
Institute of Architecture of Application Systems
University of Stuttgart
Universitätsstraße 38

D–70569 Stuttgart

Diplomarbeit Nr. 3139

Enabling Integration and
Aggregation of Context

Information into WS-BPEL
Processes

Rodion Hagin

Course of Study: Software Engineering

Examiner: Prof. Dr. Frank Leymann

Supervisor: Dipl.-Inf. Tobias Binz
Dipl.-Inf. Steve Strauch

Commenced: February 1, 2011

Completed: August 2, 2011

CR-Classification: H.3.3, H.3.4, H.4.1

Abstract

Previously, techniques of Context-Aware Computing were limited only to small scale monolithic
applications due to the lack of standardized technologies which could support interoperability
of services owned by different organizations. The advancement in Service-Oriented Computing
technology allowed autonomous and heterogeneous applications to be exposed as Web Services
and interconnected into service compositions exploiting well-agreed interfaces, protocols and
message formats. The Web Service Business Process Execution Language (WS-BPEL) is the de-
facto standard for composing reusable Web services. To enable handling of context information
in applications, context information has to be made available within service compositions;
hence, integrated in WS-BPEL processes. Through this means, new innovative context-enriched
services can be built and provided using the convergence of context-aware computing and
workflow technology. In this diploma thesis, context information provided by the C-CAST
Context Management Framework and Google Maps Web services, is integrated into WS-BPEL,
and business modelers are supported with the creation of context-based compositions. After
surveying some of the current best practice and relevant literature in this area, this thesis
presents a solution to this problem based on the Integration Process Pattern work previously
done at the Institute of Architecture of Application Systems at the University of Stuttgart.

iii

Contents

1. Introduction 1
1.1. Motivating Example . 2
1.2. Problem Statement . 4
1.3. Outline . 5

2. Fundamentals and State of the Art 7
2.1. Context . 8

2.1.1. Definitions . 8
2.1.2. Context Management . 13

2.2. Context Provisioning Systems . 20
2.2.1. Nexus Platform . 20
2.2.2. C-CAST Context-Management Framework 22

2.3. Integration of Context into Compositions . 23
2.3.1. Solutions . 23
2.3.2. Evaluation Criteria . 30
2.3.3. Comparison . 32

3. Integration of Context Information 37
3.1. C-CAST CMF . 37

3.1.1. Architecture Components . 37
3.1.2. Context Broker Services . 39
3.1.3. ContextML Model . 39
3.1.4. RESTful Web Service Interface . 41

3.2. Challenges . 42
3.2.1. Concept Properties . 42
3.2.2. Integration Challenges . 43

3.3. Realization of Context Integration Processes . 43
3.3.1. Context Provisioning Layer . 44
3.3.2. Core Integration Processes . 47
3.3.3. Domain Independent Processes . 49

v

3.3.4. Domain Specific Processes . 50

4. Aggregation of Context Information 51
4.1. Definition of Information Aggregation . 51
4.2. Information Aggregation in Service Compositions 52
4.3. Concept of Context Aggregation Processes . 54
4.4. Google Maps Web Services . 56

4.4.1. Usage Limits . 56
4.4.2. Google Geocoding Web service . 57
4.4.3. Google Directions Web service . 58
4.4.4. Realization of Google CIPs . 59

4.5. Realization of Context Aggregation Processes 62
4.5.1. Domain Independent Context Aggregation Processes 62
4.5.2. System Independent Context Aggregation Processes 63

5. Evaluation 65
5.1. Domains Specific Integration Processes . 65
5.2. Composition Engines . 67

5.2.1. Apache Orchestration Director Engine 67
5.2.2. OW2 Orchestra . 67

5.3. Evaluation . 68

6. Context Modeling Tool 73
6.1. Application Domains . 73
6.2. Context Integration Processes Repository . 74
6.3. Context-Aware Service Composition Modeling 74

6.3.1. Actors . 74
6.3.2. User Interfaces . 74
6.3.3. Use Cases . 76
6.3.4. Design and Background Knowledge . 77

6.4. Context Integration Processes Modeling . 85
6.4.1. Actors . 85
6.4.2. User Interfaces . 85
6.4.3. Use Cases . 87

7. Summary and Future Work 89

A. Appendix 91
A.1. C-CAST CMF Supported Entities . 91
A.2. C-CAST CMF Supported Context Scopes . 91

A.2.1. Context Scope userProfile . 92
A.2.2. Context Scope position . 95
A.2.3. Context Scope civilAddress . 96

vi

A.2.4. Context Scope userProximity . 97
A.3. C-CAST CMF RESTful Web Service Interface . 98

A.3.1. Context Broker Interfaces . 98
A.3.2. Context Provider Interfaces . 104

A.4. Installation and Configuration Guide . 106

Bibliography 109

vii

List of Figures

1.1. Use Case Scenario – Taxi as a Service . 2

2.1. Context Management Architecture – Main Components 13
2.2. Context Management Architecture – Actors . 14
2.3. Context Provisioning System – Nexus Platform 21
2.4. Context Integration Approach – Context Variables 24
2.5. Context Integration Approach – Context Integration Processes 25
2.6. Context Integration Approach – CEVICHE Framework 27
2.7. Context Integration Approach – ContextServ Platform 29

3.1. C-CAST CMF – Architecture Components . 38
3.2. C-CAST CMF – Entity Scope Relationship . 40
3.3. C-CAST CMF – SOAP WSDL Web Service Interface 45
3.4. C-CAST CMF – Core Context Integration Processes 48
3.5. C-CAST CMF – Domain Independent Context Integration Processes 49

4.1. Aggregation – Number of Data Sourcing and Consuming Entities 53
4.2. Aggregation – Extension to Integration Process Pattern 55
4.3. Google Maps Web Services – SOAP WSDL Web Service Interface 60
4.4. Google Maps Web Services – Context Integration Processes 61
4.5. C-CAST CMF – Domain Independent Context Aggregation Processes 62
4.6. System Independent Context Aggregation Processes 64

5.1. Taxi Service Provider Context Integration Processes 66

6.1. WS-BPEL Modeling Tool Extension – Context Dashboard Palette 75
6.2. Eclipse BPEL Designer Model Extension . 82
6.3. Eclipse BPEL Designer UI Extension . 83
6.4. WS-BPEL Modeling Tool Extension – CIP Modeling Perspective 86

viii

List of Tables

2.1. Context Classification Systems . 10
2.2. Comparison of Context Integration Concepts (Part 1) 33
2.3. Comparison of Context Integration Concepts (Part 2) 34

A.1. C-CAST CMF – Entity Types . 92
A.2. C-CAST CMF – Definition of userProfile Scope 93
A.3. C-CAST CMF – Definition of emails Element . 93
A.4. C-CAST CMF – Definition of works Element . 94
A.5. C-CAST CMF – Definition of mobiles Element 94
A.6. C-CAST CMF – Definition of instantMess Element 95
A.7. C-CAST CMF – Definition of homes Element . 95
A.8. C-CAST CMF – Definition of position Scope . 96
A.9. C-CAST CMF – Definition of civilAddress Scope 96
A.10.C-CAST CMF – Definition of userProximity Scope 97
A.11.C-CAST CMF – Definition of users Element . 97

List of Listings

3.1. CXF Default SOAP Fault Response . 46
3.2. Registering Fault Interceptor in CXF Service Configuration 47

5.1. Usage of the Attribute xml:space in WS-BPEL 69

6.1. Implementation – QueryContext Activity . 79
6.2. Implementation – SubscribeToContextEvents Activity 79
6.3. Implementation – PickContextEvent Activity . 80
6.4. Implementation – OnContextEvent Activity . 80

A.1. ContextML Schema Element for getName Response 98
A.2. ContextML Context Provider Advertisement Schema Element 99

ix

A.3. ContextML Schema Element for getContextProviders Response 100
A.4. ContextML Schema Element for getActiveEntities Response 101
A.5. ContextML Schema Element for getContext Response 102
A.6. ContextML Schema Element for contextUpdate Request 103
A.7. ContextML Acknowledgement Message . 104
A.8. ContextML Fault Message . 104
A.9. Configuring the Administrator and Manager Web Interface 106
A.10.Configuring Memory Management . 106

x

List of Abbreviations

AI . Artificial Intelligence

API . Application Programming Interface

ARC . Australian Research Council

ASR . Area Service Register

AWML . Augmented World Modeling Language

AWQL . Augmented World Query Language

BPM . Business Process Management

BPMN . Business Process Modeling Notation

C-CAST Context Casting project

ccTLD . Top Level Domain (two-character value)

CEP . Complex Event Processing

CIPs . Context Integration Processes

CMF . Context Management Framework

ContextML Context Modeling Language

EER . Enhanced Entity Relationship modeling

EMF . Eclipse Modeling Framework

ER . Entity Relationship modeling

ESB . Enterprise Service Bus

FTP . File Transfer Protocol

GEF . Graphical Editing Framework

HTTP . Hypertext Transfer Protocol

JAX-RS Java API for RESTful Web services

JAX-WS Java API for XML Web services

JBI . Java Business Integration

JMS . Java Message Service

JSON . JavaScript Object Notation

MDA . Model-driven Architecture

ODE . Orchestration Director Engine

xi

ORM . Object-Role Modeling

OW2 . ObjectWeb and Orientware Consortium

PaaS . Platform as a Service

R&D . Research and Development

REST . Representational State Transfer

SBPL . Standard Business Process Language

SWT . Standard Widget Tookit

UI . User Interface

UML . Unified Modelling Language

URL . Uniform Resource Locator

W3C . World Wide Web Consortium

WS . Web service

WS-BPEL Web Service Business Process Execution Language

WSDL . Web Service Definition Language

WSN . Web Service Notification

WSRF . Web Service Resource Framework

XMI . XML Metadata Interchange

XML . eXtensible Markup Language

XSD . XML Schema Notation

XSLT . eXtensible Stylesheet Language Transformations

xii

Chapter 1

Introduction

Cloud Computing [1], as an emerging network computing paradigm of distributed application
environments is turning computation and service provisioning to a public utility. Combined
with complementary Workflow technology, Cloud Computing enables service providers to
enjoy elasticity, scalability, and high availability of computational resources while composing
and orchestrating distributed business processes. It is of essential importance for service
providers to focus on enhancing business processes by considering context information and how
context awareness can maximize end users’ experience and allow intelligent and advantageous
adaptivity of service compositions.

The Web Service Business Process Execution Language (WS-BPEL) is the de-facto standard
for composing reusable Web services [2]. To handle context information in applications the
context information has to be made available within service compositions; hence, integrated
into WS-BPEL processes. Through this means, new innovative context-enriched services can be
built, and provided using the convergence of context-aware computing, workflow technology
and the core tenets of cloud computing, e.g. by using the 4CaaSt platform [3].

The EU project 4CaaSt [3] aims to create an advanced PaaS Cloud platform which supports
the optimized and elastic hosting of composite Internet-scale multi-tier applications. 4CaaSt
embeds all the necessary features easing programming of rich applications and enabling the
creation of a true business ecosystem where applications coming from different providers can
be tailored to different users, mashed up, and traded together.

This diploma thesis describes the concept of integrating context information into WS-BPEL ser-
vice compositions in order to support workflow modelers to create context-aware compositions.
Additionally, current work addresses the topic of aggregating of context information obtained
from multiple data sources. After surveying some of the current best practice and relevant
literature in this area, this thesis presents a solution to the outlined problems based on the
Integration Process Pattern work previously done at the Institute of Architecture of Application
Systems at the University of Stuttgart.

1

1. Introduction

1.1. Motivating Example

In the beginning of this work a sample use case scenario is proposed and described in detail.
The objective of this presentation is twofold: first, to give the reader a better understanding of
how context information can be used in service compositions. Second, to develop a sample use
case scenario used to evaluate the context integration and aggregation concepts realized at a
later stage in this thesis.

Figure 1.1.: Use Case Scenario – Taxi as a Service

The scenario used in this thesis is a taxi booking system using context information to offer taxi
transport services tailored to best suit customer expectations. As illustrated in Figure 1.1, the
booking request originates at the Customer side and contains information about origin address,
destination address and other valuable information identifying this particular customer and
her preferences. Taxi Company registers booking request which subsequently are forwarded to
Taxi Service Provider. A Taxi Service Provider realizes a transport ordering process which can
be shared among various taxi companies. In particular, the Taxi Service Provider process used
in this sample use case scenario is responsible for the discovery of the nearest taxi cab to a
customer. In order to achieve this, the service provider process extracts address information
out of the booking request message, obtains the list of the available taxicabs next to the
customer origin address, contacts a particular taxi driver to confirm booking and generates
acknowledgment response for the Taxi Company after the taxi booking is accomplished.

2

1.1. Motivating Example

Since the notion of context is very wide and includes many important aspects, it is preferable
to set its thorough definition aside for the time being. With reference to the current scenario
setting, context information can be represented as a sample set of context elements such as
information identifying customer, taxi and their current locations. This kind of information can
be leveraged in the sample use case scenario to achieve the following objectives:

• Discovery of nearby taxi cabs While a particular taxi company may incorporate multiple
cities or locations across different regions and countries, the customer’s current location
details may be used to identify and forward transport booking requests to taxi cabs in
the vicinity. As a result, taxi companies can provide customer transport service in the
shortest time and minimize fuel expenses for their fleet of taxis. Additionally, transmitting
booking requests to a restricted set of taxis rather than to all available taxis in the region
will help reduce communication overhead.

• Discovery of taxi contact details Since taxi drivers working at a particular taxi company
may share available taxi cabs, booking requests need to be forwarded to the taxi driver
currently operating a particular taxi cab.

Furthermore, booking information specifying required destination address may help identify the
preferable taxi cab type. For instance, a taxi cab with high baggage capacity hold might be more
suitable for airport destinations. Additional information identifying customer and customer
preferences can help provide special taxi transport services built to cater for instance to urgent
corporate businesses, international tourist transport or transport of disabled persons.

Due to the fact that context knowledge represents information which is external to the business
process and therefore is managed by external systems, a strategy is required to make context
knowledge available in service compositions. It is worthy noting that context information can
be obtained from multiple heterogeneous data sources which retrieve, model and disseminate
context information in different ways. Hence, it is important to support aggregation and pro-
cessing of context information from numerous heterogeneous data sources. The development
of such integration and aggregation strategy is a subject of this diploma thesis. In the next
section, main requirements to the context integration and aggregation approach are described
in more detail.

3

1. Introduction

1.2. Problem Statement

The main objective of this thesis is to evaluate existing concepts of context integration into
service compositions to find the most suitable approach for future realization. A successful
context integration and aggregation strategy should address the following list of problem
domains.

Enabling integration of context in WS-BPEL compositions
In the last years Web Service Business Execution Language (WS-BPEL) has become the de-facto
standard for composing and orchestrating Web services and is widely used in industry and
research. Therefore, a general strategy is required to enable context integration into service
compositions realized in WS-BPEL.

Providing a composition engine independent solution
The proposed context integration concept should rely on the non-extended WS-BPEL standard
in order to ensure interoperability and composition engine independence.

Enabling encapsulation and outsourcing of context information aggregation
Business process modelers should be able to concentrate on modeling business logic and
leverage context information in a simple and convenient way. High level context pre-processing
and aggregation logic should be moved out and handled outside of the business process.

Providing integration support of different context provisioning systems
A major aspect is considered to be future application of the proposed approach to the integration
of various context provisioning systems. Addressing this objective in the proposed integration
approach enables high level aggregation of heterogeneous context data obtained from different
data sources.

Enabling loosely coupling to context integration system
While interfaces of the integrated context provisioning systems may evolve over time, it is
necessary to ensure that the proposed integration concept defines a necessary abstraction to
the context provisioning system interfaces. The changes introduced to the interfaces should
not imply the adaptation of business service compositions. This also allows the exchange of
the underlying context provisioning systems without further modifications.

Providing component reusability
The software components of the proposed context integration and aggregation concept should
be easily reusable for multiple context-aware service compositions.

Enabling integration system extensibility
The last, but equally important, aspect considers the extensibility of the proposed integration
concept. It should be possible to integrate new context provisioning systems, define additional
context aggregation components and model new context-aware service compositions.

4

1.3. Outline

In the rest of this diploma thesis different context integration strategies are introduced and
compared against their complexity. Finally, a context strategy is selected which best suits the
requirements outlined in this section.

1.3. Outline

The remainder of this thesis is structured into seven chapters. In detail, each chapter covers
the following topics:

Chapter 2 - Fundamentals: Chapter 2 evaluates the research achievements over the past
years in the area of context awareness and provides the current state of the art of context
and integration of context into service compositions. The main attention of this chapter is
focused on the presentation of the relevant context provisioning systems and comparison of
the available approaches of context integration into service compositions.

Chapter 3 - Integration of Context Information: Chapter 3 describes the concept of the
context information integration into service compositions. A context provisioning system
C-CAST CMF introduced in the remainder of this thesis will be integrated into WS-BPEL
compositions using the Integration Process Architecture Pattern approach.

Chapter 4 - Aggregation of Context Information: Chapter 4 is devoted to the aggregation of
context information obtained from various context provisioning systems. This Chapter gives a
general idea of context aggregation in service compositions, identifies aggregation components
and describes an extension to the Integration Architecture Process Pattern approach.

Chapter 5 - Evaluation: Chapter 5 evaluates the concepts of context integration and aggrega-
tion realized in the previous chapters. The sample use case scenario is deployed to Apache ODE
and OW2 Orchestra to ensure interoperability and engine implementation independency of the
proposed integration solution.

Chapter 6 - Context Modeling Tool: Chapter 6 acts as the foundation for future implementa-
tion of an extension to WS-BPEL modeling tools to support modeling of context-aware service
compositions. This chapter covers specification and design details and provides hands-on
knowledge required for its implementation.

5

1. Introduction

Chapter 7 - Summary and Future Work: The last chapter concludes this thesis and contains
information about future work.

6

Chapter 2

Fundamentals and State of the Art

This chapter evaluates the research achievements over the past years in the area of context
awareness. It gives the hands-on knowledge for better understanding of main concepts and
principles by presenting historical development and the current state of the art of context and
its integration into service compositions. The remaining sections of this chapter are structured
as follows:

The first section of this chapter provides historical background information, discusses the
fundamental contributions in this research area and explores the unique characteristics of
context information. Furthermore, it examines in detail the basic components of the conceptual
architecture model for context management.

The main attention of the second section is focused on the presentation of some of the relevant
context provisioning systems and their services. The third section introduces different strategies
to enable integration of context into service compositions. Finally, the available approaches are
analyzed and compared against their complexity to find the most suitable approach for future
realization.

7

2. Fundamentals and State of the Art

2.1. Context

2.1.1. Definitions

General notion of Context

The definition of Context in computer science is primarily based on its common notion in
the ordinary language. Derived from the Latin term contextus which means connecting or
composing as by interweaving of parts, the word itself describes Context as the parts of
information which immediately precede or follow any particular passage or text and determine
its full meaning [4]. Within the field of computer science, this basic definition of Context was
initially used by Noam Chomsky in his fundamental work describing the containment hierarchy
of classes of formal grammars.

Since computing reflects the changes that society is undergoing, the definition of Context
tends to get more general over time. According to the modern conventional interpretation
the Context can be depicted as an active process dealing with the way humans weave their
experience within their environment, to give it meaning [5]. This general interpretation of
Context provides a reference point to present a further survey on context definition.

History of Context-Aware Computing

One of the first applications of context information in computing goes back to 1992 when
Roy Want et al. introduced the Active Badge Location System [6]. A wearable tag designed
in the form of an Active Badge transmitted information about the current location of an
individual to a centralized location service, through a network of infrared sensors. The server
in turn used the location information of humans to compute their proximity to the nearest
telephone extension and forward telephone calls from the main switchboard. The idea of
the Active Badge Location System was used as an image of the future of computing in the
visionary article written for Scientific American by Mark Weiser [7]. Mark Weiser, thought of as
the founder of the term Ubiquitous Computing, articulated the idea of invisible computation
based on the principle that computer devices connected with strong communication networks
vanish into the background and become transparently and seamlessly woven into the main
activities of everyday life. According to him, location awareness is a technical issue of crucial
importance. Provided with the information of their location and the location of objects in their
environments, computer devices acquire a certain level of intelligence taking right proactive
actions to adapt their computational behavior as per user expectations.

8

2.1. Context

Mark Weiser’s vision of the future of Information Technology had an enormous impact on the
research. Adaptivity to the location of physical objects in the environment remained a key
issue to achieve social sensitivity in computing, until Bill N. Schilit et al. wrapped location
awareness into their notion of Context-Aware Computing [8] [9]. The new term was used to
depict general software capability to adapt itself to the changing environment using context
information. The aforementioned adaptation takes place according to the current location,
identities of nearby individuals, hosts and accessible devices, as well as changes to those things
over time. Though their context definition encompasses other attributes such as lighting, noise
level, network connectivity, and communication costs, their primarily interpretation of context
was based on location and proximity. Since the reach and relevance of the concept of context
is much broader than what the proposed definition could capture, earlier researchers have
tried to contribute to the context definition by suggesting various context elements and their
classification.

Definition of Context

The notion of context has been extensively discussed in the literature. Manasawee Kaenam-
pornpan et al. presented a survey on context definition issues, together with the discussion
of different approaches [10]. They classified various context definitions regarding context
elements such as location, infrastructure information, user information and activity, social
aspects, time, device characteristics, and others. The results of their survey are shown in Table
2.1 where the rows depict the addressed context definitions and columns the elements of
context, that researchers used to classify as part of their context.

The review of past research in context definition showed that researches had different views
on what context is and which elements should be considered as part of context. To get detailed
information on each suggested context definition, please refer to the survey [10]. Among the
proposed definitions the one suggested by Gregory D. Abowd and Anind K. Dey is the most
accurate [11]:

Context is any information that can be used to characterize the situation of
an entity. An entity is a person, place, or object that is considered relevant
to the interaction between a user and an application, including the user and
applications themselves.

9

2. Fundamentals and State of the Art

Location Conditions Infrastructure
(Computing
environ-
ment)

Information
on User

Social User
Activity

Time Device
Charac-
teristics

Benerecetti et al.
’01

Physical Environment Cultural Context

Schmidt et al ’99 Physical Environment Human Factor X

Lieberman and
Selker ’00

User Envi-
ronment

Physical En-
vironment

X User envi-
ronment

X

Hull et al. ’97 Physical En-
vironment

X X

Chaimers and Slo-
man ’99

X X X X X

Lucas ’01 Physical Environment Information Context X

Schilit et al ’94 Physical Environment X User Environment

Dey and Abowd ’99 X Identity X X Identity

Chen and Kotz ’00 Active / Passive

Table 2.1.: Context Classification Systems [10]

This definition is one of the most often cited definitions of context. The reason why this context
interpretation supposed to be the most successful is well explained in the paper by Ahmed
Soylu et al. [12]. In [13] A.K. Dey shows, that it is not possible to enumerate a complete set of
context elements that cover context as a whole. A particular knowledge can be interpreted
as a contextual information in one setting while it is not part of context in another setting.
The notion of a new abstraction, defined as situation [13], eases the enumeration of context
elements relevant for a specific application. Hence, rather than providing an exhaustive context
definition, it is better to concentrate on the situational environment of a particular application
and define all important aspects of a situation.

These necessary aspects can be determined by answering questions regarding the dimensions:
who, what, where, when and why [13] [14] [15]. Other dimensions for classification of context
aspects include external vs internal [16], as well as physical vs logical [17] dimensions according
to the survey in [18]. The external dimension of context encompasses the elements of physical
environments such as location, proximity, temperature and time, while the internal dimension
includes information like user goals, tasks, emotional and physical state. Physical and logical
dimensions differ in the way the context information is retrieved: physical context can be
captured by hardware sensors, while logical context aggregates different kinds of context to
enrich the semantics of this information. The extracted set of obtained context elements can
be further reduced by considering the kind of a particular context class as defined by Guanling
Chen and David Kotz in [19]. Context is classified in two kinds: active and passive. Active
context is of crucial importance for a particular application since it influences its behavior.
Passive context is in turn relevant, but not critical to an application.

10

2.1. Context

Definition of Context-Awareness and Context-Aware Computing

As previously mentioned, the term Context-Awareness and Context-Aware Computing was
initially introduced by Bill N. Schilit et al. in [8]:

Context-Aware computing is the ability of a mobile user’s application to
discover and react to changes in the environment they are situated in.

Bill N. Schilit et al. categorize the capabilities of Context-Aware systems in:

• Proximate Selection, a user interface technique to ease the selection of the nearby located
objects

• Automatic Contextual Reconfiguration of a system’s structure in order to adapt to the
changing environment

• Commands using contextual information to produce different results according to the
context in which they are issued

• Actions triggered by changes in context and specified as simple IF-THEN rules

In a like manner, Richard Hull et al. defined Situated Computing as the ability of computing
devices to detect, interpret, and respond to aspects of the user’s local environment [20].
The main responsibilities of a system based on Situated Computing include data fusion and
interpretation, event delivery about situational changes, as well as granting interfaces to query
context information. Jason Pascoe described Context-Awareness by presenting a set of core
capabilities of each context-aware system [21]. According to him, these capabilities include:
contextual sensing of environmental states, contextual adaptation of computational behavior,
contextual discovery of resources for their further utilization, and contextual augmentation of
the environment with additional useful information.

The definition of Context-Awareness chosen by Anind K. Dey and Gregory D. Abowd differs
from the others and is basically considered from the user’s view [13].

A system is context-aware if it uses context to provide relevant information
and/or services to the user, where relevancy depends on the user’s task.

Anind K. Dey and Gregory D. Abowd combined and simplified the ideas introduced by other
researchers and proposed a different classification of context-aware features that context-
aware applications may support: presentation of information and services to the user, automatic
execution of a service, and tagging of context information for later retrieval. This most cited
definition of Context-Awareness and context-aware features is supposed to be the fundamental
contribution in the research area.

11

2. Fundamentals and State of the Art

Context in Service Compositions

Previously, techniques of Context-Aware Computing were limited only to autonomous stan-
dalone applications due to the lack of standardized technologies which could support interop-
erability of services owned by different organizations. The advancement in Service-Oriented
Computing (SOA) technology allowed autonomous and heterogeneous applications to be ex-
posed as Web services and interconnected into service compositions leveraging well-agreed
interfaces, protocols and message formats. Service-Oriented Computing technology enabled
service compositions to leverage various types of context information and adapt their behavior
according to the changes in the large scale, multi organizational environment. This turn in
technology had an impact on the interpretation of the notion of Context and Context-Aware
Computing.

Though Dey’s definition of Context and Context-Aware Computing remained the most com-
monly cited among the research community, new definitions still emerged with a particular
focus on interpretation of context specific to the domain of service compositions. Basic usage
of context information can be classified as follows:

• Data interpretation

• Service personalization

• Service process adaptation

• Automatic service execution

• Provisioning of relevant user-tailored services

In [22], the authors use context to describe the underlying semantics of the exchanged data
between Web services. Context is defined as a collection of implicit assumptions that are required
to obtain accurate data interpretation.

In [23], context is defined to have its primarily use in personalization of composite Web services.
The context elements are considered from a Web service’s perspective and include information
about user’s environment, preferences, needs, and current execution status of a Web service. C.
Chedira et el. [23] classify context in three various types: 1. User Context which encompasses
a limited set of information about user’s environment, preferences and needs; 2. Web Service
Context which includes information about the current execution status of a Web service such as
availability, and resource requirements; and 3. Composite Context which aggregates the context
information of each Web service and exposes it for the whole service composition.

A. A. George describes context as an environmental state which is external to a process, whose
value can change independent of a process’ lifecycle, and can influence the process’ execution [24].
The central idea articulates that a service process cannot directly change its context.

12

2.1. Context

A common notion of Context is considered to be the information characterizing the situation in
which a Web service is being executed [25]. Hence, a context-aware Web service is supposed to
be cognizant of its situation and be able to use this information to provide relevant services or
be executed or adapted automatically [26].

2.1.2. Context Management

A number of different approaches has been proposed to define a conceptual architecture model
for context management. To present basic components of the architecture, this chapter initially
outlines important actors which participate in the context management. Subsequently, various
groups of basic components for context management are covered by adopting [12] and [27]
as shown in Figure 2.1.

Context Sensing

Context Modeling

Context Reasoning

Context dissemination and acquisitionContext Dissemination and Acquisition

Context Information Quality Monitoring

Context Construction

Ambiguity and Incompleteness Monitoring

Context History and Storage

Context Interpretation and Aggregation

Figure 2.1.: Context Management Architecture – Main Components

Actors

Each context-aware system consists of software components with well defined roles. These
roles are depicted in Figure 2.2 and described in detail as follows:

13

2. Fundamentals and State of the Art

Context
 Broker

 Context
Providers

Context
Sources

 Context
Consumers

Access context provisioning entiities
and Context Broker value-added services

Discover and register context provisioning
entities and control information flow

Process and aggregate context
information

Capture context information

Figure 2.2.: Context Management Architecture – Actors

Context Source Local and remote data sources are usually wrapped into so-called Context
Sources. In order to achieve interoperability between different system components a Context
Source transforms fetched data in a well-defined format and exposes an interface for other
components to access this data.

Context Provider Context Provider acts as a module that produces new context information
from internal or external information. The core capabilities of a Context Provider include
capturing context information, data fusion, local caching, prediction, reasoning etc. In the
same manner as Context Source, Context Provider exposes an interface for invocation and
produces context information in a standardized message format.

Context Consumer Context Consumer retrieve contextual data through communication with
context provisioning entities like Context Provider or even Context Source. Since the obtained
context information can be processed, enriched, and made available for other consumer entities,
a Context Consumer may act also as a Context Provider.

Context Broker Context Broker is the main component of each context-aware system with the
important goal of providing a communication interface between other software entities in the
overall system. The Context Broker has to register context provisioning components, perform
their lookup, and discovery along with the control of context flow among all components.

14

2.1. Context

Context Sensing

Capturing of context information is handled in the lowest layer which consists of a set of
different sensors. Sensors extract raw data about the observed environment and provide an
interface to access the information inherent in this data. It is worthy of note that the sensor
concept includes every possible data source, which provides domain relevant information.
According to the classification proposed in [28] sensors can be categorized into three groups:

• Physical sensors measure heterogeneous information about physical objects

• Virtual sensors extract information from virtual spaces like software application and
services

• Logical sensors combine information provided by physical or virtual sensors to enrich
the semantics of this information

In addition to this, sensors can be further classified into local and remote sensors. Since it is
not possible for a single device to capture all context information as local context, the context
management architecture should support connections to remote sensors to obtain context
information managed by other entities (remote context) and by central brokers (central context)
[12].

Context Modeling

In order to achieve a better processing of context data and provide interoperability between
context information providers, Context Management standardizes a meta-model for context
representation. An extensive and most cited survey of the most relevant context modeling
approaches is provided in the paper by Strang et al. [29]. The analyzed approaches are
classified according to the data scheme used to represent and exchange contextual information
in the respective system.

Key-Value Models The most simple data structure is the key-value data model where data is
represented in a form of a map between keys and values. Context data may be expressed as a
collection of name-value pairs where name depicts the particular type of the context.

Markup Scheme Models Markup scheme modeling approach is based on the representation
of information as a hierarchical data structure consisting of markup tags with attributes and
content. A typical representative for a meta markup language is XML (Extensible Markup
Language) which found wide acceptance and use in different fields of data representation and
management.

15

2. Fundamentals and State of the Art

Graphical Models modeling context information can be also achieved with general purpose
graphical modeling instruments such as UML (Unified modeling Language) , ORM (Object-Role
Modeling) or ER (Entity Relationship modeling) diagrams. Since these modeling tools provide
extension mechanisms, contextual aspects can be implemented and made available as modeling
tool extensions.

Object Oriented Models Applying object-oriented techniques to modeling of context knowl-
edge brings benefits of Object Orientation such as encapsulation, reusability and abstraction.
Different objects standing for various types of context encapsulate the details of context
processing and provide access to contextual information through specified interfaces.

Logic Based Models Logic based models rely on the formal representation of contextual
information and relations in terms of facts, expressions, and rules. Context information may
be derived from a set of expressions or facts using logic conditions which are described in a
set of rules in a formal logic based system. All logic based models are characterized by a high
degree of formality.

Ontology Based Models Ontology based context modeling approaches inherit the strengths
in the field of normalization and formality from ontologies. Representation of context knowl-
edge with its semantics is achieved through conceptual ontology terminologies, formal axioms
and constraints. Ontologies provide rich semantics embodied by a well-formed term vocabulary
with clearly defined relations between different terms and inference rules used to derive new
knowledge from existing facts [30]. In general, the ontological concept represent a promising
context modeling approach because of its knowledge sharing, logic inferencing, and knowledge
reuse capabilities [31]. Different techniques for ontology representation may be categorized
into: AI based, software engineering (e.g. UML), database engineering (e.g. ER, EER) and
application oriented (e.g. key-value pairs) techniques [12].

Machine Learning modeling The above mentioned classification of context modeling ap-
proaches is extended in the survey [32] by adding a new modeling concept based on Machine
Learning techniques. Since categorization of context knowledge is a complex information
processing task and ontologies fail to cover entire real-world context information, Machine
Learning approach provides a better solution to model real-world context information. A
Machine Learning method estimates the unknown mapping between system’s inputs and
its outputs from the available data, provides classification, association, and prediction of
information as well as learning the model parameters in the presence of incomplete data.

16

2.1. Context

In their extensive survey [5] Bolchini et al. present a general evaluation framework for analyz-
ing context models with respect to a target application. The analysis framework is subsequently
applied to the most interesting, data-oriented approaches found in the literature. The survey
provides short description of the examined systems, highlighting relevant characteristics and
the context modeling subproblems they are targeting.

Context Reasoning

To improve reusability of systems and ease application development, reasoning of context
information is usually encapsulated, moved out of application logic and handled as a separate
layer in the Context Management architecture. Depending on the specific purpose a context-
aware system is designed for, the context reasoning layer may include the following features
by adopting [5], [12] and [18]:

Context Construction As previously mentioned, context sensing is handled in the lowest
layer consisting of a set of various sensors. Sensors simply provide the current contextual value
which is a raw technical data retrieved from remote or local data sources. Hence, the context
processing layer is responsible for transforming raw information using extraction operations
and providing an access to a structured view of context information. Data structures presented
in the context modeling layer incorporate the fundamental consideration to enable contextual
data to be accessed in a context processing layer.

Ambiguity and Incompleteness Monitoring A context-aware system may encounter incom-
plete, incoherent, or even irrelevant context knowledge. The context reasoning layer provides
mechanisms such as interpolation or mediation to deal with the processing of ambiguous data
and the reconstruction of reasonable context information.

Context History and Storage Most context sources produce a continuous data stream which
is relevant for all context-aware systems especially for those processing real-time scenarios. As
sensors measurements may be valuable for later access and processing, the context reasoning
layer addresses this issue by providing storage for historical context knowledge. Observing
past measurements helps to derive knowledge about context, provide values during temporary
sensor failures, and predict future context values.

17

2. Fundamentals and State of the Art

Context Interpretation and Aggregation Only some of context-aware applications make use
of raw context information retrieved directly from context sensing layer. Context consumers
are mostly interested in already interpreted and aggregated data. Hence, the context reasoning
layer is responsible for the transformation of raw, fine-grained data to a higher level abstraction
and composition of information collected from several data sources to a high-level context
information. According to the Context Toolkit architecture described in [13], the main compo-
nents of context processing include context interpretation and context aggregation abstractions.
Context interpretation defines the ability of the context reasoning layer to transform obtained
context information including additional knowledge. Context aggregation defines a process
which collects or aggregates context information from several sources and abstracts it onto a
higher level. In [12], context aggregation happens in three ways:

• One-to-One transforms information obtained from one low level data source to one high
level context dimension

• Context Fusion transforms information obtained from several low level data sources to
one high level context dimension

• Context Fission transforms information obtained from one low level data source to several
high level context dimension

Context Information Quality Monitoring To achieve high-quality data acquisition the context
reasoning layer requires intelligent mechanisms for continuous quality testing of the retrieved
context information and handling quality digression which is often caused by multiple aggrega-
tion of context.

Context Dissemination and Acquisition

The last and main component of the Context Management architecture involves dissemination
of context information to interested applications. The key for distributing context knowledge
is the architecture of context management systems which depends on various requirements
such as system extensibility, resource availability, location and amount of context providers
and consumers.

G. Chen et al. distinguish basically between two different approaches: centralized and dis-
tributed architectures [19]. A centralized architecture presents a common way to disseminate
context information using a centralized context server which maintains all context informa-
tion and provides access to information via standard API . On the other hand, a distributed
architecture aims to store context knowledge in several places to avoid potential bottlenecks.
It is also possible to think of a hybrid architecture where a centralized context server manages
common context knowledge and each application maintains its own context data [12].

18

2.1. Context

Another important issue is the kind of data acquisition and separation between managing and
using context knowledge. In [33], H. Chen defines three categories of context acquisition
methods:

• Direct access to sensors: Acquiring context information directly from sensors brings
benefits such as control over operations of the low-level sensors and knowledge about
context sensing and processing. According to this approach, context-aware applications
are responsible for implementation of all context management layers including context
sensing, modeling, and reasoning.

• Middleware infrastructure: The context sensing and modeling logic is encapsulated and
handled outside the application logic. Using a middleware-based approach, context-
aware applications focus on providing context reasoning logic.

• Context server: Shifting context acquisition logic to a centralized context server allows
applications to acquire context and become context-aware without build-in context
sensing capability. The context server implements all layers of Context Management
architecture including context dissemination in a distributed environment.

The last important issue of acquiring and distributing context information is the communication
style between context providers and consumers. Two different ways are widely used to gain
access to context information: synchronously (pull-mechanism) and asynchronously (push-
mechanism). In synchronous (pull) mode context context consumer sends a request to context
provider and awaits response. This way, the context-aware application is responsible for polling
the context server for context information changes. In asynchronous (push) mode, the context
consumer subscribes for the context updates at the context provider. As soon as the required
context information is available the context server either notifies about the update or pushes
context data to the context-aware application.

To ensure robust and optimal management of a big amount of context information and its
distribution over numerous context consumers in an efficient way, a single context server
solution is often not feasible. Context provisioning systems, briefly discussed in the next chapter,
offer a better context management solution.

19

2. Fundamentals and State of the Art

2.2. Context Provisioning Systems

The main purpose of a context provisioning system is to provide an extensible and efficient
approach for handling and distributing of context knowledge with respect to the general
context management architecture outlined in the previous section. The context provisioning
system integrates all the components required to maintain a high amount of distributed
heterogeneous context sources, support alternative context modeling approaches, and provide
extensive reasoning mechanisms for context knowledge. Furthermore, a context provisioning
system is responsible for the dissemination of context information using basic synchronous
and asynchronous context access patterns. This section briefly presents two relevant context
provisioning platforms and describe their services.

2.2.1. Nexus Platform

Developed within the scope of the Nexus project [34] at the University of Stuttgart a context
provisioning platform Nexus aims to provide support for all context-aware applications. The
proposed solution relies on a novel idea to avoid development of context-aware applications
using local context models tailored to best suit current application requirements. The Nexus
approach suggests the integration of partial context models from a variety of context providers
to build a shared global context model [35]. This so-called Augmented World Model builds
upon the federation of compliant local context models called Augmented Areas by enabling
the representation of context information using a global object-based ontology model with
hierarchical is-a relationships between objects [36]. As depicted in Figure 2.3, the Nexus
context provisioning platform consists of three different tiers:

Service Tier The Service tier abstraction maintains various context servers responsible for
handling and providing access to Augmented Area information. To enable integration into
the Nexus platform, each context server provides a standard interface to process request
queries defined in the XML-based Augmented World Query Language (AWQL). AWQL provides
standard data processing methods (insert, update, delete), as well as support for different
spatial predicates (overlaps, inside, near). Furthermore, the context server returns resulting
objects represented in Augmented World Modeling Language (AWML) to enable their further
processing in the Federation tier.

20

2.2. Context Provisioning Systems

Geo
Cast

Navigation
Service

Hoarding

Event
ServiceQuery

Comp.

Nexus
Node

Nexus Node

Application A Application B

Area
Service
Register

Context
Server

Application
Tier

Federation
Tier

Service
Tier

Nexus
Node

Context
Server

Context
Server

register

query notify

register notifyquery notify

Figure 2.3.: Context Provisioning System – Nexus Platform [35]

Federation Tier Federation of different Augmented Areas into Augmented World Model is
handled in this central tier. Mediating between the Application and Service tiers, the Federa-
tion abstraction is responsible for distributing request queries between available augmented
areas, processing replies, and providing value added services such as monitoring of events
and complex context aggregation. The Area Service Register (ASR), the main component of
Federation tier, represents a directory for registering and discovering available context servers.
The ASR stores information about integrated Augmented Areas, existing object types and their
attributes, as well as the address of the server. It analyzes incoming request queries, detects
and distributes query to the corresponding Augmented Areas and combines replies to provide
a consistent view. In general, Nexus nodes provide the same interface as the context servers
of the Service tier, support information caching and supply advanced value-added services
mentioned above.

Application Tier The top tier provides a general abstraction for context-aware applications
using the Nexus federated context model. The Nexus platform supports various interaction
mechanisms such as processing request queries to retrieve context information, registering to
the Event Service to forward notifications about context changes, as well as granting access to
value-added services.

21

2. Fundamentals and State of the Art

The Nexus platform as a context provisioning system provides extension mechanisms for
integration of any desired context models, supports different communication paradigms, and
allows implementation of various advanced value-added services on the platform basis.

2.2.2. C-CAST Context-Management Framework

C-CAST Context-Management Framework (C-CAST CMF) [37] is an ongoing EU-funded project
which aims to provide an end-to-end context-aware communication framework for intelligent
multicast-broadcast services. Among other important targets, C-CAST CMF addresses the key
issue of service development for context representation, context assisted group management,
and efficient context reasoning. This section briefly describes the C-CAST CMF architecture and
gives an overview of the ContextML modeling language used in the framework. The detailed
description will follow later in this thesis.

According to the general context management architecture outlined in the previous chapter, the
context provisioning system C-CAST CMF consists of four main components: Context Consumer,
Context Provider, Context Source, and Context Broker [38]. The Context Broker represents the
core component of the entire architecture and is responsible for the communication between
context provisioning and consuming entities. Context-aware applications generally referred
to as Context Consumers leverage the services provided by Context Broker such as context
aggregation, a Context Provider Lookup service, a Context Cache, and a Context History Service.
Context provisioning entities like the Context Provider and Context Source provide context
information in synchronous and asynchronous modes respectively. Context information and its
exchange is generally represented through the concept of entities and scopes. Defined through
a context type and a particular identifier, an Entity is basically a subject of interest where
context data refers to. Scopes are designed to combine closely related context information into
atomic units to enable consistent data operations such as creating, requesting, updating, and
deleting.

To enable exchanging of context information between the architecture components, C-CAST
CMF defines ContextML - a light weight XML-based language used for context representation
and communication. Using ContextML for communication, Context Providers register them-
selves and their capabilities at the Context Broker. Context Consumers leverage ContextML for
querying the Context Broker to find a particular Context Provider, obtain context information
or formulate the event conditions, and receive event updates.

In this diploma thesis, the C-CAST CMF context provisioning system will be integrated into
service compositions.

22

2.3. Integration of Context into Compositions

2.3. Integration of Context into Compositions

In this chapter different strategies to enable integration of context into service compositions
are presented and evaluated. The objective of this survey is twofold. First, to give a brief
description and identify the capabilities of each context integration strategy. The second goal
is to analyze the existing integration techniques and to take this analysis as the starting point
in order to define the requirements of the integration approach used in this thesis.

The remainder of this chapter is structured as follows: the first section presents a brief overview
of the various context integration strategies. The second section introduces the evaluation
criteria used for comparison of the integration approaches. Finally, the third section is devoted
to the actual evaluation and draws conclusive considerations.

2.3.1. Solutions

Context Variables

George et al. present an architecture for modeling, sourcing, and propagating context infor-
mation in WS-BPEL business processes based on the idea of Context Variables [24]. The basic
concepts of their approach can be summarized as follows:

• Interpretation of context as a read-only environmental state external to a business process

• Standard-conform WS-BPEL language extension to support context variables

• Modeling of context sources as WS-Resources based on Web Service Resource Framework
(WSRF)

• Propagating context changes from context sources to WS-BPEL variables using Web
Service Notification (WSN) operations such as publish / subscribe

Their notion of context does not implicate any exact definition and categorization. Context is
seen as a state external to a business process, whose value is not populated by the process and
can change independent of a process’ lifecycle, hence influence the process’ execution. The
representation of context information in WS-BPEL business processes is achieved through the
language extensibility features of WS-BPEL by declaring context variables. Context variables
are constructed and accessed inline in the same way as the standard WS-BPEL variables.
The additional namespace-qualified attribute isStateful=yes is used to mark a context-aware
business process as well as its variables storing context information.

23

2. Fundamentals and State of the Art

Since a business process cannot change its context directly, the value of a context variable
is populated by an external publish / subscribe context source. Context sources are defined
to represent entities that expose a collection of environment state parameters or context.
Modeling of context sources in web-services environment is handled outside the business
process logic and achieved using standard WSRF constructs. This way, a context source is
designed as a WS-Resource, which exposes a web-service interface for a business process to
provide access to the underlying stateful resource. WSRF WS-Resource factory maintains the
dynamic creation of WS-Resources at runtime and provides references to existing entities on
demand.

<wsbpel:variable name="v1" ...
ns1:isContextual="yes" />

WS-BPEL Engine

Web service

(context source)

Context provided:

ContextType1

ContextType2

Notification-consumer
interface

Sensor
...

subscribes

propagates
manages

notifies

Process P1

Figure 2.4.: Context Integration Approach – Context Variables [24]

WSN provides standardized publish / subscribe mechanisms for Web services where a WS-
Resource acts as a notification producer and a WS-BPEL engine depicts a notification consumer
(see Figure 2.4). In order to setup a business process’ context variable, a workflow engine lever-
ages the context type associated with a context variable and subscribes it to the corresponding
context source. During the process execution WSN operations are used to continuously update
context variables with recently changed context values from context sources.

The proposed concept of using context variables for context integration requires the modifica-
tion of WS-BPEL engine. In particular, the WS-BPEL engine should implement logic necessary
for interception and parsing responses for context parameters, linking context variables to
available context sources, and updating context variables using WSN mechanisms.

24

2.3. Integration of Context into Compositions

Context Integration Processes

A different context integration approach is introduced in [39]. To meet the integration
challenges Wieland et al. define an extensible modular architecture based on the Integration
Process Pattern. As shown in Figure 2.5, a three layered system model provides the required
abstraction to enable coupling of workflow engines with external information sources like
context provisioning systems.

Legend: = hierarchical invocation dependency

= a set of services implemented as BPEL process

= external users or systems

technical IT-system specific interface

semantical domain specific interface

Context Integration Processes (CIPs)

service user (e.g. workflows, applications)

domain specific Context Integration Processes

domain independent CIPs domain independent CIPs

core CIPs (for system A) core CIPs (for system B)

system A (to be integrated) system B (to be integrated)

Figure 2.5.: Context Integration Approach – Context Integration Processes [39]

The Smart Workflow Layer realizes context-aware applications and in particular workflows,
also called Smart Workflows. Implemented as standard WS-BPEL business processes the smart
workflows represent technical processes that use context knowledge to be executed pervasively
and adapt to changes in their physical environment.

Located at the bottom of the architecture the Context Provisioning Layer contains various
context provisioning systems which represent the artifacts of the integration. Context provi-
sioning systems provide generic services for managing context knowledge and distributing this
information and functionality using synchronous and asynchronous communication patterns.

25

2. Fundamentals and State of the Art

The Context Integration Layer mediates between the other two layers and represents the most
important part of the architecture. The main responsibilities of this layer include the integration
of the context provisioning components and the transformation between different message
formats on the higher and lower layers to allow simplified access to the underlying systems’
interfaces. To meet the outlined requirements the context integration layer is organized
as a hierarchical Web service stack based on the Integration Process Pattern [40]. Context
Integration Processes (CIPs) realize the hierarchical structure of the pattern and represent
autonomous WS-BPEL workflows derived from each other. The CIPs are organized in three
granularity levels:

• Core CIPs are responsible for the integration of the context provisioning components.
Each service interface provided by a context provisioning entity is wrapped into one
concrete CIP. If the interfaces of the integrated components change over time, only
CIPs at the Core level should be modified accordingly. Thereafter, Core CIPs provide
general, application independent context information, which allows the exchange of the
underlying provisioning systems without changing the workflows at the Smart Workflow
Layer.

• Domain Independent CIPs reduce interface complexity of the Core CIPs and can be
reused in different application domains. The CIPs at this level may be used for finer
grained selection of context data at different semantic levels.

• Domain Specific CIPs are tailored to the requirements of the particular application
domain. The Smart Workflow Layer uses the services of the CIPs at this level to access
Domain Independent CIPs in a simplified manner. Therefore, the Domain Specific CIPs
are responsible for the transformation of the simple message formats on the application
level to the more complex formats used at the Domain Independent level.

Propagating of context information in a Web services environment using the proposed approach
is based on the existing standards and frameworks and does not implicate the modification
of the WS-BPEL engine. Separating context integration into a hierarchy of different CIPs
allows a high maintainability and reusability of the services. On the other hand, the numerous
abstraction layers introduced in the Integration Process Pattern have a negative impact on the
overall system performance.

26

2.3. Integration of Context into Compositions

CEVICHE
Framework

SBPL (UI)
CEVICHE
Translation
Framework

CEVICHE
Adaptation
Manager

Easy BPEL
Engine

CEP Engines
SBPL description file

(XML)

Adaptation
conditions

and
processes

Business rules
(BPEL)

Adaptation
situation

Event definitions

Translation
Plug-in

Engine specific event definitions

Adapted
process

Events cloud

Events

Subscribe

Alternative
Process DB

Figure 2.6.: Context Integration Approach – CEVICHE Framework [41]

CEVICHE

CEVICHE [41] stands for the Complex EVent processIng for Context-adaptive processes in perva-
sive and Heterogeneous Environments and represents a framework which combines Complex
Event Processing (CEP) and dynamic business process adaptation. According to the proposed
approach, the context information is defined as various events which trigger the process adap-
tation during the execution. Hence, CEVICHE intends to facilitate the integration of different
CEP engines using an plug-in approach.

CEVICHE relies on an extension of WS-BPEL which allows to extend business process’ definition
with adaptation points, conditions, and alternative processes in order to add flexibility to the
process execution. The proposed Standard Business Process Language (SBPL) specifies the
following additional elements:

• adaptationPoint is used to define the position in a process where the adaptation occurs.

• situation tag specifies the conditions expressed in the form of events indicating when
the adaptation is expected.

• adaptationType defines how a process is adapted: before, after, or around the adaptation
point.

• alternativeProcess is used to specify what is to be adapted in a business process.

27

2. Fundamentals and State of the Art

A component-oriented approach enables CEVICHE to transform a process into dynamically
bound components and define alternative processes to be dynamically integrated at runtime.
The realization of this issue is achieved by using the Easy BPEL engine [42]. Easy BPEL
represents process activities as independent components bounded according to the process
definition. The bindings can be changed at runtime enabling adding and removing process
components during the execution.

A CEP engine monitors the execution context by receiving and analyzing all the events genera-
ted by every change in the environment. To capture and extract relevant information a CEP
engine relies on the previously defined CEP rules. These rules represent the conditions de-
scribed in SBPL situation elements using XPath [43] expression language. CEVICHE supports
different CEP engines by introducing a plug-in approach which allows to translate events and
condition rules into the specified CEP engine’s format.

As shown in Figure 2.6, the CEVICHE architecture features four components: 1. SBPL User
Interface used for the definition of context-aware workflows, 2. CEVICHE Translation Framework
that separates adaptation logic from the core business process, 3. Translation Plug-in responsible
for translation of events and condition rules for each CEP engine, and 4. CEVICHE Adaptation
Manager to enable process adaptation.

In order to use complex event processing for dynamic business process adaptation, an extended
WS-BPEL engine is required. In addition, the proposed approach requires implicit knowledge
in CEP technologies and available engines.

ContextServ

The ContextServ platform [44] has been developed within the scope of a research project
sponsored by Australian Research Council (ARC) [45]. Adopting a model-driven develop-
ment approach the ContextServ platform represents a generic approach for formalizing the
design and development process of context-aware applications. ContextServ supports context
provisioning management. Furthermore, it offers visual modeling tools for context and context-
awareness techniques using a UML-based modeling language, called ContextUML. Finally, it
provides a transformation tool for automatic generating of context-aware WS-BPEL processes
out of the ContextUML model.

ContextServ supports the development of context-aware applications by adopting model-driven
development concept. To enable modeling of context provisioning techniques, ContextServ in-
troduces UML-based language, ContextUML. ContextUML provides high-level visual constructs
for specifying the following context elements and context-awareness mechanisms:

Context modeling ContextUML defines two different types of context: Atomic Context and
Composite Context standing for low-level and aggregated contexts respectively.

28

2.3. Integration of Context into Compositions

Context Manager

Community Composition

Specify service
interface

Specify context
provisioning

Deploy service

Bind to service
implementation

Specify context-aware
Web service in contextUML

Service
Developer

Web server

Execution
Engine

ContextUML
modeler

Ruby MDA
transformer

Service
Consumer

Context Transform service
model to executable

specification

Configure and run service
at the engine

Search service

Invoke service

Transform to WSDL Publish service to registryContext-aware Web
service interface

WSDL specification
of service

Web service
registry

Figure 2.7.: Context Integration Approach – ContextServ Platform [44]

Context provisioning modeling The central modeling unit representing any context provi-
sioning resources is Context Source. ContextUML distinguishes between two types of Context
Sources: Context Service and Context Service Community. A Context Service represents a single
context provider responsible for collecting, refining, and disseminating context information. At
any time Context Services may enter and leave a Context Service Community that offers an
unified interface to access aggregated Context Services. Since Context Services may distribute
heterogeneous and ambiguous information, a Context Service Community is responsible for
the dynamic provisioning of optimal context to the context consumer.

Context-Awareness modeling Context-awareness mechanisms are assigned to various Context-
aware Objects. ContextUML adopts the structuring elements from WSDL (Web Service Definition
Language) and defines the following context-aware objects: Service, Operation, Message, and
Part. Two categories of context-aware mechanisms can be applied to these objects: Context
Binding and Context Triggering. The former models the automatic binding of contexts to
context-aware objects, like the mapping of an input parameter for a service object. The
latter mechanism models the automatic contextual adaptation of context-aware objects using
constraints and actions.

Using ContextUML visual editing and automation tools, context-aware applications are specified
in a platform independent model and transformed into platform specific models such as WS-
BPEL. As illustrated in the Figure 2.7, the ContextServ architecture contains the following main
components:

29

2. Fundamentals and State of the Art

• Context Manager provides functionality to specify context provisioning entities and
register them within the ContextServ platform for future usage.

• ContextUML Modeler exposes a graphical interface for modeling of context-aware appli-
cations. The modeler is a version of ArgoUML [46] extended by adding a new diagram
type ContextUML.

• Ruby MDA transformer is responsible for the transformation of ContextUML diagrams,
exported in the XML Metadata Interchange (XMI) format, into an executable WS-BPEL
context-aware process defined.

ContextServ realizes a rapid model-driven approach to develop context-aware Web services.
This is the only solution, in this evaluation, that provides end-to-end support including visual
editing tools. In addition, integration of context information into service compositions does
not require any changes to the WS-BPEL execution engine.

2.3.2. Evaluation Criteria

The evaluation criteria listed below are intended to support the decision process, which context
integration approach is best suited for future realization. The parameters used for future
comparison are derived from the analyzed solutions, by selecting the most indicative and
common ones. This section identifies the key issues and outlines the evaluation criteria as
follows:

Context Modeling

The Context Modeling criteria evaluate the capabilities of the analyzed approach to address
representation of context, its attributes, and context provisioning entities in service composi-
tions:

• Context Source depicts the capability to address single context sources.

• Integration of Context Provisioning Systems defines if the analyzed approach supports
large-scale context provisioning systems.

• Context Aggregation evaluates the capability of the underlying architecture to support
aggregation and high-level reasoning of context information.

• Context Quality indicates if the integration approach explicitly ensures the quality of
the retrieved context.

• Technology / Techniques defines how the context modeling is realized.

30

2.3. Integration of Context into Compositions

Context Awareness Modeling

The Context Awareness Modeling criteria evaluate which context-awareness mechanisms are
available in the analyzed integration approaches.

• Context Binding defines if the context information is automatically bound to context-
aware elements declared in a WS-BPEL process.

• Context Triggering indicates if context changes trigger the automatic execution of
process operations.

• Behavior Adaptation depicts the capability of the approach to adapt business process
logic at runtime.

• Technology / Techniques defines how the context awareness modeling is realized.

Service Composition

The Service Composition criteria evaluate the types of languages used for service composition
and their modifications.

• WS-BPEL standard language indicates that service composition supports standard WS-
BPEL.

• WS-BPEL language and engine extension states that service composition is based on
an extension of the WS-BPEL standard.

• Support for other composition languages evaluates if the integration approach can be
applied for other service composition languages than WS-BPEL.

Complexity

Complexity criteria examines the realization of the available context integration solutions
based on their complexity. The realization difficulty is rated according to the scale: Hard,
Challenging, and Easy.

• Context Modeling denotes the complexity when realizing the issues mentioned under
the Context Modeling criteria such as context representation and context provisioning.

• Context Awareness Modeling denotes the complexity when realizing the mechanisms
outlined under the Context Awareness criteria.

• Integration of Context into Service Compositions denotes the complexity when real-
izing the processing of the context information at the business process logic level.

31

2. Fundamentals and State of the Art

• Portability denotes the complexity when realizing the exchange of underlying infrastruc-
ture for context-aware processes.

Modeling Support

The Modeling Support criteria evaluate if the examined context integration approaches provide
support for visual modeling of context, context awareness, and service composition.

2.3.3. Comparison

This section analyzes and compares available context integration solutions with respect to the
previously outlined comparison criteria. The evaluation result provides a structured view of the
state of the art, which enables focusing the attention on the key issues of context integration.
Finally, the best context integration approach is selected.

The capabilities of each context integration strategy are identified in the Tables 2.2 and 2.3,
where the rows depict various evaluation criteria along with the corresponding key issues and
columns represent the discussed context integration solutions. The supported features are
denoted with the sign X. In cases where no clear statement is given whether the capability is
supported by the particular integration approach, the feature field is left blank.

32

2.3.
Integration

ofC
ontextinto

C
om

positions
Categories Capabilities Context Variables Context Integration Pro-

cesses
CEVICHE ContextServ

General Context Definition Context is an environmen-
tal state which is external
to a process, whose value
can change independent of
process’ life cycle, and can
influence the process’ ex-
ecution. A process can-
not directly change its con-
text and only its designers
can decide what qualifies
as context in their applica-
tions.

Context is any information
that can be used to char-
acterize the situation of an
entity. An entity is a per-
son, place, or object that is
considered relevant to the
interaction between a user
and an application, includ-
ing the user and applica-
tions themselves (based on
Dey and Abowd, 1999).

Context is defined as events
which trigger the business
process adaptation.

A context-aware Web ser-
vice is a Web service that
uses context information to
provide relevant informa-
tion or services to users.

Context

Modeling

Context Source X X – X

Integration of Context
Provisioning Systems

X X X X

Context Aggregation – X X X

Context Quality – – – X

Technology / Techniques WSRF WS-BPEL Complex Event Processing ContextUML
Model Driven Development

Context
Awareness
Modeling

Context Binding X X X X

Context Triggering X X X X

Behavior Adaptation – – X –

Technology / Techniques WSN WS-BPEL Complex Event Processing,
Component Oriented Pro-
gramming

ContextUML
Model Driven Development

Service

Composition

Static X X X X

Standard WS-BPEL – X – X

WS-BPEL language and
engine extension

X – X –

Support for other compo-
sition languages

– – – X

Table 2.2.: Comparison between Various Strategies of Context Integration into Service Compositions (Part 1)33

2.
Fundam

entals
and

S
tate

ofthe
A

rt

Categories Capabilities Context Variables Context Integration
Processes

CEVICHE ContextServ

Complexity

Context Modeling Hard
- Full context schema model-
ing
- Context Source implementa-
tion in WSRF

Challenging
Integration or new imple-
mentation of context pro-
visioning system.

Hard
- Integration of CEP engine
- Definition of CEP rules to
generate events

Challenging
ContextUML provides mecha-
nisms to model context types,
integrate context sources and
aggregate them as context
communities. ContextUML
defines Quality of Context pa-
rameters to provide dynamic
context source selection.

Context Awareness
Modeling

Challenging
- Publish-Subscribe configura-
tion with WSN
- Automatic context binding
and triggering

Hard
Implementation of
Context Integration
Processes.

Challenging
Specification of adaptation
points in BPEL and adapta-
tion logic including alterna-
tive business processes for
adaptation.

Challenging
Modeling of business pro-
cess with UML-based lan-
guage ContextUML is chal-
lenging. Context Awareness
is modeled at this abstract
level which is then automat-
ically transformed into BPEL.

Integration of
Context into Ser-
vice Compositions.

Easy
Marking of BPEL variables
with isContextual tag.

Easy
Invocation of services
of Domain Specific
Processes.

Easy
Identification of adaptation
points in business processes
and binding of specific events
to these adaptation points.

Challenging
Modeling of business pro-
cess with UML-based lan-
guage ContextUML is chal-
lenging. Context informa-
tion is integrated into busi-
ness processes at this abstract
level.

Portability Hard
Composition engine should
support:
- extended version of WS-
BPEL
- WSN and WSRF

Easy
Composition engine
should support standard
WS-BPEL.

Hard
Composition engine should
support:
- business process modifica-
tion at runtime
- extended version of WS-
BPEL

Easy
Composition engine should
support standard WS-BPEL.

Modeling

Support

Context – – – X

Context Awareness – – – X

Service
composition

– – – X

Table 2.3.: Comparison between Various Strategies of Context Integration into Service Compositions (Part 2)

34

2.3. Integration of Context into Compositions

According to the main requirements outlined in the current thesis statement, the selected
context integration approach should be based on the non-extended WS-BPEL standard and
utilize standard compliant techniques for modeling of context and context-awareness mecha-
nisms. Further requirements include the integration of large-scale context context provisioning
systems and support of high level context aggregation. Finally, the chosen context integration
strategy should provide the capability to graphically model the context integration into service
compositions.

The evaluation presented in Tables 2.2 and 2.3 points to Context Integration Processes as the
ideal approach for integration of context information into service compositions. This conclusion
represents a specific view and depends on the emphasized integration requirements.

35

Chapter 3

Integration of Context Information

The previous chapter was devoted to provide a fundamental background knowledge necessary
to understand the concepts and principles of context-aware applications. Various context
provisioning systems and their integration into compositions were presented, discussed and
compared regarding their complexity. This chapter describes the realization of the C-CAST
CMF integration into service compositions using Integration Process Pattern as the best suited
integration strategy according to the previous evaluation. The first section describes the main
components of the C-CAST Context Management Framework (CMF) architecture. The detailed
specification of currently supported component interfaces, protocols, and message formats
is available in the Appendix Sections A.1 and A.2 on page 91, and A.3 on page 98 of this
diploma thesis. The overview is followed by a proposed integration architecture based on the
Integration Process Architecture Pattern.

3.1. C-CAST CMF

C-CAST CMF context provisioning system was briefly introduced in the Chapter 2.2.2 on
page 22. This section is focused to describe the core components of the framework and identify
the integration artifacts and exposed service interfaces.

3.1.1. Architecture Components

The context provisioning system C-CAST CMF consists of four main components: Context
Consumer, Context Provider, Context Source, and Context Broker [38]. Figure 3.1 illustrates
the basic components of the framework.

37

3. Integration of Context Information

Context
Cache

History
Database

Context
 Broker

 Context
Providers

Context
Sources

 Context
Consumers

Figure 3.1.: C-CAST CMF – Architecture Components

Context Broker This component acts as a central module of the entire C-CAST CMF architec-
ture. The Context Broker facilitates and controls the communication between the components
providing and consuming context information. Available context provisioning entities use
announcement process to register their capabilities and communication endpoints to the Con-
text Provider Lookup Service maintained by the Context Broker. Additionally, the Context
Broker supports both synchronous and asynchronous communication mechanisms to distribute
and acquire context knowledge, provides necessary caching of context information, as well as
context history service.

Context Providers The basic context provisioning entities are responsible for the collection
of context information from a set of sensors, network, services or other data sources and
synchronous dissemination of the obtained context knowledge to the numerous context con-
sumers. Each Context Provider may also support reasoning of high level context information
using various interpretation, filtering, and aggregation mechanisms.

Context Sources As a special case of context provisioning entities, Context Sources provide
context information in an asynchronous mode. Hence, they do not expose any interfaces to
query context information directly. Without being queried Context Sources utilize asynchronous
push mechanisms to notify Context Consumers about available updates or send updated context
knowledge to the Context Broker and other Context Consumers. The context information is
stored in the broker’s Context Cache and linked to an expiration timer.

38

3.1. C-CAST CMF

Context Consumers The architecture components that acquire and use information from
context provisioning components are named Context Consumers. In order to gain synchronous
access to the context data Context Consumers query Context Broker or invoke particular
Context Provider directly. In case the information should be retrieved asynchronously, the
Context Consumers subscribe for context knowledge of a certain type at the Context Broker
which deliver notifications about updates and changes. Furthermore, Context Consumers
leverage various services provided by the Context Broker such as a Context Provider Lookup
service, a Context Cache, and a Context History Service.

3.1.2. Context Broker Services

Context Caching In order to deal with the unnecessary performance overhead caused by
the repetitious acquisition and initialization of the same information resources, the Context
Broker stores the obtained context information in a Context Cache. The expiration mechanism
is applied to maintain the validity of the context information and remove stale information.
Additionally, the information retrieved from the Context Sources is automatically stored in the
Context Cache, since Context Sources do not expose interfaces to query context data directly.

Context Validity The validity of context information is stated through the creation and
expiration timestamp. The expiration time is defined by the Context Source or Context
Provider responsible for provisioning of the current context data. The Context Broker may in
turn change this expiration time information to synchronize it to its internal clock.

Context History The Context History service utilizes logging of the context information
exchanged between context provisioning and consuming entities to enable later access and
reasoning of stored knowledge. Observing past measurements helps to derive knowledge
about context, provide values during temporary sensor failures, and deduce further context
information, for example, about situations and user intentions.

3.1.3. ContextML Model

To facilitate communication between the architecture components C-CAST CMF defines Con-
textML – a light weight XML-based language used for context representation and communi-
cation with C-CAST CMF. Using ContextML for communication, Context Providers register
themselves and their capabilities by the Context Broker. Context Consumers leverage Con-
textML for querying the Context Broker to find a particular Context Provider, obtain context
information or formulate the event conditions, and receive event updates. To present the core
elements of ContextML, this section outlines the fundamental concepts used in CMF such as
the Entity and Scope concepts (see Figure 3.2).

39

3. Integration of Context Information

Entity
 - Type
 - Identifier

Scope A
parameter a1
parameter a2
parameter a3

Scope B
parameter b1
parameter b2
parameter b3

Va
lid

ity
: T

1
Va

lid
ity

: T
2

Figure 3.2.: C-CAST CMF – Entity Scope Relationship [38]

Entities The C-CAST context management framework relies on the Entity concept to enable
mapping of exchanged context information to specific objects. An Entity represents a subject of
interest which can be in turn a complex group of multiple entities. Two elements are considered
to be sufficient to model entities: entity type and entity identifier. Whilst an entity type is used
to categorize a set of entities, an entity identifier specifies a particular item in a corresponding
set of entities. Names of entity types and entity identifiers are case sensitive, so that different
use of uppercase and lowercase letters lead to different entity names.

The following represent sample entity tuple names:

• username | johnd

• imei | 123456

• cell | 01761234567

Listing A.1 on page 92 included in the Appendix Section A.1 of this diploma thesis demonstrates
entities supported in the current C-CAST CMF version.

Scopes The context information exchanged between components of the CMF architecture
always relates to a particular entity and is represented as a set of closely related context
parameters which are logically organized in so-called Scopes. Identified with a unique name,
scopes are used as a primary context exchange unit to obtain the consistent view of exchanged
context information. Contained context knowledge is wrapped into corresponding context
parameters which belong only to one particular scope. A scope can be atomic or contain a
union of different atomic scopes. The Scope approach ensures the atomicity properties of
all operations on exchanged context data. A sample entity-scope association is illustrated in
Figure 3.2. A detailed specification of the context scopes defined and supported in the current
version of the C-CAST CMF is included in the Appendix Section A.2 of this diploma thesis.

40

3.1. C-CAST CMF

3.1.4. RESTful Web Service Interface

The C-CAST context management framework exposes RESTful Web service interface to enable
the integration with other context-aware applications and provide access to context information
and other value-added services. This section is devoted to the description of the exposed
interfaces and exchanged message formats supported in the current C-CAST CMF version.
Available CMF service interfaces are organized according to the main components of the
outlined CMF architecture.

Context Broker Interfaces A Context Broker request should be of the following form:

HTTP://<HOSTNAME>:<PORT>/CB/ContextBroker/method?parameters
Where method may be either of the following values:

• getName returns general information about current Context Broker version

• providerAdvertising is used to plug in a new Context Provider

• getContextProviders returns information about registered Context Providers

• getActiveEntities returns information about active entities

• getContext is used to retrieve specific context information

• contextUpdate is used to create, update, or delete context information

The detailed description of each invocation method along with the corresponding parameters
is included in the Appendix Section A.3 on page 98 of this diploma thesis. Where possible, the
input and output messages are described using W3C XML schema.

Context Provider Interfaces A Context Provider request should be of the following form:

HTTP://<HOSTNAME>:<PORT>/<CP_MODULE>/<CP_INTERFACE>/method?parameters

Where CP_MODULE and CP_INTERFACE represents a Context Provider module and its correspond-
ing interface respectively. A method may be either of the following values:

• getContext is used to retrieve specific context information

• providerMethod stands for a specific method advertised by a particular Context Provider

41

3. Integration of Context Information

The Appendix Section A.3 on page 98 includes the description of the methods exposed by
Context Providers. The context query interface of a Context Provider has the same syntax
and semantics as the related interface exposed by the Context Broker. Additionally, the
implementation of a specific provider method varies from every other registered Context
Provider. Hence, the detailed specification of a Context Provider API should be furnished along
with its implementation.

3.2. Challenges

The general concept of Context Integration Processes was introduced in the section devoted to
different context integration solutions (see Section 2.3.1 on page 25). This section summarizes
the properties of the adopted integration concept and covers the challenges which occur during
the realization of context integration processes.

3.2.1. Concept Properties

Based on the Integration Process Architecture Pattern, the Context Integration Processes
represent a three layered system model realized as a hierarchical Web service stack. Using Web
services to define integration processes introduce a set of useful advantages:

System Abstraction A loosely coupled architecture enables integration of context provision-
ing systems to be more manageable. Interfaces of the integrated context provisioning system
may evolve over time without forcing context-aware applications to adapt their business logic
to the changes. Even the underlying context provisioning systems may be easily exchanged,
since this approach provides the necessary system abstraction.

Simplified Access Interface Context integration processes reduce the interface complexity
of the context provisioning components. Domain Specific CIPs of the higher level are tailored
to the requirements of the specific application domain and provide simplified access and finer
grained selection of context information.

Reusable Components An extensible modular architecture enables easy reuse of existing
context integration processes and their incorporation into different application domains. On
demand, new context integration processes of different semantic levels can be built upon
existing components and be exposed to context-aware applications.

42

3.3. Realization of Context Integration Processes

Context Reasoning and Aggregation To simplify context-aware application development,
reasoning and aggregation of context information can be encapsulated, moved out of the
business logic, and handled as separate context integration processes. A sample aggregation
of context information takes place if context knowledge originates from different context
provisioning entities or various context consumers subscribe to the same context updates.

3.2.2. Integration Challenges

Since C-CAST CMF is an ongoing development project, new versions will evolve with the
time. The successful integration of C-CAST context management framework introduce a set of
challenges which should be addressed in the current realization.

ContextML Data Model Evolution The modification of the underlying ContextML XML
Schema data model should not implicate the adaptation of context-aware applications. Core
and Domain Independent CIPs should encapsulate the interfaces of the C-CAST CMF services
and support forwarding of communication messages wrapped in a contextML root element to
the integration processes of the higher level. The adaptation to the changes of ContextML data
model will happen at the level of Domain Specific CIPs, since this system layer is responsible
for acquiring application specific context information and possible context reasoning.

Service Interface Modification In a similar way, modifications of C-CAST CMF service inter-
faces should not implicate the adaptation of context-aware applications. Core and Domain
Independent CIPs are responsible for the adaptation to the interface modification of C-CAST
CMF services.

Deployment of Additional C-CAST CMF Components and Services Additional C-CAST
CMF components and services should be easily deployed using existing or by incorporat-
ing new Core and Domain Independent context integration processes.

3.3. Realization of Context Integration Processes

This section presents the realization of context integration processes to meet the requirements
outlined in the previous sections.

43

3. Integration of Context Information

3.3.1. Context Provisioning Layer

Located at the bottom of the architecture, the Context Provisioning Layer contains the services
provided by the various systems which represent the artifacts of integration. Context provision-
ing systems should provide appropriate interfaces to their services in order to facilitate their
integration using WS-BPEL.

According to the WS-BPEL specification [2], the WS-BPEL standard is tightly coupled with the
service model defined by Web Service Description Language (WSDL) [47] and implies that both
the business process and its partners are exposed as WSDL services. However, the RESTful Web
service API of the C-CAST context management framework does not rely on the standard WSDL
to describe available interfaces of the system. Hence, it is not possible to directly integrate the
services of the current context provisioning system using the non-extended WS-BPEL standard.
One of the important requirements outlined in this thesis states that current integration solution
should utilize WS-BPEL standard to be deployed across multiple composition engines. To
address this requirement, the RESTful API of the C-CAST context management framework
will be wrapped into standard Web service interface exposed through WSDL and accessed via
SOAP over HTTP. This approach will obviously reduce the performance of the overall system.
But since this is a temporary solution and the C-CAST context management framework still
evolves, it might be expected that future version of C-CAST CMF will expose appropriate WSDL
interface.

The Java API for XML Web services (JAX-WS 2.0 [48]) was selected for the realization of the
SOAP Web service interface for the C-CAST context management framework. In particular,
Apache CXF [49] was taken as the most suited JAX-WS reference implementation according to
the performance comparison provided in [50]. Apache CXF also supports Java API for RESTful
Web services (JAX-RS [51]) to develop HTTP centric clients to communicate with RESTful
services. The version of Apache CXF used for implementation was 2.x. The development of the
CMF SOAP Web service interface was realized in the Integrated Development Environment
Eclipse [52] version 3.6.2 with Java 1.6. Finally, the SOAP Web service interface for the C-CAST
context management framework was deployed as a Web application to Apache Tomcat version
7.0, an open source servlet container [53].

According to the overview over the interfaces of the C-CAST CMF architecture components
provided in the previous section, the central component Context Broker appears to be the main
artifact of the integration. This paragraph summarizes the Context Broker services selected for
integration. As shown in Figure 3.3, the integrated services include:

• GetBrokerContext service

• GetActiveEntities service

• ContextUpdate service

• GetContextProviders service

44

3.3. Realization of Context Integration Processes

Legend: = public WSDL Web service interface

= RESTful Web service interface

= C-CAST CMF Broker services

= C-CAST CMF Provider services

G
et

Br
ok

er
C

on
te

xt

G
et

Ac
tiv

eE
nt

iti
es

C
on

te
xt

U
pd

at
e

G
et

C
on

te
xt

Pr
ov

id
er

s

Pr
ov

id
er

Ad
ve

rti
si

ng

G
et

Pr
ov

id
er

C
on

te
xt

Pr
ov

id
er

M
et

ho
d

Context Provisioning Layer

C-CAST Context Management Framework

SOAP WSDL Web service interface

Figure 3.3.: C-CAST CMF – SOAP WSDL Web Service Interface

• ProviderAdvertising service

Additionally, a generic interface for a Context Provider was implemented. The SOAP Web
service interface of this component include:

• GetProviderContext service

• ProviderMethod service

The ProviderMethod service is implemented to be generic. This service expects as an input
parameter an additional information about the communication endpoint to invoke a specific
provider method. Other input parameters passed to the RESTful Web service interface are
represented as a map of string values specifying name and value of a particular parameter.

45

3. Integration of Context Information

Listing 3.1 CXF Default SOAP Fault Response
<soap:Fault>
<faultcode>soap:Server</faultcode>
<faultstring>cxf fault</faultstring>
<detail>
<contextML xmlns="http://ContextML/1.7" ...>
<ctxResp>
...
<resp code="455" msg="Context Element Not Available: No Context Available to Invoke

Provider LP" status="ERROR"/>
</ctxResp>
</contextML>

</detail>
</soap:Fault>

To facilitate fault handling in upper layers of the context integration processes each C-CAST
CMF service returns a fault message in case of invocation failures and other errors. Generated
fault messages contain error code, response status, and ContextML element describing the
actual cause of the invocation failure.

It is worthy noting, that while generating SOAP Fault messages the CXF framework sets
the default value for SOAP faultcode to soap:Server as shown Listing 3.1. Since BPEL
bpel:faultHandlers leverage the fault code value to identify the corresponding bpel:catch
clause, the fault code value should contain the real name of the thrown fault. In order to
modify the SOAP Fault message generated by the CXF framework, an outbound fault interceptor
was defined and added to the CXF fault chain. Each message received or sent by the CXF
framework go through a series of so-called inbound and outbound interceptors. The last
interceptor in the outbound fault chain is Soap11FaultOutInterceptor that appends the fault
code and details information into the response. Hence, a new interceptor was implemented as
the extension to CXF AbstractSoapInterceptor and subsequently added to the outbound fault
chain. Listing 3.2 illustrates the definition of the new interceptor in the CXF configuration
file.

Top down development was chosen for the realization of the Web service proxy server for
C-CAST CMF services. The starting point was to specify the C-CAST CMF service interfaces
using WSDL and define request message formats using XML schema. Separate WSDL interface
specifications were developed for Context Broker and Context Provider services. The next step
was to generate the server side code using the WSDL to Java tool provided by Eclipse. Finally,
each method representing a separate C-CAST CMF service was implemented as a HTTP client
to communicate with the RESTful interface.

46

3.3. Realization of Context Integration Processes

Listing 3.2 Registering Fault Interceptor in CXF Service Configuration
<jaxws:endpoint xmlns:tns="http://www.ict-ccast.eu/CMF/ContextBroker/definitions"
id="contextbroker"

implementor="eu.ict_ccast.cmf.contextbroker.definitions.ContextBrokerImpl"
wsdlLocation="ContextBroker.wsdl" endpointName="tns:ContextBrokerSOAP"
serviceName="tns:ContextBroker" address="/ContextBrokerSOAP">
<jaxws:features>
<bean class="org.apache.cxf.feature.LoggingFeature" />

</jaxws:features>
<jaxws:outFaultInterceptors>
<bean class="eu.ict_ccast.cmf.contextbroker.definitions.FaultOutInterceptor" />

</jaxws:outFaultInterceptors>
</jaxws:endpoint>

3.3.2. Core Integration Processes

The main responsibilities of the context integration processes of this layer include encapsulating
each particular service interface of the context provisioning system into one concrete WS-BPEL
business process. The context integration processes are named according to the C-CAST
CMF services they represent. Hence, the selected names describe their functionality. The
integration processes at this level encapsulate all services currently provided by the C-CAST
context management framework and illustrated in Figure 3.4.

Context Broker processes:

• GetBrokerContext integrates the querying functionality of the C-CAST context manage-
ment framework. To obtain context data a list of entities and corresponding context
scopes should be provided. The ContextML message format is used for the query result
presentation.

• GetActiveEntities is used to obtain information about the active entities. The result of the
operation is presented in the ContextML format.

• ContextUpdate integrates the context manipulation functionality. The ContextML message
format is used for the context manipulation request and result presentation.

• GetContextProviders is used to acquire information about registered context providers.
The result of the operation is presented in the ContextML message format.

• ProviderAdvertising integrates the functionality of C-CAST CMF to advertise and register
a new Context Provider or Context Source. ProviderAdvertising integrates the ContextML
message format for the advertisement and registration result presentation.

47

3. Integration of Context Information

Legend: = public WSDL Web service interface

= hierarchical invocation dependency

= WS-BPEL context integration process

= message exchange with external systems

Context Integration Processes (CIPs)

Domain
Specific CIPs

Domain
Independent CIPs

Core CIPs

Context
Update

GetBroker
 Context

 Provider
Advertising

SOAP WSDL Web service interface

C-CAST CMF

Context-Aware service compositions

GetContext
 Providers

GetActive
 Entities

GetProvider
 Context

Provider
 Method

Figure 3.4.: C-CAST CMF – Core Context Integration Processes

Context Provider processes:

• GetProviderContext has the same semantics as the related Context Broker business process
integrating the querying functionality of the Context Provider. The context information
queries contain information about entities and context scopes. Query results are declared
using the ContextML message format.

• ProviderMethod encapsulates a specific Context Provider service. The business process
expects information about Context Provider communication endpoint as an input pa-
rameter. Other parameters passed to the ProviderMethod are represented as a map of
string values specifying name and value of a particular input parameter to a RESTful
Web service.

48

3.3. Realization of Context Integration Processes

Legend: = public WSDL Web service interface

= hierarchical invocation dependency

= WS-BPEL context integration process

= message exchange with external systems

Context Integration Processes (CIPs)

Domain
Specific CIPs

Domain
Independent CIPs

Core CIPs

Context
Update

GetBroker
 Context

 Provider
Advertising

SOAP WSDL Web service interface

C-CAST CMF

Context-Aware service compositions

GetContext
 Providers

GetActive
 Entities

GetProvider
 Context

Provider
 Method

 GetBroker
ContexExclude

 GetBroker
ContexInclude

 GetActive
EntitiesByType

 GetProvider
ContexExclude

 GetProvider
ContexInclude

Figure 3.5.: C-CAST CMF – Domain Independent Context Integration Processes

3.3.3. Domain Independent Processes

Context integration processes at this layer basically reduce interface complexity of the Core
CIPs. Figure 3.5 illustrates the Domain Independent CIPs defined and implemented to integrate
C-CAST CMF.

Context Broker processes:

• GetBrokerContextExclude is a specialization of the Core CIP GetBrokerContext used to
minimize the size of the result set. Extensible Stylesheet Language Transformations
(XSLT) [54] stylesheets are defined for matching the result values against a set of the
input attributes and blanking out the returned elements which contain specific context
information.

• GetBrokerContextInclude is another specialization of the Core CIP GetBrokerContext used
for blanking out the result elements which do not contain specific context information.
XSLT stylesheets are defined for matching the result values against a set of the input
attributes.

• GetActiveEntitiesByType is used to acquire a list of the active entities of a specific type.
This CIP is based on the Core CIP GetActiveEntities.

49

3. Integration of Context Information

Context Provider processes:

• GetProviderContextExclude is a specialization of the Core CIP GetContext used to minimize
the size of the result set. GetProviderContextExclude is realized in the same way as the
related CIP of the Context Broker. This CIP uses the Core CIP GetContext to query context
information.

• GetProviderContextInclude is another specialization of the Core CIP GetContext used for
blanking out the result elements which do not contain specific context information.
GetProviderContextInclude is realized in the same way as the related CIP of the Context
Broker. This CIP uses the Core CIP GetProviderContext to query context information.

3.3.4. Domain Specific Processes

Since context integration processes at this layer are specific to the particular application
domain, this section does not describe any of them. Sample Domain Specific processes tailored
to the requirements of the example application will be defined in the Evaluation Chapter 5 on
page 65 of this diploma thesis.

50

Chapter 4

Aggregation of Context Information

In this chapter, the preliminary considerations related to the aggregation of context information
are introduced and subsequently boiled down to a generic aggregation approach. The starting
point is the development of different aggregation scenarios to give a general idea of how
aggregation of context information is done. The next step is devoted to the identification of the
aggregation process components and their integration into the Integration Process Architecture
Pattern. Following the detailed description Google Maps Web services are integrated using
Context Integration Processes to demonstrate how the proposed concept can be applied to
aggregate services provided by C-CAST CMF and Google Maps Web services.

4.1. Definition of Information Aggregation

Information aggregation represents a process intermediating between data provisioning and
consuming entities which handles heterogenous information obtained from multiple data
sources to provide value-added information view for multiple data consumers. The goal of
information aggregation is, given various information sources, to extract important information,
process, and present the content in a format and manner suitable to the consumer requirements.
A number of different expressions represent the activity of aggregation: extract, abstract,
compare, transform, merge, reduce, refine, and so on. Basically, the aggregation logic is tailored
to best suit current application requirements. In general, the aggregation techniques can be
grouped as follows:

51

4. Aggregation of Context Information

Identifying and Mapping Relevant Information The basic responsibility of any aggregation
process is to obtain data from available provisioning sources and identify information relevant
to the application domain. Additionally, an aggregation process provides the mapping between
data sources and data consumers. It disseminates acquired information to various information
consumers according to their needs. Hence, an aggregation process enables information
consuming entities to obtain a specific data view on multiple and heterogeneous data sources.

Transforming the Information Structure Once the important contents from the original
information are extracted, an aggregation process may abstract data representation to obtain
a common view on heterogeneous data types. If necessary, the obtained information may be
reduced, refined, structured, and organized in a specific order.

Processing the Information The general idea behind the information aggregation is to
process the obtained information in order to address specific application requirements. Being
retrieved from various data sources information might be merged, compared, or used to
generate other valuable information.

4.2. Information Aggregation in Service Compositions

Common properties shared among aggregation processes can be identified with the goal to
define generic aggregation process patterns. These patterns can be subsequently used to
simplify development of new context aggregation processes.

Most of the aggregation processes which do not perform complex mathematical aggregation
logic can be modeled using the WS-BPEL standard. WS-BPEL utilizes several XML specifications
(XML Schema 1.0 [55], XPath 1.0 [43] and XSLT 1.0 [54]) and provides comprehensive support
for data manipulation. XPath expressions can be used to access the values of process variables.
Data transformation and processing can be accomplished using XSLT and WS-BPEL standard
processing mechanisms.

Since aggregation logic is tailored to the specific requirements of each particular application,
it is not possible to provide generic templates to support various aggregation techniques
outlined in the previous section. Though XPath and XSLT offer a full toolkit for exploiting
custom application logic, a full understanding of the process data structures and control
flow is required to enable specific data transformation and processing. Hence, the proposed
aggregation approach does not define any variant templates for data transformation and
processing.

52

4.2. Information Aggregation in Service Compositions

Instead of trying to discover generic templates to support custom data transformation logic, we
will concentrate on the facilities provided by WS-BPEL and try to discover how these facilities
can be used to express similarities between aggregation processes. Primarily, WS-BPEL is used
to model interactions between Web services and assemble external entities defined using WSDL
into an end-to-end process flow. Since aggregation processes combine various data sources,
their cumulative similarities rely on the communication style with the external entities and
number of involved data sourcing and consuming parties.

Number of Data Sourcing and Consuming Entities As shown in Figure 4.1, the interaction
between external entities and the aggregation process happens in various ways by adopting
observations provided in [12].

One-to-One Context Fusion Context Fission Many-to-Many

Aggr Aggr Aggr Aggr

Figure 4.1.: Aggregation – Number of Data Sourcing and Consuming Entities

• One-to-One transforms information obtained from one low level data source to one data
consuming entity of higher level.

• Context Fusion transforms information obtained from several low level data sources to
one data consuming entity of higher level.

• Context Fission transforms information obtained from one low level data source to several
data consuming entities of higher level.

• Many-to-Many transforms information obtained from several low level data sources to
several data consuming entities of higher level.

Communication Styles Communication styles represent another important similarity aspect
between aggregation processes. Each aggregation process obtains and disseminates the context
information using one of the following patterns of communication:

• Pull mode represents an interaction style where the communication request originates
at the client side and the server generates a response message. WS-BPEL defines the
<invoke> activity to call Web service operations provided by service providers. According
to the WSDL specification, operations are classified into synchronous (request / response
operations) and asynchronous (one-way operations).

53

4. Aggregation of Context Information

• Push mode defines an opposite interaction style, where the server side initiates the
communication by pushing messages to the clients. WS-BPEL supports push mode
communication by introducing at the server side one-way <invoke> activities to push
information to the consuming entities and <EventHandlers>, <receive>, and <pick> at
the client side to react when specific events occurs.

The application of communication styles to various data provisioning and consuming entities
may be used to express various aggregation processes. Based on this experience a command-
line tool can be developed to support automatic generation of aggregation process skeletons.
This will allow designers 1. to simplify binding definition to external services, 2. to define the
overall structure of an aggregation process including logic blocks describing the interaction
with external services, and 3. to implement their own data transformation logic. To generate
an aggregation process, designers specify data provisioning and consuming entities exposed as
Web services and provide necessary arguments such as:

• Number of data provisioning and consuming entities

• WSDL interface specifications of each external service, including communication end-
point, port type, operation, and message formats

• Communication style for each interaction with an external entity

• Optional communication order with external entities

The aggregation tool should have a simple command-line interface. It will analyze the WSDL
description of each service, extract necessary binding information, combine it with the entity
type, choose interaction style and generate a new aggregation process along with its WSDL
definition.

4.3. Concept of Context Aggregation Processes

The goal of this section is to introduce an extension to Integration Process Architecture Pattern
to support information aggregation in service compositions. A possible solution would be
modeling aggregation as a set of processes integrated as a separate layer into the Integration
Process Architecture Pattern.

Figure 4.2 demonstrates the general idea of the extension to Integration Process Architecture
Pattern to support information aggregation. Context aggregation processes are basically located
between domain independent and Domain Specific CIPs, but may also include CIPs from both
layers. The following reasons underlie this particular placement:

54

4.3. Concept of Context Aggregation Processes

Legend: A1 = Domain Independent Aggregation Processes

A2 = Domain Specific Aggregation Processes

A3 = System Independent Aggregation Processes

Domain Independent
Aggregation CIPs

Domain Specific
Aggregation CIPs

System Independent
Context Aggregation CIPs

Context Integration Processes (CIPs)

Domain
Specific CIPs

Domain
Independent CIPs

Core CIPs

SOAP WSDL Web service interface

 System S1

Context-Aware service compositions

Aggregation
CIPs

X X

X

Y

Y

Y

A1

A2

A3

SOAP WSDL Web service interface

 System S2

Figure 4.2.: Aggregation – Extension to Integration Process Pattern

• Domain Independent Aggregation CIPs In general, the context provisioning systems provide
access to context management and other value added services through multiple interfaces
which are encapsulated into the CIPs according to the Integration Process Pattern. It is
thinkable that CIPs at the domain independent level may combine other CIPs to achieve
finer grained selection of context information or supply new value added functionality.
Hence, these new Domain Independent CIPs act as context aggregation processes.

• Domain Specific Aggregation CIPs Context-aware applications may integrate various
context provisioning systems in order to obtain access to their context management
services. In case the context information is required by a particular application implies the
processing of heterogenous context data acquired from various sources, the corresponding
processing logic can be encapsulated, moved out of the business logic, and represented
as Domain Specific CIPs. These new Domain Specific CIPs can be expressed as context
aggregation processes.

55

4. Aggregation of Context Information

• System Independent Context Aggregation CIPs In course of time, Domain Specific CIPs
aggregating information from multiple context provisioning systems may evolve and be
shared between different context-aware applications. Thereby, these context aggregation
processes are moved out of the level of Domain Specific CIPs and placed at their appro-
priate level between Domain Independent CIPs of various context provisioning systems
and Domain Specific CIPs of different context-aware applications.

The naming of the context aggregation processes is affected by the current placement of a
particular process and specific aggregation logic expressed in a process. This way, context ag-
gregation processes should either have a name describing their functionality or use aggregated
names of the CIPs they are using.

In the following, Google Maps Web services are integrated using Context Integration Processes
to demonstrate how the proposed concept can be applied to aggregate services provided by
C-CAST CMF and Google Maps Web services.

4.4. Google Maps Web Services

This section discusses Google Maps Web services, in particular the Google Geocoding and
Google Directions services. The first part of this section is devoted to the brief specification
of the RESTful interfaces to access the Google Maps services over HTTP. Subsequently, their
integration into service compositions is realized using Context Integration Processes.

4.4.1. Usage Limits

According to the usage limits [56] introduced by the Google Maps Web Service API, Google
services may only be used in conjunction with a Google map. Hence, Google Geocoding and
Directions results should be displayed on a Google map. Other use is prohibited. In order to
use and display the content provided by Google Maps services without a corresponding Google
map, a written permission from Google is required.

Furthermore, the Google Maps API Premier sales team [57] should be contacted to obtain a
commercial license, if taxi booking service based on the taxi service provider intends to charge
users any fees for the usage.

56

4.4. Google Maps Web Services

4.4.2. Google Geocoding Web service

Google Geocoding Web service supplies the functionality to convert the postal addresses into
geographic coordinates expressed as latitude / longitude value pair. Additionally, Google
Geocoding supports converting geographic coordinates back to their representation as postal
addresses. This service is known as Reverse Geocoding. Both Google Geocoding services are
accessible through RESTful Web service interface described in the following paragraph.

Google Geocoding RESTful Web Interface A Google Geocoding request should be of the
following form:

http://maps.googleapis.com/maps/api/geocode/OUTPUT?PARAMETERS

Where OUTPUT may be either of the following values:

• json returns information represented in JavaScript Object Notation (JSON) format

• xml returns information represented in XML format

The arguments passed to the Google Geocoding service are represented as PARAMETERS sepa-
rated with the ampersand & character. Following PARAMETERS are expected:

• address is a required parameter representing the address information to geocode.

• latlng is a required parameter containing comma separated latitude and longitude
values to geocode.

• bounds is an optional parameter representing the bounding box of the viewport within
which to bias geocode results more prominently.

• region is an optional parameter representing the region code expressed as a top level
domain (ccTLD) two-character value.

• language is an optional parameter indicating the language in which the result should be
returned.

• sensor is a required parameter specifying if the request comes from a device with a
location sensor. The value of this parameter must be true or false.

To invoke the Google Geocoding service, the postal address details should be passed in address
parameter. Alternatively, to access Google Reverse Geocoding the geographic coordinates are
passed in latlng parameter.

57

4. Aggregation of Context Information

4.4.3. Google Directions Web service

Google Directions Web service provides functionality to calculate route directions, distance
and transportation duration between different locations expressed in terms of postal addresses
or geographical coordinates. The Google Directions service support various transportation
modes including driving, walking, or bicycling modes. Furthermore, the route directions can be
calculated through specified locations, so-called waypoints, or by specifying route restrictions
such as avoiding highways and toll roads. Finally, Google Directions service may return multiple
alternative routes between different locations if needed. Google Directions service is accessible
through a RESTful Web service interface described in the following paragraph.

Google Directions RESTful Web Interface A Google Directions request should be of the
following form:

http://maps.googleapis.com/maps/api/directions/OUTPUT?PARAMETERS

Where OUTPUT may be either of the following values:

• json returns information represented in JavaScript Object Notation (JSON) format

• xml returns information represented in XML format

The arguments passed to the Google Directions service are represented as PARAMETERS sepa-
rated with the ampersand & character. Following PARAMETERS are expected:

• origin is a required parameter containing the origin address.

• destination is a required parameter containing the destination address.

• mode is an optional parameter specifying the transport mode used to calculate directions.
Available modes are driving, walking, or bicycling. The default value is driving.

• waypoints is an optional parameter used to specify special locations on the route. Each
waypoint is represented as latitude / longitude coordinate or as an address.

• alternatives is an optional parameter indicating if the Google Directions service should
provide more than one route alternative in the response.

• avoid is an optional parameter specifying if the indicated features should be avoided
during the route calculation. Current features include tolls (toll roads and bridges) and
highways.

• units is an optional parameter specifying the unit system used to express results. Fol-
lowing values can be passed: metric for metric system and imperial for the English
system.

58

4.4. Google Maps Web Services

• region is an optional parameter representing the region code expressed as a top level
domain (ccTLD) two-character value.

• language is an optional parameter indicating the language in which the result should be
returned.

• sensor is a required parameter specifying if the request comes from a device with a
location sensor. The value of this parameter must be true or false.

Address information passed in the origin and destination parameters might be expressed as
a comma separated list of latitude and longitude values or as a postal address. In the former
case, no space is allowed between the latitude and longitude values.

4.4.4. Realization of Google CIPs

This section describes the realization of the Context Integration Processes for Google Geocoding
and Google Directions services.

Context Provisioning Layer

In a similar manner as C-CAST CMF, the RESTful interfaces of Google Geocoding and Directions
Web services were wrapped into standard Web service interface exposed through WSDL and
accessed via SOAP over HTTP. Apache CXF [49] was taken for the realization of the SOAP Web
service interface as the best suited JAX-WS [48] and JAX-RS [51] reference implementation.

According to the overview provided in the previous section, the following list of services was
wrapped into SOAP Web service interfaces (see Figure 4.3):

• GoogleDirections service

• GoogleGeocoding service

Top down development was chosen for the realization of the Web service proxy server for Google
Maps Web services. The first step was to specify available interfaces of Google Geocoding and
Directions Web services using standard WSDL. Additionally, an XML Schema data model was
defined to represent exchanged message formats and corresponding data types. Separate WSDL
interface specifications were developed for Google Geocoding and Google Directions services.
The next step was to generate the server side code using the WSDL to Java tool provided by
Eclipse [52]. Finally, each method representing a separate Google service was implemented as
a HTTP client to communicate with the corresponding RESTful interface. It is worthy noting
that the XML formatted response messages generated by Google Maps Web services do not
contain any XML namespaces. Hence, XSLT stylesheets were additionally defined to transform
incoming replies by adding XML namespace attributes to contained elements.

59

4. Aggregation of Context Information

Legend: = public WSDL Web service interface

= public RESTful Web service interface

G
oo

gl
eG

eo
co

di
ng

G
oo

gl
eD

ire
ct

io
ns

G
oo

gl
eR

ev
er

se
G

eo
co

di
ng

Context Provisioning Layer

 Google Maps Web Services

SOAP WSDL Web service interface

Figure 4.3.: Google Maps Web Services – SOAP WSDL Web Service Interface

To facilitate fault handling in the upper layers of the Context Integration Processes each Google
Maps SOAP Web service returns a fault message in case of an invocation failure or other errors.
Generated fault messages contain error code, response status, and further elements describing
the actual cause of the invocation failure. As described in Section 3.3.1 on page 44, while
generating SOAP Fault messages the CXF framework sets the default value for SOAP faultcode
to soap:Server. In order to modify the SOAP Fault message generated by the CXF framework
and store the real name of the thrown fault in faultcode, a new outbound fault interceptor
was implemented as the extension to CXF AbstractSoapInterceptor and subsequently added to
the outbound fault chain.

Core CIPs

Each SOAP Web service interface of Google Geocoding and Directions services was encapsulated
into one concrete context integration process. Context integration processes were named
according to the Google services they represent. The integration processes at this level
encapsulate all services currently provided by Google Maps Web services and are illustrated in
Figure 4.4.

• GetGoogleDirections integrates the querying functionality of the Google Directions service.
To obtain information an origin and destination addresses along with other optional
parameters should be provided. The GoogleDirections message format is used for the
query result presentation.

60

4.4. Google Maps Web Services

Legend: = public WSDL Web service interface

= hierarchical invocation dependency

= WS-BPEL context integration process

= message exchange with external systems

Context Integration Processes (CIPs)

Domain
Specific CIPs

Domain
Independent CIPs

Core CIPs

GetGoogle
 Directions

SOAP WSDL Web service interface

Google Maps Web services

Context-Aware service compositions

GetGoogle
Geocoding

 GetGoogle
 DirectionsDuration

 GetGoogle
 DirectionsDistance

Figure 4.4.: Google Maps Web Services – Context Integration Processes

• GetGoogleGeocoding integrates the querying functionality of the Google Geocoding service
interface. This integration process is used to geocode postal addresses as well as to trans-
form geographic coordinates into postal address representation. GetGoogleGeocoding
integrates the GoogleGeocoding message format for result presentation.

The integration processes at this level encapsulate all interfaces currently exposed by Google
Geocoding, Reverse Geocoding, and Directions Web services.

Domain Independent CIPs

Domain Independent CIPs refine the information returned by the Core CIPs integrating Google
Maps Web services. As Domain Independent CIPs the following integration processes were
defined and implemented (see Figure 4.4).

• GetGoogleDirectionsDuration is a specialization of the Core CIP GetGoogleDirections used
to obtain the route duration. Since response message may contain many alternative
routes, this CIP calculates the shortest duration for the route and blanks out all other
returned elements.

61

4. Aggregation of Context Information

• GetGoogleDirectionsDistance is another specialization of the Core CIP GetGoogleDirections
used to obtain the route distance. Since response message may contain many alternative
routes, this CIP calculates the shortest distance for the route and blanks out all other
returned elements.

4.5. Realization of Context Aggregation Processes

4.5.1. Domain Independent Context Aggregation Processes

Since most of the context aggregation processes are tailored to the specific requirements of
the particular application domain, this section defines only Domain Independent aggregation
processes which can be shared among various domains.

Legend: = public WSDL Web service interface

= hierarchical invocation dependency

= WS-BPEL context integration process

= message exchange with external systems

Domain
Independent
Aggregation
CIPs

Domain
Independent CIPs

Core CIPs

Context
Update

GetBroker
 Context

 Provider
Advertising

SOAP WSDL Web service interface

C-CAST CMF

GetContext
 Providers

GetActive
 Entities

GetProvider
 Context

Provider
 Method

 GetBroker
ContexExclude

 GetBroker
ContexInclude

 GetActive
EntitiesByType

 GetProvider
ContexExclude

 GetProvider
ContexInclude

 GetActiveEntities
BrokerContexExclude

 GetActiveEntities
BrokerContextInclude

 GetActiveEntities
ProviderContexExclude

 GetActiveEntities
ProviderContexInclude

Aggregation CIPs

Figure 4.5.: C-CAST CMF – Domain Independent Context Aggregation Processes

As shown in Figure 4.5, the following Domain Independent aggregation processes were defined
and implemented at this layer:

62

4.5. Realization of Context Aggregation Processes

• GetActiveEntitiesBrokerContextInclude represents a context aggregation process which
relies on the Domain Independent CIPs GetActiveEntitiesByType and GetBrokerContextIn-
clude. This aggregation process is used to retrieve specific context information for a set
of active entities which belong to a particular Entity type. GetActiveEntitiesBrokerCon-
textInclude specifies a restriction on parameters that hold the Entity type, Context Scope
names and other context attributes which should be contained in the result set.

• GetActiveEntitiesBrokerContextExclude represents a context aggregation process which
relies on the Domain Independent CIPs GetActiveEntitiesByType and GetBrokerContextEx-
clude. This aggregation process is used to retrieve a specific context information for a set
of active entities which belong to a particular Entity type. GetActiveEntitiesBrokerContex-
tExclude specifies a restriction on parameters that hold Entity type, Context Scope names
and other context attributes which should not be contained in the result set.

• GetActiveEntitiesProviderContextInclude represents a context aggregation process which
relies on the Domain Independent CIPs GetActiveEntitiesByType and GetProviderContex-
tInclude. This aggregation process is realized in the same way as the related context
aggregation process of the Context Broker. It is used to retrieve a specific context
information provided by a particular Context Provider.

• GetActiveEntitiesProviderContextExclude represents a context aggregation process which
relies on the Domain Independent CIPs GetActiveEntitiesByType and GetProviderContex-
tExclude. This aggregation process is realized in the same way as the related context
aggregation process of the Context Broker. It is used to retrieve a specific context
information provided by a particular Context Provider.

4.5.2. System Independent Context Aggregation Processes

According to the aggregation concept outlined in the previous chapter, context aggregation
processes can be defined at three different layers: Domain Independent Aggregation CIPs, Domain
Specific Aggregation CIPs and at the intermediate System Independent Context Aggregation
Processes layer.

Located at the intermediate layer, System Independent context aggregation processes integrate
context data retrieved from various context provisioning systems and are used to disseminate
transformed knowledge to different context-aware applications. As shown in Figure 4.6, the
following aggregation processes were defined and implemented at this layer:

63

4. Aggregation of Context Information

Legend: = public Web service interface

= hierarchical invocation dependency

= WS-BPEL context integration process

= message exchange with external systems

Context Integration Processes (CIPs)

Domain
Specific CIPs

System
Independent
Aggregation CIPs

Domain
Independent CIPs

Core CIPs

GetRouteDurationForActiveEntities

GetActiveEntitiesBrokerContextInclude

GetActiveEntitiesByType GetBrokerContextInclude

GetActiveEntities GetBrokerContext

GetGoogle
DirectionsDuration

GetGoogleDirections

SOAP WSDL Web service interface SOAP WSDL Web service interface

Google Maps Web services C-CAST CMF

Context-Aware service сomposition

GetRouteDistanceForActiveEntities

GetGoogle
DirectionsDistance

Figure 4.6.: System Independent Context Aggregation Processes for C-CAST CMF and Google
Maps Web Services

• GetRouteDurationforActiveEntities calculates time required for each entity to travel the
distance between its current location and a specified destination address. This aggrega-
tion process can be shared among different application domains and relies on Domain
Independent CIPs GetGoogleDirectionsDuration and GetActiveEntitiesBrokerContextInclude
processes. GetRouteDurationforActiveEntities expects the destination address and entity
type as input parameters and returns a list of available entities combined with the related
route duration.

• GetRouteDistanceforActiveEntities calculates the distance between the active entity’s cur-
rent location and a specified destination address. This aggregation process can be shared
among different application domains and relies on Domain Independent CIPs GetGoogleDi-
rectionsDistance and GetActiveEntitiesBrokerContextInclude processes. GetRouteDistance-
forActiveEntities expects the destination address and entity type as input parameters and
returns a list of available entities combined with the related route distance.

64

Chapter 5

Evaluation

The concepts describing integration (see Chapter 3) and aggregation (see Chapter 4) of context
information into service compositions were presented and discussed in the previous chapters of
this thesis. This chapter is devoted to the evaluation of the proposed solution. At the beginning
of this chapter, Domain Specific context integration are developed to complete the integration
of the C-CAST context management framework and Google Maps Web services into the sample
service composition.

The developed context integration processes are meant to be a proof of the concepts presented
in the previous chapters. After a short introduction of the available service composition engines,
context integration processes will be deployed to Apache ODE [58] and OW2 Orchestra [59]
composition engines to present interoperability and engine implementation independency.

5.1. Domains Specific Integration Processes

Taxi Service Provider, the sample use case scenario presented in Section 1.1 on page 2, is
used to evaluate the context integration and aggregation concepts. In order to complete
the integration of C-CAST CMF and Google Maps Web services into the sample Taxi Service
Provider process the Domain Specific CIPs should be defined. Figure 5.1 demonstrates the
proposed integration processes which are subsequently described in detail in the corresponding
parts of this section.

Domain Specific CIPs are used to integrate Domain Independent and aggregated functionality
provided by the context provisioning systems and other systems into service compositions.
The following Domain Specific CIPs were defined to complete the implementation of the Taxi
Service Provider process:

65

5. Evaluation

Legend: = public Web service interface

= hierarchical invocation dependency

= WS-BPEL context integration process

= message exchange with external systems

Context Integration Processes (CIPs)

Domain
Specific CIPs

System
Independent
Aggregation CIPs

Domain
Independent CIPs

Core CIPs

GetAvailableTaxis GetTaxiDriverInformation

GetRouteDurationForActiveEntities

GetActiveEntitiesBrokerContextInclude

GetActiveEntitiesByType GetBrokerContextInclude

GetActiveEntities GetBrokerContext

GetGoogleDirectionsDuration

GetGoogleDirections

SOAP WSDL Web service interface SOAP WSDL Web service interface

Google Maps Web services C-CAST CMF

Taxi Service Provider composition

Figure 5.1.: Taxi Service Provider Context Integration Processes

• GetAvailableTaxis queries available taxi cabs, obtains their current location, and calculates
time required for each taxicab to reach customer destination. This Domain Specific
process returns a list containing up to 5 entries representing available taxicabs next to
the customer. This CIP gets an input parameter that holds the current customer location
used to find the nearest taxis. GetAvailableTaxis relies on the System Independent Context
aggregation CIP GetRouteDurationforActiveEntities.

• GetTaxiDriverInformation returns the profile information of a particular taxi driver in-
cluding contact details. This context integration process accepts an input parameter that
holds the information identifying a particular taxi driver. GetTaxiDriverInformation relies
on the Domain Independent CIP GetBrokerContextInclude of the C-CAST CMF.

66

5.2. Composition Engines

5.2. Composition Engines

Since the proposed context integration approach does not involve the modification of the
WS-BPEL standard, the following open-source service composition engines can be used for the
evaluation of interoperability and engine implementation independency.

5.2.1. Apache Orchestration Director Engine

Apache Orchestration Director Engine (ODE) [58] is an open source workflow engine imple-
mented as a compact and embeddable software component capable of managing the execution
of both short and long-running business processes defined using the BPEL process description
language. It is a community driven project under the supervision of the Apache Software
Foundation.

Apache ODE provides support for both WS-BPEL 2.0 OASIS standard and the legacy BPEL4WS
1.1 vendor specification. Additionaly, Apache ODE extends the WS-BPEL in areas not covered
by the specification, e.g External Variables extension which appears to be important with
the reference to current thesis statement. External variables extension enables sharing data
between the process and external systems, by treating those independent entities as BPEL
variables that can be used in expressions and assignments.

Apache ODE supports different communication layers such as the HTTP transport commu-
nication layer based on Axis2 and another one based on the Java Business Integration (JBI)
standard. Finally, Apache Ode has a complete management API to check which processes are
deployed, running and completed instances, variables values and more.

5.2.2. OW2 Orchestra

Founded in January 2007 as a result of the merger of ObjectWeb and Orientware communities,
the OW2 consortium is an international open source community which includes R&D teams,
industrials partnerships and research organization. OW2 Orchestra [59] is an open source
business process management (BPM) platform providing orchestration functionalities to handle
long-running, service oriented business processes. Available under the LGPL license Orchestra
is a multi platform and multi database workflow engine providing support for WS-BPEL 2.0
OASIS standard.

67

5. Evaluation

Build on top of the generic Process Virtual Machine OW2 Orchestra represents an embeddable,
pluggable and extensible software component deployable on different servlet containers
(Tomcat, Swing, etc) and Java EE servers (JOnAS, JBoss, Weblogic, etc). Using Apache Camel
and Petals ESB , the open source ESB frameworks, as transport for Web services interactions
OW2 Orchestra handles service interaction in a heterogeneous environment supporting various
communication layers such HTTP, FTP, Mail, JMS, File, Presto, etc.

Finally, OW2 Orchestra offers graphical BPM console based on Web 2.0 and Ajax technologies
for design, deployment, management and monitoring of business processes. The graphical
environment of OW2 Orchestra provides modeling support of business processes using BPMN
notation.

5.3. Evaluation

Integration of the context provisioning system C-CAST CMF was modeled as executable
workflows realized in standard WS-BPEL. In order to ensure interoperability and engine
implementation independency of the selected approach the developed WS-BPEL processes
were deployed and evaluated using two different engines: Apache ODE and OW2 Orchestra.

To determine if the developed integration processes meet the requirements a set of test suites
was defined using soapUI testing tool [60]. soapUI introduces web-testing capabilities that allow
recording and replaying functional tests automatically. The developed tests were organized into
soapUI projects containing multiple suites of functional tests to evaluate context integration
processes of each particular integration layer. Each test suite addressed a particular context
integration process, defined test requests for different service endpoints, evaluated standard
and fault functionality using pre-defined assertions such as XML Schema compliance, not
SOAP fault and SOAP response. While deployment of the context integration processes was in
general successful, the following issues were discovered:

1. Different Service Endpoint Address Declaration Apache ODE and OW2 Orchestra do
not support automatic generation of WSDL port type bindings and service endpoint
declarations. Furthermore, both engines use different naming schemes for the service
endpoint declaration.

• Apache ODE expects http://hostname:portname/ode/processes/ServiceName

• OW2 Orchestra expects http://hostname:portname/orchestra/PortName

68

5.3. Evaluation

2. Different Variable Initialization In order to access a variable’s content in Apache ODE
each variable should be pre-initialized using an in-line from-spec of an assign activity.
Furthermore, to write values to a particular field of a variable this field must be previously
initialized. In case of a complex variable structure, this initialization approach is confusing
and leads to additional hidden errors. In contrast to this approach, the OW2 Orchestra
engine supports automatic variable initialization. Hence, in OW2 Orchestra any variable
field can be easily accessed and updated using a query language, such as XPath, without
previous variable initialization.

3. String value limitations in Orchestra Expression values of type xs:string [55] are
limited to 255 characters. Processing of String values exceeding this size causes freezing
of process instance execution due to an internal database exception.

4. No support in Orchestra for some XML element attributes OW2 Orchestra does not
provide support for the attribute xml:space [55] used in bpel:literal constructs.
xml:space attribute may be attached to an element to signal an intention that white
space used in that element should be preserved by applications. The usage of xml:space
used in WS-BPEL bpel:literal constructs is shown in Listing 5.1.

Listing 5.1 Usage of the Attribute xml:space in WS-BPEL
<bpel:assign validate="no" name="Assign">
<bpel:copy>
<bpel:from>
<bpel:literal xml:space="preserve">
First Line
Second Line
Third Line

</bpel:literal>
</bpel:from>
<bpel:to part="payload" variable="input">
<bpel:query queryLanguage="urn:oasis:names:tc:wsbpel:2.0:sublang:xpath1.0">
<![CDATA[tns:input]]>

</bpel:query>
</bpel:to>

</bpel:copy>
</bpel:assign>

5. Specific XSL transformation in Orchestra In order to enable XSL transformation of vari-
able’s content attention must be paid to the namespace prefixes used in the XSLT sheets.
XSLT sheets should use the same namespace prefixes as in the XML document passed to
the XSLT sheet. Otherwise, an exception is thrown pointing out that a namespace prefix
is not bound.

6. Integer representation in Apache ODE Apache ODE converts integer numbers to their
rational representation. Hence, in order to use integer numbers in foreach loops they
must be explicitly transformed using XPath function number().

69

5. Evaluation

The identified issues were reported as bugs to the workflow engines’ development teams. Since
there was no feedback during the time period of this thesis and no fixes were provided in
the new engine versions, the forced solution was to develop different versions of Context
Integration Processes for each workflow engine. The deployed Context Integration Processes
differ only in the way the outlined issues above were resolved. As for the rest, they are based
on the WS-BPEL standard and do not leverage any extension mechanisms.

The implemented context integration solution has been evaluated to determine the degree
to which the proposed concept fulfills the stated goals. According to the expectations, the
numerous abstraction layers of the Integration Process Pattern along with the additional
Aggregation Layer had a negative impact on the overall system performance. The invocation
of the Domain Specific Context Integration Process GetAvailableTaxis takes currently about
5 seconds to complete and calculate result values both for Apache ODE and OW2 Orchestra
engine. In all other respects, the concept of Context Integration Processes has approved itself
to be the most suitable context integration strategy realizing the main objectives outlined in
Section 1.2.

Enabling integration of context in WS-BPEL compositions
The Context Integration Processes approach enables integration of context information into
service compositions realized in the standard WS-BPEL language.

Providing a composition engine independent solution
The Context Integration Processes approach relies on the existing web-services standards and
frameworks and does not implicate the modification of WS-BPEL engine. Hence, integration
processes can be deployed on various workflow engines which support standard WS-BPEL 2.0
specification.

Enabling encapsulation and outsourcing of context information aggregation
Processing and aggregation of context information is encapsulated, moved out of application
logic and handled as a separate layer in the proposed integration architecture.

Providing integration support of different context provisioning systems
Context Integration Processes approach can be applied to integrate various context provisioning
systems, even to those which do not expose SOAP WSDL interface.

Enabling loosely coupling to context integration system
Since Context Integration Processes approach defines the necessary system abstraction, the
underlying context provisioning systems may be easily exchanged. Interfaces of the integrated
context provisioning system may evolve over time without forcing context-aware applications
to adapt their business logic to the introduced changes.

Providing component reusability
The Context Integration Processes approach separates context integration into hierarchy of
different semantical CIPs which allows a high maintainability and reusability of the integration
components.

70

5.3. Evaluation

Enabling integration system extensibility
Finally, a loosely coupled architecture enables integration of context provisioning systems to
be more manageable. New context integration processes of different semantic levels can be
built upon existing components and be exposed to context-aware applications.

71

Chapter 6

Context Modeling Tool

This chapter describes an extension of WS-BPEL modeling tools to support the development of
context-aware compositions using the integration concept introduced in the previous chapters.
Due to the variety of existing BPEL modeling tools, this chapter mainly focuses on the general
specification details. It identifies application domains of the extension of a BPEL modeling
tool, specifies user groups, their expectations and basic requirements, and describes use cases
to outline the extension functionality. The specification details act as the base for design
decisions and subsequent implementation. According to the current thesis statement, this
chapter provides only the specification and design details of an extension of Eclipse BPEL
Designer [61]. Hence, graphical support is not realized within the scope of this thesis.

6.1. Application Domains

This section identifies the two application domains of the context extension of a BPEL modeling
tool. In general, the modeling extension should support modelers in the following domains:

• Development of context-aware service compositions The extension of a BPEL model-
ing tool should support modelers while using existing Domain Specific context integration
processes in their context-aware service compositions.

• Development of context integration processes The extension of a BPEL modeling tool
should support modelers while creating new Core, Domain Independent, and System
Independent Aggregation CIPs to integrate or aggregate functionality provided by various
context provisioning systems.

The remainder of this chapter describes each application domain in more detail and illustrates
the required designer views along with the context modeling elements. Furthermore, it
specifies user groups and defines use cases illustrating how the proposed modeling extension
may support modelers while performing the respective activity.

73

6. Context Modeling Tool

6.2. Context Integration Processes Repository

In order to make context integration processes available for service compositions, a Context
Integration Processes repository (CIPs repository) is required. Modelers access the CIPs
repository to share context integration processes and use them in service compositions. Context
integration processes available in the CIPs repository should be deployed and ready for use.

6.3. Context-Aware Service Composition Modeling

6.3.1. Actors

The starting point is to identify actors exploiting the proposed context extension of a BPEL
modeling tool in this application domain and describe their expectations and requirements.

The primary actors in this application domain are responsible for the modeling of service
compositions, integrating context information to solve their business needs. Hence, modelers
access the CIPs repository to obtain a list of Domain Specific context integration processes and
use them in service compositions.

The context extension of a BPEL modeling tool should simplify the development of context-
aware applications by providing a graphical support and BPEL code generation. Users of
this group expect to work using traditional designer views of the integrated development
environment dedicated to business process modeling. Hence, a proposed extension of a BPEL
modeling tool should rely on the existing design capabilities, add context integration support,
and introduce no fundamental modifications to the traditional BPEL designer view. For the sake
of convenience, modelers of context-aware service compositions are referred as composition
modelers in the rest of this section.

6.3.2. User Interfaces

User interfaces define the interaction space between composition modelers and the context
extension. According to the previously introduced requirements, composition modelers expect
to work using the traditional modeling view of a BPEL modeling tool.

Figure 6.1 illustrates a common BPEL modeling view with the additional palette containing
graphical elements to support context-awareness. The following elements comprise this
graphical perspective:

1. Graphical Editor is an editor area containing the primary BPEL process content repre-
sented as graphical elements.

74

6.3. Context-Aware Service Composition Modeling

BPEL composition 1

def.bpel

def.wsdl

def.xsd

def.xsl

BPEL composition 2

def.bpel

def.wsdl

def.xsd

def.xsl

BPEL composition 1

correlations sets

partnerlinks

variables

process elements

receive

assign

Add Controls

IF

WHILE

FOR EACH

Add Actions

RECEIVE

INVOKE

ASSIGN

. . .

RECEIVE

partnerlink

input variable

output variable

. . .

. . .

Add Context Integration Activity

QueryContext

SubscribeToContextEvents

PickContextActivity

OnContextEvent

receive

invoke assign

reply

Package Explorer Graphical Editor XML Editor Process Tray

Dashboard Palette

Context Dashboard PaletteProperties View

Figure 6.1.: WS-BPEL Modeling Tool Extension – Context Dashboard Palette

2. XML Editor is an editor area containing the primary BPEL process content described in
XML.

3. Package Explorer reveals current BPEL package contents such as the BPEL process file,
WSDL interface description files, XSD and XSLT documents, and other artifacts required
for BPEL process deployment.

4. Dashboard Palette is an area listing BPEL activity elements available for the current
BPEL modeling tool.

5. Process Tray contains the elements contained in the current BPEL process such as partner
links, correlation sets, variables, etc.

6. Properties View displays properties and other details of the currently selected BPEL
process element.

75

6. Context Modeling Tool

7. Context Dashboard Palette is an additional area listing context-aware elements used to
integrate context information into the BPEL process.

The main objective is to extend a BPEL modeling tool with the additional Context Dashboard
Palette.

6.3.3. Use Cases

The basic use case illustrating context integration into service compositions is described in the
following.

Development of Context-aware Service Compositions This use case is abstract and defines
the development of context-aware service compositions. It describes the standard course
of actions performed by a composition modeler and specifies the behavior of the modeling
extension to support code generation while adding context activity elements to the designer
view.

Preconditions: The repository of context integration processes is bound and contains at
least one Domain Specific context integration process. The basic BPEL structure of a business
process is defined and contains no errors. A process variable used to store retrieved context
information is defined and optionally initialized. A graphical perspective extended to support
development of context-aware service compositions is opened.

Postconditions: The BPEL description of a business process contains the context-awareness
logic, is validated, and contains no errors. The necessary WSDL and XSD files of corresponding
context integration process are copied into the business process directory, are validated, and
contain no errors.

Basic course of actions:

1. The composition designer selects a new context activity element from the Context Dash-
board Palette and places it in Graphical Editor area.

2. The extension of a BPEL modeling tool displays the graphical representation of a context
activity element in the Graphical Editor area and generates the BPEL code for the
corresponding standard BPEL elements.

3. The composition designer selects the context activity element in the Graphical Editor area
to show and edit its information in Properties View.

4. The composition designer selects a Domain Specific CIP from the list of available context
integration processes.

5. The composition designer provides necessary details to complete the implementation of
the context activity element.

76

6.3. Context-Aware Service Composition Modeling

6. The extension of a BPEL modeling tool creates copies of WSDL and XSD files of the
Domain Specific CIP in the directory of current business process.

7. The modified BPEL process file is validated.

6.3.4. Design and Background Knowledge

This section provides the design details of the proposed modeling extension for the Eclipse
BPEL Designer [61] to support development of context-aware service compositions using the
concept of Context Integration Processes. The primary target user group of this extension
includes composition modelers. At the beginning of this section, a brief introduction of the main
technologies used for the implementation is done to give the reader the hands-on knowledge
necessary for a better understanding. The next part covers the design details of the extension
of the Eclipse BPEL Designer.

Background Knowledge

Eclipse Eclipse [52] is an open development platform comprised of extensible frameworks,
tools, and runtimes for building and managing software across the lifecycle. The Eclipse
platform is organized based on the concept of plug-ins - software modules contributing to
the system functionality. The modular architecture of Eclipse provides integrated resource
management and simplifies the installation of additional features and plug-ins into an Eclipse.

Eclipse Extension Points and Extensions The Eclipse platform defines a comprehensive
extension model to enable contribution to the basic platform behavior. The functionality of
existing plug-ins can be customized or even extended by other plug-ins through the mechanism
of extension points and extensions [62]. Plug-ins which declare so-called extension points allow
other plug-ins to contribute to their functionality by providing suitable extensions. To achieve
this an extension point defines a type of contract that extensions must conform to. This contract
must be implemented in the extensions provided by other plug-ins connecting to this extension
point.

Eclipse Modeling Framework The Eclipse Modeling Framework (EMF) [63] represents a
modeling framework and code generation facility for building tools and other applications
based on a structured data model. Eclipse EMF provides means to define a data meta model
using XML Metadata Interchange, Java annotations, UML, or XML Schema. Once a structured
meta model is specified, Eclipse EMF generates a corresponding set of Java implementation
classes. Additionally, Eclipse EMF supports model change notifications, provides persistence
support, facilitates model validation, etc.

77

6. Context Modeling Tool

Graphical Editor Framework The Graphical Editing Framework (GEF) [64] provides tech-
nology to create graphical editors and views for the Eclipse Workbench UI. GEF offers an
interactive model-view controller framework fostering the implementation of Eclipse graphical
editors, a visualization toolkit which enables implementation of Eclipse graphical view, and a
layout and rendering toolkit for displaying graphics on an SWT Canvas.

Eclipse BPEL Designer Realized as an Eclipse plug-in the BPEL Designer [61] is a contribu-
tion to the Eclipse platform to support the definition, authoring, editing, deploying, testing, and
debugging of WS-BPEL 2.0 processes. The BPEL Designer project provides graphical support
for BPEL process development lifecycle, enable validation and deployment of BPEL processes,
and aims to support debugging during process execution. The EMF data model defined by the
Eclipse BPEL Designer covers the standard WS-BPEL 2.0 Specification [2]. A GEF-based editor
is used to provide a graphical means to design BPEL processes. Finally, the BPEL Designer
leverages the standard Eclipse extension mechanisms to extend its functionality and support
additional BPEL constructs and user defined features.

Context Integration Activities

To support composition modelers while integrating context information into service com-
positions, the Eclipse BPEL Designer model must be extended with the additional context
integration activities. Context-aware service compositions obtain context information using
different patterns of communication. Basically, the context information is retrieved as an
invocation result of Domain Specific CIPs. Both synchronous and asynchronous invocation
mechanisms can be used to query context information. Alternatively, context-aware service
compositions support processing of context events either within or concurrently to the control
flow of the business process. The following context integration activities were defined:

QueryContext This activity represents a synchronous invocation of a Domain Specific context
integration process used to populate a process variable with the context information. Hence,
the QueryContext activity is realized as a scope containing invocation logic along with the
variable initialization logic as shown in Listing 6.1.

SubscribeToContextEvents This activity is a special case of QueryContext activity, since a
subscribe operation represents a one way invocation of a Domain Specific context integration
process. SubscribeToContextEvents is comprised out of a scope containing a one way invocation
logic and input variable initialization logic as shown in Listing 6.2.

78

6.3. Context-Aware Service Composition Modeling

Listing 6.1 Implementation – QueryContext Activity
<bpel:scope name="QueryContextScope">
<bpel:sequence name="QueryContext">

<!-- Define scope variables used in communication with Domain Specific CIP -->
<bpel:variable name="inputCIP" ... />
<bpel:variable name="outputCIP" ... />

<!-- Initialize CIP input variable -->
<bpel:assign validate="no" name="PrepareInputToCIP">...</bpel:assign>

<!-- Invoke Domain Specific CIP synchronously -->
<bpel:invoke name="InvokeCIP">...</bpel:invoke>

<!-- Process retrieved context information and populate BPEL process’ context variable -->
<bpel:assign validate="no" name="PopulateContextProcessVariable">...</bpel:assign>

</bpel:sequence>
</bpel:scope>

Listing 6.2 Implementation – SubscribeToContextEvents Activity
<bpel:scope name="SubscribeToContextEventsScope">
<bpel:sequence name="SubscribeToContextEvents">

<!-- Define scope variable used in communication with Domain Specific CIP -->
<bpel:variable name="inputCIP" ... />

<!-- Initialize CIP input variable -->
<bpel:assign validate="no" name="PrepareInputToCIP">...</bpel:assign>

<!-- Invoke Domain Specific CIP asynchronously -->
<bpel:invoke name="InvokeCIP">...</bpel:invoke>

</bpel:sequence>
</bpel:scope>

PickContextEvent This activity is used to provide a callback interface for a Domain Specific
context integration process to enable processing of context events within the control flow of the
business process. Using basic WS-BPEL constructs the PickContextEvent activity (see Listing
6.3) is realized as a scope containing a pick activity to process context events within the control
flow of the business process.

79

6. Context Modeling Tool

Listing 6.3 Implementation – PickContextEvent Activity
<bpel:scope name="PickContextEventScope">
<bpel:sequence name="PickContextEvent">

<bpel:pick name="PickContextEvent">

<!-- Process context events from Domain Specific CIP -->
<bpel:onMessage partnerlink="..." operation="...">

<!-- Process retrieved context information and populate BPEL process’ context
variable -->

<bpel:assign validate="no" name="PopulateContextProcessVariable">...</bpel:assign>

</bpel:onMessage>
</bpel:pick>

</bpel:sequence>
</bpel:scope>

OnContextEvent This activity is used to provide a callback interface for a Domain Specific
context integration process to enable processing of context events concurrently to the control
flow of business process. As shown in Listing 6.4, OnContextEvent is an extension of the
EventHandlers implemented as onEvent activity.

Listing 6.4 Implementation – OnContextEvent Activity
<bpel:eventHandlers>

<!-- Implement OnContextEvent as onEvent activity -->
<bpel:onEvent partnerLink="..." portType="...">
<bpel:scope name="OnContextEventScope">

<!-- Process retrieved context information and populate BPEL process’ context variable
-->

<bpel:assign validate="no" name="PopulateContextProcessVariable">...</bpel:assign>
</bpel:scope>

</bpel:onEvent>
...

</bpel:eventHandlers>
</bpel:process>

80

6.3. Context-Aware Service Composition Modeling

Design

The starting point is to define an EMF model representation of each context integration activity,
plug the custom activities into the BPEL model, and take care for the serialization and de-
serialization. The next step is to visualize the context integration activities in the Eclipse UI.
Besides visualization of context integration activities in the main BPEL Editor canvas, this
includes the creation of a special Dashboard palette to group the context integration activities.
Additionally, the BPEL Properties View must be extended. In general, two separate Eclipse
plug-ins will be created: the BPEL Designer EMF Model plug-in and the BPEL Designer UI
plug-in.

BPEL Designer EMF Model Extension As previously mentioned, the BPEL Designer leverages
Eclipse EMF to model BPEL activities. Hence, to define new context integration activities an
extension of the BPEL EMF model is required. Figure 6.2 illustrates the developed EMF model
for the context integration activities.

WS-BPEL 2.0 standard specifies a special extension activity to extend WS-BPEL with additional
language constructs. Since the BPEL Designer fully relies on the WS-BPEL 2.0 standard, it
exposes the only extension points which conform to the BPEL specification. Therefore, context
integration activities have to be implemented as BPEL <bpel:extensionActivity> containing
other standard BPEL constructs such as <bpel:invoke>, <bpel:pick>, and <bpel:assign>.
This ensures that the deployment of context-aware compositions will be supported by the most
standard conform BPEL composition engines.

The following brief description identifies the implementation steps of the EMF model extension
of BPEL Designer according to the course of action described in [65]:

1. Creation of a new Eclipse plug-in project org.eclipse.bpel.context.model implementing the
extension point org.eclipse.emf.ecore.generated_package.

2. Creation of a new EMF context.ecore model associated with the BPEL EMF bpel.ecore
model provided by BPEL Designer.

3. Definition of the new context integration activities as BPEL extension activities.

4. Creation of a corresponding EMF context.genmodel and subsequent generation of Java
classes implementing the data model.

5. Implementation of reconciling methods adoptContent() and orphanContent() to enable
BPEL Designer Editor canvas to react and display the changes introduced to the BPEL
model.

81

6. Context Modeling Tool

Plug-in ID: org.eclipse.emf.ecore
Point ID: generated_package

Point name: Ecore Package Registry
 for Generated Packages

<<extends>>

<<implements>> <<implements>>

org.eclipse.bpel.context.model.util

org.eclipse.bpel.model.extensions

org.eclipse.bpel.context.mode.impl

org.eclipse.bpel.context.model

PickContext
Serializer

ContextActivity
Deserializer

QueryContext
Serializer

BPELActivity
Deserializer

BPELActivity
Serializer

ModelPackage

Figure 6.2.: Eclipse BPEL Designer Model Extension

6. Implementation of custom Serializer and Deserializer for each context integration activities
to enable transformation of Java object representation to XML and vice versa. The
Serializer is additionally used to create the overall structure of the context integration
activities.

BPEL Designer UI Extension To separate user interface implementation from model repre-
sentation an additional Eclipse plug-in project is required implementing the graphical extension
points of BPEL Designer. The current BPEL Designer UI plug-in must implement the extension
points exposed by the BPEL Designer to enable the representation of context integration
activities on the Editor canvas and Dashboard Palette. Additionally, a special Properties View is
required to display and edit properties for each context integration activity.

As shown in Figure 6.3, the BPEL Designer UI extension must implement the following extension
points:

82

6.3. Context-Aware Service Composition Modeling

• org.eclipse.bpel.ui.uiObjectFactories extends the BPEL Designer to display the context
integration activities on the BPEL Designer Editor canvas.

• org.eclipse.bpel.common.ui.paletteAdditions extends the BPEL Designer to display the
context integration activities on the Dashboard palette.

• org.eclipse.ui.views.properties.tabbed.propertySections extends the Eclipse Workbench to
display and edit custom activity properties.

Plug-in ID: org.eclipse.bpel.context.model
Point ID: uiObjectFactories

Point name: uiObjectFactories

<<extends>>

Plug-in ID: org.eclipse.bpel.ui
Point ID: paletteAdditions

Point name: Palette Additions

Plug-in ID: org.eclipse.bpel.ui.bpeleditor
Point ID: propertySections

Point name: Property Sections

<<extends>>

<<extends>>

org.eclipse.bpel.context.ui.paletteorg.eclipse.bpel.context.ui.factories

org.eclipse.bpel.context.ui

ContextPalette
Provider

org.eclipse.bpel.context.ui.properties

ContextUI
ObjectFactory

QueryContext
PropertySection

PickContextEvent
PropertySection

Figure 6.3.: Eclipse BPEL Designer UI Extension

The following brief description provides implementation details of the BPEL Designer UI
extension:

1. Creation of a new Eclipse plug-in project: org.eclipse.bpel.context.ui.

2. Registering custom UIObjectFactory to create UI objects for context integration activities:
ContextUIObjectFactory.

3. Creation of custom activity adapters for each context integration activity. Activity adapters
describe how to access child activities within the custom activity and return a GEF
representation of custom activities.

83

6. Context Modeling Tool

4. Registering custom IPaletteProvider to create a Dashboard palette for context integration
activities: ContextPaletteProvider.

5. Registering new BPEL property sections in Eclipse Properties View for each context
integration activity.

Context Integration Activities’ Properties

Once a context integration activity is placed onto the BPEL Designer Editor canvas, a composi-
tion modeler is prompted to provide additional information required to complete the activity
implementation. Using the BPEL Designer Properties View the composition modeler specifies
the following information:

QueryContext activity

• Domain Specific context integration process name

• Domain Specific context integration process partnerLinkType, partneRole, operation

• Process variable used to store context information

• Initialize variable used as input to Domain Specific context integration process

• Initialize process variable using Domain Specific context integration process output
variable

SubscribeToContextEvents

• Domain Specific context integration process name

• Domain Specific context integration process partnerLinkType, partneRole, operation

• Process variable used to store context information

• Initialize variable used as input to Domain Specific context integration process

PickContextEvent

• Domain Specific context integration process name

• Domain Specific context integration process output message type

• Process variable used to store context information

• Initialize process variable using Domain Specific context integration process output
variable

84

6.4. Context Integration Processes Modeling

OnContextEvent

• Domain Specific context integration process name

• Domain Specific context integration process output message type

• Process variable used to store context information

• Initialize process variable using Domain Specific context integration process output
variable

6.4. Context Integration Processes Modeling

6.4.1. Actors

The primary actors in this application domain include modelers responsible for the design and
management of Context Integration Processes. Basically, the integration process development
may be accomplished using existing capabilities of currently available BPEL modeling tools.
However, due to the fact that the proposed context integration solution represents a complex
hierarchical Web service stack, a dedicated designer view is required to provide a simplified
view on the integration components and their organization. For the sake of convenience,
modelers of context integration processes are referred as integration modelers in the rest of
this section.

6.4.2. User Interfaces

User interfaces define the interaction space between integration modelers and the context
extension. To support integration modelers while integrating new context provisioning systems
a new BPEL modeling perspective is required. Figure 6.4 demonstrates this modeling perspec-
tive containing editor areas, explorers, and element dashboard palettes required for simplified
development of context integration processes:

1. Graphical Editor is an editor area comprised of the five layers according to the in-
troduced context integration concept: System Layer, Core Layer, Domain Independent
Layer, System Independent Layer, and Domain Specific Layer. Context integration and
aggregation processes are organized, interconnected, and displayed according to their
organization in the hierarchical integration stack.

2. CIP Explorer represents the CIPs repository and contains integration processes for each
available context provisioning system. Context integration processes are organized in
folders according to the layers they belong to.

85

6. Context Modeling Tool

3. Integration Explorer reveals the current context integration composition. Context
integration processes involved into compositions are structured and organized to their
placement in the hierarchical integration stack.

4. CIP Dashboard Palette is an area listing elements simplifying the integration of a new
context provisioning system and the definition of new integration and aggregation
processes.

5. Properties View displays properties, interfaces and other details of currently selected
context integration process.

Domain Specific CIPs

GetAvailableTaxis

GetTaxiInformation

System Independent CIPS

GetRouteDuration

GetRouteDistance

Actions

Add new system

Add new CIP

Add new
Aggregation CIP

GoogleMapsServices

C-CAST CMF

DomInd CIPs

Core CIPs

System Layer

. . .

GetRouteDuration

Layer: System Independet CIPs

WSDL definition: http://www.ict-ccast.eu/...

BPEL definition: ...
. . .

. . .

System Integration CIPS

C-CAST CMF

GoogleMapsServices

Domain Ind. CIPs

Core CIPs

. . .

DomInd CIPs

Core CIPs

System Layer

NEXUS

DomInd CIPs

Core CIPs

System Layer

Core CIPs

Domain Ind. CIPs

System Ind. Aggregation CIPs

Domain Specific CIPs

Systems

Integration Explorer Graphical Editor CIP Dashboard Palette

CIP Explorer

Properties View

Figure 6.4.: WS-BPEL Modeling Tool Extension – CIP Modeling Perspective

This diploma thesis provides only specification details to this graphical perspective. An
extension of a BPEL modeling tool to support integration of new context provisioning systems
may be provided as future work in this area.

86

6.4. Context Integration Processes Modeling

6.4.3. Use Cases

The following are the basic use cases describing integration of new context provisioning
systems.

Integration of a Context Provisioning System This use case is abstract and defines the
integration of a new context provisioning system. It describes the standard course of actions
performed by an integration modeler and specifies the behavior of the modeling extension to
support code generation.

Preconditions: The CIPs repository is bound and ready to store new context integration
processes. The WSDL interface definition of the context provisioning system exists, is validated,
and contains no errors. A graphical perspective extended to support development of context
integration processes is opened.

Postconditions: The context integration processes for the new context provisioning system
are defined and uploaded to CIPs repository.

Basic course of actions:

1. The integration modeler selects the graphical element new context provisioning system
from the CIP Dashboard Palette and places it in Graphical Editor area.

2. The integration modeler selects a context provisioning system element in the Graphical
Editor to show and edit its information in the Properties View.

3. The integration modeler provides the system’s WSDL interface definition.

4. The modeling extension creates a new system folder in the Integration Explorer and
stores a copy of the WSDL definition file.

5. To integrate a particular service the integration modeler selects the graphical element
new context integration process from CIP Dashboard Palette, places it on a corresponding
layer in Graphical Editor area, and connects it with the new context provisioning system
component.

6. The modeling extension creates a new integration process’s folder in the Integration
Explorer, generates a BPEL process file and WSDL interface definition file, and creates a
copy of the system’s WSDL definition file.

7. The integration modeler selects the context integration process in the Graphical Editor
area to show and edit its information in Properties View.

8. The integration modeler defines the WSDL interface details and implements the BPEL
process using the traditional BPEL modeling perspective.

87

6. Context Modeling Tool

9. Finally, the integration modeler updates the CIPs repository to make the new context
integration processes available for context-aware compositions.

Development of System Independent Aggregation Processes This use case is abstract and
defines the aggregation of information obtained from various context provisioning systems. It
describes the standard course of actions performed by an integration modeler and specifies the
behavior of the modeling extension to support code generation.

Preconditions: The CIPs repository is bound and contains context integration processes for
at least two different context provisioning systems. The WSDL interface definitions of the
context provisioning systems exist, is validated, and contains no errors. A graphical perspective
extended to support development of context integration processes is opened.

Postconditions: The system independent context aggregation processes are defined and
uploaded to CIPs repository.

Basic course of actions:

1. The integration modeler selects the graphical element new System Independent aggregation
process from the CIP Dashboard Palette and places it in the Graphical Editor area.

2. The integration modeler selects a System Independent aggregation process element in the
Graphical Editor to show and edit its preferences in the Properties View.

3. The integration modeler selects the context integration processes representing interfaces
of different context provisioning systems. Subsequently, the integration modeler specifies
WSDL interface details to obtain context information.

4. The modeling extension creates a new aggregation’s folder in the Integration Explorer,
generates a BPEL process file, and WSDL interface definition file, and creates a copy of
the WSDL definition files of the involved context integration processes.

5. The modeling extension generates partner links, variables, and invocation logic required
for the communication with other context integration processes.

6. The integration modeler implements the BPEL process using traditional BPEL modeling
perspective.

7. Finally, the integration modeler updates the CIPs repository to make the aggregation
process available for further usage.

88

Chapter 7

Summary and Future Work

This diploma thesis provided a general discussion about integration and aggregation of context
information into service compositions realized in WS-BPEL. Having investigated the work
done by others we evaluated the research achievements over the past years in this area and
provided the current state of the art of context and techniques of Context-Aware Computing.
In Section 2.1.2, we presented a conceptual architecture model for comprehensive context
management including sensing, modeling, reasoning, and distributing of context information.
After giving necessary background knowledge, we investigated the application of the available
techniques of Context-Aware Computing to the domain of service compositions. Due to the
fact that context knowledge represents information which is external to service compositions
and therefore is managed by external context provisioning systems, we presented the available
concepts of integration of context knowledge into service compositions. Finally, in Section
2.3.3, we evaluated some of the existing integration concepts and selected Context Integration
Processes as the most suitable integration concept.

Subsequently, the Context Integration Processes concept was used to integrate the C-CAST con-
text management framework (Section 3.3) and Google Maps Web services (Section 4.4.4) into
service compositions. In Section 4.3, we presented the extension to the Context Integration Pro-
cesses concept to support the aggregation of context information obtained from various context
provisioning systems. To validate the realized concepts, the composition engines Apache ODE
and OW2 Orchestra were used for deployment of the developed context integration processes.
The evaluation in Section 5.3 determined that the Context Integration Processes concept fulfills
the stated integration objectives. The realized concept enables composition engine independent
integration of context, provides encapsulation and outsourcing of context aggregation logic,
and represents an extensible approach to integrate different context provisioning systems.

89

7. Summary and Future Work

In Chapter 6, we provided the general specification and design details for the WS-BPEL
modeling tool extension to support modeling of context-aware service compositions and
development of context integration processes. We identified application domains, specified
user groups, and described use cases to outline the extension functionality. Finally, to ease
future work a guide for setting up the development environment is provided in Appendix
section. Additionally, it gives an overview of the C-CAST CMF RESTful Web service interfaces,
message formats, and invocation parameters.

Throughout this thesis different areas for further work have been identified. By addressing
them, the Context Integration Processes concept can be further improved:

1. Performance Improvement The numerous abstraction layers of the Integration Process
Pattern had a negative impact on the overall system performance. Optimizations could
be applied to reduce the time spent on invocation of context integration processes.

2. Implementation of context modeling tool Based on the specification and design details
presented in Chapter 6, the extension to a WS-BPEL modeling tool could be implemented
to ease the development of context-aware service compositions and context integration
processes.

3. Implementation of CIP management tool Due to the fact that the proposed context
integration approach represents a complex hierarchical Web service stack, there is a
demand for a tool which will simplify management of context integration processes,
provide monitoring of the integration process’ instances, and audit communication
between multiple composite flows.

4. Runtime adaptation There is a demand to investigate if the dynamic adaptation of
business process instances is required. Context knowledge could be used to adjust the
control flow of a WS-BPEL instance or exchange partners involved in the interaction with
a context-aware service composition.

90

Appendix A

Appendix

Due to the lack of a complete and high quality documentation about C-CAST CMF interfaces,
all available information is gathered in this appendix. The first two sections are devoted to the
types of entities and context scopes supported by the current version of C-CAST CMF. The XML
Schema data model representing Context Management Language (ContextML) vocabulary, con-
text model, and data types can be found on the enclosed CD. The current version of ContextML
XML schema is 1.7. The next section describes the C-CAST CMF RESTful Web service interfaces,
message formats and invocation parameters. Finally, the installation and configuration guide
is provided in the last section to ease the installation and further development of the context
integration processes.

A.1. C-CAST CMF Supported Entities

The current version of C-CAST CMF Context Broker is 1.4.3. This appendix section illustrates
currently supported entity types, shown in Table A.1.

A.2. C-CAST CMF Supported Context Scopes

This section describes the context scopes supported by the current version of the C-CAST CMF
Context Broker.

91

A. Appendix

Entity Type Description Syntax (type | identifier)

Users Identifies a user of the C-CAST CMF. username | <name>

Service Account Identifies an account for an Internet service
associated with a user. The account identi-
fier should be prefixed with the service name
code. Sample service name codes include
mailto, facebook, skype, etc.

serviceAccount | <prefix>:<account_id>

Cellular Terminal Identifies a mobile device with GSM cellular
connectivity.

imei | <imei_id>

Room Identifies a room in a building, office, meet-
ing room, etc.

room | <roomId>

Personal Computer Identifies a personal computer equiped with
Bluetooth interface for identification.

pc | <BT_addr>

Smart Object Identifies a smart object which provides
some service to users in the environment. A
smart object should be equiped with Blue-
tooth interface for identification.

smartObj | <BT_addr>

Wireless Network Node Identifies a base connectivity station like a
WiFi Access Point or a Cellular Network Base
Station identified by WiFi MAC address or
Cell Global Identity respectively.

wnn | <node_id>

Table A.1.: C-CAST CMF – Entity Types

A.2.1. Context Scope userProfile

The context scope named userProfile contains detailed information about user’s personal
profile. Table A.2 illustrates the related context parameters.

The ContextML parA elements encapsulate further user’s personal profile data such as emails,
work places, mobile phone numbers, Internet messenger service accounts and residential
places. Each ContextML parA element is named respectively to the enclosed content. The
following paragraphs demonstrate the context parameters used to represent each particular
parA element.

ContextML Element emailsArray

Table A.3 contains the information about the user’s email addresses structured as a list of
ContextML parS elements. The corresponding root parA element is titled emails. Each
ContextML parS element is named email and contains context parameters as listed below.

92

A.2. C-CAST CMF Supported Context Scopes

Parameter Name XMLSchema data
type

Description Required Empty

cid xs:string Identifier yes no

alias xs:string User alias yes no

firstName xs:string User first name yes no

lastName xs:string User last name yes no

gender xs:string User gender (m, f) no –

birthCity xs:string User birth city no –

birthCountry xs:string User birth country no –

birthZip xs:string User birth zip code no –

birthState xs:string User birth state no –

birthDate xs:dateTime User birth date no –

civilStatus xs:string User civil status no –

fiscalCode xs:string User fiscal code no –

nationality xs:string User nationality no –

emails ContextML parA
element

Array of user’s email addresses. yes yes

works ContextML parA
element

Array of user’s work places. yes yes

mobiles ContextML parA
element

Array of user’s mobile numbers. yes yes

instantMessengers ContextML parA
element

Array of user’s instant messengers. yes yes

homes ContextML parA
element

Array of user’s residential places. yes yes

Table A.2.: C-CAST CMF – Definition of userProfile Scope

Parameter Name XMLSchema data
type

Description Required Empty

type xs:string Type of email address (personal, busi-
ness)

yes no

preferred xs:boolean True / False yes no

email xs:string Email address yes no

Table A.3.: C-CAST CMF – Definition of emails Element Contained in userProfile Scope

ContextML Element worksArray

Table A.4 contains the information about the user’s work places structured as a list of ContextML
parS elements. The corresponding root parA element is titled works. Each ContextML parS
element is named work and contains context parameters as listed below.

93

A. Appendix

Parameter Name XMLSchema data
type

Description Required Empty

type xs:string Type of user’s work place yes no

organization xs:string User’s work organization yes no

address xs:string Address of user’s work place yes no

city xs:string City of user’s work place yes no

zip xs:string Zip code of user’s work place yes no

state xs:string State of user’s work place yes no

country xs:string Country of user’s work place yes no

phone xs:string Phone number of user’s work place yes no

fax xs:string Fax number of user’s work place yes no

Table A.4.: C-CAST CMF – Definition of works Element Contained in userProfile Scope

ContextML Element mobilesArray

Table A.5 contains the information about the user’s mobile phone numbers structured as a
list of ContextML parS elements. The corresponding root parA element is titled mobiles. Each
ContextML parS element is named mobile and contains context parameters as listed below.

Parameter Name XMLSchema data
type

Description Required Empty

type xs:string Type of mobile number (personal,
business)

yes no

preferred xs:boolean True / False yes no

mobile xs:string Mobile number in the international
representation

yes no

imsi xs:string IMSI number yes yes

Table A.5.: C-CAST CMF – Definition of mobiles Element Contained in userProfile Scope

ContextML Element messengersArray

Table A.6 contains the information about the user’s instant messenger accounts structured as a
list of ContextML parS elements. The corresponding root parA element is titled messengers.
Each ContextML parS element is named instantMess and contains context parameters as listed
below.

94

A.2. C-CAST CMF Supported Context Scopes

Parameter Name XMLSchema data
type

Description Required Empty

type xs:string IM account type (personal, business) yes no

preferred xs:boolean True / False yes no

provider xs:string IM provider yes no

account xs:string User’s IM account yes no

Table A.6.: C-CAST CMF – Definition of instantMess Element Contained in userProfile
Scope

ContextML Element homesArray

Table A.7 contains the information about the user’s residential places structured as a list
of ContextML parS elements. The corresponding root parA element is titled homes. Each
ContextML parS element is named home and contains context parameters as listed below.

Parameter Name XMLSchema data
type

Description Required Empty

type xs:string Type of user’s home yes no

address xs:string Address of user’s home yes no

city xs:string City of user’s home yes no

zip xs:string Zip code of user’s home yes no

state xs:string State of user’s home yes no

country xs:string Country of user’s home yes no

phone xs:string Phone number of user’s home yes no

fax xs:string Fax number of user’s home yes no

flat xs:string User’s home flat yes no

Table A.7.: C-CAST CMF – Definition of homes Element Contained in userProfile Scope

A.2.2. Context Scope position

The context information contained in this scope specifies the geographical position of an entity.
Table A.8 illustrates the related context parameters.

Possible technologies used for computation of an entity position include: Bluetooth, Wifi,
IP-based location, location obtained from GPS sensor, and others.

95

A. Appendix

Parameter Name XMLSchema data
type

Description Required Empty

latitude xs:float Latitude (WGS84 system) yes no

longitude xs:float Longitude (WGS84 system) yes no

accuracy xs:int Position accuracy (meters) yes no

locMode xs:string Technology used for position computa-
tion

yes no

altitude xs:float Altitude no –

Table A.8.: C-CAST CMF – Definition of position Scope

A.2.3. Context Scope civilAddress

The information identifying the home address of an entity is contained within the civilAddress
scope. Table A.9 illustrates the related context parameters.

Parameter Name XMLSchema data
type

Description Required Empty

room xs:string Room identifier no –

corridor xs:string Corridor identifier no –

floor xs:string Floor no –

building xs:string Building no –

street xs:string Street no –

postalCode xs:string Zip code no –

city xs:string City no –

subdivision xs:string State / Area no –

country xs:string Country no –

countryCode xs:string Country code in ISO 3166-1 alpha-3
format

no –

placeType xs:string If the civil address refers to a public
place this is the place type

no –

placeName xs:string If the civil address refers to a public
place this is the place name

no –

Table A.9.: C-CAST CMF – Definition of civilAddress Scope

96

A.2. C-CAST CMF Supported Context Scopes

Parameter Name XMLSchema data
type

Description Required Empty

with xs:string Type os nearby users (friends, family,
colleagues)

no –

status xs:string Status (crowded) no –

users ContextML parA
element

Array of nearby users. See Table A.11. yes yes

Table A.10.: C-CAST CMF – Definition of userProximity Scope

A.2.4. Context Scope userProximity

The context scope userProximity contains the context information about the entities located
in a proximity of a specific entity. Table A.10 illustrates the related context parameters.

Table contains the information about the nearby entities structured as a list of ContextML parS
elements. The corresponding root parA element is titled users. Each ContextML parS element
is named user and contains context parameters as listed below.

Parameter Name XMLSchema data
type

Description Required Empty

userName xs:string Name of the nearby user yes no

fullName xs:string Full name of the nearby user no –

tech xs:string Technology used for proximity detec-
tion

yes no

prox xs:string Proximity level estimation no –

rel xs:string Relation between the reference entity
and nearby user (friend, family, col-
league). If the relation is indirect, the
relationship chain is expressed with
the separator ;́́.

no –

interm xs:string If the previous relation is indirect, this
parameter contains the username of
the intermediary, otherwise it is not
present.

no –

Table A.11.: C-CAST CMF – Definition of users Element Contained in userProximity Scope

97

A. Appendix

A.3. C-CAST CMF RESTful Web Service Interface

This section describes in detail the RESTful Web service API of the C-CAST context management
framework. Available interfaces are organized according to the main components of the CMF
architecture.

A.3.1. Context Broker Interfaces

The current version of C-CAST CMF Context Broker is 1.4.3. The following paragraphs illustrate
currently exposed interfaces.

Whois Interface

Whois interface provides general information about the current version of the Context Broker.

• Invocation URL must be of the following form:

HTTP://<HOSTNAME>:<PORT>/CB/ContextBroker/getName

• Input parameters are not defined.

• Request message is not defined.

• Response message is illustrated in Listing A.1.

• Fault message contains an acknowledgement message with the error code and invocation
status as shown in Listing A.8.

Listing A.1 ContextML Schema Element for getName Response
<contextML>
<ctxResp>
<contextProvider id="CB" v="1.4.3"/>
<entity id="" type=""/>
<scope/>
<resp status="OK" code="200"/>

</ctxResp>
</contextML>

98

A.3. C-CAST CMF RESTful Web Service Interface

Listing A.2 ContextML Context Provider Advertisement Schema Element
<contextML>
<ctxAdvs>
<ctxAdv>
<contextProvider id="LP" v="1.1.0"/>
<urlRoot>ca_example.tilab.com/LP</urlRoot>
<scopes>
<scopeDef n="position">
<url>/loc/getLocation</url>
<entityTypes>username,mobile</entityTypes>
<inputDef>
<inputEl name="phone" type="currentSettings:mobile"/>
<inputEl name="cgi" type="cell:cgi"/>
<inputEl name="btList" type="bt:btList"/>
<inputEl name="wfList" type="wf:wfList"/>

</inputDef>
</scopeDef>

</scopes>
</ctxAdv>

</ctxAdvs>
</contextML>

Context Provider Advertising Interface

The Context Broker provides an interface to register new Context Providers. Each Context
Provider informs the Context Broker about its capabilities using an advertisement message
encoded in the ContextML format. Entries about registered Context Providers are kept in the
Context Provider Lookup table and are linked to an expiry timer. Hence, the Context Provider
is responsible to refresh the lookup entries by periodically advertising its capabilities.

• Invocation URL must be of the following form:

HTTP://<HOSTNAME>:<PORT>/CB/ContextBroker/providerAdvertising

• Input parameters are not defined.

• Request message contains the Context Provider advertisement illustrated in Listing A.2.
A new Context Provider has to provide the information how to access it (urlRoot) along
with the invocation parameters. Furthermore, a Context Provider should specify its name,
version, entity types, and the supported context scopes. A single advertisement message
may contain several context scopes.

• Response message contains an acknowledgement message with the registration status
and operation code. A sample acknowledgement message is illustrated in the Listing A.7.

99

A. Appendix

• Fault message contains an acknowledgement message with the error code and invocation
status as shown in Listing A.8.

Available Context Providers Query Interface

The Context Broker exposes the query interface to distribute information about the registered
Context Providers. To refine the returned result set the corresponding query should contain
information about context scopes. The Context Broker will return the registered Context
Providers which support the desired context scopes.

• Invocation URL must be of the following form:

HTTP://<HOSTNAME>:<PORT>/CB/ContextBroker/getContextProviders

• Input parameters contain scope which represents a comma-separated list of context
scopes.

• Request message is not defined.

• Response message contains a list of the available Context Providers and is illustrated in
Listing A.3.

• Fault message contains an acknowledgement message with the error code and invocation
status as shown in Listing A.8.

Listing A.3 ContextML Schema Element for getContextProviders Response
<contextML>
<ctxPrvEls>
<ctxPrvEl>
<par n="scope">position</par>
<parA n="contextProviders">
<parS n="contextProvider">
<par n="id">LP</par>
<par n="url">tilab.com/LP/loc/getName</par>

</parS>
</parA>

</ctxPrvEl>
</ctxPrvEls>

</contextML>

100

A.3. C-CAST CMF RESTful Web Service Interface

Active Entities Query Interface

A list of active entities can be acquired by invoking the corresponding Context Broker inter-
face.

• Invocation URL must be of the following form:

HTTP://<HOSTNAME>:<PORT>/CB/ContextBroker/getActiveEntities

• Input parameters are not defined.

• Request message is not defined.

• Response message contains a list of the available active entities as illustrated in Listing
A.4.

• Fault message contains an acknowledgement message with the error code and invocation
status as shown in Listing A.8.

Listing A.4 ContextML Schema Element for getActiveEntities Response
<contextML>
<ctxResp>
<contextProvider id="CB" v="1.4.3"/>
<timestamp>2011-06-06T16:56:06+02:00</timestamp>
<method>getActiveEntities</method>
<resp status="OK" code="200"/>
<dataPart>
<parA n="entities">
<par n="entity">imei|353231005978493</par>
<par n="entity">imei|353231005978492</par>
<par n="entity">imei|123456789345</par>

</parA>
</dataPart>

</ctxResp>
</contextML>

Context Information Query Interface

The Context Broker exposes a generic interface to distribute context information.

• Invocation URL must be of the following form:

HTTP://<HOSTNAME>:<PORT>/CB/ContextBroker/getContext?parameters

101

A. Appendix

• Input parameters are separated with the ampersand & character and contain:

1. entity specifies the entity type and identifier and should be of the form:
<type>|<identifier>.

2. entities can be used instead of entity parameter in case context information
should be acquired for numerous entities. This parameter expects a comma-
separated entity list of the form: <type>|<identifier>.

3. scopeList represents a comma-separated list of context scopes

• Request message is not defined.

• Response message contains generated context information as illustrated in Listing A.5.

• Fault message contains an acknowledgement message with the error code and invocation
status as shown in Listing A.8.

Listing A.5 ContextML Schema Element for getContext Response
<contextML>
<ctxEls>
<ctxEl>
<contextProvider id="LP" v="1.1.0" />
<entity type="username" id="Sherlock" />
<scope>civilAddress</scope>
<timestamp>2011-02-27T12:20:11+01:00</timestamp>
<expires>2011-02-27T13:20:11+01:00</expires>
<dataPart>
<parS n="civilAddress">
<par n="street">221 B Baker St</par>
<par n="city">London</par>
<par n="country">England</par>

</parS>
</dataPart>

</ctxEl>
</ctxEls>

</contextML>

Context Update Interface

The Context Broker exposes a generic interface to update context information stored in the
Context Cache.

• Invocation URL must be of the following form:

HTTP://<HOSTNAME>:<PORT>/CB/ContextBroker/contextUpdate

102

A.3. C-CAST CMF RESTful Web Service Interface

• Input parameters are not defined.

• Request message contains ContextML element encapsulating the updated context infor-
mation. A sample context update request is illustrated in the Listing A.6.

• Response message contains an acknowledgement message with the update status and
operation code. A sample acknowledgement message is illustrated in Listing A.7.

• Fault message contains an acknowledgement message with the error code and invocation
status as shown in Listing A.8.

Listing A.6 ContextML Schema Element for contextUpdate Request
<contextML>
<ctxEls>
<ctxEl>
<contextProvider id="LP" v="1.1.0" />
<entity type="username" id="Harry" />
<scope>civilAddress</scope>
<timestamp>2011-02-27T12:20:11+01:00</timestamp>
<expires>2011-02-27T13:20:11+01:00</expires>
<dataPart>
<parS n="civilAddress">
<par n="room">The Cupboard under the Stairs</par>
<par n="street">4 Privet Drive</par>
<par n="city">Little Whinging</par>
<par n="country">Surrey</par>

</parS>
</dataPart>

</ctxEl>
</ctxEls>

</contextML>

Acknowledgement Message

Context Broker replies with an acknowledgement message to confirm the reception and
completeness of the management invocations. An acknowledgement message identifies the
component sending the acknowledgement, specifies timestamp and name of the invoked
operation. Depending on the invoked method, entity and scope are optionally encoded in the
acknowledgement message. Each acknowledgement message contains the invocation status,
HTTP status code and other useful information provided in msg element. Listings A.7 and A.8
demonstrate sample acknowledgement and fault messages respectively.

103

A. Appendix

Listing A.7 ContextML Acknowledgement Message
<contextML>
<ctxResp>
<contextProvider id="CB" v="0.1" />
<entity id="" type="" />
<scope />
<method>providerAdvertising</method>
<resp status="OK" code="200" />

</ctxResp>
</contextML>

Listing A.8 ContextML Fault Message
<contextML>
<ctxResp>
<contextProvider id="CB" v="1.4.3"/>
<timestamp>2011-06-07T17:48:27+02:00</timestamp>
<entity id="12345345" type="imei"/>
<scope>position</scope>
<method>getContext</method>
<resp status="ERROR" code="455" msg="Context Element Not Available: No Context Available

to Invoke Provider LP"/>
</ctxResp>

</contextML>

A.3.2. Context Provider Interfaces

The context query interface of a Context Provider has the same syntax and semantics as the
related interface exposed by the Context Broker. Additionally, the implementation of a specific
provider method varies from every other registered Context Provider. Hence, the detailed
specification of a Context Provider API should be furnished along with its implementation. The
following paragraphs illustrate interfaces exposed by a Context Provider.

Context Information Query Interface

Context Provider exposes a generic interface to distribute context information.

• Invocation URL must be of the following form:

HTTP://<HOSTNAME>:<PORT>/<PATH>/getContext?parameters

• Input parameters are separated with the ampersand & character and expect:

104

A.3. C-CAST CMF RESTful Web Service Interface

1. entity specifies the entity type and identifier and should be of the form:
<type>|<identifier>.

2. entities can be used in place of entity parameter in case context information
should be acquired for numerous entities. This parameter expects a comma-
separated entity list of the form: <type>|<identifier>.

3. scopeList represents a comma-separated list of context scopes

4. Specific additional parameters defined by every particular Context Provider

• Request message is not defined.

• Response message contains generated context information and is illustrated in Listing
A.5.

• Fault message contains an acknowledgement message with the error code and invocation
status as shown in Listing A.8.

Generic Context Provider Interface

Context Provider may advertise specific interfaces to query or manipulate context informa-
tion.

• Invocation URL must be of the following form:

HTTP://<HOSTNAME>:<PORT>/<PATH>/MethodName?parameters

• Input parameters are optional. They are separated with the ampersand & character and
represented through:

1. parameter name

2. parameter value

• Request message contains ContextML element encapsulating the updated context infor-
mation. Request message is optional.

• Response message contains ContextML element.

• Fault message contains an acknowledgement message with the error code and invocation
status as shown in Listing A.8.

105

A. Appendix

A.4. Installation and Configuration Guide

This chapter describes the installation steps to make it easier for the reader to get started with
the exploitation of Context Integration Processes.

Installing Apache Tomcat

The starting point is to get the Apache Tomcat which can be found on the enclosed CD or
downloaded from the Apache Tomcat website [53]. The version of Apache Tomcat used in this
diploma thesis is 7.0.19. After downloading the Apache Tomcat binary, it should be copied to
the intended installation directory and expanded.

Configuring the Administrator and Manager Web Interface

To control resources, data sources, users and groups, as well as to perform management tasks
on web applications through a simplified web user interface a new user with corresponding
roles should be defined. To do this, the reader should add the following lines to the user
configuration located in CATALINA_BASE/conf/tomcat-users.xml file:

Listing A.9 Configuring the Administrator and Manager Web Interface
<role name="admin"/>
<role name="manager-gui"/>

<user name="your_login_name" password="your_login_password" roles="admin,manager-gui"/>

Configuring Memory Management

To avoid Out Of Memory PermGen errors which are commonly seen during development of
context integration processes, the memory available to Apache Tomcat must be increased. To
do this, the following line needs to be added to the beginning of the Tomcat startup script file
CATALINA_BASE/bin/catalina.sh:

Listing A.10 Configuring Memory Management
JAVA_OPTS="-Djava.awt.headless=true -Dfile.encoding=UTF-8 -server -Xms1536m -Xmx1536m

-XX:NewSize=256m -XX:MaxNewSize=256m -XX:PermSize=256m -XX:MaxPermSize=256m
-XX:+DisableExplicitGC"

106

A.4. Installation and Configuration Guide

Installing Apache ODE

The Apache ODE binary can be found on the enclosed CD or downloaded from the Apache ODE
website [58]. The version of Apache ODE used in this diploma thesis is 1.3.5. After successful
download of the Apache ODE binary, it should be expanded. Finally, to deploy Apache ODE the
Web application archive file called ode.war is placed into the Tomcat CATALINA_BASE/webapps/
folder.

Installing OW2 Orchestra

The OW2 Orchestra binary file is located on the enclosed CD. Alternatively, the reader can
download OW2 Orchestra binaries from OW2 Orchestra website [59]. The version of Orchestra
engine used in this diploma thesis is 4.8.0. To install OW2 Orchestra the reader should expand
the archive and rename the following files located in ORCHESTRA_BASE/lib directory:

• console-4.8.x.war to console.war

• orchestra-cxf-war-4.8.x.war to orchestra.war

• orchestradesigner-4.8.x.war to designer.war

Finally, the renamed files should be copied to the Tomcat CATALINA_BASE/webapps/ folder to
deploy OW2 Orchestra on Apache Tomcat.

Starting / Stopping Apache Tomcat

To start or to stop Apache Tomcat the reader should proceed to the directory CATALINA_BASE/bin
and execute startup.sh (startup.bat) or shutdown.sh (shutdown.bat) correspondingly.

Installing C-CAST CMF SOAP WSDL Interface

The next step is to deploy the SOAP WSDL interface developed in Section 3.3 for C-CAST
CMF Context Broker and Context Provider services. To do this, the corresponding Web
application archive file CMF.war should be copied from the enclosed CD to the Tomcat
CATALINA_BASE/webapps/ folder. Finally, the reader can optionally test the deployed Web
application using tests defined for this component to ensure that the C-CAST CMF SOAP Web
service interface was successfully deployed.

107

A. Appendix

Installing Google Maps SOAP WSDL Interface

In the same way, the SOAP WSDL interface developed for Google Maps Web services in
Section 4.4.4 should be deployed on Apache Tomcat. The corresponding Web application
archive file GoogleMapsServices.war should be copied from the enclosed CD to the Tomcat
CATALINA_BASE/webapps/ folder.

Installing Context Integration Processes

To complete the installation, the reader should install the context integration processes devel-
oped to integrate C-CAST CMF and Google Maps Web services. To do this, the archive files
located on the enclosed CD should be deployed using web user interfaces exposed by Orchestra
and Apache ODE. Finally, the reader can optionally test the deployed integration processes
using tests defined for each particular context integration process or by deploying the sample
TaxiServiceProvider service composition.

108

Bibliography

[1] National Institute of Standards and Technology (NIST). The NIST Definition of Cloud
Computing. [Online]. Available: http://csrc.nist.gov/publications/drafts/800-145/
Draft-SP-800-145_cloud-definition.pdf (Cited on page 1)

[2] OASIS Standard. Web Services Business Process Execution Language. [Online]. Available:
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html (Cited on pages 1, 44 and 78)

[3] 4CaaSt. PaaS Cloud Platform Project. [Online]. Available: http://4caast.morfeo-project.
org/ (Cited on page 1)

[4] Oxford English Dictionary Online. Oxford University Press. [Online]. Available:
http://www.oed.com/view/Entry/40207 (Cited on page 8)

[5] C. Bolchini, C. A. Curino, E. Quintarelli, F. A. Schreiber, and L. Tanca, “A Data-oriented
Survey of Context Models,” SIGMOD Rec., vol. 36, December 2007. (Cited on pages 8
and 17)

[6] R. Want, A. Hopper, V. Falcão, and J. Gibbons, “The Active Badge Location System,” ACM
Trans. Inf. Syst., vol. 10, pp. 91–102, January 1992. (Cited on page 8)

[7] M. Weiser, “The Computer for the 21st Century,” Scientific American, February 1991.
[Online]. Available: http://www.ubiq.com/hypertext/weiser/SciAmDraft3.html (Cited
on page 8)

[8] B. Schilit and M. Theimer, “Disseminating Active Map Information to Mobile Hosts,”
Network, IEEE, vol. 8, no. 5, September 1994. (Cited on pages 9 and 11)

[9] B. Schilit, N. Adams, and R. Want, “Context-Aware Computing Applications,” Mobile
Computing Systems and Applications, IEEE Workshop on, 1994. (Cited on page 9)

[10] M. Kaenampornpan and E. O’Neill, “An Integrated Context Model: Bringing Activity
to Context,” in Workshop on advanced context modelling, reasoning and management -
UBICOMP. (Cited on pages 9 and 10)

109

http://csrc.nist.gov/publications/drafts/800-145/Draft-SP-800-145_cloud-definition.pdf
http://csrc.nist.gov/publications/drafts/800-145/Draft-SP-800-145_cloud-definition.pdf
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html
http://4caast.morfeo-project.org/
http://4caast.morfeo-project.org/
http://www.oed.com/view/Entry/40207
http://www.ubiq.com/hypertext/weiser/SciAmDraft3.html

Bibliography

[11] G. D. Abowd and A. K. Dey, “Towards a Better Understanding of Context and Context-
Awareness,” in Proceedings of the 1st international symposium on Handheld and Ubiquitous
Computing. Springer-Verlag, 1999. (Cited on page 9)

[12] A. Soylu, P. Causmaecker, and P. Desmet, “Context and Adaptivity in Pervasive Computing
Environments: Links with Software Engineering and Ontological Engineering,” Journal
of Software, vol. 4, no. 9, 2009. (Cited on pages 10, 13, 15, 16, 17, 18 and 53)

[13] A. K. Dey, “Understanding and Using Context,” Personal and Ubiquitous Computing, vol. 5,
2001. (Cited on pages 10, 11 and 18)

[14] G. D. Abowd and E. D. Mynatt, “Charting Past, Present, and Future Research in Ubiquitous
Computing,” ACM Transactions on Computer-Human Interaction, vol. 7, March 2000.
(Cited on page 10)

[15] B. Schilit, N. Adams, and R. Want, “Context-Aware Computing Applications,” in Pro-
ceedings of the 1994 First Workshop on Mobile Computing Systems and Applications.
Washington, DC, USA: IEEE Computer Society, 1994. (Cited on page 10)

[16] P. Prekop and M. Burnett, “Activities, Context and Ubiquitous Computing,” CoRR, vol.
cs.IR/0209021, 2002. (Cited on page 10)

[17] T. Hofer, W. Schwinger, M. Pichler, G. Leonhartsberger, J. Altmann, and W. Retschitzegger,
“Context-Awareness on Mobile Devices – the Hydrogen Approach,” in Proceedings of the
36th Annual Hawaii International Conference on System Sciences (HICSS’03). Washington,
DC, USA: IEEE Computer Society, 2003. (Cited on page 10)

[18] M. Baldauf, S. Dustdar, and F. Rosenberg, “A Survey on Context-aware Systems,” Int. J.
Ad Hoc Ubiquitous Comput., vol. 2, June 2007. (Cited on pages 10 and 17)

[19] G. Chen and D. Kotz, “A Survey of Context-Aware Mobile Computing Research,” Hanover,
NH, USA, Tech. Rep., 2000. (Cited on pages 10 and 18)

[20] R. Hull, P. Neaves, and J. Bedford-Roberts, “Towards situated computing,” in Proceedings
of the 1st IEEE International Symposium on Wearable Computers. Washington, DC, USA:
IEEE Computer Society, 1997. (Cited on page 11)

[21] M. J. Pascoe, “Adding Generic Contextual Capabilities to Wearable Computers,” in
Proceedings of the 2nd IEEE International Symposium on Wearable Computers. Washington,
DC, USA: IEEE Computer Society, 1998. (Cited on page 11)

[22] M. Mrissa, C. Ghedira, D. Benslimane, Z. Maamar, and U. C. B. L. Villeurbanne, “A Context
Model for Semantic Mediation in Web Services Composition,” in In Proceedings of the
25th International Conference on Conceptual Modeling. Springer. (Cited on page 12)

110

Bibliography

[23] C. Ghedira and H. Mezni, “Through Personalized Web Service Composition Specification:
From BPEL to C-BPEL,” Electronic Notes in Theoretical Computer Science, vol. 146, no. 1,
2006, proceedings of the First International Workshop on Context for Web Services (CWS
2005). (Cited on page 12)

[24] A. A. George and P. A. S. Ward, “An architecture for providing context in WS-BPEL
processes,” in Proceedings of the 2008 conference of the center for advanced studies on
collaborative research: meeting of minds, 2008. (Cited on pages 12, 23 and 24)

[25] L. Li, D. Liu, and A. Bouguettaya, “Semantic Based Aspect-oriented Programming for
Context-aware Web Service Composition,” Information Systems, vol. 36, no. 3, 2011.
(Cited on page 13)

[26] Quan, “Techniques on Developing Context-aware Web Services,” International Journal of
Web Information Systems, vol. 6, no. 3, 2010. (Cited on page 13)

[27] A. K. Dey, G. D. Abowd, and D. Salber, “A Conceptual Framework and a Toolkit for Sup-
porting the Rapid Prototyping of Context-aware Applications,” Hum.-Comput. Interact.,
vol. 16, December 2001. (Cited on page 13)

[28] J. Indulska and P. Sutton, “Location Management in Pervasive Systems,” in Proceedings
of the Australasian information security workshop conference on ACSW frontiers 2003 -
Volume 21. Australian Computer Society, Inc., 2003. (Cited on page 15)

[29] T. Strang and C. L. Popien, “A Context Modeling Survey,” in Workshop on Advanced
Context Modelling, Reasoning and Management, UbiComp 2004 - The Sixth International
Conference on Ubiquitous Computing, 2004. (Cited on page 15)

[30] J. Ye, L. Coyle, S. Dobson, and P. Nixon, “Ontology-based Models in Pervasive Computing
Systems,” Knowl. Eng. Rev., vol. 22, December 2007. (Cited on page 16)

[31] X. H. Wang, D. Q. Zhang, T. Gu, and H. K. Pung, “Ontology Based Context Modeling and
Reasoning using OWL,” in Proceedings of the Second IEEE Annual Conference on Pervasive
Computing and Communications Workshops. Washington, DC, USA: IEEE Computer
Society, 2004. (Cited on page 16)

[32] P. Moore, B. Hu, X. Zhu, W. Campbell, and M. Ratcliffe, “A Survey of Context Modeling
for Pervasive Cooperative Learning,” in Information Technologies and Applications in
Education, 2007. ISITAE ’07. First IEEE International Symposium on, November 2007.
(Cited on page 16)

[33] H. Chen, “An Intelligent Broker Architecture for Pervasive Context-Aware Systems,” Ph.D.
dissertation, University of Maryland, Baltimore County, December 2004. (Cited on
page 19)

111

Bibliography

[34] University of Stuttgart. SFB 627: Nexus, Spatial World Models for Mobile Context-Aware
Applications. [Online]. Available: http://www.nexus.uni-stuttgart.de/index.en.html
(Cited on page 20)

[35] F. Dürr, N. Hönle, D. Nicklas, C. Becker, and K. Rothermel, “Nexus–A Platform for Context-
Aware Applications,” in 1. GI/ITG Fachgespräch Ortsbezogene Anwendungen und Dienste.,
J. Roth, Ed. Hagen: FernUniversität in Hagen, June 2004. (Cited on pages 20 and 21)

[36] C. R. Becker, System Support for Context-Aware Computing, ser. Habilitationsschrift.
Stuttgart: Fakultät Informatik, Elektrotechnik und Informationstechnik, Universität
Stuttgart, November 2004. (Cited on page 20)

[37] C-CAST. Context Casting project. [Online]. Available: http://www.ict-ccast.eu/ (Cited
on page 22)

[38] M. Knappmeyer, S. L. Kiani, C. Frà, B. Moltchanov, and N. Baker, “ContextML: a light-
weight context representation and context management schema,” in Proceedings of the
5th IEEE international conference on Wireless pervasive computing. Piscataway, NJ, USA:
IEEE Press, 2010. (Cited on pages 22, 37 and 40)

[39] M. Wieland, P. Kaczmarczyk, and D. Nicklas, “Context Integration for Smart Workflows,”
in Proceedings of the 2008 Sixth Annual IEEE International Conference on Pervasive Comput-
ing and Communications. Washington, DC, USA: IEEE Computer Society, 2008. (Cited
on page 25)

[40] M. Wieland, D. Nicklas, and F. Leymann, “Managing Technical Processes Using Smart
Workflows,” in Proceedings of the 1st European Conference on Towards a Service-Based
Internet. Berlin, Heidelberg: Springer-Verlag, 2008. (Cited on page 26)

[41] G. Hermosillo, L. Seinturier, and L. Duchien, “Creating Context-Adaptive Business Pro-
cesses,” in The 8th International Conference on Service Oriented Computing, vol. 6470, San
Francisco, California États-Unis, 12 2010. (Cited on page 27)

[42] PetalsLink, Petals ESB. Easy BPEL: BPEL Engine. [Online]. Available: http:
//easybpel.petalslink.org/ (Cited on page 28)

[43] (1999, November) XML Path Language (XPath) Version 1.0. [Online]. Available:
http://www.w3.org/TR/xpath (Cited on pages 28 and 52)

[44] Q. Z. Sheng, J. Yu, A. Segev, and K. Liao, “Techniques on Developing Context-aware Web
Services,” IJWIS, vol. 6, no. 3, 2010. (Cited on pages 28 and 29)

[45] The University of Adelaide. ContextServ Project: A Platform for Rapid and
Flexible Development of Context-Aware Web Services. [Online]. Available: http:
//cs.adelaide.edu.au/~contextserv/ (Cited on page 28)

[46] Tigris.org. ArgoUML, the Open Source UML Modeling Tool. [Online]. Available:
Tigris.org (Cited on page 30)

112

http://www.nexus.uni-stuttgart.de/index.en.html
http://www.ict-ccast.eu/
http://easybpel.petalslink.org/
http://easybpel.petalslink.org/
http://www.w3.org/TR/xpath
http://cs.adelaide.edu.au/~contextserv/
http://cs.adelaide.edu.au/~contextserv/
Tigris.org

Bibliography

[47] E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana. (2001, March)
Web Services Description Language (WSDL) Version 1.1. [Online]. Available:
http://www.w3.org/TR/wsdl (Cited on page 44)

[48] JSR 224. Java API for XML-Based Web Services (JAX-WS) 2.0. [Online]. Available:
http://jcp.org/en/jsr/detail?id=224 (Cited on pages 44 and 59)

[49] Apache Software Foundation. Apache CXF. [Online]. Available: http://cxf.apache.org/
(Cited on pages 44 and 59)

[50] IBM, Dennis Sosnoski. Java Web Services: CXF Performance Comparison. [Online].
Available: http://public.dhe.ibm.com/software/dw/java/j-jws14-pdf.pdf (Cited on
page 44)

[51] JSR 311. JAX-RS: The Java API for RESTful Web Services. [Online]. Available:
http://jcp.org/en/jsr/detail?id=311 (Cited on pages 44 and 59)

[52] Eclipse Foundation. Eclipse Platform. [Online]. Available: http://www.eclipse.org/org/
(Cited on pages 44, 59 and 77)

[53] Apache Software Foundation. Apache Tomcat. [Online]. Available: http://tomcat.apache.
org/ (Cited on pages 44 and 106)

[54] XSL Transformations (XSLT) Version 1.0. [Online]. Available: http://www.w3.org/TR/
xslt (Cited on pages 49 and 52)

[55] Extensible Markup Language (XML) 1.0 (Fifth Edition). [Online]. Available:
http://www.w3.org/TR/xml (Cited on pages 52 and 69)

[56] (2011, April) Google Maps/Google Earth APIs Terms of Service. [Online]. Available:
http://code.google.com/apis/maps/terms.html#section_10_12 (Cited on page 56)

[57] Google Maps API Premier. [Online]. Available: http://code.google.com/intl/en/apis/
maps/documentation/premier/ (Cited on page 56)

[58] Apache Software Foundation. Apache ODE (Orchestration Director Engine). [Online].
Available: http://ode.apache.org/ (Cited on pages 65, 67 and 107)

[59] OW2. OW2 Orchestra Engine. [Online]. Available: http://orchestra.ow2.org/ (Cited on
pages 65, 67 and 107)

[60] SmartBear Software. soapUI Web Service Testware. [Online]. Available: http:
//www.soapui.org/ (Cited on page 68)

[61] Eclipse Foundation. BPEL Designer Project. [Online]. Available: http://www.eclipse.org/
bpel/ (Cited on pages 73, 77 and 78)

[62] ——. Eclipse Documentation. [Online]. Available: http://www.eclipse.org/
documentation/ (Cited on page 77)

113

http://www.w3.org/TR/wsdl
http://jcp.org/en/jsr/detail?id=224
http://cxf.apache.org/
http://public.dhe.ibm.com/software/dw/java/j-jws14-pdf.pdf
http://jcp.org/en/jsr/detail?id=311
http://www.eclipse.org/org/
http://tomcat.apache.org/
http://tomcat.apache.org/
http://www.w3.org/TR/xslt
http://www.w3.org/TR/xslt
http://www.w3.org/TR/xml
http://code.google.com/apis/maps/terms.html##section_10_12
http://code.google.com/intl/en/apis/maps/documentation/premier/
http://code.google.com/intl/en/apis/maps/documentation/premier/
http://ode.apache.org/
http://orchestra.ow2.org/
http://www.soapui.org/
http://www.soapui.org/
http://www.eclipse.org/bpel/
http://www.eclipse.org/bpel/
http://www.eclipse.org/documentation/
http://www.eclipse.org/documentation/

Bibliography

[63] ——. Eclipse Modeling Framework Project. [Online]. Available: http://www.eclipse.org/
modeling/emf/ (Cited on page 77)

[64] ——. Graphical Editing Framework Project. [Online]. Available: http://www.eclipse.org/
gef/ (Cited on page 78)

[65] B. Höhensteiger, M. Illiger, and S. Moser, “Extending the Eclipse BPEL Designer with
Custom Activities,” October 2008. [Online]. Available: http://www.eclipse.org/bpel/
users/pdf/CreateAnExtensionActivity.pdf (Cited on page 81)

All links were last followed on Juli 30, 2011.

114

http://www.eclipse.org/modeling/emf/
http://www.eclipse.org/modeling/emf/
http://www.eclipse.org/gef/
http://www.eclipse.org/gef/
http://www.eclipse.org/bpel/users/pdf/CreateAnExtensionActivity.pdf
http://www.eclipse.org/bpel/users/pdf/CreateAnExtensionActivity.pdf

Declaration

All the work contained within this thesis,
except where otherwise acknowledged, was
solely the effort of the author. At no
stage was any collaboration entered into
with any other party.

(Rodion Hagin)

	1 Introduction
	1.1 Motivating Example
	1.2 Problem Statement
	1.3 Outline

	2 Fundamentals and State of the Art
	2.1 Context
	2.1.1 Definitions
	2.1.2 Context Management

	2.2 Context Provisioning Systems
	2.2.1 Nexus Platform
	2.2.2 C-CAST Context-Management Framework

	2.3 Integration of Context into Compositions
	2.3.1 Solutions
	2.3.2 Evaluation Criteria
	2.3.3 Comparison

	3 Integration of Context Information
	3.1 C-CAST CMF
	3.1.1 Architecture Components
	3.1.2 Context Broker Services
	3.1.3 ContextML Model
	3.1.4 RESTful Web Service Interface

	3.2 Challenges
	3.2.1 Concept Properties
	3.2.2 Integration Challenges

	3.3 Realization of Context Integration Processes
	3.3.1 Context Provisioning Layer
	3.3.2 Core Integration Processes
	3.3.3 Domain Independent Processes
	3.3.4 Domain Specific Processes

	4 Aggregation of Context Information
	4.1 Definition of Information Aggregation
	4.2 Information Aggregation in Service Compositions
	4.3 Concept of Context Aggregation Processes
	4.4 Google Maps Web Services
	4.4.1 Usage Limits
	4.4.2 Google Geocoding Web service
	4.4.3 Google Directions Web service
	4.4.4 Realization of Google CIPs

	4.5 Realization of Context Aggregation Processes
	4.5.1 Domain Independent Context Aggregation Processes
	4.5.2 System Independent Context Aggregation Processes

	5 Evaluation
	5.1 Domains Specific Integration Processes
	5.2 Composition Engines
	5.2.1 Apache Orchestration Director Engine
	5.2.2 OW2 Orchestra

	5.3 Evaluation

	6 Context Modeling Tool
	6.1 Application Domains
	6.2 Context Integration Processes Repository
	6.3 Context-Aware Service Composition Modeling
	6.3.1 Actors
	6.3.2 User Interfaces
	6.3.3 Use Cases
	6.3.4 Design and Background Knowledge

	6.4 Context Integration Processes Modeling
	6.4.1 Actors
	6.4.2 User Interfaces
	6.4.3 Use Cases

	7 Summary and Future Work
	A Appendix
	A.1 C-CAST CMF Supported Entities
	A.2 C-CAST CMF Supported Context Scopes
	A.2.1 Context Scope userProfile
	A.2.2 Context Scope position
	A.2.3 Context Scope civilAddress
	A.2.4 Context Scope userProximity

	A.3 C-CAST CMF RESTful Web Service Interface
	A.3.1 Context Broker Interfaces
	A.3.2 Context Provider Interfaces

	A.4 Installation and Configuration Guide

	Bibliography

