
 

Universität Stuttgart 

Fakultät Informatik, Elektrotechnik und Informationstechnik 

 

 

 

 

A Language-Agnostic Framework for the 
Analysis of the Syntactic Structure of 

Process Fragments 
 

Michele Mancioppi, Olha Danylevych, 
Mike P. Papazoglou, Frank Leymann 

 

Report 2010/07  
 

 

 

 

 

Institut für Architektur von 
Anwendungssystemen 

 Universitätsstraße 38 
70569 Stuttgart 
Germany

 

 

CR: H.4.1 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Publikationen der Universität Stuttgart

https://core.ac.uk/display/147541198?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Abstract

Process fragments are a cornerstone of process modeling in both
Service Oriented Architecture and Business Process Management. The
state of the art lacks shared, language agnostic definitions of the
basic concepts and properties of process fragments. This absence of
a common foundation for the research on process fragments hinders
the comparison and reuse of the results in the state of the art, and
renders impossible the reaching of agreed, intensional definitions of
the different typologies of process fragments. The present work aims
at filling this gap by providing a framework of language agnostic
definitions of properties of the syntactic structure of process fragments
based on the mereotopology of discrete space. Alongside familiar
mereologic concepts like inclusion, overlap and disjointness, we cover
fundamental concepts for process fragments like (dis)connection, self-
connectedness, borders, interiors and exteriors. Besides providing a
foundation for further research on process fragments, we discuss the
immediate application of the concepts defined in this work in the scope
of the change management of process models.

The research leading to these results has received funding from the
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Network of Excellence S-Cube - Grant Agreement n◦ 215483.
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1 Introduction
In Service Oriented Architecture (SOA) and Business Process Management
(BPM), process modeling supports the accomplishment of tasks such as
modeling operational aspects of large scale applications, business process
reengineering, human understanding of and communication involving pro-
cesses, and the automation of software- and business processes [CKO92].
Standard process-modeling languages like Web Services Business Process
Execution Language v2.0 (WS-BPEL), Business Process Modeling Notation
v1.2 (BPMN v1.2) and the upcoming Business Process Model and Notation
v2.0 (BPMN v2.0), widely accepted by industry and academy alike, allow for
the specification of process models that represent (and, if executable, realize)
software services and their compositions (possibly into other services), intra-
and inter-organizational business processes, workflows, etc.

A process fragment is a part of an existing process model, i.e. a subset of the
elements (control flows, activities, etc.) that are defined in that process model.
Process fragments have a wide range of applications including reuse [WRR07,
GKW08], autocompletion functionalities during process modeling [HKO07],
distributed execution of process models [LD99,Kha08] possibly for optimizing
Quality of Service (QoS) criteria [NCS04,DKL09], and adjusting to different
categories of users the granularity of process models so to visualize only the
most relevant information [PSW08].

Unfortunately, the research efforts devoted so far to process fragments
are problem specific and rather ad-hoc. In the state of the art on process
fragments there is no common foundation for basic concepts such as when
process fragments overlap or what are their borders, and this prevents the
generalization of the results that have been already achieved. This “frag-
mentation” of the state of the art is aggravated by the fact that the formal
definitions of process fragments in the literature are deeply rooted in particu-
lar process-modeling languages such as WS-BPEL, classes of Petri-nets, or
specific graph-based workflow languages. As a result, these definitions mix
the syntactic structure of the process fragments, i.e. which process elements
they contain and how they are related to each other, with their operational
semantics, i.e. how the process fragments are executed at runtime or which
piece of abstract business logic they represent. The state of the art of SOA
and BPM encompasses a diversity of process-modeling languages that vary
remarkably in both syntax and operational semantics. In this context, the
tangle of syntax and operational semantics is a major setback that impedes
the development of a general theory for process fragments. The aftermath
is that we currently lack formal, shared, intensional and language-agnostic
definitions of the typologies of process fragments.
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This work is targeted at researchers that work on process fragments.
To alleviate the lack of a formal, language agnostic foundation to process
fragments, we present a framework of concepts and properties of process
fragments that researchers and practitioners can apply with minimal effort
to their process-modeling language of choice. In particular, in this work we
focus on the syntactic structure of process fragments, which is their sine qua
non. In fact, what process fragments accomplish (when executed) or mean
(to users) depends on the interpretation of their syntactic structure according
to some particular (operational) semantics. Therefore, the first step towards
the introduction of a language agnostic theory of process fragments is the
study and definition of their syntactic structure.

The work here presented has its theoretical roots in mereotopology. Mereo-
topology is a combination of mereology, i.e. the study of the relations between
parts and wholes, and topology, i.e. the study of the spatial properties of
objects [Var98]. In particular, we employ the mereotopology of discrete space
introduced in [Gal99], which studies the properties of objects made of finitely
many parts. By virtue of its mereologic aspects, the mereotopology of discrete
space allows to formalize all the properties of process fragments that have been
expressed in the literature using set theory, e.g. overlapping, disjointness and
inclusion. On the other hand, the topologic aspects captures the connectivity
among the process elements in process fragments, which is usually addressed
in the literature by means of graph theory. Finally, the combination of
the mereologic and topologic aspects enables the definition of the anatomy
of process fragments, i.e. the subdivision of a process fragment and its
surrounding environment. For example, in mereotopology we distinguish
between the interior, i.e. the internal part of the process fragment that is not
connected to its surrounding environment, the border, which is the part of the
process fragment that is connected with the surrounding environment, and
other fundamental parts of the process fragment as well as its surroundings.
The results presented in this work are exemplified using the BPMN v2.0
Choreography process-modeling language.

This remainder is structured as follows. Section 2 establishes the necessary
background on the syntax of process-modeling languages and the syntactic
structure of their process models. Section 3 illustrates the application of
the mereotopology of discrete space to process fragments. Finally, Section 4
discusses the contribution of this work in the scope of the research on process
fragments.
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2 On the Syntax of Process Models
The goal of the current section is to provide the necessary background on the
syntax of process-modeling languages (Section 2.1) and the syntactic structure
of their process models (Section 2.2), which build up to the definition of process
fragments adopted in the scope of this work (Section 2.3). The concepts and
their relations covered throughout this section are summarized in the concept
map presented in Figure 1.

2.1 The Syntax of Process-Modeling Languages
A process model is a representation of the structure of a process in terms, for
example, of the activities it comprises, their ordering, the events, faults, errors
and exceptions that can occur, how these are handled, etc. Process-modeling
languages, e.g. WS-BPEL and BPMN v1.2, provide syntaxes for specifying
process models and, to different extents of formality, their semantics [CKO92,
HR00]. In this work we are concerned exclusively with the syntax of process
models, and therefore we will not discuss their semantics. The syntax of a
process-modeling language is specified by its notation in terms of constructs
and syntactic rules to combine them [HR00]. The constructs are the basic
components of the notation such as activities, sequence flows and gateways
in workflow-like notations. The syntactic rules (also called “composition
mechanisms” in [HR00]) specify how the constructs can be combined in a
process model whose syntax is correct. For example, a commonplace syntactic
rule in workflow-based process-modeling languages is that a sequence flow
must be connected with exactly two activities, one at each end. Meta-models,
i.e. schematic representations of the constructs and syntactic rules of modeling
languages [EW05] (N.B. not only process-modeling ones), have become in
the past two decades the standard way for specifying notations by means, for
example, of Unified Modeling Language (UML).

2.2 The Syntactic Structure of Process Models
The constructs provided by a process-modeling language are instantiated in
its process models as process elements. For clarity, throughout this work we
typeset the names of particular process elements with a different font, for
example MyInvokeActivity.

The running example used throughout this work is the BPMN v2.0 chore-
ography shown in Figure 2. In a nutshell, a service choreography – or
choreography, in short – is a process model describing the ordering of message
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exchanges in message-based conversations that involve two or more partici-
pants [Pel03]. The conversations are modeled from a global perspective, i.e.
without assuming the point of view of any particular participant. For reasons
of space, in the following we will restrict the exposition of the BPMN v2.0
process-modeling language to the extent necessary to illustrate the example in
Figure 2. The reader is referenced to the BPMN v2.0 specification [OMG09]
for a complete overview of the BPMN v2.0 choreography constructs. For
readability, the different types of process elements are highlighted in Figure 2
using text annotations.

The running example involves three participants, namely Buyer, Seller
and Logistic Provider. The beginning of the choreography is denoted
by the start event called Start. Because of the sequence flow connecting
the start event with the choreography task named Obtain Item Data From
Inventory, the latter is the first message exchange that takes place in the
choreography, and it involves the participants Buyer and Seller. Buyer is
the initiator of the message exchange because it is the sender of the initiator
message, in this case Request Inventory List. The participant Seller
concludes the message exchange by replying with the message called Send
Inventory List. After the first message exchange is completed, Buyer
and Seller engage in the choreography task named Ask Offer for Items,
which involves the two messages Send Items List and Send Offer. After
the completion of this second message exchange, Buyer decides whether to
accept the offer of Seller. This decision is represented in the choreogra-
phy by the decision gateway named Buyer Accepts Offer?. If Buyer does
not accept the offer, the sequence flow named Buyer Does Not Accept is
traversed, leading to the enactment of the choreography task named Abort
Negotiation. This last message exchange is followed by the termination
of the choreography enactment because of the reaching of the termination
event named Choreography Aborted. On the contrary, if Buyer does ac-
cept the offer, then Buyer Accepts is traversed, and the expanded sub-
choreography named Arrange Order is enacted. Beside the already men-
tioned Buyer and Seller, Arrange Order involves the participant Logistic
Provider, that has not yet been involved in the enactment. Buyer, Seller
and Logistic Provider enact the collapsed sub-choreography called Post
Order & Arrange Shipment, which, if not completed within one day, causes
the triggering of the Shipment not arranged within 1 day attached in-
termediate timer event. This event leads to the termination of the choreog-
raphy enactment when Abort Order is reached. However, if Post Order
& Arrange Shipment is completed within one day, the enactment eventu-
ally reaches the intermediate signal event named Shipment Delivered to
Buyer that symbolizes the reception by Buyer of the goods it has ordered
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by Seller. This last event is followed by the completion of Arrange Order,
followed by the completion of the entire choreography enactment when the
end event called Success is reached.

In the above description of the running-example choreography, the process
elements stand out. However, the choreography – and, more generally, any
process model – is not specified exclusively in terms of its process elements,
but also of how those process elements are combined. For example, the fact
that the two ends of a sequence flow “touch” two certain process elements
has a precise meaning in the choreography, i.e. the ordering of those two
process elements. This ordering is conveyed by none of the process elements
considered in isolation, but instead by the way they are combined in the
process model, i.e. the syntactic relationships. In other words, syntactic
relationships bind the process elements in order to convey information on the
syntactic structure of the process model that single process elements cannot
otherwise express. In the same way the process elements are instances of the
constructs of the notation of the process-modeling language, the syntactic
relations are instances of its syntactic rules. In the remainder of this work we
assume syntactic relationships in process models to be binary, i.e. involving
exactly two process elements. This assumption does not cause any loss of
generality for the applicability of the framework proposed in this work. In
fact, in the same way n-ary relations in Entity Relationships (ERs) diagrams
can be “split” in multiple binary relations without losing information, n-ary
syntactic relationships in process models can be replaced by multiple binary
ones.

Each process-modeling language has its own types of syntactic relation-
ships, and their classification falls outside the scope of this work. The reader
will nevertheless benefit from some examples. In process-modeling languages
that have notations based on eXtensible Markup Language (XML), e.g. WS-
BPEL, the syntactic relationships are usually nesting (putting one XML
element inside another), sequencing (positioning an XML element before/after
another) and referencing (making references to XML elements from others by
means of their name or another identifier, often specified as an XML attribute
of the referenced XML element).

In the case of BPMN v2.0 choreographies, the types of syntactic relation-
ships that occur are shown in Figure 3. The port syntactic relationship (see
Figure 3a) occurs between choreography activities (i.e. choreography task,
sub-choreography, etc.) and gateways, and the intermediate events attached
to them. For example, Arrange Shipment and Shipment not arranged
within 1 day in Figure 2 are bound by a port syntactic relationship.

The nesting syntactic relationship (Figure 3b) occurs between a sub-
choreography and each process element immediately nested in it. That is, a
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Figure 3: Syntactic relationships in BPMN v2.0 choreographies

process element nested into a sub-choreography has a nesting relation only
with the latter, regardless whether that sub-choreography is itself nested into
another sub-choreography.

The contact syntactic relationship (Figure 3c) represents the fact that the
graphic borders of two process elements touch. In BPMN v2.0 choreographies,
the contact syntactic relationship occurs in the following four cases: (1)
between a sequence flow and its source process element, (2) between a sequence
flow and its target process element, (3) between an association and its source
process element, and (4) between an association and its target process element.
Given a sequence flow or an association, the connections with its source and
target process element are two distinct instances of the syntactic relationship.

In the scope of this work, the syntactic structure of process model is defined
as the set of process elements contained in the process model and the syntactic
relationships that bind them. The syntactic structure of a process can be
visualized as a graph in which the nodes are the process elements and the edges
the syntactic relationships that bind them. It is interesting to notice that the
syntactic structure of process models as defined above is conceptually similar
to Abstract Syntax Trees (ASTs) in block-based programming languages
(see e.g. [BYM+98]). However, ASTs are not applicable to process models
for two reasons. Firstly, the syntactic relationships are not always directed.
For example, when two process elements are connected is not always clear if
either of them “comes first” or, using graph terminology, if there is a source
and a target. Secondly, the syntactic relationships in a process model may
form cycles, which are not allowed in tree-like data structures like ASTs.
For example, consider the case of a BPMN v2.0 choreography task with
a sequence flow that loops on it: in this case there would be two contact
syntactic relationships, one per each end of the sequence flow.
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2.3 Process Fragments
In the scope of this work a process fragment is defined as an arbitrary
subset of the process elements of a given process model. In other words, a
process fragment can be any selection of one or more process elements that
are contained in one process model. Our definition of process fragment is
deliberately generic in order to allow the application of the theories proposed
in this work to all the different types of process fragments studied in the
literature. No assumptions are taken on the process elements comprised in
a process fragment other than they all belong to the same process model
(otherwise the process fragment would not be an “integral part” of the process
model). In particular, we assume no particular criterion for how the process
fragments and their process elements are selected.

It should be noted that the definition of process fragment provided above
does mention the syntactic relations between the process elements comprised
in the process fragments. The reason is that the syntactic relationships are
already part of the context of the process fragment, i.e. the encompassing
process model. This approach is coherent with the notion of process fragment
as integral part of the process model, and allows us to clearly distinguish
between process model and process fragment: the process model is made of
process elements and syntactic relationships, whereas the process fragment is
made only of some process elements specified by one process model, and it
requires the context of that process model to be studied.

3 Process Fragments & the Mereotopology of
Discrete Space

This section incrementally presents the mereotopology of discrete space and
how its concepts apply to process models and process fragments. The formula-
tion of the mereotopology is based on first order logic (negation, conjunction,
disjunction, implication, existential and universal quantification, etc.), in
addition to some primitives reminiscent of set theory (e.g. intersection and
difference). In each of the following subsections, the theory of mereotopol-
ogy and its application are covered by “The Theory” and “The Practice”
paragraphs, respectively. For reasons of space, we will not introduce all the
mereotopologic concepts treated in [Gal99], but only the ones that are funda-
mental or that have an immediate application to the change management of
process models and process fragments.

Compared to [Gal99], the mereotopology of discrete space presented in the
remainder of the section has been reworked to drop one fundamental axiom, i.e.
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the reflexivity of the adjacency relation (see Section 3.2), that is problematic
when applied to process models and process fragments. Additionally, we
extend the theory by introducing two novel concepts, namely the border and
the confine (see Section 3.5), which are of extreme usefulness when applied
to process fragments.

The BPMN v2.0 choreography shown in Figure 4 is used as the running
example throughout most of this section. It is a slightly modified version
of the choreography shown in Figure 2 in which (1) the text annotations
have been removed for reasons of space, (2) the graphical representation
of choreography tasks and sub-choreographies is simplified by dropping the
participant bands, (3) the descriptive names of the process elements have been
replaced with short identifiers for brevity, and (4) the five process fragments
R1, R2, R3, R4 and R5, delimited by dashed lines, have been identified.

3.1 Cells, Spaces and Regions
The Theory. Cells are the atomic constituents of a mereotopologic space. We
denote with c ∈ S the fact that the cell c is included in the space S. A region
is a (possibly empty) subset of the cells of a space. Similarly to sets in set
theory, regions are defined extensionally, i.e. as enumerations of the cells they
contain. The symbol ∅ denotes the empty region of a certain space, i.e. the
region in that space that contains no cells. We say that a region R belongs
to a space S if and only if R ⊆ S. The region that contains all the cells in
a space is called universal region. The inclusion of a region into another is
defined as between sets in set theory, i.e. a region R1 is included in R2 if and
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only if every cell of R1 is also contained in R2. Formally:

R ⊆ R′ ⇐⇒ {∀c ∈ R : c ∈ R′} (Inclusion of Regions)

The complement R of a region R that belongs to the space S contains all
and only the cells on S that are not in R:

R := S \R (Complement of a Region)

The symbol \ denotes the difference operator as defined in classic set
theory, namely:

R \ R′ := {c ∈ S : c ∈ R ∧ c /∈ R′} (Difference of Regions)

The intersection of two regions R and R′ in a space S, denoted by R ∩R′

is defined as in set theory, i.e. as the region made of all and only the cells
that are contained in both regions:

R ∩ R′ := {c ∈ S : c ∈ R ∧ c ∈ R′} (Intersection of Regions)

All the above operators are defined in the context of one space. The
mereotopology of discrete space does not specify primitives for comparing
regions defined in different spaces and does not treat regions whose cells
belong to difference spaces (i.e. are allowed no “mixes” of different spaces).
When clear from the context or not relevant, in the remainder we will omit
to specify the space to which cells and regions belong.

The Practice. In order to apply the mereotopology of discrete space to
a process model, it is necessary to map the latter syntactic structure of the
latter (see Section 2.2) to a mereotopologic space. The mapping is divided in
two steps, one concerning process elements and cells (described below) and
one concerning syntactic relationships (illustrated in Section 3.2). The first
step of the mapping is the following:

Each process element of a process model is mapped to a distinct
cell in the mereotopologic space.

Process fragments are straightforwardly mapped to regions. The complement
of process fragments and their inclusion into each other is defined in the same
way as the respective concepts for regions.

It is interesting to notice that mapping process fragments to regions implies
the possibility of “empty” process fragments, i.e. process fragments that do
not actually contain any process element. Intuitively, empty process fragments
are not relevant in practice. For example, an empty process fragment has

14



no reuse value, as there is no logic in it to be reused. However, they are
a useful abstract concept. In particular, empty process fragments come in
handy in the definition of change algebras, i.e. sets of change operators for
manipulating process models specified with some particular process-modeling
language, see e.g. [WRRM08].

3.2 Adjacency of Cells
The Theory. Adjacency is a binary relation defined on the cells of a space.
Intuitively, two cells c1 and c2 in a space S are adjacent – denoted by A(c1, c2)
– if they are “next-door neighbors”. Together with the mereologic inclusion of
cells in regions and spaces, the adjacency relation is the fundamental relation of
mereotopology. Given an application domain, the semantics of the adjacency
relation, i.e. what does it mean that two cells are adjacent, determines the
interpretation of all the other mereotopologic in that application domain. The
semantics of the adjacency relation in this work is discussed in the following
“The Practice” paragraph; here we discuss its general properties.

The adjacency relation is by definition symmetric and intransitive. Put
formally:

∀ c, c′ ∈ S : A(c, c′) ⇐⇒ A(c′, c) (Adjacency: Symmetry)
∀ c, c′, c′′ ∈ S : A(c, c′) ∧A(c′, c′′) ; A(c, c′′) (Adjacency: Intransitivity)

[Gal99] assumes a reflexive adjacency relation (i.e. each cell is adjacent
to itself) for “technical reasons”, i.e. because this assumption simplifies
the presentation of some mereotopologic concepts that build on adjacency.
However, the reflexivity of the adjacency relation does not suite well the
application of the mereotopology of discrete space to process fragments (the
explanation is provided in the “The Practice” part of this section), and it is
dropped in favor of an irreflexive formulation of adjacency:

∀ c ∈ S ; A(c, c) (Adjacency: Irreflexivity)

In the remainder of the exposition of the mereotopology of discrete space
we will adjust the definitions of the concepts affected by the irreflexivity
of the adjacency relation to make them logically equivalent to the original
formulation provided by [Gal99]. Those corrections will be made explicit.
Overall, the mereotopology of discrete space and the concepts not directly
impacted by the corrections are not affected. Therefore, all the lemmas and
theorems presented in [Gal99] still apply.

Two adjacent, distinct cells c and c′ are said to be neighbors. The immediate
neighborhood of a cell c in the space S, denoted by Nc, is the region made of
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c all and only the cells that are adjacent to it:

Nc := {c′ ∈ S | c = c′ ∨A(c, c′)} (Immediate Neighborhood)

This formulation differs from the one provided in [Gal99] to account for the
irreflexivity of the adjacency relation. In particular, we must explicitly state
that a cell is comprised in its immediate neighborhood, which in the original
formulation is implied by the reflexivity of the adjacency relation.

The cells of a space and the adjacency relations between them can be
graphically represented by means of an adjacency graph. The adjacency graph,
e.g. the one shown in Figure 5, is an undirected graph in which the cells of a
space are the nodes, and the adjacency relations between them are the edges.

The Practice. As discussed in Section 3.1, each process element of a
process model is mapped to a distinct cell in the mereotopologic space that
represents that process model’s syntactic structure. The other constituent of
the syntactic structure of process models, i.e. the syntactic relationships that
bind process elements, are mapped to adjacency relations. In particular, the
mapping from syntactic relationships to adjacency relations is the following:

Two cells are marked as adjacent if there is at least one syntactic
relationship that binds the respective process elements.

In other words, all the syntactic relationships between two given process
elements are “collapsed” in one adjacency relationship binding the cells to
which those two process elements are mapped. The directions (if any) of the
syntactic relationships are discarded in the mapping.

It is important to notice that syntactic relations are generally not reflexive.
For example, no process element in a BPMN v2.0 choreography can be
in contact with or nested into itself. In point of fact, the mapping from
syntactic relationships to adjacency relations motivates the reworking of
the mereotopology of discrete space presented in this work and finalized
to dropping the assumption on the reflexivity of the adjacency relation.
Maintaining the assumption that every cell is adjacent with itself would
lead to the inconsistent (and confusing) situation in which some adjacency
relations result from the mapping of the syntactic relationships, and others
from the axiomatization of the mereotopology of discrete space.

The general applicability of the mereotopology of discrete space to process
models of any process-modeling language derives from the mappings from
process elements to cells and from syntactic relationships to adjacency rela-
tions. The particular types of process elements vary from a process-modeling
language to the other, and so do the syntactic relationships between them.
However, each process element is mapped to a distinct cell regardless of its
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type (i.e. the particular construct it is instantiated from). Similarly, any
syntactic relationships binding two process elements are mapped to one single
adjacency relation between the relative cells.

Figure 5 shows the adjacency graph resulting from the BPMN v2.0 chore-
ography presented in Figure 4. The process fragments identified on the
choreography are mapped to the regions (delimited by dashed borders on
the adjacency graph) that are identified by the same names. To ease the
comparison between the choreography and the respective adjacency graph,
the layout of the latter mirrors closely the one of the former. However, the
actual positioning of the nodes in the adjacency graph bears no relevance for
the mereotopologic properties that will be studied in the remainder of this
section: what matter is only which cells are defined, which cells are adjacent
to which others, and how the cells are grouped in regions.

3.3 Parthood and Connection of Regions
The Theory. The regions of a mereotopologic space can be bound by several
different types of relations that are introduced in this section using as example
the regions identified on the adjacency graph shown in Figure 5.

The non-empty region R is a subregion of R′, denoted by P(R, R′), if the
first is a subset of the second, i.e.:

P(R, R′) ⇐⇒ R 6= ∅ ∧ R ⊆ R′ (Subregion)

By definition, any non-empty region is a subregion of itself. A subregion R
that contains strictly less cells than its enclosing region R′ is called proper
subregion. Formally:

PP(R, R′) ⇐⇒ P(R, R′) ∧ R′ \R 6= ∅ (Proper Subregion)

For example, the regions R2 and R3 are both proper subregions of R1.
Two regions R and R′ overlap with each other, denoted by O(R, R′), if

their intersection is not empty (i.e. they share at least one cell):

O(R, R′) ⇐⇒ R ∩R′ 6= ∅ (Overlap)

For example, the regions R2 and R3 overlap. The overlap is defined so that
the equivalence of regions is a special case, i.e. every region overlaps with
itself. Note also that a region overlaps with all its (proper) subregions.

The regions R and R′ partially overlap, denoted by PO(R, R′), if they
overlap and neither one is a subregion of the other:

PO(R, R′) ⇐⇒ O(R, R′) 6= ∅ ∧ ¬P(R, R′)∧¬P(R′, R) (Partial Overlap)
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For example, the regions R2 and R3 partially overlap.
Two regions R and R′ that do not overlap, i.e. their intersection is empty,

are said to be disjoint, which is denoted by DJ(R, R′). Formally:

DJ(R, R′) ⇐⇒ ¬O(R, R′) (Disjointness)

For example, the regions R1, R4, R5 and R6 are all pair-wise disjoint.
Two regions R and R′ are connected, denoted by C(R, R′), if either they

overlap or they respectively contain two cells c1 and c2 that are adjacent. Put
formally:

C(R, R′) ⇐⇒ O(R, R′) ∨ ∃ c1 ∈ R, c2 ∈ R′ : A(c1, c2) (Connection)

For example, the regions R1 and R4 are connected because of the adjacency
of the cells Sf03 and G1, as well as R3 and R4 for the same reason. With
respect to the formulation of connectedness provided in [Gal99], we explicitly
add the clause that regions that overlap are connected, which was originally
implied by the reflexivity of the adjacency relation.

Like adjacency, the connection relation is symmetric and intransitive. Two
regions R and R′ that are connected and disjoint are externally connected,
denoted by EC(R, R′). Formally:

EC(R, R′) ⇐⇒ C(R, R′) ∧ ¬O(R, R′) (External Connection)

For example, of R3 and R4 are externally connected, as well as R1 and R4 .
Disconnection is the opposite case to connection:

DC(R, R′) ⇐⇒ ¬C(R, R′) (Disconnection)

In other words, the regions R and R′ are disconnected if they do not overlap
and none of their cells are adjacent. This is the case, for example, of R1 and
R6.

The Practice. Subregion, proper subregion, overlap, partial overlap and
disjointness are standard mereologic relations between regions that apply
verbatim to process fragments. The mapping from the syntactic structure of
process models to mereotopologic spaces provides a straightforward, univocal
way of defining the mereologic relations between process fragments. These
mereologic relations, while seldom defined formally, are widely used in the
literature of process fragments (see e.g. [VVL07, Kha08, VVK09, Van09]).
Moreover, they have an important role in the intensional definitions of types
of process fragments, i.e. definitions based on the properties of the process
fragments. Consider for example process fragments defined as partitions, e.g.
in [NCS04,Kha08]. Partitions are simply defined as process fragments that do
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not overlap with each other and whose union (i.e. all the process fragments
collectively) includes every process element defined in the process model.

Connection, external connection and disconnection are relations of a
topologic nature that (mainly) build on the adjacency between the regions’
cells1. Intuitively, the connection between two process fragments marks some
sort of syntactic dependence occurring between them: either they overlap, or
some of their process elements are adjacent with each other. Conversely, two
disconnected process fragments are completely independent from each other
in terms of syntactic structure.

The syntactic dependencies between process fragments that are outlined
by connection, external connection and disconnection bear a big potential
in the scope of change management of process models. Informally, a change
is a modification of a process model’s syntactic structure with the aim of
achieving alterations in the process model’s (operational) semantics and/or
secondary notation. In [Pet06], the secondary notation of process models is
defined as:

“. . . things which are not formally part of a notation which are
nevertheless used to interpret it, such as conventions (e.g., reading
a circuit diagram left-to-right and top-to-bottom), use of locality
(i.e., placing logically related items near each other), and labelling.”

The part of the process model that is affected by the change is called change
region (see e.g. [EKR95,RD98,MBRS06,RWR06,WRR07,WRRM08]), and
it is a process fragment as we understand it in this work. Similarly to the
case of software programs, it is well known that changes in process models
have a way of “rippling through” and affect other parts of the process model
in subtle, unforeseen and virtually always undesirable (and undesired) ways.
In this respect, connection, disconnection and external connection between
process fragments could be used to map how the ripples propagate or falter
(i.e. stop) in process models, e.g. by adapting to process models the method
proposed in [Raj97] for estimating ripple effects in software programs.

3.4 Self-Connected Regions
The combination of the concepts of subregions and connection allows to study
the “extent of the connectedness” within a particular region. A region R

1Actually, the reason why the adjacency relation is defined as reflexive in [Gal99]
is that this allows the connection between regions to be specified only in terms of the
adjacency between cells, thus introducing a clear distinction between mereologic and
topologic relations.
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is self-connected, denoted by SC(RegionR), if each of its non-empty proper
subregions is connected to its complement in that region. Formally:

SC(R) ⇐⇒ ∀R′ ⊂ R : R′ 6= ∅ ⇒ C(R′, R \R′) (Self-Connection)
The rationale of self-connected regions is that their cells are all “transitively”
adjacent to each other. Recall that adjacency is intransitive (Section 3.2). By
transitively adjacent we mean that, given an arbitrary couple of cells c and
c′ in a self-connected region, it is possible to find a path of adjacency, i.e. a
sequence of adjacency relations “chained together” by shared cells, that leads
from c to c′. Due to the symmetry of the adjacency relation, the same path
traversed in the opposite direction leads necessarily from c′ to c. An example
of such path connecting Sf04 and Sf06 in R4 is the following:

〈 (Sf04, G1), (G1, Sf06) 〉
In Figure 5, all the regions are self-connected, with the exception of R6.
R6 is not self-connected because the cell T1 is not adjacent with any other
cell in that region. In other words, a region is self-connected if it has only
one connected component, i.e. a maximal non-empty subregion in which all
cells are transitively adjacent and that is not connected . Alternatively, a
connected component CC(R) of R can be characterized as a proper subregion
of R that is not connected with its complement in R. Formally, the set of
connected components of a region R is defined as:
{CC(R) : PP(R, CC(R)) ∧ ¬C(CC(R), CC(R)) ∧CC(R) 6= ∅}

(Connected Components)
For example, in R6 there are two connected components. The first is made
of the cell T1 and the second comprises the cells Sf11 and E1.

The Practice. A self-connected process fragment is fundamentally a
“monolithic” part of a process model. The relevance to process fragments of
the concept of self-connectedness is testified by the fact that it is integral to
a number of definitions of process fragments, see e.g. [VVL07,ML08,PW09].

It is important to notice that the self-connectedness here defined is “undi-
rected” in nature. That is, all the nodes (our case: the cells) in a self-connected
region are mutually reachable through edges (adjacency relations) that do not
have a direction, i.e. can be traversed both ways. This is different from the
“directed” self-connectedness of subgraphs of workflow graphs, whose edges
can usually be traversed in only one direction. The focus in mereotopology
on the undirected aspect of self-connectedness is coherent with the syntactic
approach to process fragments taken in this work. In fact, the directed aspects
of connectivity in process models and process fragments, e.g. the execution
order and mutual reachability of their process elements, is actually a matter
of operational semantics instead of syntactic structure.
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3.5 The Anatomy of a Region
The Theory. The concepts of connection, proper subregion and complement
of a region allow to define notable regions – called interior, exterior, boundary,
border and confine – with respect to one particular region R. These notable
regions are collectively known as the anatomy of the region R. The concepts
in this section are exemplified using the spaces and regions shown in Figure 6.

The interior Rint of a region R is made of all the cells of the latter whose
immediate neighborhoods lay completely within R:

Rint := {c ∈ R | Nc ⊆ R} (Region’s Interior)

In other words, the interior of a region is made of all the region’s cells that
are not adjacent to any cell outside that region. It is possible for regions to
have empty interiors, for example the region depicted in Figure 6a.

Conversely, the exterior Rext of the region R is made of all the cells whose
neighborhood (which, we recall, includes the cells themselves) lays completely
outside R:

Rext := {c ∈ R | Nc ∩R = ∅} (Region’s Exterior)

Likewise region interiors, regions exteriors may be empty, see e.g. Figure 6b.
Straightforwardly, the exterior of a region if always a subregion (possibly
proper) of the complement of that region.

The interior and the exterior of a region are not necessarily complement
of each other. A cell whose immediate neighborhood overlaps with both a
region and its complement is included in neither of them. This is the case,
for example, of the cells c2, c3 and c4 in Figure 6b. The boundary of a region
R, denoted by Rbnd, comprises all and only the cells that are in neither the
interior nor the exterior of R. Formally:

Rbnd := (S \Rint) \Rext (Region’s Boundary [Alt. 1])

Alternatively, the boundary of a region can be characterized as the set of the
cells whose immediate neighborhood overlaps with both the region and its
complement:

Rbnd := {c | O(Nc, R) ∧O(Nc, R)} (Region’s Boundary [Alt. 2])

That is, as long as any of their neighbors is in the region, the cells in the
boundary of that region may or may not be comprised in the region itself. If
a region is a connected component (see Section 3.4), its boundary is empty.
This is the case, for example, of the region depicted in Figure 6c.
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In the original formulation of the mereotopology of discrete space proposed
in [Gal99] there is no concept that clearly represents the “physical inner limit”
and “physical outer limits” of a region. The boundary, in fact, does not
differentiate between cells that are inside and outside the region. To fill this
gap, we introduce the concepts of border and confine of a region to represent
that region’s inner- and outer limits, respectively. The border Rbrd of the
region R is made of the cells that are in R and that have at least one neighbor
cell outside R:

Rbrd := {c | c ∈ R ∧ ∃ c′ ∈ R : A(c, c′)} (Region’s Border [Alt. 1])

Put in terms of neighborhood, the border of a region is made of the cells in
that region whose neighborhood overlaps with the complement of the region:

Rbrd := {c | c ∈ R ∧O(Nc, R)} (Region’s Border [Alt. 2])

However, the most intuitive characterization of the border of a region is the
following: the border of a region R is the proper subregion of R containing
all and only the cells that are not included in the internal of R:

Rbrd := R \Rint (Region’s Border [Alt. 3])

All the above characterizations of the border of a region are easily proven
equivalent using the theorems and lemmas demonstrated in [Gal99].

The confine of a region R, denoted by Rcnf , is the region made of the cells
that are not in R, but whose neighborhood overlaps with it. Formally:

Rcnf := {c | c /∈ R ∧O(Nc, R)} (Region’s Confine [Alt. 1])

In other words, the confine of the region R is the (possibly empty) subregion
of R’s boundary that does not overlap with R’s border:

Rcnf := Rbnd \Rbrd (Region’s Confine [Alt. 2])

Additionally, the confine of a region can be characterized as the difference
between the complement of that region and its exterior:

Rcnf := R \Rext (Region’s Confine [Alt. 3])

The Practice. Interior, exterior, boundary, border and confine are ex-
tremely useful concepts when applied to process fragments. Fundamentally,
the border of a process fragment is its “interface” with the rest of the process
model. Conversely, the confine is the interface of the rest of the process model
to the process fragment. From the standpoint of the change management of
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process models, provided the absence of “ripple effects”, the exterior of the
change area can be considered unaffected by the change. And when ripple
effects do occur, assuming that they propagate over syntactic dependencies,
the confine can be used to iteratively calculate the ripples, i.e. the parts of
the process model that at each consecutive step become affected. Straightfor-
wardly, the ripple at the n-th step of propagation is the confine of the ripple
at the step n− 1.

Another immediate application of the anatomy of process fragment is
in the scope of distributed execution of process models. For example, the
decomposition technique proposed in [Kha08] for executing distributedly WS-
BPEL process models introduces message exchanges between the resulting
process fragments in place of the original sequence flows that are “broken”
during the decomposition. In other words, the control control flows that
are replaced with message exchanges are those laying in the border of the
process fragments. Therefore, calculating the border of a process fragment
can simplify the detection of those process elements that must be adjusted
to enable the distributed execution of the overall process, while the process
elements in the interior should not require adjustments.

4 Discussion
This section discusses our contribution in the scope of the research on process
fragments (Section 4.1), and the future work regarding the application of
spatial logics to process fragments (Section 4.2).

4.1 Our Contribution to Process Modeling
The research on process fragments would greatly benefit from increasingly
formal, language agnostic approaches grounded, for example, in spatial logics
(e.g. the mereotopology of discrete space here used) and language theory, i.e.
the synthetic representation of the traces that models (e.g. process models
and process fragments) can execute.

The independence from particular process-modeling languages is a funda-
mental aspect that has not been tackled so far. We have been experiencing
the introduction of numerous new process-modeling languages, as well as
new versions of existing ones, with remarkable diversity and variety in the
syntax and operational semantics so that extensive classifications of their
constructs was deemed to be necessary, see e.g. [AHKB03]. Furthermore, the
growing popularity of Domain Specific Languages (DSLs) and the interest
they receive suggests that the future will bring even more domain-specific
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process-modeling languages focused on modeling business processes, scientific
workflows, service compositions, mash-ups, and so on. As process-modeling
becomes integral to the practice of more and more domains, the need for a
language agnostic theory of process fragments becomes pressing.

To the best of our knowledge this work is the first to propose the application
of spatial logics, such as the mereotopology of discrete space, to process
fragments. However, it is interesting to notice that the term “region”, which
has strong topologic connotations, is often connected to process fragments
in the literature. In the context of change and evolution of process models,
a change region is a set containing the process elements that are affected
by any particular change, see e.g. [EKR95,RD98,MBRS06,RWR06,WRR07,
WRRM08]. Another attempt for interpreting process fragments as regions
can be found in [HFKV06]. In this reference, the term region is used to denote
an arbitrary subset of the process elements of a process model, i.e. the region
is defined as an integral part of the process model.

The mereotopology of discrete space is a simple and yet powerful framework
to study relations between and among process fragments that are based on
their syntactic structure. This versatile approach helps developing language
agnostic theories for process fragments. In particular, it provides general,
formal definitions of familiar concepts like process fragments’ overlapping,
disjointness and self-connectedness. Moreover, it enriches the vocabulary of
process fragments with primitives to describe topologic relations (i.e. based
on connectedness) and the anatomy of process fragments. The “entry barrier”
to applying the concepts presented in this work to process fragments specified
with any given process-modeling language simply amount to identifying (1)
what the process elements are and (2) what syntactic relationships bind them.

The framework presented in this work has a number of potential applica-
tions to the research on and the practice of process fragments. First of all, it
can be used as foundation for formal, language agnostic categorizations of the
different typologies of process fragments. Moreover, the language agnostic
definitions of properties of process fragments included in the framework ap-
pear often, albeit in a language dependent formulation, in approaches to the
analysis and management of process models and process fragments. For ex-
ample, throughout this work we have discussed the immediately applicability
of our framework to the change management of process models. Leveraging
the framework here presented in new analysis methods (or reformulations
of the already available ones) would increase their portability and applica-
bility across the various process-modeling languages in the state of the art.
Additionally, the concepts here presented are of easily implementation in
software and integration in process-modeling tools. To assist the adoption of
our framework in the scope of process modeling, we have realized the m3dus4

26



Java library2 that allows to model and manage mereotopologic spaces.

4.2 Beyond the Mereotopology of Discrete Space
The adjacency relation in the mereotopology of discrete space is qualitative:
two given cells are either adjacent, or they are not. One direct effect of this
is that the mereotopologic properties of a space and the regions identified
on it are independent from the actual spatial distribution of its cells. That
is, as long as the adjacency relations between the cells in a space are not
altered, those cells can be arranged spatially according to any layout without
modifying the mereotopologic properties of the space and its regions [Var98].
This is advantageous in the quest for shared, intensional definitions of the
typologies of process fragments. In fact, this means that the definitions of
the structural properties of process fragments depend only on their syntactic
structure, and not on the layout of the process models and the spatial aspects
of the secondary notation they embed.

If, however, our work were to be extended to cover the human dimension
of process fragments in process modeling, e.g. the secondary notation, would
require, for example, (1) a quantitative notion of adjacency, e.g. distance
between process elements in terms of units of length, and (2) a notion of
orientation of process elements (at least in non-textual process-modeling
languages). To this end, we think that the application of digital topology,
defined in [KR89] “the study of the topological properties of image arrays”,
to process models and process fragments is a topic that deserves research
scrutiny.
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