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Abstract

Publish-subscribe is a well-known paradigm for building distributed applications. Events produced by
peers, called publishers, are disseminated to interested consumers, called subscribers. Usually publish-
ers and subscribers are arranged in a peer-to-peer overlay network, which helps in dissemination of
events in a decentralised manner. Recent research tries to provide Quality-of-Service like delay bounds
or reliability in such a system. In order to provide reliability current distributed publish-subscribe sys-
tems mostly either rely on overlay level acknowledgement protocols or try to find multiple disjoint
paths in the overlay to increase redundancy without taking into account the underlay topology. Ac-
knowledgements induce high delays affecting timeliness ofevent delivery. Providing multiple paths
without looking at the underlay does not take into account correlations between paths within the un-
derlay. We address these drawbacks by designing a content-based publish-subscribe system which
provides reliability by taking into account the underlay topology to reduce correlations within the un-
derlay in overlay links. The system consists of three layers: The Topology-Discovery-Overlay (TDO)
layer constructs an underlay topology aware overlay which reflects the underlay topology by using a
path-matching algorithm. On top of the TDO the Maximum-Reliability-Spanning-Tree (MRST) layer
constructsk overlay link disjoint trees which contain the most reliableoverlay links. The MRSTs are
used by the content-based publish-subscribe layer for subscription flooding and event forwarding. The
system has been evaluated by simulations in PeerSim using Internet-like topologies. The results show
that the TDO discovers most of the underlay topology and constructs overlay topologies reflecting
the underlay topology. Simulations also show that the system converges towards a maximum event
delivery probability.
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1 Introduction

Traditional communication paradigms likeclient-serverwhere information must be specifically re-
quested at the source or at a centralised database lack in scalability. An asynchronous communica-
tion paradigm like publish-subscribe allows for better scalability. Information in the form ofevents
produced by so-calledpublishersis delivered to interested participants calledsubscribers. Publish-
subscribe can allow for greater scalability because publishers and subscribers are decoupled and events
are pushed to subscribers rather than subscribers need to poll this information.

In Figure 1.1 the publish-subscribe API model is shown. TheEventServiceis the main publish-
subscribe middleware interface and provides several services which can be used by applications. Sub-
scribers can subscribe and unsubscribe to specific events expressed by asubscription. Publishers can
publish events to be consumed by all subscribers having a matching subscription. In some publish-
subscribe systems publishers can also advertise and unadvertise the events they intend to publish.
Advertisements are usually expressed using the subscription model.

Subscriber

process(event: Event): void

EventService

publish(event: Event): void
subscribe(subscription: Subscription): void
unsubscribe(subscription: Subscription): void
advertise(advertisement: Subscription): void
unadvertise(advertisement: Subscription): void

Publisher

eventService

eventService

subscribers

0..*

Figure 1.1: Publish-Subscribe API Model

Publish-subscribe systems can be categorised intoTopic-BasedandContent-Basedsystems:

Topic-Based A topic-based system categorises events into topics. Subscribers subscribe to a spe-
cific topic and receive all events published to this topic. However, the main drawback of the
topic-based subscription model is the limited expressiveness. Several improvements for expres-
siveness are possible. Often the model is extended to be hierarchical i.e. a topic can have
multiple sub-topics. A message published to a topic is then delivered to subscribers to both, the
topic and all its parent topics. In many cases operators likewildcards can be used to subscribe
to multiple topics using one subscription (cf. [She10]).

Content-Based The content-based model overcomes the limited expressiveness of the topic-based
model. As the name implies, subscriptions in a content-based system describe complex filtering

11



1 Introduction

B1

B2

P1

P2

P3

S1

S2

S3

S4 S5

S6

Figure 1.2: Publish-Subscribe Broker Network

criteria on the content of events. The expressiveness depends on the subscription language de-
fined by the specific system. Usually subscriptions are defined as sets of constraints composed
of disjunction or conjunction. Most subscription languages allow equality (“= ”) and compar-
ison (“> ” , “ < ” , “ ∈ [min;max]” , “ ∈ [min;max[” , “ ∈]min;max]” , “ ∈]min;max[”) operators for
constraints, some also allow regular expressions. The following example shows a subscription
that matches all events where the location is “Stuttgart", the temperature is within 10 and 20 and
the pressure is above 1000:location= “Stuttgart” ∧ temperature∈ [10,20]∧ pressure> 1000
(cf. [She10]).

In general an increase in expressiveness affects scalability of the system. However, because content-
based systems are much more expressive many systems in literature try to make use of that model.

Traditionally, publish-subscribe systems consist of a setof dedicated servers, calledbrokersthat pro-
vide a publish-subscribe interface. Clients connect with brokers to subscribe to or to publish events.
Brokers form abroker networkwhere events are routed along to other brokers having subscribers with
matching subscriptions.

However, broker networks are usually not self-organizing and managed manually by administrators.
This is the reason why most of recent research concentrates on peer-to-peer (P2P) publish-subscribe
systems. In a P2P publish-subscribe system every subscriber not only receives messages but also
participates in event forwarding. Also, potentially everypeer can be a publisher. Because of this
flexibility this thesis will focus on a P2P publish-subscribe system.

In order to deliver events to subscribers with a matching subscription in a P2P publish-subscribe
system, subscriptions are usually flooded across the peer network to set up a reverse path for events
(event routing table). However, flooding introduces high message complexity which can be reduced
by taking into account covering relations among subscriptions. For example if a subscription defines
to receive only events wherex > α , it is unnecessary to forward a second subscription on the same
path which definesx> β ,α ≤ β . The routing table constructed while flooding subscriptions is used
to forward events, the reverse path of the subscription.

12
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Figure 1.3: P2P Publish-Subscribe

Figure1.2shows an example for a broker-network consisting of two brokersB1 andB2. Each broker
has some connected publishersPi and subscribersSi . If for example publisherP1 publishes an event
which matches the subscriptions of subscribersS1 andS4, the event is first sent to brokerB1, who then
forwards it toB2 and delivers the event toS1. B2 then delivers the event toS4.

In contrast Figure1.3 shows an example for a P2P publish-subscribe system with publishersPi and
subscribersSi . In this case an event published byP1 which matches a subscription ofS1 andS4 is
forwarded by other publishers and subscribers toS1 andS4. For exampleP1 forwards the event to
P2, who then delivers the event toS1 andS4 but other paths may also be possible depending on the
publish-subscribe routing algorithm.

Recent research addresses Quality-of-Service (QoS) in publish-subscribe systems. QoS refers to the
ability of a system to provide services satisfying user expectations for all non-functional criteria. QoS
metrics in a publish-subscribe system can be minimum bandwidth requirements, order of event noti-
fication or delay bound requirements for event delivery. Forexample in [TKK+11] a system which
meets subscriber defined delay bounds was proposed (discussed in Section2.1.1).

Providing reliability in a publish-subscribe system is another challenging problem in this field. Re-
liable event delivery is important for critical events, especially. Providing reliability in a publish-
subscribe system, however, must be considered a complex task. Publishers usually do not know the
set of subscribers, thus making it difficult to meet reliability requirements because paths to subscribers
and their quality are also unknown.

In order to provide reliable event dissemination in a publish-subscribe system, most of the existing
solutions introduce reliability mechanisms like overlay level acknowledgements or add redundancy
like providing multiple redundant overlay paths [GPS04, MB07, TSN10]. On the other hand, overlay
level acknowledgements introduce substantial delay in event delivery due to retransmits. By only pro-
viding multiple redundant overlay paths without looking atthe underlay, correlations in the underlay
are neglected. Usually an overlay link is mapped to an underlay path determined by the underlying
routing protocol. An underlay path is composed of a sequenceof physical links in the underlay. When
two overlay paths share a common physical underlay link, properties of this link are shared by both
overlay paths.

13



1 Introduction

This is a reason why recent research also considers the underlay network topology when providing
QoS constraints in a publish-subscribe system. However, most solutions concentrate on broker net-
works which have some drawbacks as mentioned previously [KB07, ECG09].

Admittedly, only looking at the underlay is not enough. Peers in the overlay may fail at any time,
which can cause losses while forwarding events in the overlay.

This thesis develops an approach for a P2P publish-subscribe system. It takes into account correlations
in the underlay topology in order to reduce correlations in underlay paths. To overcome failures of
overlay peers, the system establishes redundant overlay paths for message diffusion.

The thesis is outlined as follows: In Chapter2 related work in the field of QoS for publish-subscribe
systems and topology discovery will be discussed. In Chapter 3 the system model will be explained
and the problem to be solved will be described. In Chapter4 an overview on the approach developed
in this thesis and the different protocol layers will be given. The topology discovery layer will be
described in Chapter5 whereas the layer providing a publish-subscribe interfacewill be explained in
Chapter6. All evaluation results will be presented and discussed in Chapter7. Finally, a conclusion
will be drawn in Chapter8 and future work in this topic will be discussed.

14



2 Related Work

2.1 Publish-Subscribe System

Providing QoS in a P2P publish subscribe system is a complex task. Publishers usually do not know
the complete set of subscribers and their location in the network when publishing events, which makes
it difficult to adapt event forwarding according to QoS requirements. This section will discuss related
work about providing QoS in publish-subscribe systems.

2.1.1 Meeting Subscriber-Defined QoS Constraints in Publish-Subscribe Systems

An approach to meet subscriber-defined QoS constraints in a broker-less publish-subscribe system has
been proposed by Tariq et al. [TKK+11]. Subscribers can define individual delay requirements for
their subscriptions in the presence of bandwidth constraints. Subscribers construct overlays which
maintain the delay bounds in a way that subscribers with tight delay requirements are served before
subscribers with more lenient requirements. The system relies on advertisements and defines a sub-
scription model based on spatial indexing where the event space, which is composed of a globally
known ordered set ofd distinct attributes and modelled geometrically as ad-dimensional space, is
divided into sub-spaces which are created by recursive binary decomposition of the event-space. Sub-
scriptions are expressed bydz-expressionswhich are bit-strings of “0”s and “1”s. When a sub-space
is divided, its dz-expression is used as prefix to the newly created sub-space (Figure2.1). The system
consists of two levels of subscriptions, namely theuser-leveland thepeer-levelsubscriptions. User-
level subscriptions represent the original subscriptionsas defined by the application and are mapped
to an approximated peer-level subscription which is a set ofdz-expressionsDZ(p) = {dzi |i ≥ 1}.
In the following, the system will be described briefly. Each subscriber maintains a peer viewpView
that caches information about peers which are relevant because they have covering subscriptions. The
pView is maintained by a modified version of an epidemic protocol. Periodically, each peer checks
whether eachdzi in DZ(p) is covered by a subscription of a subscriber or by all relevant publishers the
peer is connected to. If a dz-expression is not covered, the peer selects a suitable parent frompView
and sends a connection request to the potential parent. As soon as the parent receives the connection
request from the peer it acknowledges the request if the delay requirement of the peer’s subscription
is less tight than its own delay requirement. If not, it sendsa hint about the most suitable parent,
according to its knowledge, which the peer will add to itspViewand take into account as a potential
parent in its next iteration. To prevent cycles when accepting connections, a message to detect the cycle
is sent to the parent and forwarded along all peers having thesame subscription and delay constraints.
When the message is received by the originator, a cycle is detected and removed. Sometimes delay
requirements cannot be satisfied. In this case peer-level subscriptions can be coarsened according to
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2 Related Work

Figure 2.1: Spatial indexing (Source: [TKK+11])

bandwidth constraints. Because less selective subscriptions are placed higher (nearer to publishers) in
the dissemination graph, delay requirements will most likely be held at the cost of bandwidth.

The proposed system allows for subscriber-defined delay bounds. It scales up to a large number of
subscribers and performs robustly. However, the subscription model only allows for a closed set ofd
globally known attributes which has a negative influence on the expressiveness. Concerning reliability
it is difficult to convert the delay requirements into reliability requirements because of the different
nature of reliability. I.e. delay is an additive metric whereas reliability is a multiplicative metric.
To introduce reliability in such a system, additional mechanisms have to be implemented, such as
connecting tok different parents instead of only one.

2.1.2 Reliable Publish-Subscribe Middleware for Time-Sensitive Internet-Scale
Applications

Esposito et al. [ECG09] gives an overview of the state of the art publish-subscribesystems as far
as reliability is concerned. They introduce the taxonomy offailures in publish-subscribe middleware.
Several kinds of failures may affect a publish-subscribe system. These faults can be classified as
follows:

Network anomalies Temporary misbehaviour of a link

Link crash Links experience loss of connectivity, i.e. packets are always lost in a certain period of
time which is not necessarily permanent but may dynamicallyappear and disappear

Node crash Nodes crash due to failure of hardware/software

Churn Nodes unexpectedly join/leave the system

16



2.1 Publish-Subscribe System

Network anomaliescan be further broken down into the following:

Loss Links behave as a fairy-loss channel, i.e. messages in transit through the link may be lost
randomly

Ordering Messages are not received in the same order as they have been published

Corruption Messages are corrupted

Delay A message is delivered later than expected

Congestion A link/router is overloaded, suddenly causing several anomalies

Partitioning Network may get fragmented into several disconnected parts

Link and node crashes can appear in both, the underlay and theoverlay. A node crash in the underlay
usually refers to a crashed router whereas a node crash in theoverlay refers to a crashed peer. A link
crash in the overlay, however, is usually caused by a link crash in the underlay, because overlay links
are composed of a series of underlay links and nodes.

Besides, a classification of the current approaches adoptedin literature to implement reliable publish-
subscribe services is given:

Retransmission (ARQ) A common approach to provide reliable communication is to retransmit the
message when a loss is detected. This can be initiated by the sender, for example by using ac-
knowledgements (ACK). When the sender does not receive an ACK-Message from the receiver
within a given period of time, the sender retransmits the message. Another possibility is to de-
tect the loss on the receiver side, for example by using package-sequence-numbers. In general
this approach is not optimal. The approach can only deal withlost messages and does not specif-
ically handle node failures. In case of a link crash which partially or completely disconnects a
subset of subscribers from the publisher, there are no guarantees to achieve agreement. More-
over, the time to recover dropped messages is unpredictable. Another drawback is that messages
can be received twice due to false-negative loss detection.

Forward Error Correction Forward Error Correction adds redundancy to the messages sothat re-
ceivers can reconstruct lost messages in case that some packets have been dropped. The main
drawback is that the degree of recoverable messages dependson the amount of redundancy
added to the message. However, choosing the right redundancy is a difficult task in real world
Internet since losses are highly variable over time.

Epidemic Algorithm Epidemic algorithms distribute the recovery responsibility among the leaf nodes
of the forwarding tree. Nodes exchange their history of received messages with a random neigh-
bour. By comparing their own message history with the received histories, message drops are
detected and a retransmission can be requested. This systemavoids duplicate messages due
to false-negative time-outs and can also recover lost messages due to crashed nodes or links
which is not the case for basic ARQ. However, because of the probabilistic nature of epidemic
algorithms there is no guarantee that a message reaches all subscribers.
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Reconfiguration Topological reconfiguration enables a system to recover connectivity in the forward-
ing tree1 after a node or link has crashed. For example a soft state approach can be used where
routing entries expire if they have not been refreshed within a given time-to-live. The approach
aims to guarantee a consistent connectivity for the system but it does not cope with message
drops.

Broker Replication Brokers in an event forwarding tree are replicated. In case of a broker failure
the state of the failing broker can be easily substituted by areplication broker without losing
subscription consistency. The solution, however, only considers node failures but link crashes
may cause message losses or some subscribers may not be reachable any more.

Path redundancy By adopting path redundancy a system establishes redundantpaths among the
nodes of the system. Messages are sent through multiple paths so that in case of a link fail-
ure on one of the paths, another path may still be available. Paths, however, should be diverse
to avoid the situation where a single failure of a component within one path affects all the other
paths as well. This approach circumvents link crashes but can also cope with node crashes.

The approach described in the paper to provide reliable and timely event dissemination in a topic-based
publish-subscribe system exploits the fact that the Internet is composed of interconnectedRouting Do-
mains. These domains may consist ofLocal Area Networks(LAN) or Autonomous Systems(AS). The
system uses a hierarchical approach which reflects the consideration on the Internet topology. Nodes
in the same domain are clustered together and each cluster holds a coordinator that allows interac-
tion with other clusters. Nodes in the same cluster useIP Multicast for intra-cluster communication.
Because such domains are usually highly reliable it is assumed that timely and reliable data delivery
within clusters is guaranteed. Clusters are connected to other clusters through their coordinators. A
non-coordinator node hence never directly communicates with a node from another cluster but uses
its coordinator as a proxy. For inter-cluster communication a tree-based peer-to-peer application-level
multicast solution is used which is built on top of a structured orDistributed Hash Table(DHT) over-
lay. In case of a DHT,Pastry2 is used as a routing substrate. For each topic at intra-cluster level an
IP Multicast group is built, whereas at inter-cluster levelan application-level multicast dissemination
tree is built. If a coordinator wants to join an existing multicast tree because one of the peers in its
cluster or itself subscribed to a specific topic, it sends a join message to the root of the appropriate
multicast tree using the overlay routing substrate. If a coordinator along the way is already in the tree,
it registers the joining coordinator as a child. A message which is published by a node first is sent to
all interested nodes in the same cluster and to the coordinator using IP Multicast. Then the coordinator
passes it towards the root of the application level multicast tree which then passes the message along
the tree. Each coordinator receiving the message performs an IP Multicast in their cluster and then
forwards the message to their children.

The system uses a combination ofPath RedundancyandBroker Replication, which handles both, node
failures and link crashes.

At cluster level the system is vulnerable when a coordinatorfails. This is the reason why a hybrid
replication scheme is used, where a cluster hasp redundant coordinators which all have equal respon-

1Tree a message is forwarded along towards the destinations where the root of the tree is the sender of the message
2Pastry is an overlay routing substrate based on a Distributed Hash Table
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sibilities. Since there are several coordinators present at the same time, there is always at least another
coordinator available in case of a crashed coordinator, which achieves timeliness. Additionally, each
coordinator hask back-ups which replace a coordinator after it has failed.

At inter-cluster level the system is vulnerable to losses due to link crashes. To overcome this situation,
the system uses a multiple-tree approach where for each topic p trees are built. An underlay link
crash on an overlay link on one of the trees should not affect an overlay link on the other tree. This
is the reason why paths should be diverse. [ECG09] introduces a measure for reciprocal diversity of
paths, namelyQ(P1,P2) which is the number of overlapping components within the twopathsP1 and
P2. Using this measure, different formulations of path diversity can be given. TheGlobal Diversity
is defined as follows: A forestF of n trees, namelyTi with i = 1, . . . ,n, verifies the global diversity
constraint, if and only if it is not possible to find two paths that exhibit a positive value as measure of
their reciprocal diversity in any of then trees:

F =
⋃

i=1,...,n

(Ti) : F is diverse⇔ ∄Pi,Pj ∈ F : (Q(Pi,Pj)> 0)∧ (i 6= j)

However, because it is impossible to verify whether trees satisfy this condition a weakened constraint
has been specified (namelyLocal Diversity) which verifies the path diversity constraint if and only if
all the paths from a specific nodeNA to its parents and children in theith tree, namelyPi|NA

do not
exhibit a positive value as measure of their reciprocal diversity:

F =
⋃

i=1,...,n

(Ti) : F is diverse⇔∀NA∄Pi|NA
,Pj|NA

: (Q(Pi|NA
,Pj|NA

)> 0)∧ (i 6= j)

Local Diversity does not imply Global Diversity but it makesit possible to implement a distributed
algorithm that is able to construct locally-diverse multiple trees.

Figure 2.2: A node joining two distinct trees (Source: [ECG09])

How a node joins multiple distinct tree is explained based onthe example in Figure2.2. NodeC9

wants to join two different treesA andB. Initially C9 sends a join message towards the root of each
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tree. The message is intercepted byC2 andC7. These two nodes reply with a message containing a list
of their neighbours and details about the path to them and a traceroute3 result toC9. ThenC9 contacts
all nodes of the received list and receives traceroute messages about the path to them, too. NowC9 can
decide which node will be its parent in each tree by determining the set of parents that minimises the
diversity of the paths to its parents and the diversity of thepaths from the new parent to its children.

The approach provides a system for reliable event delivery through replication and diverse path redun-
dancy. However, the system assumes the availability of IP Multicast within the same cluster. While
this is applicable for clusters within the same LAN, it is unusual that IP Multicast is available in Au-
tonomous Systems. At inter-cluster level the system tries to minimise the path diversity to the stage
where a node joins an application level multicast tree. However, this may not lead to an optimal so-
lution and the system does not restructure the tree to further optimise the diversity after the inclusion
of the new node. Another drawback is that the system only allows for topic-based publish subscribe
systems because subscriptions have to be mapped to hash-values to work on top of a DHT.

2.1.3 A distributed algorithm for underlay aware and available overlay formation in event
broker networks

Kumar and Bellur [KB07, KB08] proposed an underlay aware overlay formation algorithm for event
broker networks. It forms a network havingk paths which are node disjoint in the underlay. Therefore
two availability models have been defined, namely theManifest Availability Modeland theLatent
Availability Model. The Manifest Availability Model states that distinct paths at the overlay level
are node disjoint in the underlay as well whereas in the Latent Availability Model any two overlay
nodes have a guaranteed number of node-disjoint paths between them in the underlay. In general
both models are NP-complete but under a set of practical constraints, constructing a latent availability
overlay reduces the complexity to a polynomial time problem.

The overlay formation algorithm requires underlay qualityawareness, which means the nodes gather
and store information about the underlying path for the overlay links originating from the nodes, in-
cluding information about the routers in the path and the node overlap in the overlay link from the
node. Nodes are classified into four types:

Overlay nodes Nodes selected to be brokers

Expander nodes Non-Broker nodes with node-degree more than 2

Connector nodes Nodes with degree equal to 2

Trivial or client nodes Nodes with degree of 1

Because the system can only run on brokers which have a physical degree of at leastk, the paper only
described an overlay formation algorithm for the casek= 2 but the concept of the algorithm can also
be used fork> 2. The algorithm is based on the expansion lemma of Whitney’stheorem which states
that if G is a k connected undirected graph, then a graphG′ obtained by adding a new nodex and

3Tool to discover the routers on an IP network path from a specific node to an arbitrary destination
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addingk distinct edges fromx to k distinct nodes ofG, is alsok-connected. The algorithm is described
briefly in the following:

Initially two broker nodes are selected manually asstellar nodeswith two node disjoint physical paths
between them. The path information of the paths between the stellar nodes is gathered by the messages
in the algorithm as they proceed from node to node. Stellar nodes remain a part of the system as long
as the broker network exists. When a new broker joins the system it sends a message through all its
links towards the stellar nodes. The stellar nodes reply with the path the message took as well as with
suggested alternatives. The joining node tries to findk node disjoined paths in the set of received
paths, if no such set of paths can be found, it tries to contactbrokers through the suggested paths.
Intermediate brokers intercepting join messages do not forward the message, but instantly reply in the
same way as a stellar node.

The proposed overlay formation algorithm forms overlay networks withk node disjoint paths between
any pair of nodes. However, the authors make assumptions to the underlay that usually do not hold in
real world networks, for example overlay nodes can specify the underlay path an individual message
should take. On the Internet this is usually controlled by the underlay routing protocol and not under
the sending nodes control. Also, it assumes that the broker nodes take part in underlay routing and
hence is able to intercept messages in transit to other broker nodes. Another problem is that brokers
not having a degree ofk or brokers where nok disjoint paths to the network exist, cannot be part of the
system at all. One could argue that allowing nodes with a degree lower thank to be part of the system
decreases the total availability. This may be a feasible constraint for managed broker networks where
administrators can change conditions manually. For unmanaged distributed P2P publish-subscribe
systems, however, this is not practical.

2.1.4 Reliable Routing of Event Notifications over P2P Overlay Routing Substrate in Event
Based Middleware

A broker-based publish-subscribe system to provide subscriber defined reliability has been proposed
by Mahambre and Bellur [MB07]. The algorithm tries to determine a path which has a reliability value
greater than or equal to the threshold specified by the subscriber. It leverages the Pastry overlay routing
substrate to route events to subscribers based on a multiplicative reliability measurement model. This
model considers a path of an event notification to be a series system where all components (brokers)
are so interrelated that the entire system fails if any one ofits components fail:

The probability that a nodei will drop a packet is given byP(ωi) and the probability that the linkl i, j
(link between nodei and j) will drop a packet is given byP(φi), hence the reliability of the node and
the link is(1−P(ωi)) and(1−P(φi)), respectively. The reliability of an entire path is given by:

(2.1.1)
N

∏
i=1

(1−P(ωi))(1−P(φi))

To find a path that meets the subscriber defined reliability, the event publisher determines the primary
path for event delivery. The subscriber then returns its identifier and reliability value of the primary
path. Now the publisher is aware of all subscribers. If the primary path does not meet the reliability
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threshold, a pruning algorithm is being executed, which performs partial flooding up to a particular
level. While (partially) flooding the network, the algorithm calculates the partial path reliability4 using
equation (2.1.1). Circles can be avoided because the algorithm forwards thepartial path established so
far while flooding. Flooding is stopped when a previously defined TTL is reached. Once the flooding
is stopped, the message is routed to the destination using Pastry routing. The destination then sends
all the discovered paths along with their reliabilities to the publisher. Now the publisher can select a
path having a reliability higher than or equal to the threshold reliability requirement specified by the
subscriber. If no such single path exists, the publisher combines multiple paths such that reliability of
combined paths is greater than or equal to the threshold. While combining paths, two cases arise:

1. Paths aredisjoint, which means no two paths share a component. If the reliability of pathΘi is
defined byR(Θi) and there areN paths, the combined reliability is defined by

1− (
N

∏
i=1

(1−R(Θi)))

2. Paths areintersecting, which means subsets of paths intersect with each other. GivenR(Θi) is
the reliability of pathΘi and there areN paths, the combined reliability is defined by

∑
i

R(Θi)−∑
i

∑
j>i

R(Θi∩Θ j)+∑
i

∑
j>i

∑
k> j

R(Θi∩Θ j∩Θk)−·· ·+(−1)N+1R(Θ1∩Θ2∩ . . .∩ΘN)

Using these definitions, the publisher can find a set of paths meeting the required reliability. The
system however relies on advertisements so that publisherscan proactively establish paths. Another
problem is that the underlay is completely ignored, which may lead to a suboptimal selection of
paths with high underlay link correlation. Furthermore, the system uses partial flooding to discover
additional paths to subscribers. However, flooding leads toa large number of messages within the
system.

2.1.5 Topology-Aware Reliable Overlay Multipath (TAROM)

TAROM [TM05] is an approach to select high quality path pairs by exploiting knowledge about the
physical topology and inferred link quality information. It adopts an active-path-first strategy which
reactively finds a secondary overlay path that minimises thejoint failure probability for a given pri-
mary overlay path. TAROM assumes the availability of underlay topology information at end nodes.
Furthermore, each node knows the failure-probability of the links to its neighbours, which are recorded
from probes. Additionally, each node maintains a local routing table to identify a next hop for any des-
tination node. The paper specifies a reliability model to calculate the joint reliability of a set of paths
using information about the path composition and the failure-probability of physical path segments.
To get the physical path segment failure-probability it uses the random sampling approach proposed
by Padmanabhan et al. [PQW03].

4Reliability of the path from the source node till the currentnode

22



2.1 Publish-Subscribe System

The reliability model is presented in the following: A multipath between source nodesand destination
nodet is defined as a union of multiple overlay pathsM(s, t) =

⋃

i Oi(s, t) whereOi(s, t) is the ith

overlay path betweens andt. An overlay path consists of a union of overlay linksOi(s, t) =
⋃

j Li, j

whereLi, j is the j th overlay link of theith overlay path. Moreover, each overlay link consists of at least
one physical path segmentSi, j,k, which is thekth path segment of thej th overlay link of theith overlay
path. In sum a multipath can be modelled asM(s, t) =

⋃

i
⋃

j
⋃

kSi, j,k. Given the reliability function
r(x) which is the probability that no component in entityx is failed, we can express the reliability
of a multipath according to reliability theory as the sum of the overlay path reliabilities minus the
reliabilities that are counted twice:

R(M) =∑
i

r(Oi)−∑∑
i< j

r(Oi ∪O j)+∑∑ ∑
i< j<k

r(Oi ∪O j ∪Ok)−·· ·(2.1.2)

+(−1)n+1r(O1∪O2∪ . . .∪On)

Due to the fact that the reliability of an overlay path is the product of the reliabilities of its overlay
links, which are the products of the reliabilities of their path segments, we have:

r(Oi) = ∏
j,Li, j∈Oi

∏
k,Si, j,k∈Li, j

r(Si, j,k)

To establish a multipath connection, the source node sends apath-establishrequest to the destination
using overlay routing. The message collects path information such as composition and reliability
along the primary path. When the destination receives apath-establishmessage, it broadcasts apath-
exploremessage to all its neighbours. A node that receives the message calculates the joint reliability
of the primary path and the path from itself to the destination. If the quality-cost ratio is above a
predefined threshold, it broadcasts the message to its neighbours, if not it sends the information to a
single next hop towards the source which is determined by therouting table. The source receives a set
of secondary paths which it can select a multipath from.

TAROM exploits information about underlay routes to find high-quality secondary paths. However,
the approach is inapplicable for most unstructured overlaynetworks due to the fact that it needs an
overlay routing layer. Also, TAROM does not take node failures into account. Additionally, similar to
[MB07] the system uses partial flooding which leads to high numbersof messages.

2.1.6 Maximum-Reliability-Tree: Adaptive Gossiping Algorithm

An adaptive broadcast protocol based on gossiping has been proposed by Garbinato et al. [GPS04].
The approach tries to improve gossiping performance by taking into account topology and reliabil-
ity information of the network (only overlay topology and link information is considered). First an
optimal solution is presented, where each node has perfectly accurate knowledge about the system
topology and node and link reliabilities. Then the assumption is replaced with a more realistic one,
where each node approximates the topology and reliability parameters.
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Optimality and adaptiveness are defined as follows:

Optimality “A probabilistic reliable broadcast algorithmOK is optimal to some configuration C w.r.t.
the number of messages if there is no algorithmX K such that processes executingX K in C
exchange fewer messages than processes executingOK in C.” [GPS04]

Adaptiveness “A probabilistic reliable broadcast algorithmA K is adaptive to some configuration
C if and only if the number of messages exchanged by processesexecutingA K in C in response
to a broadcast is eventually equal to the number of messages exchanged by processes executing
OK in C.” [GPS04]

The general idea of Garbinato et al. is to build aMaximum-Reliability-Tree (MRT)which is a spanning
tree that contains the most reliable paths in the graph connecting all nodes. In the following the optimal
algorithm will be described briefly:

When a processps broadcasts a message, it calculates the MRTmrts(G,C) of graphG and configu-
rationC locally using a modified version of Prim’s algorithm5. Because all processes agree on the
same topology, they all build the same MRT. Usingmrts(G,C) the optimal number of messages that
must transit through each edge in order to reach all processes with probabilityK is computed. This
algorithm is executed by each process.

The adaptive algorithm differs from the optimal solution inthe knowledge which processes have about
the topologyG and the configurationC. Thus, the adaptive algorithm constantly tries to approximate
G andC. To approximateG, processes exchange heartbeat messages with all their neighbours, con-
taining their view of the topology. Eventually all processes agree on the same global system topology.
Heartbeats are also used to obtain the reliability of links (configurationC) and to share this information
with neighbours. The reliability of the processes is approximated by each process itself by periodically
reading the value of its local clock and storing it to a stablestorage. The probability of a failure is
proportional to the number of intervals missing on the stable storage during some sufficiently large
amount of time.

Building a MRT to reach a defined reliability is a promising approach. However, the system does not
consider the underlay topology. Sending a message over the same link multiple times at once may
not necessarily increase the probability that the message is delivered. A common reason for message
losses is because of congestion in message queues of intermediate nodes (compare section2.1.2). De-
pending on the drop-rule of the message queues, increasing the number of messages on an overloaded
link usually does not improve the delivery probability. Another problem is that eventually each node
has global knowledge about the overlay topology and failure-probability configuration which limits
scalability.

5Non-distributed greedy algorithm to find a minimum spanningtree for a connected weighted undirected graph

24



2.2 Topology Discovery

2.2 Topology Discovery

In order to provide reliability underlay awareness is important. The system needs mechanisms to
discover the underlying topology. This section presents related work to discover the underlay topology
among sets of peers in a distributed system.

2.2.1 Topology-Aware-Grouping

Topology-Aware-Grouping (TAG) [KF02] is a heuristic application-level multicast approach. TAG
leverages underlying network topology data to construct multicast overlay networks. It uses infor-
mation about overlap in routes to the sender among group members to set up the overlay. The main
focus of TAG is to build a tree with a low relative delay penalty and to introduce a limited number of
identical copies of a packet on the same link. The tree is constructed from a single source which is
called the sender. For underlay path discovery traceroute is used, but other path discovery methods
like using a topology server are mentioned as well. For tree construction a relation for paths is defined.
A path fromA to nodeB, denoted byP(A,B), is a sequence of routers comprising the shortest path
according to the underlying routing protocol from nodeA to nodeB. For a given sourceS the relation
is defined as follows:

A≻ B⇔ P(S,A) is a prefix toP(S,B)

In the example in Figure2.3 P(S,D5) = 〈R1,R2,R4〉 whereasP(S,D1) = 〈R1,R2〉 which is a prefix
to the former. Hence,D1≻ D5.

Figure 2.3: Example of a TAG tree (Source: [KF02])

A new joining member sends a JOIN-Message to the root of the tree, which is the senderS in the
multicast tree.S then obtains the path to the joining node calledspath. The request is then either
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forwarded to the child ofS with the longestspathwhich is a prefix to the new nodesspath, or if no
such child exists,S adds the new node to the list of its own children. The completepath-matching
algorithm can be found in algorithm2.1.

Algorithm 2.1 Path-Matching algorithm of TAG ([KF02])
procedure PATHMATCH(currentNode,newNode)

ch← first child of currentNode
flag← condition(3)
while ch 6= NULL do

if ch≻ newNode then
target← ch

flag← condition(1)
end if
if newNode ≻ ch then

addch to children(newNode)
newNode becomesparent(ch)
flag← condition(2)

end if
if flag 6= condition(1)then

ch← next child ofcurrentNode
else

ch← NULL

end if
end while
if flag= condition(1)then

PATHMATCH(target, newNode)
else

addnewNode to children(currentNode)
end if

end procedure

TAG allows to connect peers according to the underlay. However, the main purpose for TAG is not to
discover the whole underlay topology. TAG only discovers the underlay topology of the routing tree
from a single source. To discover the complete topology still O(N2) traceroutes would be necessary
but TAG provides a very easy mechanism to construct underlayaware overlay topologies.

2.2.2 Max-Delta

Max-Delta [JTC08] is a centralised approach to quickly and efficiently infer the router-level topology
among a group ofN hosts using end-to-end measurement tools such as traceroute. It considers the fact
that a router-level network is a sparse graph so thatO(N2) traceroutes among hosts are not necessary.
It relies on a central server to collect traceroute results and to select paths for hosts to traceroute. To
reduce traceroute overhead it uses an algorithm calledDoubletree. Max-Delta works as follows:
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First each host estimates its network coordinates using tools such as GNP [NZ02] or Vival-
di [DCKM04]. Then multiple iterations of the following procedure are executed: The server selects a
target for each host to traceroute. Hosts traceroute their targets and send the results back to the server.
Then the server starts the next iteration based on the combined results. The process is executed until a
predefined stop rule is valid.

To select targets to traceroute the server does the following: For a certain hostHi the server computes
the distanceDp(Hi ,H j) in the so far discovered topology betweenHi and another hostH j where the
path between these two hosts has not been measured, using a shortest path algorithm like Dijkstra.
It also computes the euclidean distanceeuclidean(Hi,H j) between hosts based on the network coor-
dinates. In ad-dimensional space the distance between two pointsHi andH j with the coordinates
(X1,1,X1,2, . . . ,X1,d) and(X2,1,X2,2, . . . ,X2,d) can be computed as follows:

euclidean(Hi,H j) =

√

(X1,1−X2,1)
2+(X1,2−X2,2)

2+ · · ·+(X1,d−X2,d)
2

Ideally the euclidean distance approximates the real network distance betweenHi andH j . The gap
between the euclidean distance and the distance defined by the discovered topology is defined as
follows:

∆(Hi,H j) = Dp(Hi,H j)−euclidean(Hi,H j)

If ∆(Hi,H j) is large, the probability that some links betweenHi andHi are not yet discovered is high.
These links would lead to a shorter distance in the discovered topology and hence reduce the gap
∆(Hi,H j). The server selects the path with the maximum∆ as next traceroute target forHi.

To reduce traceroute overhead Max-Delta makes use of the Doubletree algorithm proposed in
[DFC05, DRFC04, DRFC06]. A normal traceroute sends a series of IP datagrams with increasing
TTL to the destination. When an intermediate router receives a package withTTL= 0, it usually sends
a Time-To-Live-Exceeded message or a similar message back to the source which contains the ID of
the router. Large-scale traceroute measurements have highredundancies. Routers and links are often
repeatedly discovered in several traceroutes.Intramonitor redundanciesrefer to traceroutes where
the same links and routers are discovered repeatedly when a hostH1 conducts traceroutes to different
hostsH2 andH3. Figure2.4shows an example where the Doubletree algorithm can reduce redundan-
cies. Assume the path betweenH1 andH2 is 〈H1,R1,R2,R3,H2〉 and the path betweenH1 andH3 is
〈H1,R1,R2,R4,H3〉. Hence, the routersR1 andR2 and the links(H1,R1) and(R1,R2) are discovered
twice in a traceroute measurement to these two hosts.Intermonitor redundanciesexist in traceroutes
from multiple monitors to the same destination. Let us assume that the paths from the last example are
symmetric, a traceroute fromH2 to H1 and fromH3 to H1 would obtain the paths〈H2,R3,R2,R1,H1〉
and〈H3,R4,R2,R1,H1〉, respectively. Hence routersR1 andR2 and the links(R2,R1) and(R1,H3) are
discovered by both hostsH2 andH3. To reduce these redundancies Doubletree modifies the traceroute
process. Instead of starting withTTL= 1 it starts the process withTTL= h, wherebyh is a predefined
system parameter. Probing then proceeds in both directions, forward toward the destination and back-
ward to the source.Backward probinguses alocal stop set, which contains all routers already visited.
If backward probing finds a router which is in this set, it stops probing. Forward probinguses the
global stop setwhich contains all pairs(router,destination) from all traceroutes made by the system.
A pair is added to the global stop set if the router is visited in a traceroute toward the corresponding
destination. Forward probing stops whenever a member of theglobal stop set is met.
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Figure 2.4: Example graph for intra-monitor and inter-monitor redundancies
Ri – Routers;H j – Hosts

2.2.3 Distributed Max-Delta

There are several limitations in Max-Delta. First of all it does not scale for a large number of hosts. In
each iteration the server takesO(Vp logVp+Ep+N) time to select a traceroute target for a host, where
N is the number of hosts andVp andEp are the number of nodes (hosts and routers) and links in the
discovered underlay, respectively. Furthermore the server is a single point of failure.

This is the reason why Jin et al. [JTC08] additionally proposed a distributed inference scheme. Each
host maintains a partially discovered topology and uses Max-Delta heuristics to select traceroute tar-
gets independently. Hosts are part of a low diameter overlaytree which is used to exchange traceroute
results with others.

The actions of a new host are the following: First it estimates its network coordinates using one of
the previously mentioned tools. Then the host identifies itsparent node to join the tree using a tree
maintenance mechanism which constructs low diameter treesby placing hosts in such a way that
the larger the hosts outdegree-bound is, the closer to the root it is put. Next, the new host conducts
a first-round traceroutewhich means the node performs a traceroute to its parent. Thepurpose of
this phase is to form a connected graph. If each host traceroutes like this, at least a spanning tree is
built. A connected graph is needed to enable peers to find the shortest path to any other peer in the
discovered topology. Then the host sends its coordinates and first-round traceroute results to its tree
neighbours. After this initialization phase the host periodically selects traceroute targets using Max-
Delta heuristics, accepts data from its neighbours, which is then aggregated with its own results and
sent to all its neighbours.

The distributed version of Max-Delta scales much better than the centralised one. However, each
node eventually holds the completely discovered topology which limits scalability and often is not
even needed. The system completely relies on traceroute which, however, has some drawbacks. For
privacy and security reasons on today’s Internet, there arerouters which do not respond to traceroute
messages. These routers are denoted asanonymous routers. As per [JTC08] nearly one third of
probed paths contain anonymous, private or invalid routers. The next Section2.2.4will show a way
to improve path discovery in presence of anonymous routers by inferring network topology using
end-to-end measurements.
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2.2.4 Topology Inference From End-to-End Measurements

Traceroute measurements have some drawbacks due to anonymous routers. Paths can be incomplete or
inaccurate. A possible approach to overcome some of the problems with traceroute is network tomog-
raphy. Network tomography refers to approaches that use end-to-end packet probing measurements
such as packet loss and delay measurements. Compared to traceroute-like measurements the internal
nodes (such as routers) do not require extra cooperation except for packet forwarding towards the desti-
nation. A source node sends probe packets to a set of destination nodes. Using correlations within the
probing results makes it possible to partially infer the network structure. Ni et al. [NXTY10] proposed
a model to discover the logical routing-topology. The logical routing-topology is a tree where each in-
termediate node (all except for root and leafs) has at least an out-degree of three. It uses a combination
of end-to-end probing and traceroute measurements. The approach supports both, multicast probing
where the underlay handles packet forwarding to a set of destination nodes and back-to-back unicast
probing, where the source node sends a string of back-to-back unicast packets to the destination nodes,
one packet for each destination node. The probing model willbe explained briefly in the following:

Each node and each edge holds a set ofLink State Variables Xk for nodek andZe for edgee. By
causality the Link State Variable of a nodek is dependent on the Link State Variable of the parentf (k)
of nodek and the state of the linkek = ( f (k),k)

Xk = g(Xf (k),Zek)

It can be shown that the outcome variablesXK induced by the transmission of a probe form aMarkov
Random Fieldon the routing tree where tree topology and link parameters can be uniquely determined
by joint distributions of outcome variables. To estimate joint distributions, a source node sends a
sequence ofn probes so that there will ben outcome variablesX(t)

V = (X(t)
k : k∈V), t = 1,2, . . . ,n.

The approach is able to improve correctness of inferred routing topology. However, because of the
probabilistic model used by the approach no guarantees on correctness can be given. Furthermore, it
introduces additional overhead into the system when discovering underlay paths.

2.3 Minimum-Spanning-Tree (MST)

Building a Minimum Spanning Tree (MST) is a well-known field in research. Gallager et al. [GHS83]
proposed the first distributed algorithm to build a MST with optimal message complexity ofO(nlogn+
m), wheren is the number of vertices andm is the number of edges. The algorithm is denoted as
GHS algorithm in literature. However, it has a non-optimal time complexity ofO(nlogn). Even
though faster algorithms have been proposed, in this thesisthe algorithm is used because of its ease of
extensibility to be used for building a forest ofk MST (Chapter6).

The basic idea of GHS is to build fragments which by themselves only contain minimum weight
edges. These fragments are then merged using the minimum weight edge connecting two fragments.
The fragments are built in levels. At the start of the algorithm all nodes are part of a fragment of size
one at level zero, only containing themselves. In each step the fragment size is increased. A fragment
has a leader that decides which edge to add to the MST in a step.A node holds three sets of edges,
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namelybasicedges,branchedges andrejectededges. The set of basic edges contains all edges which
are not yet part of the MST and have not yet been processed. Initially all edges are part of this set. The
set of branch edges contains the edges which are part of the MST. The set of rejected edges contains
all edges which have been rejected by a neighbour node and will not be part of the MST. To find
the minimum weight outgoing edge(mwoe) the leader broadcasts anINITIATE-Message along the
spanning tree edges. When a node receives such a message, it starts probing its edges which are still
in the set of basic edges in increasing order. To test an edge the node sends aTEST-Message along the
edge. When a node receives such a message it can either acceptby replying with anACCEPT-Message
or reject by sending aREJECT-Message. AREJECT-Message is sent, if the sender of theTEST-Message
belongs to the same fragment. Otherwise, it replies with anACCEPT-Message. A node keeps probing
all its basic edges until it receives anACCEPT-Message from one of its probed neighbours. The result
of the probing is convergecast to the leader of a fragment along the branch edges, which means each
node waits for all its children to report their results and each reports only the best edge out of the
results, which has been accepted. While reporting each nodestores the next hop to the node with
the best edge. When the leader receives reports from all its children, it can decide which edge is the
mwoewithin the fragment. It sends aCHANGE_CORE-Message along the path to the best edge. When
the node having themwoereceives the message, it sends aCONNECT-Message across itsmwoe. When
CONNECT-Messages have been sent from both directions through the samemwoeand both fragments
have the same level, the two fragments are merged. The new fragment increases its level by one and
one of the nodes of themwoeis selected to be the new leader. If a node receives aCONNECT-Message
from a fragment with a lower level than its own fragment, the other fragment isabsorbed. When a
fragment gets absorbed, the lower level fragment gets incorporated into the higher level fragment.

Figure2.5shows an example of the GHS algorithm constructing a MST. At the beginning each node is
part of a fragment of size one and the fragment level is zero (Figure2.5(a)). Nodes start probing their
mwoe. Nodep1 probes edge(p1, p2), nodep2 andp4 probe edge(p2, p4) and nodesp3 andp5 probe
edge(p3, p5). Because all nodes are part of different fragments, each node replies with anACCEPT-
Message. Nodesp2, p3, p4 andp5 then send aCONNECT-Message across theirmwoeand merge to two
fragments by adding edges(p2, p4) and(p3, p5) respectively to the set of branch edges (Figure2.5(b)).
Nodep1 then also sends aCONNECT-Message to nodep2 because it received anACCEPT-Message from
this node. Because the fragment level of nodep2 is higher than the one of the fragment of nodep1,
nodep1’s fragment is absorbed and edge(p1, p2) is added to the fragment of nodep2 andp4 (Figure
2.5(c)). Now the graph consists of two fragments. Assume nodep2 and nodep5 are the leaders of
the two fragments, both broadcastINITIATE-Messages along their branch edges to nodep1 and p4

and to nodep3 respectively. Each node starts probing its minimum weight basic edge which is not yet
part of the set of branch edges or rejected edges (for examplenodep1 probes edge(p1, p3)). Nodep4

and p3 will both report edge(p3, p4) to their leadersp2 and p5 respectively. The leaders both send a
CHANGE_CORE-Message to these nodes which then send aCONNECT-Message across the edge(p3, p4).
Because both fragments have the same level, they add edge(p3, p4) to their branch edges and select
the new leader which is one of the endpoints of edge(p3, p4). The new leader will again broadcast
anINITIATE-Message along branch edges and all nodes start probing their basic edges. Because all
nodes are now part of the same fragment, nodes reply with aREJECT-Message whenever they receive a
TEST-Message. After probing, each node sends a report towards the leader containing the information
that there is nomwoeand the algorithm terminates.
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Figure 2.5: Example of a graph constructing a MST using the GHS algorithm
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3 System Model and Problem Formulation

In this chapter the system model will be described and problems to be solved by the proposed system
will be revealed. We consider a physical network consistingof an unbound set of routersVU = {r i |i ≥
1}. Routers are connected through a set of undirected physicallinks EU = {lUi, j |r i , r j ∈VU}. The graph
GU = (VU ,EU) is denoted asunderlay.

Figure3.1 shows the interrelations in the system model. An underlay path PathU [r i , r j ] between two
routersr i andr j is a sequence of physical underlay links〈lUi,1, lU1,2, . . . , lUm−2,m−1, l

U
m−1, j〉. The graphGU

is connected, which means there is at least one path between any pair of routers. The path between
any two routers is defined by a routing algorithm in the underlay.

The system furthermore consists of an unbound set of peersVO = {pi |i ≥ 1}. A peer is an application
instance connected to at least one routerr i . Peers can establish overlay linkslO

i between each other.
An overlay link corresponds to an underlay path which is a sequence of underlay links. A set of peers
forms an overlay by constructing a connected graphGO = (VO,EO) where the set of overlay links is
denoted byEO = {lO

i, j |pi , p j ∈VO}. Peers can either communicate by establishing an overlay link or

by using an overlay path. An overlay pathPathO[pi , p j ] between two peerspi andp j is a sequence of
overlay links〈lO

i,1, l
O
1,2, . . . , l

O
m−2,m−1, l

O
m−1, j〉 where intermediate peers act as forwarders of messages.

A peerpi can discover the corresponding underlay path of an overlay link lO
i, j , which is the path defined

by the routing algorithm in the underlay, using traceroute techniques. An underlay path between two
peerspi andp j , connected to the two routersrk andrh respectively isPathU [pi , p j ] = PathU [rk, rh].

Underlay Link Underlay Link Underlay Link Underlay Linkr1 r2 r3 r4 r5

p1 p2 p3

lU1,2 lU2,3 lU3,4 lU4,5

lO
1,2 lO

2,3

PathU [r1, r3] PathU [r3, r5]

PathO[p1, p3]

Overlay

Underlay

Overlay Path

Underlay PathUnderlay Path

Overlay LinkOverlay Link

Figure 3.1: System model
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An underlay path is defined as a sequence of underlay links buta traceroute measurement returns a
sequence of underlay routers〈r1, r2, . . . , rm〉. However, the two concepts can be used interchangeably,
i.e. PathU [r i , r j ] = 〈lUi,1, lUi,2, . . . , lUm, j〉 = 〈r i , r1, . . . , rm, r j〉. The lengthlen(PathU [r i , r j ]) of an underlay

pathPathU [r i , r j ] is the number of routers within the path.

Similarly, an overlay path can be expressed as a sequence of peersPathO[pi , p j ] = 〈lO
i,1, l

O
i,2, . . . , l

O
m, j 〉=

〈pi , p1, . . . , pm, p j〉 and the lengthlen(PathO[r i , r j ]) of an overlay pathPathO[r i , r j ] is the number of
peers within the path.

Underlay routers, underlay links and peers can fail independently, which causes messages being
dropped when sent through them. A link failure of an underlaylink lUi, j causes all messages sent
over an overlay linklO

k,h that uses an underlay path containinglUi, j to be lost during the failure. Hence,

a message which is sent over an overlay path also gets lost whenever it containslO
k,h. The same is true

for underlay routers. Similarly, a failure of a peerpi causes all messages sent through an overlay path
containing an overlay linklO

i, j to be lost.

Each router and link has a failure probability defined byϕ(r i) andϕ(lUi, j). Hence, the reliability of
a link lUi, j is defined by(1−ϕ(lUi, j )). Similarly, the reliability of a routerr i is defined by(1−ϕ(r i)).
Because an overlay link directly maps to an underlay path, the reliability of an overlay link is the
product of the individual reliabilities of all underlay routers and links within the underlay path. If we
consider an overlay linklO

k,h which is mapped to an underlay path consisting ofn routers, the failure
probability of this overlay link is given by the following equation:

ϕ(lO
k,h) = 1−

n

∏
1
(1−ϕ(r i)) ·

n−1

∏
1
(1−ϕ(lUi ))

Peers can leave and join the system at arbitrary times and they can fail temporarily or permanently.
Moreover, a peerpi fails with probability ϕ(pi). The reliability of an overlay path is given by the
product of the reliabilities of all overlay links and peers within the path. If we consider an overlay
pathPathO[pk, ph] with len(PathO[pk, ph]) = n, the failure probability of this overlay path is given by
the following equation:

ϕ(PathO[pk, ph]) = 1−
n

∏
1

(1−ϕ(pi)) ·
n−1

∏
1

(1−ϕ(lO
i ))

Moreover, we consider a broker-less content-based publish-subscribe system. The publish-subscribe
software runs on the overlay peer. Peers can be both, publishers and subscribers at the same time. A
publisher can publish any message without advertising it.

An eventei published by a publisher consists of a set of attribute-value pairs(attribute,value) where
the attributes are simple names and the value is taken from a limited set of types like boolean, number
and string. An event, for example, could look like the following:

{(x,10),(y, “some text”),(z, true)}
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A subscriptionSi is a filter defined by the subscriber. A filter is a set of predicates which are triples
(attribute,operator,value). The attribute is a simple name, similar to the attributes inevents. The set
of possible operators is{“ = ” , “ 6= ” , “ > ” , “ < ” , “ ≤ ” , “ ≥ ” , “ ∈ ”}. In order for an event to match a
subscription, every predicate within the subscription must be satisfied by an attribute-value pair in the
event. For example the subscriptionSi = {(x, “>” ,2),(z, “=” , true)} matches the above event, but the
filter Sj = {(x, “>” ,15),(z, “=” , true)} does not match because the first predicate is not satisfied. An
eventei matching a subscriptionSi is denoted asei ∈ Si .

An eventei published by a publisher is intended to be received by all subscribers having at least one
subscriptionSi whereei ∈ Si . The set of peers with a matching subscription for an eventei is denoted
asS(ei) = {p j ∈VO|p j subscribed for a subscription that matchesei}.
The intention of this work is to provide reliable and timely dissemination of events, which means the
probability that an eventei published by a peerpi is delivered to all subscribers inS(ei) has to be
maximised.

Given a decentralised P2P content-based publish-subscribe system the following problems need to be
solved:

1. Reliability: Reliable dissemination of eventsei to all subscribers inS(ei) considering node fail-
ures inGO (peer failures) and link and node failures inGU .

2. Timeliness: Events should be delivered timely, which means no procedures should be used
for message forwarding which are very time-consuming or lead to an unpredictable delay, like
request/reply protocols.
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4 Approach Overview

In Chapter3 two main problems will be considered. The first problem is providing reliability. Failures
affecting reliability can occur in two places. The first source of failures is within the underlay topology,
i.e. underlay link and underlay node failures. The second source of failures is peer failures within the
overlay. The second problem is timeliness.

In order to tackle the problem of underlay failures, we use anapproach based on underlay diversity.
Underlay diversity means that the number of common components within underlay paths used by
overlay links is low. Therefore the underlay topologyGU has to be discovered. Using knowledge
about underlay paths we construct an overlay topology whichreflects the underlay topology. Because
the overlay topology reflects the underlay topology, overlay links are diverse in the underlay.

In order to avoid losses due to peer failures, an approach to provide path-redundancy is focussed.
The system establishes redundant paths among peers of the system to increase the message delivery
reliability in a timely manner. Events are sent through multiple paths so that in case of a link failure
on one of the paths another path may still be available. Redundant paths, however, only increase the
reliability, if the intersection of the set of components within paths is small or ideally empty. If both
paths share a common underlay link, both paths also share properties of this link. If the shared link
fails, both overlay paths using this link also fail. Becauseof the low underlay diversity of overlay
links, diverse overlay paths are most likely to be diverse inthe underlay as well.

3. Content-Based Publish-Subscribe

2. k Maximum-Reliability-Spanning-Tree (MRST)

1. Topology-Discovery-Overlay (TDO)

0. Underlay Network

Figure 4.1: Protocol stack
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4 Approach Overview

In Figure4.1 the protocol stack of the system is shown. In the following each protocol layer will be
described briefly.

At the bottom we have theUnderlay Network. This layer is assumed to be available and provided
by the underlying network (for example IP-Network). The underlay provides P2P routing through an
underlay routing protocol like distance-vector routing.

The first layer of the system,layer 1, is theTopology-Discovery-Overlay(TDO) layer. The main
purpose of this layer is to discover the underlying network topology to form an overlay topology re-
flecting the underlay topology. To discover underlay paths,traceroute is used, which is an off-the-shelf
mechanism to discover IP routing paths. After discovering underlay paths, the protocol on this layer
establishes overlay links using a path-matching algorithmbased on an approach of Kwon et al. [KF02].
When a peer joins the network, an overlay peer already part ofthe network compares the underlay path
to the new peer to underlay paths of overlay links already established. In the case paths partly over-
lap each other, join-requests are forwarded towards a peer where the overlap is minimal. One of the
characteristics of a so formed overlay network is that it hashigh path diversity because overlaps are
reduced. Traceroute is usually slow because several IP packages have to be sent for each traceroute
measurement. This is the reason why traceroute measurements should be reduced. When deciding
which paths to traceroute, there is a trade-off between overhead and discovery accuracy. Therefore,
we specifically propose two different protocols which introduce a limited number of traceroute mea-
surements. The first protocol is alandmark-based approach. A small dedicated subset of the available
peers is selected as landmark. Each peer then contacts each of the landmarks which then discover the
direct underlay path to the new peer. Using overlap information among this underlay path and other
already discovered paths, landmarks forward the join-requests of new peers towards a neighbour with
minimal path overlap according to the underlay topology. The second protocol is arandom approach,
where peers discover the underlay paths to a small random setof other peers already part of the sys-
tem. Based on overlap information among paths in their own neighbourhood, the contacted peers then
forward join-requests of new peers towards a better peer.

The nextlayer 2builds k overlay link disjointMaximum-Reliability-Spanning-Trees(MRST) on top
of the TDO. This guarantees that thek most reliable overlay links of each peer are part of the publish-
subscribe dissemination tree. The MRST forest has the property that between any pair of peers there
arek link disjoint overlay paths. The MRST is constructed using the well-known Minimum Spanning
Tree (MST) algorithm GHS [GHS83]. The main contribution of this thesis to this layer is an approach
to build k connected link disjoint MRSTs, which means that on each MRSTthere is a path between
any two peers.

The publish-subscribelayer 3uses MRSTs to disseminate events through thek overlay link disjoint
paths. Subscriptions are flooded through all MRSTs to createevent routing tables. Events are then
forwarded by overlay peers according to routing tables on each of thek paths.
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5 Topology-Discovery-Overlay (TDO)

In this chapter the Topology-Discovery-Overlay (TDO) layer will be described. The goal of this layer
is to discover the overlay and to construct an overlay topology reflecting the underlay topology. By
this path diversity of overlay links is decreased. The TDO isbased on an algorithm by which overlap
information within underlay paths is used to find a location for peers with low correlations in the
underlay.

To discover the whole underlay topology in the general case in a peer network ofn peers,O(n2) tracer-
outes are necessary. However, because of high redundanciesin underlay paths,O(n2) traceroutes are
not always necessary in real Internet topologies. To reducemeasurement complexity two approaches
will be proposed: The first is a landmark-based approach by which only a small subset of peers has
to traceroute other peers. The second is a more random approach by which each peer traceroutes a
random set of peers. Later an optimization for the random approach will be given, which leverages
the hierarchical structure of the Internet.

Before considering the two protocols more thoroughly, the prefix-relationship “≻” between two
underlay paths is defined:PathU [r i , r j ] is a prefix to PathU [r i , rk], expressed byPathU [r i , r j ] ≻
PathU [r i , rk], if the sequence of routers inPathU [r i , r j ] with m= len(PathU [r i , r j ]) equals the first
m routers in PathU [r i , rk]. For example, considering the three underlay pathsPathU [r1, r3] =
〈r1, r2, r3〉, PathU [r1, r4] = 〈r1, r2, r4〉 and PathU [r1, r5] = 〈r1, r2, r3, r5〉 leads to the conclusion that
pathPathU [r1, r3] is a prefix toPathU [r1, r5] (PathU [r1, r3] ≻ PathU [r1, r5]) but PathU [r1, r4] is not a
prefix toPathU [r1, r5] (PathU [r1, r4]⊁ PathU [r1, r5]).

5.1 Landmark-Based Approach

The landmark-based approach uses a tree-based approach where each landmark is the root of a tree. A
tree is constructed from a single peer (the landmark) using traceroute measurement results. Whenever
a peer joins a tree, it contacts the root of the tree. The root then traceroutes the path to the peer and
either adds it as a child or forwards it to one of its children based on overlapping information within
the paths. If the root has a child whose path is a prefix to the path to the new peer, it forwards the
request to the child. Otherwise it adds the new peer as a child.

Let us, for example, consider a landmark peerp1 which already has two children,p2 and p3, with
PathU [p1, p2] = 〈r1, r2, r3〉 andPathU [p1, p3] = 〈r1, r4, r5〉 (arrows in Figure5.1(a)). When peerp4

joins the tree it contactsp1, which discoversPathU [p1, p4] = 〈r1, r4, r5, r6, r7〉 (dashed line in Figure
5.1(a)). PathU [p1, p2] is not a prefix toPathU [p1, p4] but PathU [p1, p3] is a prefix, which is the reason
why p1 forwards the join-request top3, which addsp4 as a child (Figure5.1(b)).
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Figure 5.1: Tree construction in the landmark-based approach

The basic idea is to construct a forest of multiple trees. To get the optimal result in a network ofn
peers,n trees would be necessary. The problem with that approach is that it introduces a high overhead
in traceroute measurements because doing so requiresO(n2) traceroutes, which is the worst case for
topology discovery.

The landmark-based approach reduces the number of traceroute measurements by only constructing
a small number of trees. A subset of peers individually decides to be a landmark peer, which is the
root of a tree. How a peer decides to be a landmark is not withinthe scope of this thesis but previous
research has been done in this field which can be used to solve the problem. Similar to Singla et al.
[SGF10] a possible solution would be that peers estimate the numberof total peersn within the system,
for example, using synopsis diffusion1. Then each peer individually picks a random numberp uniform
in [0,1] and decides to become a landmark ifp< k

n, wherek is the number of desired landmarks. The
expected number of landmarks isn· k

n = k, so there will bek landmarks with high probability.

Each landmark peer is the root of a tree. As a result a forest ofk trees is constructed in which each
peer is a member of each of thek trees.

In Figure5.2 a graph containing seven peers in total is shown, of which three are landmarksp2, p4

and p7, with dashed green, dotted blue and solid red lines respectively. Each landmark is the root of
a tree (Figure5.3). Compared to anO(n2) approach which requires 7· (7−1) = 42 traceroutes, only
3·(7−1) = 18 traceroute measurements are necessary to build this overlay in which all underlay links
and routers are discovered.

1Approach to compute aggregates (for example average sensormeasurements) in a distributed manner
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Figure 5.2: Landmark-Based overlay
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Figure 5.3: Three TAG trees of the example in Figure5.2

5.1.1 Preliminaries

We assume that peers know a random set of other peers, for example, each peer knowsm random over-
lay peers. This, for example, can be accomplished by using a random walk strategy. Peers exchange
their set of landmarks through an epidemic algorithm with their random-known peers, for example,
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each peer periodically picks a single random peer out of the random sample and sends the set of
known landmarks to it. Eventually, each peer knows the complete set of landmarks.

A peer holds a set of family tablesFT, one family table for each tree. Let us consider a family table
wherepi is the root. The family table of a peerp j within the tree, which is a child ofpk, is a three-tuple
(PathU [pi , p j ], pk,children) consisting of the underlay path from the root peer of a tree tothe current
peer, the ID of the direct parent within the tree and a set of children. For each child within the set of
children the ID of the child and the underlay path from the root of the tree to the child is stored in a
tuple(pk,PathU [pi , pk]). These paths are needed to forward a join-request to a peer ina tree with the
longest matching prefix.

A family table is identified by the peer ID of the root (which isalways a landmark). If we considerpi

to be the root of a tree, the corresponding family table can beaccessed byFT(pi).

The ID of the peer which is currently executing an algorithm can be accessed bypcurrent by the execut-
ing peer.

5.1.2 Peer Network Joining

When a peer discovers a new previously unknown landmark fromone of its neighbours, it sends a
JOIN-Message to the landmark by executing Algorithm5.1.

Algorithm 5.1 Algorithm executed when a peer discovers a new landmark
1: procedure JOINLANDMARK (pi )
2: SEND(JOIN, pcurrent, pi)
3: end procedure

Algorithm 5.2 Algorithm called when a landmark receives aJOIN-Message
1: receive JOIN(pi) at peer pcurrent begin
2: PathU [pcurrent, pi ]← TRACEROUTE(pi )
3: PATHMATCH(pcurrent, pi ,PathU [pcurrent, pi ])
4: end

When a landmark receives aJOIN-Message it executes Algorithm5.2. First it discovers the path to the
new peerpi , then it calls the PATHMATCH procedure (Algorithm5.1.2).

The PATHMATCH procedure iterates through all children of the family tablefor the specified root peer
proot. For each of its children the prefix relation is checked. There are three possible cases:

1. The path of the childpchild is a prefix to the path ofpi (i.e. PathU [proot, pchild]≻PathU [proot, pi ]).

2. The path ofpi is a prefix to the path of the childpchild (i.e. PathU [proot, pi ]≻PathU [proot, pchild]).

3. The path ofpi is neither a prefix to the path of the child, nor vice versa.
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Algorithm 5.3 Path-Matching algorithm

1: procedure PATHMATCH(proot, pi ,PathU [proot, pi ])
2: ptarget←NULL

3: parentFound← FALSE

4: pchild← first child inFT(proot)
5: children= /0
6: while pchild 6=NULL do
7: if PathU [proot, pchild]≻ PathU [proot, pi ] then
8: ptarget← pchild

9: parentFound← TRUE

10: end if
11: if PathU [proot, pi ]≻ PathU [proot, pchild] then
12: children← children∪{(pchild,PathU [proot, pchild])}
13: removepchild from set of children inFT(proot)
14: end if
15: if ¬parentFoundthen
16: pchild← next child inFT(proot)
17: else
18: pchild←NULL

19: end if
20: end while
21: if parentFoundthen // Forward JOIN-Request to a child peer
22: SEND(FIND, ptarget, pi , proot,PathU [proot, pi ])
23: else // Current peer will be the new parent
24: add(pi ,PathU [proot, pi ]) to set of children inFT(proot)
25: SEND(ACK, pi , proot,PathU [proot, pchild], pcurrent,children)
26: end if
27: end procedure

In case1, we find a target to forward the join-request and send aFIND-Message topchild (line 22). In
case2 we have the situation in whichpchild has to be the child ofpi and will be removed as a child
from pcurrent. Because there may be more peers satisfying this condition,we addpchild to a list which
will be used later.

In Figure5.4 both cases1 and2 are shown. In Figure5.4(a)the path top1’s child peerp3, which is
PathU [p1, p3] = 〈r1, r2〉, is a prefix toPathU [p1, p2] = 〈r1, r2, r3〉. This is the reason whyp1 sends a
FIND-Message top3 when p2 is joining p1. In Figure5.4(b)peerp2 is already a child ofp1. When
peerp3 sends a join-request top1 the peerp1 has to removep2 from its children and add it as a child
to p3. The resulting tree is the same for both cases.

One may note that if there is any child which is satisfying case 1, there cannot be another child which
is satisfying case1 or case2, so the two cases1 and2 are mutually exclusive.

To clarify, why no two children can satisfy case1 at the same time, let us assume childrenp j and
pk both are satisfying case1. This meansPathU [proot, p j ] ≻ PathU [proot, pi ] andPathU [proot, pk] ≻
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Figure 5.4: Possible cases when executing the PATHMATCH procedure

PathU [proot, pi ]. Hence, eitherPathU [proot, p j ] is a prefix toPathU [proot, pk] or vice versa (or both, in
case the paths are equal), because the router sequence of both paths matches the first couple of routers
in PathU [proot, pi ]. AssumingPathU [proot, p j ] is a prefix toPathU [proot, pk], peerpk would have been
added top j as a child and hence they cannot have the same parent.

To clarify why no child can fulfil case2 if there is another child which is fulfilling case1, assume
child p j fulfils case1, i.e. PathU [proot, p j ] ≻ PathU [proot, pi ]. Furthermore, let us assume there is
another childpk wherePathU [proot, pi ]≻ PathU [proot, pk] is true (case2). Then, because of transitivity
of the prefix operator “≻”, we havePathU [proot, p j ] ≻ PathU [proot, pk]. In this case the PATHMATCH

algorithm would have addedpk as a child ofp j and hence they cannot have the same parent.

However, there may be multiple peers fulfilling case2. In line 12 the path match algorithm collects
all these children and removes them from the set of children in line 13. If case1 is not true, the new
peer is added as a child of the current peerpcurrent by sending anACK-Message topi . If the path to
the new peer is a prefix to the path to any child, the child is removed from the list of children and
added as a child of the new peer. This is done by sending the setof removed children together with
theACK-Message (line25).

A peer that receives aFIND-Message executes the PATHMATCH algorithm as well (Algorithm5.4).
Because the PATHMATCH algorithm runs on each peer, it recursively forwards a joining peer along
the tree to its place of destination.

When a peer receives anACK-Message, it first checks if it already is part of the tree (Algorithm 5.5).
If not, it creates a new family table and sends anACK-Message to all children in the set of received
children. This is done to let the children change their parent from the previous parent – which is
now the parent of the current peer – to the current peer. In this case when such a child receives an
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Algorithm 5.4 Algorithm called when a peer receives aFIND-Message

1: receive FIND(pi , proot,PathU [proot, pi ]) at peer pcurrent begin
2: PATHMATCH(proot, pi ,PathU [pcurrent, pi ])
3: end

ACK-Message, a family table for the tree should already exist and the only thing a peer has to do is to
change its parent (line8 of Algorithm 5.5).

Algorithm 5.5 Algorithm executed when a peer receives anACK-Message in the landmark-based ap-
proach

1: receive ACK(proot,PathU [proot, pcurrent], pparent,children) at peer pcurrent begin
2: if ∄FT(proot) then
3: FT(proot)← (PathU [proot, pcurrent], pparent,children)
4: for (pchild,PathU [proot, pchild]) ∈ childrendo
5: SEND(ACK, pchild, proot,PathU [proot, pchild], pcurrent, /0)
6: end for
7: else
8: set parent ofFT(proot) to pparent

9: end if
10: end

5.2 Random Approach

The landmark-based approach constructs multiple trees reflecting the underlay route from the root of
the trees. However, landmarks have to be selected carefullyto increase the gain in newly discovered
links within the underlay. Additionally a landmark has a heavy load because each landmark has to do
traceroute measurements to all other peers.

The random approach tries to overcome some of the limitations. Instead of building trees, each node
is connected to a set of neighbours, which is constructed using a path-matching algorithm similar
to the landmark-based approach. To establish connections peers do traceroute measurements to a
random sample of peers in the overlay network and forwards join requests to connected neighbours
with overlapping paths.

Compared to the landmark-based approach this approach distributes the traceroute measurement work
of landmarks across the peer network. If peers have an average ofk neighbours, each peer only has to
conductk traceroute measurements.

In the example in Figure5.5a graph is show where peerp7 has two connected neighboursp6 andp1.
Becausep4 sent a join-request top7, the peerp7 discovers the path to peerp4 (dashed line in Figure
5.5(a)) and compares it to the paths to all its neighbours. BecausePathU [p7, p6]≻PathU [p7, p4] is true,
it forwards theJOIN-Request top6. The peerp6 does not have to do new traceroute measurements to
p4, because pathPathU [p6, p4] can be inferred from the two pathsPathU [p7, p6] andPathU [p7, p4] (for
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a detailed description how the path is inferred, see Section5.2.2). Using the inferred path top4, peer
p6 connects top4 (Figure5.5(b)). If p7 was already connected top4 but not top6 andp6 sent a join-
request top7, peerp7 would discover the path top6, disconnect fromp4 and establish a connection to
p6. Then it requestsp6 to connect top4. The resulting overlay would be the same as in the previous
example (Figure5.5(b)).
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Figure 5.5: Random approach overlay
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5.2.1 Preliminaries

Similar to the landmark-based approach, the random approach assumes that each peer initially knows
a random set ofk other peers. Furthermore a peer holds a set of connected neighboursneighbourList.
The list contains tuples(pneighbour,PathU [pcurrent, pneighbour]) consisting of the neighbour’s peer ID and
the underlay path from the current peer to the neighbour peer.

5.2.2 Peer Network Joining

Initially, a peer sends aJOIN-Message to all peers in the random set of known peers. Upon receiving a
JOIN-Message, Algorithm5.6is executed. The receiving peer first conducts a traceroute measurement
to the joining peerpi to get the underlay pathPathU [pcurrent, pi ]. Using this underlay path, it iterates
through the list of already connected neighbours to comparethe discovered path with the underlay
paths to the neighbours. Similar to the landmark-based approach, three cases arise:

1. The underlay path to the connected neighbour is a prefix to the discovered underlay path topi ,
i.e. PathU [pcurrent, pneighbour]≻ PathU [pcurrent, pi ]

2. The discovered underlay path is a prefix to the underlay path to the connected neighbour, i.e.
PathU [pcurrent, pi ]≻ PathU [pcurrent, pneighbour]

3. Neither case1, nor case2

In case a neighbour could be found, satisfying case1, the neighbour is a better candidate to con-
nect with. Hence, the current peer forwards the join-request to this neighbourptarget by sending
a new join-request in the name ofpi . To avoid that the neighbourptarget has to do another tracer-
oute measurement topi, the pathPathU [ptarget, pi ] is inferred from the two pathsPathU [pcurrent, pi ]
andPathU [pcurrent, ptarget]. Inferring a path from two other paths uses the fact that any prefix or suf-
fix of a shortest path is usually also a shortest path. BecausePathU [pcurrent, ptarget] is a prefix to
PathU [pcurrent, pi ] we can getPathU [ptarget, pi ] by removing all routers ofPathU [pcurrent, ptarget] from
PathU [pcurrent, pi ], except for the last one (which is the router to whichpi is connected to). For ex-
ample consider the two pathsPathU [p1, p2] = 〈r1, r2, r3〉 andPathU [p1, p3] = 〈r1, r2, r3, r4, r5〉. The
path PathU [p1, p2] is obviously a prefix toPathU [p1, p3], hence we can determinePathU [p2, p3] =
〈r3, r4, r5〉.
If there are neighbours satisfying case2, these neighbours have to be disconnected and connected to
pi . First the algorithm at line15collects all these neighbours in the setneighboursToAddToNewPeer.
While collecting, the current peer infers the path from the new peerpi to the neighbourpneighbour,
which isPathU [pi , pneighbour] from the two pathsPathU [pcurrent, pi ] andPathU [pcurrent, pneighbour]. This
is done as explained above by removing all routers ofPathU [pcurrent, pi ] from PathU [pcurrent, pneighbour].
After collecting all neighbours fulfilling case2, it disconnects from all these neighbours (line22). Then
an acknowledgement is sent topi , containing the setneighboursToAddToNewPeer(line 24).

Similar to the PATHMATCH algorithm in the landmark-based approach, we will never have the sit-
uation that two peers both satisfy case1 at the same time. To clarify this, consider two neigh-
bour peersp1 and p2 both satisfying case1. This meansPathU [pcurrent, p2] ≻ PathU [pcurrent, pi ]
and PathU [pcurrent, p2] ≻ PathU [pcurrent, pi ] is true. Hence, eitherPathU [pcurrent, p1] is a prefix to
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Algorithm 5.6 Algorithm executed when a peer receives aJOIN-Message in the random approach

1: receive JOIN(pi ,PathU [pcurrent, pi ] at peer pcurrent begin
2: if PathU [pcurrent, pi ] =NULL then
3: PathU [pcurrent, pi ]←TRACEROUTE(pi )
4: end if
5: ptarget←NULL

6: PathU [pcurrent, ptarget]←NULL

7: neighboursToAddToNewPeer← /0
8: for (pneighbour,PathU [pcurrent, pneighbour]) ∈ neighbourListdo
9: if PathU [pcurrent, pneighbour]≻ PathU [pcurrent, pi ] then

10: ptarget← pneighbour

11: PathU [pcurrent, ptarget]← PathU [pcurrent, pneighbour]
12: else if PathU [pcurrent, pi ]≻ PathU [pcurrent, pneighbour] then
13: PathU [pi , pneighbour]← PathU [pcurrent, pneighbour]−PathU [pcurrent, pi ]
14: n← (pneighbour,PathU [pi , pneighbour])
15: neighboursToAddToNewPeer← neighboursToAddToNewPeer∪{n}
16: end if
17: end for
18: if ptarget 6=NULL then
19: PathU [ptarget, pi ]← PathU [pcurrent, pi ]−PathU [pcurrent, ptarget] // Remove overlapping

prefix from the path to the new peer so that we get the path between our neighbour and the new
peer

20: SEND(JOIN, ptarget, pi ,PathU [ptarget, pi ]) // ForwardJOIN-Request to the target
neighbour

21: else
22: disconnect from all neighbours inneighboursToAddToNewPeer
23: neighbourList← neighbourList∪{(pi ,PathU [pcurrent, pi ])}
24: SEND(ACK, pi , pcurrent,neighboursToAddToNewPeer)
25: end if
26: end

PathU [pcurrent, p2] or vice versa. IfPathU [pcurrent, p1] ≻ PathU [pcurrent, p2] was true, thenp2 would
not have been added topcurrent but a join-request had been forwarded top1.

Also the situation where one neighbour satisfies case1 and another neighbour satisfies case2 is not
possible. For clarification let us consider a neighbour peerp1 satisfying case1 and assume there was
a second neighbour peerp2 satisfying case2. This means,PathU [pcurrent, p1] ≻ PathU [pcurrent, pi ]
andPathU [pcurrent, pi ]≻ PathU [pcurrent, p2] is true. Because of transitivity, hencePathU [pcurrent, p1]≻
PathU [pcurrent, p2] is true. If this was the case whenp1 joinedpcurrent afterp2, peerp2 would have been
disconnected frompcurrent. If p2 joined pcurrent after p1, the join-request would have been forwarded
to p1.

Algorithm 5.7 is executed when a peer receives anACK-Message. The algorithm is very similar to
Algorithm 5.6. Before doing any path-matching, a peer receiving anACK-Message connects to all
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Algorithm 5.7 Algorithm executed when a peer receives anACK-Message in the random approach
1: receive ACK(pi ,neighboursToAdd) at peer pcurrent begin
2: for (pneighbour,PathU [pcurrent, pneighbour]) ∈ neighboursToAdddo
3: RECEIVE(JOIN, pneighbour,PathU [pcurrent, pneighbour])
4: end for
5: PathU [pcurrent, pi ]←TRACEROUTE(pi )
6: ptarget←NULL

7: PathU [pcurrent, ptarget]←NULL

8: addToNewNeighbour← /0
9: for (pneighbour,PathU [pcurrent, pneighbour]) ∈ neighbourListdo

10: if PathU [pcurrent, pneighbour]≻ PathU [pcurrent, pi ] then
11: ptarget← pneighbour

12: PathU [pcurrent, ptarget]← PathU [pcurrent, pneighbour]
13: else if PathU [pcurrent, pi ]≻ PathU [pcurrent, pneighbour] then
14: PathU [pi , pneighbour]← PathU [pcurrent, pneighbour]−PathU [pcurrent, pi ]
15: addToNewNeighbour← addToNewNeighbour∪{(pneighbour,PathU [pi , pneighbour])}
16: end if
17: end for
18: if ptarget 6=NULL then
19: neighbourList← neighbourList∪{(pi ,PathU [pcurrent, pi ])}
20: if addToNewNeighbour6= /0 then
21: disconnect from all neighbours inaddToNewNeighbour
22: SEND(MULTI_JOIN, pi ,addToNewNeighbour)
23: end if
24: else
25: disconnect frompi

26: PathU [ptarget, pi ]← PathU [pcurrent, pi ]−PathU [pcurrent, ptarget]
27: SEND(JOIN, ptarget, pi ,PathU [ptarget, pi ])
28: end if
29: end

peers in a set calledneighboursToAddby calling Algorithm 5.6 for each of the peers. This will
connect all peers in this set, while respecting the rules defined in the join-algorithm.

From the perspective of the senderpi of the ACK-Message, there is no other peer in between the
underlay path of the current peer and the sender peer. But from the perspective of the current peer,
there may be such a peer connected topcurrent, which would be a better candidate to connect to. This
is the reason why the receiver tries to find a target neighbourfirst, similar to Algorithm5.6. If no such
target neighbour exists, the peer agrees to connect to the sender of theACK-Message and adds it to
the neighbourList(line 19 of Algorithm 5.7). However, there may be some peers which have to be
disconnected, because the underlay path to thepi is a prefix to the underlay path to them. In this case
peerpcurrent disconnects from all these neighbours and sends the list of peers to the new neighbourpi

by sending aMULTI_JOIN-Message (line22).
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Algorithm 5.8 Algorithm executed when a peer receives aMULTI_JOIN-Message in the random ap-
proach

1: receive MULTI_JOIN(peersToAdd) at peer pcurrent begin
2: for (pi ,PathU [pcurrent, pi ]) ∈ peersToAdddo
3: RECEIVE(JOIN, pi ,PathU [pcurrent, pi ])
4: end for
5: end

When a peer receives theMULTI_JOIN-Message, it calls the join-algorithm5.6for each of the peers in
the list (Algorithm5.8). By this, all peer in the list will be connected to the peer, without the need of
new traceroute measurements.

In the following, the complete algorithm is explained basedon the example in Figure5.6. Initially
peers are connected as in Figure5.6(a), i.e. p2 is connected top3 andp4, hence the setneighbourList
of p2, p3 and p4 is {(p3,〈r2, r3〉),(p4,〈r2, r1, r4〉)}, {(p2,〈r3, r2〉)} and{p2,〈r4, r1, r2〉}, respectively.
Let us assumep3 sends a join-request top1 (Figure5.6(b)). Upon receiving the join-request, peer
p1 initiates a traceroute measurement top3 to get PathU [p1, p3] = 〈r1, r2, r3〉 (Figure 5.6(c)). Be-
causep1 does not have any connected neighbour yet, it sends anACK-Message top3 (Figure5.6(d)).
Now p3 compares the underlay path top1 to the underlay path to its connected neighbourp2. Path
PathU [p3, p2] is a prefix toPathU [p3, p1], so p2 is a better candidate to connect to. That is whyp3

disconnects fromp1 (Figure5.6(e)). From the two underlay pathsPathU [p3, p2] andPathU [p3, p1]
peerp3 can inferPathU [p2, p1] = 〈r2, r1〉. Peerp3 sends a join-request top2 in the name ofp1, adding
the inferred underlay path (Figure5.6(f)). BecausePathU [p2, p1] has already been inferred, upon re-
ceiving the join-request fromp3, peerp2 does not have to do a new traceroute measurement top1.
Peerp2 comparesPathU [p2, p1] with the underlay path to it its connected neighboursp3 andp4. None
of them is a prefix toPathU [p2, p1], hencep2 sends anACK-Message top1 (Figure5.6(g)). Because
PathU [p2, p1] is a prefix toPathU [p2, p4], peerp2 has to disconnect fromp4 (Figure5.6(h)) and letp1

connect top4 by adding this information to theACK-Message in Figure5.6(g). Finally p1 sends anACK-
Message top4 which establishes a connection betweenp1 and p4. As a result, the setneighbourList
or p1, p2, p3 and p4 is {(p2,〈r1, r2〉),(p4,〈r1, r4〉)}, {(p1,〈r2, r1〉),(p3,〈r2, r3〉)}, {(p2,〈r3, r2〉)} and
{p1,〈r4, r1〉}, respectively. The constructed overlay topology matches the underlay topology.

5.2.3 Optimization

The random approach randomly selectsk peers to traceroute. However, without considering the topol-
ogy of real Internet, the same routers and links can be discovered multiple times. The Internet has a
hierarchical structure in which smaller networks are interconnected through a higher level topology
(for example Backbone-Routers). If a peer in one AutonomousSystem (AS) traceroutes many peers
in another AS, links and routers on the path to border routersof the AS are repeatedly discovered.
However, the majority of links is within AS’s and hence not discovered.

Taking the structure of the Internet into consideration, a possible solution to avoid this problem is
to prefer near peers when doing traceroute measurements. Measuring high numbers of intra-domain
paths discovers more links and routers for the same number oftraceroutes.
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Figure 5.6: Random approach example

The optimization therefore selects thek nearest peers from random peer sample of sizek+m,m> 0.
The distance of peers is defined by measuring the Round-Trip-Time2 (RTT) to a peer.

2Amount of time of a packet to travel to a neighbour peer and back to the source. Usually this is measured using a tool
calledPing
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In total the same amount of traceroute measurements is done by the peer as in the general random
approach. However, because nearby peers are preferred, more intra-domain links are discovered which
leads to a higher discovery ratio.
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The reliable publish-subscribe system which is built on topof the TDO layer uses a minimal spanning
tree based on failure-probabilities of links. Because the spanning tree contains links with minimal
failure-probabilities, reliability of the spanning tree is maximised, hence such a tree will be called
Maximum-Reliability-Spanning-Tree(MRST) in the following. Instead of building only one spanning
tree,k spanning trees which use disjoint links whenever possible are built. The forest consisting ofk
spanning trees form the basis of the publish-subscribe routing substrate to forward subscriptions and
route events.

The TDO layer described in Chapter5 connects overlay peers according to the underlay topology.On
top of this overlay topology a reliable publish-subscribe system is implemented. To increase reliability
we introduce multiple paths in the publish-subscribe overlay network. However, peers in the overlay
may fail at any time. By providing multiple overlay paths on top of the TDO, a failure on one overlay
path usually does not affect all overlay paths. Because the TDO already provides underlay diverse
links in the overlay, overlay paths get diverse in the underlay by constructing overlay paths which are
link diverse in the overlay.

6.1 Maximum-Reliability-Spanning-Tree (MRST)

A MRST has the characteristic feature that it contains the most reliable links in the system. However,
reliability is a multiplicative metric which means the reliability of a path is the product of the reliabil-
ities of all components within the path. Hence, the end-to-end reliability of an overlay path may be
still too low. In addition to that, peers may fail which causes a complete overlay path to fail.

In this section we will propose an algorithm wherek edge disjoint MRSTs are constructed. The
developedk-MRST algorithm is based on an approach by Young et al. [YKPW04], where ak-MST
algorithm has been proposed. Constructingk MSTs guaranteesk edge disjoint overlay paths between
any two overlay nodes. By this fault-tolerance is increasedand overlay path diversity is enabled.

In the following we will describe thek-MST approach of Young et al. Next, the intention for modifying
the algorithm and modifications to the algorithm will be described.

The algorithm is based on the well-known GHS algorithm by Gallager et al. [GHS83] described in
Section2.3. We assume that the reader is familiar with the GHS-algorithm. The approach of Young et
al. computesk-MSTs in a greedy fashion. The basic idea is to construct one MST after the other. The
ith MST is constructed using GHS by removing all edges used in allj th MST where j < i.

MST(G) represents the MST of graphG or a forest of disconnected MSTs in caseG is not connected.
G−MST(G) is a subgraph ofG where all edges ofMST(G) are removed fromG.
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Algorithm 6.1 Basick-MST algorithm
G0←G
F0← /0
for 1≤ j ≤ k do

Fj ←MST(G j−1)
F j ← F j−1∪Fj

G j ←G j−1−Fj

end for

Thek-MST algorithm, however, computes the MSTs concurrently. Each node executesk instances of
the GHS algorithm denoted asMST1,MST2, . . . ,MSTk. Initially all available edges are put into the set
of basic edges ofMST1, which starts executing the GHS algorithm. Whenever an edgeis put into the
set of rejected edges onMSTi, it is handed over to the basic edges ofMSTi+1. A MSTi+1 can instantly
use this edge becauseMSTi processes its basic edges in ascending order and hence also rejects edges in
ascending order. This makes it possible to start constructing higher level MSTs while the construction
of a lower level MST is not yet finished.

Thek-MST algorithm solves the problem of constructingk-MST concurrently. However, the purpose
of Young et al. to construct multiple MSTs is to build a subgraph out of the MST forest containing the
k minimum weight links. It may be that in practice someMSTi are not connected but partitioned into
several smaller trees so that there is not a path between any two peers on every MST. This can happen,
if all edges are used up by a lower levelMSTj , j < i. Connected MRSTs, however, are needed for
subscription forwarding and notification routing (see Section 6.2and6.3).

To overcome this problem, higher level MRSTs should also be able to use links already part of a lower
level MRST as a last alternative. Thek-MST approach of Young et al. only hands over rejected links
of a lower level MST to a higher level MST. In the approach proposed in this thesis also branch links
are handed over to a higher level MRST so that the higher levelMRST can make use of already used
links. Therefore, each link is annotated with a level. The level of link lO

i, j is defined bylevel[lO
i, j ]

whereas the weight is defined byweight[lO
i, j ]. To construct a maximum reliability tree the weight of a

link is defined using the failure probabilities of the overlay link and of the two end hostspi andp j of
link lO

i, j :

weight[lO
i, j ] = 1− [1−ϕ(pi)] · [1−ϕ(p j)] · [1−ϕ(lO

i, j)]

One may note that the weight is actually not the reliability.It is the failure probability of the series
system consisting of linklO

i, j and the two peerspi and p j , hence in order to calculate a maximum
reliability tree, the value ofweight[lO

i, j ] has to be minimised.

We assume all reliability measurements have been done before starting the MRST algorithm. Addi-
tionally, we assume that all link weights are globally unique, which is a necessary precondition of the
GHS algorithm. Even though this cannot be guaranteed in realworld scenarios, the link weight of a
link lO

i, j can always be made unique by involving the IDs of its two end hostspi andp j .
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In the following theith MRST is denoted asMRSTi, i = 1,2, . . . ,k. Each MRST has its own sets of
links as defined in the GHS-Algorithm. The set of basic links of MRSTi is denoted asbasici and
contains all unprocessed overlay links available forMRSTi to be tested. The set of branch links of
MRSTi is denoted asbranchi and contains all overlay links part ofMRSTi . Last, the set of rejected
links is denoted asre jectedi and contains all overlay links rejected byMRSTi .

Handing over an overlay link to a higher level MRST is done by Algorithm 6.2 for rejected links and
Algorithm 6.3 for branch links respectively.

Algorithm 6.2 Algorithm to reject a link

1: procedure REJECTL INK (lO
i, j , level)

2: basiclevel← basiclevel\{lO
i, j}

3: re jectedlevel← re jectedlevel∪{lO
i, j}

4: if level<k then
5: level[lO

i ]← level+1
6: basiclevel+1← basiclevel+1∪{lO

i, j}
7: end if
8: end procedure

Algorithm 6.3 Algorithm to branch a link

1: procedure BRANCHL INK (lO
i, j , level)

2: basiclevel← basiclevel\{lO
i, j}

3: branchlevel← branchlevel∪{lO
i, j}

4: if level<k then
5: basiclevel+1← basiclevel+1∪{lO

i, j}
6: end if
7: end procedure

WhenMRSTi puts an overlay link into the set of branch linksbranchi, the link is handed over to the
set of basic linksbasici+1 of the nextMRSTi+1 (Algorithm 6.3). The level of the link is not changed.
However, whenMRSTi rejects an overlay link, the link is handed over to the set of basic linksbasici+1

of MRSTi+1 but the level of the link is increased (Algorithm6.2). This mechanism allows to count
the number of usages of an overlay link. If a link gets available for MRSTi , the MRST can determine
the number of usages by subtracting the level of the overlay link from i (which is its own level), i.e.
usage_count= i− level[lO

j,k] for link lO
j,k on MRSTi .

This mechanism allows for an MRST to sort its available links. First, only links rejected by a lower
level MRST should be probed, then if no such link is availableany more, also branch links of lower
level MRSTs can be used to get a single connected tree. A MRST defines the order within the set of
basic links as follows:

(6.1.1) lO
i, j < lO

i,k⇐⇒ (level[lO
i, j ]> level[lO

i,k])∨ (level[lO
i, j ] = level[lO

i,k]∧weight[lO
i, j ]< weight[lO

i,k])
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i :=3

weight[lO
1,2] :=0.3

weight[lO
1,3] :=0.4

weight[lO
1,4] :=0.2

weight[lO
1,5] :=0.1

level[lO
1,2] :=3

level[lO
1,3] :=3

level[lO
1,4] :=2

level[lO
1,5] :=1

lO
1,2 < lO

1,3 < lO
1,4 < lO

1,5

Figure 6.1: Example for link order ink-MRST

Applying this definition, a higher level MRST reuses links which are already part of a lower level
MRST only in case that there is no unused link any more, because unused links would always be
smaller with respect to the definition.

In Figure6.1 the order definition is demonstrated. LinklO
1,2 is the smallest, because it has never been

used before (i− level[lO
1,2] = 3−3= 0) and has the minimum weight among the links with the same

level. Link lO
1,3 has a higher weight thanlO

1,2 and hence is worse. Even thoughlO
1,4 andlO

1,5 have a lower
weight, their level is lower as well, which is the reason why they are both worse thanlO

1,2 andlO
1,3. Link

lO
1,5 is the worst because it has already been used in two other MRSTs (i− level[lO

1,5] = 3−1= 2).

If MRSTi only hands over rejected links tobasici+1, these links can instantly be used byMRSTi+1

because links are rejected in increasing order by the link weight. However, we are also handing over
links put into the set of branch links. By handing over branchlinks of MRSTi to the set of basic links
basici+1 of MRSTi+1, in some cases the link cannot be used instantly. This is the case, if there are
still links left in basici which could be rejected byMRSTi and hence would be smaller with respect to
equation (6.1.1).

To solve the problem, aMRSTi has to watch the set of basic edges of allMRSTj ,1≤ j < i. Whenever
a new basic link needs to be tested by the GHS algorithm, the following condition must be satisfied.

The minimum basic link onMRSTi (with respect to equation (6.1.1)), denoted by min(basici), can be
tested if and only if:

∀ j,1≤ j < i : basicj = /0∨(6.1.2)

(level[min(basici)] = i∧weight[min(basici)]< weight[min(basicj)])
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Equation (6.1.2) defines a constraint which has to hold for any edge tested by aMRST. There are two
possible cases:

1. The level of the minimum basic link min(basici) equals the level of the MRST that wants to
test the link, i.e. whenMRSTi has to test linklO

i, j , the following condition is truelevel[lO
k,h] = i.

In that case there must not be any other link inbasicj ,1≤ j < i with a lower weight than the
minimum basic link ofMRSTi . Let us assume there was a lower weight link inbasicj . If this
link gets rejected byMRSTj it is made available toMRSTi and should be preferred tolO

i, j .

2. The level of the minimum basic link min(basici) is lower than the level of MRST that has to
test the link, i.e. whenMRSTi has to testlO

i, j , the following condition is truelevel[lO
k,h] < i. In

this case the link has been used at least once byMRSTj ,1≤ j < i. We can only test such a link,
if there are no more links in any of the setsbasicj of a levelMRSTj ,1≤ j < i.

If MRSTi has to test a new link but its minimum basic link min(basici) is not satisfying equation
(6.1.2), MRSTi has to wait untilMRSTi−1 hands over a new link tobasici, which satisfies the condition.
As soon as such a link is added tobasici , the algorithm ofMRSTi can continue. However, as long as
enough links are available, links get rejected very quicklyby a lower level MRST so that a higher level
MRST usually does not have to wait until the lower level MRST is finished.

i :=2

weight[lO
1,2] :=0.2

weight[lO
1,3] :=0.1

level[lO
1,2] :=2

level[lO
1,3] :=1

lO
1,2 < lO

1,3

basic1 :={lO
1,2}

basic2 :={lO
1,3}

(a) Minimum basic linklO1,3 of MRST2 may be tested by
MRST2

i :=2

weight[lO
1,2] :=0.2

weight[lO
1,3] :=0.1

level[lO
1,2] :=1

level[lO
1,3] :=1

lO
1,3 < lO

1,2

basic1 :={lO
1,3}

basic2 :={lO
1,2}

(b) Minimum basic linklO1,3 of MRST2 may not be tested
by MRST2

Figure 6.2: Example demonstrating the testing condition ofk-MRST

In Figure6.2 an example of two different situations demonstrating the testing condition is shown. In
Figure6.2(a)the minimum basic link ofMRST2 is lO

1,3. The link can be tested, because the link’s level
is 2 and there is no basic link inMRST1 which has a lower weight thanlO

1,3. In contrast Figure6.2(b)
shows a situation in whichMRST2 has to wait forlO

1,3 to be added tobasic2. Link lO
1,2 is the minimum

basic link ofMRST2. This situation may occur due to the absorption of another MRST fragment (see
Section2.3), which causes links that are not minimal within the set of basic links to be added to the
set of branch linksbranch1.
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6.2 Subscription-Forwarding on MRST

A MRST is an ideal substrate for subscription forwarding. Because a MRST is a tree, it is guaranteed
that no cycles exist. This is an important characteristic trait for covering-based and merging-based sub-
scription forwarding. In covering-based publish-subscribe systems, only subscriptions are forwarded
which are not covered by a previously forwarded subscription. In merging-based publish-subscribe
systems, subscriptions are merged with previously forwarded subscriptions and only the merger is
forwarded, which ideally exactly covers the subspace of theevent space of all subscriptions.

In this work we will only provide a simple identity-based subscription forwarding algorithm. In gen-
eral, however, it is easy to exchange it by a covering-based or merging-based approach.

To use the property of a cycle-free graph, each MRST constructed by the approach in Section6.1
is used separately for subscription forwarding. This meansthat for each of thek MRSTs a separate
subscription routing tableRTi ,1 ≤ i ≤ k exists. A peer subscribing to a new filter broadcasts its
subscription along each tree. Therefore a subscription message contains the level of the tree the
message is currently forwarded on.

Algorithm 6.4 Procedure to subscribe for a subscription
1: procedure SUBSCRIBE(subscription)
2: localSubscriptions← localSubscriptions∪{subscription}
3: for 1≤ i ≤ k do
4: for neighbour∈MRSTi do
5: SEND(SUBSCRIBE,neighbour,currentPeerId,subscription, i)
6: end for
7: end for
8: end procedure

Algorithm 6.4shows the procedure executed when an application subscribes for a subscription. First
the subscription is added to the set of local subscriptionslocalSubscriptions. Then the subscription is
forwarded to each neighbour on each MRST.

Algorithm 6.5 Algorithm executed when a subscription is received
1: receive SUBSCRIBE(sender,subscription, level) at peer p begin
2: RTlevel← RTlevel∪{(subscription,destination)}
3: for neighbour∈MRSTlevel do
4: if neighbour6= senderthen
5: SEND(SUBSCRIBE,neighbour, p,subscription, level)
6: end if
7: end for
8: end

When a peer receives a subscription a new routing table entryis added to the routing tableRTi , where
i is the level of the MRST the subscription has been forwarded on (Algorithm 6.5). Then the subscrip-
tion is forwarded to all neighbours on the MRST, except for the sender of the subscription.
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Figure 6.3: Example for subscription forwarding on a 2-MRST

In Figure 6.3 an example of subscription forwarding on ak-MRST is shown. The thin lines refer
to the branch links of the MRSTs of which the thin red solid lines are the branch links ofMRST1

and the blue dashed lines are branch links ofMRST2. The nodeS is the subscriber that initiates the
subscription forwarding process, whereas the nodesPi are potential publishers from the perspective of
S. The thick arrows describe the path a subscription uses while it is forwarded. The red solid arrow
describes the path a subscription is forwarded alongMRST1 and the blue dashed lines describe the
path onMRST2. We can see that the solid and dashed paths are mostly overlay-link-disjoint, there is
only one link which is used by both MRSTs.

6.3 Notification-Routing on MRST

The subscription forwarding procedure createsk routing tablesRTi on each peer. An event can po-
tentially be published by any peer in the network. When a peerpublishes an event, Algorithm6.6 is
executed. An event is simply forwarded on each of thek MRSTs, according to all routing tables.
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Algorithm 6.6 Algorithm to publish an event
1: procedure PUBLISH(event)
2: if event∈ localSubscriptionsthen
3: passeventto the application layer
4: end if
5: for 1≤ i ≤ k do
6: destinations← /0
7: for (subscription,dest) ∈ RTi do
8: if event∈ subscriptionthen
9: destinations← destinations∪{dest}

10: end if
11: end for
12: for dest∈ destinationsdo
13: if dest 6= senderthen
14: SEND(NOTIFY,dest, pcurrent,event, i)
15: end if
16: end for
17: end for
18: end procedure

Algorithm 6.7 Algorithm executed when a notification is received
1: receive NOTIFY(sender,event, i) at peer pcurrent begin
2: if event∈ localSubscriptionsthen
3: passeventto the application layer
4: end if
5: destinations← /0
6: for (subscription,dest) ∈ RTi do
7: if event∈ subscriptionthen
8: destinations← destinations∪{dest}
9: end if

10: end for
11: for dest∈ destinationsdo
12: if dest 6= senderthen
13: SEND(NOTIFY,dest, pcurrent,event, i)
14: end if
15: end for
16: end

When a peer receives an event, Algorithm6.7 is executed. First it checks whether any local sub-
scription matches the event and if so, it hands the event overto the application layer. Next, the peer
forwards the event on the MRST it received the event on, according to the corresponding routing table
RTi.
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Figure 6.4: Example for notification forwarding on a 2-MRST

In Figure6.4 an example of the routing entries added in the graph of example Figure6.3 is shown.
The solid red arrows show the routing entries onRT1 and the dashed blue arrows show the routing
entries ofRT2. The thick arrows show the two paths an event uses when publisher P6 publishes an
event matching a subscription ofS.
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7 Evaluation

In this chapter evaluations of the approaches described in Chapter5 and6 will be shown. First the
simulation environment and configuration will be described, then the topology metrics will be shown.
In Section7.2evaluation results of the TDO layer will be presented and in Section7.3 results for the
publish-subscribe layer will be revealed.

7.1 Simulation Configuration

7.1.1 Simulation Environment

All evaluations have been done in PeerSim [MJ09], which is a scalable open source P2P simulator
written in Java. PeerSim provides two simulation engines, acycle-based and an event-driven one. For
our simulations the event-driven engine has been used, which allows a more realistic simulation of
event-driven protocols. The simulator models propagationdelay and link and node failures. Simula-
tion attributes specifically for the simulated layers are described in detail in Sections7.2and7.3.

7.1.2 Topology

The simulation is performed on two different sets of topologies. The first set is generated by GT-ITM
[GT-00] using a Transit-Stub topology model. The second set is generated by BRITE [MLMB01].
Both, the Transit-Stub model and BRITE generate a multi-level hierarchy. Transit-Stub generates
interconnected higher level transit domains and lower level stub domains which are connected through
the transit domains (Figure7.1(a)). BRITE uses a top-down approach which first generates a highlevel
AS topology, and for each of the AS nodes a low level router topology is generated (Figure7.1(b)).

To generate the Transit-Stub topology the following parameters have been used: Each transit node is
connected to 4 stub domains. In total there are 4 transit domains which are fully connected. Each
transit domain and each stub domain contains 10 nodes. So in total the topology consists of 4·10· (1+
4·10) = 1640 nodes. The Transit-Stub topologies have about 7900 edges.

The BRITE topology has the same number of nodes. It has been generated by a top-down approach
with 20 AS-level nodes and 82 router-level nodes for each AS node which results in 20·82= 1640
nodes in total. All BRITE topologies have 3320 edges.

For each type five random topologies have been generated available as input data for simulations.
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Figure 7.1: Topology models

7.2 Topology-Inference

In this section the simulation results of the TDO layer will be discussed. All simulations have been
performed three times on each of the five topologies so in total 15 simulation runs have been made for
each input parameter. The results represent the average value of simulation runs.

In each simulation 250 nodes out of the 1640 available routers are randomly selected to connect an
overlay peer to. However, peers are only connected to routers in the stub-domain (for Transit-Stub
topologies) or to router-level nodes (for BRITE topologies).

To measure the degree of topology discovery, the following metrics are used:

Link Discovery Ratio This is the fraction of discovered links in the underlay to the total number of
underlay links in allN · (N−1) paths between allN peers. This metric provides a measurement
of the degree of topology discovery.

Traceroute Efficiency Average fraction of new discovered links in each traceroute:

numberO f DiscoveredLinks
numberO f Traceroutes· totalNumberO f Links

This metric gives a hint about the discovery performance of the algorithm.

One of the targets of the overlay formation layer is to construct an overlay which reflects the under-
lay network. The following metrics are used to measure the equality of the overlay to the underlay
topology:
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Stretch Stretch is the average ratio between the propagation delay on the shortest overlay path to the
propagation delay on the shortest path in the underlay:

overlayDelay
underlayDelay

The Stretch does not include the last mile delay between a router and a peer. Without considering
the last mile delay, a stretch of one means that the overlay paths exactly matches the underlay
paths, because the delay of both paths is the same. This metric hence can give a measurement
about how good the overlay topology reflects the underlay topology.

Hop Ratio The Hop Ratio is the ratio of the number of peer-routers in theunderlay path to the number
of hops in the shortest overlay path between two peers. A peer-router is an underlay router which
has a directly connected overlay peer:

peerRoutersInUnderlay
peersInOverlayPath

For example let us consider the network in Figure7.2. If we assume the underlay path between
peersp2 and p3 is PathU [p2, p3] = 〈r3, r2, r1〉 and shortest overlay path betweenp2 and p3 is
PathO[p2, p3] = 〈p2, p3〉 according to the overlay topology constructed by the TDO, the Hop
Ratio value is 3

2 = 1.5. If the overlay topology reflects the underlay topology, the number
of overlay peers within the overlay path should be equal to the number of peer-routers in the
underlay path, hence theHop Ratioshould converge to one.

Path Match This metric consists of two parts. The first part is the numberof peer-routers in an
underlay path whose connected peer is not in the shortest overlay path between the same two
peers, divided by the total number of peer routers in this path. The second part is the number
of peers in the overlay path whose router is not part of the underlay path between the same two
peers:

numberO f PeerRoutersNotInOverlayPath
totalNumberO f PeerRoutersInUnderlayPath

+
peersNotInUnderlayPath

numberO f PeersInOverlayPath

Let us consider the example in Figure7.2. If we assume the underlay path betweenp2 and p4

is PathU [p2, p4] = 〈r3, r2, r4, r5〉 and the respective overlay path isPathO[p2, p4] = 〈p2, p3, p4〉
according to the overlay topology constructed by the TDO, thePath Matchvalue is1

3+
1
3 ≈ 0.67.

If the overlay topology reflects the underlay topology, all routers with a connected peer in an
underlay path between two nodes should also be part of the overlay path, hence this metric
should ideally converge to zero. This metric also gives a measurement on how good the overlay
network reflects the underlay topology.

All simulations have been performed against the number of neighboursk. The parameterk is defined
differently for each simulated approach and will be explained in the following.

The following approaches have been simulated:

Random This refers to the random approach described in Section5.2. The parameterk is the size of
the random peer sample a peer initiates traceroute measurements to. In order to have a connected
graph for all simulations ofRandom we only simulate withk≥ 2.
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Figure 7.2: Example to explain theHop RatioandPath Matchmetrics

Random ( k nearest neighbours) This approach refers to the optimization described in Section5.2.3.
Initially the algorithm selects thek nearest peers out of its random peer sample of size(k+10).
Thek selected peers are used in the same way as inRandom.

Random ( k farthest neighbours) For comparison also simulations have been made where the ran-
dom approach selects thek farthest peers from the available random peer sample of size(k+10).

Landmark This refers to the landmark approach described in Section5.1. In these simulations the
parameterk defines the number of landmarks in the system.

7.2.1 Link Discovery Ratio

TheLink Discovery Ratiois the fraction of discovered underlay links to all underlaylinks in the set of
N · (N−1) paths between allN peers. The more links are discovered, the more topology is discovered.
As much underlay topology as possible should be discovered to increase diversity in the underlay.

In Figure7.3the Link Discovery Ratio results are shown. As we can clearlysee,Random (k farthest
neighbours) performs worst. This is due to the fact that the same set of links are discovered multiple
times by the same peer.Landmark performs better but only with a high number of landmarks. The
best results have been realised byRandom andRandom (k nearest neighbours).

7.2.2 Traceroute Efficiency

Traceroute Efficiencyis defined as the fraction of links discovered in each traceroute. This gives a hint
about the efficiency of the algorithm. The higher the Traceroute Efficiency, the more of the topology
is discovered by an algorithm for a given number of traceroute measurements.

According to the results in Figure7.4 Random (k nearest neighbours) is most efficient. This is
because this approach discovers more intra-domain links than the other approaches because it prefers
to traceroute peers which are near.Landmark only has high traceroute efficiency with higher number
of landmarks. This is most likely because it traceroutes a high number of both, intra-domain peer and
peers farther away.
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Figure 7.3: Link Discovery Ratio

7.2.3 Stretch

The Stretchcompares the underlay path delay to the delay produced on theshortest overlay path
between two peers. The underlay path delay is the shortest possible delay to transport a package
between two peers. The more the overlay path delay equals theunderlay path delay, the higher is the
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Figure 7.4: Traceroute Efficiency

probability that the overlay path is similar to the underlaypath. For stretch calculation we ignore the
last mile delay which increases the stretch and distorts theresults.

In Figure 7.5 the results of stretch measurements on the constructed overlay are shown. One can
clearly see thatRandom (k farthest neighbours) performs worst. This is because it does not know
many of the intra-domain links and hence often routes trafficthrough other AS which causes high
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stretch.Landmark seems to perform best, however the landmark approach produces high node degree
on the landmark peers. Even in the casek= 1 all peers are connected to the landmark through a path
which perfectly matches the shortest underlay path. In the worst case all traffic is routed in the overlay
through the landmark. Hence, the stretch cannot be much morethan two.Random andRandom (k
nearest neighbours) both converge to a good stretch very fast.
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Figure 7.5: Stretch (without considering last mile delay)

69



7 Evaluation

Stretch is a good metric to measure equality of the overlay topology to the underlay topology. However,
it can be easily distorted in the case of high node degree. Forexample in a mesh where each peer
is connected to any other peer through an overlay link, the stretch is optimal, however the overlay
does not reflect the underlay topology. This is the reason whythe two following metrics will be
introduced.

7.2.4 Hop Ratio

If the overlay reflects the underlay topology, overlay pathsshould be similar to the corresponding
underlay paths.Hop Ratiodescribes the ratio of the number of routers with a connectedpeer in the
underlay to the hop count in the corresponding overlay path.The value should converge to one, which
most likely is an indicator that the overlay path equals the underlay path.

In Figure7.6 the results of the Hop Ratio measurements are plotted.Landmark performs best for
a small value ofk. The reason for this most likely is that even in casek = 1 Landmark perfectly
matches the shortest paths from the landmark to all peers. Hence also the shortest overlay paths from
and to the border-routers of an AS perfectly match the corresponding underlay path. The path from
and to the border-routers however make a large fraction of the total underlay path between any two
peers. Peers are only connected to routers within an AS but not to routers in the transit-domain, which
is the reason why routers in the transit-domain do not affectthe Hop Ratio.

On a BRITE topology,Random performs best among the random approach simulations. Hop Ratio
measures the ratio of peers connected to routers in an underlay to the peer count on the overlay path.
However, it does not test whether peers along paths match each other. For example an overlay path
which has the same number of peers as the number of peers connected to routers on the corresponding
underlay path would result in a perfect Hop Ratio, even in thecase in which the actual peers are totally
different. ThePath Matchmetric considers this problematic.

7.2.5 Path Match

Path Matchis a comparison metric between underlay and overlay paths. It is defined as the fraction of
peers in the overlay path with no corresponding router with the same connected peer in the underlay
path, plus the fraction of routers with connected peers in the underlay path where no corresponding
peer in the overlay path exists. A Path Match value of zero means that all overlay paths exactly match
the corresponding underlay path, whereas the worst possible Path Match value two means that overlay
path and underlay path are totally different.

In Figure7.7 the Path Match results are shown.Landmark performs best on both, Transit-Stub and
BRITE topologies. Again, the most likely reason for this is thatLandmark discovers and reflects the
path from and to the border routers for each peer. The random approaches perform similar in Transit-
Stub, whereas there is a significant difference in BRITE.Random fast converges to the Path Match
value ofLandmark and seems to be best among the random approaches.
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Figure 7.6: Hop Ratio

7.2.6 Summary

Simulation results for the TDO show that all approaches discover a large fraction of the underlay
topology. All construct an overlay topology reflecting the underlay topology. In general we can say
Landmark performs best of all approaches, however it has some scalability drawbacks because a
landmark has to do traceroute measurements to all other peers in the network. As expected,Random
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Figure 7.7: Path Match

(k farthest neighbours) performs worst because it is poor in discovering intra-domain topology and
this is critical with regard to discovering the underlay topology in the presence of a hierarchical Internet
topology. However, it is not absolutely clear which of the other random approaches performs better.
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7.3 k-MRST and Publish-Subscribe

7.3 k-MRST and Publish-Subscribe

In this section the simulation results of thek-MRST and publish-subscribe layer will be presented.
Similar to previous simulations all simulations have been performed on both, the Transit-Stub and
BRITE topologies. For each distinct parameter value 15 experiments were performed.

To each underlay router, underlay link and peer a random reliability value has been assigned. In order
to generate reliabilities for system components random values distributed according to a modified
(inverted) version of the Pareto distribution1 between 0.85 and 1.0 have been generated. In Figure7.8
the cumulative reliability distribution for different values of the parameterα is shown. The selection of
α depends on the type of component, the reliability has been assigned to. In Table7.1the distribution
curve used for each component type is shown.

Component type α
Default underlay router 50
Transit domain router 100
Stub domain link/Router level link 50
Border link 80
Transit link 100
Last mile link to peer 200
Peer 100

Table 7.1: Usage of reliability value distribution based on componenttype
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1http://en.wikipedia.org/wiki/Pareto_distribution
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7 Evaluation

To evaluate the simulation results we did measurements on the underlay path length of the shortest
underlay paths. Specifically, we measured the average path length and the maximum path length (di-
ameter) within the underlay topology. Furthermore, we calculated the average and minimum underlay
path reliability. The results are presented in Table7.2.

Transit-Stub topology BRITE topology

Average Path Length 6.97 13.49
Diameter 10 32
Average Path Reliability 88.63% 53.88%
Minimum Path Reliability 68.12% 4.18%

Table 7.2: Topology metrics

In each simulation 250 nodes out of the 1640 available routers have been selected randomly to connect
an overlay peer to. Again, peers are only connected to routers in a stub-domain (for Transit-Stub
topologies) or to router-level nodes (for BRITE topologies).

Simulation results are plot against the number of constructed MRSTs.

For publish-subscribe simulations a two-dimensional event space where each dimension can take a
number between 0 and 1000 is considered (for example(25,908)). A subscription specifies a random
range for each dimension which constructs a rectangle within the event space. All events published
within the rectangle are considered matching events (a matching subscription for the above event is for
example([0,30], [900,920])). In total 100 subscriptions have been subscribed and 5000 events have
been published separately by random peers.

The goal of the publish-subscribe layer is to deliver eventsto subscribers reliably. Therefore some
metrics have been defined which measure reliability and availability properties. The following metrics
have been defined to measure the performance of the differentapproaches:

Underlay Link Resilience Resilience is a way to measure the tolerance against failures in a system.
It is defined as the minimum number of components that have to fail simultaneously so that the
complete system fails. The resilience of a single path, for example, is always one, because if any
router or link on the path fails, the complete path fails. However, thek-MRST layer established
multiple paths. The Underlay Link Resilience is defined as the minimum number of underlay
links that have to fail simultaneously so that all paths of the k established paths between two
peers fail. The values presented here are average values forall N · (N−1) overlay paths.

Reliability The k-MRST layer establishesk overlay paths between any pair of peers. This metric
measures the reliability of all these multiple paths, whichis the probability that a message sent
over each of the established paths at the same time is delivered at the receiver. This is calculated
by using equation (2.1.2) defined on page23.

Event Ratio Ratio of the number of received events to the number of expected receives. If, for exam-
ple, one event is published and two subscribers exist, whichhave a matching subscription, the
expected number of receives is two. If only one of the subscribers receives the event, the Event
Ratio is 1

2 = 50%.
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7.3 k-MRST and Publish-Subscribe

To measure how the TDO affects the performance of thek-MRST and the publish-subscribe layer, two
types of simulations have been conducted. The first simulates thek-MRST and publish-subscribe layer
on top of the TDO layer. The second simulates both higher level layer on top of a randomly connected
overlay. Figure7.9 illustrates the two types of simulation.

0. Underlay Network0. Underlay Network

1. Topology-Discovery-Overlay (TDO) 1. Random Overlay

2. k Maximum-Reliability-Spanning-Tree2. k Maximum-Reliability-Spanning-Tree

3. Content-Based Publish-Subscribe3. Content-Based Publish-Subscribe

Figure 7.9: Protocol-Stacks of the two simulation types

For the first type the following set of simulation has been performed:

Random Simulations using the random approach described in Section5.2as TDO layer. The random
approach builds its overlay based on traceroute measurements to 15 neighbours.

Random ( k nearest neighbours) Simulations using thek-nearest-neighbours approach described in
Section5.2.3 as TDO layer. This layer selects the 15 nearest peers out of its 15+ 10= 25
random peers sample to perform traceroute measurements to.

Landmark Simulations using the landmark-based approach described in Section5.1 as TDO layer.
All simulations have been performed with 15 landmarks.

Additionally, simulations have been conducted on top of a plain random overlay topology:

No TDO The TDO layer is exchanged by a random overlay where each peeris connected to 15 ran-
domly selected other peers.

7.3.1 Underlay Link Resilience

TheUnderlay Link Resilienceis a metric to describe the vulnerability of a system. It is a good metric
to provide guarantees on the availability of a system.
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Figure 7.10: Underlay Link Resilience
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7.3 k-MRST and Publish-Subscribe

Figure 7.10 shows the simulation results of the Underlay Link Resilience. On Transit-Stub the re-
silience is nearly equal for all approaches. The reason for this may be that the Transit-Stub topologies
do not provide path sets with a higher resilience. The generated stub-domains are only connected
through one underlay link to the transit-domain. This results in a resilience of at most one for all inter-
domain overlay links. However, we can see that using a TDO results in a marginal higher resilience
than without the TDO layer.

On BRITE topologies the situation is different. These topologies provide multiple underlay links
for inter-domain communication. Hence, the average resilience is higher for simulations with these
topologies. However, from the simulation results it is not clear which approach performs best. In this
case, using the TDO makes a significant positive difference to simulations without the TDO.

BRITE topologies are more realistic in this case because ASsare usually directly connected to more
than one other AS.

In case the underlay only provides a resilience of one it is simply impossible to reach a higher value
for the Underlay Link Resilience. In such a case the metric isnot a good basis to reveal reliability
properties. The problem is that the metric does not take the reliability of underlay links into account.
This is the reason why additional metrics will be defined in the next sections.

7.3.2 Reliability

The metricReliability measures the joint reliability of a multipath. If the path diversity is high, adding
a new path to a multipath should increase total reliability of the multipath.

The simulation results forReliability measurements are plotted in Figure7.11. There is a great differ-
ence in reliability between Transit-Stub and BRITE topologies. The average reliability of paths in the
BRITE topology is less than the one in Transit-Stub topologies. This is the case, because the AS in
our BRITE topologies have much more nodes than a stub in the Transit-Stub topologies (82 nodes in
BRITE and 10 nodes in Transit-Stub). This results in a largernetwork diameter (32 hops for BRITE,
compared to 10 hops for Transit-Stub) and average path length for BRITE topologies which reduces
the reliability. Furthermore, the average path reliability of a topology mostly depends on assigned reli-
abilities of individual links and nodes. However, the more interesting aspect of this simulation results
are the relative differences among the approaches.

We can see that in both topologiesLandmark performs best. This situation confirms the results in
Section7.2 where the landmark-based approach performed best.Random andRandom (k nearest
neighbours) both result in similar average reliabilities. As expected simulations without the TDO got
worst results. Especially in BRITE topologies – even in the case of only one MRST – the reliability
is improved by more than 100% (and more than 37% in Transit-Stub) when comparingLandmark to
No TDO. The improvement of all approaches compared toNo TDO in percentage can be viewed in
Figure7.12.
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Figure 7.11: Joint path reliability
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Figure 7.12: Reliability improvement compared toNo TDO
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7 Evaluation

7.3.3 Event Ratio

The main goal of the proposed system is to increase message delivery reliability. The Event Ratio
measures the fraction of received events to the total numberof expected receives. Because an event
has potentially more than one subscriber with a matching subscription the number of expected receives
is higher than the number of event publications. In our simulations each event had 16 peers (6,4%)
with at least one matching subscription on average.
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Figure 7.13: Event Ratio
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Figure 7.14: Improvement of the Event Ratio compared toNo TDO

Figure7.13plots the simulation results for the Event Ratio. As expected the results reflect the results
for path reliability (Section7.3.2, Figure7.11). Similar to the previous simulation results,Landmark
performed best.Random andRandom (k nearest neighbours) have similar results in BRITE but
Random is slightly better in Transit-Stub. Figure7.14 shows the improvement of the Event Ratio
compared toNo TDO. TheLandmark approach improves the Event Ratio up to nearly 90% regard-
less of the number of MRSTs.
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7 Evaluation

7.3.4 Summary

Evaluations show that using the TDO layer makes a significantdifference compared to simulations
without this layer. All proposed TDO approaches increased the average availability and reliability of
paths. The landmark-based approach still seems to produce the best results, but the random approaches
also produce considerable results. Thek-MRST approach produces multiple overlay paths, however,
the disjointness of paths is constraint by the underlay topology.
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8 Conclusion

In this thesis an approach to improve reliability in a content-based P2P publish-subscribe system has
been proposed. In order to increase reliability, several layers have been provided to reduce failure
probabilities at the respective failure source.

To solve the problem of underlay failures, the idea of this thesis was to reduce underlay correlations
within dissemination trees to a minimum. This has been done by constructing an underlay aware over-
lay topology which reflects the underlay topology. For this Topology-Discovery-Overlay (TDO) two
different instances of a path-matching algorithm have beendeveloped, which use overlap information
within traceroute results to find a good location for an overlay peer within the overlay topology. The
landmark-based approach discovers underlay paths from a small subset of the available peers to infer
most of the underlay topology. The random approach discovers random underlay paths and compares
them with each other to leverage overlap information. Evaluations have been made through simula-
tions on generated Internet-like topologies where the developed instances of the algorithm have been
compared. Simulation results show that the algorithms discover more than 80% of the underlay links
and construct overlay topologies with properties similar to the underlay topology. Shortest overlay
paths of overlays constructed by the landmark-based approach have a low stretch of less than 1.5 even
in the case where only 2% of the peers are landmarks.

In order to tackle overlay failures, the constructed overlay is then used by a higher level layer to provide
multiple overlay edge disjoint paths in the overlay betweenany two peers. Because underlay diversity
of the corresponding paths of overlay links provided by the TDO have high diversity, correlations
between these multiple paths are low. To establish multiplepaths between any pair of peers, multiple
edge disjoint Maximum-Reliability-Spanning-Trees (MRST) are built. To achieve this, a well-known
distributed Minimum Spanning Tree algorithm has been adapted. The resulting algorithm is able to
createk MRSTs in parallel in a distributed manner. Simulations havebeen conducted to evaluate
the reliability of the established paths. To evaluate the benefits of the TDO, simulations have been
performed with both, a plain random overlay topology and an overlay constructed by the TDO layer.
Simulation-results show that the reliability of overlay paths is up to 110% higher when using the TDO,
compared to simulations without the TDO.

On top of the constructed MRSTs, a simple publish-subscribelayer has been implemented. It uses
each MRST separately for subscription flooding and event forwarding. Simulations show that the
event delivery probability converges towards a maximum.
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8 Conclusion

8.1 Future Work

The developed approach provides reliable dissemination ofevents. However, some of the assumptions
may not be realistic. The system fully relies on the availability of traceroute techniques. Although
traceroute is a good mechanism to obtain underlying paths inIP networks, it has some drawbacks.
Due to routers not responding to traceroute packets (anonymous routers), discovered paths may be
incomplete. A possible solution would be to integrate additional topology discovery methods like
end-to-end measurements [NXTY10].

The k-MRST algorithm constructs cycle free graphs but its time complexity of O(nlogn) is not op-
timal. Thek-MRST layer could be modified to use a faster approach like [KP98], which has a time
complexity ofO(

√
nlog∗n+d), whered is the diameter of the network.

Although results show that the landmark-based approach performs best, it has some drawbacks which
affect scalability. Simulations of the random approaches,which overcome the scalability problems
of the landmark-based approach, show that no clear decisioncan be made which of the approaches
performs best. Therefore, additional simulations for the TDO on real Internet topologies should be
made.
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