
Institute of Computer Architecture and Computer Engineering
University of Stuttgart

Pfaffenwaldring 47
D–70569 Stuttgart

Studienarbeit Nr. 2306

CUDA-accelerated
Delay Fault Simulation

Eric Schneider

Course of Study: Computer Science

Examiner: Prof. Dr. Hans-Joachim Wunderlich

Supervisor: Dipl.-Inf. Stefan Holst

Commenced: November 1, 2010

Completed: May 3, 2011

CR-Classification: B.7.1, B.8.1, C.1.4, C.4, D.1.3, J.6

Contents

1 Introduction 7
1.1 Fundamental Definitions . 7
1.2 Common Delay Fault Models . 9
1.3 The NVIDIA CUDA Architecture . 13
1.4 Parallel Logic and Fault Simulation . 14
1.5 The wave Time Simulator . 15
1.6 POINTER Pattern Analysis . 15

2 Gate Delay Fault-List Generation 17
2.1 Determining Defect Size Boundaries . 17
2.2 Computing Fault Sets . 19

2.2.1 Classifying Faults . 20
2.2.2 Computing Path Slacks . 21

2.3 Complexity . 24
2.3.1 Modification A: Transition-Fault Model 25
2.3.2 Modification B: Defect Range Quantization 26
2.3.3 Fault Equivalences . 27

2.4 Relation between Arbitrary Defect Sizes and SmallDelays 28

3 Delay Fault Simulator 29
3.1 Test Pattern Generation . 29
3.2 Fault List Generation . 30
3.3 Fault Simulation . 31

3.3.1 Initialization . 31
3.3.2 Tasks . 31
3.3.3 Remarks on Circuit Levelization . 34
3.3.4 Parallelism . 35

3.4 Fault Injection . 35
3.5 Response Evaluation . 35

4 Diagnosis 37
4.1 Setup . 37
4.2 Delay Fault Diagnosis using POINTER . 38

4.2.1 Fine-grained Resimulation . 39

3

4.2.2 Pattern Analysis . 40
4.3 Suspect Ranking . 41

5 Experimental Results 43
5.1 Fault Set Generation . 43

5.1.1 Counting Delay Faults . 43
5.1.2 Evaluation . 45

5.2 Fault Simulation . 46
5.3 Diagnosis . 49

5.3.1 GSI Ranking . 49
5.3.2 SIG Ranking . 52
5.3.3 Reasoning with Evidences and Representatives 54

5.4 Summary . 55

6 Conclusion 61

A ADAMA fsample 63

B ADAMA wave/diagnose dfcuda 65

C The Internals of wave 67

List of Symbols 73

Bibliography 75

4

Preface

In today’s nano-scale technology, small variations (e.g. in gate-oxide thickness) during design
manufacturing are inevitable. In some chips, these variations may manifest as defects, that
alter the behaviour of the circuit. In some cases, these defects do not change the logic structure
itself, but merely affect the timing of certain sites by increasing the signal propagation time.
These so called delay defects go undetected by standard stuck-at tests in high-speed integrated
circuits, as they require at-speed test conditions in order to make the fault visible.

The main goal of this thesis was to extend the Adaptive Diagnosis of Arbitrary Manifold
Artifacts (ADAMA) framework in order to support simulation of small delay faults and to
apply the Partially Overlapping Impact counTER (POINTER) pattern analysis algorithm to
diagnose such defects.

Since fault simulation is inherently parallelizable, the simulator will make use of NVIDIA’s
Compute Unified Device Architecture (CUDA) by utilizing General Purpose Graphics Pro-
cessing Units (GPGPU) in order to exploit parallelism and to improve the overall simulation
performance.

Contributions

The main contributions of this thesis are:

• Introduction and implementation of a delay fault model.

• Extension of a simulation engine in order to perform delay fault simulation on CUDA
devices.

• Integration of the delay fault simulator into an existing diagnosis framework.

• Evaluation and discussion of the diagnosis results.

5

Contents

Organization

This document is organized as follows:

Section 1 – Introduction: The first section serves as a brief introduction for definitions and
background. It offers some useful information about CUDA, parallel fault-simulation,
common delay fault models among others in order to recall the basic ideas and the
necessary steps, that have to be taken.

Section 2 – Gate Delay Fault-List Generation: Introduces implementation of a path-based
method for generation of reasonable gate delay defect sizes in combinatorial circuits with
unit and nominal propagation delay.

Section 3 – Delay Fault Simulator: This section describes the implementation of the delay fault
simulator.

Section 4 – Diagnosis: Explains how the implemented delay fault simulator was integrated
into the diagnosis framework.

Section 5 – Experimental Results: Here, some results of a various range of experiments are
shown and discussed.

Finally, everything will be summarized in conclusion.

Acknowledgements

I would like to thank my supervisor Stefan Holst for his encouragement and the fruitful
discussions throughout this work.

6

1 Introduction

1.1 Fundamental Definitions

Netlist

A netlist serves as a description of circuits. For combinatorial logic, it can be viewed as a
directed acyclic graph G(V, E), where each node z ∈ V represents a standard boolean logic
gate. Each edge (x, y) ∈ E corresponds to a direct connection between two gates, where the
output of x is connected to an input of y. A node can be evaluated by applying the values of its
direct predecessors to its implemented function.

For a proper evaluation of a gate, it must be ensured that all its predecessor values have
already been computed in an earlier step, or else the computation has to be stalled. This
can be achieved by levelizing the graph a priori. Thus, the goal of circuit levelization is to
generate a schedule of partitions of the node set, such that the nodes can be processed in
topological order and take these data dependencies into account. Nodes of the same level
are independent and can be evaluated concurrently. Some typical levelization schemes are
as-soon-as-possible (ASAP) and as-late-as-possible (ALAP).

Defects, Faults and Fault Models

A defect is a distortion of the circuit’s physical structure and might be caused by impurities
or variations during the manufacturing process. In general, the term fault will be used to
describe the deviations of the specified circuit behaviour due to particular defects. It serves as
an abstraction and usually represents a class of various defects that might appear in different
size or variation, but which would all cause the same faulty behaviour.

The faults are further specified according to a certain fault model, that constrains the possible
defect scenarios to a finite set: e.g. the well known stuck-at model with a stuck-at-0, stuck-at-1
and, of course, the fault-free case for each fault-site. It is also distinguished between single-fault
models, which allow only one fault at a time, and multiple-fault models, that consider multiple
fault sites at once and have a higher complexity. Thus, the choice of the fault model will
determine the precision of the defect modeling as well as the overall modeling complexity.

A comprehensive collection of many proposed fault models is listed in [BA02].

7

1 Introduction

Fault Simulation

The purpose of fault simulation is the observation of a circuit’s behaviour in the presence of
faults. This will serve as a facility to test whether a certain fault is detected by some input
patterns or detectable at all. An example application would be the measuring of the fault
coverage and the effectiveness of Automatic Test Pattern Generator (ATPG) test-sets, or the
generation of fault dictionaries for diagnosis purposes.

Figure 1.1 shows an schematic setup of an example fault simulator, where test-patterns are
applied to the primary inputs (PI) of a specification model G and a modified version G′.
The latter was modified in order to match its behaviour according to a certain fault. This
modification step is called fault injection. After a simulation of the circuit, the responses of
both devices’ primary outputs (PO) are compared. Here, the good simulation responses are
used as reference values and help searching for any errors, that might have been caused by the
injected fault.

Faulty model

Good model/
responses

Test pattern
Comparator

detected?
G'

G

Figure 1.1: Schematics of a fault simulation. – The responses of the faulty device G′ are
compared with the responses of a specification model G.

Faults can only be observed for some input pattern if the following two conditions are met:

• The patterns have to activate the faults at the corresponding fault sites (fault excitation).

• The fault effect has to be propagated to the POs to become visible (fault propagation).

ATPG patterns can be used to enhance fault activation and detection, whereas fault detection
with random generated patterns will generally show a bad performance, as many activation-
and propagation-paths may be blocked by controlling off-path signals.

8

1.2 Common Delay Fault Models

1.2 Common Delay Fault Models

Delay fault models are mainly found in literature about testing or simulation. According to
[KC98] and [MA98] there are five popular delay fault models: The transition fault model
[WLRI87], the gate delay fault model [CIR87], the path delay fault model [Smi85], the line
delay fault model [MAJP00] and the segment delay fault model [HPA96]. Each has its own
characteristics regarding defects sizes and defect distribution. In the following, these models
will be briefly introduced and discussed.

2 ns

2 ns

+2 ns

1

0

1

0

1

0

1

0

0T 1T

0T 1T

0T 1T

B:
D:

C:

Z:

1

0

0T 1T

A:

good: 1
erroneous: 0

Figure 1.2: Example of a delay defect at a line. – Although the logic structure of the circuit
has not been changed, it does eventually produce an erroneous response when the
output is sampled. Input and output signals are latched at T0 and T1.

Transition Fault Model

The transition fault model [WLRI87] considers two types of transition faults per fault site. The
slow-to-rise (STR) fault for defects that causes an infinite delay in a rising transition and the
slow-to-fall (STF) for falling transitions respectively. Only a single gate input or output may
be affected at the same time.

The transition fault itself is independent of the actual circuit timing and particular defect sizes.
They are also referred to as gross delay faults, since the effects are visible at any sensitized
POs of its output cone. For simplicity, a transition fault can be modeled as a temporary or
conditional stuck-at [WLRI87] by triggering the corresponding stuck-at faults for the transitions.
The resulting behaviour of a fault-site can then be expressed like shown in Table 1.1 [KC98].

Since all defects are assumed to be sufficiently large, the transition fault model is neither very
accurate nor realistic: Delay defects can also be of smaller size and might violate only a small
subset of paths in their sensitized output cones. However, the transition fault model is not
precise enough to model this kind of small delays.

9

1 Introduction

Transition
behaviour

STR STF

0→ 0 – –
0→ 1 0→ 0 –
0→ x 0→ 0 –
1→ 0 – 1→ 1
1→ 1 – –
1→ x – 1→ 1
x → 0 – x → x
x → 1 x → x –
x → x – –

Table 1.1: Behaviour of a fault-site in the transition fault model using a three-valued algebra
(„–“ represents no change).

Gate Delay Fault Model

In contrast to the transition fault model, the gate delay fault model by Carter et al. [CIR87]
does consider circuit timing information. In fact, it assumes that the delay times of each gate
in the circuit is known by a bounded interval.

A gate suffering from a defect causes a gate delay fault, if a defect increases the signal
propagation time of a rising or a falling transition through the gate. The size of the defect is
merely the actual increase in the propagation time at the fault-site. A fault is detected, if the
timing constraints of any sensitized path is violated. So, for each test only those faults are
visible, whose associated defect size is greater than some threshold. The threshold depends on
the minimum positive slack of all sensitized paths (typically caused by the longest) through
the output-cone of the fault-site [PR88].

It has been proposed, that the timing of signal propagations is computed by using simplified
waveforms to reduce computation complexity. All events at a gate are merged into a single
wave, which simply denotes the earliest arrival (EA) and latest stabilization (LS) time to
summarize the qualitative behaviour. An example is shown in Figure 1.3 [IRW90].

Like in the transition fault model, at most of one fault at the same time is assumed.

Path Delay Fault Model

While the location of transition and gate delay faults are restricted to a single site, the path
delay fault model [Smi85] was proposed to model the cumulative delay effect along complete

10

1.2 Common Delay Fault Models

detailed
waveform

simplified

EA LS

unknown

0

1

0

1

Figure 1.3: Summarized waveform for a rising transition.

paths from PIs to POs. Due to statistical variations during the manufacturing process, many
gates can be affected simultaneously by smaller delay defects, each of which for itself might go
undetected if tested separately. Yet, all these small defects may accumulate to create a more
severe fault along a certain path and cause the circuit under test (CUT) to fail.

In this model, a path p in a CUT from PI to PO is said to have a path delay fault, if the signal
propagation time along p exceeds the desired clock rate [Smi85]. The clock rate may be
exceeded because of a single gate delay or a distributed defect. For each physical path, a rising
and a falling path is introduced, where the rising (falling) path is tested with a rising (falling)
transition at the input.

The path delay fault model allows detection of any delay fault, that is caused by defects of
arbitrary size and distribution throughout the CUT. A major disadvantage of the model is its
complexity. Since the number depends on the actual number of paths, the complexity may
rise exponentially with the circuit size (worst case). An enumeration of all possible paths
might become impractical and it is not guaranteed that all paths are easily testable or even
sensitizable at all (i.e. false paths).

Line Delay Fault Model

The line delay fault model by Majhi et al. [MA98, MAJP00] combines both transition and path
delay fault model. It allows testing for delay defects at a line by propagating a transition along
the longest sensitizable path, which traverses the fault site. Here, not only transition faults, but
also the cumulative delay effects caused by smaller and distributed defects on the sensitized
path might be detected.

Each line delay fault has to be tested with a rising and a falling transition at its corresponding
fault site, so the total number of faults to be tested is twice the number of lines in the circuit.

11

1 Introduction

Segment Delay Fault Model

In the segment delay fault model proposed by Heragu et al. [HPA96] defects are distributed
on a chain of gates, whose path length is less than or equal to a specified value l. This
chain is called a segment. It is assumed that a segment delay fault causes delay faults on all
sensitized paths from PI to PO, which contain the faulty segment as a sub-path. The idea behind
the segmentation is, for example, that a defect at a line may affect surrounding neighbours.
Analogous to other delay fault models, there is a rising and a falling delay fault for each
segment.

The choice of the length l offers a trade-off between the benefits and the drawbacks of both
transition and path delay fault models [MA98, KC98], e.g. while avoiding the exponential path
count, the defects can still be modeled in a distributed and thus more realistic fashion.

Summary

In this section, the most common delay faults found in literature [KC98, BA02, WST08] were
introduced. The key differences are the detectable defect sizes, their scope (whether local
or globally distributed) and the number of fault-sites, that have to be considered. Table 1.2
summarizes the major advantages and limitations of the presented models.

Obviously, the path delay fault model, as well as the line- and segment delay fault model are
not appropriate for logic level delay fault simulation, since fault injection into the circuit cannot
be directly applied. Their purpose is also mainly focused on testing and test generation for
CUTs in order to validate timings at paths, without making any assumptions about the actual
number of physical delay defects, their size or location in particular. Thus, circuit simulation
would become complex.

The remainder seems to be more appropriate: Both transition- and gate delay fault model
have O(N) fault-sites and allow relatively simple fault-injection, because each fault is already
associated with a single location (gate, wire) in the circuit. However, only the gate delay fault
model considers actual timing information. It is also worth to mention that transition faults
are a subset of the gate delay model, because each transition fault might correspond to a gate
delay defect with, for example, infinite size.

Therefore, focus will be directed towards the gate delay fault model type, allowing a precise
evaluation of timing behaviour. In order to simulate such small delays, reasonable defect sizes
have to be determined.

12

1.3 The NVIDIA CUDA Architecture

Fault model advantages disadvantages

Transition
[WLRI87]

simple only gross defects (local)

Gate
[CIR87]

timing considered,
models local defects of any size

no distributed defects

Path
[Smi85]

models globally distributed de-
lay defects

complexity problem,
not useful for gate simulation

Line
[MAJP00]

models gross and globally dis-
tributed delay defects

not all paths considered,
not useful for gate simulation

Segment
[HPA96]

models gross and distributed
delay effects (local and global,
depending on segment length)

not useful for gate simulation

Table 1.2: Comparison of the presented delay fault models.

1.3 The NVIDIA CUDA Architecture

NVIDIA’s Compute Unified Device Architecture (CUDA) [NVI10] is an architecture for par-
allel computing on highly threaded general purpose graphics processing unit (GPGPU)
devices, which has been introduced in 2007. The architecture itself consists of both the un-
derlying hardware (CUDA-capable GPU devices) as well as the software required to utilize
the GPUs (driver, API, runtime). Whereas common CPUs have been optimized for single
thread performance, GPGPUs are specialized for parallel data processing purposes with many
threads and high computational throughput. A CUDA GPGPU consists of multiple Streaming
Multiprocessors (SM), which are able to create, schedule and execute threads. Each SM
executes threads concurrently in groups of size 32 (16), called warps (half-warps). All threads
contained within a warp will process the same instruction of the execution path, unless they
diverge. In that case, all branches will be executed serially until the threads converge again.

CUDA programs are generally separable into two parts: The host code running on the CPU and
the kernel code, which is called by the host to be executed on the CUDA device. A typical host
program allocates data on the device, calls the kernel and fetches the results after computation.
This is also called ’heterogeneous computing’. A host program can make use of different kernels.
However, the kernels have to be processed in a sequential order, since only one kernel can
be active at a time. When a kernel is launched, it spawns a set of threads on the device that

13

1 Introduction

will all execute the implemented kernel function. The set is arranged in a two-dimensional
grid of three-dimensional blocks of threads. All dimensions have to be provided at the kernel
function call and are denoted as parameters in ’<<< ... >>>’–brackets. These are typically
chosen depending on the type and size of the given problem, which is split into subproblems
accordingly in order to exploit parallelism.

Besides some local registers, all threads have access to a large, but slow global device
memory (typically 1–4 GB, depending on the device). Furthermore, a small read-only constant
memory (64 KB) can be used. If a thread accesses the constant memory, the data is distributed
to all other threads in its half-warp and is also cached for quick access, thereby reducing global
memory accesses. Also, a small low-latency shared memory is available, that allows cooperation
of threads within a block.

The utilization of highly parallel GPUs for general purpose issues has become more and more
popular, since it offered the opportunity to deal with highly complex computational problems
[OHL+08]. Yet, a major difficulty remains for the programmer to carefully distribute thread
resources and optimize memory access management as this has a large impact on the overall
performance.

1.4 Parallel Logic and Fault Simulation

Logic-level and fault simulators generally have to deal with large designs, that consist of many
gates and are also exposed to many patterns. In addition to the circuit gates and patterns,
fault simulation does add another dimension of complexity by the number of simulated faults.
Hence, there are many opportunities to exploit parallelism.

With the introduction of CUDA, first approaches of parallelized fault simulation with GPGPUs
have been reported [GK08]. Here, a stuck-at fault simulator has been implemented, that uses
both fault- and pattern-parallelism. It performs level-wise simulation as well as fault-detection
by separate kernels on the GPGPU.

A GPU-accelerated logic simulator has been proposed in [CDB09b]. This approach uses a
preprocessing step, where cone-partitioning is used to extract the input-cones of all netlist
outputs. These cones are merged into clusters, which run on separate thread-blocks. The
clusters are further being balanced to allow concurrent evaluation of independent gates within
through higher utilization of the resources. According to the report, nearly 20% of the circuit’s
gates have been duplicated during the preprocessing step, due to cone overlaps.

Another GPGPU gate-level simulator is introduced in [CDB09a]. This implementation is event-
driven and cuts a circuit into layers (pools) of macro-gate blocks, whose execution is triggered
by sensitivity lists. Each active macro-gate of a layer is assigned to a thread-block, which
evaluates multiple independent gates at once. Similar to the previous approach, the macro
segmentation is likely to cause gate duplication.

14

1.5 The wave Time Simulator

In [GK09], a method is presented to compute circuit delays and arrival times via a parallelized
Monte-Carlo-based statistical static timing analysis on the GPU. Here, pseudo random-number
generation and evaluation is performed concurrently for many samples to compute the delay
distribution of single gates in parallel.

1.5 The wave Time Simulator

In this thesis, the core of the implemented delay fault simulator consists of a piece of CUDA/C
code, called wave, that represents a gate-level time simulator for execution on CUDA capable
GPGPU devices, which has formerly been used to determine the switching activity in circuits. It
was written by Stefan Holst and has been provided for use with this thesis.

Wave stores intermediate signal values as waveforms and captures the complete timing history
of a signal rather than storing a single discrete value. Their representations allow for an
efficient and precise evaluation of the signal states. Since the computation of these signal
timings causes a lot of arithmetic operations, CUDA is used in order to speed-up the simulation
process: The simulator uses many-threading to evaluate large numbers of gates for multiple
patterns at once, thus exploiting structural- and data-parallelism.

Further information about the mechanics of wave is found in Section C of the appendix.

1.6 POINTER Pattern Analysis

In logic diagnosis one tries to identify the location of defects in a failing chip. This can be
of particular interest, as the results may uncover potential design flaws or regions with high
probability of failing during manufacturing or aging processes. Knowing these flaws might, as
well, help to correct or harden the circuit for future revisions. Two major diagnosis paradigms
have arisen [WWW06]. A cause-effect paradigm, which is usually a fault dictionary-based
approach. The fault dictionary is generated for the circuit w.r.t. a certain known fault model.
The real culprit is identified by looking up the syndromes in the dictionary. If multiple fault
locations have to be considered, the fault dictionary will grow substantially large.

Another approach is the effect-cause paradigm. Here, the syndromes of the device under
diagnosis (DUD) are examined in order to confine the set of possible suspects and to find
reasonable fault candidates. One particular effect-cause approach for adaptive response pattern
analysis is the Partially Overlapping Impact couNTER (POINTER) algorithm [HW09]. It
has been used with the generalized conditional line flip (CLF) calculus [Wun09] to show its
effectiveness and fault model independence.

POINTER uses evidences of a fault in order to rank and constrain suspects. An evidence of a
suspect f and a pattern π is defined as a tuple e(f , π) = (σπ, ιπ, τπ, γπ), where the components

15

1 Introduction

are computed by comparing the syndromes of the DUD with the fault machine (FM) simulating
fault f :

• σπ is the number of faulty outputs detected by both FM and DUD simulation,

• ιπ is the number of faulty outputs, which are mispredicted by fault f ,

• τπ is the number of faulty outputs of the DUD, which cannot be explained by f , and

• γπ is defined as min({σπ, ιπ}).

For a whole pattern set Π = π0, ..., πk, the individual evidence components of the patterns are
further being summed up, forming the complete evidence of the fault:

e(f , Π) = (∑ σπi , ∑ ιπi , ∑ τπi , ∑ γπi).

Now, the resulting evidence collection is ordered to create a ranked list of suspect faults. The
proposed ordering of the original paper sorts first in increasing order of γ to move single and
conditional stuck-ats in front. Then, evidences with equal γ are ordered by decreasing σ to
highlight the suspects by the most explaining bits. Minimizing ι helps to weed out suspects
with too many mispredictions.

The relation between the ranking of two faults f1 and f2 and their corresponding evidences
after Gamma-Sigma-Iota (GSI) ordering is described as follows:

1. γ1
Π > γ2

Π ⇒ rank(f1) > rank(f2)

2. σ1
Π > σ2

Π ⇒ rank(f1) < rank(f2)

3. ι1Π > ι2Π ⇒ rank(f1) < rank(f2).

The lower the rank of a suspect, the better the result, and the more likely it will be a perfect
candidate, that can explain the defect behaviour.

16

2 Gate Delay Fault-List Generation

When trying to model arbitrary gate delay faults for use with logic simulation, one has to
face an additional dimension of complexity as compared to the common stuck-at model: The
defect size (in the following denoted as δ f) related to a fault f , or the actual increase in delay
at a certain fault site. This defect size is — like time itself — in general a continuous and also
unrestricted parameter.

The following section will provide a method to compute relevant defect sizes for circuit netlists
with unit and nominal gate delay. First, it is shown how to restrict the defect sizes by a lower
and an upper bound. A path-based fault generation will be defined afterwards in order to
obtain all defects, that might cause a distinct fault behaviour.

To reduce the initial fault count and model complexity, the location of any fault has been
constrained to single gates. Also, in contrast to other delay fault models ([WLRI87], [Smi85],
[HPA96]), it is not distinguished between rising and falling transition faults during simulation
for simplicity reasons, but the method will allow for extensions.

2.1 Determining Defect Size Boundaries

To specify the defect size boundaries for a given node, the minimum (maximum) slack at
a certain node n has to be defined first. Let Pn denote the set of all paths p from PI to PO
through node n and let δ(n) be its nominal propagation delay.

Assumption 1. Defects only increase the propagation delay of gates and at most
one is affected at a time.

Definition 4.1. The slack ∆T(p) of a path p in a circuit G is defined as the difference ∆T(p) =
T− tp, where T is the sampling time of G and tp is the signal propagation time along p. The
propagation time tp = ∑∀n∈p δ(n) is the cumulative delay of all nodes on p.

Thus, the slack of a path p can be described as the amount of time-units a signal propagated
along p will arrive earlier at the output than required. By definition, all paths with a negative
slack will violate the timing constraints.

17

2 Gate Delay Fault-List Generation

Example: Consider a circuit G, which is sampled at T = 8 ns, a path p with
tp = 6 ns and a path q with tq = 10 ns propagation time. The slacks will be
∆T(p) = 8− 6 = 2 ns for path p and ∆T(q) = 8− 10 = −2 ns for q respectively.

Definition 4.2. The minimum slack ∆min(n) of node n in circuit G is defined as min
p∈Pn
{∆T(p)}.

Analogous, the maximum slack ∆max(n) of n is defined as max
p∈Pn
{∆T(p)}.

A delay defect of positive size δ f > 0, injected at a node n, will change the delay of n to
δ′(n) = δ(n) + δ f by increasing tp for each p ∈ Pn and causing all slacks ∆T(p) to decrease
by δ f (see Def. 1+2). The resulting slack for each path p will be ∆̃T(p) = ∆T(p)− δ f . If the
minimum slack of n is positive, then all paths p ∈ Pn meet the timing constraints, since

∀p ∈ Pn : (∆T(p) ≥ ∆min(n)) ∧ (∆min(n) ≥ 0)⇒ ∆T(p) ≥ 0.

However, if the minimum slack at n is below zero (that is ∆min(n) < 0), the circuit will fail for
any path p ∈ Pn with ∆T(p) < 0 that is statically sensitizable, such that the fault effects are
propagated over p to the POs for some delay test pattern.

Definition 4.3. A circuit G is fault-free, if none of the paths in G violates the timing constraints,
or equivalently:

∀n ∈ G, ∀p ∈ Pn : ∆T(p) ≥ 0.

Lower Bound

Using these definitions, one can now prove the following lemma in order to specify a lower
bound for detectable defect sizes at a certain node n. This lower bound is given by ∆min(n)
and any defect of smaller size (δ f ≤ ∆min(n)) will go undetected during simulation.

Lemma 2.1.1. For each node n in a fault-free circuit G, an injection of a defect at n with defect
size δ f ≤ ∆min(n) will not violate the circuit timing constraints.

Proof. The circuit is assumed to be fault-free and δ f ≤ ∆min(n). Since ∆T(p) ≥ ∆min(n) for all
paths p through n: ∆̃T(p) = ∆T(p)− δ f ≥ ∆T(p)− ∆min(n) ≥ 0.

18

2.2 Computing Fault Sets

Upper Bound

The delay defect size at a node n can also be constrained by an upper boundary, such that
all sizes beyond this boundary behave like the same fault. This type will have the maximum
delay-impact on the circuit. Hence, it represents a gross-delay fault or a type of transition
fault (see Section 1.2). The following lemma defines the upper bound as ∆max(n), which is
usually lower than the naïve solution T.

Lemma 2.1.2. Consider a fault-free circuit G. Injecting a defect at node n of size δ f > ∆max(n)
has the maximum impact on the circuit output behaviour. Any defect δ′f ≥ δ f will cause no further
changes.

Proof. Assume that a fault-free circuit is sampled at T and ∆max(p) is the maximum slack at
node n. The slack for any path p′ through n was defined as ∆T(p′) = T − tp′ . Now, consider a
defect at n of size δ f > ∆max(p), which is δ f = ∆max(p) + ε for any ε > 0.

After injection, the slack ∆̃T(p′) for any path p′ ∈ Pn is as follows:

∆̃T(p′) = ∆T(p′)− δ f = ∆T(p′)− ∆max(p)− ε

= (T − tp′)− (T − tp)− ε = tp − tp′ − ε.

Since T is fixed and tp ≤ tp′ by Def. 2, this implies tp − tp′ ≤ 0 and, therefore ∆̃(p′) < 0.

In conclusion, the previous lemmas allow a restriction of the defect size δ f for a node n without
dropping any faults. The range Dn for a detectable defect size δ f ∈ Dn is determined by

Dn = [∆min(n) + ε, ∆max(n) + ε], ε > 0.

2.2 Computing Fault Sets

In order to perform the actual fault simulation, the simulator will require a list of delay
defects to inject, which are represented by the classes SMALLDELAY and SMALLDELAYSET. Each
SMALLDELAY consists of a gate identifier (gidx) and a defect size (d). It will increase the
transition time at a node by its defect value, regardless of rising or falling transitions. To
distinguish between those types, it would require additional changes to the data structure and
the simulator in order to properly recognize rising and falling transitions and to trigger the
fault accordingly — and individually — for each pattern. The SMALLDELAYSET simply provides
a list of SMALLDELAYS and functions for computing and modification of the list.

Definition 4.4. A delay defect causes an error, if it alters the circuit’s timing in a way, such
that at least one path p from PI to PO violates the timing condition according to Definition 4.3.

19

2 Gate Delay Fault-List Generation

For now, it is not required that the error or the erroneous behaviour becomes visible at the
output immediately. In fact, it may happen that the fault effect cannot be observed by any
delay test, because of blocking off-path signals that mask the transition propagation. It is then
called untestable.

Each fault is a representative of a whole set of different defects, where the observed output is
identical for each defect and any possible input patterns. Thus, defects that cause a different
output behaviour cannot be represented by the same fault. Also, delay defects may have
different levels of severity: A defect δ f1 at a particular gate would probably cause a set of POs
to fail, while larger defects δ f2 > δ f1 would cause even more failing POs.

In the following, a method is described, that is able to obtain reasonable defect sizes for
a circuit with unit and nominal gate delays. Each computed defect size δ fi will relate to a
different fault fi. The number of faults is complete w.r.t. to the defined model.

2.2.1 Classifying Faults

First, some assumptions and definitions have to be set up in order to explain the mechanics of
the algorithm and the used primitives. The following assumption is important for the current
configuration of the model, as it has a huge impact in model complexity:

Assumption 2. All gates have single nominal propagation delay.

Based on this assumption, each path will have exactly one cumulative propagation delay. Recall
that the fan-in (fan-out) of a gate n is defined as the set of gates that directly feed the inputs
of n (are fed by n’s output). The input-cone (output-cone) of a gate n is the portion of the
circuit that is reached by recursive traversal of the fan-ins (fan-outs) of n.

Figure 2.1 illustrates the input-cone and the output-cone of a gate. It shows a defective gate
n in a circuit G and two paths segments p and q in the output-cone. Assume, that the fault
at n is excitated, and both p and q are sensitized. If the path length of q is shorter than p, it
may happen, that a defect δ f causes the PO of p to fail. However, the slack for q might still be
positive. Imagine an increase in the defect size δ f ′ = δ f + ε. The PO at p will still violate the
circuit timings and the slack at q’s PO is decreasing. Eventually, it will fall below zero for some
δ f ′ and the PO at q will fail, too. The moment, the slack of path q falls below zero, it will be
classified δ f ′ as a new fault f ′ because a new path has violated the timing conditions.

The algorithm classifies faults through a reverse approach by computing their defect sizes. For
each node n in a graph G it generates the slacks for all paths p ∈ Pn. With these slacks, all
relevant defect sizes for n are generated. Each defect δP is related to a set of unique paths
P ⊆ Pn, such that all paths p ∈ P begin to fail (δP > ∆T(p)), hence it can be classified as
separate fault. Since all SMALLDELAY defect sizes and circuit delays are implemented as SHORT

data type, ε equals 1. The resulting defect size is δP = max
p∈P
{∆T(p)}+ 1 for each set P ⊆ Pn.

20

2.2 Computing Fault Sets

Input-cone Output-cone

Defective
node

PIs POs

p

q

Circuit G

Figure 2.1: Input-cone and output-cone of a fault site.

2.2.2 Computing Path Slacks

The ADAMA framework, in which the procedures are called, provides a powerful class to model
and operate on the circuit. The circuit itself is stored as a levelized graph (LEVELEDGRAPH)
with access to node lists for all levels. Input pins are located exclusively on the lowest level,
output pins at the highest. Each node or gate has a unique global identifier. There are functions
to access its direct predecessors (fan-in) and direct successors (fan-out). The required path
slacks for determining the defect sizes are computed in three phases:

In the first phase a forward traversal of the levelized circuit is performed from PI towards PO.
For each node n at a level, a list of its signal arrival times is stored. The arrival time list is a set
of all possible times signals will take on any PI of n’s input-cone to reach n’s output (including
n’s own gate delay). Algorithm 2.1 shows the outline of the procedure COMPUTEARRIVAL. The
procedures uses the functions MERGEUNIQUE(List,List) and MERGEUNIQUEADD(List,List,value)
— which simply are union-operators — in order to create and merge unique elements of lists.
In addition, the latter procedure is able to add an additional delay directly to each value of the
second list while merging at a gate. All arrival times for the inputs (at level 0) are initialized
with 0. At any other level, each node n merges the arrival lists of its direct predecessors and
adds its own delay (line 8–10). The timings of all nodes is provided by the d[] parameter.

The second phase resembles a backward traversal through the circuit. It works like phase
one, except for the reversed direction. Algorithm 2.2 shows the outline of the procedure
COMPUTEPROPAGATION. Instead of arrivals, each node has to deal with propagation delays
of each of its direct successors. A propagation delay list is similar to the arrival list, but
everything holds for the output-cone: it is a list of all possible times it may take for a signal to
reach any PO starting from n.

During the third phase, both arrival- and propagation delay lists are combined at each node
n in a way, such that any element a[i] of n’s arrival list is added with any element p[j] of the
propagation delay list. All pairs (i, j) will form a path delay t(i,j) = a[i] + p[j], which is is

21

2 Gate Delay Fault-List Generation

Algorithm 2.1 Computing arrival lists for all nodes (Phase 1)
1: procedure COMPUTEARRIVAL(G, d[])
2: Arrivals[0 .. N − 1][∗] // keep a list of arrival times for each node in the graph
3: for all Levels L in G from PI to PO do
4: for all Nodes n in L do
5: if ISINPUT(n) then
6: Arrivals[n]← MERGEUNIQUE(Arrivals[n], 0) // initialize with zero
7: else
8: for all Nodes p of FANIN(n) do // output: predecessor + node delay
9: Arrivals[n]← MERGEUNIQUEADD(Arrivals[n], Arrivals[p], d[n])

10: end for
11: end if
12: end for
13: end for
14: return Arrivals
15: end procedure

Algorithm 2.2 Computing propagation lists for all nodes (Phase 2)
1: procedure COMPUTEPROPAGATION(G, d[])
2: Props[0 .. N − 1][∗] // keep a list of propagation times for each node in the graph
3: for all Levels L in G from PO to PI do
4: for all Nodes n in L do
5: if ISOUTPUT(n) then
6: Props[n]← MERGEUNIQUE(Props[n], 0) // initialize with zero
7: else
8: for all Nodes s of FANOUT(n) do // input: successor + node delay
9: Props[n]← MERGEUNIQUEADD(Props[n], Props[s], d[s])

10: end for
11: end if
12: end for
13: end for
14: return Props
15: end procedure

22

2.2 Computing Fault Sets

valid for some paths p ∈ Pn, since each element in a[i] corresponds to some segment in the
input-cone of n and the elements of p[j] are related to paths of the output-cone.

The pairwise combination is done by the procedure COMBINELISTS(), which computes all
distinct values of t(i,j) by dropping duplicate values, and it will eventually return a complete list
of unique slacks for each node n used for estimating the set of defect sizes DT

∆(n) ⊆ Dn. Thus,
the number of elements found in DT

∆(n) is equal to the number of unique path lengths in Pn:

|DT
∆(n)| = |

⋃
p∈Pn

{∆T(p)}|.

Hence, DT
∆(n) covers all possible paths through n. Due to the double-coned shape of Pn (see

Fig. 2.1), the model is called Double-Cone Delay Model (DCD Model).

Figure 2.2 illustrates an example application of the defect size generation method on the circuit
c17. Arrival times for each node are denoted in "{ }" and propagation delays are denoted in
"()". The final slacks are denoted in "[]". The thickened lines indicate the input and output
cone of the highlighted center NAND2 node.

T = 8 ns

A
2 ns

2 ns 2 ns

2 ns

2 ns

2 ns

B

C

D

E

X

Y

{} = Arrival Times

() = Propagation Times

[] = Path Slacks

{0} (4) [4]

{0} (4) [4]

{0} (4,6) [2,4]

{0} (6) [2]

{0} (4) [4]

{2}
(2)
[4]

{2}
(4)
[2]

{2,4}
(2)

[2,4]

{2,4}
(2)

[2,4]

{4,6}
(0)

[2,4]

{4,6}
(0)

[2,4]

{4,6} (0) [2,4]

{4,6} (0) [2,4]

Figure 2.2: Computation of arrival times, propagation delays and path slacks for each node of
c17 with sampling time T = 8 ns.

Finally, Algorithm 2.3 lists the necessary steps to compute all relevant defect sizes of the
underlying model. Since each computed SmallDelay δ f of a node n causes a unique set of paths
P ⊆ Pn to fail, it is directly referred to it as a fault f . Different faults for a node n will produce
unique syndromes according to Definition 4.4, when applying all possible input patterns.

23

2 Gate Delay Fault-List Generation

Algorithm 2.3 Determining defect sizes
1: procedure DOUBLECONEMODEL(G, d[], T) // T: circuit sampling time
2: Arrivals← COMPUTEARRIVALS(G, d)
3: Proptimes← COMPUTEPROPAGATION(G, d)
4: for all Nodes n in G do
5: Slacks← COMBINELISTS(Arrivals[n], Proptimes[n], T) // combine unique path

segments to a path delay tp = t(an[i],pn[j]) and compute the corresponding slack (= T− tp)
6: for all Values v in Slacks do
7: ADDDEFECT(n, v + 1) // defect size = slack + ε

8: end for
9: end for

10: end procedure

T = 8 ns
{} = Computed Faults

A
2 ns

2 ns 2 ns

2 ns

2 ns

2 ns
{3}

{5}

{3,5}

{3,5}
{3,5}

{3,5}
B

C

D

E

X

Y

Figure 2.3: Computed faults of the interior nodes of c17. The circuit sampling time is T = 8 ns.

Figure 2.3 shows the resulting fault lists for each gate of the example circuit. For illustration
purposes, the fault sites were restricted to the interior nodes. The centered NAND2 node n is
traversed by a total of six paths, two of whom — the ones initiating at B — have a path delay
of 4 ns, while the others have a delay of 6 ns. The computed slacks are {2} and {4}, hence the
resulting defect sizes DT

∆(n) = {3, 5}.

2.3 Complexity

The major drawback of the DCD fault generation is its complexity: The fault count as well as
the computation depend on the number of possible paths through each double-cone Pn, which
sums up to roughly O(N · 2N) faults in the theoretical worst case for circuits with N two-input

24

2.3 Complexity

gates. Although, this indicates exponential nature, experiments showed that the average fault
count scales linearly with the circuit size, thus being not that worse.

However, to make the simulation model more viable w.r.t. to the fault count and computation,
some faults may be dropped from the list. Any fault, that is dropped, will cause a loss of
precision of the model, since the related defects would produce a faulty output behaviour in
the real design, which could not be reproduced within the simulation model.

In the following, two modifications are presented in order to create fault-lists with reduced
fault count and reduced computational complexity of the fault-list generation.

2.3.1 Modification A: Transition-Fault Model

Algorithm 2.4 Modification of DCD for usage as transition-fault model
1: procedure TRANSITIONFAULTMODEL(G, d[], t)
2: Arrivals← COMPUTEMINARRIVALS(G, d) // keep minimum values only
3: Proptimes← COMPUTEMINPROPAGATION(G, d)
4: for all Nodes n in G do
5: slack← COMBINELISTS(Arrivals[n], Proptimes[n], t)
6: ADDDEFECT(n, slack + 1)
7: end for
8: end procedure

The first modification (see Alg. 2.4) resembles a subtype of the well-known transition-fault
model. The fault set computation is similar to the DCD model, but instead of merging whole
lists to super-lists, each node will only have to store the minimum arrival and minimum
propagation time. With each node n holding the values for amin and pmin, one can compute
the cumulative delay tp′ = amin + pmin of the shortest path p′ of Pn and its slack ∆T(p′) to
determine a defect size. Since ∆T(p′) = ∆max(n), the related defect size ∆max(n) + ε will
violate the timing conditions for any path of Pn, due to:

∀p ∈ Pn : ∆T(p)− ∆max(n)− ε < 0.

These faults are classified as gross-delay-faults and the resulting set will have a size of
N (⇒ O(N)), with one fault per node. Unlike the original transition-fault model, a fault at a
node n currently represents both slow-to-rise (STR) and slow-to-fall (STF) faults simultane-
ously, since it is not distinguished between rising and falling transitions.

25

2 Gate Delay Fault-List Generation

2.3.2 Modification B: Defect Range Quantization

The transition-fault modification of the algorithm showed, that the fault count an be reduced
dramatically at the expense of model precision, since several small-delay faults of intermediate
size are not considered in the simulation set.

The following modification is a simple trade-off to improve the defect model precision, while
keeping the fault count and complexity low. The method is similar to the transition fault
modification: every node computes the maximum in addition to the minimum arrival and
propagation times. Using the maximum and minimum for each node n, we define the slack
range [∆min(n), ∆max(n)] and the resulting defect range:

Dn = [∆min(n) + ε, ∆max(n) + ε].

A quantization parameter q is used to fetch intermediate values of Dn, in order to recover
some small-delay faults, that might have intermediate severity levels. Quantization could be
done by using:

• equally distributed values, or

• adaptive computation of intermediate values by regarding defect size distribution.

Here, a quantization with equally distributed values was implemented as follows:

If q = 0, a single defect δ f = (∆max − ∆min)/2 is added for each gate. The mean is intended to
have a noticeable impact on the circuit behaviour, but it should not be as severe as a transition
fault.

For q > 0, q + 1 equally distributed defect sizes out of Dn were chosen, such that each two
neighbouring defects δ fi and δ fi+1 have maximum distance. Hence, the defects of the interval
endpoints δ f0 = {∆min(n) + ε} and δ fq = {∆max(n) + ε} will always be in the computed set.
They serve as a representatives for the faults at n, to observe the least and worst possible impact
on the circuit behaviour. All other δ fi (0 < i < q) are distributed over Dn.

Figure 2.4 gives an example for the defect size distribution of different qs. Assuming a
quantization factor of q, the fault count can be estimated by O((q + 1) · N) ≈ O(q · N).
However, the generated fault list is not directly compatible with the prior definition of fault,
since the computation of intermediate defect sizes might generate values, that cannot be
derived from any path in the circuit. Yet, these defects δx are related to some known faults
δ f1 , δ f2 ∈ DT

∆(n) of the model through δ f1 ≤ δx < δ f2 . The generated δx is a valid representative
for fault f1, but it may happen, that multiple representatives of one and the same fault are
generated. Thus, inserting a duplicate fault to the fault set is imminent.

26

2.3 Complexity

0

1

2

3

q

...

defectsq+1

δf
Δ ()min n ε+ Δ ()max n ε+

4

...

Figure 2.4: Quantized Dn for different qs. The marks represent the resulting defect sizes.

2.3.3 Fault Equivalences

Reducing the fault count by exploiting equivalence classes is much more complex and restricted,
than compared to the stuck-at fault model. Since, all computed defect sizes for a node n in
the model are related to paths in Pn, the faults of n and g will be equivalent only if Pn = Pg,
because each defect has to be excited and propagated over the same paths in order to produce
the same output behaviour for any input pattern.

According to Waicukauski et. al [WLRI87], transition faults are considered as equivalent, if at
least one of the following rules applies:

• A gate has one input — then both input and output transition faults are equivalent.

• A gate has only one fan-out — in this case, both output faults and faults at the fan-out
inputs are equivalent.

However, the underlying model only considers fault sites at gate outputs, so, these rules cannot
be applied directly. An extension could be easily simulated by simple insertion of buffers at
each input, but this is not very helpful, as the faults introduced by the insertion buffers are
merely the ones, which are collapsed in the step afterwards.

Yet, recalling that Pn = Pg implies fault equivalence for n and g, this idea lead to the following
rule in order to perform fault collapsing:

Rule: Assume a gate n with a single fan-out g. The fault lists of n and g are
equivalent, if g is either a single input gate, or a k-chain of single input gates
g0, . . . , gk−1, since Pn = Pg/gi . Then, the fault lists of g respective gi for i =

0, . . . , k− 1 can be dropped.

27

2 Gate Delay Fault-List Generation

This is fault collapsing in its simplest form (Fig. 2.5). Although, there might be more fault
equivalences, finding these classes would require complex methods and special (global)
knowledge about the circuit’s structural behaviour, which is neither given nor subject of this
thesis.

n g k-1g0

Figure 2.5: Illustration of Pn = Pgi . – Fault equivalences of a single fan-out gate n and a
succeeding chain of k single-input gates gi.

2.4 Relation between Arbitrary Defect Sizes and SmallDelays

Arbitrary delay defect sizes δx > 0 at any gate n can be mapped to a defect size δ f ∈ DT
∆(n) of

a SMALLDELAY fault f by

δx 7→

max({δ fi ∈ DT
∆(n) : δ fi ≤ δx}) if δx ≥ min(DT

∆(n))

0 else (fault-free).

For two consecutive defect sizes δ1, δ2 ∈ DT
∆(n) at a node n, all defects δ ∈ [δ1, δ2) behave the

same and thus belong to the same class. Given a particular defect size δx, the above mapping
simply determines a representative of the defect class it belongs to. Since, Pn is finite and
the underlying model considers integer-valued defect sizes only, each representative is simply
chosen by the lowest bound of the defect class (which is δ1). If defects are below the minimum
detectable size, they are mapped to the fault-free case (δ f = 0), because the circuit itself is
assumed to be fault-free and the defect will cause no noticeable changes. Hence, any defect
size can be mapped to a unique SMALLDELAY representative.

28

3 Delay Fault Simulator

This section describes the implementation of our delay fault simulator and its integration into
the ADAMA framework. The core consists of a data parallel timing simulator, called wave,
which was written by Stefan Holst. It is implemented in CUDA/C in order to compute many
circuit signals concurrently on CUDA-capable graphics devices.

3.1 Test Pattern Generation

The general structure for delay fault tests differs from normal stuck-at tests. Finite delay
defects cannot be detected by using a single pattern during simulation. These defects only
affect signal transitions at the corresponding sites, but not the logic behaviour in a stable state.
Each transition requires at least two input patterns: the initialization vector (IV), which sets
the circuit into the stable state, and a propagation vector (PV), that spawns transitions at all
PIs, where the values of IV and PV differ. If a transition reaches the defective site, it triggers the
fault effect. Unless further propagation of the affected signal is masked by controlling off-path
signals, the fault effect will become visible at the outputs.

The ADAMA framework generates either deterministic or random pattern sequences, which
have to be converted into delay tests by combining pairs of patterns.

1

1

0

1 0 1

0 1 1Pattern 0

Pattern 1

Pattern 2

Pattern 3 1 1

0

Inputs

A B C

1

1

1 1

1

0

A B C

Figure 3.1: Test-pattern conversion. – Each delay test-pattern is computed by using two
consecutive patterns of a random generated pattern-block.

29

3 Delay Fault Simulator

Figure 3.1 illustrates the conversion of a PATTERNBLOCK into a series of delay tests. One should
note, that the signal values of resulting patterns do not only consist of 0s and 1s, but also of
rising and falling transitions. This is because the timing simulator uses a data structure, that
describes signal waveforms rather than plain signal values. The current conversion scheme was
chosen to ease pattern evaluation and fault detection, since the i-th pattern of a block is also
used as PV in the delay-test vector. Thus, the responses of the i-th pattern will represent the
stabilized state of the good simulation, which can be acquired through plain logic simulation,
instead of wasting an additional complex time-simulation for the fault-free case.

3.2 Fault List Generation

As presented in the preceeding section, the double-cone delay model (DCD) and its modifica-
tions were implemented in order to obtain the fault-lists for the delay fault simulation. The
fault-lists can be provided in two ways. They can either be generated at runtime, or being
provided by external files, that contain, for example, pre-computed sets of faults.

For runtime generation, the simulator is started normally by choosing a particular fault
model modification, or by using the default setting. After instantiation of the circuit and
generation of the gate delays a SMALLDELAYSET will be setup, that uses a fault-list generation
procedure according to the chosen modification. Once the final fault-list has been computed, it
is stored within the SMALLDELAYSET, where each fault can be directly accessed through an
index. Additional functions, such as CROP(from, to) or CROPRANDOM(number), allow to pick a
range or a certain number of random faults out of the computed set and join them into a new
list. The original set can always be restored by calling RESTOREFAULTLIST(), which resets the
reference.

Since fault-list generation is very compute intensive, it might also be recommended to generate
the list prior to the actual simulation. For example, if fault simulation of a circuit has to be
repeated different times for experimental issues, a computation of the full fault set would be
required each time the simulation is started. This would cause an increase in simulation time
and prolong the experiments.

To avoid this, fault-list file generation has been implemented in ADAMA fsample for the use
with SMALLDELAY-sets (see Appendix A). The fault files generated for a circuit use a fixed
sampling time, which does currently depend on the circuit depth. Any modifications will likely
cause the fault files to become invalid and require a re-computation of the sets.

30

3.3 Fault Simulation

3.3 Fault Simulation

In order to capture the effect of arbitrary small delay faults, a time simulator called wave is
used, which allows precise logic-level timing simulation to be computed on CUDA-capable
devices. For further references and detailed mechanics of the wave process it is referred to the
wave section (see Appendix C).

The implemented delay fault simulator consists of two parts: The simulator task itself as a
part of the ADAMA framework, and the wave executable. The framework part is responsible
for the pattern generation and conversion, computing register and memory mappings, fault
injection as well as the final response evaluation, whereas the wave executable handles all
the CUDA-related accesses and performs the gate evaluations. Both processes communicate
together via input/output streams using implemented state-machines and memory maps for
exchanging data.

3.3.1 Initialization

When the simulator is started, the LEVELEDGRAPH of the circuit is converted by the FRAME-
FORMATTER into a scheduled frame-map. The frame-map holds the circuit information for all
existing gates including the register mappings, which are used to identify cells, where signals
of certain gates are or have to be stored in the memory maps.

The wave process is started once the FRAMEFORMATTER has finished its work in order to
initialize the device and the memory mappings properly. It selects a certain CUDA device and
the required amount of device memory for allocation. The implemented state machine then
awaits orders from the ADAMA framework. If either the frame count of the circuit is too large
or the amount of required memory is not sufficient, the initialization fails and the simulator
will terminate.

3.3.2 Tasks

In each simulation run an individual fault is simulated for all provided input stimuli. For a
large number of patterns it may happen that the pattern-set has to be split into smaller disjoint
subsets, which each is simulated in a separate pass, since the limited memory on the GPGPU
only allows a finite set of patterns to be simulated at a time. When using a fixed amount of
global device memory, the number of passes strongly depends on the number of used registers
and their respective maximum size or wavecap, as well as the amount of provided patterns.
The relationship between these parameters can be described as follows:

#PatternsPerPass =
⌊

MemorySize
#Registers×MaxRegisterSize

⌋
, #Passes =

⌈
#Patterns

#PatternsPerPass

⌉
.

31

3 Delay Fault Simulator

A pass is performed in a level-wise manner starting from PI to PO. Each time, the wave

simulator will be involved by executing three major tasks:

1. The input stimuli (waveforms) of all patterns to be processed in the pass are transferred
to the GPGPU device.

2. The level-wise evaluation of the gates is performed by repeatedly calling the kernel for
each frame index in increasing order.

3. At last, the responses are transferred back to the host (where they can be evaluated by
comparing to the good simulation in order to find any failing bits and patterns).

In its simplest form, the delay fault simulator can be described as three nested loops: for every
fault (run), for every pattern-pass (pass), for each level (frame). Figure 3.2 and 3.3 show the
outline of the major tasks that are performed during a fault simulation. The whole flowchart
was split into two parts to provide a better comprehensibility.

*.fl

*.lg

faults
remaining?

simulate
fault

load circuit

generate
fault list

start

end

evaluation/
output

yes

no

pick next fault

good simulation
good

responses

Figure 3.2: Outline of the major steps done by the fault simulation framework indicating the
outer loop of the fault simulation.

32

3.3 Fault Simulation

inject

reset patterns

patterns
remaining? pick pattern-set

frames
left?

simulate
frame

pick frame

fetch resultsevaluate
responses

simulate
fault

end

good
responses

overflow?

simulate
frame

fetch results overflow?

recalibrate

pick frame
frames
left?

reset frames

reset frames

yes

no

yes

no

yes

no

yes

no

yes no

simulation pass

calibration pass

remove fault

Figure 3.3: Fault simulation. – Major tasks performed during a run. The GPGPU device is
being occupied at the highlighted stages, where a single frame is executed. The
separate calibration pass has been added for completion.

33

3 Delay Fault Simulator

3.3.3 Remarks on Circuit Levelization

The wave simulator transfers the gate data of a level Li to the CUDA device constant memory
prior to calling the simulation kernel. The data structure, used for representing a single gate,
restricts the number of gates per level to a maximum of 4000. So, all circuits have to be
levelized in a way that each level does not exceed that maximum allowed gate count. If a level
meets this requirement, it is referred to as a frame. The frame-depth will be the number of
levels of a frame-compliant circuit.

Most of the NXP benchmark circuits did not meet this frame property and had to be re-levelized
in order to meet the maximum allowed gate count per level. This came along with an increase
in frame-depth, although the actual logic depth remained unchanged.

p3
5k

.lg
p4

5k
.lg

p7
7k

.lg
p7

8k
.lg

p8
1k

.lg
p8

9k
.lg

p1
00

k.
lg

p1
41

k.
lg

p2
39

k.
lg

p2
59

k.
lg

p2
67

k.
lg

p2
69

k.
lg

p2
79

k.
lg

p2
86

k.
lg

p2
95

k.
lg

p3
30

k.
lg

p3
78

k.
lg

p3
88

k.
lg

p4
18

k.
lg

p4
69

k.
lg

p4
83

k.
lg

p5
00

k.
lg

p5
33

k.
lg

p8
74

k.
lg

p9
51

k.
lg

p1
52

2k
.lg

p2
92

7k
.lg

p3
18

8k
.lg

p3
72

6k
.lg

p3
84

7k
.lg

p3
88

1k
.lg

0

256

512

768

1024

1280

1536

Logic Depth ReLevelized

N
um

be
r

of
 le

ve
ls

/f
ra

m
es

Figure 3.4: Frame-depth of the NXP benchmark circuits after limiting the maximum allowed
number of gates per level to 4000. The thick dotted line indicates the current
frame-limit.

Figure 3.4 shows the number of frames after re-levelization of the NXP circuits. One should
notice, that the process had a much larger impact for bigger, than for the smaller ones. This
is due to the nature of ASAP levelization, which caused the width of the first levels often
to exceed hundreds of thousands of gates. For some unknown reasons, p874k.lg could not
be re-levelized. Thus, the missing frame-depth in the evaluation. The number of maximum
allowed frames is currently capped at 1024.

34

3.4 Fault Injection

3.3.4 Parallelism

During simulation, both data and structural parallelism are exploited by evaluating multiple
patterns in wavesets for multiple gates at once on the GPGPU. Depending on the circuit structure,
the ratio between those types of parallelism may vary.

3.4 Fault Injection

All faults of the provided fault-list are processed serially in a loop with the currently indexed
fault being passed via an argument to the simulator for the injection process. Injection takes
place prior to the actual logic simulation run.

The FRAMEFORMATTER class is responsible for creating and allocating the aligned gate data
structures for the simulator. It maps the ADAMA internal LEVELEDGRAPH representation to
the memory. So, the FRAMEFORMATTER seemed thus to be a viable entry point for the fault
injection by simply adding the defect size at the corresponding gate before the memories are
synchronized and the simulation commences. In addition, this mechanism will also allow
for injecting multiple faults. In the simulation experiments only one defect at a time is
considered.

When the simulation run has been completed for a certain fault, the original delay of the
affected gate has to be restored explicitly by calling CLEAR().

Remarks: Fault injection by modifying the frame-data will only affect interior
nodes of the circuit. Without changing the circuit structure, faults located at either
input or output pins have to be handled differently (which is not yet implemented):
Any delay defect at an input pin could be simulated by delaying transition at the
corresponding locations, while converting the input stimuli. For outputs, one could
simply adjust the sampling time at the pins when evaluating the response waves.

3.5 Response Evaluation

After the device has finished the computation of the last frame, the results are being synchro-
nized and stored in the mapped memory. Before the evaluation takes place, all results are
checked for overflows, which are also encoded in the waves. If none of them were detected, the
registers designated as outputs are evaluated by the wave evaluation algorithm. Otherwise,
the calibration procedure will be called.

For the wave evaluation, the sampling time has to be identical to the one, which was used to
generate the fault lists. This will ensure that the intended fault behaviour is captured. The

35

3 Delay Fault Simulator

default capture time for fault generation and wave sampling is currently set to a multiple of
the circuit depth: T = 2 · (CircuitDepth + 1) [ns], since the maximum delay of any specified
gate in the underlying model was 2 ns. The final results are stored as common two-valued
logic at the output-offset of the corresponding patterns.

By comparing all output bits with the expected values of the good simulation responses any
failing bits can be marked in a syndrome vector. The wave evaluation scheme does not detect
all path timing violations caused by signal hazards. For example, any delay fault, that pushes a
hazard beyond the sampling point, might go undetected if the sampled signal value equals
the stabilized good value (see Fig. 3.5). In fact, this is one of the big advantages of wave, since
the waveform evaluation reflects the behaviour of in-the-field devices, where signals are being
sampled at discrete points of time. In addition, extensions can be made to further increase
modeling accuracy, e.g. by considering setup- and hold times of latches or flip-flops.

Wave evaluation

Timing violation

1

0

1

0

not detected

detected

T

hazard

0

1 0

0

Figure 3.5: Some violations caused by hazards go undetected during simulation when using
wave evaluation with the circuit sampling time. General timing violations can be
detected by examining the latest transitions only.

Remarks: Another way to evaluate the simulation results could be checking for
pure signal timing violations along paths. These can be obtained by simply checking
whether the latest signal transition at an output pin lies beyond the sampling point
or not (except for the ∞ terminal). On the one hand, this evaluation scheme would
simplify the structure of the simulator and increase the simulation performance, as
the amount of memory per register could be drastically reduced. However, on the
other hand, it would also cause a huge loss in modeling accuracy.

All results of the simulator experiments, regarding performance on common ISCAS’85 bench-
mark circuits and larger industrial designs from NXP, are shown in Section 5.2 in "Experimental
Results".

36

4 Diagnosis

This section will describe the integration of the delay fault simulator into the ADAMA framework
for the use with delay fault diagnosis.

The main purpose of the diagnosis is to find and locate the cause of errors in defective circuits
by analyzing their responses. As explained in Section 1.6, the POINTER [HW09] algorithm
uses evidences of each fault in order to establish a ranking of possible fault candidates. For
experimental results regarding the diagnosibility of delay faults with POINTER, it is referred to
Section 5.3.

4.1 Setup

Figure 4.1 shows the general setup of the diagnosis of a defect by using POINTER. Here,
the output of a device under diagnosis (DUD) is compared with the responses of the fault
simulated in a fault machine (FM) to compute the evidence components σπ, ιπ, as well as τπ

and γπ. By adding up these components for every simulated pattern π, the global evidence of
a suspect fault is obtained. During the diagnostic run, the FM will simulate a collapsed set of
all possible faults of the circuit and create a collection of evidences. This collection is sorted or
ranked afterwards by its evidence components in order to create a list of reasonable candidates,
that might explain the DUD defect.

DUD Fault Machine
Test pattern

π
σ

τπ

ι

f=?

f'
π

π

π

Figure 4.1: Evidences of a fault f for a pattern π in the POINTER diagnosis. The erroneous
output pins are highlighted. The marked fault in the DUD is usually unknown.

37

4 Diagnosis

4.2 Delay Fault Diagnosis using POINTER

The delay fault diagnosis has been implemented as follows: At first, a fault list is generated
or loaded externally to create a set of delay faults, which each is injected into a DUD and
diagnosed in a separate run. During each diagnostic run, a delay fault simulation of a DUD
is performed in order to create the faulty responses for a provided set of test-patterns. The
responses are stored and will be used to compute the evidences later.

Mapping Delay Faults to Stuck-Ats

After the DUD simulation, the delay fault (SMALLDELAY) is mapped to regular stuck-at faults
by spawning a stuck-at-0 and stuck-at-1 at the corresponding location as an intermediate step.
These stuck-ats are further mapped to their respective class representatives, which are merely
predetermined representatives of their equivalence classes used for fault set collapsing. The
DUD defects are in general not known, but the artificial knowledge will allow for an evaluation
of the diagnosed candidates.

The FM will now simulate the whole collapsed stuck-at set of the circuit. Since, delay fault
simulation is more time-consuming than compared to stuck-at simulation, due to the increased
simulation-complexity and higher fault counts, processing a complete delay fault set for a circuit
would become infeasible. The POINTER algorithm does also try to diagnose independently of
the applied fault models.

Now, both the responses of the FM and the DUD are compared in order to compute the
evidences of all stuck-at faults according to POINTER. These evidences are ranked to obtain
a suspect list of possible candidates, that might cause a similar behaviour as the DUD. The
resulting suspect list is further split into rank-groups, which contain suspects with identical
evidence. The index of a rank group is determined by the rank of its first (best) suspect. Since
all suspects of the group have to be treated equally for evaluation due to equal evidences, the
middle-rank is used instead. The middle-rank of a suspect is the average rank of all suspects in
its rank-group. For example, let RG(s) be the rank-group of a suspect s and let Index(RG) be
the rank of the first suspect of the group, then the middle-rank of s is computed by:

MiddleRank(s) = Index(RG(s)) +
⌊
|RG(s)|

2

⌋
.

With this suspect list, one can observe how well a certain SMALLDELAY can be explained by a
stuck-at fault at that particular location. The success of the diagnosis is determined by the rank
of the actual suspects, which are the stuck-at substitutes of the delay fault.

38

4.2 Delay Fault Diagnosis using POINTER

Rank Evidence GroupRank RankGroup MiddleRank

1 e0 1 1 2
2 e0 1 1 2

3 e1 2 3 4
4 e1 2 3 4
5 e1 2 3 4

6 e2 3 6 6

Table 4.1: Example. – RankGroup and MiddleRank of a sorted collection of evidences.

4.2.1 Fine-grained Resimulation

Recall that the stuck-at diagnosis step has not yet determined the actual defect location, as the
POINTER algorithm has only compared the equivalence class representatives so far. Although,
the equivalence class can contain multiple stuck-at faults located at different gates, they will
all produce the same evidence. Since this does not necessarily hold for delay faults at the
exact same locations, the real defect might still be hidden somewhere within. Therefore, an
additional fine-grained delay fault diagnosis step is performed for the top-ranked suspects to
identify the actual culprit and to weed out the unrelated faults. The resimulation is only done
for a DUDs in case that the defect has been detected. If a DUD response shows no failing bits,
resimulation is skipped and the actual rank will be set to 100000, whose literal equivalent is
"not diagnosed". As a result, this does not allow a ranking of suspects by exclusion.

Mapping Stuck-Ats to Delay Faults

Beginning from the top, the equivalence classes of the ranked stuck-at collection will be
unrolled for any failing DUD. The location of each fault is then used to generate multiple
representative delay faults. For each entry, a whole set of appropriate SMALLDELAYS should be
re-simulated, since varying defect sizes can have a strong influence on the output behaviour.
Experiments showed that the choice of representatives also has a huge impact on the diagnostic
resolution. Here, the currently chosen SMALLDELAYS are the mean and the maximum defect
size, but any arbitrary combination can be implemented. All representatives are obtained
on-the-fly during diagnosis by the SMALLDELAYSET class. Again, due to the time-consuming
delay fault simulation, the maximum number of resimulations should be restricted. The choice
of the number of resimulations is thus a trade-off between speed and diagnostic performance.

Also, depending on the number of delay fault representatives per stuck-at for a fixed amount
of resimulations, the diagnosis will be able to examine more stuck-at suspects and probably

39

4 Diagnosis

more ranks in a coarse-grained fashion, or to look at less suspects but more carefully in order
to consider large variations in the output behaviour for some defect sizes.

Example Let the number of maximum resimulations be 20 and let the number
of delay fault representatives be 4. Then, 5 stuck-ats (or up to 5 ranks) can be
resimulated. If the number of representatives is lowered to 2, then 10 stuck-ats (up
to 10 ranks) can be investigated.

After each resimulation step, the responses are used to compute the new evidences. This
second evidence collection is usually smaller than the first, since the number is restricted by
the resimulations. Once again, the new collection is sorted and checked for presence and
rank of the actual suspect by comparing the fault location. If the actual suspect has been cut
off due to the resimulation, its exact rank cannot be determined and it will be declared as
"not diagnosed". Thus, the coarse restriction to the top-ranked stuck-at candidates assumes a
well-ranked stuck-at diagnosis.

An outline of the different steps in the new two-level delay fault diagnosis approach is depicted
in Figure 4.2. All stages, where actual delay fault simulation is performed, are highlighted.

4.2.2 Pattern Analysis

The original implemented stuck-at POINTER analyzer in ADAMA had a highly efficient pro-
cedure for analyzing response pattern-blocks and computing their evidences. However, the
pattern representation in the delay fault simulator (PATTERNLIST) differs from the one used for
stuck-at faults (PATTERNBLOCKLIST). Since it was most likely that an additional conversion of
the data types would nullify its effective gain in speed, evidence computation was implemented
specifically for comparing PATTERNs with PATTERNBLOCKs during resimulation. Also, the coarse
time consumption of the resimulation step is still determined by the communication overhead
of the simulator rather than the pattern analysis part.

The procedure for the pattern evaluation simply compares each output value of the response
of one representation with its respective counterpart and counts the σπ and ιπ for each
pattern π. All partial evidences are added up, which eventually provides access to the σΠ, ιΠ

and γΠ (= min({σπ, ιπ})) of the fault w.r.t. the complete simulated pattern set. The evidence
will be associated with the corresponding fault and added to the global evidence collection for
ranking and evaluation.

Remarks: The DUD responses are converted into PATTERNBLOCKs once for the
stuck-at analysis, since the FM will do a block-wise exhaustive comparison of a
large set of responses. A PATTERNBLOCK always consists of up to 64 patterns. Even
if less patterns have to be generated, the random generator will fill all positions,

40

4.3 Suspect Ranking

delay fault
suspects

DUD sim
(delay fault)

FM sim
(stuck-at)

POINTER ranking

defect

FM sim
(delay fault)

evidencesresponses

map to delay fault
representatives

responses

suspects

evidences

POINTER ranking

stuck-at
suspects

suspects

collapsed
stuck-at set

Phase 1

Phase 2

Figure 4.2: Outline of the two-phased delay fault diagnosis approach. Data dependencies are
shown.

each of which is examined by the stuck-at analyzer. The delay fault simulator
currently converts the wave responses back into a set of PATTERN via the procedure
PACKPATTERNS(), but it should also be able to produce whole PATTERNBLOCKS,
since it does currently accept multiples of 64 patterns only to avoid possible
unknown patterns during conversion into blocks.

4.3 Suspect Ranking

Both rankings of the two phases in the diagnosis task are independent and allow generic com-
parators for sorting the evidence collection. The currently implemented comparators are the
original proposed Gamma-Sigma-Iota (GSI) and a modification Sigma-Iota-Gamma (SIG),
which sort according to the given order of evidence components. The evidences, that occurred
during experiments, suggest that additional weighting of individual components or even ranking
functions might be an alternative to adapt and improve the stuck-at evidence evaluation.

41

4 Diagnosis

Candidate Evaluation

Finally, the comparators will provide a ranked list of suspects, which suggests likely candidates
for the DUD defect. By searching the candidates for the actual culprit, the success of the
diagnosis and the effectiveness of the ranking is determined. The lower the reported middle-
rank, the better the result.

Regarding the experiments, a diagnosis task is said to be "successful" if the actual suspect
(defect location of the DUD) is found among the Top-10 ranks. Otherwise, it is considered as
"failed". The defect is perfectly identified, if the corresponding candidate is located at the first
rank of the list.

42

5 Experimental Results

The current section presents the results, that emerged from experiments throughout this work.
It is organized in three parts: An evaluation of the presented fault generation procedure, fol-
lowed by experiments regarding the performance of the simulator and, finally, an experimental
journey of the proposed delay fault diagnosis approach using the POINTER pattern analysis.

5.1 Fault Set Generation

In the following, delay fault set generation for the DCD model, the transition fault and the
quantized modification with equally distributed values (with q = 2 and q = 9) were applied
to a set of benchmark circuits. The timing information of the circuit has been generated
automatically:

• Single-input gates (INV, BUF) have a nominal propagation delay of 1 ns.

• Two-input gates (NAND, NOR, AND, OR, XOR, XNOR) the delay was set to 2 ns.

• Input and output pins (INPUT, OUTPUT) have zero delay.

Other types of gates do not appear in the underlying circuit model. Also, faults at either inputs
or outputs have been excluded from the evaluation.

5.1.1 Counting Delay Faults

Figure 5.1 shows general circuit information about the ISCAS’85 benchmark circuits and the
results after applying the DCD fault generation procedure. The right side is of particular
interest, as it hides information about the fault count as well as the approximate number of
faults per gate. The modifications were listed separately in Figure 5.2. Here, all numbers are
w.r.t. to the complete DCD model above.

Obviously, the quantized model scales linear in faults as the parameter q increases. If each
Dn consists of a finite number of discrete defect sizes, the fault count will saturate for higher
q, since all defect sizes will eventually be covered. However, a high q will make the model
impractical due to the increasing number of redundant faults. These side-effects usually occur
for smaller circuits structures or small circuits, such as c17 and c499, when q exceeds the

43

5 Experimental Results

Circuit Data DCD Model

Name Inputs Outputs Gates Depth Avg Path Width FO Stems Avg FO Max FO ~F/G Max
c17.lg 5 2 6 3 3 2 3 2.00 2 10 2 2
c432.lg 36 7 216 29 22 27 89 2.65 9 6270 29 42
c499.lg 41 32 246 14 14 40 59 4.34 12 1792 7 14
c880.lg 60 26 435 30 11 58 125 3.50 8 7180 17 44
c1355.lg 41 32 590 27 27 64 259 2.97 12 15668 27 36
c1908.lg 33 25 1057 44 37 97 385 2.58 16 31272 30 57
c2670.lg 233 140 1476 39 4 169 454 2.74 11 29857 20 54
c3540.lg 50 22 1983 56 31 216 579 3.15 16 89218 45 87
c5315.lg 178 123 2973 52 15 335 806 3.51 15 65015 22 75
c6288.lg 32 32 2416 124 78 256 1456 2.64 16 407999 169 234
c7552.lg 207 108 4043 45 12 445 1300 2.95 15 87894 22 64

[F]aults

Figure 5.1: General information of the ISCAS’85 benchmark circuits and DCD fault count. The
circuit data has been extracted from ADAMA stat.

c1
7.

lg

c4
32

.lg

c4
99

.lg

c8
80

.lg

c1
35

5.
lg

c1
90

8.
lg

c2
67

0.
lg

c3
54

0.
lg

c5
31

5.
lg

c6
28

8.
lg

c7
55

2.
lg

0 %

10 %

20 %

30 %

40 %

50 %

60 %

70 %

140 % 106 %

140 %

9Quantized 2Quantized TFault Mod.

Fa
ul

t c
ou

nt
 c

om
pa

re
d

to
 D

C
D

 (
in

 %
)

Figure 5.2: ISCAS’85 circuits. – Fault counts of transition fault, 2-Quantized and 9-Quantized
modifications compared to the DCD model (in %).

average of the faults per node and causes the fault count to overshoot. Recall that overshooting
does not imply a full fault coverage, which in return can only be ensured if q is saturating.

Defects of smaller size produce less errors and are also less likely to be detected by random
patterns, since the fault effects have to be propagated along the longest paths in the circuit.
Experiments have shown that the DCD defect size distribution for a node n is often clustered
in dense groups of defects with occasional small distance of ε = 1. Although a defect δ f should
violate a unique set of paths in Pn, most of the paths might never get sensitized by test-sets, due
to random pattern resistance — unless trying ATPG for path delay faults, of course. Thus,
defects of such a cluster will often cause a similar behaviour for random generated test-sets.

44

5.1 Fault Set Generation

Circuit Data DCD Model

Name Inputs Outputs [G]ates Depth Avg Path Width FO Stems Avg FO Max FO ~F/G Max
p35k.lg 2912 2229 41443 71 14 7072 6823 4.56 70 1447267 35 106
p45k.lg 3739 2550 38811 58 13 3903 7467 4.31 2048 615875 16 88
p77k.lg 3487 3400 65015 554 33 3869 12378 4.62 589 13012996 200 868
p78k.lg 3148 3484 68263 44 23 5278 18436 4.26 245 2972333 44 67
p81k.lg 4029 3952 106450 53 24 7324 29110 3.71 1593 3027057 28 78
p89k.lg 4632 4557 80963 109 23 5760 14507 5.05 400 2160841 27 146
p100k.lg 5902 5829 84356 102 15 5919 18486 4.20 2048 2068392 25 164
p141k.lg 11290 10502 152808 79 31 14810 31083 4.26 1238 5852552 38 117
p239k.lg 18692 18495 224597 177 16 32566 46465 4.50 2286 8244936 37 269
p259k.lg 18713 18495 298796 180 19 33582 65450 4.36 12162 10470416 35 273
p267k.lg 17332 16621 238697 72 26 21946 38705 4.36 451 4397442 18 96
p269k.lg 17333 16621 239771 72 26 21946 38706 4.39 1077 4439515 19 96
p279k.lg 18074 17827 257736 145 28 20011 52393 4.37 1536 9557864 37 251
p286k.lg 18351 17835 332726 149 38 20720 71449 4.28 2392 14219139 43 256
p295k.lg 18508 18521 249747 111 20 19394 41705 5.30 1986 4353646 17 146
p330k.lg 18010 17468 312666 69 24 22653 56441 4.53 1164 8965730 29 106
p378k.lg 15732 17420 341315 44 23 26390 92172 4.26 245 14861665 44 67
p388k.lg 25005 24065 433331 221 31 28259 94439 4.27 7019 24815827 57 329
p418k.lg 30430 29809 382633 205 27 36937 72481 4.33 1104 13159788 34 315
p469k.lg 635 403 96408 220 79 1467 14286 5.88 618 29548270 306 377
p483k.lg 33264 32610 444664 109 15 43206 106598 4.02 1159 20793512 47 170
p500k.lg 30768 30840 431439 167 20 29713 92303 4.23 1847 22125750 51 284
p533k.lg 33373 32610 586819 113 19 47781 141450 4.08 13621 24953268 43 174
p874k.lg 42897 42243 717288 239 39 49740 108022 4.34 126 33518299 47 359
p951k.lg 91994 104714 816072 139 12 124850 168494 4.17 8176 24380764 30 232
p1522k.lg 71392 68035 1104085 518 35 72077 140840 5.70 816 51598247 47 781
p2927k.lg 101844 95159 2408328 423 25 155113 708825 2.39 2178 82204260 34 630
p3188k.lg 154899 143395 2948057 718 73 194255 729155 3.54 6868 344905611 117 1155
p3726k.lg 160486 147661 3975023 495 30 257698 741291 4.29 1068 272612812 69 799
p3847k.lg 179317 174150 3200906 701 35 230256 601979 3.93 2371 143023091 45 1275
p3881k.lg 243000 294803 3788054 175 18 315257 718168 4.00 34120 126657414 33 273

[F]aults

Figure 5.3: General information of the NXP industrial benchmark circuits and DCD fault count.
The number in each circuit’s name serves as an approximate gate count.

Fault counts were also obtained for some industrial benchmark designs provided by NXP (see
Figure 5.3). One can see that for most of the circuits the fault count per gate is rather constant
as complexity rises, thus the fault count is assumed to scale linear with the circuit size — in
contrary to the expected exponential behaviour.

Remarks: Obtaining the results for the p3188k circuit required special treatment.
The number of DCD faults of p3188k was computed, but the corresponding fault
list was not stored due to memory constraints.

5.1.2 Evaluation

The double-cone delay model implements a path-based method to determine reasonable delay
defect sizes for unit- and nominal-delay circuits by using slacks. Arbitrary gate delay defect
sizes can be mapped to a unique SMALLDELAY fault. According to the results for ISCAS’85 and

45

5 Experimental Results

NXP benchmark circuits, the presented DCD model produces an overwhelming amount of gate
delay faults ranging from small- to gross-delay with linear fault count. In section 2 it has been
shown that the computed set of faults is complete and that each fault is unique w.r.t. to the
underlying model. However, clusters may occur, which make the faults sometimes hard to
distinguish when using smaller sets of random patterns.

The transition fault and the quantized modification seem to be fast alternatives to produce
smaller fault counts at variable precision, which are also less prone to clustering. While the
transition fault modification is only capable of modeling gross-delay faults, the quantized model
has its drawbacks regarding the computation of redundant sets and occasional overshooting
for smaller circuits. Nevertheless, both modifications have been used in the following delay
fault simulation experiments, as they represent different delay fault scenarios. For each of
the tested circuits, three fault sets were generated in order to observe the observability and
diagnosability of different fault categories: arbitrary delay defects (DCD), transition faults (TF)
and the quantized model with q = 0 (Q0). The latter serves as mean defect size. Up to 10k
faults were randomly extracted out of each set and have been stored in external files for later
use in the diagnosis experiments.

5.2 Fault Simulation

To evaluate the performance of the simulator in measures of speed and throughput, a series
of experiments was run on the ISCAS’85 circuits. Up to 100 sample faults were picked out of
the generated sets, with each fault being simulated with 5120 random generated patterns. All
simulations were performed on different machines equipped with commercial NVIDIA GeForce
GTX 480 graphics cards (clocked at about 1.4 GHz). A maximum of 1000 MB device memory
was used, which is about two-thirds of the GTX 480 capacity, and the number of transitions
stored per signal has been restricted to 48. This transition cap turned out to be rather high and
could have been lowered afterwards in order to increase the number of concurrent pattern
bundles.

Figure 5.4 shows the average time to simulate a single fault, which was obtained by dividing
the total required time for pattern conversion, simulation and pattern evaluation by the number
of simulated faults. A selection of smaller NXP benchmark circuits has also been simulated
using the same configuration as for the ISCAS’85 circuits above. Here, it was observed that —
in contrary to the smaller ISCAS’85 circuits — only a few pattern bundles could be simulated
per pass, due to the device memory restriction of 1 GB. Thus, providing more GPGPU memory
would likely result in a linear gain in speed-up. In Figure 5.5 one can also see, where most
overflows have occurred. Almost 500 calibrations had to be performed for simulating p77k and
after caching the register sizes, the simulation speed has been more than doubled.

With an average fault simulation time of 0.22 s for ISCAS’85 and 32 s in average for the NXP
circuits, processing the whole fault sets of the designs would become infeasible. According to

46

5.2 Fault Simulation

c1
7.

lg

c4
32

.lg

c4
99

.lg

c8
80

.lg

c1
35

5.
lg

c1
90

8.
lg

c2
67

0.
lg

c3
54

0.
lg

c5
31

5.
lg

c6
28

8.
lg

c7
55

2.
lg

0

1

2

3

4

5

6

7

8

9

0.27 0.16 0.26 0.26 0.19 0.11
0.35

0.07 0.20 0.23 0.29

0.10
0.41 0.55 0.63

0.91
1.43

2.41
2.91

4.63

8.55

5.85

0.12 0.15 0.23

1.77

Uncached Cached Serial

si
m

ul
at

io
n

ti
m

e
pe

r
fa

ul
t

[s
]

Figure 5.4: ISCAS’85 circuit simulation time. – Average simulation time per fault for 5120
patterns with and without cached register sizes.

p3
5k

.lg

p4
5k

.lg

p7
7k

.lg

p7
8k

.lg

p8
1k

.lg

p8
9k

.lg

p1
00

k.
lg

p1

41
k.

lg

p2
39

k.
lg

p2

59
k.

lg

p2
67

k.
lg

p2

69
k.

lg

p2
79

k.
lg

p2

86
k.

lg

p2
95

k.
lg

p3

30
k.

lg

p3
78

k.
lg

p3

88
k.

lg

p4
18

k.
lg

0

100

200

300

400

500

600

4.31 5.26

25.44

6.28 7.58 8.92 11.64

64.22 70.57

37.69 44.58 45.35 45.02

41.29 45.69

110.49 104.17

20.45 22.13

104.00
68.58 57.54 46.90 59.32

120.41

261.78

328.05

178.96 192.37 197.37

274.39

204.87

252.04

393.74

534.89

483.30

9.35 24.48
46.39 46.84 37.74 39.74 40.03

62.15
83.92

Uncached Cached Serial

si
m

ul
at

io
n

ti
m

e
pe

r
fa

ul
t

[s
]

Figure 5.5: NXP circuit simulation time. – Average simulation time per fault for 5120 patterns
with and without cached register sizes.

measurements, an average of 50% of the time is consumed by the framework doing pattern
conversion and synchronizing the memory maps, another 40% is used by the GPGPU device
for transferring memory. Only about 10% of the time is actually spent by the kernel. So, the
communication overhead is a major drawback, but as a result, this seems to be a promising
entry point for further optimizations regarding simulation speed.

47

5 Experimental Results

c1
7.

lg

c4
32

.lg

c4
99

.lg

c8
80

.lg

c1
35

5.
lg

c1
90

8.
lg

c2
67

0.
lg

c3
54

0.
lg

c5
31

5.
lg

c6
28

8.
lg

c7
55

2.
lg

0

50

100

150

200

250

300

13.49

74.86

40.74

63.82

94.20

194.22

44.43

249.78

88.57

153.91

131.36

Performance

ev
al

ua
ti

on
s

pe
r

se
co

nd
 [

M
EP

S]

Figure 5.6: Average performance of the fault simulation for ISCAS’85 circuits measured in
millions of evaluations per second (MEPS).

p3
5k

.lg
p4

5k
.lg

p7
7k

.lg
p7

8k
.lg

p8
1k

.lg
p8

9k
.lg

p1
00

k.
lg

p1
41

k.
lg

p2
39

k.
lg

p2
59

k.
lg

p2
67

k.
lg

p2
69

k.
lg

p2
79

k.
lg

p2
86

k.
lg

p2
95

k.
lg

p3
30

k.
lg

p3
78

k.
lg

p3
88

k.
lg

p4
18

k.
lg

0

20

40

60

80

52.10

39.82
37.38

59.59

73.85

46.84

37.32
31.96

25.10

33.07 32.38 32.69
30.06

38.29

28.87

40.28
43.65

36.14

23.34

Performance

ev
al

ua
ti

on
s

pe
r

se
co

nd
 [

M
EP

S]

Figure 5.7: Average performance of the fault simulation for some NXP circuits measured in
millions of evaluations per second (MEPS).

48

5.3 Diagnosis

The general performance of the delay fault simulator has been evaluated as the amount
of gate evaluations processed per second and it is measured in millions evaluations per
second (MEPS). The results for the simulated designs are shown in Figure 5.6 and 5.7.

5.3 Diagnosis

For evaluating the diagnosis, the experiments were set up as follows: Up to 100 gate delay
defects of the previously generated sets were extracted, each being injected into a DUD and
diagnosed separately. All DUDs have been exposed to the same 5120 random patterns to create
faulty responses. If a device did not produce any erroneous outputs, it was excluded from the
evaluation.

5.3.1 GSI Ranking

In the first diagnosis experiment, the DUD responses were analyzed with the stuck-at fault
machine and the two stuck-at representatives. The suspects were ranked by GSI (Gamma-
Sigma-Iota) according to the original paper [HW09]. Figure 5.8 shows the middle-ranks of
the actual representatives in the ISCAS’85 circuits. It depicts how well the SMALLDELAYS of a
certain model could be explained by any stuck-at fault at their locations. The lower the rank, the
better the result. Suspects with a rank beyond or greater than 9 are considered as not diagnosed.
The results show that transition faults could be well described via stuck-at representatives,
whereas the performance of the DCD and the Q0 model diagnosis is lower. At this point, DCD
and Q0 even behave similar. It was also observed that gradually increasing the defect size of
a particular location caused the stuck-at suspects to ascend the rank list. Sometimes, minor
fluctuations did occur, that caused a suspect to descend again for a moment.

Now, to further confine the location of the DUD defect with the resimulation, the top-suspects
were unrolled (equivalence classes) and two SMALLDELAY fault representatives with maximum
and mean defect size were generated for each stuck-at. Due to the time-consuming delay
fault simulation, the maximum number of resimulations had been restricted to 100, and thus
allowed a resimulation of up to 50 distinct stuck-at fault locations.

The resulting rankings after the delay fault resimulation are given in Figure 5.9. They show
that the actual defect locations could be found well within the first top-ranked suspects by
investigation of the equivalence classes. Nearly all detected transition faults could be diagnosed
and about 90% of the suspects were located at the first rank. Again, the results of DCD and
Q0 are similar as the coarse diagnostic performance did not change, but more actual suspects
could be distinguished from the surrounding candidates and could even be identified at first
level. Sometimes, the diagnosis of a DUD failed after the resimulation when the equivalence
classes were too large and the actual suspect was cut off.

49

5 Experimental Results

c1
7.

lg

c4
32

.lg

c4
99

.lg

c8
80

.lg

c1
35

5.
lg

c1
90

8.
lg

c2
67

0.
lg

c3
54

0.
lg

c5
31

5.
lg

c6
28

8.
lg

c7
55

2.
lg

0%

20%

40%

60%

80%

100%

Rank 1 Rank 2 Rank 34 Rank 59 >9

m
id

dl
e

ra
nk

s
of

 s
tu

ck
a

t
re

pr
es

en
ta

ti
ve

s
(D

C
D

)

c1
7.

lg

c4
32

.lg

c4
99

.lg

c8
80

.lg

c1
35

5.
lg

c1
90

8.
lg

c2
67

0.
lg

c3
54

0.
lg

c5
31

5.
lg

c6
28

8.
lg

c7
55

2.
lg

0%

20%

40%

60%

80%

100%

Rank 1 Rank 2 Rank 34 Rank 59 >9

m
id

dl
e

ra
nk

s
of

 s
tu

ck
a

t
re

pr
es

en
ta

ti
ve

s
(T

F)

c1
7.

lg

c4
32

.lg

c4
99

.lg

c8
80

.lg

c1
35

5.
lg

c1
90

8.
lg

c2
67

0.
lg

c3
54

0.
lg

c5
31

5.
lg

c6
28

8.
lg

c7
55

2.
lg

0%

20%

40%

60%

80%

100%

Rank 1 Rank 2 Rank 34 Rank 59 >9

m
id

dl
e

ra
nk

s
of

 s
tu

ck
a

t
re

pr
es

en
ta

ti
ve

s
(Q

0)

Figure 5.8: ISCAS’85 – Phase 1: GSI middle rank distribution of the stuck-at representatives
for DCD, TF and Q0. Yet, these suspects represent equivalence classes and have to
be further investigated.

50

5.3 Diagnosis

c1
7.

lg

c4
32

.lg

c4
99

.lg

c8
80

.lg

c1
35

5.
lg

c1
90

8.
lg

c2
67

0.
lg

c3
54

0.
lg

c5
31

5.
lg

c6
28

8.
lg

c7
55

2.
lg

0%

20%

40%

60%

80%

100%

Rank 1 Rank 2 Rank 34 Rank 59 >9

m
id

dl
e

ra
nk

s
of

 a
ct

ua
l s

us
pe

ct
s

(D
C

D
)

c1
7.

lg

c4
32

.lg

c4
99

.lg

c8
80

.lg

c1
35

5.
lg

c1
90

8.
lg

c2
67

0.
lg

c3
54

0.
lg

c5
31

5.
lg

c6
28

8.
lg

c7
55

2.
lg

0%

20%

40%

60%

80%

100%

Rank 1 Rank 2 Rank 34 Rank 59 >9

m
id

dl
e

ra
nk

s
of

 a
ct

ua
l s

us
pe

ct
s

(T
F)

c1
7.

lg

c4
32

.lg

c4
99

.lg

c8
80

.lg

c1
35

5.
lg

c1
90

8.
lg

c2
67

0.
lg

c3
54

0.
lg

c5
31

5.
lg

c6
28

8.
lg

c7
55

2.
lg

0%

20%

40%

60%

80%

100%

Rank 1 Rank 2 Rank 34 Rank 59 >9

m
id

dl
e

ra
nk

s
of

 a
ct

ua
l s

us
pe

ct
s

(Q
0)

Figure 5.9: ISCAS’85 – Phase 2: GSI rank distribution of the exact locations after resimulation
of the top stuck-at suspects equivalence classes.

51

5 Experimental Results

5.3.2 SIG Ranking

By taking a closer look at the evidences, it has been observed that the γΠ (= ∑ γπ) components
of about 50% of all actual stuck-at suspects in either the DCD or the Q0 model were greater
than zero (in the TF model, all suspects still had γΠ = 0). However, the chosen GSI ranking
sorts the evidences in increasing order of γΠ.

Now, if a pattern π causes γπ 6= 0, then there are both explained (σπ > 0) and mispredicted
pins (ιπ > 0), due to γπ = min(σπ, ιπ). Figure 5.10 depicts the responses, that cause gamma
to increase. During the experiments, this usually happened for delay faults of smaller size
when only a subset of the sensitized POs in the output cone has been violated.

σ
τπ

ι

π

π

σ

ι

π

π
DUD FM

Figure 5.10: Pattern responses of stuck-at suspects with γ > 0 occurred for smaller and
medium DUD defects.

By having a closer look at the evidence components, one can conclude that for γΠ = 0 the
following special cases of suspects can appear:

• If σΠ 6= 0 and ιΠ = 0, this will be a possible candidate worthwhile to investigate (e.g.
perfect match).

• If σΠ = 0 and ιΠ 6= 0, the faults have no failing bits in common and are unlikely or even
bad candidates.

• If σΠ = 0 and ιΠ = 0, then the suspect has either not been activated, or it is located at
a disjunct location. In the experiments, it was assumed that the latter is more likely to
appear.

It is obvious that all possible and actual candidates with γΠ 6= 0 will get cut out by these
special cases when using GSI order for ranking, no matter how good the failing-bits of DUD
and FM have actually matched. Thus, in the next step the focus was set on σΠ and ιΠ rather
than γΠ by changing the order to SIG (Sigma-Iota-Gamma). The decision was also based on
the idea that prioritizing higher σΠ yields suspects with more matching failing-bits, and lower
ιΠ lead to more constrained sets of suspects with less mispredicted POs.

After the SIG ranking has been applied, the results of the first stuck-at phase did only show
slight differences. Some suspects were ranked lower, but were still too similar with other
unrelated faults. However, the final resimulation phase (see Fig. 5.11) could now capture many

52

5.3 Diagnosis

c1
7.

lg

c4
32

.lg

c4
99

.lg

c8
80

.lg

c1
35

5.
lg

c1
90

8.
lg

c2
67

0.
lg

c3
54

0.
lg

c5
31

5.
lg

c6
28

8.
lg

c7
55

2.
lg

0%

20%

40%

60%

80%

100%

Rank 1 Rank 2 Rank 34 Rank 59 >9

m
id

dl
e

ra
nk

s
of

 a
ct

ua
l s

us
pe

ct
s

(D
C

D
)

c1
7.

lg

c4
32

.lg

c4
99

.lg

c8
80

.lg

c1
35

5.
lg

c1
90

8.
lg

c2
67

0.
lg

c3
54

0.
lg

c5
31

5.
lg

c6
28

8.
lg

c7
55

2.
lg

0%

20%

40%

60%

80%

100%

Rank 1 Rank 2 Rank 34 Rank 59 >9

m
id

dl
e

ra
nk

s
of

 a
ct

ua
l s

us
pe

ct
s

(T
F)

c1
7.

lg

c4
32

.lg

c4
99

.lg

c8
80

.lg

c1
35

5.
lg

c1
90

8.
lg

c2
67

0.
lg

c3
54

0.
lg

c5
31

5.
lg

c6
28

8.
lg

c7
55

2.
lg

0%

20%

40%

60%

80%

100%

Rank 1 Rank 2 Rank 34 Rank 59 >9

m
id

dl
e

ra
nk

s
of

 a
ct

ua
l s

us
pe

ct
s

(Q
0)

Figure 5.11: ISCAS’85 – Phase 2: SIG rank distribution of the exact locations after resimulation.
Now, the actual culprits could be better distinguished from other faults.

53

5 Experimental Results

of the actual culprits and the resulting evidences were better distinguished from each other.
Compared to the stuck-at phase, the average middle-rank has been lowered, especially for the
TF and Q0 model. The high ratio of first-rank suspects for these models can be explained by
the choice of the delay defect representatives during resimulation, since in the experiments
they caused perfect matches at the appropriate stuck-at locations (ιΠ = 0, γΠ = 0). Thus, a
variation of these reference sizes will most likely lead to different results and may sometimes
even highlight the wrong suspects. Since during resimulation all processed representatives
were computed on-the-fly, their number and their defect size could also be adapted according
to more complex functions in order to create better matches. According to the results of the
DCD and the Q0 model, the SIG ranking has improved the overall diagnosability of these small
delays.

5.3.3 Reasoning with Evidences and Representatives

In general, the outcome of the comparison between a delay fault and a stuck-at fault during
diagnosis strongly depends on the observability of both faults and their individual activation
conditions, as the resulting evidence is influenced by the active failing-bit overlap of the
output-cones at both sides. If the fault of neither DUD nor FM got activated for a pattern, the
overall evidences will not improve. In fact, the only case where suspect evidences actually
can improve is when a transition at the fault-site is triggered (which is already rare enough)
AND the corresponding stuck-at fault with the correct polarity is activated at the same time
in the PV of the pattern sequence. Both conditions have to be met in order to maximize the
failing-bits, that are in common. However, if these conditions are fulfilled less often, σΠ of the
actual suspects will stay low and it may easily happen that unrelated faults will be placed in
front of the ranking — e.g. by activating stuck-at suspects with huge sensitized output-cones,
that would increase σΠ dramatically. If this happens more frequently, the real suspect would
not stand a chance in getting ranked better and it would be hard to distinguish from false
candidates.

To further tighten the set of matching candidates, POINTER introduced ιΠ as the number of
mispredictions produced by the suspects. As it could be observed by the evidences during the
experiments, a higher ιΠ is not a criterion for weeding out, since its behaviour differs from
fault to fault and typically increases for lower defect sizes.

Remarks: The stuck-at evidences suggest further investigations of the suspects
regarding the weight of individual evidence components. For example: Finding an
appropriate function for ranking the evidences with respect to the overall failing
pin count. Besides, the use of ATPG for deterministic test-pattern generation should
greatly assist in fault activation and could help to improve suspect evidences.

54

5.4 Summary

Fault Polarity and Evidence Decomposition

Regarding the activation conditions of the stuck-at representatives of a delay fault, it was
noticed that for any pattern either the stuck-at-0 or the stuck-at-1 was active — or none of them
— but never both faults at the same time. Also, the delay fault activation is not tied to a single
pattern, but to certain pattern sequences of IVs and PVs, where the PV can pull the node’s
signal value to either 0 or 1. The fault activation still depends on its previous signal value,
that was set by the IV. As a consequence, the polarity of the stuck-ats caused the evidence
of each fault-site to decompose and split into two smaller and more insignificant evidences.
These are harder to distinguish, as the probability of being overruled by outliers is higher if
their total evidence is not evenly distributed over the two stuck-at representatives. Also, recall
that these stuck-at suspects are still classes, where the actual location is revealed only after an
examination with resimulation.

Therefore, all representative evidence pairs for each fault-site have been added in order to form
merged stuck-at evidences. A merged stuck-at pair can be viewed as an unconditional flip, that
eliminates the activation condition of the fault polarity, but still maintains the actual location
information (intersection of the equivalence classes). Thus, by merging the representatives
of each location their evidences will be strengthened — especially the ones of the actual
suspects. Experiments have shown that all suspect evidences of the first phase improved greatly
compared to the previous analysis with the decomposed evidences.

Figure 5.12 shows the final outcome after resimulation of the merged evidences. The diagnos-
ability has further been increased — especially for the TF and Q0 faults, which is presumed
due to the choice of the SMALLDELAY representatives.

Anyway, the decomposed stuck-at evidences might still be useful in order to distinguish between
slow-to-rise (STR) and slow-to-fall (STF) delay faults by using the approach as proposed
in the transition fault model of Waicukauski et. al [WLRI87], where slow rising or falling
transitions are represented by stuck-at-0 or stuck-at-1 faults respectively. All suspect evidences
would look accordingly: For any SMALLDELAY with a certain transition polarity, the activating
PVs of the pattern sequences will also enable the corresponding stuck-at representative, whereas
the other stuck-at would not get activated, since good simulation and faulty value are equal
(Thus leaving all faulty DUD pins unexplained). However, by using the decomposed stuck-at
representatives, all reported suspects are equivalence classes again and have to be further
investigated by using resimulation to find the actual defect location.

5.4 Summary

This section has outlined the experiments, that were performed throughout this work. It
showed that the proposed DCD defect size generation method produces a huge, but still linear
fault count for the circuits. Regarding the current performance of the delay fault simulator,

55

5 Experimental Results

c1
7.

lg

c4
32

.lg

c4
99

.lg

c8
80

.lg

c1
35

5.
lg

c1
90

8.
lg

c2
67

0.
lg

c3
54

0.
lg

c5
31

5.
lg

c6
28

8.
lg

c7
55

2.
lg

0%

20%

40%

60%

80%

100%

Rank 1 Rank 2 Rank 34 Rank 59 >9

m
id

dl
e

ra
nk

s
of

 a
ct

ua
l s

us
pe

ct
s

(D
C

D
)

c1
7.

lg

c4
32

.lg

c4
99

.lg

c8
80

.lg

c1
35

5.
lg

c1
90

8.
lg

c2
67

0.
lg

c3
54

0.
lg

c5
31

5.
lg

c6
28

8.
lg

c7
55

2.
lg

0%

20%

40%

60%

80%

100%

Rank 1 Rank 2 Rank 34 Rank 59 >9

m
id

dl
e

ra
nk

s
of

 a
ct

ua
l s

us
pe

ct
s

(T
F)

c1
7.

lg

c4
32

.lg

c4
99

.lg

c8
80

.lg

c1
35

5.
lg

c1
90

8.
lg

c2
67

0.
lg

c3
54

0.
lg

c5
31

5.
lg

c6
28

8.
lg

c7
55

2.
lg

0%

20%

40%

60%

80%

100%

Rank 1 Rank 2 Rank 34 Rank 59 >9

m
id

dl
e

ra
nk

s
of

 a
ct

ua
l s

us
pe

ct
s

(Q
0)

Figure 5.12: ISCAS’85: Diagnosis results after resimulation of the merged stuck-at representa-
tives.

56

5.4 Summary

an exhaustive processing of the whole fault sets becomes infeasible for larger circuits. Hence,
the use of simulation had to be reduced as much as possible. Although the simulator showed
a large communication and memory transfer overhead during the elapsed time, it has still
offered a significant speed-up than compared to the serial execution.

During the diagnosis experiments, the behaviour of the POINTER analysis was observed for
different defect generation models — from arbitrary small delays to transition faults. The
results of the presented delay fault analysis approach have indicated that larger defect sizes are
easier to detect and better to diagnose than smaller ones. After confining the set of candidates,
the resimulation could be used in order to enable a more fine grained location of equivalent
suspects. The general outcome, however, does still depend on the choice of representatives as
well as the applied ranking scheme of the evidences. For the average SMALLDELAY fault, the
SIG ranking has proven best. The latest experiments have shown that merged evidences fit
better to the properties of the SMALLDELAY than single stuck-ats, due to the dropped activation
conditions of the fault polarity.

Figure 5.13 summarizes the results of the different approaches for arbitrary defect sizes (DCD).
By using the merged evidence resimulation approach, the best average results were achieved:
Nearly 78% of all DUD defects were successfully diagnosed, 59% of which could be identified
perfectly at the first rank. A comparison of the approaches on the different defect size models is
given in Table 5.1 below, which sums up all diagnosed DUDs of the experiments.

Approach DCD TF Q0

GSI-Resim 43.73% (24.65%) 99.39% (91.45%) 50.56% (41.56%)

SIG-Resim 72.41% (43.62%) 98.07% (90.12%) 81.58% (70.52%)

SIG-Merged 77.75% (41.44%) 97.45% (79.74%) 77.99% (42.89%)

SIG-Merged-Resim 77.54% (45.69%) 99.90% (91.75%) 88.74% (77.48%)

Table 5.1: ISCAS’85 diagnosis results of the experiments showing successfully diagnosed DUDs
and first-ranks (in brackets). All numbers are with respect to the total DUD count.a

aFaulty devices only. – DCD: 917 out of 1010, TF: 982 out of 1006, Q0: 977 out of 1006.

To demonstrate the scalability and the effect of the resimulation diagnosis approach (with
decomposed evidences) on larger designs, it has been successfully applied to the NXP circuits as
seen in Figure 5.14. Here, the coarse diagnostic performance is similar to the smaller ISCAS’85
circuits (using decomposed evidences). However, it was observed that the average rankgroup
was larger, causing the middle-ranks to increase. This might be avoided by selecting more
representatives per suspect to distinguish better between candidates with similar evidences
and to find perfect matches.

57

5 Experimental Results

c17.lg

c432.lg

c499.lg

c880.lg

c1355.lg

c1908.lg

c2670.lg

c3540.lg

c5315.lg

c6288.lg

c7552.lg

GSIResim
SIGResim

SIGMerged
SIGMergedResim

GSIResim
SIGResim

SIGMerged
SIGMergedResim

GSIResim
SIGResim

SIGMerged
SIGMergedResim

GSIResim
SIGResim

SIGMerged
SIGMergedResim

GSIResim
SIGResim

SIGMerged
SIGMergedResim

GSIResim
SIGResim

SIGMerged
SIGMergedResim

GSIResim
SIGResim

SIGMerged
SIGMergedResim

GSIResim
SIGResim

SIGMerged
SIGMergedResim

GSIResim
SIGResim

SIGMerged
SIGMergedResim

GSIResim
SIGResim

SIGMerged
SIGMergedResim

GSIResim
SIGResim

SIGMerged
SIGMergedResim

0% 20% 40% 60% 80% 100%

Rank 1 Rank 2 Rank 34 Rank 59 >9

Figure 5.13: Summary. – All results of the different diagnosis approaches put in juxtaposition
for the DCD model.

58

5.4 Summary

p3
5k

.lg

p4
5k

.lg

p7
7k

.lg

p7
8k

.lg

p8
1k

.lg

p8
9k

.lg

p1
00

k.
lg

p1
41

k.
lg

p2
39

k.
lg

p2
59

k.
lg

p2
67

k.
lg

0%

20%

40%

60%

80%

100%

Rank 1 Rank 2 Rank 34 Rank 59 >9

m
id

dl
e

ra
nk

s
of

 a
ct

ua
l s

us
pe

ct
s

(D
C

D
)

p3
5k

.lg

p4
5k

.lg

p7
7k

.lg

p7
8k

.lg

p8
1k

.lg

p8
9k

.lg

p1
00

k.
lg

p1
41

k.
lg

p2
39

k.
lg

p2
59

k.
lg

p2
67

k.
lg

0%

20%

40%

60%

80%

100%

Rank 1 Rank 2 Rank 34 Rank 59 >9

m
id

dl
e

ra
nk

s
of

 a
ct

ua
l s

us
pe

ct
s

(T
F)

p3
5k

.lg

p4
5k

.lg

p7
7k

.lg

p7
8k

.lg

p8
1k

.lg

p8
9k

.lg

p1
00

k.
lg

p1
41

k.
lg

p2
39

k.
lg

p2
59

k.
lg

p2
67

k.
lg

0%

20%

40%

60%

80%

100%

Rank 1 Rank 2 Rank 34 Rank 59 >9

m
id

dl
e

ra
nk

s
of

 a
ct

ua
l s

us
pe

ct
s

(Q
0)

Figure 5.14: Scalability. – The decomposed resimulation approach demonstrated on larger
circuits (SIG-rankings applied). The size of the individual rank groups has grown,
but the coarse diagnosis result looks similar to ISCAS’85.

59

This page is intentionally left blank.

6 Conclusion

The goal of this thesis was to implement a fault simulator for simulating small delay faults
on CUDA-capable devices, and its integration into a diagnosis framework for evaluation of
the POINTER pattern analysis approach. Further, a method has been proposed, that is able
to compute the sets of all small delay faults, which may occur in circuits with nominal- and
unit-delay, by constraining the defect sizes through lower and upper bounds.

The implemented simulator performs a gate-level time simulation for each small delay fault,
that processes the circuits in a level-wise fashion. It is able to cope with arbitrary large designs
and uses waveforms as signal representations to model the precise timing behaviour of the
circuit logic. By exploiting the available structural- as well as data-parallelism, many gates
are concurrently evaluated for multiple patterns at once by different threads on the GPGPU.
Thus, simulation with many utilized threads on the GPGPU showed a significant speed-up than
compared to the serial execution. According to measurements, a large fraction of the elapsed
simulation time was still spent during pattern data transfers between processes and the device.
Further improvements to minimize this overhead should fully unlock its potential. Current
CUDA devices with up to 6 GB of memory1 will be able to store even more waveforms for
concurrent simulation.

Diagnosis experiments with random input stimuli have shown that medium-sized and larger
delay faults could very well be diagnosed by the POINTER analysis approach using simple
stuck-at faults as references. Additional resimulation improves the average diagnosis results
and further confines or identifies the actual suspects. Yet, the analyzer gets rather uncertain
when defects of smaller sizes occur, as they produce less failures and cause the candidates to be
harder to distinguish. Thus, for future diagnosis experiments, deterministic pattern generation
and weighted rankings could be used in order to support the evidence collection of those
smaller defect sizes.

Since delay faults are becoming a more and more important topic in VLSI design, due to the
ever increasing circuit speed and reliability requirements, further optimization and evaluation
of delay fault simulators and diagnosis are worthwhile to investigate.

1NVIDIA Tesla M2070

61

This page is intentionally left blank.

A ADAMA fsample

In the following, the basic functions and parameters are explained how to generate fault lists
with fsample. The plain execution of fsample is done by typing:

> adama fsample <model.lg> {options}

Below, all SMALLDELAY-related options are given, that are required to compute the fault sets.

-m dfault: invokes the fault-list generation for SMALLDELAY sets.

-fm <value>: Specifies the fault model:

0 Double-Cone Delay model (default),

1 Transition Fault modification, or

2 Quantized modification.

-s <value>: Restricts the final fault-list to a number of random faults, specified by value. Useful,
if just a subset of faults is required.

-q <value>: Quantization parameter for use with the quantized DCD-modification. The default
value is 0.

-o <filename>: Specifies the name of the output fault-file. The file extension is by convention
’.fl’. If the option is omitted, the fault-file will be stored as ’model.lg.fl’ in the current
execution directory.

Executing fsample for the example circuit c17, in order to get the full DCD fault-set, could
look like:

> adama fsample c17.lg -fm 0 -o c17.lg.fl

The resulting fault file is shown in listing A.1. Each line contains a fault, stored as
<Gate.name>/<Port> <Size>. One can easily identify some of the listed faults, with the
locations given in Figure 2.3 of section 2. The file allows manual changes of defect sizes for
experimental purposes. However, one should verify after changing, that each listed gate does
also reside in the circuit or the simulator will not be able to inject the fault.

63

A ADAMA fsample

Listing A.1 Content of c17.lg.fl.
1 SDF { NAND_2_0/0 5 }

2 SDF { NAND_2_1/0 3 }

3 SDF { NAND_2_2/0 5 }

4 SDF { NAND_2_2/0 3 }

5 SDF { NAND_2_3/0 3 }

6 SDF { NAND_2_3/0 5 }

7 SDF { NAND_2_4/0 5 }

8 SDF { NAND_2_4/0 3 }

9 SDF { NAND_2_5/0 5 }

10 SDF { NAND_2_5/0 3 }

Although the port value will have no effect for the simulation — since the implemented
simulator only considers faults at gate outputs (port 0 is gate output) — it was retained for
completion. The port will be ignored during parsing.

All fault files can be loaded by the SMALLDELAYSET class with the provided PARSE-
FAULTS(filename) function.

64

B ADAMA wave/diagnose dfcuda

Assuming that the wave executable (./wave) is available in the current execution directory, the
basic call of either the delay fault simulator or the delay fault diagnostic tool is done by simply
typing:

> adama (wave|diagnose) dfcuda <model.lg> {options}

Without any options, the command will start the chosen task and instantly begin to generate
the full fault list according to DCD and perform a fault simulation or a fault diagnosis of the
design (model.lg) using 64 random patterns for each fault. Therefore all relevant options, that
can be used to adjust the settings, are listed below:

-fm <value>: Specifies the delay defect generation model:

0 Double-Cone Delay model (default),

1 Transition Fault modification, or

2 Quantized modification.

-q <value>: Quantization parameter for use with the quantized DCD-modification. The default
value is 0. Other models will not be affected by this parameter.

-e <filename>: Specify the path and the name of the CUDA wave executable. By default ./wave
is assumed to be in the current directory.

-d <value>: Select CUDA device. By default, device 0 is chosen.

-m <value>: Adjust the maximum amount of GPGPU memory to be allocated.

-r <value>: The number of random patterns that have to be simulated for each fault.

-fl <filename>: Specifies the name of the input fault-file. This option makes the choice of a
fault model via -fm void.

-cl <value>: Crops the fault set (either generated or loaded) to a number of faults. A plain
number x will choose x random faults of the set. A range from a to b (excluding b) of
faults in the set can be expressed by -cl a:b.

-c <value>: Specifies the maximum transition count. The number should be greater than 6. By
default the cap is 34.

65

B ADAMA wave/diagnose dfcuda

-cs <reg_file>: Use input file for caching register sizes.

-mr <value>: Specify the maximum number of suspect resimulations per DUD (default 0).
Diagnosis only.

Examples

A diagnosis of 100 defects of a pre-computed fault-set for the model c3540.lg with 5120 random
patterns and 50 resimulations per DUD would look like this:

> adama diagnose dfcuda c3540.lg -e ./wave -fl dcd3540.fl -cl 100 -r 5120 -mr 50

Listing B.1 Sample output of a DUD diagnosis (c3540).
2019 ...

2020 0000465.457 [--] Defect #66 of 100: SDF { AND_2_1554/0 42 } (11%) // DUD defect (% size)

2021 0000465.457 [--] SA Representatives StuckAt { AND_2_1554/0 0 } StuckAt { AND_2_1554/0 1 }

2022 0000465.573 [--] FailingPatterns 4 // DUD failing bits and patterns

2023 0000465.573 [--] FailingBits 8

2024 0000465.573 [--] StuckAt Analysis (de.uni_stuttgart.iti.adama.analysis.SIGCompare)

2025 0000465.574 [DD] Representatives evidences:

2026 0000465.574 [DD] Suspect 9: StuckAt { AND_2_1554/0 0 }, gam 6 sig 8 iot 23 det 21

2027 0000465.574 [DD] Suspect 3125: StuckAt { AND_2_1554/0 1 }, gam 0 sig 0 iot 93 det 90

2028 0000465.574 [--] BestEvidence gamma 6 sigma 8 iota 6 tau 0 (StuckAt { BUF_1_1697/0 0 })

2029 0000465.574 [--] Classification Complex

2030 0000465.574 [--] RankGroup 1 ... 5 : StuckAt { BUF_1_1697/0 0 } StuckAt { NAND_2_1732/2 1 }

StuckAt { NAND_2_1723/2 1 } StuckAt { NOR_2_1601/1 0 } StuckAt { BUF_1_1629/0 0 }

2031 0000465.574 [--] RankGroup 6 ... 6 : StuckAt { BUF_1_1631/0 0 }

2032 0000465.574 [--] RankGroup 7 ... 7 : StuckAt { AND_2_1734/1 1 }

2033 0000465.574 [--] RankGroup 8 ... 9 : StuckAt { NAND_2_1691/2 1 } StuckAt { NAND_2_1674/2 1 }

2034 0000465.574 [--] RankGroup 10 ... 10 : *StuckAt { AND_2_1554/0 0 } // real culprit is marked

2035 0000465.578 [DD] Merged StuckAt Evidences (2033). // (total evidences after merging)

2036 0000465.578 [DD] SmallDelay Resim (Top-50 Suspects)

2037 0000472.498 [--] SDFGroup 1 ... 2 : SDF { AND_2_1553/0 68 } *SDF { AND_2_1554/0 67 }

2038 0000472.498 [--] SDF_BestEvidence gamma 1 sigma 8 iota 79 tau 0 (SDF { AND_2_1553/0 68 })

2039 0000472.498 [--] SDF_ActualEvidence gamma 1 sigma 8 iota 79 tau 0 (SDF { AND_2_1554/0 67 })

2040 0000472.498 [--] ActualRank 10 // single stuck-at suspect ranking

2041 0000472.498 [DD] GroupRank 5

2042 0000472.498 [--] RankGroupSize 1

2043 0000472.498 [--] MiddleRank 10

2044 0000472.498 [--] SDF_ActualRank 2 // final suspect rankings

2045 0000472.498 [DD] SDF_GroupRank 1

2046 0000472.498 [--] SDF_RankGroupSize 2

2047 0000472.498 [--] SDF_MiddleRank 2

2048 ...

66

C The Internals of wave

The wave simulator mainly consists of two parts: a state machine and a kernel code. The state
machine is used for communicating with the ADAMA framework, from which it is controlled
by sending and receiving commands through standard input/output streams between the
processes. The kernel code itself represents a single-frame simulation, which spawns a number
of threads in the device grid. The number of threads depends on the amount of patterns
processed in the simulation pass as well as the size of the current frame. The memory required
to store intermediate signals will also limit the maximum allowed patterns per pass. In order
to simulate a complete circuit, the kernel will be executed for each frame.

Registers

Intermediate results will be stored as registers, which are merely placeholders for signal
values. Each gate-ID is mapped to a register-ID according to a scheduling algorithm, that
minimizes the maximum amount of required registers. An allocation persists until its signal
value is not required anymore. The register scheduling is done once at the beginning by the
class FRAMEFORMATTER.

A

B

C

D

E

X

Y

R1

R2

R3

R4

R5

R7

R6ID=1

ID=2

ID=3

ID=4

ID=5

ID=6

R1

R3

R2

R4

Frame 0 Frame 1 Frame 2

Figure C.1: Example register allocation for our c17 circuit. The number of used registers in
this schedule is 7.

67

C The Internals of wave

Figure C.1 shows an example scheduling for c17. All input signals are assigned to the first level.
Preceding signals overwrite the registers of those, which are no longer required.

The purpose of the register translation is to minimize the amount of memory required to store
intermediate results, without wasting too much storage. Since we simulate multiple patterns
at once, the total count of registers as well as their respective size have significant impact on
the number of patterns that can be simulated per pass, due to the fixed size of memory.

Memories

The wave simulator uses two types of mapped memories: a frame memory and a wave memory.
The complete circuit data is stored in the frame memory, as depicted in Figure C.2. It is
currently divided into the maximum allowed frame count of 1024 frames. Each frame offers
space for 4000 gates. The limitation of the gate count is explained by the very limited device
constant memory of 65536 bytes, where we store the gates during simulation, since our gate
data structure is 16 bytes large (16× 4000 = 64000).

Frame 1

4000 gates

1024
frames

Frame 1023

Frame offset

Frame 2

Gate

Frame 0

Figure C.2: Frame information stored in memory. – Up to 4000 gates are stored per frame.
The final required gate memory is 65, 536, 000 bytes large, due to the maximum
frame count of 1024.

A more detailed view of the data structure is shown in Figure C.3. Each gate nZ belongs to a
signal Z, which is used as a 4 byte identifier for its corresponding register. Its fan-in register
IDs (maximum of two) are stored at byte positions 4 and 8. A gate has a delay d stored as
SHORT and a type op, which simply expresses the gate function φZ according to Table C.1. The
cap value indicates the associated register size with the number of maximum transitions, that
can be stored in the waveforms for that particular gate.

Every time the kernel is called to process a certain frame, the corresponding frame data will
be copied into the constant memory via CUDAMEMCPYTOSYMBOL() prior to the actual kernel
execution.

68

Z A B d op cap
0 4 8 C

Register ID Fan-in Registers Delay

Gate type

Wave-cap

Base address

Offset: E F

16 byte

Figure C.3: Gate data structure in memory. The base address is a multiple of 16.

Gate type AND NAND OR NOR XOR XNOR BUF NOT

Op-value 0x2 0x3 0x4 0x5 0x6 0x7 0x8 0x9

Table C.1: Mapping gate type to op-value.

The wave memory is used to store the signal information. In contrast to the frame memory, it
is fully read, but only once at the beginning of each simulation pass in order to get the input
stimuli. It is written to at the final end to store the output responses. The provided stimuli are
first arranged in bundles, with each bundle consisting of up to 32 patterns. Depending on the
available memory and the number of registers used, a certain number of bundles will be taken
in each simulation pass and converted to waveforms and then stored in the memory map. So,
the provided pattern list may require multiple runs in order to simulate all of its patterns.

Before the first kernel call is executed, the simulator will load the memory map into the
CUDA device global memory to store the input stimuli at locations determined by the signal’s
corresponding register ID and the current input pattern index.

Figure C.4 illustrates the mapping of register × pattern to a memory location. The mapping is
equal for both the global device memory and the memory map.

When the kernel is finally executed, each spawned thread will first look-up its fan-in register
IDs, which in turn are used to compute the locations of the stimuli values that correspond to
the thread. After evaluation, the resulting signal information is stored at the gate’s indexed
location and the kernel call will be repeated for the next frame. Eventually, the simulation pass
is over and all the responses are written back to the memory.

69

C The Internals of wave

32-bundle

#bundles

#registerscluster

w

transitions

misc
t0 t1

t2

register-
stride

transition-stride

wave-stride

a
v
e

wave:

Figure C.4: Waveform representations stored in global memory.

Waveform Evaluation

All signals in wave are represented as waves or waveforms. A waveform representation wS for
a signal S is an ordered list of distinct times ti with ∞ ≥ ti ≥ 0. Each wS(i) corresponds to a
transition at S at time ti, except for ti = 0, which serves as a delimiter. The ti are stored in
descending order, so wS(i) > wS(j)⇒ i < i. By definition, all signals S will have to stabilize
at 0 eventually. Thus, if the last transition of S is a rising one, an additional {∞} will have to
be inserted in the waveform in order to fake an additional final transition to 0. This will later
help to evaluate the signal.

Figure C.5 illustrates some examples of signal waveforms. All events at a signal line will be
stored in the data structure in order to sustain most event information. The value of S at
a certain time t is determined by traversing its corresponding waveform wS with an index i
starting from i = 0. The index is increased until t ≥ wS(i). The final value S(t) is then
computed by S(t) = (i mod 2), or to be more precise:

S(t) = |{wS(i) : wS(i) > t}| mod 2.

The waveform format allows to store a complete signal history, instead of one discrete final
value. If a signal S is evaluated in parallel by using multiple waveforms w0

S, w1
S, . . . , wk−1

S , we
refer to the wi

S as a waveset WS. The reversed ordering of the ti in wS allows for an efficient
evaluation of input waveforms at a gate. Let φZ be the function of a gate n with output Z and
input signals A and B, then the output function for Z = φZ(A, B) can be computed in a single
pass using Algorithm C.1.

The memory organization for the wavesets is also depicted in Figure C.4. All pattern bundles
of a row, indexed by gate, are evaluated for one and the same corresponding gate in parallel
by many threads. Each single wave of the wavesets consists of a number of clusters, which
are merely pairs of floats (FLOAT2 C data structures). Their purpose is to reduce the overall

70

Stable-0

Stable-1

Rising transition

Falling transition

Arbitrary waveform

{0}

{∞, 0}

{∞, 2, 0}

{2, 0}

T=0 1 2 3

1

0

1

0

1

0

1

0

1

0 {∞, 2.5, 2, 1, 0}

Figure C.5: Examples for waveform representations. "0" and "∞" are used as delimiters.

Algorithm C.1 Gate evaluation using waveforms
1: procedure EVALUATE(A, B, Z) // input signals A, B; output signal Z
2: i← (wA(0) = ∞) // stable signal state of input values:
3: j← (wB(0) = ∞) // if the last transition occurs at ’∞’: initialize with ’1’
4: k← 0
5: if φZ(i mod 2, j mod 2) = 1 then
6: wZ(0)← ∞ // add ’∞’ if stabilized signal value of gate is ’1’
7: k← k + 1
8: end if
9: while max{wA(i), wB(j)} > 0 do // evaluation in reversed order

10: if (k mod 2) 6= φZ(i mod 2, j mod 2) then
11: wZ(k)← max{wA(i), wB(j)} // output transition (add delay here)
12: k← k + 1
13: end if
14: if wA(i) ≥ wB(j) then // next input change, proceed evaluation
15: i← i + 1
16: else
17: j← j + 1
18: end if
19: end while
20: wZ(k)← 0
21: end procedure

amount of memory accesses by threads through coalescing, by reading 64 bit instead of 32 bit
per access. Except for the first, all clusters of a wave wS will hold the transition information of
the signal S. The first cluster is primarily used for memory recalibration purposes in case of
transition overflows, which may occur during evaluation, since the transition count per wave
is capped. The cap depends on the current register sizes.

71

C The Internals of wave

After a simulation pass has finished and the final results have been fetched, the simulator checks
for overflows. If any overflows did occur, a separate recalibration procedure will be called.
It repeats the whole simulation task by repeatedly processing frame-by-frame and increasing
register sizes where needed, until no more overflows are produced. This procedure is rather
slow, since the registers have to be fetched and checked for each frame. For a fixed wavecap,
the number of overflows in a simulation run strongly depends on the circuit complexity and
the initial register size. Overflows may also vary from pattern to pattern. Once a circuit has
been simulated for some patterns, the final configuration of the current registers can be saved.
In case that the simulation has to be repeated, the state can be restored in order to prevent the
initial calibrations.

Kernel Grid Structure

When the kernel is executed on a two-dimensional array of threads on the GPGPU device. Each
spawned thread in the grid will compute a register value (Y-dimension) for a certain pattern
(X-dimension) of a bundle. Table C.2 summarizes the different grid dimensions that have to be
specified for the kernel call.

Dimension Description

BLOCKDIM_X Maximum number of patterns per bundle (32)
BLOCKDIM_Y Maximum number of registers per block (8)
GRIDDIM_X Maximum number of bundles
GRIDDIM_Y (Maximum number of registers)/(Registers per block)

Table C.2: Description of the grid dimensions used by the kernel.

The simulator will always process whole bundles of 32 patterns each. The actual number of
bundles, that can be simulated simultaneously, depends on the device memory and the used
register sizes. If the wavecaps are reduced, the available space can be used for additional
patterns. Also, circuits that require less registers can simulate more patterns at once and vice
versa.

72

List of Symbols

δ(n) Propagation delay of a node

∆T(p) Slack of path p in a circuit with sampling time T
δ f Defect size for fault f
δP Defect size regarding a set of paths P
∆max(n) Maximum slack of the paths p ∈ Pn

∆min(n) Minimum slack of the paths p ∈ Pn

φZ Gate function, function for signal Z
Π Pattern set

π Pattern

σ, ι, τ, γ POINTER evidence values

A, B, Z Gate related signals (inputs A, B – output Z)

a[i] Arrival time

DT
∆(n) List of defect sizes at a node n for all paths Pn

Dn Defect range of a node n
e Evidence

f Fault

G Levelized circuit

i, j, k Common indices

L, Li Level in circuit G
N Number of gates in circuit

n, g A node or gate

nZ Node corresponding to signal Z
P Set of paths

p, q Path from circuit input to output

p[i] Propagation time

Pn Set of all paths going through node n
S Signal

S(t) Value of signal at time t

73

List of Symbols

T Circuit sampling time

ti Point of time (transition)

tp Propagation delay of path p
t(i,j) Combined path delay of all nodes on segments i and j
WS Waveset of signal S
wS Waveform representation

wS(i) Time of the i-th transition stored in wS

74

Bibliography

[BA02] M. L. Bushnell, V. D. Agrawal. Essentials of Electronic Testing for Digital, Memory
and Mixed-Signal VLSI Circuits. Kluwer Academic Publishers, 2002. ISBN:0-7923-
7991-8.

[CDB09a] D. Chatterjee, A. DeOrio, V. Bertacco. Event-driven gate-level simulation with
GP-GPUs. In Proc. ACM/IEEE Design Automation Conf. (DAC ’09), pp. 557–562.
2009. doi:10.1145/1629911.1630056.

[CDB09b] D. Chatterjee, A. DeOrio, V. Bertacco. GCS: High-performance gate-level simulation
with GPGPUs. In Proc. IEEE Design, Automation & Test in Europe Conf. & Exhibition
(DATE ’09), pp. 1332–1337. 2009.

[CIR87] J. L. Carter, V. S. Iyengar, B. K. Rosen. Efficient test coverage determination for
delay faults. In Proc. IEEE Int. Test Conf. (ITC ’87), pp. 418–427. 1987.

[GK08] K. Gulati, S. P. Khatri. Towards acceleration of fault simulation using Graphics
Processing Units. In Proc. ACM/IEEE Design Automation Conf. (DAC ’08), pp.
822–827. 2008. doi:10.1145/1391469.1391679.

[GK09] K. Gulati, S. P. Khatri. Accelerating statistical static timing analysis using graphics
processing units. In Proc. Asia and South Pacific Design Automation Conf. (ASP-
DAC ’09), pp. 260–265. 2009. doi:10.1109/ASPDAC.2009.4796490.

[HPA96] K. Heragu, J. H. Patel, V. D. Agrawal. Segment Delay Faults: A New Fault Model.
In Proc. IEEE VLSI Test Symp. (VTS ’96), pp. 32–39. 1996. doi:10.1109/VTEST.
1996.510832.

[HW09] S. Holst, H.-J. Wunderlich. Adaptive Debug and Diagnosis Without Fault
Dictionaries. Journal of Electronic Testing, 25:259–268, 2009. doi:10.1007/
s10836-009-5109-3.

[IRW90] V. S. Iyengar, B. K. Rosen, J. A. Waicukauski. On Computing the Sizes of Detected
Delay Faults. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 9(3):299–312, 1990. doi:10.1109/43.46805.

[KC98] A. Krstić, K.-T. T. Cheng. Delay Fault Testing for VLSI Circuits. Kluwer Academic
Publishers, 1998. ISBN:0-7923-8295-1.

75

Bibliography

[MA98] A. K. Majhi, V. D. Agrawal. Tutorial: Delay fault models and Coverage. In Proc.
IEEE Int. VLSI Design Conf. (VLSID ’98), pp. 364–369. 1998. doi:10.1109/ICVD.
1998.646634.

[MAJP00] A. K. Majhi, V. D. Agrawal, J. Jacob, L. M. Patnaik. Line Coverage of Path Delay
Faults. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 8(5):610–
614, 2000. doi:10.1109/92.894166.

[NVI10] NVIDIA. NVIDIA CUDA C Programming Guide – Version 3.2, 2010. http:

//developer.nvidia.com/.

[OHL+08] J. D. Owens, M. Houston, D. Luebke, S. Green, J. E. Stone, J. C. Phillips. GPU
Computing. Proceedings of the IEEE, 96(5):879–899, 2008. doi:10.1109/JPROC.
2008.917757.

[PR88] A. K. Pramanick, S. M. Reddy. On the detection of delay faults. In Proc. New
Frontiers in Testing IEEE Int. Test Conf. (ITC ’88), pp. 845–856. 1988. doi:10.1109/
TEST.1988.207872.

[Smi85] G. L. Smith. Model for delay faults based upon paths. In Proc. IEEE Int. Test Conf.
(ITC ’85), pp. 342–349. 1985.

[WLRI87] J. A. Waicukauski, E. Lindbloom, B. K. Rosen, V. S. Iyengar. Transition Fault
Simulation. IEEE Design & Test of Computers, 4(2):32–38, 1987. doi:10.1109/MDT.
1987.295104.

[WST08] L.-T. Wang, C. E. Stroud, N. A. Touba, editors. System-on-Chip Test Architectures:
Nanometer Design for Testability. Morgan Kaufmann Publishers, 2008. ISBN:0-12-
370597-5.

[Wun09] H.-J. Wunderlich, editor. Models in Hardware Testing, volume 43 of Frontiers in Elec-
tronic Testing. Springer Berlin Heidelberg, 2009. doi:10.1007/978-90-481-3282-9.

[WWW06] L.-T. Wang, C.-W. Wu, X. Wen, editors. VLSI Test Principles and Architectures.
Morgan Kaufmann Publishers, 2006. ISBN:0-12-370597-5.

All links were last followed on April 22, 2011.

76

http://developer.nvidia.com/
http://developer.nvidia.com/

List of Figures

1.1 Fault Simulation Scheme . 8
1.2 Example of a Delay Defect . 9
1.3 Waveform Summary . 11

2.1 Double-Cone of a Fault Site . 21
2.2 Computing Path Slacks for c17 . 23
2.3 Computed Fault Set of c17 . 24
2.4 Defect Range Quantization . 27
2.5 SmallDelay Fault Equivalences . 28

3.1 Test Pattern Conversion . 29
3.2 Fault Simulation Tasks . 32
3.3 Simulation Run Outline . 33
3.4 Frame-depth of Benchmark Circuits . 34
3.5 Hazards and Fault Detection . 36

4.1 Evidences in Diagnosis . 37
4.2 Delay Fault Diagnosis Outline . 41

5.1 ISCAS’85 Circuit Information . 44
5.2 DCD Modifications on ISCAS’85 . 44
5.3 NXP Circuit Information . 45
5.4 ISCAS’85 Fault Simulation Time . 47
5.5 NXP Fault Simulation Time . 47
5.6 ISCAS’85 Fault Simulation Performance . 48
5.7 NXP Fault Simulation Performance . 48
5.8 GSI Rank Distribution of Stuck-At Representatives (ISCAS’85) 50
5.9 GSI Rank Distribution after Resimulation (ISCAS’85) 51
5.10 Suspect Evidences with γ 6= 0 . 52
5.11 SIG Rank Distribution after Resimulation (ISCAS’85) 53
5.12 Resimulation of Merged Evidences (ISCAS’85) 56
5.13 Diagnosis Approaches in Juxtaposition . 58
5.14 Diagnosing larger Circuits (NXP) . 59

C.1 Register Allocation . 67

77

C.2 Frame Information in Memory . 68
C.3 Gate Data Structure . 69
C.4 Waveforms in Memory . 70
C.5 Waveform Examples . 71

List of Tables

1.1 Transition Fault Behaviour . 10
1.2 Comparison of Delay Fault Models . 13

4.1 Middle-Rank Examples . 39

5.1 ISCAS’85 Diagnosis Results in Juxtapose . 57

C.1 Gate Type Mapping . 69
C.2 Kernel Grid Dimensions . 72

List of Algorithms

2.1 Computing arrival lists for all nodes (Phase 1) 22
2.2 Computing propagation lists for all nodes (Phase 2) 22
2.3 Determining defect sizes . 24
2.4 Modification of DCD for usage as transition-fault model 25

C.1 Gate evaluation using waveforms . 71

78

Declaration

All the work contained within this thesis,
except where otherwise acknowledged, was
solely the effort of the author. At no
stage was any collaboration entered into
with any other party.

(Eric Schneider)

	1 Introduction
	1.1 Fundamental Definitions
	1.2 Common Delay Fault Models
	1.3 The NVIDIA CUDA Architecture
	1.4 Parallel Logic and Fault Simulation
	1.5 The wave Time Simulator
	1.6 POINTER Pattern Analysis

	2 Gate Delay Fault-List Generation
	2.1 Determining Defect Size Boundaries
	2.2 Computing Fault Sets
	2.2.1 Classifying Faults
	2.2.2 Computing Path Slacks

	2.3 Complexity
	2.3.1 Modification A: Transition-Fault Model
	2.3.2 Modification B: Defect Range Quantization
	2.3.3 Fault Equivalences

	2.4 Relation between Arbitrary Defect Sizes and SmallDelays

	3 Delay Fault Simulator
	3.1 Test Pattern Generation
	3.2 Fault List Generation
	3.3 Fault Simulation
	3.3.1 Initialization
	3.3.2 Tasks
	3.3.3 Remarks on Circuit Levelization
	3.3.4 Parallelism

	3.4 Fault Injection
	3.5 Response Evaluation

	4 Diagnosis
	4.1 Setup
	4.2 Delay Fault Diagnosis using POINTER
	4.2.1 Fine-grained Resimulation
	4.2.2 Pattern Analysis

	4.3 Suspect Ranking

	5 Experimental Results
	5.1 Fault Set Generation
	5.1.1 Counting Delay Faults
	5.1.2 Evaluation

	5.2 Fault Simulation
	5.3 Diagnosis
	5.3.1 GSI Ranking
	5.3.2 SIG Ranking
	5.3.3 Reasoning with Evidences and Representatives

	5.4 Summary

	6 Conclusion
	A ADAMA fsample
	B ADAMA wave/diagnose dfcuda
	C The Internals of wave
	List of Symbols
	Bibliography

