficiency
with SSDs is not a simple task. The biggest obstacle is analyzing the SSD itself. SSDs contain
many different algorithms most of which is based on manufacturers Intellectual Property or
IP. This in turn means that most information on the actual implementation of the SSD isnot
available.

Analyzing and comparing SSDs is not just complicated due to the use of IP units, but also
difficult due to the interface used. SSDs attempt to simulate HDD interfaces to beused with
legacy designs. This however means that many of the underlying implementationis hidden [34].
In fact as mentioned before the interface hides even the aspect of the device being a flash based
storage unit. This extremely complicates the analyses and in turn makes designing special stack
operations for SSD almost impossible. However some conclusions can be drawn from either
flash memory basics or from tests done on SSD.

The most important observation for SSD is the need for driver support. Due to the common
interface used to support most available HDD these can function without theneed of installing
drivers. SSDs on the other hand require a driver to operate correctly. As a consequence designing
a high end SSD is done both in hardware and software. In fact many of theoperations that have
been attributed to the controller could be easily moved to the device driver. The distortion of
the border between hardware and software SSD design is a massive limitationto actual SSD
analysis. While one SSD is dependent on CPU frequency due to driver operations another is
not. The SSD designs usually hide on which level any of the service operations are done. As a
direct result performance of the same SSD might change when porting it to adifferent system.

Although the analysis is made difficult by the absence of a clear hardware versus software
SSD design, there are advantages to this design concept. There is large room for improving SSD
specifically for a given system. While some systems may benefit from a largersoftware driver
others will not. The use of multiple weak cores means that driver is limited by the performance
of a single core. Therefore the system will benefit from a more hardware implemented controller.
In fact this is the expectation that has been proven by the frequency testsdone in Section 4.3.1.
The benefit is increased by applying a controller than has more specific hardware optimizations
done for the system implementation. One such optimization is the use of less errordetection and
correction code in case the system already builds on higher level error handling codes. This in
turn will increase read and specially write operation due to reduction in the write amplification.
Additional more specific enhancements would result in even more efficient storage utilization.

Despite hardware being more efficient and faster in handling issues on thestorage level, the
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software implementation is still used. The main reason is that hardware design iscomplicated
and time consuming. Yet the use of larger more complex software drivers should not be viewed
as a final limitation. The issue of parallel operation is a great aspect of howfar the performance
can be enhanced. To achieve better performance multiple thread driversare the best approach
[28]. It should be noted however that the limit of such thread design is the CPU ability to carry
out parallel processing which depends on core count. Yet another limitation to the use of SSD
software services is the extend by which these operations can be executed in parallel. While a
process such as garbage collection can be done in parallel, error detection and correction cannot.
In addition to that software is limited due runtime information loss. This means that a fully
software operated SSD controller is at risk of losing more in case of a power loss.

Finding the border between hardware and software implementation in relation toperformance
is difficult. This is quite obvious when dealing with the out of place writes. As explained in
Section 5.1.1 there are two options for achieving a viable SSD wear leveling. The first is using
a flash file system that would support the out of place write. This implementationtherefore
pushes the wear leveling issue to an even higher stack level than the driver. The most important
advantage from operating at these software levels is more stack information. File system can
rather enhance placement of data and can support even longer write deference. This can also
be made true for a driver that can further gather more information from theabove layers. The
other option for supporting out of place writes is using a FTL. The property of a controller that
implements wear leveling techniques completely in hardware is more appealing to systems with
low CPU performance. On the other hand complicating either the hardware orsoftware of a
controller implementation due to a large FTL is inefficient. The design of the FTL ishighly
dependent on the size of mapping. To allow smaller more efficient write operations the FTL
will grow in size wasting both storage and processing time [28]. On those grounds as explained
previously in Section 5.1.1 in [27] a middle solution was presented. Nameless writes give the
opportunity of implementing hardware wear leveling without the need of a FTL.Nonetheless
there are other constraints to that approach that have been mentioned in Section 5.1.1.

SSDs internal design offers an added dimension of optimization. The inheritparallelism of
SSD give a high interest to the controller performance and viable enhancements [31]. The
parallelism appears due to the need of using multiple flash chips in the design ofSSDs. The
controller therefore has the ability of further enhancing efficiency by dividing requests among
these different chips. Until now only the SSD controller stands to benefit from this feature.
However by specifically optimizing the upper IO stack layers the optimization canbe increased.
For example, single read and write queues need to be reformed into more complex parallel
operations. To achieve this the internals that supply the SSDs parallelism have to be understood
[31]. Yet another more important aspect of internal SSD parallelism is the difficulty of the
level of operation. Challenges need to be handled on a much more global level now need to be
performed in the firmware [31]. On one hand the lower level design of parallelism has a larger
set of limitations, on the other it has the opportunity to benefit from previous experience. While
firmware could not support complex stripping algorithms from parallel file systems, it could use
similar simplified techniques.

One of the benefits for parallelism on the low level is hiding delays induced bywrite opera-
tions in flash memory [35]. While HDD can service a single write or read operation at a time,
SSD can use multiple chips to induce several reads or writes. By observingsingle chip behavior
the performance can be increased even further. As previously reported in Section 5.1.2 perform-
ing mixed reads and writes degrades performance. This can be explainedby chip behavior which
cannot perform two different operations in the same enable group. Therefore by allowing the
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controller to detect future read operations writes can be performed on different flash chips than
the ones used for the read. That can only be achieved if the upper layers somehow inform the
controller by the upcoming access pattern.

One of the major difficulties in implementing parallelism on this low level in SSD is the
requirement of a parallel FTL [36]. This is not a simple requirement. The FTL should not act
as a performance bottleneck. The overall SSD layout is complex and requires addressing many
different spaces using multiple buses. The FTL has to be able to deal with allof these issues
and more. Thus making the FTL a viable candidate for optimization. For instanceengaging
several different controllers into a unified FTL will eventually lead to a lossof performance. On
the other hand using several FTL is not a simple task. A FTL needs to be constantly aware of
controller wear leveling and changes done on the lower level. The FTL therefore could divide
the mapping of the underlying storage space among smaller more efficient tables. Another
important aspect that complicates parallelism of FTL is the added dimension of parallel services
that request changes. The controller might be accessing and updating the FTL for dynamic wear
leveling. Mean while the parallel operating garbage collector might be trying toinform the FTL
of moving blocks to other locations to perform an erase. In addition to that loss of FTL data
is fatal. While bit and byte errors are recoverable by error correction and detection algorithms,
loosing FTL mappings is not. If the file system attempts an access using a logicaladdress to
which the physical address has been lost by the FTL the data cannot be recovered. In fact such
data loss cannot be recovered even though the data exists on the storageunits. Furthermore the
location at which the data is written is not recovered by the garbage collector. The FTL in such
a case will have to handle the incoming request from the controller to relocatethe data for an
address that the FTL doesn’t recognize. All this factors into the complexityof a parallel FTL.

Figure 5.5 shows the layers on which the optimization is done. Device driver,controller
and FTL changes have been previously explained. The problem however is that limitations are
inherited into the controller due to the block layer. This means that applying changes to the
device driver might require removing some of these limitations. In fact the block layer is the
first line of layers that could inform upper layer of the device type. In turn this can be used
to trigger a more SSD efficient upper layer operation. The block layer alsoholds the ability to
take on some of the functions required by the lower layers. There has been no literature found
on the opportunity of enhancing the wear leveling or the parallel access onthe block layer.
In fact the block layer might be useful in functioning with specified optimizations for SSD
without changing the upper layers. Nonetheless the power of the block layer remains limited
and therefore might not offer real optimization chances.

Although the optimization of the SSD design only points to lower layers an optimizationon
the complete IO stack might be the result. As discussed before designing the SSD controller
might be useful if done with upper layer functionalities in mind. The SSD controller has been
attempting to shield upper layers from physical address change using FTL. The file system
therefore engages costly allocation algorithm in the hope of decreasing already absent seek times
for SSDs. One suggestion is to find a method to enhance internal SSD access towards the access
patterns of the HDD. Not only will this increase general internal SSD performance but it will
make the allocation algorithms useful. A case can therefore be made for keeping the same
scheduling algorithms but enhance the SSD controller towards this scheme. This however is
counter to the norm, which dictates that software be optimized for hardware and not the opposite.
Nonetheless the method might show room for improving performance of SSD on legacy HDD
interfaces.

Analysis and Optimization of Storage IO in Distributed and Massive Parallel High Performance Systems 118



5 OPTIMIZING KERNEL FOR STORAGE CLASS MEMORY

Figure 5.5: Optimization of IO stack by changing SSD design

5.2 SSD IO Analysis

In the previous sections some inferences have been made as to how SSD access can be improved.
To find which implementations show more improvement it is crucial to perform several IO tests
under different conditions. The challenge however is the difficulty with testing IO on SSD.
As previously mentioned SSDs hide most of the implementation under HDD interfaces. While
being able to test a typical SSD it is quite complicated to attribute performance change to certain
properties.

Due to the unique architecture of the Blue Gene/Q machine porting SSD drivers is not made
easy. Almost all SSD manufacturers develop their drivers onx86machines. Since Blue Gene/Q
is not compatible with thex86 architecture the porting is made difficult. Furthermore the SSD
are mostly optimized for thex86 architecture. Therefore a high drop in performance could be
expected when porting the driver. Some SSDs perform some of their services in the driver
itself employing different algorithms. The driver becomes a complex unit thatrequires detailed
information on hardware to optimize for a given system. In addition to that thesedrivers hold
IP. which the manufacturer prefers not to share with others. Thus the drivers of such cards are
closed source. Not only does this prevent optimization on the Blue Gene/Q, but also hinders
detailed analyses of the cards internals.

The difficulty of porting drivers onto the unique Blue Gene/Q architecture was seen on many
levels. For example, thex86architecture mostly runs with a default page size of 4KB. The Blue
Genes/Q Linux Kernel defaults to the 64KB page size. Since the cards drivers are designed
on thex86 some are incompatible with the page size of 64KB. This prevents testing the actual
difference in performance between a card on the Blue Gene/Q and other architectures. Other
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difficulties arise also from the implementation of the Blue Gene/Q on the basis of thePOWER
architecture. Yet another difference is the massive parallelism requiredon the multi-core Blue
Gene/Q to utilize the computing power available. This is not anticipated by the SSD manufac-
tures and therefore might not be utilized. Under these circumstances testinghas to be made by
accounting for the differences. To conclude different aspects on SSD performance a set of tests
have to be done. Despite the difficulty of testing SSD, this study is not interested in specific
SSD performance. The interest is in finding general properties of SSD that could lead to a more
optimized IO access on SSD. Therefore tests might not be performed only on SSDs but also on
general upper layers. In addition to that comparing absolute performance numbers is not neces-
sary. More information can be found in comparing job scaling performance and ratios between
different test conditions.

The next sections attempt to perform some tests and elaborates on some conclusions that can
be drawn from these tests. It should be noted that the test environment used here is the same as
has been explained in Section 4.2. In addition to that the same test script has been used in an
attempt to unify the test. This in turn allows comparison of test results across different settings.

5.2.1 Apple G5 and Blue Gene/Q Tests

As explained earlier there is an inherit difficulty with testing SSDs. One difficulty is testing
the difference between hardware and software implementation of SSDs. The main problem
is finding two cards that can be compared on these basis. Most manufacturers do not supply
specific informations on the SSD provided. Therefore attempting to find the layer of service
implementation difficult and in some cases even impossible. Under those conditions finding two
cards to compare based on the software to hardware implementation is not possible.

Given that the target is to find how the new architecture of the Blue Gene/Q might effect per-
formance, tests have to be performed on a wide set of machines. This can benefit the finding
differences between hardware and software SSD service implementation.As mentioned before
in Section 4.2 the Blue Gene/Q contains 18 cores that run at 1.6GHz. In comparison the men-
tioned G5 only contains two dual cores that run at 2.5GHz. In plain numbersit is apparent that
the Blue Gene/Q should outperform the G5. However the frequency of theG5 is higher than that
of a single core in Blue Gene/Q.

The test comparison between IO on Blue Gene/Q and IO on G5 becomes interesting due
to the architecture differences. A well designed SSD card performing most of its operations
in hardware should increase performance on the Blue Gene/Q due to the increased computa-
tional power. The expectation therefore is that performance should increase on the Blue Gene/Q
specially when it comes to job scaling. In other words, by increasing the job count a higher per-
formance increase is expected on the Blue Gene/Q than on the G5. For that purpose the ioDrive
introduced in Section 4.3.1 is used.

Figure 5.6 shows the performance of the ioDirve on the G5. The figure onlyshows the ratio
between single job performance and different tests with increasing numberof jobs. The target
is to find the scaling behavior of the ioDrive on the G5. As can be seen in the figure the IOPS
scale well with increasing the number of FIO jobs operating on the driver. The increase in IOPS
decreases at higher number of jobs. This however could be attributed to the limited compute
power available on the G5 to accommodate the number of jobs running. In factthe scaling of
FIO at 64 jobs at lower blocksize shows this effect. The IOPS of the 64 jobFIO test should have
remained at the maximum level. This would have meant that the bottleneck is either IO link
or the driver. Since the IOPS dropped at higher job numbers it means thatperformance has its
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bottleneck in the computation. The G5 no longer can support all these FIO jobs without them
sharing CPU utilization.

Figure 5.6: Ratio of IOPS against single job for ioDrive on Apple G5

It should be noted here that the G5 contains processors that also employ the POWER archi-
tecture. This makes the results compatible with the Blue Gene/Q. The optimizations pointed to
in the introduction of this section still are not available. The performance therefore is expected
to be worse thanx86architecture. This however means that the difference between the G5 and
the Blue Gene/Q is limited to the number of cores and frequency. There are stillmore architec-
tural differences that might effect the IO performance. This comes from the fact that the G5 is a
more general purpose personal computer. However the Blue Gene/Q differences to G5 are still
less than that of differences to thex86 architecture. In addition to that by limiting comparison
to performance differences and not using absolute IOPS or bandwidth the comparison becomes
more relevant. The target therefore is to find the difference in performance scaling on multiple
jobs.

Since the Blue Gene/Q contains a far superior computation power on a single node than that
of the G5 the expectations point to better performance. However as seen inFigure 5.7 this is
not the case. It is obvious that the performance increase has almost the same maximum or even
lower than that of the G5. Contrary to the expectations the performance saturates at 8 jobs.
The problem here is obviously not the number of jobs used by the FIO whichhave plenty of
computing power to utilize. This conclusion can be made as the saturation at 8 jobs did not
appear on the G5 which has less computational power. In addition to that all tests including 8
jobs or more have almost the same distribution along the different blocksizes.If the bottleneck
is the computational power of the Blue Gene/Q then adding more jobs would havedecreased
performance. However as can be seen this is not the case. An 8 job FIO tests performance almost
exactly as a 64 job test. Thus it can be concluded that the bottleneck is not theoverwhelming
number of FIO threads started in each test.

Given that the performance on the Blue Gene/Q saturates after 8 jobs therehas to exist a bot-
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Figure 5.7: Ratio of Bandwidth against single job for ioDrive on Blue Gene/Q

tleneck. The reason for the saturation of the Blue Gene/Q IOPS performance could be defined
by the card limitations. There are two observations that could lead to a clue on what this bot-
tleneck might be. The first is the single device present on the card. The ioDrive specifications
point to it using a single controller. In addition to that the ioDrive presents a single block device
to the Kernel. This however is not always a proof single device operations. But as mentioned
the specifications refer to a single device. For the device to be a bottleneck the performance on
the Blue Gene/Q has to be exactly the same as that on the G5. In other words thebottleneck
should not just appear on the Blue Gene/Q but also on the G5. Since this is not the case it could
be concluded that the controller is not fully utilized on he Blue Gene/Q. Therefore the controller
is not the bottleneck.

The second clue to the Blue Gene/Q bottleneck is the CPU utilization. Figure 5.8 shows the
CPU utilization of during a FIO test on the Blue Gene/Q. This figure has been previously shown
in Section 4.3.2. The utilization shown in the figure dictates that the bottleneck is thedriver per-
formance. The thread that has been binded to CPU 4 and 8 are ioDriver threads. This explains
the reason for having a worse performance on the Blue Gene/Q than that on the G5. Although
Blue Gene/Q possesses higher computational power, the single thread performance is still lim-
ited by the core frequency. The driver appears to set the limit for the possible performance of
the ioDrive.

The main design issue of a SSD is choosing the level of operation for the services. It should be
noticed that the tests shown here cannot speculate on whether the ioDriveperforms such services
in the driver or in the controller. Despite that it appears obvious that usingsoftware limits
performance. To mend this limitation two possibilities exist. The first option is to implement
a more parallel driver. If the driver can therefore utilize more CPUs the performance can be
further enhanced. The challenge with driver parallelism is how far the SSD services can be
performed in parallel. Some services do not allow parallel performance. Indeed there are several
situations in which these parallel services will have to synchronize to for example update the
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Figure 5.8: CPU utilization during FIO test and setting CPU affinity

FTL. Furthermore creating these threads indicates that part of the computing power will be
utilized by SSD services. This means that applications will be deprived fromcomputational
power that was reserved for them. In fact Section 4.3.2 has shown that complete cores have
to be reserved to the driver to allow for better performance. Thereforea software SSD service
design is not advisable. In addition to that the performance of the driver threads will still be
bound by the frequency of the modern cores which is being lowered due topower consumption
issues.

Another option for solving the bottleneck of a single driver is implementing hardware serviced
SSDs. The driver in this case should only operate as an abstraction to the SSD and for SSD
optimized access. All other SSD services should be implemented in hardware.This design
promises almost system independent performance. The bottleneck would then no longer be the
single core frequency. It should be noted however that the controller performance could also
be the bottleneck. Thus the device design is a balance between system singlecore performance
versus hardware controller performance. That is proven by the Blue Gene/Q. Although single
core performance is limited, any SSD controller could not provide such massive parallelism as
present on the Blue Gene/Q. Therefore single block device performance might be limited by the
controller speed. However on the Blue Gene/Q a multi-threaded driver hasthe opportunity of
utilizing more cores. It should be noted that most SSD designers provide parallel access using
multiple controllers. These then operate in parallel to provide higher performance. There are
other disadvantages to this design which have been discussed in details in theprevious Chapter 4.

It remains to be said that Figure 5.6 and Figure 5.7 represents only the IOPS. However given
that these figures are showing IOPS ratio the bandwidth performance would show the exact
same curves. For that reason the bandwidth figures are omitted. The IOPSstill do decrease
with increasing the blocksize. On the other hand the bandwidth increases withincreasing the
blocksize. The inverse relation between two performance counters shows that increasing one
does in fact decrease the other. This should be kept in mind on choosing an appropriate SSD.
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The bandwidth given in the specifications should be associated with the blocksize for which
the bandwidth has been achieved. It should however be noted that most SSDs prefer a lower
blocksize to increase life span. By allowing the applications to request larger blocksizes means
that the SSD has to write or read larger storage data. As mentioned before there is a limit to
number of write/erase cycles allowed on a flash memory. On the other hand toosmall blocksizes
means that the controller has to do time consuming merges. The reason as mentioned before is
that there is a lower limit to size of written data to an SSD. The lower limit is set at the SSD
page size.

5.2.2 Read vs. Write

As elaborated in Section 5.1.2 on access patterns there is a mismatch between read and write
operations on SSDs. Therefore it is important to find how this mismatch effectsperformance. Up
to this point only read results have been presented. This was due to the fact that the conclusions
that were drawn were mainly dependent on scaling. However it is importantto address how
write performance differ from read. In this case more conclusions can be drawn from absolute
figure of performance. In addition to that it is important to show both bandwidth and IOPS
performance change across blocksize changes.

The main problem with performing these tests on the Blue Gene/Q is risking havingdegraded
performance due to limited single core frequency. In comparison the G5 avoids this limitation.
The tests therefore should be done on the G5 to have better comparison. Inorder to provide
viable results an actual SSD has to be used. The issue of write to read difference should show
how these two operations should be handled.

Figure 5.9 shows the IOPS of random read from the ioDrive. As can be seen, IOPS decrease
by increasing the blocksize. The maximum performance is limited to 60K IOPS. Incompari-
son Figure 5.10 shows the IOPS of random write on the ioDrive. The maximumas shown has
saturated at around 50K IOPS. In fact most jobs show lower IOPS at about each point. Some
show slight increase to the write versus read. However this increase could be due to test fluctua-
tion. The main conclusion that could be drawn is that IOPS are decreased by performing a write
operation.

The two figures for the IOPS reflect the expectations. Write requires moreoperations than
read. Therefore write has to have a lower performance than that for a read operation. However
it was expected that the performance difference would be much larger. As explained a single
write operation might even require an erase cycle. Placement and wear leveling make the write
operation complicated. The write operation used here however did not reach those limitations.
The main difficulty with testing write on SSDs is making sure that the storage is fully utilized.
Only then can the effect of the service and reliability avoidance process be tested. For example
the test should be repeated until the garbage collection has to be engaged.Since there is no
intention here to destroy the available SSD the test cannot run the SSD to the limits.Despite that
the shown results are important. SSDs do not always operate at the maximum limit.In fact the
target from these designs is an active storage. These do not fully utilize the cards performance.
In addition to that the tests shows the basic difference between write and read operations on a
card. The IOPS difference between a write and a read can be fully attributed to the difference
of flash memory write to read mismatch. In addition to that random write has been used. This
means that some updates has to be done to previously written locations. The controller therefore
has the choice of either trying to write in place or performing out of place writes. The first
choice delays the write until performing an erase. The later however requires switching to the
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Figure 5.9: IOPS of Random Read from an ioDrive on Apple G5

garbage collection later. The test however is not long enough to have the results influenced
by side operations such as garbage collection. Therefore an out of place write would result in
almost a pure read.

There is a difference between the distribution of IOPS and bandwidth across blocksize. As
a result the bandwidth curves could lead to different conclusions than that of the IOPS. Fig-
ure 5.11 shows the bandwidth of random read from an ioDrive. As can be seen the bandwidth
increases with increasing the blocksize. The maximum is reached just shortof the 800 MB/s.
In comparison Figure 5.12 shows the bandwidth of random write on an ioDrive. The maximum
has massively dropped to just over 300 MB/s. As mentioned earlier it is expected that write is a
higher delay. This delay highly effects larger blocksizes. As expected performance drops. How-
ever as discussed earlier the effects that change read to write performance is purely due to flash
memory. A write operation requires the use of high voltages. Furthermore thewrite requires
creating or updating the FTL table entry. This in turn leads to further delay. However the delay
would be more effected if the controller decides on an in place write. In sucha case an entire
block would be erased.

The effect of an out of place write should not drastically degrade performance of writes.
By combining the results of both performance differences on the bandwidthand IOPS several
conclusions can be drawn. IOPS dominate the performance at smaller blocksizes. The decrease
at smaller blocksizes detected on the IOPS curves is modest. Therefore it can be concluded that
performance drop on smaller blocksizes is mainly due to write to read performance difference.
On the other hand bandwidth dominates the performance at larger blocksizes. The decrease at
lareger blocksizes detected on the bandwidth curves is massive. Therefore it can be concluded
that performance drop on larger blocksizes is due to more than just difference of read to write
performance on flash. The controller therefore appears to be selectingout of place writes at low
blocksizes or for small sized write requests. Yet on larger blocksizes orfor large sized write
requests the controller updates in place. This means that the write has to be delayed for the erase
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Figure 5.10: IOPS of Random Write on an ioDrive on Apple G5

to take place first.
As mentioned before, most SSDs prefer smaller blocksizes. The main reason is that the con-

troller can more easily select blocks to place them into. In addition to that several write request
could be fitted into the same flash block. Thus all these write requests would share the erase
delay that might be required. Furthermore the life span of the SSD is increased. The controller
becomes able to perform more optimized wear leveling. Additionally the file systemwould not
have to write data that is unnecessary to fill the data request. The write to read mismatch there-
fore becomes a difficult issue that requires solving. It should be noted that conclusions made
here concerning controller implementation is based on the results shown. It still remains diffi-
cult to make decisive determinations on how the controller is built. The performance is governed
by complex algorithms hidden beneath layers of interfaces. The complexity therefore prevents
finding actual bottlenecks. In fact the difference between read and write at small and large block-
sizes could be due to garbage collection. The controller could be switching garbage collection
algorithms for large blocksizes to free these as quickly as possible for future writes. This would
contradict the conclusions made on in place versus out of place writes. However the reason why
garbage collection effect in this case is dismissed is the uniform curves at higher blocksizes for
bandwidth. If the write was delayed due to garbage collection or any other reliability service
there should have been more fluctuations in the performance. It is expected that reliability ser-
vices do not operate at full capacity during write. Therefore their influence on curves cannot be
leading to such uniform results as those shown in Figure 5.12.

The disadvantage of trying to change performance using blocksize is thatit is a application
factor. It is therefore a specification of the system rather than a changeable factor. Some settings
necessitates the use of IOPS while others build on bandwidth. From the previous results it is
obvious that specifically for writes both is not achievable using these settings. Write requires
better bandwidth performance. This could for example be achieved by further stripping data
across more internal chips. Figure 5.13 shows the performance decrease along blocksize for
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Figure 5.11: Bandwidth of Random Read from an ioDrive on Apple G5

writes as a percentage of reads. The performance drop shown could therefore be explained by
the failure of the controller to divide larger sized blocks across different flash chips. Thus leading
to performance drops at larger blocksizes which become limited by single chipbandwidth. One
reason for the controller to keep larger blocks as a single group in a flashis to decrease the size of
the FTL. The block written as a unit could be addressed using a single physical address, leading
to only a single entry in the FTL.

As parallelism by utilization of several flash chips would increase bandwidthit would be
advisable for the controller to attempt breaking larger blocksizes. Thus giving itself the ability
to write these smaller chunks on different flash chips. The utilization however of the write and
read of such breaking is highly dependent on access patterns. If multipleapplications access
their files in sequential order at the same time, the controller should sacrifice write bandwidth
and allocate the block into a single chip. This would allow the controller to read from many chips
in parallel to serve all applications. On the other hand if the applications are performing more
parallel file read and writing the controller should preferably stripe the block across multiple
flash chips. This would allow later the application to access the file using parallel operation
and increase performance. It is shown by this that application information on access patterns
is crucial for design of optimum performance. Although this might not be possible for general
purpose computers, HPC systems are unique and mostly built for scientific research. This in
turn leads to understandable and application uniform access patterns thatcould be researched.

Another issue that has not been anticipated or accounted for is caching.Figure 5.13 shows
slight increase of write operations versus read at smaller blocksizes for1, 2 and 4 jobs. Although
these could be explained as normal test fluctuations, they can be attributed tocaching. At low
number of jobs at small blocksizes the controller could be avoiding a write delay by placing the
block into the cache. The write would then be handled later. This would therefore prevent future
write operations into the cached data from having to erase a block. It should be kept in mind
however that FIO test cannot detect whether the delay is for writing to the physical flash storage

Analysis and Optimization of Storage IO in Distributed and Massive Parallel High Performance Systems 127



5 OPTIMIZING KERNEL FOR STORAGE CLASS MEMORY

Figure 5.12: Bandwidth of Random Write on an ioDrive on Apple G5

or into the temporary SSD cache. Given that both are reported by the controller to the upper
layers as successful writes FIO adds these cache writes to the performance. This is an additional
proof to the complexity of trying to test SSDs.

5.2.3 File System Overhead

A file system has to add as little overhead as possible. However there is almostno file system
that does not add any overhead. The file systems task during a read or write operation is to find
requested blocks or allocate new blocks. During a read operation the application requests blocks
of data from the file system. These blocks are marked by the block number. The file system
has then to find the physical addresses of these blocks. On write the file system in turn provides
physical address for blocks in which the data can be written.

Linux gives the ability of raw device access. The application can be allowedto directly access
the block device without the need of a file system. This is done by providing theapplication
with the block device file. Since the file system determines allocation of physicaladdresses, in
raw device access the application has to do the allocation. This however gives the opportunity
of finding overhead in case of a simple file system such as the Ext2.

Section 4.3.3 on testing parallel file systems has previously shown the overhead for parallel
file systems. The Ext2 is expected to have a lower overhead. This is mainly dueto the simplicity
of Ext2, in comparison to the complex parallel file systems. In addition to that parallel file
systems depend on using multiple devices spread across several servers. The Ext2 uses single
devices mounted on a single point. However to achieve relatively good performance using Ext2
on loop devices several devices have to be used in parallel. Thereforethe test has to compare
how performance changes with changing the number of loop devices as well.

Figure 5.14 shows the overhead produced by the usage of the file system.As can be seen the
performance difference for a single loop device is relatively low. This is because a read operation
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Figure 5.13: Percentage of Bandwidth of Random Write versus Random Read on an ioDrive on
Apple G5

in Ext2 does minimum operations. In fact all that is required from the file system is to return the
physical addresses corresponding to the block number. Nonetheless itrequires separate block
access. The file system has to access the device in case of having indirection. This is because
the pointers or physical addresses are saved on the device. The detailed explanation of the read
operation in an Ext2 file system is explained in Section 3.4.1.

The overhead in Figure 5.14 was expected to increase with increasing the number of loop
devices. This is because the number of loop devices require themselves processing power. In
addition to that each mount point requires separate operations. Howeverthe result show that
performance difference for some points does not increase much with increasing number of loop
devices.

Raw block device access removes overhead of file system. However the physical address
selection is left to the application. Since the FIO benchmark does not show access patterns and
how division is divided among devices, it becomes difficult to compare results. In addition to
that loop devices are more bound by the processing frequency. This therefore indicates that
while the overhead exists, it cannot be attributed fully to the file system.

On the other hand write operations are more complex and require further calculations from the
file system. Based on that the write operation overhead should increase. This cannot be proven
using loop device. The loop device is bound to the processing power available for a single thread
as has been shown in Section 4.3.4. Therefore the difference between write and read operations
does not exist on loop devices. In addition to thatramdiskscannot be used to find write overhead
due to their speed and direct access to RAM.
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Figure 5.14: Percentage of IOPS for Random Read with file system against without

5.3 Removing Ext2 Preallocation

The difficulty with finding an appropriate implementation for improving SSD is supporting the
different types and implementations. Therefore it is preferred to find an optimization that fits
the basic flash memory access. File systems exerts efforts in attempting to decrease seek time.
Since flash devices do not exhibit seek time, these algorithms become a wasteful overhead. One
such algorithm is preallocation.

File systems operate on the basis of blocks. Section 3.4.1 has explained that the storage space
of an Ext2 file system is divided into block groups. Within these block groupsthe data blocks are
stored. The file uses itsinodeto store the pointer to the data blocks associated with it. For that
purpose theinodeemploys direct and indirect pointers. On the basis of such file layout a single
file can be fragmented across the entire file systems storage space. Such layout on HDDs which
suffer from seek time would result in massive read and write delays. Things are even worse when
accounting for indirection blocks which contain data block pointers. Theseindirection blocks
have to be read to find the physical addresses of the data blocks. Any distance between the
indirection blocks and the corresponding data blocks has to be covered by the HDD head. This
in turn will result in additional seek time. Therefore the file system attempts to placeindirection
and data blocks of the same file as contingent as possible. Those should also be placed as close
as possible to the filesinode. The result is far better sequential read time on HDD. Thus the file
system allows a relative high CPU utilization to avoid file fragmentation.

The difficulty in avoiding file fragmentation is that files are usually not written allat once.
Data blocks of a file seldom come as a single unit. Furthermore the file system usually writes
and reads several files at the same time. This means that data blocks which are close to the file
are at risk of being allocated to a different file. The file system thereforeemploys reservation
windows to anticipate file allocations [9]-Chapter9. This type of reservationis called prealloca-
tion. The file system uses several complex allocation schemes to keep all writes of a file as close
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together as possible. In addition to that the file system allocates new unused data blocks to the
file that could be used for future writes. This however is not an easy task. Since the file system
has no record of future writes these preallocated blocks could be a wasteof space. Therefore the
file system has to be able to reclaim such blocks without a free operation from the application.
Furthermore the file system has to be able to balance between neighboring filesand their preal-
located blocks. Another issue is the free space available on the storage device. The file system
has to be able to reclaim these preallocated blocks for actual data.

As will be shown later, preallocation complicates a write operation. The file system however
has the notion that such CPU utilization is cheaper than expensive seek time. In comparison
SSDs exhibit no seek time. This makes them ideal candidates for random access. Conventional
file systems such as the Ext2 have no method of identifying the underlying storage type. There-
fore the contingent allocation algorithms are used no matter the device type. Despite that Ext2
supports switching off preallocation using a file or application setting. Nonetheless the contin-
gent data allocation cannot be switched off. In addition to that several avoidable function calls
are still performed regardless of preallocation setting. CPU time in a multi-core environment
with weak single core performance is expensive. Therefore such preallocation overhead should
be avoided.

Although sequential write operations on some SSD show better performance, this would not
be addressed with the usage of preallocation. Preallocated blocks are not written back to the
device. That is no actual IO appears to be happing for preallocation. The file system just keeps
a record of preallocated blocks. Even pointers should not be written back to the device. This is
done to avoid permanently allocating preallocated blocks to the file in case of a system failure.
The target of preallocation is the avoidance of future seek time for write andspecially for read
operations. On the other hand SSD employ a FTL that hides the actual physical address space
from the file system. Thus the file system is allocating logical addresses that will not map to the
lower physical storage. Therefore preallocation has no benefit whatsoever for SSD operation.

The following explanation will attempt to explain the effort of removing preallocation over-
head and decreasing write complexity in the Ext2 file system. The write operationwill be
demonstrated and changes will be provided side by side to the original write call construction.
An effort is made to keep code inclusion to the minimum. The target is to show how arewrite
for such a complex operation might could be approached. It should be mentioned that there is
no detailed source on how such operations are done. The information given here are found by
analyzing the Ext2 implementation. Readers interested in further information should try to have
a look into the original Kernel Ext2 code. However such approach should be done with caution.
The implementation is complicated and requires advanced knowledge on file systems. In some
cases detailed knowledge on processor architecture is required as well.

5.3.1 Ext2 Get Blocks Function

Due to the complexity of the write operation done in the Ext2 file system the approach will be
made in a hierarchical form. This form is an analogy to the call path of theext2get blocksfunc-
tion. Figure 5.15 shows the call graph in a hierarchical form. The numbering of the functions
is done in accordance to the execution sequence. The second number represents the hierarchical
order. If there is no number it is directly called byext2get blocks. Using this scheme 6.1 is
called by 6., while 6.2 is called by 6.1 and so on. It of absolute importance to follow the com-
plete write operation. Some function names is deceiving. For example a function for allocation
with no reservation could still contain some reference to preallocation. Despite that some of the
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more complex issues that are irrelevant to the issue will be omitted.

Figure 5.15: ext2get blocks call graph with hierarchical and execution sequence

The first function called is 1. ext2block to path. The task of the function is to fill the offset
list of the indirection blocks. The indirection has been explained in Section 3.4.1. The offsets
within each indirect block can be found using block number. Therefore 1. ext2block to path
does not perform any IO. The next function called is 2. ext2get branch. It has the task of finding
the actual physical addresses of both indirection and data blocks.ext2get branchproduces a
chain of addresses using the offset list within the indirection units. This function has to use IO to
access each indirection block with the offset to find the physical addresssaved in the indirection
block.

The ext2get blockscan be used for both read and write operation. In a read operation the
function 2. returns aNULL pointer. Using a conditionext2get blocksfinds this case and loops
over the sequence of addresses. Finally it jumps to the end and sets the final resulting buffer to
the physical address. This buffer will be handed to the VFS to perform the block read operation.

In case of a write theext2get blockstask becomes providing the VFS with physical addresses
to write to. For that purpose the function has to first find available data blocks for allocation.
Next the data blocks physical address must be added to theinodeas either a direct or indirect
pointer. The later case might result in adding indirection blocks to provide space for the pointer.

Assuming an allocation call, the next function called byext2get blockis 3. ext2 init block alloc info.
The task of this function is to initiate block allocation info. Mainly this is done to allocate the
information necessary for the reservation window. If preallocation is turned off the reservation
window is set to a size of zero. For the purpose of removing preallocation function 3. can be
completely removed. Any setting done within 3. that is still necessary for finding data blocks
can be moved toext2get block. One such setting from 3.1 is the block allocation info structure.
This is set to theinodeblock allocation info which can be performed inext2get block. The
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block allocation info is needed to find last allocated logical and physical block.
The next function called is 4. ext2find goal. As the name suggest the function attempts to

find a goal block near of which the new blocks should be allocated. The goal block is usually
set to the block next to the last allocated block. If the allocation info has just been initialized
meaning the last allocated block is zero then 4. ext2find goal calls 4.1 ext2find near. This in
turn attempts to find another block with sufficient locality. It first attempts to set thegoal to a
previous pointer if it exists. Next option is for it to allocate near the indirectionblock. Finally if
that is not possible it attempts to allocate in the same block group as that of theinode. Important
is to realize that the goal block will only be used for locality. The data does not have to be
actually placed into it. Under this condition the two function calls can be avoided.The goal
block can be immediately set to the some place within the same block group as theinode. This
is could be done inext2get blocks.

The functionext2get blockshas to find the number of blocks to allocate. This does not
just hint to number of data blocks but to indirect blocks as well. This is done by calling 5.
ext2blks to allocate. The function returns the count of total blocks to be allocated.

5.3.2 Function 6. ext2 alloc branch

Up to this point no allocation has been made. Previous function calls were madein an effort to
prepare the data necessary for allocation. The actual allocation happens in 6. ext2alloc branch.
As can be seen in Figure 5.15 many functions are called to achieve successful allocation. The
first called function is the 6.1 ext2alloc blocks. As the name suggest the allocation is done in
this function. The task therefore of 6. ext2alloc branch is to allocate the branch and prepare
it to be added to theinode. The blocks provided by 6.1 are zeroed out and then the indirection
chain is written to them. It should be noted here that 6. ext2alloc branchcan only allocate a
single branch. The final indirect block contains a list of pointers to the datablocks. This means
that 6.1 ext2alloc blocksallocates blocks for the branch and as many data blocks as required or
stops once it cannot allocate more to the same branch. Therefore on return 6.1 has to signal the
number of direct or data blocks allocated.

5.3.3 Function 6.1 ext2 alloc blocks

The function 6.1 ext2alloc blocksattempts the allocation of minimum set of blocks. The num-
ber required for allocation is the total of indirect blocks for the branch in addition to at least
a single direct block. If more blocks are available allocation continues until all required direct
blocks are allocated. Still 6.1 ext2alloc blocksdoes not do the block allocation itself. Instead
it calls 6.2 ext2newblocks. As the name suggests function 6.2 finds and allocates a new set of
contingent blocks. Since 6.1 ext2alloc blockscould require more blocks than currently avail-
able in a contingent group, it repeatedly calls 6.2 ext2newblocks. This continues until the
required number of blocks is allocated. It is important that 6.1 ext2alloc blockskeeps track of
whether the indirection blocks have been allocated or not. If the minimum is not achieved an
error has to be returned.

5.3.4 Function 6.2 ext2 new blocks

The most complex of all functions is 6.2 ext2newblocks. This is because the actual allocation
takes place in this function. The allocation scheme is mentioned in the comment above the func-
tion as being relative to the goal block. The goal block is used if empty. If that is not possible,

Analysis and Optimization of Storage IO in Distributed and Massive Parallel High Performance Systems 133



5 OPTIMIZING KERNEL FOR STORAGE CLASS MEMORY

a free block is searched for within a distance of 32 blocks from the goal block. Otherwise a
forward search is conducted for a free block. For that purpose the function 6.2 ext2newblocks
uses the bitmaps. The function starts by checking for sufficient quota allowed by the VFS for
allocation to this file. The function then tries to set reservation information. If the file system
is mounted without preallocation the reservation window has the size of zero.This part can be
removed as there is no need for an added check operation if the preallocation will not be used.
An additional reservation part that can be removed is the check for sufficient free blocks for
reservation.

Since the file system has a limit of available blocks, 6.2 ext2newblockshas to check if free
blocks are available. If sufficient free blocks are available 6.2 finds by usage of the goal block a
group target. This is the block group that the allocation should be done within.For actual alloca-
tion block allocation within the target group 6.2ext2newblocksuses 6.3ext2 try to allocatewith rsv.
It should be noted that 6.3 can only allocate within the same block group. If allocation is not pos-
sible within that group another group with sufficient free blocks for both allocation and preallo-
cation blocks has to be found. On failing to find an appropriate block group6.2 ext2newblocks
switches off preallocation and repeats the block group finding process.Finally if no block group
is found error is returned, signaling that no free space is available. Thisshows the amount of
overhead such reservation tables can place on the file system allocation process. Therefore in
the interest of removing preallocation block groups are immediately searchedfor one containing
sufficient free blocks without reservation. The issue of preallocation isrepeatedly checked. Thus
several other changes have been made to this function. These howeveraddress the same issues
as mentioned before.

Once 6.2 ext2newblocksgets the blocks allocated it has to check for conflicts. The allocation
blocks have to be out of the range of the data block bitmap, theinodebitmap and theinodetable.
Now 6.2 has to adjust the number of free blocks available. Additionally 6.2 ext2newblocks
already took the number of blocks required for allocation from the VFS quota. Given that
not all of these blocks were allocated the remainder has to be returned to theVFS. Further
administrative tasks are done at the end of 6.2. It should be noted that information that is stored
on the block device is kept in buffers. As 6.2 ext2newblockschanges these buffers it marks
them as dirty. Therefore the final step in 6.2 is to synchronize with the block device. This will
write all dirty buffers back to the storage.

5.3.5 Function 6.3 ext2 try to allocate with rsv

As mentioned earlier, 6.2 ext2newblockscalls 6.3 ext2 try to allocatewith rsv. This is a func-
tion that attempts allocation using reservation. However it starts by checking for for reservation
window. If the file system is mounted with no reservation then 6.3 ext2 try to allocatewith rsv
calls another function 6.4 ext2 try to allocate. This shows that preallocation can produce an
overhead even when switched off. Again due to lack of interest in preallocation this function
call can be removed. Therefore every call for 6.3 ext2 try to allocatewith rsv is replaced with
6.4 ext2 try to allocate. This has to be done in 6.2 ext2newblocks. Based on this setting the
rest of 6.3 ext2 try to allocatewith rsvcan be ignored.

5.3.6 Function 6.4 ext2 try to allocate

The actual block allocation happens in 6.4 ext2 try to allocate. The function sets a range of
blocks to search within for free blocks. In case of preallocation the range is set to the reservation
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window. Since preallocation no longer exists this check can be omitted. For nopreallocation
the window is set to start at the goal block and end at the group block end.6.4 then calls 6.5
find nextusableblock. As the name suggests this returns a free usable block or a negative num-
ber in case of failure. Once a usable block is found 6.4 ext2 try to allocateloops on subsequent
blocks to check the bitmap. The loop ends at either finding a used block or reaching the number
of requested blocks. The function 6.4 now has a group of contingent allocated blocks. The
bitmap is updated to allocate the blocks. Finally the number of allocated blocks is returned with
the physical address of the first block.

5.3.7 After Removing Preallocation

Although preallocation can be switched off in the Ext2 filesystem, this does notremove over-
head. The previous explanation demonstrates how complicated such Kernel edits are. Fig-
ure 5.16 shows the call graph ofext2get blocksafter removing preallocation. The figure cancels
out functions that have been removed. It also highlights functions that have been edited.

Figure 5.16: ext2get blocks call graph after removing preallocation

The changes done on the file system are difficult to be tested. The effectis highly dependent
on the processing speed and the underlying device. On most settings the difference might not
be noticed at all. However it can be shown that applying changes depending on SSDs access
patterns is possible. In fact the call graph can be optimized even further.On such optimiza-
tion is the repeated call of 6.2 ext2newblocksdue to it being able to allocate only contingent
blocks. Literally the whole call graph beneath 6.1 ext2alloc blockscan be removed. To achieve
that 6.1 could use 6.5 find nextusableblock to find the next free blocks. Perform the con-
tingent block allocation explained in 6.4 ext2 try to allocate. If more blocks are needed than
allocated the process could be repeated. Once done 6.1 ext2alloc blocksreturns all blocks to 6.
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ext2alloc branchto complete the allocation process. Not only will this save the cost for several
function calls, but also will completely remove preallocation checks. In addition to that side ad-
ministrative issues within removed functions such as variable creation will be avoided. It should
be noticed however that this requires a further detailed look at functions implementation. Error
handling is done by checking function return type. The task of error handling done in a removed
function will have to be performed somewhere else.

The Kernel and associated file systems can adapt for SSD usage. Theycan be even adapted
to switch between SSD and HDD. However such changes must be made with more information
about complete IO stack. This does not just include block devices, but even application. The
difficulty shown by removing the preallocation will also be faced in further optimizing Kernel
file systems. These optimizations are worth it. The SSD might not be the only storage technol-
ogy for which such optimizations are useful. In fact SSD is not the only storage technology for
which optimization in general must be done. For that reason, file systems have to start acquiring
information from block devices on their types. This will facilitate the developers task for setting
optimizations. A file system can switch on and off certain functions for different technologies.
However such switching will have to be done with better care. As seen preallocation although
switched off still represents overhead that can be avoided. This appears to be due to the file sys-
tem expectation that the normal case is the usage of preallocation. To optimize such switching
developers will have to make more effort in more fluent switching.
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6 Conclusion and Future Work

6.1 Conclusion

Computational power of HPC systems has dramatically increased over the past years. How-
ever IO has not increased enough to fulfill the transfer rate required for such powerful comput-
ing units. The IO gap is increased by the amount of data capacity available for HPC applica-
tions. Active storage fabrics is a possible solution that embeds storage into the HPC units. This
promises the decrease of distance between data stored and the computing units. The challenge
of active storage is to enhance single node IO performance. Most HPC nodes are not optimized
for internal communication with storage devices. To achieve such optimization adetailed under-
standing of the IO stack is required and storage devices need to be studied.Furthermore storage
IO must be analyzed under different conditions to inspect possible optimizations.

Analysis of storage IO show that the IO stack is formed of several complexlayers. The com-
plexity is increased by the abstraction required to communicate with different file systems and
different devices. The IO stack is generally built for single request queues resulting in low paral-
lelism. Since modern processors are built using multiple cores, single queue operation becomes
a bottleneck. Additionally new storage technology provides more than one block device to the
system on the same hardware. The IO stack has difficulty in utilizing these block devices in par-
allel. The emerging solid state technology such as SSD promises higher performance. However
the development of IO stack has been mostly done in the HDD era. The SSDs therefore have to
implement HDD interfaces to communicate with the IO stack. By hiding the SSD identity the
IO stack continues to optimize access of storage for HDD. SSD is based on adifferent storage
concept. Thus the optimized HDD access is suboptimal for SSD.

Parallelism has been generally designed on higher system levels. As technology size de-
creases problems faced on system levels are now faced within single units.Large scale solutions
offer a starting point for optimizing parallelism on single node. The challengeof implementing
the large scale solutions is the limitations existing on single nodes. System parallelism solu-
tions can afford overheads induced by complex parallel file systems. In comparison single node
computing capacity is limited and shared with applications. Furthermore analysis show that IO
performance is effected by CPU frequency. In general lower CPU frequency results in poor IO
performance. Operation of IO can be enhanced by the use of functional partitioning. The target
is to bind IO processes to different CPUs. Also division of available blockdevices among pro-
cesses or CPU could further increase IO efficiency. To overcome single device limitations the IO
stack has to utilize several block devices. These will offer more performance if used efficiently
in parallel.

The target of a parallel IO stack implementation is to achieve an efficient use of available
resources. However changes to original IO stack must be reduced to aminimum. The purpose
is to avoid complex Kernel changes that could result in disturbing normal IOstack operations.
Other unaltered functions should continue to operate unhindered. Furthermore there is an im-
mense difficulty in altering current existing applications. This has delayed applications from
exploiting new optimized IO interfaces. A parallel IO stack should therefore offer enhanced op-
eration without requesting changes to the applications. The parallel IO implementation should
accommodate current interfaces using a transparent parallelism. However as applications and in-
terfaces advance the implementation must be able adapt achieving same or better performance.
There is an inherit advantage to functional binding in parallel systems. Forthat reason a parallel
IO implementation should be able to divide operation among available resources. Current de-
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vices allow for free write division on block devices but restrict read division. Write operations
can therefore utilize block devices in the most optimal method. In comparison read operations
need to be performed on the same devices on which the data has been written.A parallel IO
implementation should provide the same for read division among block devices.All these re-
strictions should be held without performance degradation and with a small cost. The target is
to utilize parallelism for increased IO operations per time unit.

The proposed implementation addresses the limitations and specifications required from a
parallel IO. By use of a unified file system, all devices can be accessed using conventional IO
interfaces. Parallelism becomes transparent to applications. These can therefore operate un-
changed. In addition to that by utilizing simple conventional file systems, the overhead is kept
to a minimum. This could not be achieved by the use of complicated parallel file systems.
Furthermore the use of a global storage space available to all devices allowefficient resources
utilization. Reads can be divided among devices in the most optimal method. Data can be writ-
ten and subsequently read from a different device. The unified conventional file system used
carry out normal data locking algorithms. Thus there is no need for performing data locking on
the device level. The implementation promises a free division of operations among resources.
Allocation of devices for processes or CPU could be implemented with simple changes. The
parallel IO implementation proposed achieves these specifications by as little alteration to the
Kernel as possible. Other file systems can operate without the need for change. The Kernel can
employ traditional access schemes without being prevented by the implementationfrom normal
Kernel operations. Furthermore testing the implementation showed an increased performance.
By increasing number of devices an increase in performance is observed. Although proposed im-
plementation is realized using loop devices, a hardware design is possible withsimple changes.
The design offers the possibility of supporting current and future interfaces such as NVM Ex-
press. The support requires minimum changes to the implementation and could adapt to future
application needs.

On the other hand, SSDs are superior to HDDs on many levels. They do notsuffer from seek
times. Thus promising higher random access performance than provided by common HDD.
Previously addressed parallelism can further utilize underlying SSD properties. However the IO
stack has been mainly developed and optimized for HDDs. These HDD optimizations in some
cases lead to processing overhead which is wasted when performed on SSD access. Therefore
their was a requirement for detailed analysis of SSD operation in correlationwith IO stack HDD
optimizations. Reliability issues faced by SSD means that conventional file systems cannot use
their own address space. Wear leveling requires out of place writing. Therefore if conventional
file systems were directly accessing the flash memory on SSD, endurance would drastically
drop. Most SSDs solve this problem by the use of Flash Translation Layers or FTL. The file
system is provided a different address space scheme than implemented on the physical layer.
Other SSDs require complete change of file systems. This has the disadvantage of requiring
application changes and is seldom compatible with existing stack layers. Another issue for
the use of SSD is access pattern behavior. While HDD requires sequentialaccess for better
performance, SSD are limited by other factors. Reliability constraints of SSD employs wear
leveling, garbage collection and error correction and detection codes. Also SSDs cannot write
without a previous erase. There is an added complexity due to the minimum erase and write
sizes allowed by a flash memory. These issues need to be addressed by theSSD controller. To
achieve optimum performance the controller design should also be done in accordance with the
system configuration. A system employing a processor with multiple weak cores would benefit
from a hardware designed controller. A software design that is not appropriately done using
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several threads result in a limited performance. This design would become dependent on the
weak frequency of the single core.

Due to SSD complexity these analysis are difficult. Performance is highly dependent on de-
sign. However by analyzing performance under different conditions some conclusions could be
made on SSD operation. Analysis show that an added computing performancemight not in-
crease the IO parallel operation of a SSD. Software device drivers withsingle or small number
of threads result in a binding to a single core. Thus additional compute power would not sub-
sequently increase IO performance. Using multiple threads to implement devicedriver could
increase performance. However the SSD controller operation should not abuse the computing
power available. The SSD device drivers in an active storage configuration will share processing
power with applications. Priority should remain for processing applications.In comparison a
more hardware based controller implementation promises a system independence. The hardware
design would not be effected by CPU frequency as much as a software implementation. Still the
SSD will remain limited by best hardware performance possible. A software design however
would have the full processing power available on the system to utilize. Another issue for SSD
is the write versus read performance. The inherit flash memory result in a lower write perfor-
mance. This affects most of all the maximum bandwidth that the device can write.Internal SSD
parallelism would provide for a better write performance. Additionally by the use of more ap-
plication and system related controller designs write latency can be reduced. Controllers should
handle reliability issues with more efficiency. Furthermore analysis of the conventional file sys-
tems show that overhead is limited. This however is dependent on the system performance and
the underlying device design. Conventional file systems utilize CPU time to avoid HDD seek
time. SSDs do not benefit from seek time reduction. Thus file system overhead can be further
decreased by removing seek time reduction algorithms. This is true for the whole IO stack.

As an example for overhead reduction by redesign of IO stack for SSD,preallocation is re-
moved from the a conventional file system. Conventional file systems preallocate free blocks to
a file in order to provide more contingent data allocation. To achieve preallocation in contingent
form file systems employ complicated algorithms. These exert an overhead ofcomputation to
the storage IO requests. SSDs have a better random access performance than HDD. Furthermore
SSDs use a different physical address space for allocation than the one shown for the file system.
Thus preallocation makes no improvement to SSD performance. Although the file system might
provide a method for switching off preallocation, the overhead is not much decreased by this
method. The actual removing of preallocation is shown to be a complicated implementation.
Despite that it is possible and could result in better performance. The process of removing pre-
allocation required analyzing every function in the function call graph of the allocation method.
Functions used for preallocation are removed. Other functions are editedto avoid preallocation
and reduce complexity. This should be done with absolute care. Functions should not be altered
to the extend of failing. Applications should also not be changed due to preallocation removal.
Additionally the Kernel should remain unchanged if at all possible. The preallocation removal
done in this study shows that these restrains can be kept. The write form is reduced which
promises better performance.

6.2 Future Work

IO will continue to be in the center of attention of the HPC community. Building futuremassive
scale computers will be dependent on how far IO can be optimized. In essence, as processing
units continue to grow in parallelism, so should IO. Parallelism has to be adoptedinto both new
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storage technologies and the existing IO stack. The design mentioned in this study shows how
far parallelism can achieve higher IO performance. The hardware changes required by the design
are simple and easy to implement. The global storage space shared among controllers can be
fabricated by the use of bus system connecting all flash memory chips with allcontrollers. The
bus system would require an additional bus arbiter which regulates bus traffic. The controllers
themselves could be implemented on Field Programmable arrays or FPGAs. Changes to the IO
stack could be implemented without the need of Kernel or module recompile. Thefile system
will have to detect on the fly how many devices exist on the same board and communicate
with the same storage space. This could be achieved by a signal that the board has to send
to the file system informing it with the number of devices. Another possibility is forthe file
system to detect the number of devices using the PCI bus registration information. Furthermore
the file system could implement different access patterns. The allocation of devices could be
done on a CPU or process basis. Further functional partitioning schemescould show higher IO
performance.

The market already offers several SSD designs with multiple devices on a single board. These
however do not contain a global storage space. Each controller can communicate to only a
hardwired set of flash chips. By sacrificing the global storage space the design can adapt to
these SSDs. The file system will have to map the address space during data write to a single
devices. This will allow the file system to divide the write requests among the available devices.
However read operations will have to be done on the same device as written to. Although this
limits the design advantages, it still give the opportunity of testing the design with real physical
SSD devices.

The most important aspect of parallelism is the use of an appropriate parallel file system.
These file systems are however too complex for single node performance.The study done here
offered the redesign of a conventional file system to adopt parallelism. Another approach could
be the simplification of complex existing parallel file systems. This would require an extensive
effort in understanding such file systems. In addition to that the use of parallel file systems of
global scale in ASF should be studied. Parallel file systems operate on a global view of data and
divided the data according to replication and performance factors. Data division however does
not consider any computation issues. By using parallel file systems single nodes with storage
will have to access data on the global file system including data on adjacent nodes. It would
be beneficial to study the possibility of dual address space. The global file system operates and
saves data on the complete ASF using one address space. The second address space would be
the view of the single node to information on the storage next to it. Using this settinga single
node would be allowed to do faster IO without the need of accessing global networks.

As shown by this study there is large room for improving the IO stack to adoptSSDs. To
achieve better understanding of possible optimization for the IO stack more analysis has to be
done on the SSDs offered by the market. Also it is important to implement and testa new SSD
design in relation to current modern processors with parallelism and hardware flash memory
services. Since the IO stack still requires SSDs to use HDD interfaces, optimization of SSD
for HDD access patterns could result in better performance. For examplean SSD could divide
contingent data offered by HDD scheduling schemes on different flashchips. This would result
in internal SSD parallelism.

Further optimization of IO stack for SSD is required. Since the SSD will have tocoexist with
HDD the IO stack will have to support optimizations for both. In the interest ofuser friendly
systems the user should not be required to enter the type of device for oneoptimization to be
activated. The IO stack should be able to detect the device storage type. Newly designed SSDs
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could set a variable signaling the storage type. The HDD could be set as thedefault for such a
variable. Not only will this facilitate optimization for SSD but also provide developers with the
ability for optimization for future storage technologies.

6.2.1 IO Compression

IO compression is a fast emerging tool for optimizing IO. It requires extensive study. There are
many different types and algorithms that perform compression. These offer different compres-
sion rates and different compression speeds. The compression rate also depends on the type and
form of data. This will therefore also require an extensive study of application data form. It is of
absolute importance that the compression be transparent. Data should not be lost by the compres-
sion or decompression. This in turn will avoid application changes. Anotherimportant factor
is compression and decompression processing requirements. As shown inthis study functional
partitioning increases performance. Therefore allocating cores to the compression operation
could further increase benefits from IO compression. However the compression should decrease
disturbance to the application. For that reason it should not take to much CPUtime to compress
or decompress from the running applications. Another option is for compression to utilize idle
cores. An algorithm offering different compression rates at different processing requirements
could be implemented. Using this compression algorithm the system could support many com-
pute bound threads at low compression rates or few IO bound threads athigh compression rates.
The difficulty however with this implementation is compression versus decompression. The
system will have to guarantee idle cores during decompression. During a write operation the
system is free to choose the rate and speed of compression according to number of idle cores. In
comparison during a read operation requiring decompression the system isbound by the rate of
compression done during write.

Compression can be implemented on many different IO levels. The main two options available
is software versus hardware compression. To increase IO performance software compression can
be implemented on the upper layers of the IO stack. Some file systems already offer compres-
sion. Another option is to implement compression in the device driver. This would allow for
compression in relation to the underlying storage technology. The use of software compression
would allow for a high IOPS and bandwidth to be supported at the same time. As seen from
tests done in this study bandwidth and IOPS are inversely proportional with the blocksize as the
factor between them. By using compression large block sizes could be decreased. This would
allow for the increase of IOPS without decreasing the bandwidth. However it should be noted
that the term IOPS used in this case refer to actual IOPS. These are the IOPS achieved after
compression. The compression operation itself will result in additional latency. The same issue
is applicable to bandwidth.

Another option is the use of hardware compression. An SSD offering on board compression
would not increase IO performance. The data has to be decompressed before returned to the
system during a read operation. However on board compression offers the increase of SSD
endurance. By storing less data during a write operation, number of write/erase cycles used will
be decreased. The problem however becomes out of place writing. SSDs have to use out of
place writes due to wear leveling techniques. Data updates are written to another location and
the old data is market for garbage collection. A compression done on the sumof the data would
require a rewrite to decompress, update and rewrite the whole data. Not only will this result in
write delay but also might decrease SSD endurance.

IO compression requires further analysis of the IO stack. It also requires further understanding
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of storage technology. The analysis should be done with reference to both IO stack parallelism
and SSD implementations.
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