
Erharcl P l o e d e r e d e r

B u i l d i n g C o n s e n s u s f o r A d a 9])[

L
anguage design is a most dif-
ficult task. While the original
design of a language has the
distinct advantage of filling a
blank page, the revision of a
language needs to abide by a

number of constraints that limit the
degree of design freedom. These
constraints are both of a technical
and a nontechnical nature. In a lan-
guage revision, each desired change
has both a benefit and a cost. Decid-
ing which changes to incorporate
into the language becomes a cost/
benefit analysis within the frame-
work of the existing constraints. In
this article, we will explore some of
these constraints and their impact on
the Ada 9X revision process.

Why Revise Ada?
Ada [5] has fulfilled many o f its orig-
inal promises. Companies that have
invested in the transition to an Ada-
based technology have realized bet-
ter engineering practices, lower
er ror rates, and, above all, h igher
productivity in the building of large
systems [6]. Since the design of Ada
more than 10 years ago, advances
have been made in the theory and
practice of software engineer ing and
its suppor t in p rogramming lan-
guages, some of it inspired by the
experience with Ada. Fur ther , we
now have a decade of experience in
using Ada in diverse applications and
in implement ing Ada for numerous
architectures. We have recognized
some areas in which the original de-
sign of Ada can be improved, and
errors, ambiguities, and omissions in
the existing s tandard corrected. Any
language needs to evolve over time to
reflect the progress in related tech-
nologies, to best meet the needs of its
user community, and to attract new
users. Ada must not be an exception.

In a two-year process, user re-
quests for changes were collected,
analyzed, and finally condensed in a
Requirements Document, published
in its final form in December 1990
[4]. These requirements have pro-
vided direction to the Ada 9X Map-

ping Team, tasked to develop lan-
guage solutions matching these
requirements [1, 2, 3].

Consistency of Concepts
Ada was developed with a number of
under ly ing design principles and
concepts. The revisions to the lan-
guage must be in consonance with
this existing overall philosophy of
Ada. Extensions need to fit into this
philosophy. This not only makes the
descript ion of Ada 9X easier, but fa-
cilitates the training of personnel in
the revised language. Ada engineers
should not need to change their style
of design and p rogramming in o rder
to use Ada 9X, and must be able to
gradually migrate to Ada 9X as they
explore and exper iment with the
newly provided capabilities. We
should not require paradigm shifts in
the use of Ada, except when directly
implied by a requirement . For exam-
ple, the object-oriented program-
ming parad igm is obviously new in
Ada 9X.

Upward-Compatibility
A most str ingent constraint on the
language revision is the desire to
keep the revised language upward-
compatible with the existing stan-
dard. One needs to take into account
the millions of lines of existing Ada
code in development , use, and main-
tenance today which eventually will
be migrated to Ada 9X environ-
ments. This transition should take
place with as little effort as possible
(i.e., ideally by simply recompil ing
the code with an Ada 9X compiler
and obtaining a system of equal be-
havior).

This requirement limits the free-
dom in revising the language signifi-
cantly, since Ada 9X essentially needs
to become a superset of cur rent Ada.
Upward-compat ible solutions are
p re fe r red over possibly more elegant
solutions that would lead to incom-
patibilities between the two versions
of Ada. Still, one also needs to take a
long-term view of the usage of Ada.
Occasionally, an essential user need

cannot be reasonably met without
in t roducing some amount o f incom-
patibility. One then must f ind a solu-
tion least per tu rb ing to the vast ma-
jor i ty of existing Ada programs.
Incompatibili t ies that can be easily
diagnosed by a compiler and cor-
rected by some automated process
are clearly much more acceptable
than those that silently alter the exe-
cution behavior o f programs. For
example, the introduct ion of new
reserved words is an incompatible
change, since they might coincide
with identifiers chosen by the user in
Ada programs. Yet, compilers are
mandated to diagnose this incompat-
ibility, and tools can be easily written
that assist in correcting existing code
that incurs this problem.

Time to Market
Many of the perceived problems with
Ada were due to the immaturi ty of
early implementations, ra ther than
flaws of the language itself. Some of
these perceptions linger, even
though many mature Ada imple-
mentations are available today and
most of the previously identif ied
shortcomings have disappeared.

In revising the s tandard, we need
to prevent a recurrence of this his-
tory. Mature Ada 9X compilers must
become available in much less time
than it took to produce Ada 83 com-
pilers, In this context, any change,
even a simplification, carries some
cost to the user community. Thus,
the impact of proposed changes on
existing compilers has been carefully
studied, in par t by actual trial imple-
mentation. A number of changes of
obvious, but limited benefit have
been withdrawn when the perceived
benefits were outweighed by the esti-
mated transition cost.

A similar s tatement applies to the
revision process itself as well. I t
needs to come to a successful conclu-
sion in an acceptably short time
frame, so the user benefits of Ada 9X
can soon be exploited.

Language Complexity
Ada is not a simple language. I t ad-

COMMUNICATIONS OF THE AOM/November 1992/Vol.35, No.ll 8 S

b r o u g h t t o y o u b y COREView metadata, c i tat ion and s imi lar papers at core.ac.uk

p r o v i d e d b y O n l i n e P u b l i k a t i o n e n d e r U n i v e r s i t ä t S t u t t g a r t

https://core.ac.uk/display/147541226?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

dresses software issues that earlier
languages chose to ignore, causing
complexity to be off-loaded to the
users of these languages. Users then
had to solve these issues by less ele-
gant extralingual mechanisms. The
design of Ada acknowledged the in-
herent complexity of developing
large application systems. Managing
this complexity can sometimes be
made easier by adding supportive
high-level features to a language.
Still, these added language mecha-
nisms have created a perception of
complexity in Ada by sheer magni-
tude of the number of provided fea-
tures.

Introducing additional capabilities
and language features, while at the
same time maintaining upward-
compatibility, adds complexity to the
language. It has been a difficult chal-
lenge to design these features in such
a way that they fit seamlessly into the
existing language, thereby keeping
added complexity to a minimum de-
spite the gains in expressiveness.

Some issues in software design and
development are beyond the state of
the art in language design, let alone
ready for a single, standardized solu-
tion. A language design or revision
needs to balance the overall com-
plexity of the language with the fea-
sibility of, and benefits achieved by,
standardized solutions within the
language.

A distinction needs to be made
between the complexity perceived by
an Ada novice and that seen by a user
transitioning from Ada 83. For the
latter, practically any change will, for
some time, mean complexity, since a
relearning process needs to occur.
For the former, some of the changes
simplify the language, as unifying
concepts have been introduced and
some restrictions have been elimi-
nated.

Conflicting User Needs
Different user communities have
expressed different and sometimes
conflicting needs on the implementa-
tion properties of Ada features. In
Ada 83, this conflict was partially
addressed by leaving certain seman-
tics implementation-defined. This
has been a somewhat unsatisfactory
solution, since the realization of im-
plementation-defined behavior dif-

fered even among compilers tar-
geted at the same application areas.
However, conflicting needs are im-
possible to satisfy by unconditional
language rules. An often cited exam-
ple is the requirement for immediacy
of task abortion, which many embed-
ded real-time applications impose,
but certain implementations on top
of operating systems cannot provide.

Recognizing this problem, the Ada
9X teams have devised an approach
that allows for unifying past imple-
mentation dependencies in norma-
tive annexes to the language stan-
dard. Thus, uniformity is brought to
implementations that support certain
annexes. Each annex addresses a
particular class of applications, such
as real-time systems, distributed sys-
tems, information systems, system
programming, or safety-critical sys-
tems.

Annexes do not provide additional
language features. They merely re-
fine the semantics of features present
in the core of the language, stan-
dardize on additional pragmas, or
provide standardized packages in
support of a certain class of applica-
tions.

Sign-Up by the User
Communities
Different user communities have
expressed different needs for
changes to Ada. As very attractive
change proposals have been pre-
sented in the course of evolving Ada
9X, these communities have quite
enthusiastically embraced the solu-
tions to their problems. Yet, an
equally common theme has been that
each community expressed its severe
concern over the sum of proposed
changes and invariably suggested the
elimination of the favorite changes of
other groups as the appropriate
action. While this is to be expected in
such a revision process, the overall
high quality and individual attrac-
tiveness of the change proposals
make it exceedingly difficult to de-
cide which of the changes should ul-
timately be incorporated in the re-
vised language. The Ada 9X teams
have gradually narrowed the selec-
tion among previously publicized
change proposals for eventual inclu-
sion in the language to satisfy the
Ada community as a whole. Yet, indi-

vidual interest groups will need to
agree to the compromise that satis-
fies their most essential needs, while
leaving some of their other concerns
potentially unaddressed by the lan-
guage.

The difficult challenge to the Ada
9X teams and the standardization
bodies is to arrive at such a compro-
mise, making Ada 9X acceptable and
attractive as a progression of Ada 83
for all user communities.

Sign-Up by the Suppliers
Ada implementers are concerned
about the resources required to up-
grade their products to conform to
Ada 9X, while at the same time main-
taining and enhancing their existing
Ada products. Ultimately, this con-
cerns the users as well, since the cost
eventually must be born by the mar-
ketplace. Initially, however, vendors
must worry about financing the up-
grade to Ada 9X. Only if this cost is
affordable, will the market be pro-
vided with a satisfactory number of
quickly maturing Ada 9X compilers.

At the same time, Ada implement-
ers are concerned that Ada 9X must
be attractive enough to their entire
existing customer base, so that tran-
sitioning by the user community can
be expected and enhancements of
the Ada 83 product lines eventually
discontinued.

This dilemma is not unique to
Ada; the revision of any language
standard will force compiler vendors
to perform some retooling. Recog-
nizing the issue, the project sponsors
have developed a validation strategy
that speaks directly and realistically
to compiler vendor concerns. Rather
than the "all or nothing" approach to
validation that was used from the
outset for Ada 83, the transition pol-
icy for Ada 9X will allow a compiler
vendor to invest first in those up-
grades that are of most benefit to his
or her particular customers. A ven-
dor with an embedded systems mar-
ket may thus choose first to im-
plement protected types or the
Real-Time Annex. A vendor ori-
ented toward the information sys-
tems community may choose instead
to first support the Information Sys-
tems Annex.

It must be emphasized that this
approach is strictly for facilitating a

~ 6 November 1992/Vol.35, No.ll/COMMUNICATIONS OF THE ACM

smooth transition to Ada 9X and
does not contradict the long-standing
Ada policy of "no subsets / no super-
sets." After a transition period of less
than three years, full compliance
with the Ada 9X core language will
be required, and enforced through
appropriate validation test suites.

Sign-Up by Educators
One goal the Ada program never
truly achieved is a universal accep-
tance of Ada in academic curricula.
Several measures are in place to
make Ada 9X an attractive language
candidate for the academic commu-
nity. On the technical side, the inclu-
sion of object-oriented programming
paradigms as well as other enhanced
software engineering support should
cause added interest in Ada 9X both
for teaching and research. The avail-
ability of Ada 9X will be greatly
helped by the GNU NYU Ada Tech-
nology project, which is developing a
freely available compiler that will
make Ada 9X much more accessible
to colleges and universities than Ada
83 ever was. This compiler will be
available as early as the fall of 1993.

Still, there is considerable invest-
ment in such Ada material as 83
courseware and textbooks. One as-
pect of evaluating Ada 9X changes is
to assess their impact on these exist-
ing investments and the cost of their
upgrade to Ada 9X.

Building the Consensus
Obviously, revising any standard is
an exercise in compromise among
the various interested parties. The
Ada 9X process has created a num-
ber of approaches to assess the viabil-
ity of the proposed changes, both
individually and collectively, before
seeking approval of the revised stan-
dard.

First, the Ada 9X Mapping Team
is in itself a consensus-forming group
prior to proposing any particular
change. Through the Ada 9X User/
Implementor teams and the Imple-
mentation Analysis team, assess-
ments are obtained on the consis-
tency and completeness of the
proposal in its interactions with other
features of language, on the impact
on tool implementations, and on the
consequences for old and new appli-
cation code. The Language Precision

team evaluates changes from the
viewpoint of formal semantic mod-
els.

A wider evaluation occurs by the
Ada 9X Distinguished Reviewers.
This group comprises language in-
terpretation and implementation
experts, educators, Ada suppliers,
and highly qualified representatives
of various application domains, such
as hard and soft real-time systems,
distributed systems, information sys-
tems, numerics, safety-critical sys-
tems, and large system design.
Through daily electronic exchanges
and quarterly meetings, this interna-
tional group with 29 members from
six countries evaluates the technical
aspects of the proposed changes, as
well as the necessary overall trade-
offs.

The Distinguished Reviewers have
been joined by the Volunteer Re-
viewers, yet another, larger group of
reviewers that have expressed a de-
sire to be closely associated with the
effort on a day-to-day basis, com-
menting on the various change pro-
posals and their evolution.

Finally, the proposed changes are
presented to interest groups and the
general public in open national and
international meetings, both to keep
the community informed about the
progress made, and to take guidance
from the communal reaction to the
evolution of the changes.

In April 1992, ISO/IEC JTC1/
SC22 WG9, the working group
tasked by ISO to address Ada stan-
dardization issues, met in Germany
for a one-week meeting. The 12 rep-
resented countries voted unani-
mously to approve the Ada 9X Map-
ping Specification with some
changes, and with a small number of
remaining topics still to be studied
and resolved. This vote was signifi-
cant, as it represented the interna-
tional go-ahead to initiate the writing
of the revised language reference
manual.

Ada 9X for Various User Groups
Readers of this article may well ask
the question: What is in Ada 9X for
me? Let me therefore attempt a
characterization from the vantage
point of some of the proposed
changes as of the summer of 1992.

System programmers will find a
number of added capabilities to bet-
ter interface with existing software
written in other languages, which in
turn will facilitate the generation of
language bindings to other stan-
dards. The object-oriented program-
ming extensions to Ada will make it
easier to extend existing packages
through data type extensions and
method refinements. Several aspects
of low-level programming will be
improved and better control over
memory management will be avail-
able.

The real-time community will find
better support for fast synchroniza-
tion and communication among
tasks. Also, better control over task
priorities, order of entry selection,
and the scheduling of tasks will be
provided.

Producers of large systems will
have the ability to provide data type
abstraction through multiple pack-
ages, implementing the operations
on a private type. This enables the
construction of logical subsystems
with a hierarchy of library units
rather than a monolithic package,
thus allowing for better modularity
and offering reduced recompilation
COSTS.

Information systems developers
will have decimal types supported by
the language and various rules that
are intended to provide better com-
patibility with Cobol programs and
databases.

Numeric applications will be able
to rely on standard packages for
primitive and elementary numeric
functions and procedures and will
benefit from some improvements for
generic units. Several problems
noted with the Ada 83 model of fixed
and floating-point numbers will be
addressed.

The international Ada community
will find the changes necessary to
support national character sets in 8-
and 16-bit representations.

For safety-critical applications, the
overall effort of narrowing the im-
plementation-defined semantics of
certain constructs, including the
semantics of "erroneous execution,"
will be of some help. The work of the
Language Precision team to formal-
ize the definition of those parts of the
language that are particularly rele-

COMMUNICATIONS OF THE ACM/November 1992/%1.35, No.ll 87

vant to safety-critical applications
deserves special mention.

For dis tr ibuted systems, certain
constraining rules of Ada 83 will be
relaxed to facilitate the distr ibution
o f Ada programs across multiple
processors. A part i t ion concept will
be appl ied and a mechanism for
communicat ing among partit ions,
both via shared memory and via
remote p rocedure call capabilities,
will be supplied.

Summary
The Ada 9X effort, like most o ther
s tandards activities, is an exercise in
achieving a compromise, balancing
the needs o f di f ferent user groups
among one another and against cost,
time, complexity, and technical feasi-
bility factors. After all the necessary
trade-offs, Ada 9X will provide a
number o f exciting, well-integrated
enhancements to the language. I t will
reflect the progress that has occurred

in the design of p rogramming lan-
guages to suppor t the engineer ing of
large software systems in a broad
spectrum of application domains,
ranging from real-time, embedded
or dis tr ibuted systems to information
systems.

Acknowledgments
I appreciate the comments received
from Tucker Taft and Ben Brosgol
on earl ier drafts of this article. They
helped to improve its quality consid-
erably. !"4

References
1. Ada 9X Mapping Document, vol. II,

Mapping Specification, Version 4.0.,
Office of the Under Secretary of De-
fense for Acquisition, US Department
of Defense, Dec. 1991.

2. Ada 9X Mapping Document, vol. II,
Mapping Specification, Annexes, Ver-
sion 4.0., Office of the Under Secre-
tary of Defense for Acquisition, US
Department of Defense, Mar. 1992.

3. Ada 9X Mapping Document, vol. I,
Mapping Rationale, Version 4.1., Of-
rice of the Under Secretary of Defense
for Acquisition, US Department of
Defense, Mar. 1992.

4. Ada 9X Requirements. Office of the
Under Secretary of Defense for Acqui-
sition, US Department of Defense,
Dec. 1990.

5. Reference Manual for the Ada Pro-
gramming Language. ANSI/MIL-
STD-1815A-1983, US Department of
Defense, Feb. 17, 1983.

6. Reifer, Don. SoftCost-Ada: User expe-
riences and lessons learned at the age
of three. In Proceedings of TRI-Ada'90
(Baltimore, Dec. 1990), ACM, ISBN
0-89791-409-0.

CR Categories and Subject Descrip-
tors: D.2.0 [Software Engineering]: Gen-
eral-standards; D.3.0 [Programming
Languages]: General--standards; D.3.2
[Programming Languages]: Language
Classifications--concurrent, distributed and
parallel languages, Ada, Ada 9X; D.3.3
[Programming Languages]: Language
Constructs and Features--abstract data
types; concurrent programming structures,
modules, packages

General Terms: Languages, Standard-
ization

Additional Key Words and Phrases:
Asynchronous communication, building
consensus, classwide programming, com-
patibility, hierarchical name space, inheri-
tance, language design, language evolu-
tion, polymorphism, program library,
programming in the large, protected
type, separate compilation, synchroniza-
tion, tagged type, tagged extension, up-
ward compatibility

About the Author:
ERHARD PLOEDEREDER is professor
for compilers and programming lan-
guages at the Universitaet Stuttgart, Ger-
many. Until recently he was vice presi-
dent for technology at Tartan Inc.,
Monroeville, Pa., USA. He chairs the Ada
9X Distinguished Reviewers. His research
interests include programming language
design, code optimization, and program-
ming environments. Author's Present
Address: Universitaet Stuttgart, Breit-
wiesenstr. 20-22, D-7000 Stuttgart 80,
Germany; ploedere@in formatik.uni
stuttgart.de

Permission to copy without fee all or part of this
material is granted provided that the copies are not
made or distributed for direct commercial advantage,
the ACM copyright notice and the title of the publi-
cation and its date appear, and notice is give that
copying is by permission of the Association for
Comput ing Machinery. To copy otherwise, or to
republish, requires a fee and/or specific permission.

8 8 November 1992/Vol.35, No.ll/OOMMUNICATIONS OF THE ACM

